Sample records for core repeat optimized

  1. Systematic ultrasound-guided saturation and template biopsy of the prostate: indications and advantages of extended sampling.

    PubMed

    Isbarn, Hendrik; Briganti, Alberto; De Visschere, Pieter J L; Fütterer, Jurgen J; Ghadjar, Pirus; Giannarini, Gianluca; Ost, Piet; Ploussard, Guillaume; Sooriakumaran, Prasanna; Surcel, Christian I; van Oort, Inge M; Yossepowitch, Ofer; van den Bergh, Roderick C N

    2015-04-01

    Prostate biopsy (PB) is the gold standard for the diagnosis of prostate cancer (PCa). However, the optimal number of biopsy cores remains debatable. We sought to compare contemporary standard (10-12 cores) vs. saturation (=18 cores) schemes on initial as well as repeat PB. A non-systematic review of the literature was performed from 2000 through 2013. Studies of highest evidence (randomized controlled trials, prospective non-randomized studies, and retrospective reports of high quality) comparing standard vs saturation schemes on initial and repeat PB were evaluated. Outcome measures were overall PCa detection rate, detection rate of insignificant PCa, and procedure-associated morbidity. On initial PB, there is growing evidence that a saturation scheme is associated with a higher PCa detection rate compared to a standard one in men with lower PSA levels (<10 ng/ml), larger prostates (>40 cc), or lower PSA density values (<0.25 ng/ml/cc). However, these cut-offs are not uniform and differ among studies. Detection rates of insignificant PCa do not differ in a significant fashion between standard and saturation biopsies. On repeat PB, PCa detection rate is likewise higher with saturation protocols. Estimates of insignificant PCa vary widely due to differing definitions of insignificant disease. However, the rates of insignificant PCa appear to be comparable for the schemes in patients with only one prior negative biopsy, while saturation biopsy seems to detect more cases of insignificant PCa compared to standard biopsy in men with two or more prior negative biopsies. Very extensive sampling is associated with a high rate of acute urinary retention, whereas other severe adverse events, such as sepsis, appear not to occur more frequently with saturation schemes. Current evidence suggests that saturation schemes are associated with a higher PCa detection rate compared to standard ones on initial PB in men with lower PSA levels or larger prostates, and on repeat PB. Since most data are derived from retrospective studies, other endpoints such as detection rate of insignificant disease - especially on repeat PB - show broad variations throughout the literature and must, thus, be interpreted with caution. Future prospective controlled trials should be conducted to compare extended templates with newer techniques, such as image-guided sampling, in order to optimize PCa diagnostic strategy.

  2. Rapid determination of polycyclic aromatic hydrocarbons in rainwater by liquid-liquid microextraction and LC with core-shell particles column and fluorescence detection.

    PubMed

    Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella

    2013-02-01

    Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors

    NASA Astrophysics Data System (ADS)

    Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti

    2010-12-01

    Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.

  4. On the improvement of signal repeatability in laser-induced air plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Sheta, Sahar; Hou, Zong-Yu; Wang, Zhe

    2018-04-01

    The relatively low repeatability of laser-induced breakdown spectroscopy (LIBS) severely hinders its wide commercialization. In the present work, we investigate the optimization of LIBS system for repeatability improvement for both signal generation (plasma evolution) and signal collection. Timeintegrated spectra and images were obtained under different laser energies and focal lengths to investigate the optimum configuration for stable plasmas and repeatable signals. Using our experimental setup, the optimum conditions were found to be a laser energy of 250 mJ and a focus length of 100 mm. A stable and homogeneous plasma with the largest hot core area in the optimum condition yielded the most stable LIBS signal. Time-resolved images showed that the rebounding processes through the air plasma evolution caused the relative standard deviation (RSD) to increase with laser energies of > 250 mJ. In addition, the emission collection was improved by using a concave spherical mirror. The line intensities doubled as their RSDs decreased by approximately 25%. When the signal generation and collection were optimized simultaneously, the pulse-to-pulse RSDs were reduced to approximately 3% for O(I), N(I), and H(I) lines, which are better than the RSDs reported for solid samples and showed great potential for LIBS quantitative analysis by gasifying the solid or liquid samples.

  5. A Repeat Look at Repeating Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2016-01-01

    A "repeating pattern" is a cyclical repetition of an identifiable core. Children in the primary grades usually begin pattern work with fairly simple patterns, such as AB, ABC, or ABB patterns. The unique letters represent unique elements, whereas the sequence of letters represents the core that is repeated. Based on color, shape,…

  6. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges.

    PubMed

    Xiao, Limin; Jin, Wei; Demokan, M S

    2007-01-15

    We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.

  7. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges

    NASA Astrophysics Data System (ADS)

    Xiao, Limin; Jin, Wei; Demokan, M. S.

    2007-01-01

    We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.

  8. Impact of extended prostate biopsy including apical anterior region for cancer detection and prediction of surgical margin status for radical prostatectomy.

    PubMed

    Hashimoto, Kohei; Shinkai, Nobuo; Tanaka, Toshiaki; Masumori, Naoya

    2017-06-01

    We investigated diagnostic yield of initial biopsy and repeated biopsy including apical cores. We investigated 573 consecutive men with PSA of ≤20 ng/ml who underwent prostate biopsy between 2004 and 2013. The initial 14-core biopsy consisted of the sextant type, lateral sites at the base and middle, lateral apices (la) at anterior horn sites, and apical anterior sites (aa). The repeated 18-core biopsy consisted of the initial 14-core biopsy with four transition zone (TZ) sites at the base (tzb) and middle (tzm). Prostate cancer was diagnosed in 178 (38.9%) of 458 men with the initial 14-core biopsy, and 44 (38.3%) of 115 men with the repeated 18-core biopsy. In the initial biopsy setting, the unique cancer detection rate was high in apical sites (apex, la, and aa: 6.2%, 6.2% and 5.1%, respectively). In the repeated setting, it was high in the TZ site in addition to the apical site (apex, la, aa, tzm, and tzb: 6.8%, 6.8%, 11.4%, 9.1% and 11.4%, respectively). The positive SM rate at the apex was higher in patients whose cancer was detected only in sites other than the sextant region than for those in the sextant region (36.4% vs. 14.8%, P = 0.037). The initial 14-core and the repeated 18-core biopsy scheme including apical anterior cores are feasible for prostate cancer detection. We propose that apical biopsy cores can be used to predict not only the existence of cancer but also surgical margin status at the apex. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Development of SiO2@TiO2 core-shell nanospheres for catalytic applications

    NASA Astrophysics Data System (ADS)

    Kitsou, I.; Panagopoulos, P.; Maggos, Th.; Arkas, M.; Tsetsekou, A.

    2018-05-01

    Silica-titania core-shell nanospheres, CSNp, were prepared via a simple and environmentally friendly two step route. First, silica cores were prepared through the hydrolysis-condensation reaction of silicic acid in the presence of hyperbranched poly(ethylene)imine (HBPEI) followed by repeating washing, centrifugation and, finally, calcination steps. To create the core-shell structure, various amounts of titanium isopropoxide were added to the cores and after that a HBPEI-water solution was added to hydrolyze the titanium precursor. Washing with ethanol and heat treatment followed. The optimization of processing parameters led to well-developed core-shell structures bearing a homogeneous nanocrystalline anatase coating over each silica core. The photocatalytic activity for NO was examined in a continuous flux photocatalytic reactor under real environmental conditions. The results revealed a very potent photocatalyst as the degradation percentage reached 84.27% for the core-shell material compared to the 82% of pure titania with the photodecomposition rates measured at 0.62 and 0.55 μg·m-2·s-1, respectively. In addition, catalytic activities of the CSNp and pure titania were investigated by monitoring the reduction of 4-nitrophenol to 4-aminophenol by an excess of NaBH4. Both materials exhibited excellent catalytic activity (100%), making the core-shell material a promising alternative catalyst to pure titania for various applications.

  10. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pinmore » end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.« less

  11. Specific TATAA and bZIP requirements suggest that HTLV-I Tax has transcriptional activity subsequent to the assembly of an initiation complex

    PubMed Central

    Ching, Yick-Pang; Chun, Abel CS; Chin, King-Tung; Zhang, Zhi-Qing; Jeang, Kuan-Teh; Jin, Dong-Yan

    2004-01-01

    Background Human T-cell leukemia virus type I (HTLV-I) Tax protein is a transcriptional regulator of viral and cellular genes. In this study we have examined in detail the determinants for Tax-mediated transcriptional activation. Results Whereas previously the LTR enhancer elements were thought to be the sole Tax-targets, herein, we find that the core HTLV-I TATAA motif also provides specific responsiveness not seen with either the SV40 or the E1b TATAA boxes. When enhancer elements which can mediate Tax-responsiveness were compared, the authentic HTLV-I 21-bp repeats were found to be the most effective. Related bZIP factors such as CREB, ATF4, c-Jun and LZIP are often thought to recognize the 21-bp repeats equivalently. However, amongst bZIP factors, we found that CREB, by far, is preferred by Tax for activation. When LTR transcription was reconstituted by substituting either κB or serum response elements in place of the 21-bp repeats, Tax activated these surrogate motifs using surfaces which are different from that utilized for CREB interaction. Finally, we employed artificial recruitment of TATA-binding protein to the HTLV-I promoter in "bypass" experiments to show for the first time that Tax has transcriptional activity subsequent to the assembly of an initiation complex at the promoter. Conclusions Optimal activation of the HTLV-I LTR by Tax specifically requires the core HTLV-I TATAA promoter, CREB and the 21-bp repeats. In addition, we also provide the first evidence for transcriptional activity of Tax after the recruitment of TATA-binding protein to the promoter. PMID:15285791

  12. Human epidermal growth factor receptor 2 testing in invasive breast cancer: should histological grade, type and oestrogen receptor status influence the decision to repeat testing?

    PubMed

    Rakha, Emad A; Pigera, Marian; Shin, Sandra J; D'Alfonso, Timothy; Ellis, Ian O; Lee, Andrew H S

    2016-07-01

    The recent American Society of Clinical Oncology/College of American Pathologists guidelines for human epidermal growth factor receptor 2 (HER2) testing in breast cancer recommend repeat testing based on tumour grade, tumour type, and hormone receptor status. The aim of this study was to test the value of these criteria. HER2 status was concordant in the core biopsies and excision specimens in 392 of 400 invasive carcinomas. The major reasons for discordance were amplification around the cut-off for positivity and tumour heterogeneity. Of 116 grade 3 carcinomas that were HER2-negative in the core biopsy, four were HER2-positive in the excision specimen. Three of these four either showed borderline negative amplification in the core biopsy or were heterogeneous. None of the 55 grade 1 carcinomas were HER2-positive. Review of repeat testing of HER2 in routine practice suggested that it may also be of value for multifocal tumours and if recommended by the person assessing the in-situ hybridization. Mandatory repeat HER2 testing of grade 3 HER2-negative carcinomas is not appropriate. This is particularly true if repeat testing is performed after borderline negative amplification in the core biopsy or in HER2-negative heterogeneous carcinomas. © 2015 John Wiley & Sons Ltd.

  13. Comparative DFT study of structure, reactivity and IR spectra of phosphorus-containing dendrons with Pdbnd Nsbnd Pdbnd S linkages, vinyl and azide functional groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Gottis, S.; Laurent, R.; Kovalenko, V. I.

    2015-07-01

    Fourier transform IR spectra of the first generation dendrons built from thiophosphoryl core with terminal Psbnd Cl groups, vinyl (G1) and azide (G2) functional group at the level of the core have been recorded. The optimized geometries of low energy isomers of G1 and G2 have been calculated by density functional (DFT) method at the PBE/TZ2P level of theory. DFT is used for analyzing the properties of each structural part (core, branches, surface). It was found that the repeated branching units of G1 and G2 contain planar sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd Prbond2 fragments. DFT results for the structure of G1 and G2 are in good agreement with X-ray diffraction measurements. A complete vibrational assignment is proposed for different parts of G1 and G2. The global and local reactivity descriptors have been used to characterize the reactivity pattern of the core functional and terminal groups. Natural bond orbital (NBO) analysis has been applied to comparative study of charge delocalization. Our study reveals why azide group linked to phosphorus has a different reactivity when compared to organic azides.

  14. Deconvolution of continuous paleomagnetic data from pass-through magnetometer: A new algorithm to restore geomagnetic and environmental information based on realistic optimization

    NASA Astrophysics Data System (ADS)

    Oda, Hirokuni; Xuan, Chuang

    2014-10-01

    development of pass-through superconducting rock magnetometers (SRM) has greatly promoted collection of paleomagnetic data from continuous long-core samples. The output of pass-through measurement is smoothed and distorted due to convolution of magnetization with the magnetometer sensor response. Although several studies could restore high-resolution paleomagnetic signal through deconvolution of pass-through measurement, difficulties in accurately measuring the magnetometer sensor response have hindered the application of deconvolution. We acquired reliable sensor response of an SRM at the Oregon State University based on repeated measurements of a precisely fabricated magnetic point source. In addition, we present an improved deconvolution algorithm based on Akaike's Bayesian Information Criterion (ABIC) minimization, incorporating new parameters to account for errors in sample measurement position and length. The new algorithm was tested using synthetic data constructed by convolving "true" paleomagnetic signal containing an "excursion" with the sensor response. Realistic noise was added to the synthetic measurement using Monte Carlo method based on measurement noise distribution acquired from 200 repeated measurements of a u-channel sample. Deconvolution of 1000 synthetic measurements with realistic noise closely resembles the "true" magnetization, and successfully restored fine-scale magnetization variations including the "excursion." Our analyses show that inaccuracy in sample measurement position and length significantly affects deconvolution estimation, and can be resolved using the new deconvolution algorithm. Optimized deconvolution of 20 repeated measurements of a u-channel sample yielded highly consistent deconvolution results and estimates of error in sample measurement position and length, demonstrating the reliability of the new deconvolution algorithm for real pass-through measurements.

  15. Influence of a heptad repeat stutter on the pH-dependent conformational behavior of the central coiled-coil from influenza hemagglutinin HA2.

    PubMed

    Higgins, Chelsea D; Malashkevich, Vladimir N; Almo, Steven C; Lai, Jonathan R

    2014-09-01

    The coiled-coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled-coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a "stutter," a deviation of the idealized heptad repeat that is found in the central coiled-coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter-containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled-coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH-dependent coiled-coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled-coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH-dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. © 2014 Wiley Periodicals, Inc.

  16. Simultaneous optimization of loading pattern and burnable poison placement for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alim, F.; Ivanov, K.; Yilmaz, S.

    2006-07-01

    To solve in-core fuel management optimization problem, GARCO-PSU (Genetic Algorithm Reactor Core Optimization - Pennsylvania State Univ.) is developed. This code is applicable for all types and geometry of PWR core structures with unlimited number of fuel assembly (FA) types in the inventory. For this reason an innovative genetic algorithm is developed with modifying the classical representation of the genotype. In-core fuel management heuristic rules are introduced into GARCO. The core re-load design optimization has two parts, loading pattern (LP) optimization and burnable poison (BP) placement optimization. These parts depend on each other, but it is difficult to solve themore » combined problem due to its large size. Separating the problem into two parts provides a practical way to solve the problem. However, the result of this method does not reflect the real optimal solution. GARCO-PSU achieves to solve LP optimization and BP placement optimization simultaneously in an efficient manner. (authors)« less

  17. Guaranteed Discrete Energy Optimization on Large Protein Design Problems.

    PubMed

    Simoncini, David; Allouche, David; de Givry, Simon; Delmas, Céline; Barbe, Sophie; Schiex, Thomas

    2015-12-08

    In Computational Protein Design (CPD), assuming a rigid backbone and amino-acid rotamer library, the problem of finding a sequence with an optimal conformation is NP-hard. In this paper, using Dunbrack's rotamer library and Talaris2014 decomposable energy function, we use an exact deterministic method combining branch and bound, arc consistency, and tree-decomposition to provenly identify the global minimum energy sequence-conformation on full-redesign problems, defining search spaces of size up to 10(234). This is achieved on a single core of a standard computing server, requiring a maximum of 66GB RAM. A variant of the algorithm is able to exhaustively enumerate all sequence-conformations within an energy threshold of the optimum. These proven optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1 Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30% of their amino acids.

  18. Spectroscopic and molecular structure investigation of the phosphorus-containing G‧2 dendrimer with terminal aldehyde groups using DFT method

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2015-02-01

    The FTIR and FT Raman spectra of the second generation dendrimer G‧2 built from thiophosphoryl core with terminal aldehyde groups have been recorded. The structural optimization and normal mode analysis were performed for model compound C, consisting of thiophosphoryl core, one branch with three repeated units, and four 4-oxybenzaldehyde terminal groups on the basis of the density functional theory (DFT) at the PBE/TZ2P level. The vibrational frequencies, infrared and Raman intensities for the t,g,g- and t,-g,g-conformers of the terminal groups were calculated. The t,g,g-conformer is 2.0 kcal/mol less stable compared to t,-g,g-conformer. A reliable assignment of the fundamental bands observed in the experimental IR and Raman spectra of dendrimer was achieved. For the low generations (G‧1 to G‧3) the disk form of studied dendrimer molecules is the most probable. For higher generations, the shape of dendrimer molecules will be that of a cauliflower.

  19. Use of standard hypodermic needles for accessing laparoscopic adjustable gastric band ports.

    PubMed

    Bewsher, Samuel Mark; Azzi, Anthony; Wright, Timothy

    2010-06-01

    Laparoscopic adjustable gastric banding is a common and successful method of surgically treating morbid obesity. A recipient will have to attend their surgeon's rooms a number of times to optimally adjust the amount of fluid in the band and hence the amount of restriction. Manufacturers suggest that the ports should be accessed with special non-coring needles that may not always be available in regional or remote centers, and this could create a safety risk in cases where urgent band deflation is required. Ports of two different brands were repeatedly accessed over 100 times in the same location while containing fluid under pressure, using a standard beveled 21 g hypodermic needle (SN) and a 20 g Huber tipped non-coring needle (NCN). The path the needles types took through the port septum was also examined. There was no leakage of fluid from any of the ports tested. Neither SN nor NCN passed through the port septum down their axis, but rather in a direction closer to that of their beveled surface. There is no more risk of "coring" the septum with a SN than with a NCN. SN can be used safely and routinely to access laparoscopic adjustable gastric band ports.

  20. To Repeat or Not to Repeat a Course

    ERIC Educational Resources Information Center

    Armstrong, Michael J.; Biktimirov, Ernest N.

    2013-01-01

    The difficult transition from high school to university means that many students need to repeat (retake) 1 or more of their university courses. The authors examine the performance of students repeating first-year core courses in an undergraduate business program. They used data from university records for 116 students who took a total of 232…

  1. Optimized Lentiviral Vector Design Improves Titer and Transgene Expression of Vectors Containing the Chicken β-Globin Locus HS4 Insulator Element

    PubMed Central

    Hanawa, Hideki; Yamamoto, Motoko; Zhao, Huifen; Shimada, Takashi; Persons, Derek A

    2009-01-01

    Hematopoietic cell gene therapy using retroviral vectors has achieved success in clinical trials. However, safety issues regarding vector insertional mutagenesis have emerged. In two different trials, vector insertion resulted in the transcriptional activation of proto-oncogenes. One strategy for potentially diminishing vector insertional mutagenesis is through the use of self-inactivating lentiviral vectors containing the 1.2-kb insulator element derived from the chicken β-globin locus. However, use of this element can dramatically decrease both vector titer and transgene expression, thereby compromising its practical use. Here, we studied lentiviral vectors containing either the full-length 1.2-kb insulator or the smaller 0.25-kb core element in both orientations in the partially deleted long-terminal repeat. We show that use of the 0.25-kb core insulator rescued vector titer by alleviating a postentry block to reverse transcription associated with the 1.2-kb element. In addition, in an orientation-dependent manner, the 0.25-kb core element significantly increased transgene expression from an internal promoter due to improved transcriptional termination. This element also demonstrated barrier activity, reducing variability of expression due to position effects. As it is known that the 0.25-kb core insulator has enhancer-blocking activity, this particular insulated lentiviral vector design may be useful for clinical application. PMID:19223867

  2. The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis.

    PubMed

    von Bergen, Martin; Barghorn, Stefan; Müller, Shirley A; Pickhardt, Marcus; Biernat, Jacek; Mandelkow, Eva-Maria; Davies, Peter; Aebi, Ueli; Mandelkow, Eckhard

    2006-05-23

    In Alzheimer's disease and frontotemporal dementias the microtubule-associated protein tau forms intracellular paired helical filaments (PHFs). The filaments formed in vivo consist mainly of full-length molecules of the six different isoforms present in adult brain. The substructure of the PHF core is still elusive. Here we applied scanning transmission electron microscopy (STEM) and limited proteolysis to probe the mass distribution of PHFs and their surface exposure. Tau filaments assembled from the three repeat domain have a mass per length (MPL) of approximately 60 kDa/nm and filaments from full-length tau (htau40DeltaK280 mutant) have approximately 160 kDa/nm, compared with approximately 130 kDa/nm for PHFs from Alzheimer's brain. Polyanionic cofactors such as heparin accelerate assembly but are not incorporated into PHFs. Limited proteolysis combined with N-terminal sequencing and mass spectrometry of fragments reveals a protease-sensitive N-terminal half and semiresistant PHF core starting in the first repeat and reaching to the C-terminus of tau. Continued proteolysis leads to a fragment starting at the end of the first repeat and ending in the fourth repeat. PHFs from tau isoforms with four repeats revealed an additional cleavage site within the middle of the second repeat. Probing the PHFs with antibodies detecting epitopes either over longer stretches in the C-terminal half of tau or in the fourth repeat revealed that they grow in a polar manner. These data describe the physical parameters of the PHFs and enabled us to build a model of the molecular arrangement within the filamentous structures.

  3. Synthesis and study of the vibrational spectra of a first generation phosphorus-containing dendrimer with pyridyl functional groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Tripathi, V.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2018-06-01

    A new phosphorus-containing dendrimer of the first-generation with potential pharmacological activity was synthesized and studied by spectral methods. The FTIR, FT Raman, 1H and 31P NMR spectra of the first generation dendrimer G1 with a cyclotriphosphazene core, six branches sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S) < and twelve 4-oxyphenethylamidopyridyl end groups sbnd Osbnd C6H4sbnd (CH2)2sbnd NHsbnd COsbnd C5NH4 were recorded. Amide groups of the dendrimer participate in the formation of an intermolecular hydrogen bond. Structure, geometric parameters, the frequency and intensity of the bands in the vibrational spectra were calculated using DFT with PBE functional and TZ2P basis set. Spectral characteristics, charge distribution and reactivity of the core, repeating units and terminal groups of the dendrimer were determined. The first-generation dendrimer molecule has the shape of a concave lens with a slightly non-planar cyclotriphosphazene core and flat repeating units. Repeating units are arranged symmetrically on three on each side of the core, there are no steric hindrances in it and the end groups are able to enter into subsequent reactions and dendrimer has a sufficiently large cavity for accommodating guest molecules. The HOMO covers the repeating units with a noticeable conjugation and the LUMO belongs to the terminal groups.

  4. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    NASA Astrophysics Data System (ADS)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  5. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa

    PubMed Central

    Le Cunff, Loïc; Fournier-Level, Alexandre; Laucou, Valérie; Vezzulli, Silvia; Lacombe, Thierry; Adam-Blondon, Anne-Françoise; Boursiquot, Jean-Michel; This, Patrice

    2008-01-01

    Background The first high quality draft of the grape genome sequence has just been published. This is a critical step in accessing all the genes of this species and increases the chances of exploiting the natural genetic diversity through association genetics. However, our basic knowledge of the extent of allelic variation within the species is still not sufficient. Towards this goal, we constructed nested genetic core collections (G-cores) to capture the simple sequence repeat (SSR) diversity of the grape cultivated compartment (Vitis vinifera L. subsp. sativa) from the world's largest germplasm collection (Domaine de Vassal, INRA Hérault, France), containing 2262 unique genotypes. Results Sub-samples of 12, 24, 48 and 92 varieties of V. vinifera L. were selected based on their genotypes for 20 SSR markers using the M-strategy. They represent respectively 58%, 73%, 83% and 100% of total SSR diversity. The capture of allelic diversity was analyzed by sequencing three genes scattered throughout the genome on 233 individuals: 41 single nucleotide polymorphisms (SNPs) were identified using the G-92 core (one SNP for every 49 nucleotides) while only 25 were observed using a larger sample of 141 individuals selected on the basis of 50 morphological traits, thus demonstrating the reliability of the approach. Conclusion The G-12 and G-24 core-collections displayed respectively 78% and 88% of the SNPs respectively, and are therefore of great interest for SNP discovery studies. Furthermore, the nested genetic core collections satisfactorily reflected the geographic and the genetic diversity of grape, which are also of great interest for the study of gene evolution in this species. PMID:18384667

  6. 75 FR 22813 - Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred Because of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Results for Antibody to Hepatitis B Core Antigen (Anti-HBc); Availability AGENCY: Food and Drug... Deferred Because of Reactive Test Results for Antibody to Hepatitis B Core Antigen (Anti- HBc),'' dated May... were repeatedly reactive for antibodies to hepatitis B core antigen (anti-HBc) were falsely positive...

  7. The validity and reliability of a dynamic neuromuscular stabilization-heel sliding test for core stability.

    PubMed

    Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H

    2017-10-23

    Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (p< 0.05), suggesting a good relationship between the two core stability measures. Test-retest reliability was (ICC3,3) = 0.953 (p< 0.05), indicating excellent consistency between the repeated DNS-HS measurements. Criterion validity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.

  8. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: enhanced gene silencing and reduced adverse effects in vitro

    NASA Astrophysics Data System (ADS)

    Zeng, Xianghui; de Groot, Anne Marit; Sijts, Alice J. A. M.; Broere, Femke; Oude Blenke, Erik; Colombo, Stefano; van Eden, Willem; Franzyk, Henrik; Nielsen, Hanne Mørck; Foged, Camilla

    2015-11-01

    Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers.Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers. Electronic supplementary information (ESI) available: Non-fusogenic liposomes; cytotoxicity of naked siRNA and the empty vector; immunogenicity; low-magnification images; DOPE/DPPC liposomes. See DOI: 10.1039/c5nr04807a

  9. Design and optimization of a flexible high-peak-power laser-to-fiber coupled illumination system used in digital particle image velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Ronald A.; Ilev, Ilko K.

    We present a study on the design and parameter optimization of a flexible high-peak-power fiber-optic laser delivery system using commercially available solid-core silica fibers and an experimental glass hollow waveguide (HW). The fiber-optic delivery system provides a flexible, safe, and easily and precisely positioned laser irradiation for many applications including uniform illumination for digital particle image velocimetry (DPIV). The delivery fibers, when coupled through a line-generating lens, produce a uniform thin laser sheet illumination for accurate and repeatable DPIV two-dimensional velocity measurements. We report experimental results on homogenizing the laser beam profile using various mode-mixing techniques. Furthermore, because a fundamentalmore » problem for fiber-optic-based high-peak-power laser delivery systems is the possible damage effects of the fiber material, we determine experimentally the peak power density damage threshold of various delivery fibers designed for the visible spectral range at a typical DPIV laser wavelength of 532 nm. In the case of solid-core silica delivery fibers using conventional lens-based laser-to-fiber coupling, the damage threshold varies from 3.7 GW/cm{sup 2} for a 100-{mu}m-core-diameter high-temperature fiber to 3.9 GW/cm{sup 2} for a 200-{mu}m-core-diameter high-power delivery fiber, with a total output laser energy delivered of at least 3-10 mJ for those respective fibers. Therefore, these fibers are marginally suitable for most macro-DPIV applications. However, to improve the high-power delivery capability for close-up micro-DPIV applications, we propose and validate an experimental fiber link with much higher laser power delivery capability than the solid-core fiber links. We use an uncoated grazing-incidence-based tapered glass funnel coupled to a glass HW with hollow air-core diameter of 700 {mu}m, a low numerical aperture of 0.05, and a thin inside cladding of cyclic olefin polymer coating for optimum transmission at 532 nm. Because of the mode homogenizing effect and lower power density, the taper-waveguide laser delivery technique ensured high damage threshold for the delivery HW, and as a result, no damage occurred at the maximum measured input laser energy of 33 mJ used in this study.« less

  10. The Influence of the Core Practices Movement on the Teaching and Perspectives of Novice Teacher Educators

    ERIC Educational Resources Information Center

    DeMink-Carthew, Jessica; Grove, Rebecca; Peterson, Margaret

    2017-01-01

    This collaborative self-study examines the influence of engagement in the core practices movement on the course designs, instruction, and perspectives of three novice teacher educators at a large mid-Atlantic research university. Through core practices work, we integrated repeated cycles of analysis, practice, and reflection into our courses,…

  11. FTIR and FT-Raman spectra and DFT vibrational analysis of phosphorus-containing dendrons

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2008-12-01

    FTIR and FT-Raman spectra of four generations of phosphorus-containing dendrons with terminal aldehyde or P sbnd Cl groups have been recorded and analyzed. Their spectral patterns are determined by the ratio T/ R ( T, the number of terminal groups; R, the number of repeated units). Bands assigned to the core, repeated units and terminal groups were separated by the difference spectroscopy method. The optimized geometry, frequencies and intensity of IR bands of G1v generation dendron with terminal aldehyde groups were obtained by the density functional theory (DFT). It was found that the internal skeleton of molecules exists in a single stable conformation with planar sbnd O- C6H4- CHdbnd N- N( CH3)- P( dbnd S)< fragments, but terminal groups may adopt the t, g, g- and t,- g, g-rotational isomers. The t,- g, g-conformer is 0.74 kcal/mol less stable compared to the t, g, g-conformer. The bond length and bond angles obtained by DFT show the best agreement with experimental data. Relying on DFT calculations a complete assignment of vibrations is proposed for different parts of the studied dendrons. The calculated frequencies and intensity of IR bands of the t, g, g- and t,- g, g-conformers of G1v are found to be in reasonable agreement with the experimental results. The most reactive site in dendron is the core function and vinyl group is preferred for nucleophilic attack. In dendrimer the most reactive are the terminal groups.

  12. Combinatorial optimization games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, X.; Ibaraki, Toshihide; Nagamochi, Hiroshi

    1997-06-01

    We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic andmore » complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.« less

  13. Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving Disturbance for Function Optimization

    PubMed Central

    Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di

    2015-01-01

    In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164

  14. Growth outside the core.

    PubMed

    Zook, Chris; Allen, James

    2003-12-01

    Growth in an adjacent market is tougher than it looks; three-quarters of the time, the effort fails. But companies can change those odds dramatically. Results from a five-year study of corporate growth conducted by Bain & Company reveal that adjacency expansion succeeds only when built around strong core businesses that have the potential to become market leaders. And the best place to look for adjacency opportunities is inside a company's strongest customers. The study also found that the most successful companies were able to consistently, profitably outgrow their rivals by developing a formula for pushing out the boundaries of their core businesses in predictable, repeatable ways. Companies use their repeatability formulas to expand into any number of adjacencies. Some companies make repeated geographic moves, as Vodafone has done in expanding from one geographic market to another over the past 13 years, building revenues from $1 billion in 1990 to $48 billion in 2003. Others apply a superior business model to new segments. Dell, for example, has repeatedly adapted its direct-to-customer model to new customer segments and new product categories. In other cases, companies develop hybrid approaches. Nike executed a series of different types of adjacency moves: it expanded into adjacent customer segments, introduced new products, developed new distribution channels, and then moved into adjacent geographic markets. The successful repeaters in the study had two common characteristics. First, they were extraordinarily disciplined, applying rigorous screens before they made an adjacency move. This discipline paid off in the form of learning curve benefits, increased speed, and lower complexity. And second, in almost all cases, they developed their repeatable formulas by studying their customers and their customers' economics very, very carefully.

  15. Chronic baseline prostate inflammation is associated with lower tumor volume in men with prostate cancer on repeat biopsy: Results from the REDUCE study.

    PubMed

    Moreira, Daniel M; Nickel, J Curtis; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J

    2015-09-01

    To evaluate whether baseline acute and chronic prostate inflammation among men with initial negative biopsy for prostate cancer (PC) is associated with PC volume at the 2-year repeat prostate biopsy in a clinical trial with systematic biopsies. Retrospective analysis of 886 men with negative baseline prostate biopsy and positive 2-year repeat biopsy in the Reduction by Dutasteride of PC Events (REDUCE) study. Acute and chronic inflammation and tumor volume were determined by central pathology. The association of baseline inflammation with 2-year repeat biopsy cancer volume was evaluated with linear and Poisson regressions controlling for demographics and laboratory variables. Chronic, acute inflammation, and both were detected in 531 (60%), 12 (1%), and 84 (9%) baseline biopsies, respectively. Acute and chronic inflammation were significantly associated with each other (P < 0.001). Chronic inflammation was associated with larger prostate (P < 0.001) and lower pre-repeat biopsy PSA (P = 0.01). At 2-year biopsy, baseline chronic inflammation was associated with lower mean tumor volume (2.07 µl vs. 3.15 µl; P = 0.001), number of biopsy cores involved (1.78 vs. 2.19; P < 0.001), percent of cores involved (17.8% vs. 22.8%; P < 0.001), core involvement (0.21 µl vs. 0.31 µl; P < 0.001), and overall percent tumor involvement (1.40% vs. 2.01%; P < 0.001). Results were unchanged in multivariable analysis. Baseline acute inflammation was not associated with any tumor volume measurement. In a cohort of men with 2-year repeat prostate biopsy positive for PC after a negative baseline biopsy, baseline chronic inflammation was associated with lower PC volume. © 2015 Wiley Periodicals, Inc.

  16. Optimization of deformation monitoring networks using finite element strain analysis

    NASA Astrophysics Data System (ADS)

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  17. Electrolytic lesions of the nucleus accumbens core (but not the medial shell) and the basolateral amygdala enhance context-specific locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Gerety, Lyle P; Guerriero, Rejean M

    2009-06-01

    We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. Copyright (c) 2009 APA, all rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H.

    The fusion subunit of the SARS-CoV S glycoprotein contains two regions of hydrophobic heptad-repeat amino acid sequences that have been shown in biophysical studies to form a six-helix bundle structure typical of the fusion-active core found in Class I viral fusion proteins. Here, we have applied serine-scanning mutagenesis to the C-terminal-most heptad-repeat region in the SARS-CoV S glycoprotein to investigate the functional role of this region in membrane fusion. We show that hydrophobic sidechains at a and d positions only within the short helical segment of the C-terminal heptad-repeat region (I1161, I1165, L1168, A1172, and L1175) are critical for cell-cellmore » fusion. Serine mutations at outlying heptad-repeat residues that form an extended chain in the core structure (V1158, L1179, and L1182) do not affect fusogenicity. Our study provides genetic evidence for the important role of {alpha}-helical packing in promoting S glycoprotein-mediated membrane fusion.« less

  19. CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs.

    PubMed

    Gilbert, N; Labuda, D

    1999-03-16

    A 65-bp "core" sequence is dispersed in hundreds of thousands copies in the human genome. This sequence was found to constitute the central segment of a group of short interspersed elements (SINEs), referred to as mammalian-wide interspersed repeats, that proliferated before the radiation of placental mammals. Here, we propose that the core identifies an ancient tRNA-like SINE element, which survived in different lineages such as mammals, reptiles, birds, and fish, as well as mollusks, presumably for >550 million years. This element gave rise to a number of sequence families (CORE-SINEs), including mammalian-wide interspersed repeats, whose distinct 3' ends are shared with different families of long interspersed elements (LINEs). The evolutionary success of the generic CORE-SINE element can be related to the recruitment of the internal promoter from highly transcribed host RNA as well as to its capacity to adapt to changing retropositional opportunities by sequence exchange with actively amplifying LINEs. It reinforces the notion that the very existence of SINEs depends on the cohabitation with both LINEs and the host genome.

  20. Imprints of superfluidity on magnetoelastic quasiperiodic oscillations of soft gamma-ray repeaters.

    PubMed

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A; Müller, Ewald

    2013-11-22

    Our numerical simulations show that axisymmetric, torsional, magnetoelastic oscillations of magnetars with a superfluid core can explain the whole range of observed quasiperiodic oscillations (QPOs) in the giant flares of soft gamma-ray repeaters. There exist constant phase QPOs at f is < or approximately equal to 150 Hz and resonantly excited high-frequency QPOs (f>500 Hz), in good agreement with observations. The range of magnetic field strengths required to match the observed QPO frequencies agrees with that from spin-down estimates. These results suggest that there is at least one superfluid species in magnetar cores.

  1. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers.

    PubMed

    Caetano-Anollés, G; Gresshoff, P M

    1996-06-01

    DNA amplification fingerprinting (DAF) with mini-hairpins harboring arbitrary "core" sequences at their 3' termini were used to fingerprint a variety of templates, including PCR products and whole genomes, to establish genetic relationships between plant tax at the interspecific and intraspecific level, and to identify closely related fungal isolates and plant accessions. No correlation was observed between the sequence of the arbitrary core, the stability of the mini-hairpin structure and DAF efficiency. Mini-hairpin primers with short arbitrary cores and primers complementary to simple sequence repeats present in microsatellites were also used to generate arbitrary signatures from amplification profiles (ASAP). The ASAP strategy is a dual-step amplification procedure that uses at least one primer in each fingerprinting stage. ASAP was able to reproducibly amplify DAF products (representing about 10-15 kb of sequence) following careful optimization of amplification parameters such as primer and template concentration. Avoidance of primer sequences partially complementary to DAF product termini was necessary in order to produce distinct fingerprints. This allowed the combinatorial use of oligomers in nucleic acid screening, with numerous ASAP fingerprinting reactions based on a limited number of primer sequences. Mini-hairpin primers and ASAP analysis significantly increased detection of polymorphic DNA, separating closely related bermudagrass (Cynodon) cultivars and detecting putatively linked markers in bulked segregant analysis of the soybean (Glycine max) supernodulation (nitrate-tolerant symbiosis) locus.

  2. Optimization of GRIN lenses coupling system for twin-core fiber interconnection with single core fibers

    NASA Astrophysics Data System (ADS)

    Chen, Gongdai; Deng, Hongchang; Yuan, Libo

    2018-07-01

    We aim at a more compact, flexible, and simpler core-to-fiber coupling approach, optimal combinations of two graded refractive index (GRIN) lenses have been demonstrated for the interconnection between a twin-core single-mode fiber and two single-core single-mode fibers. The optimal two-lens combinations achieve an efficient core-to-fiber separating coupling and allow the fibers and lenses to coaxially assemble. Finally, axial deviations and transverse displacements of the components are discussed, and the latter increases the coupling loss more significantly. The gap length between the two lenses is designed to be fine-tuned to compensate for the transverse displacement, and the good linear compensation relationship contributes to the device manufacturing. This approach has potential applications in low coupling loss and low crosstalk devices without sophisticated alignment and adjustment, and enables the channel separating for multicore fibers.

  3. GENETIC DIVERSITY OF TYPHA LATIFOLIA (TYPHACEAE) AND THE IMPACT OF POLLUTANTS EXAMINED WITH TANDEM-REPETITIVE DNA PROBES

    EPA Science Inventory

    Genetic diversity at variable-number-tandem-repeat (VNTR) loci was examined in the common cattail, Typha latifolia (Typhaceae), using three synthetic DNA probes composed of tandemly repeated "core" sequences (GACA, GATA, and GCAC). The principal objectives of this investigation w...

  4. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  5. Exploring mechanisms of change in schema therapy for chronic depression.

    PubMed

    Renner, Fritz; DeRubeis, Robert; Arntz, Arnoud; Peeters, Frenk; Lobbestael, Jill; Huibers, Marcus J H

    2018-03-01

    The underlying mechanisms of symptom change in schema therapy (ST) for chronic major depressive disorder (cMDD) have not been studied. The aim of this study was to explore the impact of two potentially important mechanisms of symptom change, maladaptive schemas (proxied by negative idiosyncratic core-beliefs) and the therapeutic alliance. We drew data from a single-case series of ST for cMDD. Patients with cMDD (N = 20) received on average 78 repeated weekly assessments over a course of up to 65 individual sessions of ST. Focusing on repeated assessments within-individuals, we used mixed regression to test whether change in core-beliefs and therapeutic alliance preceded, followed, or occurred concurrently with change in depressive symptoms. Changes in core-beliefs did not precede but were concurrently related to changes in symptoms. Repeated goal and task agreement ratings (specific aspects of alliance) of the same session, completed on separate days, were at least in part associated with concurrent changes in symptoms. By design this study had a small sample-size and no control group. Contrary to what would be expected based on theory, our findings suggest that change in core-beliefs does not precede change in symptoms. Instead, change in these variables occurs concurrently. Moreover, alliance ratings seem to be at least in part colored by changes in current mood state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The development of optimal lightweight truss-core sandwich panels

    NASA Astrophysics Data System (ADS)

    Langhorst, Benjamin Robert

    Sandwich structures effectively provide lightweight stiffness and strength by sandwiching a low-density core between stiff face sheets. The performance of lightweight truss-core sandwich panels is enhanced through the design of novel truss arrangements and the development of methods by which the panels may be optimized. An introduction to sandwich panels is presented along with an overview of previous research of truss-core sandwich panels. Three alternative truss arrangements are developed and their corresponding advantages, disadvantages, and optimization routines are discussed. Finally, performance is investigated by theoretical and numerical methods, and it is shown that the relative structural efficiency of alternative truss cores varies with panel weight and load-carrying capacity. Discrete truss core sandwich panels can be designed to serve bending applications more efficiently than traditional pyramidal truss arrangements at low panel weights and load capacities. Additionally, discrete-truss cores permit the design of heterogeneous cores, which feature unit cells that vary in geometry throughout the panel according to the internal loads present at each unit cell's location. A discrete-truss core panel may be selectively strengthened to more efficiently support bending loads. Future research is proposed and additional areas for lightweight sandwich panel development are explained.

  7. An Evolutionarily Conserved Family of Virion Tail Needles Related to Bacteriophage P22 gp26: Correlation between Structural Stability and Length of the -Helical Trimeric Coiled Coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, A.; Walker-Kopp, N; Casjens, S

    2009-01-01

    Bacteriophages of the Podoviridae family use short noncontractile tails to inject their genetic material into Gram-negative bacteria. In phage P22, the tail contains a thin needle, encoded by the phage gene 26, which is essential both for stabilization and for ejection of the packaged viral genome. Bioinformatic analysis of the N-terminal domain of gp26 (residues 1-60) led us to identify a family of genes encoding putative homologues of the tail needle gp26. To validate this idea experimentally and to explore their diversity, we cloned the gp26-like gene from phages HK620, Sf6 and HS1, and characterized these gene products in solution.more » All gp26-like factors contain an elongated {alpha}-helical coiled-coil core consisting of repeating, adjacent trimerization heptads and form trimeric fibers with length ranging between about 240 to 300 {angstrom}. gp26 tail needles display a high level of structural stability in solution, with Tm (temperature of melting) between 85 and 95 C. To determine how the structural stability of these phage fibers correlates with the length of the {alpha}-helical core, we investigated the effect of insertions and deletions in the helical core. In the P22 tail needle, we identified an 85-residue-long helical domain, termed MiCRU (minimal coiled-coil repeat unit), that can be inserted in-frame inside the gp26 helical core, preserving the straight morphology of the fiber. Likewise, we were able to remove three quarters of the helical core of the HS1 tail needle, minimally decreasing the stability of the fiber. We conclude that in the gp26 family of tail needles, structural stability increases nonlinearly with the length of the {alpha}-helical core. Thus, the overall stability of these bacteriophage fibers is not solely dependent on the number of trimerization repeats in the {alpha}-helical core.« less

  8. Effects of Tier I Differentiation and Reading Intervention on Reading Fluency, Comprehension, and High Stakes Measures

    ERIC Educational Resources Information Center

    Jefferson, Ruth E.; Grant, Christina E.; Sander, Janay B.

    2017-01-01

    This quasi-experimental study examined differences in student reading outcomes. Participants were third grade non-struggling readers. Intervention classrooms included core curriculum instruction plus evidence-based reading comprehension instruction and differentiated repeated readings. Comparison classrooms provided core curriculum instruction…

  9. "New turns from old STaRs": enhancing the capabilities of forensic short tandem repeat analysis.

    PubMed

    Phillips, Christopher; Gelabert-Besada, Miguel; Fernandez-Formoso, Luis; García-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Ballard, David; Syndercombe Court, Denise; Carracedo, Angel; Lareu, Maria Victoria

    2014-11-01

    The field of research and development of forensic STR genotyping remains active, innovative, and focused on continuous improvements. A series of recent developments including the introduction of a sixth dye have brought expanded STR multiplex sizes while maintaining sensitivity to typical forensic DNA. New supplementary kits complimenting the core STRs have also helped improve analysis of challenging identification cases such as distant pairwise relationships in deficient pedigrees. This article gives an overview of several recent key developments in forensic STR analysis: availability of expanded core STR kits and supplementary STRs, short-amplicon mini-STRs offering practical options for highly degraded DNA, Y-STR enhancements made from the identification of rapidly mutating loci, and enhanced analysis of genetic ancestry by analyzing 32-STR profiles with a Bayesian forensic classifier originally developed for SNP population data. As well as providing scope for genotyping larger numbers of STRs optimized for forensic applications, the launch of compact next-generation sequencing systems provides considerable potential for genotyping the sizeable proportion of nucleotide variation existing in forensic STRs, which currently escapes detection with CE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural test of the parameterized-backbone method for protein design.

    PubMed

    Plecs, Joseph J; Harbury, Pehr B; Kim, Peter S; Alber, Tom

    2004-09-03

    Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone and detailed modeling of core packing. This crystal structure was determined using another rationally designed feature, a metal-binding site that permitted experimental phasing of the X-ray data. RH3 adopted the intended fold, which has not been observed previously in biological proteins. Unanticipated structural asymmetry in the trimer was a principal source of variation within the RH3 structure. The sequence of RH3 differs from that of a previously characterized right-handed tetramer, RH4, at only one position in each 11 amino acid sequence repeat. This close similarity indicates that the design method is sensitive to the core packing interactions that specify the protein structure. Comparison of the structures of RH3 and RH4 indicates that both steric overlap and cavity formation provide strong driving forces for oligomer specificity.

  11. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.

    PubMed

    Vancraenenbroeck, Renée; Lobbestael, Evy; Weeks, Stephen D; Strelkov, Sergei V; Baekelandt, Veerle; Taymans, Jean-Marc; De Maeyer, Marc

    2012-03-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRR(LRRK2)) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRR(LRRK2) in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRR(LRRK2) thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% β-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRR(LRRK2) multimerization was detected via cross-linking studies. Finally, the LRR(LRRK2) clinical mutations did not influence LRR(LRRK2) secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRR(LRRK2) inter- and intramolecular interactions. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Sport-specific endurance plank test for evaluation of global core muscle function.

    PubMed

    Tong, Tom K; Wu, Shing; Nie, Jinlei

    2014-02-01

    To examine the validity and reliability of a sports-specific endurance plank test for the evaluation of global core muscle function. Repeated-measures study. Laboratory environment. Twenty-eight male and eight female young athletes. Surface electromyography (sEMG) of selected trunk flexors and extensors, and an intervention of pre-fatigue core workout were applied for test validation. Intraclass correlation coefficient (ICC), coefficient of variation (CV), and the measurement bias ratio */÷ ratio limits of agreement (LOA) were calculated to assess reliability and measurement error. Test validity was shown by the sEMG of selected core muscles, which indicated >50% increase in muscle activation during the test; and the definite discrimination of the ∼30% reduction in global core muscle endurance subsequent to a pre-fatigue core workout. For test-retest reliability, when the first attempt of three repeated trials was considered as familiarisation, the ICC was 0.99 (95% CI: 0.98-0.99), CV was 2.0 ± 1.56% and the measurement bias ratio */÷ ratio LOA was 0.99 */÷ 1.07. The findings suggest that the sport-specific endurance plank test is a valid, reliable and practical method for assessing global core muscle endurance in athletes given that at least one familiarisation trial takes place prior to measurement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    NASA Astrophysics Data System (ADS)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.

  14. Identification and characterization of the highly polymorphic locus D14S739 in the Han Chinese population

    PubMed Central

    Shao, Chengchen; Zhang, Yaqi; Zhou, Yueqin; Zhu, Wei; Xu, Hongmei; Liu, Zhiping; Tang, Qiqun; Shen, Yiwen; Xie, Jianhui

    2015-01-01

    Aim To systemically select and evaluate short tandem repeats (STRs) on the chromosome 14 and obtain new STR loci as expanded genotyping markers for forensic application. Methods STRs on the chromosome 14 were filtered from Tandem Repeats Database and further selected based on their positions on the chromosome, repeat patterns of the core sequences, sequence homology of the flanking regions, and suitability of flanking regions in primer design. The STR locus with the highest heterozygosity and polymorphism information content (PIC) was selected for further analysis of genetic polymorphism, forensic parameters, and the core sequence. Results Among 26 STR loci selected as candidates, D14S739 had the highest heterozygosity (0.8691) and PIC (0.8432), and showed no deviation from the Hardy-Weinberg equilibrium. 14 alleles were observed, ranging in size from 21 to 34 tetranucleotide units in the core region of (GATA)9-18 (GACA)7-12 GACG (GACA)2 GATA. Paternity testing showed no mutations. Conclusion D14S739 is a highly informative STR locus and could be a suitable genetic marker for forensic applications in the Han Chinese population. PMID:26526885

  15. Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate.

    PubMed

    Jambor, Ivan; Merisaari, Harri; Aronen, Hannu J; Järvinen, Jukka; Saunavaara, Jani; Kauko, Tommi; Borra, Ronald; Pesola, Marko

    2014-05-01

    To determine the optimal b-value distribution for biexponential diffusion-weighted imaging (DWI) of normal prostate using both a computer modeling approach and in vivo measurements. Optimal b-value distributions for the fit of three parameters (fast diffusion Df, slow diffusion Ds, and fraction of fast diffusion f) were determined using Monte-Carlo simulations. The optimal b-value distribution was calculated using four individual optimization methods. Eight healthy volunteers underwent four repeated 3 Tesla prostate DWI scans using both 16 equally distributed b-values and an optimized b-value distribution obtained from the simulations. The b-value distributions were compared in terms of measurement reliability and repeatability using Shrout-Fleiss analysis. Using low noise levels, the optimal b-value distribution formed three separate clusters at low (0-400 s/mm2), mid-range (650-1200 s/mm2), and high b-values (1700-2000 s/mm2). Higher noise levels resulted into less pronounced clustering of b-values. The clustered optimized b-value distribution demonstrated better measurement reliability and repeatability in Shrout-Fleiss analysis compared with 16 equally distributed b-values. The optimal b-value distribution was found to be a clustered distribution with b-values concentrated in the low, mid, and high ranges and was shown to improve the estimation quality of biexponential DWI parameters of in vivo experiments. Copyright © 2013 Wiley Periodicals, Inc.

  16. Numerical optimization of three-dimensional coils for NSTX-U

    DOE PAGES

    Lazerson, S. A.; Park, J. -K.; Logan, N.; ...

    2015-09-03

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n = 1 character can drive a large core torque. It is also shown that fields with n = 3 features are capablemore » of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. In conclusion, comparison between error field correction experiments on DIII-D and the optimizer show good agreement.« less

  17. Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach

    USDA-ARS?s Scientific Manuscript database

    Expressed sequence tag (EST) simple sequence repeats (SSRs) in Prunus were mined, and flanking primers designed and used for genome-wide characterization and selection of primers to optimize marker distribution and reliability. A total of 12,618 contigs were assembled from 84,727 ESTs, along with 34...

  18. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  19. Transmission loss optimization in acoustic sandwich panels

    NASA Astrophysics Data System (ADS)

    Makris, S. E.; Dym, C. L.; MacGregor Smith, J.

    1986-06-01

    Considering the sound transmission loss (TL) of a sandwich panel as the single objective, different optimization techniques are examined and a sophisticated computer program is used to find the optimum TL. Also, for one of the possible case studies such as core optimization, closed-form expressions are given between TL and the core-design variables for different sets of skins. The significance of these functional relationships lies in the fact that the panel designer can bypass the necessity of using a sophisticated software package in order to assess explicitly the dependence of the TL on core thickness and density.

  20. Sampling of the anterior apical region results in increased cancer detection and upgrading in transrectal repeat saturation biopsy of the prostate.

    PubMed

    Seles, Maximilian; Gutschi, Thomas; Mayrhofer, Katrin; Fischereder, Katja; Ehrlich, Georg; Gallé, Guenter; Gutschi, Stefan; Pachernegg, Oliver; Pummer, Karl; Augustin, Herbert

    2016-04-01

    To evaluate whether biopsy cores taken via a transrectal approach from the anterior apical region of the prostate in a repeat-biopsy population can result in an increased overall cancer detection rate and in more accurate assessment of the Gleason score. The study was a prospective, randomised (end-fire vs side-fire ultrasound probe) evaluation of 288 men by repeat transrectal saturation biopsy with 28 cores taken from the transition zone, base, mid-lobar, anterior and the anterior apical region located ventro-laterally to the urethra of the peripheral zone. The overall prostate cancer detection rate was 44.4%. Improvement of the overall detection rate by 7.8% could be achieved with additional biopsies of the anterior apical region. Two tumours featuring a Gleason score 7 could only be detected in the anterior apical region. In three cases (2.34%) Gleason score upgrading was achieved by separate analysis of each positive core of the anterior apical region. A five-fold higher cancer detection rate in the anterior apical region compared with the transition zone could be shown. Sampling of the anterior apical region results in higher overall cancer detection rate in repeat transrectal saturation biopsies of the prostate. Specimens from this region can detect clinically significant cancer, improve accuracy of the Gleason Scoring and therefore may alter therapy. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  1. Testing of a Stacked Core Mirror for UV Applications

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kirk, Charles S.; Maffett, Steven P.; Abplanalp, Calvin E.; Stahl, H. Philip; Eng, Ron; Arnold, William R. Sr.

    2013-01-01

    Advanced Ultraviolet, Optical, Near-Infrared (UVOIR) Mirror Technology Development (AMTD) Testing Summary: (1) Processing of the stacked core mirror converged very quickly using ion figuring. (2) Results show no significant PSD change due to ion figuring in spatial periods smaller than 20mm. (3) Global surface figure limited by mount repeatability

  2. WGSSAT: A High-Throughput Computational Pipeline for Mining and Annotation of SSR Markers From Whole Genomes.

    PubMed

    Pandey, Manmohan; Kumar, Ravindra; Srivastava, Prachi; Agarwal, Suyash; Srivastava, Shreya; Nagpure, Naresh S; Jena, Joy K; Kushwaha, Basdeo

    2018-03-16

    Mining and characterization of Simple Sequence Repeat (SSR) markers from whole genomes provide valuable information about biological significance of SSR distribution and also facilitate development of markers for genetic analysis. Whole genome sequencing (WGS)-SSR Annotation Tool (WGSSAT) is a graphical user interface pipeline developed using Java Netbeans and Perl scripts which facilitates in simplifying the process of SSR mining and characterization. WGSSAT takes input in FASTA format and automates the prediction of genes, noncoding RNA (ncRNA), core genes, repeats and SSRs from whole genomes followed by mapping of the predicted SSRs onto a genome (classified according to genes, ncRNA, repeats, exonic, intronic, and core gene region) along with primer identification and mining of cross-species markers. The program also generates a detailed statistical report along with visualization of mapped SSRs, genes, core genes, and RNAs. The features of WGSSAT were demonstrated using Takifugu rubripes data. This yielded a total of 139 057 SSR, out of which 113 703 SSR primer pairs were uniquely amplified in silico onto a T. rubripes (fugu) genome. Out of 113 703 mined SSRs, 81 463 were from coding region (including 4286 exonic and 77 177 intronic), 7 from RNA, 267 from core genes of fugu, whereas 105 641 SSR and 601 SSR primer pairs were uniquely mapped onto the medaka genome. WGSSAT is tested under Ubuntu Linux. The source code, documentation, user manual, example dataset and scripts are available online at https://sourceforge.net/projects/wgssat-nbfgr.

  3. CORE-SINEs: Eukaryotic short interspersed retroposing elements with common sequence motifs

    PubMed Central

    Gilbert, Nicolas; Labuda, Damian

    1999-01-01

    A 65-bp “core” sequence is dispersed in hundreds of thousands copies in the human genome. This sequence was found to constitute the central segment of a group of short interspersed elements (SINEs), referred to as mammalian-wide interspersed repeats, that proliferated before the radiation of placental mammals. Here, we propose that the core identifies an ancient tRNA-like SINE element, which survived in different lineages such as mammals, reptiles, birds, and fish, as well as mollusks, presumably for >550 million years. This element gave rise to a number of sequence families (CORE-SINEs), including mammalian-wide interspersed repeats, whose distinct 3′ ends are shared with different families of long interspersed elements (LINEs). The evolutionary success of the generic CORE-SINE element can be related to the recruitment of the internal promoter from highly transcribed host RNA as well as to its capacity to adapt to changing retropositional opportunities by sequence exchange with actively amplifying LINEs. It reinforces the notion that the very existence of SINEs depends on the cohabitation with both LINEs and the host genome. PMID:10077603

  4. Optimum periodicity of repeated contractile actions applied in mass transport

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications.

  5. THE USE OF INTER SIMPLE SEQUENCE REPEATS (ISSR) IN DISTINGUISHING NEIGHBORING DOUGLAS-FIR TREES AS A MEANS TO IDENTIFYING TREE ROOTS WITH ABOVE-GROUND BIOMASS

    EPA Science Inventory

    We are attempting to identify specific root fragments from soil cores with individual trees. We successfully used Inter Simple Sequence Repeats (ISSR) to distinguish neighboring old-growth Douglas-fir trees from one another, while maintaining identity among each tree's parts. W...

  6. An evaluation of MPI message rate on hybrid-core processors

    DOE PAGES

    Barrett, Brian W.; Brightwell, Ron; Grant, Ryan; ...

    2014-11-01

    Power and energy concerns are motivating chip manufacturers to consider future hybrid-core processor designs that may combine a small number of traditional cores optimized for single-thread performance with a large number of simpler cores optimized for throughput performance. This trend is likely to impact the way in which compute resources for network protocol processing functions are allocated and managed. In particular, the performance of MPI match processing is critical to achieving high message throughput. In this paper, we analyze the ability of simple and more complex cores to perform MPI matching operations for various scenarios in order to gain insightmore » into how MPI implementations for future hybrid-core processors should be designed.« less

  7. Test-Retest Repeatability of Myocardial Blood Flow Measurements using Rubidium-82 Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Efseaff, Matthew

    Rubidium-82 positron emission tomography (PET) imaging has been proposed for routine myocardial blood flow (MBF) quantification. Few studies have investigated the test-retest repeatability of this method. Same-day repeatability of rest MBF imaging was optimized with a highly automated analysis program using image-derived input functions and a dual spillover correction (SOC). The effects of heterogeneous tracer infusion profiles and subject hemodynamics on test-retest repeatability were investigated at rest and during hyperemic stress. Factors affecting rest MBF repeatability included gender, suspected coronary artery disease, and dual SOC (p < 0.001). The best repeatability coefficient for same-day rest MBF was 0.20 mL/min/g using a six-minute scan-time, iterative reconstruction, dual SOC, resting rate-pressure-product (RPP) adjustment, and a left atrium image-derived input function. The serial study repeatabilities of the optimized protocol in subjects with homogeneous RPPs and tracer infusion profiles was 0.19 and 0.53 mL/min/g at rest and stress, and 0.95 for stress / rest myocardial flow reserve (MFR). Subjects with heterogeneous tracer infusion profiles and hemodynamic conditions had significantly less repeatable MBF measurements at rest, stress, and stress/rest flow reserve (p < 0.05).

  8. Volumetric and x-ray investigations of the crystalline and columnar phases of copper (II) soaps under pressure

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.

    1992-12-01

    Binuclear copper (II) carboxylates, Cu2(CnH2n+1O2)4, crystallize at room temperature in layered systems in which planes of polar cores are separated by a double layer of alkyl chains. These compounds are mesomorphic in nature above ca. 100 °C. Pseudopolymeric chains of regularly stacked binuclear cores are located at the nodes of a two-dimensional hexagonal lattice and are surrounded by disordered aliphatic chains. The transition from the crystal to the columnar mesophase is characterized by a change in the repeat distance of the binuclear cores along the pseudopolymeric axis. In the crystalline phase, these cores are all oriented in the same direction with a repeat distance of 5.2 Å in the columnar mesophase, the polar cores are perpendicular to the columnar axis and superposed in a fourfold helicoidal fashion, at least on a local scale, with a repeat distance of 4.7 Å. We present here the effect of pressure on these anisotropic systems in a direction parallel to the columnar axis, and in the plane of the two-dimensional lattice. In a first part, we report the pressure-volume-temperature (P-V-T) relationship of these compounds (n=12, 18, and 24) in the temperature range from 30 to 200 °C, and in the pressure range from 1 to 2000 bars. Isothermal compressibility and isobaric expansion are determined in the crystalline and mesomorphic phases. In the mesophase, pressure-volume isotherms can be described by the Tait equation, as in most liquids or molten polymers. In a second part, we discuss the x-ray-diffraction experiments performed under pressure. In the mesophase, the area of the two-dimensional lattice decreases with increasing pressure and, at sufficiently high pressure, the columnar mesophase transforms into a crystalline lamellar phase. By combining P-V-T and x-ray results, we deduce an increase of the stacking period of the binuclear cores as a function of increasing pressure.

  9. Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM

    PubMed Central

    Barrick, Doug

    2011-01-01

    Mapping the stability distributions of proteins in their native folded states provides a critical link between structure, thermodynamics, and function. Linear repeat proteins have proven more amenable to this kind of mapping than globular proteins. C-terminal deletion studies of YopM, a large, linear leucine-rich repeat (LRR) protein, show that stability is distributed quite heterogeneously, yet a high level of cooperativity is maintained [1]. Key components of this distribution are three interfaces that strongly stabilize adjacent sequences, thereby maintaining structural integrity and promoting cooperativity. To better understand the distribution of interaction energy around these critical interfaces, we studied internal (rather than terminal) deletions of three LRRs in this region, including one of these stabilizing interfaces. Contrary to our expectation that deletion of structured repeats should be destabilizing, we find that internal deletion of folded repeats can actually stabilize the native state, suggesting that these repeats are destabilizing, although paradoxically, they are folded in the native state. We identified two residues within this destabilizing segment that deviate from the consensus sequence at a position that normally forms a stacked leucine ladder in the hydrophobic core. Replacement of these nonconsensus residues with leucine is stabilizing. This stability enhancement can be reproduced in the context of nonnative interfaces, but it requires an extended hydrophobic core. Our results demonstrate that different LRRs vary widely in their contribution to stability, and that this variation is context-dependent. These two factors are likely to determine the types of rearrangements that lead to folded, functional proteins, and in turn, are likely to restrict the pathways available for the evolution of linear repeat proteins. PMID:21764506

  10. Controlled core removal from a D-shaped optical fiber.

    PubMed

    Markos, Douglas J; Ipson, Benjamin L; Smith, Kevin H; Schultz, Stephen M; Selfridge, Richard H; Monte, Thomas D; Dyott, Richard B; Miller, Gregory

    2003-12-20

    The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.

  11. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.

  12. Sequence and structural implications of a bovine corneal keratan sulfate proteoglycan core protein. Protein 37B represents bovine lumican and proteins 37A and 25 are unique

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Brown, S. J.; Vergnes, J. P.; Hassell, J. R.; Mann, M. M.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Amino acid sequence from tryptic peptides of three different bovine corneal keratan sulfate proteoglycan (KSPG) core proteins (designated 37A, 37B, and 25) showed similarities to the sequence of a chicken KSPG core protein lumican. Bovine lumican cDNA was isolated from a bovine corneal expression library by screening with chicken lumican cDNA. The bovine cDNA codes for a 342-amino acid protein, M(r) 38,712, containing amino acid sequences identified in the 37B KSPG core protein. The bovine lumican is 68% identical to chicken lumican, with an 83% identity excluding the N-terminal 40 amino acids. Location of 6 cysteine and 4 consensus N-glycosylation sites in the bovine sequence were identical to those in chicken lumican. Bovine lumican had about 50% identity to bovine fibromodulin and 20% identity to bovine decorin and biglycan. About two-thirds of the lumican protein consists of a series of 10 amino acid leucine-rich repeats that occur in regions of calculated high beta-hydrophobic moment, suggesting that the leucine-rich repeats contribute to beta-sheet formation in these proteins. Sequences obtained from 37A and 25 core proteins were absent in bovine lumican, thus predicting a unique primary structure and separate mRNA for each of the three bovine KSPG core proteins.

  13. Repeated assessment of orthotopic glioma pO2 by multi-site EPR oximetry: A technique with the potential to guide therapeutic optimization by repeated measurements of oxygen

    PubMed Central

    Khan, Nadeem; Mupparaju, Sriram; Hou, Huagang; Williams, Benjamin B.; Swartz, Harold

    2011-01-01

    Tumor hypoxia plays a vital role in therapeutic resistance. Consequently, measurements of tumor pO2 could be used to optimize the outcome of oxygen-dependent therapies, such as, chemoradiation. However, the potential optimizations are restricted by the lack of methods to repeatedly and quantitatively assess tumor pO2 during therapies, particularly in gliomas. We describe the procedures for repeated measurements of orthotopic glioma pO2 by multi-site electron paramagnetic resonance (EPR) oximetry. This oximetry approach provides simultaneous measurements of pO2 at more than one site in the glioma and contralateral cerebral tissue. The pO2 of intracerebral 9L, C6, F98 and U251 tumors, as well as contralateral brain, were measured repeatedly for five consecutive days. The 9L glioma was well oxygenated with pO2 of 27 - 36 mm Hg, while C6, F98 and U251 glioma were hypoxic with pO2 of 7 - 12 mm Hg. The potential of multi-site EPR oximetry to assess temporal changes in tissue pO2 was investigated in rats breathing 100% O2. A significant increase in F98 tumor and contralateral brain pO2 was observed on day 1 and day 2, however, glioma oxygenation declined on subsequent days. In conclusion, EPR oximetry provides the capability to repeatedly assess temporal changes in orthotopic glioma pO2. This information could be used to test and optimize the methods being developed to modulate tumor hypoxia. Furthermore, EPR oximetry could be potentially used to enhance the outcome of chemoradiation by scheduling treatments at times of increase in glioma pO2. PMID:22079559

  14. Repeated assessment of orthotopic glioma pO(2) by multi-site EPR oximetry: a technique with the potential to guide therapeutic optimization by repeated measurements of oxygen.

    PubMed

    Khan, Nadeem; Mupparaju, Sriram; Hou, Huagang; Williams, Benjamin B; Swartz, Harold

    2012-02-15

    Tumor hypoxia plays a vital role in therapeutic resistance. Consequently, measurements of tumor pO(2) could be used to optimize the outcome of oxygen-dependent therapies, such as, chemoradiation. However, the potential optimizations are restricted by the lack of methods to repeatedly and quantitatively assess tumor pO(2) during therapies, particularly in gliomas. We describe the procedures for repeated measurements of orthotopic glioma pO(2) by multi-site electron paramagnetic resonance (EPR) oximetry. This oximetry approach provides simultaneous measurements of pO(2) at more than one site in the glioma and contralateral cerebral tissue. The pO(2) of intracerebral 9L, C6, F98 and U251 tumors, as well as contralateral brain, were measured repeatedly for five consecutive days. The 9L glioma was well oxygenated with pO(2) of 27-36 mm Hg, while C6, F98 and U251 glioma were hypoxic with pO(2) of 7-12mm Hg. The potential of multi-site EPR oximetry to assess temporal changes in tissue pO(2) was investigated in rats breathing 100% O(2). A significant increase in F98 tumor and contralateral brain pO(2) was observed on day 1 and day 2, however, glioma oxygenation declined on subsequent days. In conclusion, EPR oximetry provides the capability to repeatedly assess temporal changes in orthotopic glioma pO(2). This information could be used to test and optimize the methods being developed to modulate tumor hypoxia. Furthermore, EPR oximetry could be potentially used to enhance the outcome of chemoradiation by scheduling treatments at times of increase in glioma pO(2). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Investigation of vinegar production using a novel shaken repeated batch culture system.

    PubMed

    Schlepütz, Tino; Büchs, Jochen

    2013-01-01

    Nowadays, bioprocesses are developed or optimized on small scale. Also, vinegar industry is motivated to reinvestigate the established repeated batch fermentation process. As yet, there is no small-scale culture system for optimizing fermentation conditions for repeated batch bioprocesses. Thus, the aim of this study is to propose a new shaken culture system for parallel repeated batch vinegar fermentation. A new operation mode - the flushing repeated batch - was developed. Parallel repeated batch vinegar production could be established in shaken overflow vessels in a completely automated operation with only one pump per vessel. This flushing repeated batch was first theoretically investigated and then empirically tested. The ethanol concentration was online monitored during repeated batch fermentation by semiconductor gas sensors. It was shown that the switch from one ethanol substrate quality to different ethanol substrate qualities resulted in prolonged lag phases and durations of the first batches. In the subsequent batches the length of the fermentations decreased considerably. This decrease in the respective lag phases indicates an adaptation of the acetic acid bacteria mixed culture to the specific ethanol substrate quality. Consequently, flushing repeated batch fermentations on small scale are valuable for screening fermentation conditions and, thereby, improving industrial-scale bioprocesses such as vinegar production in terms of process robustness, stability, and productivity. Copyright © 2013 American Institute of Chemical Engineers.

  16. Bilayer tablets of Paliperidone for Extended release osmotic drug delivery

    NASA Astrophysics Data System (ADS)

    Chowdary, K. Sunil; Napoleon, A. A.

    2017-11-01

    The purpose of this study is to develop and optimize the formulation of paliperidone bilayer tablet core and coating which should meet in vitro performance of trilayered Innovator sample Invega. Optimization of core formulations prepared by different ratio of polyox grades and optimization of coating of (i) sub-coating build-up with hydroxy ethyl cellulose (HEC) and (ii).enteric coating build-up with cellulose acetate (CA). Some important influence factors such as different core tablet compositions and different coating solution ingredients involved in the formulation procedure were investigated. The optimization of formulation and process was conducted by comparing different in vitro release behaviours of Paliperidone. In vitro dissolution studies of Innovator sample (Invega) with formulations of different release rate which ever close release pattern during the whole 24 h test is finalized.

  17. Optimization of 200 MWth and 250 MWt Ship Based Small Long Life NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitriyani, Dian; Su'ud, Zaki

    2010-06-22

    Design optimization of ship-based 200 MWth and 250 MWt nuclear power reactors have been performed. The neutronic and thermo-hydraulic programs of the three-dimensional X-Y-Z geometry have been developed for the analysis of ship-based nuclear power plant. Quasi-static approach is adopted to treat seawater effect. The reactor are loop type lead bismuth cooled fast reactor with nitride fuel and with relatively large coolant pipe above reactor core, the heat from primary coolant system is directly transferred to watersteam loop through steam generators. Square core type are selected and optimized. As the optimization result, the core outlet temperature distribution is changing withmore » the elevation angle of the reactor system and the characteristics are discussed.« less

  18. A novel method for repeatedly generating speckle patterns used in digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Sweedy, Ahmed; Gitzhofer, François; Baroud, Gamal

    2018-01-01

    Speckle patterns play a key role in Digital Image Correlation (DIC) measurement, and generating an optimal speckle pattern has been the goal for decades now. The usual method of generating a speckle pattern is by manually spraying the paint on the specimen. However, this makes it difficult to reproduce the optimal pattern for maintaining identical testing conditions and achieving consistent DIC results. This study proposed and evaluated a novel method using an atomization system to repeatedly generate speckle patterns. To verify the repeatability of the speckle patterns generated by this system, simulation and experimental studies were systematically performed. The results from both studies showed that the speckle patterns and, accordingly, the DIC measurements become highly accurate and repeatable using the proposed atomization system.

  19. Modeling individual tree growth by fusing diameter tape and increment core data

    Treesearch

    Erin M. Schliep; Tracy Qi Dong; Alan E. Gelfand; Fan. Li

    2014-01-01

    Tree growth estimation is a challenging task as difficulties associated with data collection and inference often result in inaccurate estimates. Two main methods for tree growth estimation are diameter tape measurements and increment cores. The former involves repeatedly measuring tree diameters with a cloth or metal tape whose scale has been adjusted to give diameter...

  20. Genetic Transfer of Salmonella typhimurium and Escherichia coli Lipopolysaccharide Antigens to Escherichia coli K-12

    PubMed Central

    Jones, Randall T.; Koeltzow, Donald E.; Stocker, B. A. D.

    1972-01-01

    Escherichia coli K-12 ϰ971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv+ hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his+ (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F′ factor (FS400) carrying the rfb–his region of S. typhimurium to the same two ilv+ hybrids gave similar results. LPS extracted from two ilv+,his+, factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his+ hybrids obtained from ϰ971 itself by similar HfrK9 and F′FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli ϰ971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli ϰ971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli ϰ971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his+ recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Ω8. This suggests that, although the parental E. coli K-12 strain ϰ971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units. PMID:4559827

  1. Optimization of the coherence function estimation for multi-core central processing unit

    NASA Astrophysics Data System (ADS)

    Cheremnov, A. G.; Faerman, V. A.; Avramchuk, V. S.

    2017-02-01

    The paper considers use of parallel processing on multi-core central processing unit for optimization of the coherence function evaluation arising in digital signal processing. Coherence function along with other methods of spectral analysis is commonly used for vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the function evaluation for signals represented with digital samples. The algorithm is analyzed for its software implementation and computational problems. Optimization measures are described, including algorithmic, architecture and compiler optimization, their results are assessed for multi-core processors from different manufacturers. Thus, speeding-up of the parallel execution with respect to sequential execution was studied and results are presented for Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high efficiency of the optimization measures taken. In particular, acceleration indicators and average CPU utilization have been significantly improved, showing high degree of parallelism of the constructed calculating functions. The developed software underwent state registration and will be used as a part of a software and hardware solution for rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method.

  2. Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh

    Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) {more » on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.« less

  3. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  4. Thermo-responsive polymer tethered metal-organic framework core-shell magnetic microspheres for magnetic solid-phase extraction of alkylphenols from environmental water samples.

    PubMed

    Jia, Yuqian; Su, Hao; Wong, Y-L Elaine; Chen, Xiangfeng; Dominic Chan, T-W

    2016-07-22

    In this work, the thermo-responsive polymer PNIPAM tethered to Fe3O4@SiO2@MOF core-shell magnetic microspheres was first synthesized by a surface-selective post-synthetic strategy and underwent highly efficient magnetic solid-phase extraction (MSPE) of alkylphenols from aqueous samples. Alkylphenols, including 4-tert-octylphenol (OP) and 4-n-nonylphenol (NP), were selected as target compounds. The sample quantification was carried out using LC-MS/MS in multiple reaction monitor (MRM) mode. Under optimal working conditions, the developed method showed good linearity in the range of 5-1000ngL(-1), a low limit of detection (1.5ngL(-1)), and good repeatability (relative standard deviation, <8%, n=5) for NP and OP. Owning to the hydrophilic/hydrophobic switchable properties of the nanocomposite, high recoveries (78.7-104.3%) of alkylphenols were obtained under different extraction conditions. The levels of OP and NP in environmental samples collected from local river, lake and pond waters were analyzed using the developed method. It was believed that the synthesized material with the thermo-responsive coating, large surface areas and magnetic properties should have great potential in the extraction and removal of alkylphenols from environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds.

    PubMed

    Maleknia, Laleh; Dilamian, Mandana; Pilehrood, Mohammad Kazemi; Sadeghi-Aliabadi, Hojjat; Hekmati, Amir Houshang

    2018-06-01

    In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.

  6. Let History Not Repeat Itself: Overcoming Obstacles to the Common Core's Success. ES Select

    ERIC Educational Resources Information Center

    Chubb, John

    2012-01-01

    The Common Core State Standards project is the latest in a series of efforts to improve the academic success of American students. Forty-five states and the District of Columbia have endorsed new academic benchmarks that substantially raise the bar for achievement in English and mathematics. Aiming at a deeper form of learning, the initiative is a…

  7. High-lying intermediate excitations in the nuclear effective interaction with a super-soft-core potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goode, P.R.; Barrett, B.R.; Portilho, O.

    1979-02-01

    The earlier calculations of Goode and Barrett are repeated using the super-soft-core potential of Gogny, Pires, and de Tourreil. The particular third-order folded diagram which they calculated now converges in its intermediate-state energy summation, because of the suppression of the strong short-range repulsive effects present in earlier calculations.

  8. The Histories and Mysteries of Grammar Instruction: Supporting Elementary Teachers in the Time of the Common Core

    ERIC Educational Resources Information Center

    Gartland, Lauren B.; Smolkin, Laura B.

    2016-01-01

    The reemergence of grammar instruction in the Common Core State Standards has likely left teachers confused. On the one hand, they have been told repeatedly that grammar instruction does not improve student outcomes, and can, in fact, be "harmful" to students. However, on the other hand, many Anglophone countries, including the United…

  9. Performance testing and results of the first Etec CORE-2564

    NASA Astrophysics Data System (ADS)

    Franks, C. Edward; Shikata, Asao; Baker, Catherine A.

    1993-03-01

    In order to be able to write 64 megabit DRAM reticles, to prepare to write 256 megabit DRAM reticles and in general to meet the current and next generation mask and reticle quality requirements, Hoya Micro Mask (HMM) installed in 1991 the first CORE-2564 Laser Reticle Writer from Etec Systems, Inc. The system was delivered as a CORE-2500XP and was subsequently upgraded to a 2564. The CORE (Custom Optical Reticle Engraver) system produces photomasks with an exposure strategy similar to that employed by an electron beam system, but it uses a laser beam to deliver the photoresist exposure energy. Since then the 2564 has been tested by Etec's standard Acceptance Test Procedure and by several supplementary HMM techniques to insure performance to all the Etec advertised specifications and certain additional HMM requirements that were more demanding and/or more thorough than the advertised specifications. The primary purpose of the HMM tests was to more closely duplicate mask usage. The performance aspects covered by the tests include registration accuracy and repeatability; linewidth accuracy, uniformity and linearity; stripe butting; stripe and scan linearity; edge quality; system cleanliness; minimum geometry resolution; minimum address size and plate loading accuracy and repeatability.

  10. Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2017-05-15

    We report theoretical and experimental realization of a SPR based fiber optic nicotine sensor having coatings of silver and graphene doped ZnO nanostructure onto the unclad core of the optical fiber. The volume fraction (f) of graphene in ZnO was optimized using simulation of electric field intensity. Four types of graphene doped ZnO nanostructures viz. nanocomposites, nanoflowers, nanotubes and nanofibers were prepared using optimized value of f. The morphology, photoluminescence (PL) spectra and UV-vis spectra of these nanostructures were studied. The peak PL intensity was found to be highest for ZnO: graphene nanofibers. The optimized value of f in ZnO: graphene nanofiber was reconfirmed using UV-vis spectroscopy. The experiments were performed on the fiber optic probe fabricated with Ag/ZnO: graphene layer and optimized parameters for in-situ detection of nicotine. The interaction of nicotine with ZnO: graphene nanostructures alters the dielectric function of ZnO: graphene nanostructure which is manifested in terms of shift in resonance wavelength. From the sensing signal, the performance parameters were measured including sensitivity, limit of detection (LOD), limit of quantification (LOQ), stability, repeatability and selectivity. The real sample prepared using cigarette tobacco leaves and analyzed using the fabricated sensor makes it suitable for practical applications. The achieved values of LOD and LOQ are found to be unrivalled in comparison to the reported ones. The sensor possesses additional advantages such as, immunity to electromagnetic interference, low cost, capability of online monitoring, remote sensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Energy-Absorbing Beam Member

    NASA Technical Reports Server (NTRS)

    Littell, Justin D. (Inventor)

    2017-01-01

    An energy-absorbing (EA) beam member and having a cell core structure is positioned in an aircraft fuselage proximate to the floor of the aircraft. The cell core structure has a length oriented along a width of the fuselage, a width oriented along a length of the fuselage, and a depth extending away from the floor. The cell core structure also includes cell walls that collectively define a repeating conusoidal pattern of alternating respective larger and smaller first and second radii along the length of the cell core structure. The cell walls slope away from a direction of flight of the aircraft at a calibrated lean angle. An EA beam member may include the cell core structure and first and second plates along the length of the cell core structure on opposite edges of the cell material.

  12. CQPSO scheduling algorithm for heterogeneous multi-core DAG task model

    NASA Astrophysics Data System (ADS)

    Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng

    2017-07-01

    Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.

  13. Sensitization of Depressive-like Behavior during Repeated Maternal Separation is Associated with More-Rapid Increase in Core Body Temperature and Reduced Plasma Cortisol Levels

    PubMed Central

    Yusko, Brittany; Hawk, Kiel; Schiml, Patricia A.; Deak, Terrence; Hennessy, Michael B.

    2011-01-01

    Infant guinea pigs exhibit a 2-stage response to maternal separation: an initial active stage, characterized by vocalizing, and a second passive stage marked by depressive-like behavior (hunched posture, prolonged eye-closure, extensive piloerection) that appears to be mediated by proinflammatory activity. Recently we found that pups showed an enhanced (i.e., sensitized) depressive-like behavioral response during repeated separation. Further, core body temperature was higher during the beginning of a second separation compared to the first, suggesting a more-rapid stress-induced febrile response to separation the second day, though the possibility that temperature was already elevated prior to the second separation could not be ruled out. Therefore, the present study examined temperature prior to, and during, 2 daily separations. We also examined the temperature response to a third separation conducted 3 days after the second, and assessed the effect of repeated separation on plasma cortisol levels. Core temperature did not differ just prior to the separations, but showed a more-rapid increase and then decline during both a second and third separation than during a first. Temperature responses were not associated with changes in motor activity. Depressive-like behavior was greater during the second and third separations. Pups separated a first time showed a larger plasma cortisol response at the conclusion of separation than did animals of the same age separated a third time. In all, the results indicate that the sensitization of depressive-like behavior during repeated separations over several days is accompanied by a more-rapid febrile response that may be related to a reduction of glucocorticoid suppression. PMID:22079581

  14. Revisiting Intel Xeon Phi optimization of Thompson cloud microphysics scheme in Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2015-10-01

    The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.

  15. Update on the Clinical Development of Candidate Malaria Vaccines

    DTIC Science & Technology

    2004-01-01

    with the diphtheria, tetanus, pertussis , Haemophi- lus influenzae type b vaccine (DTPw/Hib). ICC-1132 CS/hepatitis B core particle. Apovia Inc. (San...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b . ABSTRACT unclassified...primarily directed against the central conserved repeat region, with minor B cell epitopes mapped to non-repeat flanking regions. These flanking regions in

  16. Synthetic beta-solenoid proteins with the fragment-free computational design of a beta-hairpin extension

    PubMed Central

    MacDonald, James T.; Kabasakal, Burak V.; Godding, David; Kraatz, Sebastian; Henderson, Louie; Barber, James; Freemont, Paul S.; Murray, James W.

    2016-01-01

    The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design because they can be synthesized chemically or biologically and can self-assemble. However, the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a class of synthetic repeat proteins based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56-Å resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures, and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole-domain insertions by inserting a domain into one of the designed loops. PMID:27573845

  17. A menu of self-administered microcomputer-based neurotoxicology tests

    NASA Technical Reports Server (NTRS)

    Kennedy, Robert S.; Wilkes, Robert L.; Kuntz, Lois-Ann; Baltzley, Dennis R.

    1988-01-01

    This study examined the feasibility of repeated self-administration of a newly developed battery of mental acuity tests. Researchers developed this battery to be used to screen the fitness for duty of persons in at-risk occupations (astronauts, race car drivers), or those who may be exposed to environmental stress, toxic agents, or disease. The menu under study contained cognitive and motor tests implemented on a portable microcomputer including: a five-test core battery, lasting six minutes, which had demonstrable reliabilities and stability from several previous repeated-measures studies, and also 13 new tests, lasting 42 minutes, which had appeared in other batteries but had not yet been evaluated for repeated-measures implementation in this medium. Sixteen subjects self-administered the battery over 10 repeated sessions. The hardware performed well throughout the study and the tests appeared to be easily self-administered. Stabilities and reliabilities of the test from the core battery were comparable to those obtained previously under more controlled experimental conditions. Analyses of metric properties of the remaining 13 tests produced eight additional tests with satisfactory properties. Although the average retest reliability was high, cross-correlations between tests were low, indicating factorial richness. The menu can be used to form batteries of flexible total testing time which are likely to tap different mental processes and functions.

  18. Creation of Novel Cores for β-Secretase (BACE-1) Inhibitors: A Multiparameter Lead Generation Strategy

    PubMed Central

    2014-01-01

    In order to find optimal core structures as starting points for lead optimization, a multiparameter lead generation workflow was designed with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer’s disease. De novo design of core fragments was connected with three predictive in silico models addressing target affinity, permeability, and hERG activity, in order to guide synthesis. Taking advantage of an additive SAR, the prioritized cores were decorated with a few, well-characterized substituents from known BACE-1 inhibitors in order to allow for core-to-core comparisons. Prediction methods and analyses of how physicochemical properties of the core structures correlate to in vitro data are described. The syntheses and in vitro data of the test compounds are reported in a separate paper by Ginman et al. [J. Med. Chem.2013, 56, 4181–4205]. The affinity predictions are described in detail by Roos et al. [J. Chem. Inf.2014, DOI: 10.1021/ci400374z]. PMID:24900855

  19. Creation of Novel Cores for β-Secretase (BACE-1) Inhibitors: A Multiparameter Lead Generation Strategy.

    PubMed

    Viklund, Jenny; Kolmodin, Karin; Nordvall, Gunnar; Swahn, Britt-Marie; Svensson, Mats; Gravenfors, Ylva; Rahm, Fredrik

    2014-04-10

    In order to find optimal core structures as starting points for lead optimization, a multiparameter lead generation workflow was designed with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer's disease. De novo design of core fragments was connected with three predictive in silico models addressing target affinity, permeability, and hERG activity, in order to guide synthesis. Taking advantage of an additive SAR, the prioritized cores were decorated with a few, well-characterized substituents from known BACE-1 inhibitors in order to allow for core-to-core comparisons. Prediction methods and analyses of how physicochemical properties of the core structures correlate to in vitro data are described. The syntheses and in vitro data of the test compounds are reported in a separate paper by Ginman et al. [J. Med. Chem. 2013, 56, 4181-4205]. The affinity predictions are described in detail by Roos et al. [J. Chem. Inf. 2014, DOI: 10.1021/ci400374z].

  20. Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands.

    PubMed

    Mistry, Pritesh; Aied, Ahmed; Alexander, Morgan; Shakesheff, Kevin; Bennett, Andrew; Yang, Jing

    2017-06-01

    The strand material in extrusion-based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core-shell cell-laden strands with a mechanically robust shell and an extracellular matrix-like core has been developed. Cells encapsulated in the strands demonstrate high cell viability and tissue-like functions during cultivation. This process of bioprinting using core-shell strands with optimal biochemical and biomechanical properties represents a new strategy for fabricating functional human tissues and organs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Brown adipose tissue thermogenesis does not explain the intra-administration hyperthermic sign-reversal induced by serial administrations of 60% nitrous oxide to rats.

    PubMed

    Al-Noori, Salwa; Ramsay, Douglas S; Cimpan, Andreas; Maltzer, Zoe; Zou, Jessie; Kaiyala, Karl J

    2016-08-01

    Initial administration of ≥60% nitrous oxide (N2O) to rats promotes hypothermia primarily by increasing whole-body heat loss. We hypothesized that the drug promotes heat loss via the tail and might initially inhibit thermogenesis via brown adipose tissue (BAT), major organs of thermoregulation in rodents. Following repeated administrations, N2O inhalation evokes hyperthermia underlain by increased whole-body heat production. We hypothesized that elevated BAT thermogenesis plays a role in this thermoregulatory sign reversal. Using dual probe telemetric temperature implants and infrared (IR) thermography, we assessed the effects of nine repeated 60% N2O administrations compared to control (con) administrations on core temperature, BAT temperature, lumbar back temperature and tail temperature. Telemetric core temperature, telemetric BAT temperature, and IR BAT temperature were reduced significantly during initial 60% N2O inhalation (p≤0.001 compared to con). IR thermography revealed that acute N2O administration unexpectedly reduced tail temperature (p=0.0001) and also inhibited IR lumbar temperature (p<0.0001). In the 9th session, N2O inhalation significantly increased telemetric core temperature (p=0.007) indicative of a hyperthermic sign reversal, yet compared to control administrations, telemetric BAT temperature (p=0.86), IR BAT temperature (p=0.85) and tail temperature (p=0.47) did not differ significantly. Thus, an initial administration of 60% N2O at 21°C may promote hypothermia via reduced BAT thermogenesis accompanied by tail vasoconstriction as a compensatory mechanism to limit body heat loss. Following repeated N2O administrations rats exhibit a hyperthermic core temperature but a normalized BAT temperature, suggesting induction of a hyperthermia-promoting thermogenic adaptation of unknown origin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Core-temperature sensor ingestion timing and measurement variability.

    PubMed

    Domitrovich, Joseph W; Cuddy, John S; Ruby, Brent C

    2010-01-01

    Telemetric core-temperature monitoring is becoming more widely used as a noninvasive means of monitoring core temperature during athletic events. To determine the effects of sensor ingestion timing on serial measures of core temperature during continuous exercise. Crossover study. Outdoor dirt track at an average ambient temperature of 4.4°C ± 4.1°C and relative humidity of 74.1% ± 11.0%. Seven healthy, active participants (3 men, 4 women; age  =  27.0 ± 7.5 years, height  =  172.9 ± 6.8 cm, body mass  =  67.5 ± 6.1 kg, percentage body fat  =  12.7% ± 6.9%, peak oxygen uptake [Vo(2peak)]  =  54.4 ± 6.9 mL•kg⁻¹•min⁻¹) completed the study. Participants completed a 45-minute exercise trial at approximately 70% Vo(2peak). They consumed core-temperature sensors at 24 hours (P1) and 40 minutes (P2) before exercise. Core temperature was recorded continuously (1-minute intervals) using a wireless data logger worn by the participants. All data were analyzed using a 2-way repeated-measures analysis of variance (trial × time), Pearson product moment correlation, and Bland-Altman plot. Fifteen comparisons were made between P1 and P2. The main effect of time indicated an increase in core temperature compared with the initial temperature. However, we did not find a main effect for trial or a trial × time interaction, indicating no differences in core temperature between the sensors (P1  =  38.3°C ± 0.2°C, P2  =  38.3°C ± 0.4°C). We found no differences in the temperature recordings between the 2 sensors. These results suggest that assumed sensor location (upper or lower gastrointestinal tract) does not appreciably alter the transmission of reliable and repeatable measures of core temperature during continuous running in the cold.

  3. Optimizing the Betts-Miller-Janjic cumulus parameterization with Intel Many Integrated Core (MIC) architecture

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.-L.

    2015-10-01

    The schemes of cumulus parameterization are responsible for the sub-grid-scale effects of convective and/or shallow clouds, and intended to represent vertical fluxes due to unresolved updrafts and downdrafts and compensating motion outside the clouds. Some schemes additionally provide cloud and precipitation field tendencies in the convective column, and momentum tendencies due to convective transport of momentum. The schemes all provide the convective component of surface rainfall. Betts-Miller-Janjic (BMJ) is one scheme to fulfill such purposes in the weather research and forecast (WRF) model. National Centers for Environmental Prediction (NCEP) has tried to optimize the BMJ scheme for operational application. As there are no interactions among horizontal grid points, this scheme is very suitable for parallel computation. With the advantage of Intel Xeon Phi Many Integrated Core (MIC) architecture, efficient parallelization and vectorization essentials, it allows us to optimize the BMJ scheme. If compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670, the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.4x and 17.0x, respectively.

  4. Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants.

    PubMed

    de Silva, Vashista C; Nyga, Piotr; Drachev, Vladimir P

    2016-12-15

    Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction normalized by mass. The fractal nanostructures can provide a broadband extinction. It allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. The studied core-shell microparticles synthesized using colloidal chemistry consist of gold fractal nanostructures grown on precipitated calcium carbonate (PCC) microparticles or silica (SiO 2 ) microspheres. The optimization includes different core sizes and shapes, and shell nanostructures. It shows that the rich surface of the PCC flakes is the best core for the fractal shells providing the highest mass normalized extinction over the extremely broad spectral range. The mass normalized extinction cross section up to 3m 2 /g has been demonstrated in the broad spectral range from the visible to mid-infrared. Essentially, the broadband response is a characteristic feature of each core-shell microparticle in contrast to a combination of several structures resonant at different wavelengths, for example nanorods with different aspect ratios. The photomodification at an IR wavelength makes the window of transparency at the longer wavelength side. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Improving diaper design to address incontinence associated dermatitis

    PubMed Central

    2010-01-01

    Background Incontinence associated dermatitis (IAD) is an inflammatory skin disease mainly triggered by prolonged skin contact with urine, feces but also liberal detergent use when cleansing the skin. To minimize the epidermal barrier challenge we optimized the design of adult incontinence briefs. In the fluid absorption area we interposed a special type of acidic, curled-type of cellulose between the top sheet in contact with the skin and the absorption core beneath containing the polyacrylate superabsorber. The intention was to minimize disturbance of the already weak acid mantle of aged skin. We also employed air-permeable side panels to minimize skin occlusion and swelling of the stratum corneum. Methods The surface pH of diapers was measured after repeated wetting with a urine substitute fluid at the level of the top sheet. Occlusive effects and hydration of the stratum corneum were measured after a 4 hour application of different side panel materials by corneometry on human volunteers. Finally, we evaluated skin symptoms in 12 patients with preexisting IAD for 21 days following the institutional switch to the optimized diaper design. Local skin care protocols remained in place unchanged. Results The improved design created a surface pH of 4.6 which was stable even after repeated wetting throughout a 5 hour period. The "standard design" briefs had values of 7.1, which is alkaline compared to the acidic surface of normal skin. Side panels made from non-woven material with an air-permeability of more than 1200 l/m2/s avoided excessive hydration of the stratum corneum when compared to the commonly employed air-impermeable plastic films. Resolution of pre-existing IAD skin lesions was noted in 8 out of 12 patients after the switch to the optimized brief design. Conclusions An improved design of adult-type briefs can create an acidic pH on the surface and breathable side panels avoid over-hydration of the stratum corneum and occlusion. This may support the epidermal barrier function and may help to reduce the occurrence of IAD. PMID:21092161

  6. Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration.

    PubMed

    Carrière, Olivier; Hermand, Jean-Pierre

    2012-04-01

    Geoacoustic characterization of wide areas through inversion requires easily deployable configurations including free-drifting platforms, underwater gliders and autonomous vehicles, typically performing repeated transmissions during their course. In this paper, the inverse problem is formulated as sequential Bayesian filtering to take advantage of repeated transmission measurements. Nonlinear Kalman filters implement a random-walk model for geometry and environment and an acoustic propagation code in the measurement model. Data from MREA/BP07 sea trials are tested consisting of multitone and frequency-modulated signals (bands: 0.25-0.8 and 0.8-1.6 kHz) received on a shallow vertical array of four hydrophones 5-m spaced drifting over 0.7-1.6 km range. Space- and time-coherent processing are applied to the respective signal types. Kalman filter outputs are compared to a sequence of global optimizations performed independently on each received signal. For both signal types, the sequential approach is more accurate but also more efficient. Due to frequency diversity, the processing of modulated signals produces a more stable tracking. Although an extended Kalman filter provides comparable estimates of the tracked parameters, the ensemble Kalman filter is necessary to properly assess uncertainty. In spite of mild range dependence and simplified bottom model, all tracked geoacoustic parameters are consistent with high-resolution seismic profiling, core logging P-wave velocity, and previous inversion results with fixed geometries.

  7. Effects of repeated simulated removal activities on feral swine movements and space use

    USGS Publications Warehouse

    Fischer, Justin W.; McMurtry , Dan; Blass, Chad R.; Walter, W. David; Beringer, Jeff; VerCauterren, Kurt C.

    2016-01-01

    Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use. We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and post-periods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas.

  8. Optimizing Approximate Weighted Matching on Nvidia Kepler K40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh

    Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less

  9. Behavior-aware cache hierarchy optimization for low-power multi-core embedded systems

    NASA Astrophysics Data System (ADS)

    Zhao, Huatao; Luo, Xiao; Zhu, Chen; Watanabe, Takahiro; Zhu, Tianbo

    2017-07-01

    In modern embedded systems, the increasing number of cores requires efficient cache hierarchies to ensure data throughput, but such cache hierarchies are restricted by their tumid size and interference accesses which leads to both performance degradation and wasted energy. In this paper, we firstly propose a behavior-aware cache hierarchy (BACH) which can optimally allocate the multi-level cache resources to many cores and highly improved the efficiency of cache hierarchy, resulting in low energy consumption. The BACH takes full advantage of the explored application behaviors and runtime cache resource demands as the cache allocation bases, so that we can optimally configure the cache hierarchy to meet the runtime demand. The BACH was implemented on the GEM5 simulator. The experimental results show that energy consumption of a three-level cache hierarchy can be saved from 5.29% up to 27.94% compared with other key approaches while the performance of the multi-core system even has a slight improvement counting in hardware overhead.

  10. Preparation of monolithic osmotic pump system by coating the indented core tablet.

    PubMed

    Liu, Longxiao; Che, Binjie

    2006-10-01

    A method for the preparation of monolithic osmotic pump tablet was obtained by coating the indented core tablet compressed by the punch with a needle. Atenolol was used as the model drug, sodium chloride as osmotic agent and polyethylene oxide as suspending agent. Ethyl cellulose was employed as semipermeable membrane containing polyethylene glycol 400 as plasticizer for controlling membrane permeability. The formulation of atenolol osmotic pump tablet was optimized by orthogonal design and evaluated by similarity factor (f2). The optimal formulation was evaluated in various release media and agitation rates. Indentation size of core tablet hardly affected drug release in the range of (1.00-1.14) mm. The optimal osmotic tablet was found to be able to deliver atenolol at an approximately constant rate up to 24h, independent of both release media and agitation rate. The method that is simplified by coating the indented core tablet with the elimination of laser drilling may be promising in the field of the preparation of osmotic pump tablet.

  11. Inductance optimization of miniature Broadband transformers with racetrack shaped ferrite cores for Ethernet applications

    NASA Astrophysics Data System (ADS)

    Bowen, David; Krafft, Charles; Mayergoyz, Isaak D.

    2017-05-01

    There is strong commercial interest in the ability to fabricate the windings of traditional miniature wire-wound inductive circuit components, such as Ethernet transformers, lithographically. For greater inductance devices, thick cores are required, making the process of embedding the ferrite material within circuit board one of few options for lithographic winding fabrication. In this paper, a non-traditional core shape, suitable for embedding in circuit board, is examined analytically and experimentally; the racetrack shape is two halves of a toroid connected by straight legs. With regard to the high inductance requirements for Ethernet applications (350μH), the racetrack transformer inductance is analytically optimized, determining the optimal physical dimensions. Two sizes of racetrack-core transformers were fabricated and measured. The measured inductance was in reasonable agreement with the analytical prediction, though large variations in material permeability are expected from the mechanical processing of the ferrite. Some of the experimental transformers were observed to satisfy the Ethernet inductance requirement.

  12. An Unusual Hydrophobic Core Confers Extreme Flexibility to HEAT Repeat Proteins

    PubMed Central

    Kappel, Christian; Zachariae, Ulrich; Dölker, Nicole; Grubmüller, Helmut

    2010-01-01

    Alpha-solenoid proteins are suggested to constitute highly flexible macromolecules, whose structural variability and large surface area is instrumental in many important protein-protein binding processes. By equilibrium and nonequilibrium molecular dynamics simulations, we show that importin-β, an archetypical α-solenoid, displays unprecedentedly large and fully reversible elasticity. Our stretching molecular dynamics simulations reveal full elasticity over up to twofold end-to-end extensions compared to its bound state. Despite the absence of any long-range intramolecular contacts, the protein can return to its equilibrium structure to within 3 Å backbone RMSD after the release of mechanical stress. We find that this extreme degree of flexibility is based on an unusually flexible hydrophobic core that differs substantially from that of structurally similar but more rigid globular proteins. In that respect, the core of importin-β resembles molten globules. The elastic behavior is dominated by nonpolar interactions between HEAT repeats, combined with conformational entropic effects. Our results suggest that α-solenoid structures such as importin-β may bridge the molecular gap between completely structured and intrinsically disordered proteins. PMID:20816072

  13. Beyond cause to consequence: The road from possible to core self-revision

    PubMed Central

    Carroll, Patrick J.; Agler, Robert A.; Newhart, Daniel W.

    2015-01-01

    Two studies addressed the ultimate consequences and pathways running from repeated possible self-revisions to gradual revisions in core selves over time. As hypothesized, greater prior experiences of downward possible self-revision ultimately predicted greater subsequent declines in core self-integrity (e.g., greater self-doubt, lower self-esteem). However, also as hypothesized, this effect was mediated by the relative use of defensive vs. remedial attributions for past downward self-revision experiences. In closing, we unpack how the present work extends prior work by situating possible selves and motivated self-attributions as complementary systems that can slowly undermine as well as expand the integrity of core selves over time. PMID:26635509

  14. A new bioimpedance research device (BIRD) for measuring the electrical impedance of acupuncture meridians.

    PubMed

    Wong, Felix Wu Shun; Lim, Chi Eung Danforn; Smith, Warren

    2010-03-01

    The aim of this article is to introduce an electrical bioimpedance device that uses an old and little-known impedance measuring technique to study the impedance of the meridian and nonmeridian tissue segments. Three (3) pilot experimental studies involving both a tissue phantom (a cucumber) and 3 human subjects were performed using this BIRD-I (Bioimpedance Research Device) device. This device consists of a Fluke RCL meter, a multiplexer box, a laptop computer, and a medical-grade isolation transformer. Segment and surface sheath (or local) impedances were estimated using formulae first published in the 1930s, in an approach that differs from that of the standard four-electrode technique used in most meridian studies to date. Our study found that, when using a quasilinear four-electrode arrangement, the reference electrodes should be positioned at least 10 cm from the test electrodes to ensure that the segment (or core) impedance estimation is not affected by the proximity of the reference electrodes. A tissue phantom was used to determine the repeatability of segment (core) impedance measurement by the device. An applied frequency of 100 kHz was found to produce the best repeatability among the various frequencies tested. In another preliminary study, with a segment of the triple energizer meridian on the lower arm selected as reference segment, core resistance-based profiles around the lower arm showed three of the other five meridians to exist as local resistance minima relative to neighboring nonmeridian segments. The profiles of the 2 subjects tested were very similar, suggesting that the results are unlikely to be spurious. In electrical bioimpedance studies, it is recommended that the measuring technique and device be clearly defined and standardized to provide optimal working conditions. In our study using the BIRD I device, we defined our standard experimental conditions as a test frequency of 100 kHz and the position of the reference electrodes of at least 10 cm from the test electrodes. Our device has demonstrated potential for use in quantifying the degree of electrical interconnection between any two surface-defined test meridian or nonmeridian segments. Issues arising from use of this device and the measurement Horton and van Ravenswaay technique were also presented.

  15. A set of tetra-nucleotide core motif SSR markers for efficient identification of potato (Solanum tuberosum) cultivars.

    PubMed

    Kishine, Masahiro; Tsutsumi, Katsuji; Kitta, Kazumi

    2017-12-01

    Simple sequence repeat (SSR) is a popular tool for individual fingerprinting. The long-core motif (e.g. tetra-, penta-, and hexa-nucleotide) simple sequence repeats (SSRs) are preferred because they make it easier to separate and distinguish neighbor alleles. In the present study, a new set of 8 tetra-nucleotide SSRs in potato ( Solanum tuberosum ) is reported. By using these 8 markers, 72 out of 76 cultivars obtained from Japan and the United States were clearly discriminated, while two pairs, both of which arose from natural variation, showed identical profiles. The combined probability of identity between two random cultivars for the set of 8 SSR markers was estimated to be 1.10 × 10 -8 , confirming the usefulness of the proposed SSR markers for fingerprinting analyses of potato.

  16. Drug Self-Delivery Systems Based on Hyperbranched Polyprodrugs towards Tumor Therapy.

    PubMed

    Duan, Xiao; Chen, Jianxin; Wu, Yalan; Wu, Si; Shao, Dongyan; Kong, Jie

    2018-04-16

    Amphiphilic hyperbranched polyprodrugs (DOX-S-S-PEG) with drug repeat units in hydrophobic core linked by disulfide bonds were developed as drug self-delivery systems for cancer therapy. The hydroxyl groups and the amine group in doxorubicin (DOX) were linked by 3,3'-dithiodipropanoic acid as hydrophobic hyperbranched cores, then amino-terminated polyethylene glycol monomethyl ether (mPEG-NH 2 ) as hydrophilic shell was linked to hydrophobic cores to form amphiphilic and glutathione (GSH)-responsive micelle of hyperbranched polyprodrugs. The amphiphilic micelles can be disrupted under GSH (1 mg mL -1 ) circumstance. Cell viability of A549 cells and 293T cells was evaluated by CCK-8 and Muse Annexin V & Dead Cell Kit. The disrupted polyprodrugs maintained drug activity for killing tumor cells. Meanwhile, the undisrupted polyprodrugs possessed low cytotoxicity to normal cells. The cell uptake experiments showed that the micelles of DOX-S-S-PEG were taken up by A549 cells and distributed to cell nuclei. Thus, the drug self-delivery systems with drug repeat units in hydrophobic cores linked by disulfide bonds showed significant special advantages: 1) facile one-pot synthesis; 2) completely without toxic or non-degradable polymers; 3) DOX itself functions as fluorescent labeled molecule and self-delivery carrier; 4) drug with inactive form in hyperbranched cores and low cytotoxicity to normal cells. These advantages make them excellent drug self-delivery systems for potential high efficient cancer therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Parallelization of combinatorial search when solving knapsack optimization problem on computing systems based on multicore processors

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the model of the knapsack optimization problem and method of its solving based on directed combinatorial search in the boolean space. The offered by the author specialized mathematical model of decomposition of the search-zone to the separate search-spheres and the algorithm of distribution of the search-spheres to the different cores of the multi-core processor are also discussed. The paper also provides an example of decomposition of the search-zone to the several search-spheres and distribution of the search-spheres to the different cores of the quad-core processor. Finally, an offered by the author formula for estimation of the theoretical maximum of the computational acceleration, which can be achieved due to the parallelization of the search-zone to the search-spheres on the unlimited number of the processor cores, is also given.

  18. Delivery of prazosin hydrochloride from osmotic pump system prepared by coating the core tablet with an indentation.

    PubMed

    Liu, Longxiao; Wang, Jinchao; Zhu, Suyan

    2007-04-01

    The preparation of an osmotic pump tablet was simplified by elimination of laser drilling using prazosin hydrochloride as the model drug. The osmotic pump system was obtained by coating the indented core tablet compressed by the punch with a needle. A multiple regression equation was achieved with the experimental data of core tablet formulations, and then the formulation was optimized. The influences of the indentation size of the core tablet, environmental media, and agitation rate on drug release profile were investigated. The optimal osmotic pump tablet was found to deliver prazosin hydrochloride at an approximately constant rate up to 24 hr, and independent on both release media and agitation rate. Indentation size of core tablet hardly affected drug release in the range of 0.80-1.15 mm. The method that is simplified by elimination of laser drilling may be promising for preparation of an osmotic pump tablet.

  19. A common and optimized age scale for Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Veres, D.; Landais, A.; Bazin, L.; Lemieux-Dudon, B.; Toye Mahamadou Kele, H.; Wolff, E.; Martinerie, P.

    2012-04-01

    Dating ice cores is a complex problem because 1) there is a age shift between the gas bubbles and the surrounding ice 2) there are many different ice cores which can be synchronized with various proxies and 3) there are many methods to date the ice and the gas bubbles, each with advantages and drawbacks. These methods fall into the following categories: 1) Ice flow (for the ice) and firn densification modelling (for the gas bubbles); 2) Comparison of ice core proxies with insolation variations (so-called orbital tuning methods); 3) Comparison of ice core proxies with other well dated archives; 4) Identification of well-dated horizons, such as tephra layers or geomagnetic anomalies. Recently, an new dating tool has been developped (DATICE, Lemieux-Dudon et al., 2010), to take into account all the different dating information into account and produce a common and optimal chronology for ice cores with estimated confidence intervals. In this talk we will review the different dating information for Antarctic ice cores and show how the DATICE tool can be applied.

  20. Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo

    DTIC Science & Technology

    2002-06-10

    chain, the core polysaccharide , and the lipid A domain (Figure 1A). The hydrophilic O-specific chain is a polymer of repeating oligosaccharide units...necessary for protection from phagocytosis and complement-mediated lysis in vivo (9, 10). Linking the O-specific chain to lipid A is a core polysaccharide ...region that is relatively conserved among bacterial families on the basis of its monosaccharide composition. Among the common elements in the

  1. Numerical optimization of three-dimensional coils for NSTX-U

    NASA Astrophysics Data System (ADS)

    Lazerson, S. A.; Park, J.-K.; Logan, N.; Boozer, A.

    2015-10-01

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n  =  1 character can drive a large core torque. It is also shown that fields with n  =  3 features are capable of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. Comparison between error field correction experiments on DIII-D and the optimizer show good agreement. Notice: This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive,paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  2. Biospecimen Core Resource - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) Biospecimen Core Resource centralized laboratory reviews and processes blood and tissue samples and their associated data using optimized standard operating procedures for the entire TCGA Research Network.

  3. Blast protection of infrastructure using advanced composites

    NASA Astrophysics Data System (ADS)

    Brodsky, Evan

    This research was a systematic investigation detailing the energy absorption mechanisms of an E-glass web core composite sandwich panel subjected to an impulse loading applied orthogonal to the facesheet. Key roles of the fiberglass and polyisocyanurate foam material were identified, characterized, and analyzed. A quasi-static test fixture was used to compressively load a unit cell web core specimen machined from the sandwich panel. The web and foam both exhibited non-linear stress-strain responses during axial compressive loading. Through several analyses, the composite web situated in the web core had failed in axial compression. Optimization studies were performed on the sandwich panel unit cell in order to maximize the energy absorption capabilities of the web core. Ultimately, a sandwich panel was designed to optimize the energy dissipation subjected to through-the-thickness compressive loading.

  4. Combining Phylogenetic and Syntenic Analyses for Understanding the Evolution of TCP ECE Genes in Eudicots

    PubMed Central

    Citerne, Hélène L.; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2013-01-01

    TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanum lycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegia coerulea and Nelumbo nucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus. PMID:24019982

  5. Prediction and Optimization of Key Performance Indicators in the Production of Stator Core Using a GA-NN Approach

    NASA Astrophysics Data System (ADS)

    Rajora, M.; Zou, P.; Xu, W.; Jin, L.; Chen, W.; Liang, S. Y.

    2017-12-01

    With the rapidly changing demands of the manufacturing market, intelligent techniques are being used to solve engineering problems due to their ability to handle nonlinear complex problems. For example, in the conventional production of stator cores, it is relied upon experienced engineers to make an initial plan on the number of compensation sheets to be added to achieve uniform pressure distribution throughout the laminations. Additionally, these engineers must use their experience to revise the initial plans based upon the measurements made during the production of stator core. However, this method yields inconsistent results as humans are incapable of storing and analysing large amounts of data. In this article, first, a Neural Network (NN), trained using a hybrid Levenberg-Marquardt (LM) - Genetic Algorithm (GA), is developed to assist the engineers with the decision-making process. Next, the trained NN is used as a fitness function in an optimization algorithm to find the optimal values of the initial compensation sheet plan with the aim of minimizing the required revisions during the production of the stator core.

  6. Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Kaur, Ramanjot; Pandey, O. P.; Wei, Xueyong; Sharma, Manoj

    2015-07-01

    In this work, cadmium free core-shell ZnS:X/ZnS (X = Mn, Cu) nanoparticles have been synthesized and used for white light generation. First, the doping concentration of Manganese (Mn) was varied from 1% to 4% to optimize the dopant related emission and its optimal value was found to be 1%. Then, ZnS shell was grown over ZnS:Mn(1%) core to passivate the surface defects. Similarly, the optimal concentration of Copper (Cu) was found to be 0.8% in the range varied from 0.6% to 1.2%. In order to obtain an emission in the whole visible spectrum, dual doping of Mn and Cu was done in the core and the shell, respectively. A solid-solid mixing in different ratios of separately doped quantum dots (QDs) emitting in the blue green and the orange region was performed. Results show that the optimum mixture of QDs excited at 300 nm gives Commission Internationale del'Éclairage color coordinates of (0.35, 0.36), high color rendering index of 88, and correlated color temperature of 4704 K with minimum self-absorption.

  7. Method for depleting BWRs using optimal control rod patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner, M.S.; Levine, S.H.; Hsiao, M.Y.

    1991-01-01

    Control rod (CR) programming is an essential core management activity for boiling water reactors (BWRs). After establishing a core reload design for a BWR, CR programming is performed to develop a sequence of exposure-dependent CR patterns that assure the safe and effective depletion of the core through a reactor cycle. A time-variant target power distribution approach has been assumed in this study. The authors have developed OCTOPUS to implement a new two-step method for designing semioptimal CR programs for BWRs. The optimization procedure of OCTOPUS is based on the method of approximation programming and uses the SIMULATE-E code for nucleonicsmore » calculations.« less

  8. Role of macropore flow in the transport of Escherichia coli cells in undisturbed cores of a brown leached soil.

    PubMed

    Martins, Jean M F; Majdalani, Samer; Vitorge, Elsa; Desaunay, Aurélien; Navel, Aline; Guiné, Véronique; Daïan, Jean François; Vince, Erwann; Denis, Hervé; Gaudet, Jean Paul

    2013-02-01

    The objective of this work was to evaluate the transport of Escherichia coli cells in undisturbed cores of a brown leached soil collected at La Côte St André (France). Two undisturbed soil cores subjected to repeated injections of bacterial cells and/or bromide tracer were used to investigate the effect of soil hydrodynamics and ionic strength on cell mobility. Under the tested experimental conditions, E. coli cells were shown to be transported at the water velocity (retardation factor close to 1) and their retention appeared almost insensitive to water flow and ionic strength variations, both factors being known to control bacterial transport in model saturated porous media. In contrast, E. coli breakthrough curves evolved significantly along with the repetition of the cell injections in each soil core, with a progressive acceleration of their transport. The evolution of E. coli cells BTCs was shown to be due to the evolution of the structure of soil hydraulic pathways caused by the repeated water infiltrations and drainage as may occur in the field. This evolution was demonstrated through mercury intrusion porosimetry (MIP) performed on soil aggregates before and after the repeated infiltrations of bacteria. MIP revealed a progressive and important reduction of the soil aggregate porosity, n, that decreased from approximately 0.5 to 0.3, along with a decrease of the soil percolating step from 27 to 2 μm. From this result a clear compaction of soil aggregates was evidenced that concerned preferentially the pores larger than 2 μm equivalent diameter, i.e. those allowing bacterial cell passage. Since no significant reduction of the global soil volume was observed at the core scale, this aggregate compaction was accompanied by macropore formation that became progressively the preferential hydraulic pathway in the soil cores, leading to transiently bi-modal bacterial BTCs. The evolution of the soil pore structure induced a modification of the main hydrodynamic processes, evolving from a matrix-dominant transfer of water and bacteria to a macropore-dominant transfer. This work points out the importance of using undisturbed natural soils to evaluate the mobility of bacteria in the field, since the evolving hydrodynamic properties of soils appeared to dominate most physicochemical factors.

  9. Innovative Multimodal Physical Therapy Reduces Incidence of Repeat Manipulation under Anesthesia in Post-Total Knee Arthroplasty Patients Who Had an Initial Manipulation under Anesthesia.

    PubMed

    Chughtai, Morad; McGinn, Tanner; Bhave, Anil; Khan, Sabahat; Vashist, Megha; Khlopas, Anton; Mont, Michael A

    2016-11-01

    Manipulation under anesthesia (MUA) is performed for knee stiffness following a total knee arthroplasty (TKA) when nonoperative treatments fail. It is important to develop an optimal outpatient physical therapy protocol following an MUA, to avoid a repeat procedure. The purpose of this study was to evaluate and compare: (1) range of motion and (2) the rate of repeat MUA in patients who either underwent innovative multimodal physical therapy (IMMPT) or standard-of-care physical therapy (standard) following an MUA after a TKA. We performed a retrospective database study of patients who underwent an MUA following a TKA between January 2013 to December 2014 ( N  = 57). There were 16 (28%) men and 41 (72%) women who had a mean age of 59 years (range, 32-81 years). The patients were stratified into those who underwent IMMPT ( n  = 22) and those who underwent standard physical therapy ( n  = 35). The 6-month range of motion and rate of repeat manipulation between the two cohorts was analyzed by using Student t-test and Chi-square tests. In addition, we performed a Kaplan-Meier analysis of time to repeat MUA. The IMMPT cohort had a statistically significant higher proportion of TKAs with an optimal range of motion as compared with the standard cohort. There was statistically significant lower proportion of patients who underwent a repeat MUA in the IMMPT as compared with the standard cohort. There was also a significantly lower incidence and longer time to MUA in the IMMPT cohort as compared with the standard cohort in the Kaplan-Meier analysis. The group who underwent IMMPT utilizing Astym therapy had a significantly higher proportion of patients with optimal range of motion, which implies the potential efficacy of this regimen to improve range of motion. Furthermore, the IMMPT cohort had a significantly lower proportion of repeat manipulations as compared with the standard cohort, which implies that an IMMPT approach could potentially reduce the need for a repeat MUA. These findings warrant further investigation into outcomes of different rehab approaches. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Optimizing performance by improving core stability and core strength.

    PubMed

    Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain

    2008-01-01

    Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.

  11. Design and development of a wireless sensor network to monitor snow depth in multiple catchments in the American River basin, California: hardware selection and sensor placement techniques

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Rice, R.; Glaser, S. D.; Bales, R. C.; Saksa, P. C.

    2010-12-01

    A 100-node wireless sensor network (WSN) was designed for the purpose of monitoring snow depth in two watersheds, spanning 3 km2 in the American River basin, in the central Sierra Nevada of California. The network will be deployed as a prototype project that will become a core element of a larger water information system for the Sierra Nevada. The site conditions range from mid-elevation forested areas to sub-alpine terrain with light forest cover. Extreme temperature and humidity fluctuations, along with heavy rain and snowfall events, create particularly challenging conditions for wireless communications. We show how statistics gathered from a previously deployed 60-node WSN, located in the Southern Sierra Critical Zone Observatory, were used to inform design. We adapted robust network hardware, manufactured by Dust Networks for highly demanding industrial monitoring, and added linear amplifiers to the radios to improve transmission distances. We also designed a custom data-logging board to interface the WSN hardware with snow-depth sensors. Due to the large distance between sensing locations, and complexity of terrain, we analyzed network statistics to select the location of repeater nodes, to create a redundant and reliable mesh. This optimized network topology will maximize transmission distances, while ensuring power-efficient network operations throughout harsh winter conditions. At least 30 of the 100 nodes will actively sense snow depth, while the remainder will act as sensor-ready repeaters in the mesh. Data from a previously conducted snow survey was used to create a Gaussian Process model of snow depth; variance estimates produced by this model were used to suggest near-optimal locations for snow-depth sensors to measure the variability across a 1 km2 grid. We compare the locations selected by the sensor placement algorithm to those made through expert opinion, and offer explanations for differences resulting from each approach.

  12. Acceleration of the Particle Swarm Optimization for Peierls-Nabarro modeling of dislocations in conventional and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Pei, Zongrui; Eisenbach, Markus

    2017-06-01

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.

  13. The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis

    PubMed Central

    McGlinchey, Ryan P.; Shewmaker, Frank; McPhie, Peter; Monterroso, Begoña; Thurber, Kent; Wickner, Reed B.

    2009-01-01

    Pmel17 is a melanocyte protein necessary for eumelanin deposition 1 in mammals and found in melanosomes in a filamentous form. The luminal part of human Pmel17 includes a region (RPT) with 10 copies of a partial repeat sequence, pt.e.gttp.qv., known to be essential in vivo for filament formation. We show that this RPT region readily forms amyloid in vitro, but only under the mildly acidic conditions typical of the lysosome-like melanosome lumen, and the filaments quickly become soluble at neutral pH. Under the same mildly acidic conditions, the Pmel filaments promote eumelanin formation. Electron diffraction, circular dichroism, and solid-state NMR studies of Pmel17 filaments show that the structure is rich in beta sheet. We suggest that RPT is the amyloid core domain of the Pmel17 filaments so critical for melanin formation. PMID:19666488

  14. Optimal architectures for long distance quantum communication.

    PubMed

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D; Jiang, Liang

    2016-02-15

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥ 1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.

  15. Optimal architectures for long distance quantum communication

    PubMed Central

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang

    2016-01-01

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances. PMID:26876670

  16. Optimal architectures for long distance quantum communication

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang

    2016-02-01

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.

  17. Optimal design for crosstalk analysis in 12-core 5-LP mode homogeneous multicore fiber for different lattice structure

    NASA Astrophysics Data System (ADS)

    Kumar, Dablu; Ranjan, Rakesh

    2018-03-01

    12-Core 5-LP mode homogeneous multicore fibers have been proposed for analysis of inter-core crosstalk and dispersion, with four different lattice structures (circular, 2-ring, square lattice, and triangular lattice) having cladding diameter of 200 μm and a fixed cladding thickness of 35 μm. The core-to-core crosstalk impact has been studied numerically with respect to bending radius, core pitch, transmission distance, wavelength, and core diameter for all 5-LP modes. In anticipation of further reduction in crosstalk levels, the trench-assisted cores have been incorporated for all respective designs. Ultra-low crosstalk (-138 dB/100 km) has been achieved through the triangular lattice arrangement, with trench depth Δ2 = -1.40% for fundamental (LP01) mode. It has been noted that the impact of mode polarization on crosstalk behavior is minor, with difference in crosstalk levels between two polarized spatial modes as ≤0.2 dB. Moreover, the optimized cladding diameter has been obtained for all 5-LP modes for a target value of crosstalk of -50 dB/100 km, with all the core arrangements. The dispersion characteristic has also been analyzed with respect to wavelength, which is nearly 2.5 ps/nm km at operating wavelength 1550 nm. The relative core multiplicity factor (RCMF) for the proposed design is obtained as 64.

  18. Repeatless and repeat-based centromeres in potato: implications for centromere evolution.

    PubMed

    Gong, Zhiyun; Wu, Yufeng; Koblízková, Andrea; Torres, Giovana A; Wang, Kai; Iovene, Marina; Neumann, Pavel; Zhang, Wenli; Novák, Petr; Buell, C Robin; Macas, Jirí; Jiang, Jiming

    2012-09-01

    Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains.

  19. Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W

    PubMed Central

    Gong, Zhiyun; Wu, Yufeng; Koblížková, Andrea; Torres, Giovana A.; Wang, Kai; Iovene, Marina; Neumann, Pavel; Zhang, Wenli; Novák, Petr; Buell, C. Robin; Macas, Jiří; Jiang, Jiming

    2012-01-01

    Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains. PMID:22968715

  20. The influence of multiple firing on thermal contraction of ceramic materials used for the fabrication of layered all-ceramic dental restorations.

    PubMed

    Isgrò, Giuseppe; Kleverlaan, Cornelis J; Wang, Hang; Feilzer, Albert J

    2005-06-01

    During the production of layered all-ceramic restorations transient and/or residual thermal stresses may be formed which may affect a restoration's longevity. The aim of this study was to evaluate the influence of multiple firings on the thermal behavior of veneering porcelains and a ceramic core. The materials tested were: Empress 2 Core, Empress 2 Veneer and Eris glass-ceramics, Carrara Vincent and an experimental leucite-based veneering porcelain, Vitadur-Alpha aluminous porcelain, and two porcelains designed for titanium (i.e. Duceratin Dentine and Enamel). The thermal contraction coefficient of the materials was measured by means of dilatometery. The thermal contraction coefficient was measured during cooling and calculated over the temperature range of 450-20 degrees C by linear regression. One and two-way analysis of variance together with Tukey post-hoc tests were used as statistical analysis. Repeated firing affects the thermal contraction coefficients of Empress 2 Veneer, Carrara Vincent porcelain and the experimental porcelain. The thermal contraction coefficients of Empress 2 Core were significantly different from Vitadur-Alpha, Carrara Vincent, experimental porcelain, and Duceratin porcelains. The contraction coefficients of Empress 2 Veneer and Eris were closest to that of Empress 2 Core. The Empress 2 Core and Eris glass-ceramics, the aluminous porcelain and Duceratin porcelains showed better thermal stability after repeated firing than leucite porcelains. It can be concluded that due to the thermal stability of glass-ceramic materials, layered all-ceramic restorations of these materials may perform better.

  1. Long-read whole genome sequencing and comparative analysis of six strains of the human pathogen Orientia tsutsugamushi.

    PubMed

    Batty, Elizabeth M; Chaemchuen, Suwittra; Blacksell, Stuart; Richards, Allen L; Paris, Daniel; Bowden, Rory; Chan, Caroline; Lachumanan, Ramkumar; Day, Nicholas; Donnelly, Peter; Chen, Swaine; Salje, Jeanne

    2018-06-01

    Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial pathogen of the Rickettsiaceae family that causes the potentially life-threatening human disease scrub typhus. In contrast to the genome reduction seen in many obligate intracellular bacteria, early genetic studies of Orientia have revealed one of the most repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile elements has hampered efforts to generate complete genome sequences using short read sequencing methodologies, and consequently there have been few studies of the comparative genomics of this neglected species. We report new high-quality genomes of O. tsutsugamushi, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene islands and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of Orientia. Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have larger genomes compared with most other Rickettsiaceae, with widespread amplification of repeat elements and massive chromosomal rearrangements between strains. At the gene level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted for by gene duplication and repeat amplification. Our study demonstrates the utility of long read sequencing to investigate complex bacterial genomes and characterise genomic variation.

  2. Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome

    PubMed Central

    2013-01-01

    Background Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. Results We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of 60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type, such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined. The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer evolutionary history than constant-type core elements in SD13M. Conclusions Our methodology for the identification of repetitive core sequences simplifies characterization of the structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in this study might help to elucidate the biological role of one of the SDs on chromosome 13. PMID:23834397

  3. Feasibility of optimizing trimetazidine dihydrochloride release from controlled porosity osmotic pump tablets of directly compressed cores

    PubMed Central

    Habib, Basant A.; Rehim, Randa T. Abd El; Nour, Samia A.

    2013-01-01

    The aim of this study was to develop and optimize Trimetazidine dihydrochloride (TM) controlled porosity osmotic pump (CPOP) tablets of directly compressed cores. A 23 full factorial design was used to study the influence of three factors namely: PEG400 (10% and 25% based on coating polymer weight), coating level (10% and 20% of tablet core weight) and hole diameter (0 “no hole” and 1 mm). Other variables such as tablet cores, coating mixture of ethylcellulose (4%) and dibutylphthalate (2%) in 95% ethanol and pan coating conditions were kept constant. The responses studied (Yi) were cumulative percentage released after 2 h (Q%2h), 6 h (Q%6h), 12 h (Q%12h) and regression coefficient of release data fitted to zero order equation (RSQzero), for Y1, Y2, Y3, and Y4, respectively. Polynomial equations were used to study the influence of different factors on each response individually. Response surface methodology and multiple response optimization were used to search for an optimized formula. Response variables for the optimized formula were restricted to 10% ⩽ Y1 ⩽ 20%, 40% ⩽ Y2 ⩽ 60%, 80% ⩽ Y3 ⩽ 100%, and Y4 > 0.9. The statistical analysis of the results revealed that PEG400 had positive effects on Q%2h, Q%6h and Q%12h, hole diameter had positive effects on all responses and coating level had positive effect on Q%6h, Q%12h and negative effect on RSQzero. Full three factor interaction (3FI) equations were used for representation of all responses except Q%2h which was represented by reduced (3FI) equation. Upon exploring the experimental space, no formula in the tested range could satisfy the required constraints. Thus, direct compression of TM cores was not suitable for formation of CPOP tablets. Preliminary trials of CPOP tablets with wet granulated cores were promising with an intact membrane for 12 h and high RSQzero. Further improvement of these formulations to optimize TM release will be done in further studies. PMID:25685502

  4. CMS Readiness for Multi-Core Workload Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.

    In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides amore » solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.« less

  5. CMS readiness for multi-core workload scheduling

    NASA Astrophysics Data System (ADS)

    Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.; Aftab Khan, F.; Letts, J.; Mason, D.; Verguilov, V.

    2017-10-01

    In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides a solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.

  6. Repeatability of testing procedures for resilient modulus and fatigue.

    DOT National Transportation Integrated Search

    1989-04-01

    Extensive use of diametral resilient modulus and fatigue testing is made by the Oregon State Highway Division to evaluate asphaltic concrete materials. Test results on similar materials (e.g., adjacent field cores), however, often indicate a poor lev...

  7. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  8. Influence of item distribution pattern and abundance on efficiency of benthic core sampling

    USGS Publications Warehouse

    Behney, Adam C.; O'Shaughnessy, Ryan; Eichholz, Michael W.; Stafford, Joshua D.

    2014-01-01

    ore sampling is a commonly used method to estimate benthic item density, but little information exists about factors influencing the accuracy and time-efficiency of this method. We simulated core sampling in a Geographic Information System framework by generating points (benthic items) and polygons (core samplers) to assess how sample size (number of core samples), core sampler size (cm2), distribution of benthic items, and item density affected the bias and precision of estimates of density, the detection probability of items, and the time-costs. When items were distributed randomly versus clumped, bias decreased and precision increased with increasing sample size and increased slightly with increasing core sampler size. Bias and precision were only affected by benthic item density at very low values (500–1,000 items/m2). Detection probability (the probability of capturing ≥ 1 item in a core sample if it is available for sampling) was substantially greater when items were distributed randomly as opposed to clumped. Taking more small diameter core samples was always more time-efficient than taking fewer large diameter samples. We are unable to present a single, optimal sample size, but provide information for researchers and managers to derive optimal sample sizes dependent on their research goals and environmental conditions.

  9. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng

    2015-01-01

    Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264

  10. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  11. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    NASA Astrophysics Data System (ADS)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  12. Influence of particle size and shell thickness of core-shell packing materials on optimum experimental conditions in preparative chromatography.

    PubMed

    Horváth, Krisztián; Felinger, Attila

    2015-08-14

    The applicability of core-shell phases in preparative separations was studied by a modeling approach. The preparative separations were optimized for two compounds having bi-Langmuir isotherms. The differential mass balance equation of chromatography was solved by the Rouchon algorithm. The results show that as the size of the core increases, larger particles can be used in separations, resulting in higher applicable flow rates, shorter cycle times. Due to the decreasing volume of porous layer, the loadability of the column dropped significantly. As a result, the productivity and economy of the separation decreases. It is shown that if it is possible to optimize the size of stationary phase particles for the given separation task, the use of core-shell phases are not beneficial. The use of core-shell phases proved to be advantageous when the goal is to build preparative column for general purposes (e.g. for purification of different products) in small scale separations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Exceptionally long 5' UTR short tandem repeats specifically linked to primates.

    PubMed

    Namdar-Aligoodarzi, P; Mohammadparast, S; Zaker-Kandjani, B; Talebi Kakroodi, S; Jafari Vesiehsari, M; Ohadi, M

    2015-09-10

    We have previously reported genome-scale short tandem repeats (STRs) in the core promoter interval (i.e. -120 to +1 to the transcription start site) of protein-coding genes that have evolved identically in primates vs. non-primates. Those STRs may function as evolutionary switch codes for primate speciation. In the current study, we used the Ensembl database to analyze the 5' untranslated region (5' UTR) between +1 and +60 of the transcription start site of the entire human protein-coding genes annotated in the GeneCards database, in order to identify "exceptionally long" STRs (≥5-repeats), which may be of selective/adaptive advantage. The importance of this critical interval is its function as core promoter, and its effect on transcription and translation. In order to minimize ascertainment bias, we analyzed the evolutionary status of the human 5' UTR STRs of ≥5-repeats in several species encompassing six major orders and superorders across mammals, including primates, rodents, Scandentia, Laurasiatheria, Afrotheria, and Xenarthra. We introduce primate-specific STRs, and STRs which have expanded from mouse to primates. Identical co-occurrence of the identified STRs of rare average frequency between 0.006 and 0.0001 in primates supports a role for those motifs in processes that diverged primates from other mammals, such as neuronal differentiation (e.g. APOD and FGF4), and craniofacial development (e.g. FILIP1L). A number of the identified STRs of ≥5-repeats may be human-specific (e.g. ZMYM3 and DAZAP1). Future work is warranted to examine the importance of the listed genes in primate/human evolution, development, and disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Binding of New Methylene Blue to Endotoxins and Its Effects on the Endotoxin Activity Studied By Double Diffusion and Limulus Amebocyte Lysate Assays

    DTIC Science & Technology

    1989-05-30

    bacteria. Its structure (Figure 1-I) contains O-antigen polysaccharide , core polysaccharide and lipid A (Rietschel et al., 1984; Luderitz et al., 1982...The O-antigen polysaccharide is composed of repeating oligosaccharide, specific to the species and the strain of the bacteria; the core polysaccharide ...consists of 11 or less monosaccharide units including three 2-keto-3-deoxyoctonate (KDO), and is more conserved structurally than the O-antigen

  15. Metformin ameliorates core deficits in a mouse model of fragile X syndrome.

    PubMed

    Gantois, Ilse; Khoutorsky, Arkady; Popic, Jelena; Aguilar-Valles, Argel; Freemantle, Erika; Cao, Ruifeng; Sharma, Vijendra; Pooters, Tine; Nagpal, Anmol; Skalecka, Agnieszka; Truong, Vinh T; Wiebe, Shane; Groves, Isabelle A; Jafarnejad, Seyed Mehdi; Chapat, Clément; McCullagh, Elizabeth A; Gamache, Karine; Nader, Karim; Lacaille, Jean-Claude; Gkogkas, Christos G; Sonenberg, Nahum

    2017-06-01

    Fragile X syndrome (FXS) is the leading monogenic cause of autism spectrum disorders (ASD). Trinucleotide repeat expansions in FMR1 abolish FMRP expression, leading to hyperactivation of ERK and mTOR signaling upstream of mRNA translation. Here we show that metformin, the most widely used drug for type 2 diabetes, rescues core phenotypes in Fmr1 -/y mice and selectively normalizes ERK signaling, eIF4E phosphorylation and the expression of MMP-9. Thus, metformin is a potential FXS therapeutic.

  16. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    PubMed

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a DWI standard.

    PubMed

    Cereda, Carlo W; Christensen, Søren; Campbell, Bruce Cv; Mishra, Nishant K; Mlynash, Michael; Levi, Christopher; Straka, Matus; Wintermark, Max; Bammer, Roland; Albers, Gregory W; Parsons, Mark W; Lansberg, Maarten G

    2016-10-01

    Differences in research methodology have hampered the optimization of Computer Tomography Perfusion (CTP) for identification of the ischemic core. We aim to optimize CTP core identification using a novel benchmarking tool. The benchmarking tool consists of an imaging library and a statistical analysis algorithm to evaluate the performance of CTP. The tool was used to optimize and evaluate an in-house developed CTP-software algorithm. Imaging data of 103 acute stroke patients were included in the benchmarking tool. Median time from stroke onset to CT was 185 min (IQR 180-238), and the median time between completion of CT and start of MRI was 36 min (IQR 25-79). Volumetric accuracy of the CTP-ROIs was optimal at an rCBF threshold of <38%; at this threshold, the mean difference was 0.3 ml (SD 19.8 ml), the mean absolute difference was 14.3 (SD 13.7) ml, and CTP was 67% sensitive and 87% specific for identification of DWI positive tissue voxels. The benchmarking tool can play an important role in optimizing CTP software as it provides investigators with a novel method to directly compare the performance of alternative CTP software packages. © The Author(s) 2015.

  18. Multi-Target Tracking via Mixed Integer Optimization

    DTIC Science & Technology

    2016-05-13

    solving these two problems separately, however few algorithms attempt to solve these simultaneously and even fewer utilize optimization. In this paper we...introduce a new mixed integer optimization (MIO) model which solves the data association and trajectory estimation problems simultaneously by minimizing...Kalman filter [5], which updates the trajectory estimates before the algorithm progresses forward to the next scan. This process repeats sequentially

  19. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs: (I). Production of laccase by batch and repeated-batch processes.

    PubMed

    Lin, Jian-Ping; Wei, Lian; Xia, Li-Ming; Cen, Pei-Lin

    2003-01-01

    The production of laccase by Coriolus versicolor was studied. The effect of cultivation conditions on laccase production by Coriolus versicolor was examined to obtain optimal medium and cultivation conditions. Both batch and repeated-batch processes were performed for laccase production. In repeated-batch fermentation with self-immobilized mycelia, total of 14 cycles were performed with laccase activity in the range between 3.4 and 14.8 U/ml.

  20. Ada Integrated Environment III Computer Program Development Specification. Volume III. Ada Optimizing Compiler.

    DTIC Science & Technology

    1981-12-01

    file.library-unit{.subunit).SYMAP Statement Map: library-file. library-unit.subunit).SMAP Type Map: 1 ibrary.fi le. 1 ibrary-unit{.subunit). TMAP The library...generator SYMAP Symbol Map code generator SMAP Updated Statement Map code generator TMAP Type Map code generator A.3.5 The PUNIT Command The P UNIT...Core.Stmtmap) NAME Tmap (Core.Typemap) END Example A-3 Compiler Command Stream for the Code Generator Texas Instruments A-5 Ada Optimizing Compiler

  1. Foam Core Shielding for Spacecraft

    NASA Technical Reports Server (NTRS)

    Adams, Marc

    2007-01-01

    A foam core shield (FCS) system is now being developed to supplant multilayer insulation (MLI) systems heretofore installed on spacecraft for thermal management and protection against meteoroid impacts. A typical FCS system consists of a core sandwiched between a face sheet and a back sheet. The core can consist of any of a variety of low-to-medium-density polymeric or inorganic foams chosen to satisfy application-specific requirements regarding heat transfer and temperature. The face sheet serves to shock and thereby shatter incident meteoroids, and is coated on its outer surface to optimize its absorptance and emittance for regulation of temperature. The back sheet can be dimpled to minimize undesired thermal contact with the underlying spacecraft component and can be metallized on the surface facing the component to optimize its absorptance and emittance. The FCS systems can perform better than do MLI systems, at lower mass and lower cost and with greater volumetric efficiency.

  2. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  3. Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons.

    PubMed

    Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin

    2018-05-25

    A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.

  4. [Analysis on genetic polymorphism of 5 STR loci selected from X chromosome].

    PubMed

    Liu, Qi-ji; Gong, Yao-qin; Zhang, Xi-yu; Gao, Gui-min; Li, Jiang-xia; Guo, Yi-shou

    2005-02-01

    To select short tandem repeats(STR) from X chromosome. STR is a universal genetic marker that has changeable polymorphism and stable heredity in human genome. It is a specific DNA segment composed of 2-6 base pairs as its core sequence. It is an ideal DNA marker used in linkage analysis and gene mapping. In this study, 8 short tandem repeats were selected from two genomic clones on X chromosome by using BCM Search Launcher. Primers amplifying the STR loci were designed by using Primer 3.0 according to the unique sequence flanking the STRs. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five of these STRs were polymorphic. Chi-square test indicated that the distribution of genotypes agreed with Hardy-Weinberg equilibrium (P>0.05). Five polymorphic short tandem repeats have been identified on chromosome X and will be useful for linkage analysis and gene mapping.

  5. Nanoparticle-induced intraperitoneal hyperthermia and targeted photoablation in treating ovarian cancer

    PubMed Central

    Wu, Chao-Chih; Yang, Yuh-Cheng; Hsu, Yun-Ting; Wu, T.-C.; Hung, Chien-Fu; Huang, Jung-Tang; Chang, Chih-Long

    2015-01-01

    Hyperthermic intraperitoneal chemotherapy is effective in treating various intra-abdominal malignancies. However, this therapeutic modality can only be performed during surgical operations and cannot be used repeatedly. We propose repeatedly noninvasive hyperthermia mediated by pegylated silica-core gold nanoshells (pSGNs) in vivo with external near-infrared (NIR) laser irradiation. This study demonstrated that repeated photothermal treatment can effectively eliminate intraperitoneal tumors in mouse ovarian cancer models without damage of normal tissues. By conjugating pSGNs with anti-human CD47 monoclonal antibody, a significant photoablative effect can be achieved using lower amount of pSGNs and shorter NIR laser irradiation. Conjugated pSGNs specifically targeted and bound to cancer cells inside the peritoneal cavity. Our results indicate the possibility of a noninvasive method of repeated hyperthermia and photoablative therapies using nanoparticles. This has substantial clinical potential in treating ovarian and other intraperitoneal cancers. PMID:26318039

  6. Optimization of rotor shaft shrink fit method for motor using "Robust design"

    NASA Astrophysics Data System (ADS)

    Toma, Eiji

    2018-01-01

    This research is collaborative investigation with the general-purpose motor manufacturer. To review construction method in production process, we applied the parameter design method of quality engineering and tried to approach the optimization of construction method. Conventionally, press-fitting method has been adopted in process of fitting rotor core and shaft which is main component of motor, but quality defects such as core shaft deflection occurred at the time of press fitting. In this research, as a result of optimization design of "shrink fitting method by high-frequency induction heating" devised as a new construction method, its construction method was feasible, and it was possible to extract the optimum processing condition.

  7. Optimization design of turbo-expander gas bearing for a 500W helium refrigerator

    NASA Astrophysics Data System (ADS)

    Li, S. S.; Fu, B.; Y Zhang, Q.

    2017-12-01

    Turbo-expander is the core machinery of the helium refrigerator. Bearing as the supporting element is the core technology to impact the design of turbo-expander. The perfect design and performance study for the gas bearing are essential to ensure the stability of turbo-expander. In this paper, numerical simulation is used to analyze the performance of gas bearing for a 500W helium refrigerator turbine, and the optimization design of the gas bearing has been completed. And the results of the gas bearing optimization have a guiding role in the processing technology. Finally, the turbine experiments verify that the gas bearing has good performance, and ensure the stable operation of the turbine.

  8. A method for development of a system of identification for Appalachian coal-bearing rocks

    USGS Publications Warehouse

    Ferm, J.C.; Weisenfluh, G.A.; Smith, G.C.

    2002-01-01

    The number of observable properties of sedimentary rocks is large and numerous classifications have been proposed for describing them. Some rock classifications, however, may be disadvantageous in situations such as logging rock core during coal exploration programs, where speed and simplicity are the essence. After experimenting with a number of formats for logging rock core in the Appalachian coal fields, a method of using color photographs accompanied by a rock name and numeric code was selected. In order to generate a representative collection of rocks to be photographed, sample methods were devised to produce a representative collection, and empirically based techniques were devised to identify repeatedly recognizable rock types. A number of cores representing the stratigraphic and geographic range of the region were sampled so that every megascopically recognizable variety was included in the collection; the frequency of samples of any variety reflects the frequency with which it would be encountered during logging. In order to generate repeatedly recognizable rock classes, the samples were sorted to display variation in grain size, mineral composition, color, and sedimentary structures. Class boundaries for each property were selected on the basis of existing, widely accepted limits and the precision with which these limits could be recognized. The process of sorting the core samples demonstrated relationships between rock properties and indicated that similar methods, applied to other groups of rocks, could yield more widely applicable field classifications. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Accuracy and effectiveness of ultrasound-guided core-needle biopsy in the diagnosis of focal lesions in the salivary glands.

    PubMed

    Del Cura, Jose Luis; Coronado, Gloria; Zabala, Rosa; Korta, Igone; López, Ignacio

    2018-01-31

    To review the diagnostic accuracy of ultrasound-guided core-needle biopsy (CNB) in the diagnosis of salivary gland tumours (SGT). Retrospective, institutional review board approved, analysis of the CNB of SGT performed at our centre in 8 years. We used an automatic 18-G spring-loaded device. The final diagnosis was based on surgery in the cases that were operated on, and on clinical evolution and biopsy findings in the rest. Four hundred and nine biopsies were performed in 381 patients (ages, 2-97 years; mean, 55.9). There were two minor complications. Biopsy was diagnostic in 98.3%. There were eight false negatives. The diagnostic values for malignancy were: sensitivity 89.6%, specificity 100%, positive predictive value (PPV) 100% and negative predictive value (NPV) 98%. For the detection of neoplasms were: sensitivity 98.7%, specificity 99%, PPV 99.7% and VPN 96.1%. Accuracy of CNB in SGT is very high, with a very high sensitivity and an absolutely reliable diagnosis of malignancy. Complication rate is very low. It should be considered the technique of choice when a STG is detected. Normal tissue results warrant repeating biopsy. • Ultrasound-guided core-biopsy is the technique of choice in salivary glands nodules • Sensitivity, specificity for detecting neoplasms (which should be resected) are around 99% • Diagnosis of malignancy in core-biopsy is absolutely reliable • A CNB result of "normal tissue", however, warrants repeating the biopsy • Complication rate is very low.

  10. Acceleration of the Particle Swarm Optimization for Peierls–Nabarro modeling of dislocations in conventional and high-entropy alloys

    DOE PAGES

    Pei, Zongrui; Max-Planck-Inst. fur Eisenforschung, Duseldorf; Eisenbach, Markus

    2017-02-06

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), themore » local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.« less

  11. Pediatric Emergency Department Suicidal Patients: Two-Site Evaluation of Suicide Ideators, Single Attempters, and Repeat Attempters

    ERIC Educational Resources Information Center

    Asarnow, Joan Rosenbaum; Baraff, Larry J.; Berk, Michele; Grob, Charles; Devich-Navarro, Mona; Suddath, Robert; Piacentini, John; Tang, Lingqi

    2008-01-01

    The study examines ideators, single attempters, and repeats attempters of suicide to clarify optimal strategies for emergency department management and risk assessment to help them in reducing youth suicide and suicide attempts. Depression was found to be a strong predictor of suicide/suicide attempts along with substance use, externalizing…

  12. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  13. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniquesmore » in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.« less

  14. Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation.

    PubMed

    Ducka, Anna M; Joel, Peteranne; Popowicz, Grzegorz M; Trybus, Kathleen M; Schleicher, Michael; Noegel, Angelika A; Huber, Robert; Holak, Tad A; Sitar, Tomasz

    2010-06-29

    Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, "side-to-side" and "straight-longitudinal," which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament.

  15. Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation

    PubMed Central

    Ducka, Anna M.; Joel, Peteranne; Popowicz, Grzegorz M.; Trybus, Kathleen M.; Schleicher, Michael; Noegel, Angelika A.; Huber, Robert; Holak, Tad A.; Sitar, Tomasz

    2010-01-01

    Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, “side-to-side” and “straight-longitudinal,” which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament. PMID:20538977

  16. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats.

    PubMed

    Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2011-05-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.

  17. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats

    PubMed Central

    MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE

    2015-01-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772

  18. Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama.

    PubMed

    Gupta, Adarsh K; Mita, Kazuei; Arunkumar, Kallare P; Nagaraju, Javaregowda

    2015-08-03

    The golden silk spun by Indian golden silkmoth Antheraea assama, is regarded for its shimmering golden luster, tenacity and value as biomaterial. This report describes the gene coding for golden silk H-fibroin (AaFhc), its expression, full-length sequence and structurally important motifs discerning the underlying genetic and biochemical factors responsible for its much sought-after properties. The coding region, with biased isocodons, encodes highly repetitious crystalline core, flanked by a pair of 5' and 3' non-repetitious ends. AaFhc mRNA expression is strictly territorial, confined to the posterior silk gland, encoding a protein of size 230 kDa, which makes homodimers making the elementary structural units of the fibrous core of the golden silk. Characteristic polyalanine repeats that make tight β-sheet crystals alternate with non-polyalanine repeats that make less orderly antiparallel β-sheets, β-turns and partial α-helices. Phylogenetic analysis of the conserved N-terminal amorphous motif and the comparative analysis of the crystalline region with other saturniid H-fibroins reveal that AaFhc has longer, numerous and relatively uniform repeat motifs with lower serine content that assume tighter β-crystals and denser packing, which are speculated to be responsible for its acclaimed properties of higher tensile strength and higher refractive index responsible for golden luster.

  19. Test Scheduling for Core-Based SOCs Using Genetic Algorithm Based Heuristic Approach

    NASA Astrophysics Data System (ADS)

    Giri, Chandan; Sarkar, Soumojit; Chattopadhyay, Santanu

    This paper presents a Genetic algorithm (GA) based solution to co-optimize test scheduling and wrapper design for core based SOCs. Core testing solutions are generated as a set of wrapper configurations, represented as rectangles with width equal to the number of TAM (Test Access Mechanism) channels and height equal to the corresponding testing time. A locally optimal best-fit heuristic based bin packing algorithm has been used to determine placement of rectangles minimizing the overall test times, whereas, GA has been utilized to generate the sequence of rectangles to be considered for placement. Experimental result on ITC'02 benchmark SOCs shows that the proposed method provides better solutions compared to the recent works reported in the literature.

  20. Exploring performance and energy tradeoffs for irregular applications: A case study on the Tilera many-core architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panyala, Ajay; Chavarría-Miranda, Daniel; Manzano, Joseph B.

    High performance, parallel applications with irregular data accesses are becoming a critical workload class for modern systems. In particular, the execution of such workloads on emerging many-core systems is expected to be a significant component of applications in data mining, machine learning, scientific computing and graph analytics. However, power and energy constraints limit the capabilities of individual cores, memory hierarchy and on-chip interconnect of such systems, thus leading to architectural and software trade-os that must be understood in the context of the intended application’s behavior. Irregular applications are notoriously hard to optimize given their data-dependent access patterns, lack of structuredmore » locality and complex data structures and code patterns. We have ported two irregular applications, graph community detection using the Louvain method (Grappolo) and high-performance conjugate gradient (HPCCG), to the Tilera many-core system and have conducted a detailed study of platform-independent and platform-specific optimizations that improve their performance as well as reduce their overall energy consumption. To conduct this study, we employ an auto-tuning based approach that explores the optimization design space along three dimensions - memory layout schemes, GCC compiler flag choices and OpenMP loop scheduling options. We leverage MIT’s OpenTuner auto-tuning framework to explore and recommend energy optimal choices for different combinations of parameters. We then conduct an in-depth architectural characterization to understand the memory behavior of the selected workloads. Finally, we perform a correlation study to demonstrate the interplay between the hardware behavior and application characteristics. Using auto-tuning, we demonstrate whole-node energy savings and performance improvements of up to 49:6% and 60% relative to a baseline instantiation, and up to 31% and 45:4% relative to manually optimized variants.« less

  1. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks

    Treesearch

    Bistra Dilkina; Rachel Houtman; Carla P. Gomes; Claire A. Montgomery; Kevin S. McKelvey; Katherine Kendall; Tabitha A. Graves; Richard Bernstein; Michael K. Schwartz

    2016-01-01

    Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a...

  2. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    NASA Astrophysics Data System (ADS)

    Coroneos, Rula M.; Gorla, Rama Subba Reddy

    2012-09-01

    This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  3. Multiple TPR motifs characterize the Fanconi anemia FANCG protein.

    PubMed

    Blom, Eric; van de Vrugt, Henri J; de Vries, Yne; de Winter, Johan P; Arwert, Fré; Joenje, Hans

    2004-01-05

    The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.

  4. In situ-measurement of ice deformation from repeated borehole logging of the EPICA Dronning Maud Land (EDML) ice core, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Weikusat, Ilka; Kleiner, Thomas; Wilhelms, Frank; Dahl-Jensen, Dorthe; Frenzel, Andreas; Binder, Tobias; Eichler, Jan; Faria, Sergio H.; Sheldon, Simon; Panton, Christian; Kipfstuhl, Sepp; Miller, Heinrich

    2017-04-01

    The European Project for Ice Coring in Antarctica (EPICA) ice core was drilled between 2001 and 2006 at the Kohnen Station, Antarctica. During the drilling process the borehole was logged repeatedly. Repeated logging of the borehole shape is a means of directly measuring the deformation of the ice sheet not only on the surface but also with depth, and to derive shear strain rates for the lower part, which control the volume of ice transported from the inner continent towards the ocean. The logging system continuously recorded the tilt of the borehole with respect to the vertical (inclination) as well as the heading of the borehole with respect to magnetic north (azimuth) by means of a compass. This dataset provides the basis for a 3-D reconstruction of the borehole shape, which is changing over time according to the predominant deformation modes with depth. The information gained from this analysis can then be evaluated in combination with lattice preferred orientation, grain size and grain shape derived by microstructural analysis of samples from the deep ice core. Additionally, the diameter of the borehole, which was originally circular with a diameter of 10 cm, was measured. As the ice flow velocity at the position of the EDML core is relatively slow (about 0.75 m/a), the changes of borehole shape between the logs during the drilling period were very small and thus difficult to interpret. Thus, the site has been revisited in the Antarctic summer season 2016 and logged again using the same measurement system. The change of the borehole inclination during the time period of 10 years clearly reveals the transition from a pure shear dominated deformation in the upper part of the ice sheet to shear deformation at the base. We will present a detailed analysis of the borehole parameters and the deduced shear strain rates in the lower part of the ice sheet. The results are discussed with respect to ice microstructural data derived from the EDML ice core. Microstructural data directly reflect the deformation conditions, as the ice polycrystal performs the deformation which leads e.g. to characteristic lattice orientation distributions and grain size and shape appearance. Though overprinted by recrystallization (due to the hot environment for the ice) and the slow deformation, analysis of statistically significant grain numbers reveals indications typical for the changing deformation regimes with depth. Additionally we compare our results with strain rates derived from a simulation with a model for large scale ice deformation, the Parallel Ice Sheet Model (PISM).

  5. SU-C-201-01: Core/shell and Multishell Colloidal Quantum Dots Nanodosimeters Behaviour Under Repeated MV and KV Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delage, M; Cloutier, E; Lecavalier, M

    2016-06-15

    Purpose: This study intends to characterize the energy dependence of the effect of radiation damage on CdSe multi-shell (MS) (CdS/CdZnS/ZnS) and CdSe core/shell (CS)(ZnS) cQDs. It also aims to investigate irregularities resulting of pauses between subsequent irradiations. Methods: Radioluminescence (RL) measurements were performed with a CCD camera as dose was cumulated by the cQDs (up to 10 kGy), for beam energies 120 kVp, 220 kVp and 6 MV. Repeated expositions of 1999 MU were cumulated. Pauses between subsequent irradiations were varied from 2 to 50 minutes. cQDs photoluminescence (PL) and RL spectral stability was tracked by quantifying the position andmore » FWHM of the luminescence peak. Results: Both types of cQDs showed a clear energy dependence of the RL signal decrease between the kV and the MV beams. For 1.2 kGy of dose cumulated, MS cQDs had 92% of the initial signal left at 6 MV compared to 98% at 120 kVp. The same was observed for CS cQDs: 87% at 6 MV vs 94% at 120 kVp. MS cQDs were found to have a systematic (though small, ∼1%) RL intensity recovery for pauses of 15 minutes or more, while CS cQDs maintain a stable loss regardless of the pause duration. PL and RL spectral measurements revealed a good stability (< 1% variation of the peak position and FWHM) for both types of cQDs. Conclusion: In all, both MS and CS cQDs have a sufficient resistance to large doses of radiation for standard radiation therapy and imaging. Since this resistance is better for lower energy, the utilization of cQDs could be optimized for low energy applications (e.g. theragnostic applications for small animal studies and others). Finally, the ionizing radiation damage mechanisms for this new type of nano-scintillator still have to be identified properly.« less

  6. Practical skills teaching in contemporary surgical education: how can educational theory be applied to promote effective learning?

    PubMed

    Sadideen, Hazim; Kneebone, Roger

    2012-09-01

    Teaching practical skills is a core component of undergraduate and postgraduate surgical education. It is crucial to optimize our current learning and teaching models, particularly in a climate of decreased clinical exposure. This review explores the role of educational theory in promoting effective learning in practical skills teaching. Peer-reviewed publications, books, and online resources from national bodies (eg, the UK General Medical Council) were reviewed. This review highlights several aspects of surgical education, modeling them on current educational theory. These include the following: (1) acquisition and retention of motor skills (Miller's triangle; Fitts' and Posner's theory), (2) development of expertise after repeated practice and regular reinforcement (Ericsson's theory), (3) importance of the availability of expert assistance (Vygotsky's theory), (4) learning within communities of practice (Lave and Wenger's theory), (5) importance of feedback in learning practical skills (Boud, Schon, and Endes' theories), and (6) affective component of learning. It is hoped that new approaches to practical skills teaching are designed in light of our understanding of educational theory. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Experimental Analysis of File Transfer Rates over Wide-Area Dedicated Connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Liu, Qiang; Sen, Satyabrata

    2016-12-01

    File transfers over dedicated connections, supported by large parallel file systems, have become increasingly important in high-performance computing and big data workflows. It remains a challenge to achieve peak rates for such transfers due to the complexities of file I/O, host, and network transport subsystems, and equally importantly, their interactions. We present extensive measurements of disk-to-disk file transfers using Lustre and XFS file systems mounted on multi-core servers over a suite of 10 Gbps emulated connections with 0-366 ms round trip times. Our results indicate that large buffer sizes and many parallel flows do not always guarantee high transfer rates.more » Furthermore, large variations in the measured rates necessitate repeated measurements to ensure confidence in inferences based on them. We propose a new method to efficiently identify the optimal joint file I/O and network transport parameters using a small number of measurements. We show that for XFS and Lustre with direct I/O, this method identifies configurations achieving 97% of the peak transfer rate while probing only 12% of the parameter space.« less

  8. Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2011-01-01

    Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less

  9. The AVRDC - The World Vegetable Center mungbean (Vigna radiata) core and mini core collections.

    PubMed

    Schafleitner, Roland; Nair, Ramakrishnan Madhavan; Rathore, Abhishek; Wang, Yen-wei; Lin, Chen-yu; Chu, Shu-hui; Lin, Pin-yun; Chang, Jian-Cheng; Ebert, Andreas W

    2015-04-29

    Large ex situ germplasm collections generally harbor a wide range of crop diversity. AVRDC--The World Vegetable Center is holding in trust the world's second largest mungbean (Vigna radiata) germplasm collection with more than 6,700 accessions. Screening large collections for traits of interest is laborious and expensive. To enhance the access of breeders to the diversity of the crop, mungbean core and mini core collections have been established. The core collection of 1,481 entries has been built by random selection of 20% of the accessions after geographical stratification and subsequent cluster analysis of eight phenotypic descriptors in the whole collection. Summary statistics, especially the low differences of means, equal variance of the traits in both the whole and core collection and the visual inspection of quantile-quantile plots comparing the variation of phenotypic traits present in both collections indicated that the core collection well represented the pattern of diversity of the whole collection. The core collection was genotyped with 20 simple sequence repeat markers and a mini core set of 289 accessions was selected, which depicted the allele and genotype diversity of the core collection. The mungbean core and mini core collections plus their phenotypic and genotypic data are available for distribution to breeders. It is expected that these collections will enhance the access to biodiverse mungbean germplasm for breeding.

  10. A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites

    PubMed Central

    Watt, M.; Moosavi, S.; Cunningham, S. C.; Kirkegaard, J. A.; Rebetzke, G. J.; Richards, R. A.

    2013-01-01

    Background and Aims Root length and depth determine capture of water and nutrients by plants, and are targets for crop improvement. Here we assess a controlled-environment wheat seedling screen to determine speed, repeatability and relatedness to performance of young and adult plants in the field. Methods Recombinant inbred lines (RILs) and diverse genotypes were grown in rolled, moist germination paper in growth cabinets, and primary root number and length were measured when leaf 1 or 2 were fully expanded. For comparison, plants were grown in the field and root systems were harvested at the two-leaf stage with either a shovel or a soil core. From about the four-leaf stage, roots were extracted with a steel coring tube only, placed directly over the plant and pushed to the required depth with a hydraulic ram attached to a tractor. Key Results In growth cabinets, repeatability was greatest (r = 0·8, P < 0·01) when the paper was maintained moist and seed weight, pathogens and germination times were controlled. Scanned total root length (slow) was strongly correlated (r = 0·7, P < 0·01) with length of the two longest seminal axile roots measured with a ruler (fast), such that 100–200 genotypes were measured per day. Correlation to field-grown roots at two sites at two leaves was positive and significant within the RILs and cultivars (r = 0·6, P = 0·01), and at one of the two sites at the five-leaf stage within the RILs (r = 0·8, P = 0·05). Measurements made in the field with a shovel or extracted soil cores were fast (5 min per core) and had significant positive correlations to scanner measurements after root washing and cleaning (>2 h per core). Field measurements at two- and five-leaf stages did not correlate with root depth at flowering. Conclusions The seedling screen was fast, repeatable and reliable for selecting lines with greater total root length in the young vegetative phase in the field. Lack of significant correlation with reproductive stage root system depth at the field sites used in this study reflected factors not captured in the screen such as time, soil properties, climate variation and plant phenology. PMID:23821620

  11. Candidate molten salt investigation for an accelerator driven subcritical core

    NASA Astrophysics Data System (ADS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  12. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    NASA Astrophysics Data System (ADS)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  13. Interactions between Signaling and Repeated Play with Borrower Default.

    DTIC Science & Technology

    1985-10-01

    is costly in terms of social welfare. Education yields a higher personal gain than socie- tal gain; consequently, more than the socially optimal...Lexington Books. Harris, M., and A. Raviv 119791, "Optimal Incentive Contracts with Imperfect Information," Journal of Economic Theory, Vol. 20, No. 2, pp

  14. Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Constraints

    NASA Technical Reports Server (NTRS)

    Hinckley, David; Englander, Jacob; Hitt, Darren

    2015-01-01

    Single trial evaluations Trial creation by Phase-wise GA-style or DE-inspired recombination Bin repository structure requires an initialization period Non-exclusionary Kill Distance Population collapse mechanic Main loop Creation Probabilistic switch between GA and DE creation types Locally optimize Submit to repository Repeat.

  15. Distinct Secondary Structures of the Leucine-Rich Repeat Proteoglycans Decorin and Biglycan: Glycosylation-Dependent Conformational Stability

    NASA Technical Reports Server (NTRS)

    Krishnan, Priya; Hocking, Anne M.; Scholtz, J. Martin; Pace, C. Nick; Holik, Kimberly K.; McQuillan, David J.

    1998-01-01

    Biglycan and decorin, closely related small leucine-rich repeat proteoglycans, have been overexpressed in eukaryotic cers and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans. A comparative biophysical study of these glycoforms has revealed that the overall secondary structures of biglycan and decorin are different. Far-UV Circular Dichroism (CD) spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly Beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to. the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the fmal form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that at least in this specific domain, the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provided further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1-2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan proteoglycan shows a broad unfolding transition between 1-6 M urea, probably indicating the presence of stable unfolding intermediates.

  16. DANCE, BALANCE AND CORE MUSCLE PERFORMANCE MEASURES ARE IMPROVED FOLLOWING A 9-WEEK CORE STABILIZATION TRAINING PROGRAM AMONG COMPETITIVE COLLEGIATE Dancers.

    PubMed

    Watson, Todd; Graning, Jessica; McPherson, Sue; Carter, Elizabeth; Edwards, Joshuah; Melcher, Isaac; Burgess, Taylor

    2017-02-01

    Dance performance requires not only lower extremity muscle strength and endurance, but also sufficient core stabilization during dynamic dance movements. While previous studies have identified a link between core muscle performance and lower extremity injury risk, what has not been determined is if an extended core stabilization training program will improve specific measures of dance performance. This study examined the impact of a nine-week core stabilization program on indices of dance performance, balance measures, and core muscle performance in competitive collegiate dancers. Within-subject repeated measures design. A convenience sample of 24 female collegiate dance team members (age = 19.7 ± 1.1 years, height = 164.3 ± 5.3 cm, weight 60.3 ± 6.2 kg, BMI = 22.5 ± 3.0) participated. The intervention consisted of a supervised and non-supervised core (trunk musculature) exercise training program designed specifically for dance team participants performed three days/week for nine weeks in addition to routine dance practice. Prior to the program implementation and following initial testing, transversus abdominis (TrA) activation training was completed using the abdominal draw-in maneuver (ADIM) including ultrasound imaging (USI) verification and instructor feedback. Paired t tests were conducted regarding the nine-week core stabilization program on dance performance and balance measures (pirouettes, single leg balance in passe' releve position, and star excursion balance test [SEBT]) and on tests of muscle performance. A repeated measures (RM) ANOVA examined four TrA instruction conditions of activation: resting baseline, self-selected activation, immediately following ADIM training and four days after completion of the core stabilization training program. Alpha was set at 0.05 for all analysis. Statistically significant improvements were seen on single leg balance in passe' releve and bilateral anterior reach for the SEBT (both p ≤ 0.01), number of pirouettes (p = 0.011), and all measures of strength (p ≤ 0.05) except single leg heel raise. The RM ANOVA on mean percentage of change in TrA was significant; post hoc paired t tests demonstrated significant improvements in dancers' TrA activations across the four instruction conditions. This core stabilization training program improves pirouette ability, balance (static and dynamic), and measures of muscle performance. Additionally, ADIM training resulted in immediate and short-term (nine-week) improvements in TrA activation in a functional dance position. 2b.

  17. DANCE, BALANCE AND CORE MUSCLE PERFORMANCE MEASURES ARE IMPROVED FOLLOWING A 9-WEEK CORE STABILIZATION TRAINING PROGRAM AMONG COMPETITIVE COLLEGIATE Dancers

    PubMed Central

    Graning, Jessica; McPherson, Sue; Carter, Elizabeth; Edwards, Joshuah; Melcher, Isaac; Burgess, Taylor

    2017-01-01

    Background Dance performance requires not only lower extremity muscle strength and endurance, but also sufficient core stabilization during dynamic dance movements. While previous studies have identified a link between core muscle performance and lower extremity injury risk, what has not been determined is if an extended core stabilization training program will improve specific measures of dance performance. Hypothesis/Purpose This study examined the impact of a nine-week core stabilization program on indices of dance performance, balance measures, and core muscle performance in competitive collegiate dancers. Study Design Within-subject repeated measures design. Methods A convenience sample of 24 female collegiate dance team members (age = 19.7 ± 1.1 years, height = 164.3 ± 5.3 cm, weight 60.3 ± 6.2 kg, BMI = 22.5 ± 3.0) participated. The intervention consisted of a supervised and non-supervised core (trunk musculature) exercise training program designed specifically for dance team participants performed three days/week for nine weeks in addition to routine dance practice. Prior to the program implementation and following initial testing, transversus abdominis (TrA) activation training was completed using the abdominal draw-in maneuver (ADIM) including ultrasound imaging (USI) verification and instructor feedback. Paired t tests were conducted regarding the nine-week core stabilization program on dance performance and balance measures (pirouettes, single leg balance in passe’ releve position, and star excursion balance test [SEBT]) and on tests of muscle performance. A repeated measures (RM) ANOVA examined four TrA instruction conditions of activation: resting baseline, self-selected activation, immediately following ADIM training and four days after completion of the core stabilization training program. Alpha was set at 0.05 for all analysis. Results Statistically significant improvements were seen on single leg balance in passe’ releve and bilateral anterior reach for the SEBT (both p ≤ 0.01), number of pirouettes (p = 0.011), and all measures of strength (p ≤ 0.05) except single leg heel raise. The RM ANOVA on mean percentage of change in TrA was significant; post hoc paired t tests demonstrated significant improvements in dancers’ TrA activations across the four instruction conditions Conclusion This core stabilization training program improves pirouette ability, balance (static and dynamic), and measures of muscle performance. Additionally, ADIM training resulted in immediate and short-term (nine-week) improvements in TrA activation in a functional dance position. Level of Evidence 2b PMID:28217414

  18. Moats and Drawbridges: An Isolation Primitive for Reconfigurable Hardware Based Systems

    DTIC Science & Technology

    2007-05-01

    these systems, and after being run through an optimizing CAD tool the resulting circuit is a single entangled mess of gates and wires. To prevent the...translates MATLAB [48] algorithms into HDL, logic synthesis translates this HDL into a netlist, a synthesis tool uses a place-and-route algorithm to...Core Soft Core µ Soft P Core µP Core Hard Soft Algorithms MATLAB gcc ExecutableC Code HDL C Code Bitstream Place and Route NetlistLogic Synthesis EDK µP

  19. Ethanol production from glycerol using immobilized Pachysolen tannophilus during microaerated repeated-batch fermentor culture.

    PubMed

    Cha, Hye-Geun; Kim, Yi-Ok; Choi, Woon Yong; Kang, Do-Hyung; Lee, Hyeon-Yong; Jung, Kyung-Hwan

    2015-03-01

    Herein, we established a repeated-batch process for ethanol production from glycerol by immobilized Pachysolen tannophilus. The aim of this study was to develop a more practical and applicable ethanol production process for biofuel. In particular, using industrial-grade medium ingredients, the microaeration rate was optimized for maximization of the ethanol production, and the relevant metabolic parameters were then analyzed. The microaeration rate of 0.11 vvm, which is far lower than those occurring in a shaking flask culture, was found to be the optimal value for ethanol production from glycerol. In addition, it was found that, among those tested, Celite was a more appropriate carrier for the immobilization of P. tannophilus to induce production of ethanol from glycerol. Finally, through a repeated-batch culture, the ethanol yield (Ye/g) of 0.126 ± 0.017 g-ethanol/g-glycerol (n = 4) was obtained, and this value was remarkably comparable with a previous report. In the future, it is expected that the results of this study will be applied for the development of a more practical and profitable long-term ethanol production process, thanks to the industrial-grade medium preparation, simple immobilization method, and easy repeated-batch operation.

  20. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  1. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    PubMed

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

  2. Initial results on computational performance of Intel Many Integrated Core (MIC) architecture: implementation of the Weather and Research Forecasting (WRF) Purdue-Lin microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    Purdue-Lin scheme is a relatively sophisticated microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme includes six classes of hydro meteors: water vapor, cloud water, raid, cloud ice, snow and graupel. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. In this paper, we accelerate the Purdue Lin scheme using Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi is a high performance coprocessor consists of up to 61 cores. The Xeon Phi is connected to a CPU via the PCI Express (PICe) bus. In this paper, we will discuss in detail the code optimization issues encountered while tuning the Purdue-Lin microphysics Fortran code for Xeon Phi. In particularly, getting a good performance required utilizing multiple cores, the wide vector operations and make efficient use of memory. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 4.2x. Furthermore, the same optimizations improved performance on Intel Xeon E5-2603 CPU by a factor of 1.2x compared to the original code.

  3. Event Reconstruction for Many-core Architectures using Java

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Norman A.; /SLAC

    Although Moore's Law remains technically valid, the performance enhancements in computing which traditionally resulted from increased CPU speeds ended years ago. Chip manufacturers have chosen to increase the number of core CPUs per chip instead of increasing clock speed. Unfortunately, these extra CPUs do not automatically result in improvements in simulation or reconstruction times. To take advantage of this extra computing power requires changing how software is written. Event reconstruction is globally serial, in the sense that raw data has to be unpacked first, channels have to be clustered to produce hits before those hits are identified as belonging tomore » a track or shower, tracks have to be found and fit before they are vertexed, etc. However, many of the individual procedures along the reconstruction chain are intrinsically independent and are perfect candidates for optimization using multi-core architecture. Threading is perhaps the simplest approach to parallelizing a program and Java includes a powerful threading facility built into the language. We have developed a fast and flexible reconstruction package (org.lcsim) written in Java that has been used for numerous physics and detector optimization studies. In this paper we present the results of our studies on optimizing the performance of this toolkit using multiple threads on many-core architectures.« less

  4. Approximate analysis for repeated eigenvalue problems with applications to controls-structure integrated design

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Hou, Gene J. W.

    1994-01-01

    A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.

  5. ATR LEU Fuel and Burnable Absorber Neutronics Performance Optimization by Fuel Meat Thickness Variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Chang

    2007-09-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.« less

  6. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations.

    PubMed

    Banerjee, Goutami; Car, Suzana; Scott-Craig, John S; Borrusch, Melissa S; Walton, Jonathan D

    2010-10-12

    Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase) were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar) subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]). A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP) at the same protein loadings. When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3) and a lower proportion of endo-β1,4-glucanase (EG1) compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase, α-arabinosidase, and Cel12A to the core set) was determined for AFEX-pretreated corn stover, DDGS, and AP-pretreated corn stover. The optimized mixture for AP-corn stover contained more exo-β1,4-glucanase (i.e., the sum of CBH1 + CBH2) and less endo-β1,4-glucanase (EG1 + Cel5A) than the optimal mixture for AFEX-corn stover. Amyloglucosidase and β-mannanase were the two most important enzymes for release of Glc from DDGS but were not required (i.e., 0% optimum) for corn stover subjected to AP or AFEX. As a function of enzyme loading over the range 0 to 30 mg/g glucan, Glc release from AP-corn stover reached a plateau of 60-70% Glc yield at a lower enzyme loading (5-10 mg/g glucan) than AFEX-corn stover. Accellerase 1000 was superior to Spezyme CP, the core set or the 16-component mixture for Glc yield at 12 h, but the 16-component set was as effective as the commercial enzyme mixtures at 48 h. The results in this paper demonstrate that GENPLAT can be used to rapidly produce enzyme cocktails for specific pretreatment/biomass combinations. Pretreatment conditions and feedstock source both influence the Glc and Xyl yields as well as optimal enzyme proportions. It is predicted that it will be possible to improve synthetic enzyme mixtures further by the addition of additional accessory enzymes.

  7. Biomedical imaging and therapy with physically and physiologically tailored magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Khandhar, Amit Praful

    Magnetic particle imaging (MPI) and magnetic fluid hyperthermia (MFH) are emerging imaging and therapy approaches that have the potential to improve diagnostic safety and disease management of heart disease and cancer - the number 1 and 2 leading causes of deaths in the United States. MPI promises real-time, tomographic and quantitative imaging of superparamagnetic iron oxide nanoparticle (SPION) tracers distributed in vivo, and is targeted to offer a safer angiography alternative for its first clinical application. MFH uses ac-fields to dissipate heat from SPIONs that can be delivered locally to promote hyperthermia therapy (~42°C) in cancer cells. Both technologies use safe radiofrequency magnetic fields to exploit the fundamental magnetic relaxation properties of superparamagnetic iron oxide nanoparticles (SPIONs), which must be tailored for optimal imaging in the case of MPI, and maximum hyperthermia potency in the case of MFH. Furthermore, the magnetic core and shell of SPIONs are both central to the optimization process; the shell, in particular, bridges the translational gap between the optimized core and its safe and effective use in the physiological environment. Unfortunately, existing SPIONs that were originally designed as MRI contrast agents lack the basic physical properties that enable the clinical translation of MPI and MFH. In this work, the core and shell of monodisperse SPIONs were optimized in concert to accomplish two equally important objectives: (1) biocompatibility, and (2) MPI and MFH efficacy of SPIONs in physiological environments. Critically, it was found that the physical and physiological responses of SPIONs are coupled, and impacting one can have consequences on the other. It was shown that the poly(ethylene glycol) (PEG)-based shell when properly optimized reduced protein adsorption to SPION surface and phagocytic uptake in macrophages - both prerequisites for designing long-circulating SPIONs. In MPI, tailoring the surface coating reduced protein adsorption and improved colloidal stability, which were critical in retaining the magnetization relaxation properties of the SPIONs. The improvements in surface coatings enabled the use of larger SPION cores (> 20 nm core diameter), which were used to demonstrate benchmark-imaging performance in some of the world's first MPI scanners at Philips Medical Imaging and University of California, Berkeley. In MFH, it was shown for the first time that optimization of heat loss from SPIONs (W/g) is possible by tailoring the core size and size distribution for the given ac-field conditions. Biodistribution and blood circulation studies in mice showed that SPIONs accumulated primarily in the liver and spleen with minimal renal involvement, and demonstrated gradual clearance. Circulation time was evaluated using the MPI signal detected over time in blood, which offered insight on the relevant circulation time for angiography applications. In comparison with carboxy-dextran coated ResovistRTM SPIONs, the PEG-coated SPIONs developed in this work circulated substantially longer; furthermore, reducing the hydrodynamic diameter showed a 4.5x improvement in blood half-life. The work presented in this thesis demonstrates that the combined effort in optimizing the core and shell properties of SPIONs enhances biocompatibility and efficacy, with the in vivo studies providing critical feedback on the success (or failure) of the optimization process. Future work will entail designing functionalized SPIONs for targeting specific disease sites, which will further enable the molecular level diagnosis and therapy of diseases.

  8. Large-scale linear programs in planning and prediction.

    DOT National Transportation Integrated Search

    2017-06-01

    Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...

  9. Effective Assessment: Probing Students' Understanding of Natural Selection

    ERIC Educational Resources Information Center

    Stern, Luli

    2004-01-01

    Evolution by natural selection provides the conceptual framework upon which much of modern biology is based: therefore understanding core ideas about biological evolution is an essential part of scientific literacy. Nonetheless, research repeatedly shows that high school and college students have difficulties understanding the notion of natural…

  10. Luminescence and efficiency optimization of InGaN/GaN core-shell nanowire LEDs by numerical modelling

    NASA Astrophysics Data System (ADS)

    Römer, Friedhard; Deppner, Marcus; Andreev, Zhelio; Kölper, Christopher; Sabathil, Matthias; Strassburg, Martin; Ledig, Johannes; Li, Shunfeng; Waag, Andreas; Witzigmann, Bernd

    2012-02-01

    We present a computational study on the anisotropic luminescence and the efficiency of a core-shell type nanowire LED based on GaN with InGaN active quantum wells. The physical simulator used for analyzing this device integrates a multidimensional drift-diffusion transport solver and a k . p Schrödinger problem solver for quantization effects and luminescence. The solution of both problems is coupled to achieve self-consistency. Using this solver we investigate the effect of dimensions, design of quantum wells, and current injection on the efficiency and luminescence of the core-shell nanowire LED. The anisotropy of the luminescence and re-absorption is analyzed with respect to the external efficiency of the LED. From the results we derive strategies for design optimization.

  11. Solution structure and base pair opening kinetics of the i-motif dimer of d(5mCCTTTACC): a noncanonical structure with possible roles in chromosome stability.

    PubMed

    Nonin, S; Phan, A T; Leroy, J L

    1997-09-15

    Repetitive cytosine-rich DNA sequences have been identified in telomeres and centromeres of eukaryotic chromosomes. These sequences play a role in maintaining chromosome stability during replication and may be involved in chromosome pairing during meiosis. The C-rich repeats can fold into an 'i-motif' structure, in which two parallel-stranded duplexes with hemiprotonated C.C+ pairs are intercalated. Previous NMR studies of naturally occurring repeats have produced poor NMR spectra. This led us to investigate oligonucleotides, based on natural sequences, to produce higher quality spectra and thus provide further information as to the structure and possible biological function of the i-motif. NMR spectroscopy has shown that d(5mCCTTTACC) forms an i-motif dimer of symmetry-related and intercalated folded strands. The high-definition structure is computed on the basis of the build-up rates of 29 intraresidue and 35 interresidue nuclear Overhauser effect (NOE) connectivities. The i-motif core includes intercalated interstrand C.C+ pairs stacked in the order 2*.8/1.7*/1*.7/2.8* (where one strand is distinguished by an asterisk and the numbers relate to the base positions within the repeat). The TTTA sequences form two loops which span the two wide grooves on opposite sides of the i-motif core; the i-motif core is extended at both ends by the stacking of A6 onto C2.C8+. The lifetimes of pairs C2.C8+ and 5mC1.C7+ are 1 ms and 1 s, respectively, at 15 degrees C. Anomalous exchange properties of the T3 imino proton indicate hydrogen bonding to A6 N7 via a water bridge. The d(5mCCTTTTCC) deoxyoligonucleotide, in which position 6 is occupied by a thymidine instead of an adenine, also forms a symmetric i-motif dimer. However, in this structure the two TTTT loops are located on the same side of the i-motif core and the C.C+ pairs are formed by equivalent cytidines stacked in the order 8*.8/1.1*/7*.7/2.2*. Oligodeoxynucleotides containing two C-rich repeats can fold and dimerize into an i-motif. The change of folding topology resulting from the substitution of a single nucleoside emphasizes the influence of the loop residues on the i-motif structure formed by two folded strands.

  12. Intel Many Integrated Core (MIC) architecture optimization strategies for a memory-bound Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Goddard cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The WRF is a widely used weather prediction system in the world. It development is a done in collaborative around the globe. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the code of this important part of WRF. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU do. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 4.7x. Furthermore, the same optimizations improved performance on a dual socket Intel Xeon E5-2670 system by a factor of 2.8x compared to the original code.

  13. Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xin; Wang, Qiang; Chen, Xiangnan

    2014-11-17

    A core-shell structured hybrid of polyaniline at helical carbon nanotubes was synthesized using in situ polymerization, which the helical carbon nanotubes were uniformly surrounded by a layer of polyaniline nanorods array. More interestingly, repeatable responses were experimentally observed that the sensitivity to ammonia gas of the as-prepared helical shaped core-shell hybrid displays an enhancement of more than two times compared to those of only polyaniline or helical carbon nanotubes sensors because of the peculiar structures with high surface area. This kind of hybrid comprising nanorod arrays of conductive polymers covering carbon nanotubes and related structures provide a potential in sensorsmore » of trace gas detection for environmental monitoring and safety forecasting.« less

  14. Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer.

    PubMed

    Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y

    2008-11-10

    A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.

  15. Effect of waist diameter and twist on tapered asymmetrical dual-core fiber MZI filter.

    PubMed

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2015-10-01

    A compact in-fiber Mach-Zehnder interferometer (MZI) filter fabricated from custom-designed asymmetrical dual-core fiber is numerically analyzed in detail and experimentally verified. The asymmetrical dual-core fiber has core diameters and a core pitch of 6.9, 6, and 19.9 μm, respectively. The fiber tapering technique is introduced to fuse the originally uncoupled cores into strong coupling tapered regions. The length and diameter of the waist region have a close impact on the splitting ratio, which further affects the spectral properties of the MZI filter. The field evolution with varied waist parameters is characterized by the finite element method and beam propagation method. Repeatable comb filters with ∼15  dB extinction ratio are successfully achieved under the guidance of simulated optimum conditions. The twist-induced circular birefringence gives rise to a retardance that causes the spectral shifts of the MZI filter. The theoretical and experimental results confirm that the relative wavelength shift is proportional to the retardance, which follows a sinc function in the limit of a large twist rate.

  16. Microhardness of dual-polymerizing resin cements and foundation composite resins for luting fiber-reinforced posts.

    PubMed

    Yoshida, Keiichi; Meng, Xiangfeng

    2014-06-01

    The optimal luting material for fiber-reinforced posts to ensure the longevity of foundation restorations remains undetermined. The purpose of this study was to evaluate the suitability of 3 dual-polymerizing resin cements and 2 dual-polymerizing foundation composite resins for luting fiber-reinforced posts by assessing their Knoop hardness number. Five specimens of dual-polymerizing resin cements (SA Cement Automix, G-Cem LincAce, and Panavia F2.0) and 5 specimens of dual-polymerizing foundation composite resins (Clearfil DC Core Plus and Unifil Core EM) were polymerized from the top by irradiation for 40 seconds. Knoop hardness numbers were measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours and 7 days after irradiation. Data were statistically analyzed by repeated measures ANOVA, 1-way ANOVA, and the Tukey compromise post hoc test (α=.05). At both times after irradiation, the 5 resins materials showed the highest Knoop hardness numbers at the 0.5-mm depth. At 7 days after irradiation, the Knoop hardness numbers of the resin materials did not differ significantly between the 8.0-mm and 10.0-mm depths (P>.05). For all materials, the Knoop hardness numbers at 7 days after irradiation were significantly higher than those at 0.5 hours after irradiation at all depths (P<.05). At 7 days after irradiation, the Knoop hardness numbers of the 5 resin materials were found to decrease in the following order: DC Core Plus, Unifil Core EM, Panavia F2.0, SA Cement Automix, and G-Cem LincAce (P<.05). The Knoop hardness number depends on the depth of the cavity, the length of time after irradiation, and the material brand. Although the Knoop hardness numbers of the 2 dual-polymerizing foundation composite resins were higher than those of the 3 dual-polymerizing resin cements, notable differences were seen among the 5 materials at all depths and at both times after irradiation. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. David Newell; Saibal Bhattacharya; Alan Byrnes

    2005-10-01

    This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- tomore » 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of the geologic and petrophysical characterization of the oil field. After this feedback, a second well will be cored and logged, and procedure will be repeated to test characteristics determined to be critical for designing cost-effective fracture treatments. Most oil and gas production in Kansas, and that of the Midcontinent oil industry, is dominated by small companies. The overwhelming majority of these independent operators employ less than 20 people. These companies have limited scientific and engineering expertise and they are increasingly needing guidelines and technical examples that will help them to not be wasteful of their limited financial resources and petroleum reserves. To aid these operators, the technology transfer capabilities of the Kansas Geological Survey will disseminate the results of this study to the local, regional, and national oil industry. Internet access, seminars, presentations, and publications by Woolsey Petroleum Company and Kansas Geological Survey geologists and engineers are anticipated.« less

  18. A minimal cost function method for optimizing the age-Depth relation of deep-sea sediment cores

    NASA Astrophysics Data System (ADS)

    Brüggemann, Wolfgang

    1992-08-01

    The question of an optimal age-depth relation for deep-sea sediment cores has been raised frequently. The data from such cores (e.g., δ18O values) are used to test the astronomical theory of ice ages as established by Milankovitch in 1938. In this work, we use a minimal cost function approach to find simultaneously an optimal age-depth relation and a linear model that optimally links solar insolation or other model input with global ice volume. Thus a general tool for the calibration of deep-sea cores to arbitrary tuning targets is presented. In this inverse modeling type approach, an objective function is minimized that penalizes: (1) the deviation of the data from the theoretical linear model (whose transfer function can be computed analytically for a given age-depth relation) and (2) the violation of a set of plausible assumptions about the model, the data and the obtained correction of a first guess age-depth function. These assumptions have been suggested before but are now quantified and incorporated explicitly into the objective function as penalty terms. We formulate an optimization problem that is solved numerically by conjugate gradient type methods. Using this direct approach, we obtain high coherences in the Milankovitch frequency bands (over 90%). Not only the data time series but also the the derived correction to a first guess linear age-depth function (and therefore the sedimentation rate) itself contains significant energy in a broad frequency band around 100 kyr. The use of a sedimentation rate which varies continuously on ice age time scales results in a shift of energy from 100 kyr in the original data spectrum to 41, 23, and 19 kyr in the spectrum of the corrected data. However, a large proportion of the data variance remains unexplained, particularly in the 100 kyr frequency band, where there is no significant input by orbital forcing. The presented method is applied to a real sediment core and to the SPECMAP stack, and results are compared with those obtained in earlier investigations.

  19. Efficient quantum repeater with respect to both entanglement-concentration rate and complexity of local operations and classical communication

    NASA Astrophysics Data System (ADS)

    Su, Zhaofeng; Guan, Ji; Li, Lvzhou

    2018-01-01

    Quantum entanglement is an indispensable resource for many significant quantum information processing tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend the distance of entanglement distribution. In this scheme, the time consumption of classical communication and local operations takes an important place with respect to time efficiency. Motivated by this observation, we consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration but also the complexity of local operations and classical communication. First, we consider the case where two different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal entanglement-concentration rate and less consumption of local operations and classical communication. We also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally entangled state between the two ends. Second, we consider the case in which two general pure states are prepared and general measurements are allowed. We get an upper bound on the probability for a successful measurement operation to produce a maximally entangled state without any further local operations.

  20. Development of a Stiffness-Based Chemistry Load Balancing Scheme, and Optimization of Input/Output and Communication, to Enable Massively Parallel High-Fidelity Internal Combustion Engine Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavasal, Janardhan; Harms, Kevin; Srivastava, Priyesh

    A closed-cycle gasoline compression ignition engine simulation near top dead center (TDC) was used to profile the performance of a parallel commercial engine computational fluid dynamics code, as it was scaled on up to 4096 cores of an IBM Blue Gene/Q supercomputer. The test case has 9 million cells near TDC, with a fixed mesh size of 0.15 mm, and was run on configurations ranging from 128 to 4096 cores. Profiling was done for a small duration of 0.11 crank angle degrees near TDC during ignition. Optimization of input/output performance resulted in a significant speedup in reading restart files, andmore » in an over 100-times speedup in writing restart files and files for post-processing. Improvements to communication resulted in a 1400-times speedup in the mesh load balancing operation during initialization, on 4096 cores. An improved, “stiffness-based” algorithm for load balancing chemical kinetics calculations was developed, which results in an over 3-times faster run-time near ignition on 4096 cores relative to the original load balancing scheme. With this improvement to load balancing, the code achieves over 78% scaling efficiency on 2048 cores, and over 65% scaling efficiency on 4096 cores, relative to 256 cores.« less

  1. Oscillator strengths of some Ba lines - A treatment including core-valence correlation and relativistic effects

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Jaffe, R. L.; Langhoff, S. R.; Partridge, H.; Mascarello, F. G.

    1985-01-01

    Theoretical calculations of selected excitation energies and oscillator strengths for Ba are presented that overcome the difficulties of previous theoretical treatments. A relativistic effective-core potential treatment is used to account for the relativistic core contraction, but the outermost ten electrons are treated explicitly. Core-valence correlation can be included in this procedure in a rigorous and systematic way through a configuration-interaction calculation. Insight is gained into the importance of relativistic effects by repeating many of the calculations using an all-electron nonrelativistic treatment employing an extended Slater basis set. It is found that the intensity of the intercombination line 3P1-1S0 is accurately determined by accounting for the deviation from LS coupling through spin-orbit mixing with the 1P1 state, and that deviations from the Lande interval rule provide an accurate measure of the degree of mixing.

  2. A Rapid Method for Optimizing Running Temperature of Electrophoresis through Repetitive On-Chip CE Operations

    PubMed Central

    Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo

    2011-01-01

    In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077

  3. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Coroneos, Rula M.

    2012-01-01

    This report addresses the structural analysis and optimization of a composite fan blade sized for a large aircraft engine. An existing baseline solid metallic fan blade was used as a starting point to develop a hybrid honeycomb sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replacing the original baseline solid metallic fan model made of titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements, a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized whereas the overall blade thickness is held fixed so as to not alter the original airfoil geometry. Weight is taken as the objective function to be minimized by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  4. Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet.

    PubMed

    Liu, Longxiao; Xu, Xiangning

    2008-03-20

    In this paper, a bilayer-core osmotic pump tablet (OPT) which does not require laser drilling to form the drug delivery orifice is described. The bilayer-core consisted of two layers: (a) push layer and (b) drug layer, and was made with a modified upper tablet punch, which produced an indentation at the center of the drug layer surface. The indented tablets were coated by using a conventional pan-coating process. Although the bottom of the indentation could be coated, the side face of the indentation was scarcely sprayed by the coating solution and this part of the tablet remained at least partly uncoated leaving an aperture from which drug release could occur. Nifedipine was selected as the model drug. Sodium chloride was used as osmotic agent, polyvinylpyrrolidone as suspending agent and croscarmellose sodium as expanding agent. The indented core tablet was coated by ethyl cellulose as semipermeable membrane containing polyethylene glycol 400 for controlling the membrane permeability. The formulation of core tablet was optimized by orthogonal design and the release profiles of various formulations were evaluated by similarity factor (f(2)). It was found that the optimal OPT was able to deliver nifedipine at an approximate zero-order up to 24 h, independent on both release media and agitation rates. The preparation of bilayer-core OPT was simplified by coating the indented core tablet, by which sophisticated technology of the drug layer identification and laser drilling could be eliminated. It might be promising in the field of preparation of bilayer-core OPT.

  5. Optimizing Performance of Combustion Chemistry Solvers on Intel's Many Integrated Core (MIC) Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Hariswaran; Grout, Ray W

    This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved heremore » through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.« less

  6. Core Hunter 3: flexible core subset selection.

    PubMed

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the strengths of other methods, as it (simultaneously) optimizes a variety of metrics. In addition, CH3 is an improvement over CH2, with the option to use genetic marker data or phenotypic traits, or both, and improved speed. Core Hunter 3 is freely available on http://www.corehunter.org .

  7. CORAL: aligning conserved core regions across domain families.

    PubMed

    Fong, Jessica H; Marchler-Bauer, Aron

    2009-08-01

    Homologous protein families share highly conserved sequence and structure regions that are frequent targets for comparative analysis of related proteins and families. Many protein families, such as the curated domain families in the Conserved Domain Database (CDD), exhibit similar structural cores. To improve accuracy in aligning such protein families, we propose a profile-profile method CORAL that aligns individual core regions as gap-free units. CORAL computes optimal local alignment of two profiles with heuristics to preserve continuity within core regions. We benchmarked its performance on curated domains in CDD, which have pre-defined core regions, against COMPASS, HHalign and PSI-BLAST, using structure superpositions and comprehensive curator-optimized alignments as standards of truth. CORAL improves alignment accuracy on core regions over general profile methods, returning a balanced score of 0.57 for over 80% of all domain families in CDD, compared with the highest balanced score of 0.45 from other methods. Further, CORAL provides E-values to aid in detecting homologous protein families and, by respecting block boundaries, produces alignments with improved 'readability' that facilitate manual refinement. CORAL will be included in future versions of the NCBI Cn3D/CDTree software, which can be downloaded at http://www.ncbi.nlm.nih.gov/Structure/cdtree/cdtree.shtml. Supplementary data are available at Bioinformatics online.

  8. Experimental and computational studies on the femoral fracture risk for advanced core decompression.

    PubMed

    Tran, T N; Warwas, S; Haversath, M; Classen, T; Hohn, H P; Jäger, M; Kowalczyk, W; Landgraeber, S

    2014-04-01

    Two questions are often addressed by orthopedists relating to core decompression procedure: 1) Is the core decompression procedure associated with a considerable lack of structural support of the bone? and 2) Is there an optimal region for the surgical entrance point for which the fracture risk would be lowest? As bioresorbable bone substitutes become more and more common and core decompression has been described in combination with them, the current study takes this into account. Finite element model of a femur treated by core decompression with bone substitute was simulated and analyzed. In-vitro compression testing of femora was used to confirm finite element results. The results showed that for core decompression with standard drilling in combination with artificial bone substitute refilling, daily activities (normal walking and walking downstairs) are not risky for femoral fracture. The femoral fracture risk increased successively when the entrance point is located further distal. The critical value of the deviation of the entrance point to a more distal part is about 20mm. The study findings demonstrate that optimal entrance point should locate on the proximal subtrochanteric region in order to reduce the subtrochanteric fracture risk. Furthermore the consistent results of finite element and in-vitro testing imply that the simulations are sufficient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Highly Efficient Parallel Multigrid Solver For Large-Scale Simulation of Grain Growth Using the Structural Phase Field Crystal Model

    NASA Astrophysics Data System (ADS)

    Guan, Zhen; Pekurovsky, Dmitry; Luce, Jason; Thornton, Katsuyo; Lowengrub, John

    The structural phase field crystal (XPFC) model can be used to model grain growth in polycrystalline materials at diffusive time-scales while maintaining atomic scale resolution. However, the governing equation of the XPFC model is an integral-partial-differential-equation (IPDE), which poses challenges in implementation onto high performance computing (HPC) platforms. In collaboration with the XSEDE Extended Collaborative Support Service, we developed a distributed memory HPC solver for the XPFC model, which combines parallel multigrid and P3DFFT. The performance benchmarking on the Stampede supercomputer indicates near linear strong and weak scaling for both multigrid and transfer time between multigrid and FFT modules up to 1024 cores. Scalability of the FFT module begins to decline at 128 cores, but it is sufficient for the type of problem we will be examining. We have demonstrated simulations using 1024 cores, and we expect to achieve 4096 cores and beyond. Ongoing work involves optimization of MPI/OpenMP-based codes for the Intel KNL Many-Core Architecture. This optimizes the code for coming pre-exascale systems, in particular many-core systems such as Stampede 2.0 and Cori 2 at NERSC, without sacrificing efficiency on other general HPC systems.

  10. Method for decreasing CT simulation time of complex phantoms and systems through separation of material specific projection data

    NASA Astrophysics Data System (ADS)

    Divel, Sarah E.; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2017-03-01

    Computer simulation is a powerful tool in CT; however, long simulation times of complex phantoms and systems, especially when modeling many physical aspects (e.g., spectrum, finite detector and source size), hinder the ability to realistically and efficiently evaluate and optimize CT techniques. Long simulation times primarily result from the tracing of hundreds of line integrals through each of the hundreds of geometrical shapes defined within the phantom. However, when the goal is to perform dynamic simulations or test many scan protocols using a particular phantom, traditional simulation methods inefficiently and repeatedly calculate line integrals through the same set of structures although only a few parameters change in each new case. In this work, we have developed a new simulation framework that overcomes such inefficiencies by dividing the phantom into material specific regions with the same time attenuation profiles, acquiring and storing monoenergetic projections of the regions, and subsequently scaling and combining the projections to create equivalent polyenergetic sinograms. The simulation framework is especially efficient for the validation and optimization of CT perfusion which requires analysis of many stroke cases and testing hundreds of scan protocols on a realistic and complex numerical brain phantom. Using this updated framework to conduct a 31-time point simulation with 80 mm of z-coverage of a brain phantom on two 16-core Linux serves, we have reduced the simulation time from 62 hours to under 2.6 hours, a 95% reduction.

  11. Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2008-10-16

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one ofmore » the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  12. Understanding Behavioural Rigidity in Autism Spectrum Conditions: The Role of Intentional Control

    ERIC Educational Resources Information Center

    Poljac, Edita; Hoofs, Vincent; Princen, Myrthe M.; Poljac, Ervin

    2017-01-01

    Although behavioural rigidity belongs to the core symptoms of autism spectrum conditions, little is known about its underlying cognitive mechanisms. The current study investigated the role of intentional control mechanisms in behavioural rigidity in autism. Autistic individuals and their matched controls were instructed to repeatedly choose…

  13. Using POE Centers

    ERIC Educational Resources Information Center

    Rios, Jose M.

    2002-01-01

    Inquiry. It's a word that every teacher has heard repeatedly since the publication of the National Science Education Standards. Given the challenges of teaching core content, preparing students for inquiry may seem like a daunting task. Yet there are many different approaches to inquiry. Examining the nature of the scientific method and reducing…

  14. EVALUATION OF AN ADVANCED ENGINEERING TEST REACTOR DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McVey, M.; Bradfute, J.O.; Buck, K.E.

    1958-07-15

    The scope of the study was primarily concerned with optimization of the geometrical and core-composition variables to achieve maximum flux in the loop region per unit core power without exceeding heat transfer and other engineering limitations. Centain other design questions are to be investigated. (A.C.)

  15. Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.

    PubMed

    Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee

    2014-10-01

    Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.

  16. Spectroscopic insights into quadruplexes of five-repeat telomere DNA sequences upon G-block damage.

    PubMed

    Dvořáková, Zuzana; Vorlíčková, Michaela; Renčiuk, Daniel

    2017-11-01

    The DNA lesions, resulting from oxidative damage, were shown to destabilize human telomere four-repeat quadruplex and to alter its structure. Long telomere DNA, as a repetitive sequence, offers, however, other mechanisms of dealing with the lesion: extrusion of the damaged repeat into loop or shifting the quadruplex position by one repeat. Using circular dichroism and UV absorption spectroscopy and polyacrylamide electrophoresis, we studied consequences of lesions at different positions of the model five-repeat human telomere DNA sequences on the structure and stability of their quadruplexes in sodium and in potassium. The repeats affected by lesion are preferentially positioned as terminal overhangs of the core quadruplex structurally similar to the four-repeat one. Forced affecting of the inner repeats leads to presence of variety of more parallel folds in potassium. In sodium the designed models form mixture of two dominant antiparallel quadruplexes whose population varies with the position of the affected repeat. The shapes of quadruplex CD spectra, namely the height of dominant peaks, significantly correlate with melting temperatures. Lesion in one guanine tract of a more than four repeats long human telomere DNA sequence may cause re-positioning of its quadruplex arrangement associated with a shift of the structure to less common quadruplex conformations. The type of the quadruplex depends on the loop position and external conditions. The telomere DNA quadruplexes are quite resistant to the effect of point mutations due to the telomere DNA repetitive nature, although their structure and, consequently, function might be altered. Copyright © 2017. Published by Elsevier B.V.

  17. A current review of core decompression in the treatment of osteonecrosis of the femoral head.

    PubMed

    Pierce, Todd P; Jauregui, Julio J; Elmallah, Randa K; Lavernia, Carlos J; Mont, Michael A; Nace, James

    2015-09-01

    The review describes the following: (1) how traditional core decompression is performed, (2) adjunctive treatments, (3) multiple percutaneous drilling technique, and (4) the overall outcomes of these procedures. Core decompression has optimal outcomes when used in the earliest, precollapse disease stages. More recent studies have reported excellent outcomes with percutaneous drilling. Furthermore, adjunct treatment methods combining core decompression with growth factors, bone morphogenic proteins, stem cells, and bone grafting have demonstrated positive results; however, larger randomized trial is needed to evaluate their overall efficacy.

  18. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    PubMed

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  19. Multi-level Hierarchical Poly Tree computer architectures

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Gute, Doug

    1990-01-01

    Based on the concept of hierarchical substructuring, this paper develops an optimal multi-level Hierarchical Poly Tree (HPT) parallel computer architecture scheme which is applicable to the solution of finite element and difference simulations. Emphasis is given to minimizing computational effort, in-core/out-of-core memory requirements, and the data transfer between processors. In addition, a simplified communications network that reduces the number of I/O channels between processors is presented. HPT configurations that yield optimal superlinearities are also demonstrated. Moreover, to generalize the scope of applicability, special attention is given to developing: (1) multi-level reduction trees which provide an orderly/optimal procedure by which model densification/simplification can be achieved, as well as (2) methodologies enabling processor grading that yields architectures with varying types of multi-level granularity.

  20. Combined shape and topology optimization for minimization of maximal von Mises stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Haojie; Christiansen, Asger N.; Tortorelli, Daniel A.

    Here, this work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology. By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy.

  1. Combined shape and topology optimization for minimization of maximal von Mises stress

    DOE PAGES

    Lian, Haojie; Christiansen, Asger N.; Tortorelli, Daniel A.; ...

    2017-01-27

    Here, this work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology. By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy.

  2. Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Alok; Samatova, Nagiza; Wu, Kesheng

    This project developed a generic and optimized set of core data analytics functions. These functions organically consolidate a broad constellation of high performance analytical pipelines. As the architectures of emerging HPC systems become inherently heterogeneous, there is a need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-aware trend drives the advances in our performance-energy tradeoff analysis framework which enables our data analysis kernels algorithms and software to be parameterized so that users can choose the right power-performance optimizations.

  3. Shape Optimization of Cylindrical Shell for Interior Noise

    NASA Technical Reports Server (NTRS)

    Robinson, Jay H.

    1999-01-01

    In this paper an analytic method is used to solve for the cross spectral density of the interior acoustic response of a cylinder with nonuniform thickness subjected to turbulent boundary layer excitation. The cylinder is of honeycomb core construction with the thickness of the core material expressed as a cosine series in the circumferential direction. The coefficients of this series are used as the design variable in the optimization study. The objective function is the space and frequency averaged acoustic response. Results confirm the presence of multiple local minima as previously reported and demonstrate the potential for modest noise reduction.

  4. Parallelizing ATLAS Reconstruction and Simulation: Issues and Optimization Solutions for Scaling on Multi- and Many-CPU Platforms

    NASA Astrophysics Data System (ADS)

    Leggett, C.; Binet, S.; Jackson, K.; Levinthal, D.; Tatarkhanov, M.; Yao, Y.

    2011-12-01

    Thermal limitations have forced CPU manufacturers to shift from simply increasing clock speeds to improve processor performance, to producing chip designs with multi- and many-core architectures. Further the cores themselves can run multiple threads as a zero overhead context switch allowing low level resource sharing (Intel Hyperthreading). To maximize bandwidth and minimize memory latency, memory access has become non uniform (NUMA). As manufacturers add more cores to each chip, a careful understanding of the underlying architecture is required in order to fully utilize the available resources. We present AthenaMP and the Atlas event loop manager, the driver of the simulation and reconstruction engines, which have been rewritten to make use of multiple cores, by means of event based parallelism, and final stage I/O synchronization. However, initial studies on 8 andl6 core Intel architectures have shown marked non-linearities as parallel process counts increase, with as much as 30% reductions in event throughput in some scenarios. Since the Intel Nehalem architecture (both Gainestown and Westmere) will be the most common choice for the next round of hardware procurements, an understanding of these scaling issues is essential. Using hardware based event counters and Intel's Performance Tuning Utility, we have studied the performance bottlenecks at the hardware level, and discovered optimization schemes to maximize processor throughput. We have also produced optimization mechanisms, common to all large experiments, that address the extreme nature of today's HEP code, which due to it's size, places huge burdens on the memory infrastructure of today's processors.

  5. Optimization of image processing algorithms on mobile platforms

    NASA Astrophysics Data System (ADS)

    Poudel, Pramod; Shirvaikar, Mukul

    2011-03-01

    This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.

  6. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Bazin, L.; Capron, E.; Landais, A.; Lemieux-Dudon, B.; Masson-Delmotte, V.

    2015-05-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age-scale uncertainty are essential to interpret the climate and environmental records that they contain. It is, however, a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the lock-in depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice- and air-dated horizons, ice and air depth intervals with known durations, depth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 (Antarctic ice core chronology) for four Antarctic ice cores and one Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono1 are demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono1 and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as air intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the General Public License v3 open source license.

  7. Evaluating Multi-core Architectures through Accelerating the Three-Dimensional Lax–Wendroff Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2014-07-18

    Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be highly time time-consuming, which greatly limits application’s performance and power efficiency. In this paper, we accelerate the forward modeling technique on the latest multi-core and many-core architectures such as Intel Sandy Bridge CPUs, NVIDIA Fermi C2070 GPU, NVIDIA Kepler K20x GPU, and the Intel Xeon Phi Co-processor. For the GPU platforms, we propose two parallel strategies to explore the performance optimization opportunities for our stencil kernels.more » For Sandy Bridge CPUs and MIC, we also employ various optimization techniques in order to achieve the best.« less

  8. Stack-and-Draw Manufacture Process of a Seven-Core Optical Fiber for Fluorescence Measurements

    NASA Astrophysics Data System (ADS)

    Samir, Ahmed; Batagelj, Bostjan

    2018-01-01

    Multi-core, optical-fiber technology is expected to be used in telecommunications and sensory systems in a relatively short amount of time. However, a successful transition from research laboratories to industry applications will only be possible with an optimized design and manufacturing process. The fabrication process is an important aspect in designing and developing new multi-applicable, multi-core fibers, where the best candidate is a seven-core fiber. Here, the basics for designing and manufacturing a single-mode, seven-core fiber using the stack-and-draw process is described for the example of a fluorescence sensory system.

  9. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

    PubMed

    Wang, Qiang; Ma, Xiaonan; Qian, ShaSha; Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O; Li, Zhenghe

    2015-10-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

  10. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis

    PubMed Central

    Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O.; Li, Zhenghe

    2015-01-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses. PMID:26484673

  11. Delivering Core Engineering Concepts to Secondary Level Students

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2008-01-01

    Through the efforts of National Center for Engineering and Technology Education (NCETE), three core engineering concepts within the realm of engineering design have emerged as crucial areas of need within secondary level technology education. These concepts are constraints, optimization, and predictive analysis (COPA). COPA appears to be at the…

  12. Ambient temperature response establishes ELF3 as a required component of the Arabidopsis core circadian clock

    USDA-ARS?s Scientific Manuscript database

    Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal timescales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to ...

  13. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    PubMed Central

    Hari, Smriti; Kumari, Swati; Srivastava, Anurag; Thulkar, Sanjay; Mathur, Sandeep; Veedu, Prasad Thotton

    2016-01-01

    Background & objectives: Biopsy of palpable breast masses can be performed manually by palpation guidance or under imaging guidance. Based on retrospective studies, image guided biopsy is considered more accurate than palpation guided breast biopsy; however, these techniques have not been compared prospectively. We conducted this prospective study to verify the superiority and determine the size of beneficial effect of image guided biopsy over palpation guided biopsy. Methods: Over a period of 18 months, 36 patients each with palpable breast masses were randomized into palpation guided and image guided breast biopsy arms. Ultrasound was used for image guidance in 33 patients and mammographic (stereotactic) guidance in three patients. All biopsies were performed using 14 gauge automated core biopsy needles. Inconclusive, suspicious or imaging-histologic discordant biopsies were repeated. Results: Malignancy was found in 30 of 36 women in palpation guided biopsy arm and 27 of 36 women in image guided biopsy arm. Palpation guided biopsy had sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 46.7, 100, 100, 27.3 per cent, respectively, for diagnosing breast cancer. Nineteen of 36 women (52.8%) required repeat biopsy because of inadequate samples (7 of 19), suspicious findings (2 of 19) or imaging-histologic discordance (10 of 19). On repeat biopsy, malignancy was found in all cases of imaging-histologic discordance. Image guided biopsy had 96.3 per cent sensitivity and 100 per cent specificity. There was no case of inadequate sample or imaging-histologic discordance with image guided biopsy. Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates. PMID:27488003

  14. Cognitive Behavioral Therapy for Anxiety Disorders in Youth

    PubMed Central

    Seligman, Laura D.; Ollendick, Thomas H.

    2011-01-01

    Synopsis Cognitive behavioral therapies (CBTs) have been shown to be efficacious for the treatment of anxiety disorders in children and adolescents. Randomized clinical trials indicate that approximately two-thirds of children treated with CBT will be free of their primary diagnosis at posttreatment. Although several CBT treatment packages have been investigated in youth with diverse anxiety disorders, common core components have been identified. A comprehensive assessment, development of a good therapeutic relationship and working alliance, cognitive restructuring, repeated exposure with reduction of avoidance behavior, and skills training comprise the core procedures for the treatment of anxiety disorders in youth. PMID:21440852

  15. Eddy-Current Monitoring Of Composite Layups

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1993-01-01

    Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.

  16. Exploring the effect of nested capillaries on core-cladding mode resonances in hollow-core antiresonant fibers

    NASA Astrophysics Data System (ADS)

    Provino, Laurent; Taunay, Thierry

    2018-02-01

    Optimal suppression of higher-order modes (HOMs) in hollow-core antiresonant fibers comprising a single ring of thin-walled capillaries was previously studied, and can be achieved when the condition on the capillary-tocore diameter ratio is satisfied (d/D ≍ 0.68). Here we report on the conditions for maximizing the leakage losses of HOMs in hollow-core nested antiresonant node-less fibers, while preserving low confinement loss for the fundamental mode. Using an analytical model based on coupled capillary waveguides, as well as full-vector finite element modeling, we show that optimal d/D value leading to high leakage losses of HOMs, is strongly correlated to the size of nested capillaries. We also show that extremely high value of degree of HOM suppression (˜1200) at the resonant coupling is almost unchanged on a wide range of nested capillary diameter dN ested values. These results thus suggest the possibility of designing antiresonant fibers with nested elements, which show optimal guiding performances in terms of the HOM loss compared to that of the fundamental mode, for clearly defined paired values of the ratios dN ested/d and d/D. These can also tend towards a single-mode behavior only when the dimensionless parameter dN ested/d is less than 0.30, with identical wall thicknesses for all of the capillaries.

  17. Multi-core and GPU accelerated simulation of a radial star target imaged with equivalent t-number circular and Gaussian pupils

    NASA Astrophysics Data System (ADS)

    Greynolds, Alan W.

    2013-09-01

    Results from the GelOE optical engineering software are presented for the through-focus, monochromatic coherent and polychromatic incoherent imaging of a radial "star" target for equivalent t-number circular and Gaussian pupils. The FFT-based simulations are carried out using OpenMP threading on a multi-core desktop computer, with and without the aid of a many-core NVIDIA GPU accessing its cuFFT library. It is found that a custom FFT optimized for the 12-core host has similar performance to a simply implemented 256-core GPU FFT. A more sophisticated version of the latter but tuned to reduce overhead on a 448-core GPU is 20 to 28 times faster than a basic FFT implementation running on one CPU core.

  18. ATR LEU fuel and burnable absorber neutronics performance optimization by fuel meat thickness variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, G.S.

    2008-07-15

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core th and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.381 mm and the same U-235 enrichment (19.7 wt%) can be used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.5 mil) to 0.343 mm (13.5 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, 0.8g of a burnable absorber, Boron-10, was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores. (author)« less

  19. When the Earth's Inner Core Shuffles

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Bodin, T.; Ngo, S.; Sambridge, M.

    2011-12-01

    Shuffling is a tribal dance recently adapted by teenagers as a street dance. In one of the most popular moves, the so-called "Running Man", a stomp forward on one foot, shifted without being lifted from the ground, is followed by a change of position backwards on the same foot. Here, we present strong observational evidence from a newly observed collection of earthquake doublets that the Earth's inner core "shuffles" exhibiting both prograde and retrograde rotation in the reference frame of the mantle. This discovery is significant on several levels. First, the observed pattern consists of intermittent intervals of quasi-locked and differentially rotating inner core with respect to the Earth's mantle. This means that the angular alignment of the inner core and mantle oscillates in time over the past five decades. Jolting temporal changes are revealed, indicating that during the excursions from the quasi-locked state, the Earth's inner core can rotate both faster and slower than the rest of the planet, thus exhibiting both eastward and westward rotation. According to our results, a short time interval (on the order of one to two years) is needed for the inner core to accelerate to a differential rotation rate of several degrees per year, and typically a slightly longer time is needed to decelerate down to a negligibly small differential rotation rate. These time scales are in agreement with experimental spin-up times obtained when the magnetic torque alone is used to accelerate the inner core. Second, when we integrate the rotation rate over different time intervals, it is possible to explain discrepancies between the body wave and normal modes results for the rate of the inner core differential rotation found by previous authors. We show that the integrated shift in angular alignment and average rotation rates (previously determined to be constant) in normal mode studies are much smaller that those for the body waves. The repeating earthquakes from the South Atlantic generate elastic waves that traverse the Earth's mantle and core, and are recorded by the seismographs located in the northern hemisphere. The waveform doublets produced by repeating earthquakes present a reliable probe, which can reveal temporal changes exhibited by the inner core due to the fact that the mantle effects are minimized. We observe new waveform-doublets at the College station, Alaska, and analyse all existing doublets recorded at that station using state of the art mathematical methods. The complex temporal pattern of differences in travel times between the first and the second event of a doublet is impossible to explain with a simple linear-fit approach. An ensemble approach utilizing transdimensional and hierarchical Bayesian analysis proves to be a powerful approach in this case, relaxing the choices on model parameterization and revealing hitherto unseen complex dynamics of the Earth's inner core.

  20. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  1. The optimal community detection of software based on complex networks

    NASA Astrophysics Data System (ADS)

    Huang, Guoyan; Zhang, Peng; Zhang, Bing; Yin, Tengteng; Ren, Jiadong

    2016-02-01

    The community structure is important for software in terms of understanding the design patterns, controlling the development and the maintenance process. In order to detect the optimal community structure in the software network, a method Optimal Partition Software Network (OPSN) is proposed based on the dependency relationship among the software functions. First, by analyzing the information of multiple execution traces of one software, we construct Software Execution Dependency Network (SEDN). Second, based on the relationship among the function nodes in the network, we define Fault Accumulation (FA) to measure the importance of the function node and sort the nodes with measure results. Third, we select the top K(K=1,2,…) nodes as the core of the primal communities (only exist one core node). By comparing the dependency relationships between each node and the K communities, we put the node into the existing community which has the most close relationship. Finally, we calculate the modularity with different initial K to obtain the optimal division. With experiments, the method OPSN is verified to be efficient to detect the optimal community in various softwares.

  2. Striatal dopamine dynamics in mice following acute and repeated toluene exposure.

    PubMed

    Apawu, Aaron K; Mathews, Tiffany A; Bowen, Scott E

    2015-01-01

    The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the neurochemical actions that mediate the action of toluene in the brain. Available evidence suggests that toluene inhalation alters dopamine (DA) neurotransmission, but toluene's mechanism of action is unknown. The present study evaluated the effect of acute and repeated toluene inhalation (0, 2,000, or 4,000 ppm) on locomotor activity as well as striatal DA release and uptake using slice fast-scan cyclic voltammetry. Acutely, 2,000 and 4,000 ppm toluene increased locomotor activity, while neurochemically only 4,000 ppm toluene potentiated electrically evoked DA release across the caudate-putamen and the nucleus accumbens. Repeated administration of toluene resulted in sensitization to toluene's locomotor activity effects. Brain slices obtained from mice repeatedly exposed to toluene demonstrated no difference in stimulated DA release in the caudate-putamen as compared to control animals. Repeated exposure to 2,000 and 4,000 ppm toluene caused a concentration-dependent decrease of 25-50 % in evoked DA release in the nucleus accumbens core and shell relative to air-exposed mice. These voltammetric neurochemical findings following repeated toluene exposure suggest that there may be a compensatory downregulation of the DA system. Acute or repeated toluene exposure had no effect on the DA uptake kinetics. Taken together, these results demonstrate that acute toluene inhalation potentiates DA release, while repeated toluene exposure attenuates DA release in the nucleus accumbens only.

  3. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.

    PubMed

    Ruymgaart, A Peter; Elber, Ron

    2012-11-13

    We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME).

  4. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Peter R., E-mail: pmarti46@uwo.ca; Cool, Derek W.; Romagnoli, Cesare

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiologymore » resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was consistently greater when using spherical tumor shapes as opposed to no shape assumption. However, an assumption of spherical tumor shape for RMSE = 3.5 mm led to a mean overestimation of tumor sampling probabilities of 3%, implying that assuming spherical tumor shape may be reasonable for many prostate tumors. The authors also determined that a biopsy system would need to have a RMS needle delivery error of no more than 1.6 mm in order to sample 95% of tumors with one core. The authors’ experiments also indicated that the effect of axial-direction error on the measured tumor burden was mitigated by the 18 mm core length at 3.5 mm RMSE. Conclusions: For biopsy systems with RMSE ≥ 3.5 mm, more than one biopsy core must be taken from the majority of tumors to achieveP ≥ 95%. These observations support the authors’ perspective that some tumors of clinically significant sizes may require more than one biopsy attempt in order to be sampled during the first biopsy session. This motivates the authors’ ongoing development of an approach to optimize biopsy plans with the aim of achieving a desired probability of obtaining a sample from each tumor, while minimizing the number of biopsies. Optimized planning of within-tumor targets for MRI-3D TRUS fusion biopsy could support earlier diagnosis of prostate cancer while it remains localized to the gland and curable.« less

  5. Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep).

    PubMed

    Guellouz, Asma; Valerio-Lepiniec, Marie; Urvoas, Agathe; Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe

    2013-01-01

    We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a "filtration" procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×10(9) independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties.

  6. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity.

    PubMed

    Cunha, Eva S; Hatem, Christine L; Barrick, Doug

    2016-08-01

    Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043-1054. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2011-08-01

    In the recent years, interest in the application of experimental design theory to population pharmacokinetic (PK) and pharmacodynamic (PD) experiments has increased. The aim is to improve the efficiency and the precision with which parameters are estimated during data analysis and sometimes to increase the power and reduce the sample size required for hypothesis testing. The population Fisher information matrix (PFIM) has been described for uniresponse and multiresponse population PK experiments for design evaluation and optimisation. Despite these developments and availability of tools for optimal design of population PK and PD experiments much of the effort has been focused on repeated continuous variable measurements with less work being done on repeated discrete type measurements. Discrete data arise mainly in PDs e.g. ordinal, nominal, dichotomous or count measurements. This paper implements expressions for the PFIM for repeated ordinal, dichotomous and count measurements based on analysis by a mixed-effects modelling technique. Three simulation studies were used to investigate the performance of the expressions. Example 1 is based on repeated dichotomous measurements, Example 2 is based on repeated count measurements and Example 3 is based on repeated ordinal measurements. Data simulated in MATLAB were analysed using NONMEM (Laplace method) and the glmmML package in R (Laplace and adaptive Gauss-Hermite quadrature methods). The results obtained for Examples 1 and 2 showed good agreement between the relative standard errors obtained using the PFIM and simulations. The results obtained for Example 3 showed the importance of sampling at the most informative time points. Implementation of these expressions will provide the opportunity for efficient design of population PD experiments that involve discrete type data through design evaluation and optimisation.

  8. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: determination of the roles of spacing, orientation and enzyme identity

    PubMed Central

    Cunha, Eva S.; Hatem, Christine L.; Barrick, Doug

    2017-01-01

    Biomass deconstruction to small simple sugars is a potential approach to biofuels production, however the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyper-stable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length, shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. PMID:27071357

  9. Selection of Specific Protein Binders for Pre-Defined Targets from an Optimized Library of Artificial Helicoidal Repeat Proteins (alphaRep)

    PubMed Central

    Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe

    2013-01-01

    We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a “filtration” procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×109 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties. PMID:24014183

  10. Immunotherapy using algal-produced Ara h1 core domain suppresses peanut allergy in mice

    USDA-ARS?s Scientific Manuscript database

    Peanut allergy is an IgE-mediated adverse reaction to a subset of proteins found in peanuts. Immunotherapy aims to desensitize allergic patients through repeated and escalating exposures for several months to years using extracts or flours. The complex mix of proteins and variability between prepara...

  11. Emerging Evidence for Instructional Practice: Repeated Viewings of Sign Language Models

    ERIC Educational Resources Information Center

    Beal-Alvarez, Jennifer S.; Huston, Sandra G.

    2014-01-01

    Current initiatives in education, such as No Child Left Behind and the National Common Core Standards movement, call for the use of evidence-based practices, or those instructional practices that are supported by documentation of their effectiveness related to student learning outcomes, including students with special needs. While hearing loss is…

  12. The Role of Probability in Developing Learners' Models of Simulation Approaches to Inference

    ERIC Educational Resources Information Center

    Lee, Hollylynne S.; Doerr, Helen M.; Tran, Dung; Lovett, Jennifer N.

    2016-01-01

    Repeated sampling approaches to inference that rely on simulations have recently gained prominence in statistics education, and probabilistic concepts are at the core of this approach. In this approach, learners need to develop a mapping among the problem situation, a physical enactment, computer representations, and the underlying randomization…

  13. A Challenge-Feedback Learning Approach to Teaching International Business

    ERIC Educational Resources Information Center

    Sternad, Dietmar

    2015-01-01

    This article introduces a challenge-feedback learning (CFL) approach based on the goal-setting theory of human motivation, the deliberate practice theory of expert performance, and findings from the research on active and collaborative learning. The core of the teaching concept is the CFL cycle in which students repeatedly progress through four…

  14. What Is "Repeated Reasoning" in MP 8?

    ERIC Educational Resources Information Center

    Goldenberg, E. Paul; Carter, Cynthia J.; Mark, June; Nikula, Johannah; Spencer, Deborah B.

    2017-01-01

    The Common Core State Standards (CCSSI 2010) for Mathematical Practice have relevance even for those not in CCSS states because they describe the habits of mind that mathematicians--professionals as well as proficient school-age learners--use when doing mathematics. They provide a language to discuss aspects of mathematical practice that are of…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jiansen; Xue, Hailing; Ma, Jing

    HIV CRF07 B′/C is a strain circulating mainly in northwest region of China. The gp41 region of CRF07 is derived from a clade C virus. In order to compare the difference of CRF07 gp41 with that of typical clade B virus, we solved the crystal structure of the core region of CRF07 gp41. Compared with clade B gp41, CRF07 gp41 evolved more basic and hydrophilic residues on its helix bundle surface. Based on sequence alignment, a hyper-mutant cluster located in the middle of HR2 heptads repeat was identified. The mutational study of these residues revealed that this site is importantmore » in HIV mediated cell–cell fusion and plays critical roles in conformational changes during viral invasion. - Highlights: • We solved the crystal structure of HIV CRF07 gp41 core region. • A hyper-mutant cluster in the middle of HR2 heptads repeat was identified. • The hyper-mutant site is important in HIV-cell fusion. • The model will help to understand the HIV fusion process.« less

  16. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids

    PubMed Central

    Sales, Mark; Plecs, Joseph J.; Holton, James M.; Alber, Tom

    2007-01-01

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Å resolution using a designed metal binding site to coordinate a single Yb2+ ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Å. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures. PMID:17766380

  17. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids.

    PubMed

    Sales, Mark; Plecs, Joseph J; Holton, James M; Alber, Tom

    2007-10-01

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Angstrom resolution using a designed metal binding site to coordinate a single Yb(2+) ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Angstrom. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures.

  18. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators

    PubMed Central

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated. PMID:26792224

  19. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators.

    PubMed

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-21

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated.

  20. Use of sediment source fingerprinting to assess the role of subsurface erosion in the supply of fine sediment in a degraded catchment in the Eastern Cape, South Africa.

    PubMed

    Manjoro, Munyaradzi; Rowntree, Kate; Kakembo, Vincent; Foster, Ian; Collins, Adrian L

    2017-06-01

    Sediment source fingerprinting has been successfully deployed to provide information on the surface and subsurface sources of sediment in many catchments around the world. However, there is still scope to re-examine some of the major assumptions of the technique with reference to the number of fingerprint properties used in the model, the number of model iterations and the potential uncertainties of using more than one sediment core collected from the same floodplain sink. We investigated the role of subsurface erosion in the supply of fine sediment to two sediment cores collected from a floodplain in a small degraded catchment in the Eastern Cape, South Africa. The results showed that increasing the number of individual fingerprint properties in the composite signature did not improve the model goodness-of-fit. This is still a much debated issue in sediment source fingerprinting. To test the goodness-of-fit further, the number of model repeat iterations was increased from 5000 to 30,000. However, this did not reduce uncertainty ranges in modelled source proportions nor improve the model goodness-of-fit. The estimated sediment source contributions were not consistent with the available published data on erosion processes in the study catchment. The temporal pattern of sediment source contributions predicted for the two sediment cores was very different despite the cores being collected in close proximity from the same floodplain. This highlights some of the potential limitations associated with using floodplain cores to reconstruct catchment erosion processes and associated sediment source contributions. For the source tracing approach in general, the findings here suggest the need for further investigations into uncertainties related to the number of fingerprint properties included in un-mixing models. The findings support the current widespread use of ≤5000 model repeat iterations for estimating the key sources of sediment samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Program to Optimize Simulated Trajectories (POST). Volume 3: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Brauer, G. L.; Cornick, D. E.; Habeger, A. R.; Petersen, F. M.; Stevenson, R.

    1975-01-01

    Information pertinent to the programmer and relating to the program to optimize simulated trajectories (POST) is presented. Topics discussed include: program structure and logic, subroutine listings and flow charts, and internal FORTRAN symbols. The POST core requirements are summarized along with program macrologic.

  2. Developing core collections to optimize the management and the exploitation of diversity of the coffee Coffea canephora.

    PubMed

    Leroy, Thierry; De Bellis, Fabien; Legnate, Hyacinthe; Musoli, Pascal; Kalonji, Adrien; Loor Solórzano, Rey Gastón; Cubry, Philippe

    2014-06-01

    The management of diversity for conservation and breeding is of great importance for all plant species and is particularly true in perennial species, such as the coffee Coffea canephora. This species exhibits a large genetic and phenotypic diversity with six different diversity groups. Large field collections are available in the Ivory Coast, Uganda and other Asian, American and African countries but are very expensive and time consuming to establish and maintain in large areas. We propose to improve coffee germplasm management through the construction of genetic core collections derived from a set of 565 accessions that are characterized with 13 microsatellite markers. Core collections of 12, 24 and 48 accessions were defined using two methods aimed to maximize the allelic diversity (Maximization strategy) or genetic distance (Maximum-Length Sub-Tree method). A composite core collection of 77 accessions is proposed for both objectives of an optimal management of diversity and breeding. This core collection presents a gene diversity value of 0.8 and exhibits the totality of the major alleles (i.e., 184) that are present in the initial set. The seven proposed core collections constitute a valuable tool for diversity management and a foundation for breeding programs. The use of these collections for collection management in research centers and breeding perspectives for coffee improvement are discussed.

  3. Effect of core strength and endurance training on performance in college students: randomized pilot study.

    PubMed

    Schilling, Jim F; Murphy, Jeff C; Bonney, John R; Thich, Jacob L

    2013-07-01

    Core training continues to be emphasized with the proposed intent of improving athletic performance. The purpose of this investigation was to discover if core isometric endurance exercises were superior to core isotonic strengthening exercises and if either influenced specific endurance, strength, and performance measures. Ten untrained students were randomly assigned to core isometric endurance (n = 5) and core isotonic strength training (n = 5). Each performed three exercises, two times per week for six weeks. A repeated measures ANOVA was used to compare the measurements for the dependent variables and significance by bonferroni post-hoc testing. The training protocols were compared using a 2 × 3 mixed model ANOVA. Improvement in trunk flexor and extensor endurance (p < 0.05) along with squat and bench press strength (p < 0.05) occurred with the strength group. Improvement in trunk flexor and right lateral endurance (p < 0.05) along with strength in the squat (p < 0.05) were found with the endurance group. Neither training protocol claimed superiority and both were ineffective in improving performance. Published by Elsevier Ltd.

  4. SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation.

    PubMed

    Dimchevska, Simona; Geskovski, Nikola; Petruševski, Gjorgji; Chacorovska, Marina; Popeski-Dimovski, Riste; Ugarkovic, Sonja; Goracinova, Katerina

    2017-03-01

    One of the most important problems in nanoencapsulation of extremely hydrophobic drugs is poor drug loading due to rapid drug crystallization outside the polymer core. The effort to use nanoprecipitation, as a simple one-step procedure with good reproducibility and FDA approved polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), will only potentiate this issue. Considering that drug loading is one of the key defining characteristics, in this study we attempted to examine whether the nanoparticle (NP) core composed of two hydrophobic polymers will provide increased drug loading for 7-Ethyl-10-hydroxy-camptothecin (SN-38), relative to NPs prepared using individual polymers. D-optimal design was applied to optimize PLGA/PCL ratio in the polymer blend and the mode of addition of the amphiphilic copolymer Lutrol ® F127 in order to maximize SN-38 loading and obtain NPs with acceptable size for passive tumor targeting. Drug/polymer and polymer/polymer interaction analysis pointed to high degree of compatibility and miscibility among both hydrophobic polymers, providing core configuration with higher drug loading capacity. Toxicity studies outlined the biocompatibility of the blank NPs. Increased in vitro efficacy of drug-loaded NPs compared to the free drug was confirmed by growth inhibition studies using SW-480 cell line. Additionally, the optimized NP formulation showed very promising blood circulation profile with elimination half-time of 7.4 h.

  5. Vulnerable Atherosclerotic Plaque Elasticity Reconstruction Based on a Segmentation-Driven Optimization Procedure Using Strain Measurements: Theoretical Framework

    PubMed Central

    Le Floc’h, Simon; Tracqui, Philippe; Finet, Gérard; Gharib, Ahmed M.; Maurice, Roch L.; Cloutier, Guy; Pettigrew, Roderic I.

    2016-01-01

    It is now recognized that prediction of the vulnerable coronary plaque rupture requires not only an accurate quantification of fibrous cap thickness and necrotic core morphology but also a precise knowledge of the mechanical properties of plaque components. Indeed, such knowledge would allow a precise evaluation of the peak cap-stress amplitude, which is known to be a good biomechanical predictor of plaque rupture. Several studies have been performed to reconstruct a Young’s modulus map from strain elastograms. It seems that the main issue for improving such methods does not rely on the optimization algorithm itself, but rather on preconditioning requiring the best estimation of the plaque components’ contours. The present theoretical study was therefore designed to develop: 1) a preconditioning model to extract the plaque morphology in order to initiate the optimization process, and 2) an approach combining a dynamic segmentation method with an optimization procedure to highlight the modulogram of the atherosclerotic plaque. This methodology, based on the continuum mechanics theory prescribing the strain field, was successfully applied to seven intravascular ultrasound coronary lesion morphologies. The reconstructed cap thickness, necrotic core area, calcium area, and the Young’s moduli of the calcium, necrotic core, and fibrosis were obtained with mean relative errors of 12%, 4% and 1%, 43%, 32%, and 2%, respectively. PMID:19164080

  6. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery.

    PubMed

    Bera, Hriday; Ippagunta, Sohitha Reddy; Kumar, Sanoj; Vangala, Pavani

    2017-07-01

    Novel alginate-arabic gum (AG) gel membrane coated alginate-ghatti gum (GG) modified montmorillonite (MMT) composite matrices were developed for intragastric flurbiprofen (FLU) delivery by combining floating and mucoadhesion mechanisms. The clay-biopolymer composite matrices containing FLU as core were accomplished by ionic-gelation technique. Effects of polymer-blend (alginate:GG) ratios and crosslinker (CaCl 2 ) concentrations on drug entrapment efficiency (DEE, %) and cumulative drug release after 8h (Q 8h , %) were studied to optimize the core matrices by a 3 2 factorial design. The optimized matrices (F-O) demonstrated DEE of 91.69±1.43% and Q 8h of 74.96±1.56% with minimum errors in prediction. The alginate-AG gel membrane enveloped optimized matrices (F-O, coated) exhibited superior buoyancy, better ex vivo mucoadhesion and slower drug release rate. The drug release profile of FLU-loaded uncoated and coated optimized matrices was best fitted in Korsmeyer-Peppas model with anomalous diffusion and case-II transport driven mechanism, respectively. The uncoated and coated matrices containing FLU were also characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the newly developed alginate-AG gel membrane coated alginate-GG modified MMT composite matrices are appropriate for intragastric delivery of FLU over an extended period of time with improved therapeutic benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Performance testing of a semi-automatic card punch system, using direct STR profiling of DNA from blood samples on FTA™ cards.

    PubMed

    Ogden, Samantha J; Horton, Jeffrey K; Stubbs, Simon L; Tatnell, Peter J

    2015-01-01

    The 1.2 mm Electric Coring Tool (e-Core™) was developed to increase the throughput of FTA(™) sample collection cards used during forensic workflows and is similar to a 1.2 mm Harris manual micro-punch for sampling dried blood spots. Direct short tandem repeat (STR) DNA profiling was used to compare samples taken by the e-Core tool with those taken by the manual micro-punch. The performance of the e-Core device was evaluated using a commercially available PowerPlex™ 18D STR System. In addition, an analysis was performed that investigated the potential carryover of DNA via the e-Core punch from one FTA disc to another. This contamination study was carried out using Applied Biosystems AmpflSTR™ Identifiler™ Direct PCR Amplification kits. The e-Core instrument does not contaminate FTA discs when a cleaning punch is used following excision of discs containing samples and generates STR profiles that are comparable to those generated by the manual micro-punch. © 2014 American Academy of Forensic Sciences.

  8. Single coil bistable, bidirectional micromechanical actuator

    DOEpatents

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  9. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  10. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1987-01-01

    Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.

  11. Women in Transition: Experiences of Health and Health Care for Recently Incarcerated Women Living in Community Corrections Facilities.

    PubMed

    Colbert, Alison M; Goshin, Lorie S; Durand, Vanessa; Zoucha, Rick; Sekula, L Kathleen

    2016-12-01

    Health priorities of women after incarceration remain poorly understood, constraining development of interventions targeted at their health during that time. We explored the experience of health and health care after incarceration in a focused ethnography of 28 women who had been released from prison or jail within the past year and were living in community corrections facilities. The women's outlook on health was rooted in a newfound core optimism, but this was constrained by their pressing health-related issues; stress and uncertainty; and the pressures of the criminal justice system. These external forces threatened to cause collapse of women's core optimism. Findings support interventions that capitalize on women's optimism and address barriers specific to criminal justice contexts. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Optimization of Broadband Optical Response of Multilayer Nanospheres

    DTIC Science & Technology

    2012-07-27

    response of complex nanostructures,” Science 302, 419–422 (2003). 12. R. Bardhan , N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with...semiconductor cores: Optical char- acteristics modified by core medium properties,” ACS Nano 4, 6169–6179 (2010). 13. R. Bardhan , S. Mukherjee, N. A. Mirin, S

  13. Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael J. Driscoll; Pavel Hejzlar; Peter Yarsky

    2005-12-09

    This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design Task; and D: Fuel Design.

  14. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-01-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. PMID:24792163

  15. Modeling analysis of pulsed magnetization process of magnetic core based on inverse Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang

    2018-05-01

    The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.

  16. GVIPS Models and Software

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Gendy, Atef; Saleeb, Atef F.; Mark, John; Wilt, Thomas E.

    2007-01-01

    Two reports discuss, respectively, (1) the generalized viscoplasticity with potential structure (GVIPS) class of mathematical models and (2) the Constitutive Material Parameter Estimator (COMPARE) computer program. GVIPS models are constructed within a thermodynamics- and potential-based theoretical framework, wherein one uses internal state variables and derives constitutive equations for both the reversible (elastic) and the irreversible (viscoplastic) behaviors of materials. Because of the underlying potential structure, GVIPS models not only capture a variety of material behaviors but also are very computationally efficient. COMPARE comprises (1) an analysis core and (2) a C++-language subprogram that implements a Windows-based graphical user interface (GUI) for controlling the core. The GUI relieves the user of the sometimes tedious task of preparing data for the analysis core, freeing the user to concentrate on the task of fitting experimental data and ultimately obtaining a set of material parameters. The analysis core consists of three modules: one for GVIPS material models, an analysis module containing a specialized finite-element solution algorithm, and an optimization module. COMPARE solves the problem of finding GVIPS material parameters in the manner of a design-optimization problem in which the parameters are the design variables.

  17. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine) Core and Poly(lactide) Multiarms

    PubMed Central

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M.

    2017-01-01

    Multiarm star polymers, denoted PEIx-PLAy and containing a hyperbranched poly(ethyleneimine) (PEI) core of different molecular weights x and poly(lactide) (PLA) arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). The glass transition temperature, Tg, is between 48 and 50 °C for all the PEIx-PLAy samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α′ in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub-Tg γ- and β-relaxations and the Vogel–Fulcher–Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the –OH groups of the poly(lactide) chains, the β-relaxation with motions of the main chain of poly(lactide), the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α′-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell–Wagner–Sillars type ionic peak because the material may have nano-regions of different conductivity. PMID:28772486

  18. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine) Core and Poly(lactide) Multiarms.

    PubMed

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M

    2017-02-04

    Multiarm star polymers, denoted PEI x -PLA y and containing a hyperbranched poly(ethyleneimine) (PEI) core of different molecular weights x and poly(lactide) (PLA) arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). The glass transition temperature, T g , is between 48 and 50 °C for all the PEI x -PLA y samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α' in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub- T g γ- and β-relaxations and the Vogel-Fulcher-Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the -OH groups of the poly(lactide) chains, the β-relaxation with motions of the main chain of poly(lactide), the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α'-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell-Wagner-Sillars type ionic peak because the material may have nano-regions of different conductivity.

  19. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    PubMed

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  20. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats

    PubMed Central

    Ishiwari, Keita; Madson, Lisa J.; Farrar, Andrew M.; Mingote, Susana M.; Valenta, John P.; DiGianvittorio, Michael D.; Frank, Lauren E.; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D.

    2009-01-01

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5–10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 µg or 5.0 µg in 0.5 µl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core. PMID:17223207

  1. Optimization design of toroidal core for magnetic energy harvesting near power line by considering saturation effect

    NASA Astrophysics Data System (ADS)

    Park, Bumjin; Kim, Dongwook; Park, Jaehyoung; Kim, Kibeom; Koo, Jay; Park, HyunHo; Ahn, Seungyoung

    2018-05-01

    Recently, magnetic energy harvesting technologies have been studied actively for self-sustainable operation of applications around power line. However, magnetic energy harvesting around power lines has the problem of magnetic saturation, which can cause power performance degradation of the harvester. In this paper, optimal design of a toroidal core for magnetic energy harvesters has been proposed with consideration of magnetic saturation near power lines. Using Permeability-H curve and Ampere's circuital law, the optimum dimensional parameters needed to generate induced voltage were analyzed via calculation and simulation. To reflect a real environment, we consider the nonlinear characteristic of the magnetic core material and supply current through a 3-phase distribution panel used in the industry. The effectiveness of the proposed design methodology is verified by experiments in a power distribution panel and takes 60.9 V from power line current of 60 A at 60 Hz.

  2. To Demonstrate an Integrated Solution for Plasma-Material Interfaces Compatible with an Optimized Core Plasma

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis

    2009-11-01

    The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.

  3. Comparison of the fractional power motor with cores made of various magnetic materials

    NASA Astrophysics Data System (ADS)

    Gmyrek, Zbigniew; Lefik, Marcin; Cavagnino, Andrea; Ferraris, Luca

    2017-12-01

    The optimization of the motor cores, coupled with new core shapes as well as powering the motor at high frequency are the primary reasons for the use of new materials. The utilization of new materials, like SMC (soft magnetic composite), reduce the core loss and/or provide quasi-isotropic core's properties in any magnetization direction. Moreover, the use of SMC materials allows for avoiding degradation of the material portions, resulting from punching process, thereby preventing the deterioration of operating parameters of the motor. The authors examine the impact of technological parameters on the properties of a new type of SMC material and analyze the possibility of its use as the core of the fractional power motor. The result of the work is an indication of the shape of the rotor core made of a new SMC material to achieve operational parameters similar to those that have a motor with a core made of laminations.

  4. Optimizing Utilization of Detectors

    DTIC Science & Technology

    2016-03-01

    provide a quantifiable process to determine how much time should be allocated to each task sharing the same asset . This optimized expected time... allocation is calculated by numerical analysis and Monte Carlo simulation. Numerical analysis determines the expectation by involving an integral and...determines the optimum time allocation of the asset by repeatedly running experiments to approximate the expectation of the random variables. This

  5. Compression of strings with approximate repeats.

    PubMed

    Allison, L; Edgoose, T; Dix, T I

    1998-01-01

    We describe a model for strings of characters that is loosely based on the Lempel Ziv model with the addition that a repeated substring can be an approximate match to the original substring; this is close to the situation of DNA, for example. Typically there are many explanations for a given string under the model, some optimal and many suboptimal. Rather than commit to one optimal explanation, we sum the probabilities over all explanations under the model because this gives the probability of the data under the model. The model has a small number of parameters and these can be estimated from the given string by an expectation-maximization (EM) algorithm. Each iteration of the EM algorithm takes O(n2) time and a few iterations are typically sufficient. O(n2) complexity is impractical for strings of more than a few tens of thousands of characters and a faster approximation algorithm is also given. The model is further extended to include approximate reverse complementary repeats when analyzing DNA strings. Tests include the recovery of parameter estimates from known sources and applications to real DNA strings.

  6. Parameters optimization defined by statistical analysis for cysteine-dextran radiolabeling with technetium tricarbonyl core.

    PubMed

    Núñez, Eutimio Gustavo Fernández; Faintuch, Bluma Linkowski; Teodoro, Rodrigo; Wiecek, Danielle Pereira; da Silva, Natanael Gomes; Papadopoulos, Minas; Pelecanou, Maria; Pirmettis, Ioannis; de Oliveira Filho, Renato Santos; Duatti, Adriano; Pasqualini, Roberto

    2011-04-01

    The objective of this study was the development of a statistical approach for radiolabeling optimization of cysteine-dextran conjugates with Tc-99m tricarbonyl core. This strategy has been applied to the labeling of 2-propylene-S-cysteine-dextran in the attempt to prepare a new class of tracers for sentinel lymph node detection, and can be extended to other radiopharmaceuticals for different targets. The statistical routine was based on three-level factorial design. Best labeling conditions were achieved. The specific activity reached was 5 MBq/μg. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Study of controlled-release floating tablets of dipyridamole using the dry-coated method.

    PubMed

    Chen, Kai; Wen, Haoyang; Yang, Feifei; Yu, Yibin; Gai, Xiumei; Wang, Haiying; Li, Pingfei; Pan, Weisan; Yang, Xinggang

    2018-01-01

    Dipyridamole (DIP), having a short biological half-life, has a narrow absorption window and is primarily absorbed in the stomach. So, the purpose of this study was to prepare controlled-release floating (CRF) tablets of dipyridamole by the dry-coated method. The influence of agents with different viscosity, hydroxypropylmethylcellulose (HPMC) and polyvinylpyrollidon K30 (PVP K30) in the core tablet and low-viscosity HPMC and PVP K30 in the coating layer on drug release, were investigated. Then, a study with a three-factor, three-level orthogonal experimental design was used to optimize the formulation of the CRF tablets. After data processing, the optimized formulation was found to be: 80 mg HPMC K4M in the core tablet, 80 mg HPMC E15 in core tablet and 40 mg PVP K30 in the coating layer. Moreover, an in vitro buoyancy study showed that the optimized formulation had an excellent floating ability and could immediately float without a lag time and this lasted more than 12 h. Furthermore, an in vivo gamma scintigraphic study showed that the gastric residence time of the CRF tablet was about 8 h.

  8. IceChrono v1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric

    2015-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores is essential to interpret the paleo records that they contain, but it is a complicated problem since it involves different dating methods. Here I present IceChrono v1, a new probabilistic model to combine different kinds of chronological information to obtain a common and optimized chronology for several ice cores, as well as its uncertainty. It is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the vertical thinning function. The chronological information used are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and gas dated horizons, ice and gas dated depth intervals, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air), stratigraphic links in between ice cores (ice-ice, air-air or mix ice-air and air-ice links). The optimization problem is formulated as a least squares problems, that is, all densities of probabilities are assumed gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono is similar in scope to the Datice model, but has differences from the mathematical, numerical and programming point of views. I apply IceChrono on an AICC2012-like experiment and I find similar results than Datice within a few centuries, which is a confirmation of both IceChrono and Datice codes. IceChrono v1 is freely available under the GPL v3 open source license.

  9. Repeated applications of a transdermal patch: analytical solution and optimal control of the delivery rate.

    PubMed

    Simon, L

    2007-10-01

    The integral transform technique was implemented to solve a mathematical model developed for percutaneous drug absorption. The model included repeated application and removal of a patch from the skin. Fick's second law of diffusion was used to study the transport of a medicinal agent through the vehicle and subsequent penetration into the stratum corneum. Eigenmodes and eigenvalues were computed and introduced into an inversion formula to estimate the delivery rate and the amount of drug in the vehicle and the skin. A dynamic programming algorithm calculated the optimal doses necessary to achieve a desired transdermal flux. The analytical method predicted profiles that were in close agreement with published numerical solutions and provided an automated strategy to perform therapeutic drug monitoring and control.

  10. Fuel management optimization using genetic algorithms and expert knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1996-09-01

    The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.

  11. Improving Information Security Risk Management

    ERIC Educational Resources Information Center

    Singh, Anand

    2009-01-01

    manaOptimizing risk to information to protect the enterprise as well as to satisfy government and industry mandates is a core function of most information security departments. Risk management is the discipline that is focused on assessing, mitigating, monitoring and optimizing risks to information. Risk assessments and analyses are critical…

  12. Impact of Chaos Functions on Modern Swarm Optimizers.

    PubMed

    Emary, E; Zawbaa, Hossam M

    2016-01-01

    Exploration and exploitation are two essential components for any optimization algorithm. Much exploration leads to oscillation and premature convergence while too much exploitation slows down the optimization algorithm and the optimizer may be stuck in local minima. Therefore, balancing the rates of exploration and exploitation at the optimization lifetime is a challenge. This study evaluates the impact of using chaos-based control of exploration/exploitation rates against using the systematic native control. Three modern algorithms were used in the study namely grey wolf optimizer (GWO), antlion optimizer (ALO) and moth-flame optimizer (MFO) in the domain of machine learning for feature selection. Results on a set of standard machine learning data using a set of assessment indicators prove advance in optimization algorithm performance when using variational repeated periods of declined exploration rates over using systematically decreased exploration rates.

  13. Magnetic solid phase extraction and gas chromatography-mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons.

    PubMed

    Cai, Ying; Yan, Zhihong; NguyenVan, Manh; Wang, Lijia; Cai, Qingyun

    2015-08-07

    Fluorenyl functionalized superparamagnetic core/shell magnetic nanoparticles (MNPs, Fe3O4@SiO2@Flu) were prepared and characterized by transmission electron microscope, X-ray diffraction and infrared spectroscopy. The MNPs having an average diameter of 200nm were then used as solid-phase extraction sorbent for the determination of 16 priority pollutants polycyclic aromatic hydrocarbons (PAHs) in water samples designated by United States Environmental Protection Agency (U.S. EPA). The main influencing parameters, including sorbent amount, desorption solvent, sample volume and extraction time were optimized. Analyses were performed on gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM) mode. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels. Limit of detection ranging from 0.5 to 4.0ng/L were obtained. The repeatability was investigated by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) lower than 13.1%. Finally, the proposed method was successfully applied for the determination of PAHs in water samples with the recoveries in the range of 96.0-106.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles.

    PubMed

    Chen, Zeming; Liu, Fuyao; Chen, Yanke; Liu, Jun; Wang, Xiaoying; Chen, Ann T; Deng, Gang; Zhang, Hongyi; Liu, Jie; Hong, Zhangyong; Zhou, Jiangbing

    2017-12-08

    Due to its simplicity, versatility, and high efficiency, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has emerged as one of the most promising approaches for treatment of a variety of genetic diseases, including human cancers. However, further translation of CRISPR/Cas9 for cancer gene therapy requires development of safe approaches for efficient, highly specific delivery of both Cas9 and single guide RNA to tumors. Here, novel core-shell nanostructure, liposome-templated hydrogel nanoparticles (LHNPs) that are optimized for efficient codelivery of Cas9 protein and nucleic acids is reported. It is demonstrated that, when coupled with the minicircle DNA technology, LHNPs deliver CRISPR/Cas9 with efficiency greater than commercial agent Lipofectamine 2000 in cell culture and can be engineered for targeted inhibition of genes in tumors, including tumors the brain. When CRISPR/Cas9 targeting a model therapeutic gene, polo-like kinase 1 (PLK1), is delivered, LHNPs effectively inhibit tumor growth and improve tumor-bearing mouse survival. The results suggest LHNPs as versatile CRISPR/Cas9-delivery tool that can be adapted for experimentally studying the biology of cancer as well as for clinically translating cancer gene therapy.

  15. Structure to self-structuring: infrastructures and processes in neurobehavioural rehabilitation.

    PubMed

    Jackson, Howard F; Hague, Gemma; Daniels, Leanne; Aguilar, Ralph; Carr, Darren; Kenyon, William

    2014-01-01

    The importance of structure in post-acute brain injury rehabilitation is repeatedly mentioned in clinical practice. However, there has been little exploration of the key elements of structure that promote greater levels of functioning and emotional/behavioural stability and how these elements are optimally integrated within the infrastructure of a rehabilitation service. The nature of structure and why it is helpful is explored initially. Thereafter, the processes involved in transition from externally supported structure to the client 'self-structuring' are described. The infrastructure for facilitating these transitional processes are considered in terms of the design of services for systemic neurorehabilitation encompassing environmental factors (e.g. living environments, vocational and recreational options, step-up services and social milieus), therapeutic alliances (rehabilitation professionals, family, friends), organisational structures (service delivery, rehabilitation coaching, transdisciplinary teams) and rehabilitation philosophies and practice. It is concluded that the process of supporting individuals to transition from the 'structure' of the environment and other people towards self-structuring skills is a critical process in rehabilitation. This is reliant upon a comprehensive and robust organisational infrastructure that can successfully and flexibly integrate the core elements of structure across a transitional pathway towards increased independence and self-structuring.

  16. BODIPY-Based Donor-Acceptor Pi-Conjugated Alternating Copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popere, Bhooshan C.; Della Pelle, Andrea M.; Thayumanavan, S.

    2011-06-28

    Four novel π-conjugated copolymers incorporating 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) core as the “donor” and quinoxaline (Qx), 2,1,3-benzothiadiazole (BzT), N,N'-di(2'-ethyl)hexyl-3,4,7,8-naphthalenetetracarboxylic diimide (NDI), and N,N'-di(2'-ethyl)hexyl-3,4,9,10-perylene tetracarboxylic diimide (PDI) as acceptors were designed and synthesized via Sonogashira polymerization. The polymers were characterized by ¹H NMR spectroscopy, gel permeation chromatography (GPC), UV–vis absorption spectroscopy, and cyclic voltammetry. Density functional theory (DFT) calculations were performed on polymer repeat units, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were estimated from the optimized geometry using B3LYP functional and 6-311g(d,p) basis set. Copolymers with Qx and BzT possessed HOMO and LUMOmore » energy levels comparable to those of BODIPY homopolymer, while PDI stabilized both HOMO and LUMO levels. Semiconductor behavior of these polymers was estimated in organic thin-film transistors (OTFT). While the homopolymer, Qx, and BzT-based copolymers showed only p-type semiconductor behavior, copolymers with PDI and NDI showed only n-type behavior.« less

  17. The Deep Lens Survey : Real--time Optical Transient and Moving Object Detection

    NASA Astrophysics Data System (ADS)

    Becker, Andy; Wittman, David; Stubbs, Chris; Dell'Antonio, Ian; Loomba, Dinesh; Schommer, Robert; Tyson, J. Anthony; Margoniner, Vera; DLS Collaboration

    2001-12-01

    We report on the real-time optical transient program of the Deep Lens Survey (DLS). Meeting the DLS core science weak-lensing objective requires repeated visits to the same part of the sky, 20 visits for 63 sub-fields in 4 filters, on a 4-m telescope. These data are reduced in real-time, and differenced against each other on all available timescales. Our observing strategy is optimized to allow sensitivity to transients on several minute, one day, one month, and one year timescales. The depth of the survey allows us to detect and classify both moving and stationary transients down to ~ 25th magnitude, a relatively unconstrained region of astronomical variability space. All transients and moving objects, including asteroids, Kuiper belt (or trans-Neptunian) objects, variable stars, supernovae, 'unknown' bursts with no apparent host, orphan gamma-ray burst afterglows, as well as airplanes, are posted on the web in real-time for use by the community. We emphasize our sensitivity to detect and respond in real-time to orphan afterglows of gamma-ray bursts, and present one candidate orphan in the field of Abell 1836. See http://dls.bell-labs.com/transients.html.

  18. Thermal Modeling of the Injection of Standard and Thermally Insulated Cored Wire

    NASA Astrophysics Data System (ADS)

    Castro-Cedeno, E.-I.; Jardy, A.; Carré, A.; Gerardin, S.; Bellot, J. P.

    2017-12-01

    Cored wire injection is a widespread method used to perform alloying additions during ferrous and non-ferrous liquid metal treatment. The wire consists of a metal casing that is tightly wrapped around a core of material; the casing delays the release of the material as the wire is immersed into the melt. This method of addition presents advantages such as higher repeatability and yield of cored material with respect to bulk additions. Experimental and numerical work has been performed by several authors on the subject of alloy additions, spherical and cylindrical geometries being mainly considered. Surprisingly this has not been the case for cored wire, where the reported experimental or numerical studies are scarce. This work presents a 1-D finite volume numerical model aimed for the simulation of the thermal phenomena which occurs when the wire is injected into a liquid metal bath. It is currently being used as a design tool for the conception of new types of cored wire. A parametric study on the effect of injection velocity and steel casing thickness for an Al cored wire immersed into a steel melt at 1863 K (1590 °C) is presented. The standard single casing wire is further compared against a wire with multiple casings. Numerical results show that over a certain range of injection velocities, the core contents' release is delayed in the multiple casing when compared to a single casing wire.

  19. Structural characterization of Mumps virus fusion protein core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus,more » forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.« less

  20. Toward an Improved Hypersonic Engine Seal

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange,Jeffrey J.; Taylor, Shawn C.

    2003-01-01

    High temperature, dynamic seals are required in advanced engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures from 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA s Glenn Research Center (GRC) is developing advanced seals to overcome these shortfalls. Two seal designs and two types of seal preloading devices were evaluated in a series of compression tests at room temperature and 2000 F and flow tests at room temperature. Both seals lost resiliency with repeated load cycling at room temperature and 2000 F, but seals with braided cores were significantly more flexible than those with cores composed of uniaxial ceramic fibers. Flow rates for the seals with cores of uniaxial fibers were lower than those for the seals with braided cores. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency.

  1. Molecular epidemiology of Epizootic haematopoietic necrosis virus (EHNV).

    PubMed

    Hick, Paul M; Subramaniam, Kuttichantran; Thompson, Patrick M; Waltzek, Thomas B; Becker, Joy A; Whittington, Richard J

    2017-11-01

    Low genetic diversity of Epizootic haematopoietic necrosis virus (EHNV) was determined for the complete genome of 16 isolates spanning the natural range of hosts, geography and time since the first outbreaks of disease. Genomes ranged from 125,591-127,487 nucleotides with 97.47% pairwise identity and 106-109 genes. All isolates shared 101 core genes with 121 potential genes predicted within the pan-genome of this collection. There was high conservation within 90,181 nucleotides of the core genes with isolates separated by average genetic distance of 3.43 × 10 -4 substitutions per site. Evolutionary analysis of the core genome strongly supported historical epidemiological evidence of iatrogenic spread of EHNV to naïve hosts and establishment of endemic status in discrete ecological niches. There was no evidence of structural genome reorganization, however, the complement of non-core genes and variation in repeat elements enabled fine scale molecular epidemiological investigation of this unpredictable pathogen of fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Vibration control of beams using constrained layer damping with functionally graded viscoelastic cores: theory and experiments

    NASA Astrophysics Data System (ADS)

    El-Sabbagh, A.; Baz, A.

    2006-03-01

    Conventionally, the viscoelastic cores of Constrained Layer Damping (CLD) treatments are made of materials that have uniform shear modulus. Under such conditions, it is well-recognized that these treatments are only effective near their edges where the shear strains attain their highest values. In order to enhance the damping characteristics of the CLD treatments, we propose to manufacture the cores from Functionally Graded ViscoElastic Materials (FGVEM) that have optimally selected gradient of the shear modulus over the length of the treatments. With such optimized distribution of the shear modulus, the shear strain can be enhanced, and the energy dissipation can be maximized. The theory governing the vibration of beams treated with CLD, that has functionally graded viscoelastic cores, is presented using the finite element method (FEM). The predictions of the FEM are validated experimentally for plain beams, beams treated conventional CLD, and beams with CLD/FGVEM of different configurations. The obtained results indicate a close agreement between theory and experiments. Furthermore, the obtained results demonstrate the effectiveness of the new class of CLD with functionally graded cores in enhancing the energy dissipation over the conventional CLD over a broad frequency band. Extension of the proposed one-dimensional beam/CLD/FGVEM system to more complex structures is a natural extension to the present study.

  3. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric; Bazin, Lucie; Capron, Emilie; Landais, Amaëlle; Lemieux-Dudon, Bénédicte; Masson-Delmotte, Valérie

    2016-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age scale uncertainty are essential to interpret the climate and environmental records that they contain. It is however a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and air dated horizons, ice and air depth intervals with known durations, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 chronology for 4 Antarctic ice cores and 1 Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono is demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as gas intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the GPL v3 open source license.

  4. Ciliate telomerase RNA loop IV nucleotides promote hierarchical RNP assembly and holoenzyme stability.

    PubMed

    Robart, Aaron R; O'Connor, Catherine M; Collins, Kathleen

    2010-03-01

    Telomerase adds simple-sequence repeats to chromosome 3' ends to compensate for the loss of repeats with each round of genome replication. To accomplish this de novo DNA synthesis, telomerase uses a template within its integral RNA component. In addition to providing the template, the telomerase RNA subunit (TER) also harbors nontemplate motifs that contribute to the specialized telomerase catalytic cycle of reiterative repeat synthesis. Most nontemplate TER motifs function through linkage with the template, but in ciliate and vertebrate telomerases, a stem-loop motif binds telomerase reverse transcriptase (TERT) and reconstitutes full activity of the minimal recombinant TERT+TER RNP, even when physically separated from the template. Here, we resolve the functional requirements for this motif of ciliate TER in physiological RNP context using the Tetrahymena thermophila p65-TER-TERT core RNP reconstituted in vitro and the holoenzyme reconstituted in vivo. Contrary to expectation based on assays of the minimal recombinant RNP, we find that none of a panel of individual loop IV nucleotide substitutions impacts the profile of telomerase product synthesis when reconstituted as physiological core RNP or holoenzyme RNP. However, loop IV nucleotide substitutions do variably reduce assembly of TERT with the p65-TER complex in vitro and reduce the accumulation and stability of telomerase RNP in endogenous holoenzyme context. Our results point to a unifying model of a conformational activation role for this TER motif in the telomerase RNP enzyme.

  5. Vibrational spectroscopic study of cationic phosphorus dendrimers with aminoethylpiperidine terminal groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Tripathi, V.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2018-04-01

    Two generations of phosphoric dendrimers with piperidine functional groups were synthesized for use in biology and medicine. Neutral samples are soluble in organic solvents but after protonation these dendrimers become water soluble and can be used for biological experiments. The FTIR and FT Raman spectra of two generations of dendrimers Gi constructed from the cyclotriphosphazene core, repeating units sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)< and aminoethylpiperidine end groups sbnd NHsbnd (CH2)2sbnd C5NH11 were recorded. The study of the IR spectra shows that the NH groups form hydrogen bonds. The calculation of the molecular structure and vibrational spectra of the first generation dendrimer was performed by the method of DFT. This molecule has flat, repeating units and a plane of symmetry passing through the core. The calculation of the distribution of potential energy made it possible to classify the bands in the experimental spectra of dendrimers. Amine groups are manifested in the form of a band of NH stretching vibrations at 3389 cm-1 in the IR spectrum of G1. NH+ stretching bands located at 2646 and 2540 cm-1 in the IR spectrum of G2. The stretching vibrations of NH+ groups are noticeably shifted to low frequencies due to the formation of a hydrogen bond with the chlorine atom. The line at 1575 cm-1 in the Raman spectrum of G1 is characteristic for repeating units.

  6. Characterization of Three Maize Bacterial Artificial Chromosome Libraries toward Anchoring of the Physical Map to the Genetic Map Using High-Density Bacterial Artificial Chromosome Filter Hybridization1

    PubMed Central

    Yim, Young-Sun; Davis, Georgia L.; Duru, Ngozi A.; Musket, Theresa A.; Linton, Eric W.; Messing, Joachim W.; McMullen, Michael D.; Soderlund, Carol A.; Polacco, Mary L.; Gardiner, Jack M.; Coe, Edward H.

    2002-01-01

    Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage λ. The results indicate that the libraries are of high quality with low contamination by organellar and λ-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6× coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 × Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 ± 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction. PMID:12481051

  7. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  8. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faham, S.; Watanabe, A.; Besserer, G.M.

    Membrane transporters that use energy stored in sodium gradients to drive nutrients into cells constitute a major class of proteins. We report the crystal structure of a member of the solute sodium symporters (SSS), the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT). The -3.0 angstrom structure contains 14 transmembrane (TM) helices in an inward-facing conformation with a core structure of inverted repeats of 5 TM helices (TM2 to TM6 and TM7 to TM11). Galactose is bound in the center of the core, occluded from the outside solutions by hydrophobic residues. Surprisingly, the architecture of the core is similar to that of themore » leucine transporter (LeuT) from a different gene family. Modeling the outward-facing conformation based on the LeuT structure, in conjunction with biophysical data, provides insight into structural rearrangements for active transport.« less

  10. Differences among the cell wall galactomannans from Aspergillus wentii and Chaetosartorya chrysella and that of Aspergillus fumigatus.

    PubMed

    Gómez-Miranda, Begoña; Prieto, Alicia; Leal, Juan Antonio; Ahrazem, Oussama; Jiménez-Barbero, Jesús; Bernabé, Manuel

    2004-01-01

    The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [--> 3)-beta-D-Gal f -(1 --> 5)-beta-D-Gal f-(1 -->]n --> mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [--> 5)-beta-D-Gal f-(1 -->]n --> mannan core. The mannan cores have also been investigated, and are constituted by a (1 --> 6)-alpha-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 --> 2) linked alpha-mannopyranoses. Copyright 2004 Kluwer Academic Publishers

  11. Design of experiments to optimize an in vitro cast to predict human nasal drug deposition.

    PubMed

    Shah, Samir A; Dickens, Colin J; Ward, David J; Banaszek, Anna A; George, Chris; Horodnik, Walter

    2014-02-01

    Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.

  12. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any contamination and with a uniform size distribution. Various reaction parameters such as temperature, reaction time, and sonication were altered to find the optimal reaction conditions. Once these conditions were determined, boron nanorods were produced then functionalized with amine-terminated polyethylene glycol.

  13. The prominent photoinduced voltage effect of as-prepared macroscopically long Ag core/Ni shell nanoheterojunctions.

    PubMed

    Sun, Jia-Lin; Zhao, Xingchen; Zhu, Jia-Lin

    2008-02-27

    Macroscopically long Ag core/Ni shell nanoheterojunctions have been well prepared by a dynamic growth approach. The structure characterized in detail by scanning electron microscopy reveals that the Ag nanowire bundles are wrapped in Ni nanoshields and form multicore coaxial cable frames. Notable photoinduced voltage with a fine repeatability, for irradiation with a laser, is exhibited compared with the case for bulk Ag pole/Ni shell heterojunctions and Ag nanowire bundle/bulk Ni heterojunctions. The prominent photoinduced voltage and the substantial metal nanoscale Ohmic interconnects provided by this kind of nanoheterojunction may have a wide range of applications in the future.

  14. Ergonomics: The Study of Work

    DTIC Science & Technology

    2000-01-01

    Disease Name thumbs pain at the base of the thumbs twisting and gripping butchers , house- keepers, packers, seam- stresses, cutters fingers De...Quervain’s disease difficulty moving finger; snapping and jerking movements repeatedly using the index fingers meatpackers, poultry workers, carpenters...line workers rotator cuff tendinitis hands, wrists pain, swelling repetitive or forceful hand and wrist motions core making, poultry process- ing

  15. Seminar and Tutorial Sessions: A Case Study Evaluating Relationships with Academic Performance and Student Satisfaction

    ERIC Educational Resources Information Center

    Clarke, Karen; Lane, Andrew M.

    2005-01-01

    This study investigated the effectiveness of providing tutorial support for education students in core modules. An intervention designed to promote critical thinking skills was developed and delivered in week 11 of a 15 week module. Repeated measures analysis of variance indicated that the improvement in grades in Level 2 was significantly better…

  16. An Investigation of Using iPod Fluency Apps and Repeated Reading with Self-Recording for CLDE Students

    ERIC Educational Resources Information Center

    McCarty, Deanna J.

    2012-01-01

    School districts are struggling with how to meet the needs of culturally and linguistically diverse exceptional (CLDE) students. Research has correlated improvement in core language learning--writing, reading decoding, reading comprehension, and listening--with the use of iPods. This dissertation therefore examines the ability of current, portable…

  17. Addiction Motivation Reformulated: An Affective Processing Model of Negative Reinforcement

    ERIC Educational Resources Information Center

    Baker, Timothy B.; Piper, Megan E.; McCarthy, Danielle E.; Majeskie, Matthew R.; Fiore, Michael C.

    2004-01-01

    This article offers a reformulation of the negative reinforcement model of drug addiction and proposes that the escape and avoidance of negative affect is the prepotent motive for addictive drug use. The authors posit that negative affect is the motivational core of the withdrawal syndrome and argue that, through repeated cycles of drug use and…

  18. Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor.

    PubMed

    Tabassum, Rana; Kaur, Parvinder; Gupta, Banshi D

    2016-05-27

    We report the fabrication and characterization of a surface plasmon resonance (SPR)-based fiber optic sensor that uses coatings of silver and aluminum (Al)-zinc oxide (ZnO) core-shell nanostructure (Al@ZnO) for the detection of phenyl hydrazine (Ph-Hyd). To optimize the volume fraction (f) of Al in ZnO and the thickness of the core-shell nanostructure layer (d), the electric field intensity along the normal to the multilayer system is simulated using the two-dimensional multilayer matrix method. The Al@ZnO core-shell nanostructure is prepared using the laser ablation technique. Various probes are fabricated with different values of f and an optimized thickness of core-shell nanostructure for the characterization of the Ph-Hyd sensor. The performance of the Ph-Hyd sensor is evaluated in terms of sensitivity. It is found that the Ag/Al@ZnO nanostructure core-shell-coated SPR probe with f = 0.25 and d = 0.040 μm possesses the maximum sensitivity towards Ph-Hyd. These results are in agreement with the simulated ones obtained using electric field intensity. In addition, the performance of the proposed probe is compared with that of probes coated with (i) Al@ZnO nanocomposite, (ii) Al nanoparticles and (iii) ZnO nanoparticles. It is found that the probe coated with an Al@ZnO core-shell nanostructure shows the largest resonance wavelength shift. The detailed mechanism of the sensing (involving chemical reactions) is presented. The sensor also manifests optimum performance at pH 7.

  19. Digital Curation as a Core Competency in Current Learning and Literacy: A Higher Education Perspective

    ERIC Educational Resources Information Center

    Ungerer, Leona M.

    2016-01-01

    Digital curation may be regarded as a core competency in higher education since it contributes to establishing a sense of metaliteracy (an essential requirement for optimally functioning in a modern media environment) among students. Digital curation is gradually finding its way into higher education curricula aimed at fostering social media…

  20. Finite Element Optimization for Nondestructive Evaluation on a Graphics Processing Unit for Ground Vehicle Hull Inspection

    DTIC Science & Technology

    2013-08-22

    4 cores, where the code may simultaneously run on the multiple cores or the graphics processing unit (or GPU – to be more specific on an NVIDIA ...allowed to get accurate crack shapes. DISCLAIMER Reference herein to any specific commercial company , product, process, or service by trade name

  1. Amino acid sequence analysis of the annexin super-gene family of proteins.

    PubMed

    Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J

    1991-06-15

    The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of the predictions and shows the power of techniques for the determination of tertiary structural information from the amino acid sequences of an aligned protein family.

  2. Optimization studies on compression coated floating-pulsatile drug delivery of bisoprolol.

    PubMed

    Jagdale, Swati C; Bari, Nilesh A; Kuchekar, Bhanudas S; Chabukswar, Aniruddha R

    2013-01-01

    The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 3² full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form.

  3. An Evolutionary Optimization of the Refueling Simulation for a CANDU Reactor

    NASA Astrophysics Data System (ADS)

    Do, Q. B.; Choi, H.; Roh, G. H.

    2006-10-01

    This paper presents a multi-cycle and multi-objective optimization method for the refueling simulation of a 713 MWe Canada deuterium uranium (CANDU-6) reactor based on a genetic algorithm, an elitism strategy and a heuristic rule. The proposed algorithm searches for the optimal refueling patterns for a single cycle that maximizes the average discharge burnup, minimizes the maximum channel power and minimizes the change in the zone controller unit water fills while satisfying the most important safety-related neutronic parameters of the reactor core. The heuristic rule generates an initial population of individuals very close to a feasible solution and it reduces the computing time of the optimization process. The multi-cycle optimization is carried out based on a single cycle refueling simulation. The proposed approach was verified by a refueling simulation of a natural uranium CANDU-6 reactor for an operation period of 6 months at an equilibrium state and compared with the experience-based automatic refueling simulation and the generalized perturbation theory. The comparison has shown that the simulation results are consistent from each other and the proposed approach is a reasonable optimization method of the refueling simulation that controls all the safety-related parameters of the reactor core during the simulation

  4. Optimization Studies on Compression Coated Floating-Pulsatile Drug Delivery of Bisoprolol

    PubMed Central

    Jagdale, Swati C.; Bari, Nilesh A.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.

    2013-01-01

    The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 32 full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form. PMID:24367788

  5. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres.

    PubMed

    Zhang, Tao; Talbert, Paul B; Zhang, Wenli; Wu, Yufeng; Yang, Zujun; Henikoff, Jorja G; Henikoff, Steven; Jiang, Jiming

    2013-12-10

    Plant and animal centromeres comprise megabases of highly repeated satellite sequences, yet centromere function can be specified epigenetically on single-copy DNA by the presence of nucleosomes containing a centromere-specific variant of histone H3 (cenH3). We determined the positions of cenH3 nucleosomes in rice (Oryza sativa), which has centromeres composed of both the 155-bp CentO satellite repeat and single-copy non-CentO sequences. We find that cenH3 nucleosomes protect 90-100 bp of DNA from micrococcal nuclease digestion, sufficient for only a single wrap of DNA around the cenH3 nucleosome core. cenH3 nucleosomes are translationally phased with 155-bp periodicity on CentO repeats, but not on non-CentO sequences. CentO repeats have an ∼10-bp periodicity in WW dinucleotides and in micrococcal nuclease cleavage, providing evidence for rotational phasing of cenH3 nucleosomes on CentO and suggesting that satellites evolve for translational and rotational stabilization of centromeric nucleosomes.

  6. Fireworks algorithm for mean-VaR/CVaR models

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Liu, Zhifeng

    2017-10-01

    Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.

  7. Optimal periodic binary codes of lengths 28 to 64

    NASA Technical Reports Server (NTRS)

    Tyler, S.; Keston, R.

    1980-01-01

    Results from computer searches performed to find repeated binary phase coded waveforms with optimal periodic autocorrelation functions are discussed. The best results for lengths 28 to 64 are given. The code features of major concern are where (1) the peak sidelobe in the autocorrelation function is small and (2) the sum of the squares of the sidelobes in the autocorrelation function is small.

  8. Multi-Objective Optimization for Trustworthy Tactical Networks: A Survey and Insights

    DTIC Science & Technology

    2013-06-01

    existing data sources, gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding...problems: using repeated cooperative games [12], hedonic games [25], and nontransferable utility cooperative games [27]. It should be noted that trust...examined an optimal task allocation problem in a distributed computing system where program modules need to be allocated to different processors to

  9. Coevolutionary dynamics of aspiration and strategy in spatial repeated public goods games

    NASA Astrophysics Data System (ADS)

    Wu, Te; Fu, Feng; Wang, Long

    2018-06-01

    The evolutionary dynamics remain largely unknown for spatial populations where individuals are more likely to interact repeatedly. Under this settings, individuals can make their decisions to cooperate or not based on the decisions previously adopted by others in their neighborhoods. Using repeated public goods game, we construct a spatial model and use a statistical physics approach to study the coevolutionary dynamics of aspiration and strategy. Individuals each have an aspiration towards the groups they are involved. According to the outcome of each group, individuals have assessment of whether their aspirations are satisfied. If satisfied, they cooperate next round. Otherwise, they switch to defecting. Results show threshold phenomenon for harsh collective dilemma: cooperators sticking to high levels of aspiration can prevail over defectors, while cooperators with other levels are invariably wiped out. When the collective dilemma is relaxed, cooperation is greatly facilitated by inducing a high level of diversity of aspiration. Snapshots further show the spatial patterns of how this coevolutionary process leads to the emergence of an optimal solution associated with aspiration level, whose corresponding strategy are most prevalent. This optimal solution lies in one and the highest aspiration level allowed, and depends on the intensity of the social dilemma. By removing the memory effect, our results also confirm that repeated interactions can promote cooperation, but to a limited degree.

  10. Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners

    NASA Astrophysics Data System (ADS)

    Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan

    2015-03-01

    In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.

  11. Repeated anaesthesia with isoflurane and medetomidine-midazolam-fentanyl in guinea pigs and its influence on physiological parameters

    PubMed Central

    Tacke, Sabine; Guth, Brian; Henke, Julia

    2017-01-01

    Repeated anaesthesia may be required in experimental protocols and in daily veterinary practice, but anaesthesia is known to alter physiological parameters in GPs (Cavia porcellus, GPs). This study investigated the effects of repeated anaesthesia with either medetomidine-midazolam-fentanyl (MMF) or isoflurane (Iso) on physiological parameters in the GP. Twelve GPs were repeatedly administered with MMF or Iso in two anaesthesia sets. One set consisted of six 40-min anaesthesias, performed over 3 weeks (2 per week); the anaesthetic used first was randomized. Prior to Iso anaesthesia, atropine was injected. MMF anaesthesia was antagonized with AFN (atipamezole-flumazenil-naloxone). Abdominally implanted radio-telemetry devices recorded the mean arterial blood pressure (MAP), heart rate (HR) and core body temperature continuously. Additionally, respiratory rate, blood glucose and body weight were assessed. An operable state could be achieved and maintained for 40 min in all GPs. During the surgical tolerance with MMF, the GPs showed a large MAP range between the individuals. In the MMF wake- up phase, the time was shortened until the righting reflex (RR) returned and that occurred at lower MAP and HR values. Repeated Iso anaesthesia led to an increasing HR during induction (anaesthesias 2–6), non-surgical tolerance (anaesthesias 3–6) and surgical tolerance (anaesthesias 4, 6). Both anaesthetics may be used repeatedly, as repeating the anaesthesias resulted in only slightly different physiological parameters, compared to those seen with single anaesthesias. The regular atropine premedication induced HR increases and repeated MMF anaesthesia resulted in a metabolism increase which led to the faster return of RR. Nevertheless, Iso’s anaesthesia effects of strong respiratory depression and severe hypotension remained. Based on this increased anaesthesia risk with Iso, MMF anaesthesia is preferable for repeated use in GPs. PMID:28328950

  12. Repeated anaesthesia with isoflurane and medetomidine-midazolam-fentanyl in guinea pigs and its influence on physiological parameters.

    PubMed

    Schmitz, Sabrina; Tacke, Sabine; Guth, Brian; Henke, Julia

    2017-01-01

    Repeated anaesthesia may be required in experimental protocols and in daily veterinary practice, but anaesthesia is known to alter physiological parameters in GPs (Cavia porcellus, GPs). This study investigated the effects of repeated anaesthesia with either medetomidine-midazolam-fentanyl (MMF) or isoflurane (Iso) on physiological parameters in the GP. Twelve GPs were repeatedly administered with MMF or Iso in two anaesthesia sets. One set consisted of six 40-min anaesthesias, performed over 3 weeks (2 per week); the anaesthetic used first was randomized. Prior to Iso anaesthesia, atropine was injected. MMF anaesthesia was antagonized with AFN (atipamezole-flumazenil-naloxone). Abdominally implanted radio-telemetry devices recorded the mean arterial blood pressure (MAP), heart rate (HR) and core body temperature continuously. Additionally, respiratory rate, blood glucose and body weight were assessed. An operable state could be achieved and maintained for 40 min in all GPs. During the surgical tolerance with MMF, the GPs showed a large MAP range between the individuals. In the MMF wake- up phase, the time was shortened until the righting reflex (RR) returned and that occurred at lower MAP and HR values. Repeated Iso anaesthesia led to an increasing HR during induction (anaesthesias 2-6), non-surgical tolerance (anaesthesias 3-6) and surgical tolerance (anaesthesias 4, 6). Both anaesthetics may be used repeatedly, as repeating the anaesthesias resulted in only slightly different physiological parameters, compared to those seen with single anaesthesias. The regular atropine premedication induced HR increases and repeated MMF anaesthesia resulted in a metabolism increase which led to the faster return of RR. Nevertheless, Iso's anaesthesia effects of strong respiratory depression and severe hypotension remained. Based on this increased anaesthesia risk with Iso, MMF anaesthesia is preferable for repeated use in GPs.

  13. Exploiting variability for energy optimization of parallel programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrijsen, Wim; Iancu, Costin; de Jong, Wibe

    2016-04-18

    Here in this paper we present optimizations that use DVFS mechanisms to reduce the total energy usage in scientific applications. Our main insight is that noise is intrinsic to large scale parallel executions and it appears whenever shared resources are contended. The presence of noise allows us to identify and manipulate any program regions amenable to DVFS. When compared to previous energy optimizations that make per core decisions using predictions of the running time, our scheme uses a qualitative approach to recognize the signature of executions amenable to DVFS. By recognizing the "shape of variability" we can optimize codes withmore » highly dynamic behavior, which pose challenges to all existing DVFS techniques. We validate our approach using offline and online analyses for one-sided and two-sided communication paradigms. We have applied our methods to NWChem, and we show best case improvements in energy use of 12% at no loss in performance when using online optimizations running on 720 Haswell cores with one-sided communication. With NWChem on MPI two-sided and offline analysis, capturing the initialization, we find energy savings of up to 20%, with less than 1% performance cost.« less

  14. Optimization of Extracellular Matrix Synthesis and Accumulation by Human Articular Chondrocytes in 3-Dimensional Construct with Repetitive Hydrostatic Pressure.

    PubMed

    Ogura, Takahiro; Tsuchiya, Akihiro; Minas, Tom; Mizuno, Shuichi

    2018-04-01

    Objective The effects of hydrostatic pressure (HP) on the matrix synthesis by human articular chondrocytes have been reported elsewhere. In order to optimize the production of extracellular matrix, we aimed to clarify the effects of repetitive HP on metabolic function by human articular chondrocytes. Design The human articular chondrocytes were expanded and embedded within a collagen gel/sponge scaffold. We incubated these constructs with and without HP followed by atmospheric pressure (AP) and repeated the second HP followed by AP over 14 days. Genomic, biochemical, and histological evaluation were performed to compare the effects of each regimen on the constructs. Results The gene expressions of collagen type II and aggrecan core protein were significantly upregulated with repetitive HP regimens compared with a single HP or AP by 14 days ( P < 0.01 or 0.05). Matrix metalloptoteinase-13 (MMP-13) in AP was upregulated significantly compared to other HP regimens at day 14 ( P < 0.01). No significant difference was observed in tissue inhibitor of metalloproteinases-II. Immunohistology demonstrated that application of HP (both repetitive and single) promoted the accumulation of specific extracellular matrix and reduced a MMP-13. A single regimen of HP followed by AP significantly increased the amount of sulfated glycosaminoglycan than that of the AP, whereas repetitive HP remained similar level of that of the AP. Conclusions Repetitive HP had a greater effect on anabolic activity by chondrocytes than a single HP regimen, which will be advantageous for producing a matrix-rich cell construct.

  15. CT fluoroscopy guided transpleural cutting needle biopsy of small (≤2.5 cm) subpleural pulmonary nodules.

    PubMed

    Prosch, Helmut; Oschatz, Elisabeth; Eisenhuber, Edith; Wohlschlager, Helmut; Mostbeck, Gerhard H

    2011-01-01

    Small subpleural pulmonary lesions are difficult to biopsy. While the direct, short needle path has been reported to have a lower rate of pneumothorax, the indirect path provides a higher diagnostic yield. Therefore, we tried to optimize the needle pathway and minimize the iatrogenic pneumothorax risk by evaluating a CT fluoroscopy guided direct approach to biopsy subpleural lesions. Between 01/2005 and 01/2007, CT fluoroscopy guided core biopsies were performed in 24 patients. Using our technique, the tip of the guide needle remains outside the visceral pleura (17 G coaxial guide needle, 18 G Biopsy-gun, 15 or 22 mm needle path). The position of the lesion relative to the needle tip can be optimized using CT fluoroscopy by adjusting the breathing position of the patient. The Biopty gun is fired with the needle tip still outside the pleural space. Cytological smears are analyzed by a cytopathologist on-site, and biopsies are repeated as indicated with the coaxial needle still outside the pleura. Median nodule size was 1.6 cm (0.7-2.3 cm). A definitive diagnosis was obtained in 22 patients by histology and/or cytology. In one patient, only necrotic material could be obtained. In another patient, the intervention had to be aborted as the dyspnoic patient could not follow breathing instructions. An asymptomatic pneumothorax was present in seven patients; chest tube placement was not required. The presented biopsy approach has a high diagnostic yield and is especially advantageous for biopsies of small subpleural lesions in the lower lobes. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  16. High efficiency pump combiner fabricated by CO2 laser splicing system

    NASA Astrophysics Data System (ADS)

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  17. Infrared fluorescent automated detection of thirteen short tandem repeat polymorphisms and one gender-determining system of the CODIS core system.

    PubMed

    Ricci, U; Sani, I; Guarducci, S; Biondi, C; Pelagatti, S; Lazzerini, V; Brusaferri, A; Lapini, M; Andreucci, E; Giunti, L; Giovannucci Uzielli, M L

    2000-11-01

    We used an infrared (IR) automated fluorescence monolaser sequencer for the analysis of 13 autosomal short tandem repeat (STR) systems (TPOX, D3S1358, FGA, CSF1PO, D5S818, D7S820, D8S1179, TH01, vWA, D13S317, D16S359, D18S51, D21S11) and the X-Y homologous gene amelogenin system. These two systems represent the core of the combined DNA index systems (CODIS). Four independent multiplex reactions, based on the polymerase chain reaction (PCR) technique and on the direct labeling of the forward primer of every primer pair, with a new molecule (IRDye800), were set up, permitting the exact characterization of the alleles by comparison with ladders of specific sequenced alleles. This is the first report of the whole analysis of the STRs of the CODIS core using an IR automated DNA sequencer. The protocol was used to solve paternity/maternity tests and for population studies. The electrophoretic system also proved useful for the correct typing of those loci differing in size by only 2 bp. A sensibility study demonstrated that the test can detect an average of 10 pg of undegraded human DNA. We also performed a preliminary study analyzing some forensic samples and mixed stains, which suggested the usefulness of using this analytical system for human identification as well as for forensic purposes.

  18. Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Clerc, Thomas

    With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).

  19. Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights

    PubMed Central

    Kumar, Amitha Sampath; Sowpati, Divya Tej; Mishra, Rakesh K.

    2016-01-01

    Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons representing the same amino acid and not as a consequence of SSR events. Certain amino acids are abundant in repeat regions indicating a positive selection pressure behind the accumulation of SAARs. By analysing 22 proteomes including the human proteome, we explored the functional and structural relationship of amino acid repeats in an evolutionary context. Only ~15% of repeats are present in any known functional domain, while ~74% of repeats are present in the disordered regions, suggesting that SAARs add to the functionality of proteins by providing flexibility, stability and act as linker elements between domains. Comparison of SAAR containing proteins across species reveals that while shorter repeats are conserved among orthologs, proteins with longer repeats, >15 amino acids, are unique to the respective organism. Lysine repeats are well conserved among orthologs with respect to their length and number of occurrences in a protein. Other amino acids such as glutamic acid, proline, serine and alanine repeats are generally conserved among the orthologs with varying repeat lengths. These findings suggest that SAARs have accumulated in the proteome under positive selection pressure and that they provide flexibility for optimal folding of functional/structural domains of proteins. The insights gained from our observations can help in effective designing and engineering of proteins with novel features. PMID:27893794

  20. MicroRNAs in CAG trinucleotide repeat expansion disorders: an integrated review of the literature.

    PubMed

    Dumitrescu, Laura; Popescu, Bogdan O

    2015-01-01

    MicroRNAs are small RNAs involved in gene silencing. They play important roles in transcriptional regulation and are selectively and abundantly expressed in the central nervous system. A considerable amount of the human genome is comprised of tandem repeating nucleotide streams. Several diseases are caused by above-threshold expansion of certain trinucleotide repeats occurring in a protein-coding or non-coding region. Though monogenic, CAG trinucleotide repeat expansion disorders have a complex pathogenesis, various combinations of multiple coexisting pathways resulting in one common final consequence: selective neurodegeneration. Mutant protein and mutant transcript gain of toxic function are considered to be the core pathogenic mechanisms. The profile of microRNAs in CAG trinucleotide repeat disorders is scarcely described, however microRNA dysregulation has been identified in these diseases and microRNA-related intereference with gene expression is considered to be involved in their pathogenesis. Better understanding of microRNAs functions and means of manipulation promises to offer further insights into the pathogenic pathways of CAG repeat expansion disorders, to point out new potential targets for drug intervention and to provide some of the much needed etiopathogenic therapeutic agents. A number of disease-modifying microRNA silencing strategies are under development, but several implementation impediments still have to be resolved. CAG targeting seems feasible and efficient in animal models and is an appealing approach for clinical practice. Preliminary human trials are just beginning.

  1. Design of space-type electronic power transformers

    NASA Technical Reports Server (NTRS)

    Ahearn, J. F.; Lagadinos, J. C.

    1977-01-01

    Both open and encapsulated varieties of high reliability, low weight, and high efficiency moderate and high voltage transformers were investigated to determine the advantages and limitations of their construction in the ranges of power and voltage required for operation in the hard vacuum environment of space. Topics covered include: (1) selection of the core material; (2) preliminary calculation of core dimensions; (3) selection of insulating materials including magnet wire insulation, coil forms, and layer and interwinding insulation; (4) coil design; (5) calculation of copper losses, core losses and efficiency; (6) calculation of temperature rise; and (7) optimization of design with changes in core selection or coil design as required to meet specifications.

  2. Research on the integration of teaching content of core courses in Agro-ecological environmental specialties of higher vocational colleges

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Ma, Guosheng

    2018-02-01

    Curriculum is the means to cultivate higher vocational talents. On the basis of analyzing the core curriculum problems of curriculum reform and Agro-ecological environmental specialties in higher vocational colleges, this paper puts forward the optimization and integration measures of 6 core courses, including “Eco-environment Repair Technology”, “Agro-environmental Management Plan”, “Environmental Engineering Design”, “Environmental Pest Management Technology”, “Agro-chemical Pollution Control Technology”, “Agro-environmental Testing and Analysis”. It integrates the vocational qualification certificate education and professional induction certificate training items, and enhances the adaptability, skills and professionalism of professional core curriculum.

  3. Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.

    PubMed

    Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd

    2014-01-01

    Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.

  4. Realization and optimization of a 1 ns pulsewidth multi-stage 250 kW peak power monolithic Yb doped fiber amplifier at 1064 nm

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Plourde, Estéban

    2017-02-01

    We present a simple way to achieve and optimize hundreds of kW peak power pulsed output using a monolithic amplifier chain based on solid core double cladding fiber tightly packaged. A fiber pigtailed current driven diode is used to produce nanosecond pulses at 1064 nm. We present how to optimize the use of Fabry-Perot versus DFB type diode along with the proper wavelength locking using a fiber Bragg grating. The optimization of the two pre-amplifiers with respect to the pump wavelength and Yb inversions is presented. We explain how to manage ASE using core and cladding pumping and by using single pass and double pass amplifier. ASE rejection within the Yb fiber itself and with the use of bandpass filter is discussed. Maximizing the amplifier conversion efficiency with regards to the fiber parameters, glass matrix and signal wavelength is described in details. We present how to achieve high peak power at the power amplifier stage using large core/cladding diameter ratio highly doped Yb fibers pumped at 975 nm. The effect of pump bleaching on the effective Yb fiber length is analyzed carefully. We demonstrate that counter-pumping brings little advantage in very short length amplifier. Dealing with the self-pulsation limit of stimulated Brillouin scattering is presented with the adjustment of the seed pulsewidth and linewidth. Future prospects for doubling the output peak power are discussed.

  5. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  6. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  7. Design Optimization and Analysis of a Composite Honeycomb Intertank

    NASA Technical Reports Server (NTRS)

    Finckenor, Jeff; Spurrier, Mile

    1999-01-01

    Intertanks, the structure between tanks of launch vehicles, are prime candidates for weight reduction of rockets. This paper discusses the optimization and detailed follow up analysis and testing of a 96 in. diameter, 77 in. tall intertank. The structure has composite face sheets with an aluminum honeycomb core. The ends taper to a thick built up laminate for a double lap bolted splice joint interface. It is made in 8 full length panels joined with bonded double lap joints. The nominal load is 4000 lb/in. Optimization is by Genetic Algorithm and minimizes weight by varying core thickness, number and orientation of acreage and buildup plies, and the size, number and spacing of bolts. A variety of design cases were run with populations up to 2000 and chromosomes as long as 150 bits. Constraints were buckling; face stresses (normal, shear, wrinkling and dimpling); bolt stress; and bolt hole stresses (bearing, net tension, wedge splitting, shear out and tension/shear out). Analysis is by a combination of elasticity solutions and empirical data. After optimization, a series of coupon tests were performed in conjunction with a rigorous analysis involving a variety of finite element models. This analysis and testing resulted in several small changes to the optimized design. The equation used for hole bearing strength was found to be inadequate, resulting in thicker ends. The core thickness increased 0.05", and potting compound was added in the taper to strengthen the facesheet bond. The intertank has undergone a 250,000 lb limit load test and been mated with a composite liquid hydrogen tank. The tank/intertank unit is being installed in a test stand where it will see 200 thermal/load cycles. Afterwards the intertank will be demated and loaded in compression to failure.

  8. Spin bearing retainer design optimization

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A.; Warner, Mark H.

    1991-01-01

    The dynamics behavior of spin bearings for momentum wheels (control-moment gyroscope, reaction wheel assembly) is critical to satellite stability and life. Repeated bearing retainer instabilities hasten lubricant deterioration and can lead to premature bearing failure and/or unacceptable vibration. These instabilities are typically distinguished by increases in torque, temperature, audible noise, and vibration induced by increases into the bearing cartridge. Ball retainer design can be optimized to minimize these occurrences. A retainer was designed using a previously successful smaller retainer as an example. Analytical methods were then employed to predict its behavior and optimize its configuration.

  9. Colloidal lithography nanostructured Pd/PdO x core-shell sensor for ppb level H2S detection.

    PubMed

    Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta

    2018-06-22

    In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H 2 S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H 2 S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H 2 S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H 2 S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.

  10. Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe₃O₄ nanoparticles.

    PubMed

    Samphao, Anchalee; Butmee, Preeyanut; Jitcharoen, Juthamas; Švorc, Ľubomír; Raber, Georg; Kalcher, Kurt

    2015-09-01

    An amperometric biosensor based on chemisorption of glucose oxidase (GOx) on Au seeds decorated on magnetic core Fe3O4 nanoparticles (Fe3O4@Au) and their immobilization on screen-printed carbon electrode bulk-modified with manganese oxide (SPCE{MnO2}) was designed for the determination of glucose. The Fe3O4@Au/GOx modified SPCE{MnO2} was used in a flow-injection analysis (FIA) arrangement. The experimental conditions were investigated in amperometric mode with the following optimized parameters: flow rate 1.7 mL min(-1), applied potential +0.38 V, phosphate buffer solution (PBS; 0.1 mol L(-1), pH 7.0) as carrier and 3.89 unit mm(-2) enzyme glucose oxidase loading on the active surface of the SPCE. The designed biosensor in FIA arrangement yielded a linear dynamic range for glucose from 0.2 to 9.0 mmol L(-1) with a sensitivity of 2.52 µA mM(-1) cm(-2), a detection limit of 0.1 mmol L(-1) and a quantification limit of 0.3 mmol L(-1). Moreover, a good repeatability of 2.8% (number of measurements n=10) and a sufficient reproducibility of 4.0% (number of sensors n=3) were achieved. It was found that the studied system Fe3O4@Au facilitated not only a simpler enzyme immobilization but also provided wider linear range. The practical application of the proposed biosensor for FIA quantification of glucose was tested in glucose sirup samples, honeys and energy drinks with the results in good accordance with those obtained by an optical glucose meter and with the contents declared by the producers. Copyright © 2015. Published by Elsevier B.V.

  11. Oxidative stress adaptation with acute, chronic, and repeated stress.

    PubMed

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Experimental designs for a Benign Paroxysmal Positional Vertigo model

    PubMed Central

    2013-01-01

    Background The pathology of the Benign Paroxysmal Positional Vertigo (BPPV) is detected by a clinician through maneuvers consisting of a series of consecutive head turns that trigger the symptoms of vertigo in patient. A statistical model based on a new maneuver has been developed in order to calculate the volume of endolymph displaced after the maneuver. Methods A simplification of the Navier‐Stokes problem from the fluids theory has been used to construct the model. In addition, the same cubic splines that are commonly used in kinematic control of robots were used to obtain an appropriate description of the different maneuvers. Then experimental designs were computed to obtain an optimal estimate of the model. Results D‐optimal and c‐optimal designs of experiments have been calculated. These experiments consist of a series of specific head turns of duration Δt and angle α that should be performed by the clinician on the patient. The experimental designs obtained indicate the duration and angle of the maneuver to be performed as well as the corresponding proportion of replicates. Thus, in the D‐optimal design for 100 experiments, the maneuver consisting of a positive 30° pitch from the upright position, followed by a positive 30° roll, both with a duration of one and a half seconds is repeated 47 times. Then the maneuver with 60° /6° pitch/roll during half a second is repeated 16 times and the maneuver 90° /90° pitch/roll during half a second is repeated 37 times. Other designs with significant differences are computed and compared. Conclusions A biomechanical model was derived to provide a quantitative basis for the detection of BPPV. The robustness study for the D‐optimal design, with respect to the choice of the nominal values of the parameters, shows high efficiencies for small variations and provides a guide to the researcher. Furthermore, c‐optimal designs give valuable assistance to check how efficient the D‐optimal design is for the estimation of each of the parameters. The experimental designs provided in this paper allow the physician to validate the model. The authors of the paper have held consultations with an ENT consultant in order to align the outline more closely to practical scenarios. PMID:23509996

  13. A simple and highly repeatable viral plaque assay for enterovirus 71.

    PubMed

    Yin, Yingxian; Xu, Yi; Ou, Zhiying; Su, Ling; Xia, Huimin

    2015-04-01

    The classic plaque assay is a method for counting infectious viral particles, however its complexity limits its use in a variety of virological experiments. To simplify the operation and to improve the repeatability, we employed an improved plaque assay procedure based on Avicel to make the whole experiment easier and optimize the results on a model of Vero cells infection with Enterovirus 71(EV71). Clear plaques visible to the naked eyes can be formed on a 24-well plate or a 96-well plate without immunostaining. Following further improvement, this plaque assay procedure could be applied to other viruses, being both simple and repeatable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Method of fabricating a monolithic core for a solid oxide fuela cell

    DOEpatents

    Zwick, S.A.; Ackerman, J.P.

    1983-10-12

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002 to 0.01 cm thick; and the cathode and anode materials are only 0.002 to 0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.

  15. Method of fabricating a monolithic core for a solid oxide fuel cell

    DOEpatents

    Zwick, Stanley A.; Ackerman, John P.

    1985-01-01

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.

  16. The Common Core Learning Standards and Elementary Teachers' Math Instructional Practices, Receptivity to Change, Instructional Leadership and Academic Optimism

    ERIC Educational Resources Information Center

    Sullivan, Dennis D.

    2016-01-01

    This study sought to identify the relationships among elementary teachers instructional practices in mathematics pre- and post-CCLS implementation in relation to technological and pedagogical content knowledge (TPACK), formative assessment, reflective practice, receptivity to change, academic optimism, and instructional leadership across age,…

  17. A heterogeneous computing accelerated SCE-UA global optimization method using OpenMP, OpenCL, CUDA, and OpenACC.

    PubMed

    Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang

    2017-10-01

    The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.

  18. Superscattering of light optimized by a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2014-07-01

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  19. Numerical model describing optimization of fibres winding process on open and closed frame

    NASA Astrophysics Data System (ADS)

    Petrů, M.; Mlýnek, J.; Martinec, T.

    2016-08-01

    This article discusses a numerical model describing optimization of fibres winding process on open and closed frame. The quality production of said type of composite frame depends primarily on the correct winding of fibers on a polyurethane core. It is especially needed to ensure the correct angles of the fibers winding on the polyurethane core and the homogeneity of individual winding layers. The article describes mathematical model for use an industrial robot in filament winding and how to calculate the trajectory of the robot. When winding fibers on the polyurethane core which is fastened to the robot-end-effector so that during the winding process goes through a fibre-processing head on the basis of the suitably determined robot-end-effector trajectory. We use the described numerical model and matrix calculus to enumerate the trajectory of the robot-end-effector to determine the desired passage of the frame through the fibre-processing head. The calculation of the trajectory was programmed in the Delphi development environment. Relations of the numerical model are important for use a real solving of the passage of a polyurethane core through fibre-processing head.

  20. Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers

    NASA Astrophysics Data System (ADS)

    Lurie, S.; Solyaev, Y.; Ustenko, A.

    2018-04-01

    In the present paper, the effective damping properties of a symmetric foam-core sandwich beam with composite face plates reinforced with coated fibers is studied. A glass fiber-epoxy composite with additional rubber-toughened epoxy coatings on the fibers is considered as the material of the face plates. A micromechanical analysis of the effective properties of the unidirectional lamina is conducted based on the generalized self-consistent method and the viscoelastic correspondence principle. The effective complex moduli of composite face plates with a symmetric angle-ply structure are evaluated based on classical lamination theory. A modified Mead-Markus model is utilized to evaluate the fundamental modal loss factor of a simply supported sandwich beam with a polyurethane core. The viscoelastic frequency-dependent behaviors of the core and face plate materials are both considered. The properties of the face plates are evaluated based on a micromechanical analysis and found to implicitly depend on frequency; thus, an iterative procedure is applied to find the natural frequencies of the lateral vibrations of the beam. The optimal values of the coating thickness, lamination angle and core thickness for the best multi-scale damping behavior of the beam are found.

  1. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    PubMed

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    PubMed

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  3. Time course of the acute effects of core stabilisation exercise on seated postural control.

    PubMed

    Lee, Jordan B; Brown, Stephen H M

    2017-09-20

    Core stabilisation exercises are often promoted for purposes ranging from general fitness to high-performance athletics, and the prevention and rehabilitation of back troubles. These exercises, when performed properly, may have the potential to enhance torso postural awareness and control, yet the potential for achieving immediate gains has not been completely studied. Fourteen healthy young participants performed a single bout of non-fatiguing core stabilisation exercise that consisted of repeated sets of 2 isometric exercises, the side bridge and the four-point contralateral arm-and-leg extension. Seated postural control, using an unstable balance platform on top of a force plate, was assessed before and after exercise, including multiple time points within a 20-minute follow-up period. Nine standard postural control variables were calculated at each time point, including sway displacement and velocity ranges, root mean squares and cumulative path length. Statistical analysis showed that none of the postural control variables were significantly different at any time point following completion of core stabilisation exercise. Thus, we conclude that a single bout of acute core stabilisation exercise is insufficient to immediately improve seated trunk postural control in young healthy individuals.

  4. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    NASA Astrophysics Data System (ADS)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  5. Plastome Sequences of Lygodium japonicum and Marsilea crenata Reveal the Genome Organization Transformation from Basal Ferns to Core Leptosporangiates

    PubMed Central

    Gao, Lei; Wang, Bo; Wang, Zhi-Wei; Zhou, Yuan; Su, Ying-Juan; Wang, Ting

    2013-01-01

    Previous studies have shown that core leptosporangiates, the most species-rich group of extant ferns (monilophytes), have a distinct plastid genome (plastome) organization pattern from basal fern lineages. However, the details of genome structure transformation from ancestral ferns to core leptosporangiates remain unclear because of limited plastome data available. Here, we have determined the complete chloroplast genome sequences of Lygodium japonicum (Lygodiaceae), a member of schizaeoid ferns (Schizaeales), and Marsilea crenata (Marsileaceae), a representative of heterosporous ferns (Salviniales). The two species represent the sister and the basal lineages of core leptosporangiates, respectively, for which the plastome sequences are currently unavailable. Comparative genomic analysis of all sequenced fern plastomes reveals that the gene order of L. japonicum plastome occupies an intermediate position between that of basal ferns and core leptosporangiates. The two exons of the fern ndhB gene have a unique pattern of intragenic copy number variances. Specifically, the substitution rate heterogeneity between the two exons is congruent with their copy number changes, confirming the constraint role that inverted repeats may play on the substitution rate of chloroplast gene sequences. PMID:23821521

  6. Design of the VISITOR Tool: A Versatile ImpulSive Interplanetary Trajectory OptimizeR

    NASA Technical Reports Server (NTRS)

    Corpaccioli, Luca; Linskens, Harry; Komar, David R.

    2014-01-01

    The design of trajectories for interplanetary missions represents one of the most complex and important problems to solve during conceptual space mission design. To facilitate conceptual mission sizing activities, it is essential to obtain sufficiently accurate trajectories in a fast and repeatable manner. To this end, the VISITOR tool was developed. This tool modularly augments a patched conic MGA-1DSM model with a mass model, launch window analysis, and the ability to simulate more realistic arrival and departure operations. This was implemented in MATLAB, exploiting the built-in optimization tools and vector analysis routines. The chosen optimization strategy uses a grid search and pattern search, an iterative variable grid method. A genetic algorithm can be selectively used to improve search space pruning, at the cost of losing the repeatability of the results and increased computation time. The tool was validated against seven flown missions: the average total mission (Delta)V offset from the nominal trajectory was 9.1%, which was reduced to 7.3% when using the genetic algorithm at the cost of an increase in computation time by a factor 5.7. It was found that VISITOR was well-suited for the conceptual design of interplanetary trajectories, while also facilitating future improvements due to its modular structure.

  7. [A new machinability test machine and the machinability of composite resins for core built-up].

    PubMed

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  8. Temperature and strain characterization of long period gratings in air guiding fiber

    NASA Astrophysics Data System (ADS)

    Iadicicco, Agostino; Cutolo, Antonello; Cusano, Andrea; Campopiano, Stefania

    2013-05-01

    This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. This procedure permits to preserve the holey structure of the host fiber avoiding any hole collapsing and it enables a local effective refractive index change due to the size and shape modifications of core and cladding holes. Periodically repeated EAD treatments permit the fabrication of LPGs based devices in hollow core optical fibers enabling new functionalities hitherto not possible. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the HC-LPGs sensitivity to environmental parameters such as strain and temperature are investigated.

  9. Parallel computation of GA search for the artery shape determinants with CFD

    NASA Astrophysics Data System (ADS)

    Himeno, M.; Noda, S.; Fukasaku, K.; Himeno, R.

    2010-06-01

    We studied which factors play important role to determine the shape of arteries at the carotid artery bifurcation by performing multi-objective optimization with computation fluid dynamics (CFD) and the genetic algorithm (GA). To perform it, the most difficult problem is how to reduce turn-around time of the GA optimization with 3D unsteady computation of blood flow. We devised two levels of parallel computation method with the following features: level 1: parallel CFD computation with appropriate number of cores; level 2: parallel jobs generated by "master", which finds quickly available job cue and dispatches jobs, to reduce turn-around time. As a result, the turn-around time of one GA trial, which would have taken 462 days with one core, was reduced to less than two days on RIKEN supercomputer system, RICC, with 8192 cores. We performed a multi-objective optimization to minimize the maximum mean WSS and to minimize the sum of circumference for four different shapes and obtained a set of trade-off solutions for each shape. In addition, we found that the carotid bulb has the feature of the minimum local mean WSS and minimum local radius. We confirmed that our method is effective for examining determinants of artery shapes.

  10. YAPPA: a Compiler-Based Parallelization Framework for Irregular Applications on MPSoCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovergine, Silvia; Tumeo, Antonino; Villa, Oreste

    Modern embedded systems include hundreds of cores. Because of the difficulty in providing a fast, coherent memory architecture, these systems usually rely on non-coherent, non-uniform memory architectures with private memories for each core. However, programming these systems poses significant challenges. The developer must extract large amounts of parallelism, while orchestrating communication among cores to optimize application performance. These issues become even more significant with irregular applications, which present data sets difficult to partition, unpredictable memory accesses, unbalanced control flow and fine grained communication. Hand-optimizing every single aspect is hard and time-consuming, and it often does not lead to the expectedmore » performance. There is a growing gap between such complex and highly-parallel architectures and the high level languages used to describe the specification, which were designed for simpler systems and do not consider these new issues. In this paper we introduce YAPPA (Yet Another Parallel Programming Approach), a compilation framework for the automatic parallelization of irregular applications on modern MPSoCs based on LLVM. We start by considering an efficient parallel programming approach for irregular applications on distributed memory systems. We then propose a set of transformations that can reduce the development and optimization effort. The results of our initial prototype confirm the correctness of the proposed approach.« less

  11. Overview of State Policies on Lower-Division General Education Core in the WICHE States. Interstate Passport

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2011

    2011-01-01

    The WICHE Interstate Passport Initiative, launched in October 2011, is a pilot project that addresses interstate student transfer. When students transfer from one postsecondary institution to another--both within and out of state--they may be required to repeat courses, which can add to the time and cost of completing their education. Although…

  12. Geology of epithermal silver-gold bulk-mining targets, bodie district, Mono County, California

    USGS Publications Warehouse

    Hollister, V.F.; Silberman, M.L.

    1995-01-01

    The Bodie mining district in Mono County, California, is zoned with a core polymetallic-quartz vein system and silver- and gold-bearing quartz-adularia veins north and south of the core. The veins formed as a result of repeated normal faulting during doming shortly after extrusion of felsic flows and tuffs, and the magmatic-hydrothermal event seems to span at least 2 Ma. Epithermal mineralization accompanied repeated movement of the normal faults, resulting in vein development in the planes of the faults. The veins occur in a very large area of argillic alteration. Individual mineralized structures commonly formed new fracture planes during separate fault movements, with resulting broad zones of veinlets growing in the walls of the major vein-faults. The veinlet swarms have been found to constitute a target estimated at 75,000,000 tons, averaging 0.037 ounce gold per ton. The target is amenable to bulkmining exploitation. The epithermal mineralogy is simple, with electrum being the most important precious metal mineral. The host veins are typical low-sulfide banded epithermal quartz and adularia structures that filled voids created by the faulting. Historical data show that beneficiation of the simple vein mineralogy is very efficient. ?? 1995 Oxford University Press.

  13. Simultaneous entanglement swapping of multiple orbital angular momentum states of light.

    PubMed

    Zhang, Yingwen; Agnew, Megan; Roger, Thomas; Roux, Filippus S; Konrad, Thomas; Faccio, Daniele; Leach, Jonathan; Forbes, Andrew

    2017-09-21

    High-bit-rate long-distance quantum communication is a proposed technology for future communication networks and relies on high-dimensional quantum entanglement as a core resource. While it is known that spatial modes of light provide an avenue for high-dimensional entanglement, the ability to transport such quantum states robustly over long distances remains challenging. To overcome this, entanglement swapping may be used to generate remote quantum correlations between particles that have not interacted; this is the core ingredient of a quantum repeater, akin to repeaters in optical fibre networks. Here we demonstrate entanglement swapping of multiple orbital angular momentum states of light. Our approach does not distinguish between different anti-symmetric states, and thus entanglement swapping occurs for several thousand pairs of spatial light modes simultaneously. This work represents the first step towards a quantum network for high-dimensional entangled states and provides a test bed for fundamental tests of quantum science.Entanglement swapping in high dimensions requires large numbers of entangled photons and consequently suffers from low photon flux. Here the authors demonstrate entanglement swapping of multiple spatial modes of light simultaneously, without the need for increasing the photon numbers with dimension.

  14. Structures of EccB 1 and EccD 1 from the core complex of the mycobacterial ESX-1 type VII secretion system

    DOE PAGES

    Wagner, Jonathan M.; Chan, Sum; Evans, Timothy J.; ...

    2016-02-27

    The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system. This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB 1 and EccD 1. The periplasmic domain of EccB 1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. Themore » repeat domains of EccB 1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD 1 has a ubiquitin-like fold and forms a dimer with a negatively charged groove. In conclusion, these structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.« less

  15. Structures of EccB 1 and EccD 1 from the core complex of the mycobacterial ESX-1 type VII secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Jonathan M.; Chan, Sum; Evans, Timothy J.

    The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system. This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB 1 and EccD 1. The periplasmic domain of EccB 1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. Themore » repeat domains of EccB 1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD 1 has a ubiquitin-like fold and forms a dimer with a negatively charged groove. In conclusion, these structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.« less

  16. Harmony search optimization for HDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Panchal, Aditya

    In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was implemented in this thesis was within 2% of the values computed by Varian BrachyVision for the prostate, within 3% for the rectum and bladder and 6% for the urethra. The calculation of dose compared to BrachyVision was determined to be different by only 0.38%. Isodose curves were also generated and were found to be similar to BrachyVision. The comparison between Harmony Search and genetic algorithm showed that Harmony Search was over 4 times faster when compared over multiple data sets. The optimal Harmony Memory Size was found to be 5 or lower; the Harmony Memory Considering Rate was determined to be 0.95, and the Pitch Adjusting Rate was found to be 0.9. Ultimately, the effect of multithreading showed that as intensive computations such as optimization and dose calculation are involved, the threads of execution scale with the number of processors, achieving a speed increase proportional to the number of processor cores. In conclusion, this work showed that Harmony Search is a viable alternative to existing algorithms for use in HDR prostate brachytherapy optimization. Coupled with the optimal parameters for the algorithm and a multithreaded simulation, this combination has the capability to significantly decrease the time spent on minimizing optimization problems in the clinic that are time intensive, such as brachytherapy, IMRT and beam angle optimization.

  17. High-performance 3D compressive sensing MRI reconstruction.

    PubMed

    Kim, Daehyun; Trzasko, Joshua D; Smelyanskiy, Mikhail; Haider, Clifton R; Manduca, Armando; Dubey, Pradeep

    2010-01-01

    Compressive Sensing (CS) is a nascent sampling and reconstruction paradigm that describes how sparse or compressible signals can be accurately approximated using many fewer samples than traditionally believed. In magnetic resonance imaging (MRI), where scan duration is directly proportional to the number of acquired samples, CS has the potential to dramatically decrease scan time. However, the computationally expensive nature of CS reconstructions has so far precluded their use in routine clinical practice - instead, more-easily generated but lower-quality images continue to be used. We investigate the development and optimization of a proven inexact quasi-Newton CS reconstruction algorithm on several modern parallel architectures, including CPUs, GPUs, and Intel's Many Integrated Core (MIC) architecture. Our (optimized) baseline implementation on a quad-core Core i7 is able to reconstruct a 256 × 160×80 volume of the neurovasculature from an 8-channel, 10 × undersampled data set within 56 seconds, which is already a significant improvement over existing implementations. The latest six-core Core i7 reduces the reconstruction time further to 32 seconds. Moreover, we show that the CS algorithm benefits from modern throughput-oriented architectures. Specifically, our CUDA-base implementation on NVIDIA GTX480 reconstructs the same dataset in 16 seconds, while Intel's Knights Ferry (KNF) of the MIC architecture even reduces the time to 12 seconds. Such level of performance allows the neurovascular dataset to be reconstructed within a clinically viable time.

  18. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torella, JP; Boehm, CR; Lienert, F

    2013-12-28

    In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminatormore » parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.« less

  19. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.

    PubMed

    Yamada, Ryosuke; Wakita, Kazuki; Mitsui, Ryosuke; Ogino, Hiroyasu

    2017-09-01

    Utilization of renewable feedstocks for the production of bio-based chemicals such as d-lactic acid by engineering metabolic pathways in the yeast Saccharomyces cerevisiae has recently become an attractive option. In this study, to realize efficient d-lactic acid production by S. cerevisiae, the expression of 12 glycolysis-related genes and the Leuconostoc mesenteroides d-LDH gene was optimized using a previously developed global metabolic engineering strategy, and repeated batch fermentation was carried out using the resultant strain YPH499/dPdA3-34/DLDH/1-18. Stable d-lactic acid production through 10 repeated batch fermentations was achieved using YPH499/dPdA3-34/DLDH/1-18. The average d-lactic acid production, productivity, and yield with 10 repeated batch fermentations were 60.3 g/L, 2.80 g/L/h, and 0.646, respectively. The present study is the first report of the application of a global metabolic engineering strategy for bio-based chemical production, and it shows the potential for efficient production of such chemicals by global metabolic engineering of the yeast S. cerevisiae. Biotechnol. Bioeng. 2017;114: 2075-2084. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Kinetic turbulence simulations at extreme scale on leadership-class systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bei; Ethier, Stephane; Tang, William

    2013-01-01

    Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCFmore » and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).« less

  1. Hollow-core photonic-crystal-fiber-based optical frequency references

    NASA Astrophysics Data System (ADS)

    Holá, Miroslava; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2016-12-01

    This research deals with preparation of an optical frequency references based on hollow-core photonic crystal fibers (HC-PCF). This fiber-based type of absorption cells represents a effiecient way how to replace classic bulky and fragile glass made tubes references with low-weight and low-volume optical fibers. This approach allows not only to increase possible interaction length between incident light and absorption media but it also carries a possibility of manufacturing of easy-operable reference which is set up just by plugging-in of optical connectors into the optical setup. We present the results of preparation, manufacturing and filling of a set of fiber-based cells intended for lasers frequency stabilization. The work deals with setting and optimalization of HC-PCF splicing processes, minimalization of optical losses between HC-PCF and SMF fiber transitions and finishing of HC-PCF spliced ends with special care for optimal closing of hollow-core structure needed for avoiding of absorption media leakage.

  2. Expectancies as core features of mental disorders.

    PubMed

    Rief, Winfried; Glombiewski, Julia A; Gollwitzer, Mario; Schubö, Anna; Schwarting, Rainer; Thorwart, Anna

    2015-09-01

    Expectancies are core features of mental disorders, and change in expectations is therefore one of the core mechanisms of treatment in psychiatry. We aim to improve our understanding of expectancies by summarizing factors that contribute to their development, persistence, and modification. We pay particular attention to the issue of persistence of expectancies despite experiences that contradict them. Based on recent research findings, we propose a new model for expectation persistence and expectation change. When expectations are established, effects are evident in neural and other biological systems, for example, via anticipatory reactions, different biological reactions to expected versus unexpected stimuli, etc. Psychological 'immunization' and 'assimilation', implicit self-confirming processes, and stability of biological processes help us to better understand why expectancies persist even in the presence of expectation violations. Learning theory, attentional processes, social influences, and biological determinants contribute to the development, persistence, and modification of expectancies. Psychological interventions should focus on optimizing expectation violation to achieve optimal treatment outcome and to avoid treatment failures.

  3. Dynamic positioning configuration and its first-order optimization

    NASA Astrophysics Data System (ADS)

    Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu

    2014-02-01

    Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the symmetrical cone configuration and helical curve configuration are still D-optimal. It shows that the given total observation time determines the optimal frequency (repeatability) of moving known points and vice versa, and one way to improve the repeatability is to increase the rotational speed. Under the Newton's law of motion, the frequency of satellite motion determines the orbital altitude. Furthermore, we study three kinds of complex dynamic configurations, one of which is the combination of D-optimal cone configurations and a so-called Walker constellation composed of D-optimal helical configuration, the other is the nested cone configuration composed of n cones, and the last is the nested helical configuration composed of n orbital planes. It shows that an effective way to achieve high coverage is to employ the configuration composed of a certain number of moving known points instead of the simplex configuration (such as D-optimal helical configuration), and one can use the D-optimal simplex solutions or D-optimal complex configurations in any combination to achieve powerful configurations with flexile coverage and flexile repeatability. Alternately, how to optimally generate and assess the discrete configurations sampled from the continuous one is discussed. The proposed configuration optimization framework has taken the well-known regular polygons (such as equilateral triangle and quadrangular) in two-dimensional space and regular polyhedrons (regular tetrahedron, cube, regular octahedron, regular icosahedron, or regular dodecahedron) into account. It shows that the conclusions made by the proposed technique are more general and no longer limited by different sampling schemes. By the conditional equation of D-optimal nested helical configuration, the relevance issues of GNSS constellation optimization are solved and some examples are performed by GPS constellation to verify the validation of the newly proposed optimization technique. The proposed technique is potentially helpful in maintenance and quadratic optimization of single GNSS of which the orbital inclination and the orbital altitude change under the precession, as well as in optimally nesting GNSSs to perform global homogeneous coverage of the Earth.

  4. Structural optimization of structured carbon-based energy-storing composite materials used in space vehicles.

    PubMed

    Yu, Jia; Yu, Zhichao; Tang, Chenlong

    2016-07-04

    The hot work environment of electronic components in the instrument cabin of spacecraft was researched, and a new thermal protection structure, namely graphite carbon foam, which is an impregnated phase-transition material, was adopted to implement the thermal control on the electronic components. We used the optimized parameters obtained from ANSYS to conduct 2D optimization, 3-D modeling and simulation, as well as the strength check. Finally, the optimization results were verified by experiments. The results showed that after optimization, the structured carbon-based energy-storing composite material could reduce the mass and realize the thermal control over electronic components. This phase-transition composite material still possesses excellent temperature control performance after its repeated melting and solidifying.

  5. An effective model for ergonomic optimization applied to a new automotive assembly line

    NASA Astrophysics Data System (ADS)

    Duraccio, Vincenzo; Elia, Valerio; Forcina, Antonio

    2016-06-01

    An efficient ergonomic optimization can lead to a significant improvement in production performance and a considerable reduction of costs. In the present paper new model for ergonomic optimization is proposed. The new approach is based on the criteria defined by National Institute of Occupational Safety and Health and, adapted to Italian legislation. The proposed model provides an ergonomic optimization, by analyzing ergonomic relations between manual work in correct conditions. The model includes a schematic and systematic analysis method of the operations, and identifies all possible ergonomic aspects to be evaluated. The proposed approach has been applied to an automotive assembly line, where the operation repeatability makes the optimization fundamental. The proposed application clearly demonstrates the effectiveness of the new approach.

  6. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    NASA Astrophysics Data System (ADS)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface. Electronic supplementary information (ESI) available: Additional TEM, UV-vis, XPS, and electrochemical data. See DOI: 10.1039/c6nr03368g

  7. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    NASA Astrophysics Data System (ADS)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  8. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    NASA Astrophysics Data System (ADS)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  9. A forensic perspective on the genetic identification of grapevine (Vitis vinifera L.) varieties using STR markers.

    PubMed

    Santos, Sara; Oliveira, Manuela; Amorim, António; van Asch, Barbara

    2014-11-01

    The grapevine (Vitis vinifera subsp. vinifera) is one of the most important agricultural crops worldwide. A long interest in the historical origins of ancient and cultivated current grapevines, as well as the need to establish phylogenetic relationships and parentage, solve homonymies and synonymies, fingerprint cultivars and clones, and assess the authenticity of plants and wines has encouraged the development of genetic identification methods. STR analysis is currently the most commonly used method for these purposes. A large dataset of grapevines genotypes for many cultivars worldwide has been produced in the last decade using a common set of recommended dinucleotide nuclear STRs. This type of marker has been replaced by long core-repeat loci in standardized state-of-the-art human forensic genotyping. The first steps toward harmonized grapevine genotyping have already been taken to bring the genetic identification methods closer to human forensic STR standards by previous authors. In this context, we bring forward a set of basic suggestions that reinforce the need to (i) guarantee trueness-to-type of the sample; (ii) use the long core-repeat markers; (iii) verify the specificity and amplification consistency of PCR primers; (iv) sequence frequent alleles and use these standardized allele ladders; (v) consider mutation rates when evaluating results of STR-based parentage and pedigree analysis; (vi) genotype large and representative samples in order to obtain allele frequency databases; (vii) standardize genotype data by establishing allele nomenclature based on repeat number to facilitate information exchange and data compilation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding.

    PubMed

    Pardon, Marie-Christine; Kendall, David A; Pérez-Diaz, Fernando; Duxon, Mark S; Marsden, Charles A

    2004-08-01

    The present study investigated whether the 'psychological threat' induced by sensory contact with an aggressive conspecific would be a sufficient factor in inducing behavioural and physiological disturbances. Repeated sensory contact with an aggressive mouse (social threat) in a partitioned cage was compared with repeated exposure to a novel partitioned cage in male NMRI mice. We first examined parameters of stress responsiveness (body weight, plasma corticosterone levels, frequency of self-grooming and defecation). The temperature and physical activity responses to stress were also recorded during and after the 4 weeks of stress using radiotelemetry. Finally, cognitivo-emotional performance was assessed after acute stress and 2 and 4 weeks of stress by measuring decision making, sequential alternation performance and behaviour in the elevated T-maze. Social threat had a greater impact than novel cage exposure on most parameters of stress responsiveness, although mice did not habituate to either stressor. Social threat rapidly led to an anticipatory rise in core body temperature and physical activity before the scheduled stress sessions. Such anticipation developed within the first week and persisted for 9 days after ending the stress procedure. Some memory impairment in the sequential alternation test was found in stressed mice, independent of the stressor. After 4 weeks of stress, inhibitory avoidance in the elevated T-maze was enhanced in socially stressed mice and reduced in novel cage mice. The sustained anticipation of stress in the social threat group preceded aversive responding. It remains to be established whether anticipation contributes to the development of aversive responses.

  11. A Simple Artificial Life Model Explains Irrational Behavior in Human Decision-Making

    PubMed Central

    Feher da Silva, Carolina; Baldo, Marcus Vinícius Chrysóstomo

    2012-01-01

    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats’ neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments. PMID:22563454

  12. A simple artificial life model explains irrational behavior in human decision-making.

    PubMed

    Feher da Silva, Carolina; Baldo, Marcus Vinícius Chrysóstomo

    2012-01-01

    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats' neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments.

  13. Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method

    NASA Astrophysics Data System (ADS)

    Salajegheh, Eysa; Gholizadeh, Saeed; Khatibinia, Mohsen

    2008-03-01

    The optimal seismic design of structures requires that time history analyses (THA) be carried out repeatedly. This makes the optimal design process inefficient, in particular, if an evolutionary algorithm is used. To reduce the overall time required for structural optimization, two artificial intelligence strategies are employed. In the first strategy, radial basis function (RBF) neural networks are used to predict the time history responses of structures in the optimization flow. In the second strategy, a binary particle swarm optimization (BPSO) is used to find the optimum design. Combining the RBF and BPSO, a hybrid RBF-BPSO optimization method is proposed in this paper, which achieves fast optimization with high computational performance. Two examples are presented and compared to determine the optimal weight of structures under earthquake loadings using both exact and approximate analyses. The numerical results demonstrate the computational advantages and effectiveness of the proposed hybrid RBF-BPSO optimization method for the seismic design of structures.

  14. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    NASA Astrophysics Data System (ADS)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional tooling methods. Components made with the cellular core tooling method showed an improved strength at the joints. It is expected that this knowledge will help optimize the processing of complex, integrated structures and benefit applications in aerospace where lighter, structurally efficient components would be advantageous.

  15. Effects of Pelvic and Core Strength Training on High School Cross-Country Race Times.

    PubMed

    Clark, Anne W; Goedeke, Maggie K; Cunningham, Saengchoy R; Rockwell, Derek E; Lehecka, Bryan J; Manske, Robert C; Smith, Barbara S

    2017-08-01

    Clark, AW, Goedeke, MK, Cunningham, SR, Rockwell, DE, Lehecka, BJ, Manske, RC, and Smith, BS. Effects of pelvic and core strength training on high school cross-country race times. J Strength Cond Res 31(8): 2289-2295, 2017-There is only limited research examining the effect of pelvic and core strength training on running performance. Pelvic and core muscle fatigue is believed to contribute to excess motion along frontal and transverse planes which decreases efficiency in normal sagittal plane running motions. The purpose of this study was to determine whether adding a 6-week pelvic and core strengthening program resulted in decreased race times in high school cross-country runners. Thirty-five high school cross-country runners (14-19 years old) from 2 high schools were randomly assigned to a strengthening group (experimental) or a nonstrengthening group (control). All participants completed 4 standardized isometric strength tests for hip abductors, adductors, extensors, and core musculature in a test-retest design. The experimental group performed a 6-week pelvic and core strengthening program along with their normal training. Participants in the control group performed their normal training without additional pelvic and core strengthening. Baseline, 3-week, and 6-week race times were collected using a repeated measures design. No significant interaction between experimental and control groups regarding decreasing race times and increasing pelvic and core musculature strength occurred over the 6-week study period. Both groups increased strength and decreased overall race times. Clinically significant findings reveal a 6-week pelvic and core stability strengthening program 3 times a week in addition to coach led team training may help decrease race times.

  16. CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci.

    PubMed

    Tasan, Ipek; Sustackova, Gabriela; Zhang, Liguo; Kim, Jiah; Sivaguru, Mayandi; HamediRad, Mohammad; Wang, Yuchuan; Genova, Justin; Ma, Jian; Belmont, Andrew S; Zhao, Huimin

    2018-06-15

    Nuclear organization has an important role in determining genome function; however, it is not clear how spatiotemporal organization of the genome relates to functionality. To elucidate this relationship, a method for tracking any locus of interest is desirable. Recently clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or transcription activator-like effectors were adapted for imaging endogenous loci; however, they are mostly limited to visualization of repetitive regions. Here, we report an efficient and scalable method named SHACKTeR (Short Homology and CRISPR/Cas9-mediated Knock-in of a TetO Repeat) for live cell imaging of specific chromosomal regions without the need for a pre-existing repetitive sequence. SHACKTeR requires only two modifications to the genome: CRISPR/Cas9-mediated knock-in of an optimized TetO repeat and its visualization by TetR-EGFP expression. Our simplified knock-in protocol, utilizing short homology arms integrated by polymerase chain reaction, was successful at labeling 10 different loci in HCT116 cells. We also showed the feasibility of knock-in into lamina-associated, heterochromatin regions, demonstrating that these regions prefer non-homologous end joining for knock-in. Using SHACKTeR, we were able to observe DNA replication at a specific locus by long-term live cell imaging. We anticipate the general applicability and scalability of our method will enhance causative analyses between gene function and compartmentalization in a high-throughput manner.

  17. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinsztein, D.C.; Leggo, J.; Whittaker, J.L.

    1996-07-01

    Abnormal CAG expansions in the IT-15 gene are associated with Huntington disease (HD). In the diagnostic setting it is necessary to define the limits of the CAG size ranges on normal and HD-associated chromosomes. Most large analyses that defined the limits of the normal and pathological size ranges employed PCR assays, which included the CAG repeats and a CCG repeat tract that was thought to be invariant. Many of these experiments found an overlap between the normal and disease size ranges. Subsequent findings that the CCG repeats vary by 9 trinucleotide lengths suggested that the limits of the normal andmore » disease size ranges should be reevaluated with assays that exclude the CCG polymorphism. Since patients with between 30 and 40 repeats are rare, a consortium was assembled to collect such individuals. All 178 samples were reanalyzed in Cambridge by using assays specific for the CAG repeats. We have optimized methods for reliable sizing of CAG repeats and show cases that demonstrate the dangers of using PCR assays that include both the CAG and CCG polymorphisms. Seven HD patients had 36 repeats, which confirms that this allele is associated with disease. Individuals without apparent symptoms or signs of HD were found at 36 repeats (aged 74, 78, 79, and 87 years), 37 repeats (aged 69 years), 38 repeats (aged 69 and 90 years), and 39 repeats (aged 67, 90, and 95 years). The detailed case histories of an exceptional case from this series will be presented: a 95-year-old man with 39 repeats who did not have classical features of HD. The apparently healthy survival into old age of some individuals with 36-39 repeats suggests that the HD mutation may not always be fully penetrant. 26 refs., 3 figs., 1 tab.« less

  18. Repeat Chlamydia trachomatis testing among heterosexual STI outpatient clinic visitors in the Netherlands: a longitudinal study.

    PubMed

    Visser, Maartje; van Aar, Fleur; Koedijk, Femke D H; Kampman, Carolina J G; Heijne, Janneke C M

    2017-12-20

    Chlamydia infections are common in both men and women, are often asymptomatic and can cause serious complications. Repeat testing in high-risk groups is therefore indicated. In the Netherlands, guidelines on repeat chlamydia testing differ between testing facilities, and knowledge on repeat testing behaviour is limited. Here, we analyse the current repeat testing behaviour of heterosexual STI clinic visitors, and aim to identify groups for which repeat testing advice could be advantageous. Longitudinal surveillance data from all Dutch STI outpatient clinics were used, which included all STI clinic consultations carried out among heterosexual men and women between June 2014 and December 2015. Repeat testing was defined as returning to the same STI clinic between 35 days and 12 months after initial consultation. We calculated chlamydia positivity at repeat test stratified by initial test result and time between consultations. Logistic regression analyses were used to identify predictors of repeat testing, and predictors of having a chlamydia positive repeat test. In total, 140,486 consultations in 75,487 women and 46,286 men were available for analyses. Overall, 15.4% of women and 11.1% of men returned to the STI clinic within the study period. Highest chlamydia positivity at repeat test was seen 3-5 months after initial positive test. Among both women and men, repeat testing was associated with non-Western ethnicity, having had more than two sex partners in the past 6 months, reporting STI symptoms, having a history of STI, and having a chlamydia positive initial test. Among repeat testers, chlamydia positive repeat test was most strongly associated with younger age, followed by a chlamydia positive initial test. Repeat testing most often resulted in a positive test result among young heterosexuals (<25) and heterosexuals of any age with a chlamydia infection at the initial consultation. Further efforts are needed to determine optimal repeat testing strategies.

  19. Core skills assessment to improve mathematical competency

    NASA Astrophysics Data System (ADS)

    Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní

    2013-12-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.

  20. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis.

    PubMed

    Coelho, Pedro G; Hollister, Scott J; Flanagan, Colleen L; Fernandes, Paulo R

    2015-03-01

    Bone scaffolds for tissue regeneration require an optimal trade-off between biological and mechanical criteria. Optimal designs may be obtained using topology optimization (homogenization approach) and prototypes produced using additive manufacturing techniques. However, the process from design to manufacture remains a research challenge and will be a requirement of FDA design controls to engineering scaffolds. This work investigates how the design to manufacture chain affects the reproducibility of complex optimized design characteristics in the manufactured product. The design and prototypes are analyzed taking into account the computational assumptions and the final mechanical properties determined through mechanical tests. The scaffold is an assembly of unit-cells, and thus scale size effects on the mechanical response considering finite periodicity are investigated and compared with the predictions from the homogenization method which assumes in the limit infinitely repeated unit cells. Results show that a limited number of unit-cells (3-5 repeated on a side) introduce some scale-effects but the discrepancies are below 10%. Higher discrepancies are found when comparing the experimental data to numerical simulations due to differences between the manufactured and designed scaffold feature shapes and sizes as well as micro-porosities introduced by the manufacturing process. However good regression correlations (R(2) > 0.85) were found between numerical and experimental values, with slopes close to 1 for 2 out of 3 designs. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Optimization of Magnet Arrangement in Double-Layer Interior Permanent-Magnet Motors

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi; Kitayuguchi, Kazuya

    The arrangement of permanent magnets in double-layer interior permanent-magnet motors is optimized for variable-speed applications. First, the arrangement of magnets is decided by automatic optimization. Next, the superiority of the optimized motor is discussed by the d- and q-axis equivalent circuits that consider the magnetic saturation of the rotor core. Finally, experimental verification is carried out by using a prototype motor. It is confirmed that the maximum torque of the optimized motor under both low speed and high speed conditions are higher than those of conventional motors because of relatively large q-axis inductance and small d-axis inductance.

  2. Discovery of a novel, CNS penetrant M4 PAM chemotype based on a 6-fluoro-4-(piperidin-1-yl)quinoline-3-carbonitrile core.

    PubMed

    Bewley, Blake R; Spearing, Paul K; Weiner, Rebecca L; Luscombe, Vincent B; Zhan, Xiaoyan; Chang, Sichen; Cho, Hyekyung P; Rodriguez, Alice L; Niswender, Colleen M; Conn, P Jeffrey; Bridges, Thomas M; Engers, Darren W; Lindsley, Craig W

    2017-09-15

    This Letter details the discovery and subsequent optimization of a novel M 4 PAM scaffold based on an 6-fluoro-4-(piperidin-1-yl)quinoline-3-carbonitrile core, which represents a distinct departure from the classical M 4 PAM chemotypes. Optimized compounds in this series demonstrated improved M 4 PAM potency on both human and rat M 4 (4 to 5-fold relative to HTS hit), and displayed attractive physicochemical and DMPK profiles, including good CNS penetration (rat brain:plasma K p =5.3, K p,uu =2.4; MDCK-MDR1 (P-gp) ER=1.1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    NASA Astrophysics Data System (ADS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O'Neill, B. J.; Nolting, C.; Edmon, P.; Donnert, J. M. F.; Jones, T. W.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  4. Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Young, C; Chan, J

    2007-07-12

    A hollow waveguide mid-infrared gas sensor operating from 1000 cm{sup -1} to 4000 cm{sup -1} has been developed, optimized, and its performance characterized by combining a FT-IR spectrometer with Ag/Ag-halide hollow core optical fibers. The hollow core waveguide simultaneously serves as a light guide and miniature gas cell. CH{sub 4} was used as test analyte during exponential dilution experiments for accurate determination of the achievable limit of detection (LOD). It is shown that the optimized integration of an optical gas sensor module with FT-IR spectroscopy provides trace sensitivity at the few hundreds of parts-per-billion concentration range (ppb, v/v) for CH{submore » 4}.« less

  5. A Divergent SAR Study Allows Optimization of a Potent 5-HT2c Inhibitor to a Promising Antimalarial Scaffold.

    PubMed

    Calderón, Félix; Vidal-Mas, Jaume; Burrows, Jeremy; de la Rosa, Juan Carlos; Jiménez-Díaz, María Belén; Mulet, Teresa; Prats, Sara; Solana, Jorge; Witty, Michael; Gamo, Francisco Javier; Fernández, Esther

    2012-05-10

    From the 13 533 chemical structures published by GlaxoSmithKline in 2010, we identified 47 quality starting points for lead optimization. One of the most promising hits was the TCMDC-139046, a molecule presenting an indoline core, which is well-known for its anxiolytic properties by interacting with serotonin antagonist receptors 5-HT2. The inhibition of this target will complicate the clinical development of these compounds as antimalarials. Herein, we present the antimalarial profile of this series and our efforts to avoid interaction with this receptor, while maintaining a good antiparasitic potency. By using a double-divergent structure-activity relationship analysis, we have obtained a novel lead compound harboring an indoline core.

  6. DYNAMIC NEUROMUSCULAR STABILIZATION & SPORTS REHABILITATION

    PubMed Central

    Kobesova, Alena; Kolar, Pavel

    2013-01-01

    Dynamic neuromuscular (core) stability is necessary for optimal athletic performance and is not achieved purely by adequate strength of abdominals, spinal extensors, gluteals or any other musculature; rather, core stabilization is accomplished through precise coordination of these muscles and intra‐abdominal pressure regulation by the central nervous system. Understanding developmental kinesiology provides a framework to appreciate the regional interdependence and the inter‐linking of the skeleton, joints, musculature during movement and the importance of training both the dynamic and stabilizing function of muscles in the kinetic chain. The Dynamic Neuromuscular Stabilization (DNS) approach provides functional tools to assess and activate the intrinsic spinal stabilizers in order to optimize the movement system for both pre‐habilitation and rehabilitation of athletic injuries and performance. Level of Evidence: 5 PMID:23439921

  7. Robust Controller for Turbulent and Convective Boundary Layers

    DTIC Science & Technology

    2006-08-01

    filter and an optimal regulator. The Kalman filter equation and the optimal regulator equation corresponding to the state-space equations, (2.20), are...separate steady-state algebraic Riccati equations. The Kalman filter is used here as a state observer rather than as an estimator since no noises are...2001) which will not be repeated here. For robustness, in the design, the Kalman filter input matrix G has been set equal to the control input

  8. A New Analysis of the Two Classical ZZ Ceti White Dwarfs GD 165 and Ross 548. II. Seismic Modeling

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Fontaine, G.; Brassard, P.; Charpinet, S.

    2016-03-01

    We present the second of a two-part seismic analysis of the bright, hot ZZ Ceti stars GD 165 and Ross 548. In this second part, we report the results of detailed searches in parameter space for identifying an optimal model for each star that can account well for the observed periods, while being consistent with the spectroscopic constraints derived in our first paper. We find optimal models for each target that reproduce the six observed periods well within ∼0.3% on the average. We also find that there is a sensitivity on the core composition for Ross 548, while there is practically none for GD 165. Our optimal model of Ross 548, with its thin envelope, indeed shows weight functions for some confined modes that extend relatively deep into the interior, thus explaining the sensitivity of the period spectrum on the core composition in that star. In contrast, our optimal seismic model of its spectroscopic sibling, GD 165 with its thick envelope, does not trap/confine modes very efficiently, and we find weight functions for all six observed modes that do not extend into the deep core, hence accounting for the lack of sensitivity in that case. Furthermore, we exploit after the fact the observed multiplet structure that we ascribe to rotation. We are able to map the rotation profile in GD 165 (Ross 548) over the outermost ∼20% (∼5%) of its radius, and we find that the profile is consistent with solid-body rotation.

  9. 3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores

    PubMed Central

    Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus

    2017-01-01

    Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core. PMID:29257063

  10. 3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores.

    PubMed

    Shilyashki, Georgi; Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus

    2017-12-19

    Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core.

  11. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model.

    PubMed

    Chakraborty, Nabarun; Meyerhoff, James; Jett, Marti; Hammamieh, Rasha

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A molecular pattern that links the atypical fear plasticity to energy deficiency was thereby identified to be causally associated with many behavioral shifts and transformations.PTSD is a multifactorial illness sensitive to environmental influence. Accordingly, it is essential to employ the optimal animal model approximating the environmental condition that elicits PTSD-like symptoms. Integration of an optimal animal model with a systems biology approach can contribute to a more knowledge-driven and efficient next-generation care management system and, potentially, prevention of PTSD.

  12. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Anshul; Casjens, Sherwood R.; Cingolani, Gino, E-mail: gino.cingolani@jefferson.edu

    2014-02-01

    This study presents the crystal structure of a ∼320 Å long protein fiber generated by in-frame extension of its repeated helical coiled-coil core. Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identifiedmore » in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20–35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.« less

  13. Regional Differences in Striatal Neuronal Ensemble Excitability Following Cocaine and Extinction Memory Retrieval in Fos-GFP Mice.

    PubMed

    Ziminski, Joseph J; Sieburg, Meike C; Margetts-Smith, Gabriella; Crombag, Hans S; Koya, Eisuke

    2018-03-01

    Learned associations between drugs of abuse and the drug administration environment have an important role in addiction. In rodents, exposure to a drug-associated environment elicits conditioned psychomotor activation, which may be weakened following extinction (EXT) learning. Although widespread drug-induced changes in neuronal excitability have been observed, little is known about specific changes within neuronal ensembles activated during the recall of drug-environment associations. Using a cocaine-conditioned locomotion (CL) procedure, the present study assessed the excitability of neuronal ensembles in the nucleus accumbens core and shell (NAc core and NAc shell ), and dorsal striatum (DS) following cocaine conditioning and EXT in Fos-GFP mice that express green fluorescent protein (GFP) in activated neurons (GFP+). During conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a locomotor activity chamber (Paired) or home cage (Unpaired). Seven to 13 days later, both groups were re-exposed to the activity chamber under drug-free conditions and Paired, but not Unpaired, mice exhibited CL. In a separate group of mice, CL was extinguished by repeatedly exposing mice to the activity chamber under drug-free conditions. Following the expression and EXT of CL, GFP+ neurons in the NAc core (but not NAc shell and DS) displayed greater firing capacity compared to surrounding GFP- neurons. This difference in excitability was due to a generalized decrease in GFP- excitability following CL and a selective increase in GFP+ excitability following its EXT. These results suggest a role for both widespread and ensemble-specific changes in neuronal excitability following recall of drug-environment associations.

  14. A validated UHPLC method for the determination of caffeoylquinic and di-caffeoylquinic acids in green coffee extracts using an RP-Amide fused-core column.

    PubMed

    Fibigr, Jakub; Majorová, Michaela; Kočová Vlčková, Hana; Solich, Petr; Šatínský, Dalibor

    2018-03-20

    The presented work describes the development and validation of a rapid UHPLC-UV method using a fused core particle column with an RP-Amide stationary phase for the separation and quantitative analysis of caffeoylquinic and di-caffeoylquinic acids in green coffee extracts. Three caffeoylquinic acids (3-caffeoylquinic acid, 4-caffeoylquinic acid, and 5-caffeoylquinic acid) and two di-caffeoylquinic acids (1,3-di-caffeoylquinic acid, and 3,5-di-caffeoylquinic acid) were separated and analyzed in 8 min. That was possible due to the unique selectivity of the RP-Amide stationary phase for the analyzed acids. The retention behavior of all analytes under different compositions of the mobile phase on different columns was evaluated in this study. The optimal chromatographic separation was performed using an Ascentis Express RP-Amide (100 × 2.1 mm) fused-core column with a particle size of 2.7 μm at a temperature of 30 °C. For validation of the newly developed method, acetonitrile was used as mobile phase B and 5% formic acid, filtrated through a 0.22 μm filter, was used as mobile phase A. They were delivered at a flow rate of 0.9 mL min -1 according to the elution gradient program. The detection wavelength was set at 325 nm. A solid-liquid extraction with a solution of methanol and a 5% water solution of formic acid (25 + 75 v/v) using an ultrasonic bath was chosen for the preparation of the available commercial samples of food supplements containing a green coffee extract. Recoveries for all analyzed acids were 98.2-101.0% and the relative standard deviation ranged from 0.3% to 1.4% for intra-day and from 0.3% to 3.0% for inter-day repeatability. The limits of detection were in the range of 0.30-0.53 μg mL -1 . Copyright © 2018. Published by Elsevier B.V.

  15. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks.

    PubMed

    Dilkina, Bistra; Houtman, Rachel; Gomes, Carla P; Montgomery, Claire A; McKelvey, Kevin S; Kendall, Katherine; Graves, Tabitha A; Bernstein, Richard; Schwartz, Michael K

    2017-02-01

    Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a network of protected areas. We show that designing corridors for single species based on purely ecological criteria leads to extremely expensive linkages that are suboptimal for multispecies connectivity objectives. Similarly, acquiring the least-expensive linkages leads to ecologically poor solutions. We developed algorithms for optimizing corridors for multispecies use given a specific budget. We applied our approach in western Montana to demonstrate how the solutions may be used to evaluate trade-offs in connectivity for 2 species with different habitat requirements, different core areas, and different conservation values under different budgets. We evaluated corridors that were optimal for each species individually and for both species jointly. Incorporating a budget constraint and jointly optimizing for both species resulted in corridors that were close to the individual species movement-potential optima but with substantial cost savings. Our approach produced corridors that were within 14% and 11% of the best possible corridor connectivity for grizzly bears (Ursus arctos) and wolverines (Gulo gulo), respectively, and saved 75% of the cost. Similarly, joint optimization under a combined budget resulted in improved connectivity for both species relative to splitting the budget in 2 to optimize for each species individually. Our results demonstrate economies of scale and complementarities conservation planners can achieve by optimizing corridor designs for financial costs and for multiple species connectivity jointly. We believe that our approach will facilitate corridor conservation by reducing acquisition costs and by allowing derived corridors to more closely reflect conservation priorities. © 2016 Society for Conservation Biology.

  16. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks

    USGS Publications Warehouse

    Dilkina, Bistra; Houtman, Rachel; Gomes, Carla P.; Montgomery, Claire A.; McKelvey, Kevin; Kendall, Katherine; Graves, Tabitha A.; Bernstein, Richard; Schwartz, Michael K.

    2017-01-01

    Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a network of protected areas. We show that designing corridors for single species based on purely ecological criteria leads to extremely expensive linkages that are suboptimal for multispecies connectivity objectives. Similarly, acquiring the least-expensive linkages leads to ecologically poor solutions. We developed algorithms for optimizing corridors for multispecies use given a specific budget. We applied our approach in western Montana to demonstrate how the solutions may be used to evaluate trade-offs in connectivity for 2 species with different habitat requirements, different core areas, and different conservation values under different budgets. We evaluated corridors that were optimal for each species individually and for both species jointly. Incorporating a budget constraint and jointly optimizing for both species resulted in corridors that were close to the individual species movement-potential optima but with substantial cost savings. Our approach produced corridors that were within 14% and 11% of the best possible corridor connectivity for grizzly bears (Ursus arctos) and wolverines (Gulo gulo), respectively, and saved 75% of the cost. Similarly, joint optimization under a combined budget resulted in improved connectivity for both species relative to splitting the budget in 2 to optimize for each species individually. Our results demonstrate economies of scale and complementarities conservation planners can achieve by optimizing corridor designs for financial costs and for multiple species connectivity jointly. We believe that our approach will facilitate corridor conservation by reducing acquisition costs and by allowing derived corridors to more closely reflect conservation priorities.

  17. Construction of Core Collections Suitable for Association Mapping to Optimize Use of Mediterranean Olive (Olea europaea L.) Genetic Resources

    PubMed Central

    El Bakkali, Ahmed; Haouane, Hicham; Moukhli, Abdelmajid; Costes, Evelyne; Van Damme, Patrick; Khadari, Bouchaib

    2013-01-01

    Phenotypic characterisation of germplasm collections is a decisive step towards association mapping analyses, but it is particularly expensive and tedious for woody perennial plant species. Characterisation could be more efficient if focused on a reasonably sized subset of accessions, or so-called core collection (CC), reflecting the geographic origin and variability of the germplasm. The questions that arise concern the sample size to use and genetic parameters that should be optimized in a core collection to make it suitable for association mapping. Here we investigated these questions in olive (Olea europaea L.), a perennial fruit species. By testing different sampling methods and sizes in a worldwide olive germplasm bank (OWGB Marrakech, Morocco) containing 502 unique genotypes characterized by nuclear and plastid loci, a two-step sampling method was proposed. The Shannon-Weaver diversity index was found to be the best criterion to be maximized in the first step using the Core Hunter program. A primary core collection of 50 entries (CC50) was defined that captured more than 80% of the diversity. This latter was subsequently used as a kernel with the Mstrat program to capture the remaining diversity. 200 core collections of 94 entries (CC94) were thus built for flexibility in the choice of varieties to be studied. Most entries of both core collections (CC50 and CC94) were revealed to be unrelated due to the low kinship coefficient, whereas a genetic structure spanning the eastern and western/central Mediterranean regions was noted. Linkage disequilibrium was observed in CC94 which was mainly explained by a genetic structure effect as noted for OWGB Marrakech. Since they reflect the geographic origin and diversity of olive germplasm and are of reasonable size, both core collections will be of major interest to develop long-term association studies and thus enhance genomic selection in olive species. PMID:23667437

  18. Structure of a Novel O-Linked N-Acetyl-d-glucosamine (O-GlcNAc) Transferase, GtfA, Reveals Insights into the Glycosylation of Pneumococcal Serine-rich Repeat Adhesins*

    PubMed Central

    Shi, Wei-Wei; Jiang, Yong-Liang; Zhu, Fan; Yang, Yi-Hu; Shao, Qiu-Yan; Yang, Hong-Bo; Ren, Yan-Min; Wu, Hui; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Protein glycosylation catalyzed by the O-GlcNAc transferase (OGT) plays a critical role in various biological processes. In Streptococcus pneumoniae, the core enzyme GtfA and co-activator GtfB form an OGT complex to glycosylate the serine-rich repeat (SRR) of adhesin PsrP (pneumococcal serine-rich repeat protein), which is involved in the infection and pathogenesis. Here we report the 2.0 Å crystal structure of GtfA, revealing a β-meander add-on domain beyond the catalytic domain. It represents a novel add-on domain, which is distinct from the all-α-tetratricopeptide repeats in the only two structure-known OGTs. Structural analyses combined with binding assays indicate that this add-on domain contributes to forming an active GtfA-GtfB complex and recognizing the acceptor protein. In addition, the in vitro glycosylation system enables us to map the O-linkages to the serine residues within the first SRR of PsrP. These findings suggest that fusion with an add-on domain might be a universal mechanism for diverse OGTs that recognize varying acceptor proteins/peptides. PMID:24936067

  19. Structure and Function of Na+-Symporters with Inverted Repeats

    PubMed Central

    Abramson, Jeff; Wright, Ernest M.

    2009-01-01

    Summary Symporters are membrane proteins that couple energy stored in electrochemical potential gradients to drive the cotransport of molecules and ions into cells. Traditionally, proteins are classified into gene families based on sequence homology and functional properties, e.g. the sodium glucose (SLC5 or Sodium Solute Symporter Family, SSS or SSF) and GABA (SLC6 or Neurotransmitter Sodium Symporter Family, NSS or SNF) symporter families [1-4]. Recently, it has been established that four Na+-symporter proteins with unrelated sequences have a common structural core containing an inverted repeat of 5 transmembrane (TM) helices [5-8]. Analysis of these four structures reveals that they reside in different conformations along the transport cycle providing atomic insight into the mechanism of sodium solute cotransport. PMID:19631523

  20. A flexible telecom satellite repeater based on microwave photonic technologies

    NASA Astrophysics Data System (ADS)

    Sotom, Michel; Benazet, Benoît; Maignan, Michel

    2017-11-01

    Future telecom satellite based on geo-stationary Earth orbit (GEO) will require advanced payloads in Kaband so as to receive, route and re-transmit hundreds of microwave channels over multiple antenna beams. We report on the proof-of-concept demonstration of a analogue repeater making use of microwave photonic technologies for supporting broadband, transparent, and flexible cross-connectivity. It has microwave input and output sections, and features a photonic core for LO distribution, frequency down-conversion, and cross-connection of RF channels. With benefits such as transparency to RF frequency, infinite RF isolation, mass and volume savings, such a microwave photonic cross-connect would compare favourably with microwave implementations, and based on optical MEMS switches could grow up to large port counts.

  1. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype.

    PubMed

    Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab

    2015-09-04

    A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our findings reveal dynamics of developmental gene network evolution in wild populations. This holds important implications: (1) for understanding how phenotypic novelty is generated in the wild; (2) for providing a possible bridge between micro- and macroevolution; and (3) for understanding how development mediates the response of organisms to past, and potentially, future climate change.

  2. Ligand-Binding Properties and Conformational Dynamics of Autolysin Repeat Domains in Staphylococcal Cell Wall Recognition

    PubMed Central

    Zoll, Sebastian; Schlag, Martin; Shkumatov, Alexander V.; Rautenberg, Maren; Svergun, Dmitri I.; Götz, Friedrich

    2012-01-01

    The bifunctional major autolysin Atl plays a key role in staphylococcal cell separation. Processing of Atl yields catalytically active amidase (AM) and glucosaminidase (GL) domains that are each fused to repeating units. The two repeats of AM (R1 and R2) target the enzyme to the septum, where it cleaves murein between dividing cells. We have determined the crystal structure of R2, which reveals that each repeat folds into two half-open β-barrel subunits. We further demonstrate that lipoteichoic acid serves as a receptor for the repeats and that this interaction depends on conserved surfaces in each subunit. Small-angle X-ray scattering of the mature amidase reveals the presence of flexible linkers separating the AM, R1, and R2 units. Different levels of flexibility for each linker provide mechanistic insights into the conformational dynamics of the full-length protein and the roles of its components in cell wall association and catalysis. Our analysis supports a model in which the repeats direct the catalytic AM domain to the septum, where it can optimally perform the final step of cell division. PMID:22609916

  3. [Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms].

    PubMed

    Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G

    2007-01-01

    Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.

  4. Optimization of sparse matrix-vector multiplication on emerging multicore platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2007-01-01

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD dual-core and Intel quad-core designs, the heterogeneous STI Cell, as well as the first scientificmore » study of the highly multithreaded Sun Niagara2. We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural tradeoffs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  5. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets.

    PubMed

    Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping

    2016-09-05

    The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Core Histones and HIRIP3, a Novel Histone-Binding Protein, Directly Interact with WD Repeat Protein HIRA

    PubMed Central

    Lorain, Stéphanie; Quivy, Jean-Pierre; Monier-Gavelle, Frédérique; Scamps, Christine; Lécluse, Yann; Almouzni, Geneviève; Lipinski, Marc

    1998-01-01

    The human HIRA gene has been named after Hir1p and Hir2p, two corepressors which together appear to act on chromatin structure to control gene transcription in Saccharomyces cerevisiae. HIRA homologs are expressed in a regulated fashion during mouse and chicken embryogenesis, and the human gene is a major candidate for the DiGeorge syndrome and related developmental disorders caused by a reduction to single dose of a fragment of chromosome 22q. Western blot analysis and double-immunofluorescence experiments using a specific antiserum revealed a primary nuclear localization of HIRA. Similar to Hir1p, HIRA contains seven amino-terminal WD repeats and probably functions as part of a multiprotein complex. HIRA and core histone H2B were found to physically interact in a yeast double-hybrid protein interaction trap, in GST pull-down assays, and in coimmunoprecipitation experiments performed from cellular extracts. In vitro, HIRA also interacted with core histone H4. H2B- and H4-binding domains were overlapping but distinguishable in the carboxy-terminal region of HIRA, and the region for HIRA interaction was mapped to the amino-terminal tail of H2B and the second α helix of H4. HIRIP3 (HIRA-interacting protein 3) is a novel gene product that was identified from its HIRA-binding properties in the yeast protein interaction trap. In vitro, HIRIP3 directly interacted with HIRA but also with core histones H2B and H3, suggesting that a HIRA-HIRIP3-containing complex could function in some aspects of chromatin and histone metabolism. Insufficient production of HIRA, which we report elsewhere interacts with homeodomain-containing DNA-binding factors during mammalian embryogenesis, could perturb the stoichiometric assembly of multimolecular complexes required for normal embryonic development. PMID:9710638

  7. Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells.

    PubMed Central

    Bäckström, Malin; Link, Thomas; Olson, Fredrik J; Karlsson, Hasse; Graham, Rosalind; Picco, Gianfranco; Burchell, Joy; Taylor-Papadimitriou, Joyce; Noll, Thomas; Hansson, Gunnar C

    2003-01-01

    We have developed an expression system for the production of large quantities of recombinant MUC1 mucin in CHO-K1 (Chinese-hamster ovary K1) cells. The extracellular part of human MUC1, including 16 MUC1 tandem repeats, was produced as a fusion protein with murine IgG Fc, with an intervening enterokinase cleavage site for the removal of the Fc tail. Stable MUC1-IgG-producing CHO-K1 clones were generated and were found to secrete MUC1-IgG into the culture medium. After adaptation to suspension culture in protein-free medium in a bioreactor, the fusion protein was secreted in large quantities (100 mg/l per day) into the culture supernatant. From there, MUC1 could be purified to homogeneity using a two-step procedure including enterokinase cleavage and ion-exchange chromatography. Capillary liquid chromatography MS of released oligosaccharides from CHO-K1-produced MUC1 identified the main O-glycans as Galbeta1-3GalNAc (core 1) and mono- and di-sialylated core 1. The glycans occupied on average 4.3 of the five potential O-glycosylation sites in the tandem repeats, as determined by nano-liquid chromatography MS of partially deglycosylated Clostripain-digested protein. A very similar O-glycan profile and site occupancy was found in MUC1-IgG produced in the breast carcinoma cell line T47D, which has O-glycosylation typical for breast cancer. In contrast, MUC1-IgG produced in another breast cancer cell line, MCF-7, showed a more complex pattern with both core 1- and core 2-based O-glycans. This is the first reported production of large quantities of recombinant MUC1 with a breast cancer-like O-glycosylation that could be used for the immunotherapy of breast cancer. PMID:12950230

  8. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  9. The Disassembly of a Core-Satellite Nanoassembled Substrate for Colorimetric Biomolecular Detection

    PubMed Central

    Waldeisen, John R.; Wang, Tim; Ross, Benjamin M.; Lee, Luke P.

    2012-01-01

    The disassembly of a core-satellite nanostructured substrate is presented as a colorimetric biosensor observable under dark field illumination. The fabrication method described herein utilizes thiol-mediated adsorption and streptavidin-biotin binding to self-assemble core-satellite nanostructures with a sacrificial linking peptide. Biosensing functionality is demonstrated with the protease trypsin and the optical properties of the nanoassemblies are characterized. A figure of merit is presented to determine the optimal core and satellite size for visual detection. Nanoassemblies with 50 nm cores and 30 nm or 50 nm satellites are superior as these structures achieve an orange to green color shift greater than 70 nm that is easily discernible by naked eye. This colorimetric substrate may prove to be a favorable alternative to liquid-based colloidal sensors and a useful visual readout mechanism for microfluidic diagnostic assays. PMID:21667984

  10. Split radiator design for heat rejection optimization for a waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  11. Core/corona modeling of diode-imploded annular loads

    NASA Astrophysics Data System (ADS)

    Terry, R. E.; Guillory, J. U.

    1980-11-01

    The effects of a tenuous exterior plasma corona with anomalous resistivity on the compression and heating of a hollow, collisional aluminum z-pinch plasma are predicted by a one-dimensional code. As the interior ("core") plasma is imploded by its axial current, the energy exchange between core and corona determines the current partition. Under the conditions of rapid core heating and compression, the increase in coronal current provides a trade-off between radial acceleration and compression, which reduces the implosion forces and softens the pitch. Combined with a heuristic account of energy and momentum transport in the strongly coupled core plasma and an approximate radiative loss calculation including Al line, recombination and Bremsstrahlung emission, the current model can provide a reasonably accurate description of imploding annular plasma loads that remain azimuthally symmetric. The implications for optimization of generator load coupling are examined.

  12. A Way to Select Electrical Sheets of the Segment Stator Core Motors.

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Kitamura, Masashi; Sakai, Toshihiko; Ohara, Kouichiro

    The segment stator core, high density winding coil, high-energy-product permanent magnet are indispensable technologies in the development of a compact and also high efficient motors. The conventional design method for the segment stator core mostly depended on experienced knowledge of selecting a suitable electromagnetic material, far from optimized design. Therefore, we have developed a novel design method in the selection of a suitable electromagnetic material based on the correlation evaluation between the material characteristics and motor performance. It enables the selection of suitable electromagnetic material that will meet the motor specification.

  13. Thermodynamic characterization of synchronization-optimized oscillator networks

    NASA Astrophysics Data System (ADS)

    Yanagita, Tatsuo; Ichinomiya, Takashi

    2014-12-01

    We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than 1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery structure depends on the connectivity of the network, and is characterized by the node degree variance of the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show anomalies for sparse networks.

  14. Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshiaki; Ogawa, Tomoyuki; Ishiyama, Kazushi

    2018-05-01

    The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.

  15. An effective model for ergonomic optimization applied to a new automotive assembly line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duraccio, Vincenzo; Elia, Valerio; Forcina, Antonio

    2016-06-08

    An efficient ergonomic optimization can lead to a significant improvement in production performance and a considerable reduction of costs. In the present paper new model for ergonomic optimization is proposed. The new approach is based on the criteria defined by National Institute of Occupational Safety and Health and, adapted to Italian legislation. The proposed model provides an ergonomic optimization, by analyzing ergonomic relations between manual work in correct conditions. The model includes a schematic and systematic analysis method of the operations, and identifies all possible ergonomic aspects to be evaluated. The proposed approach has been applied to an automotive assemblymore » line, where the operation repeatability makes the optimization fundamental. The proposed application clearly demonstrates the effectiveness of the new approach.« less

  16. Various anti-motion sickness drugs and core body temperature changes.

    PubMed

    Cheung, Bob; Nakashima, Ann M; Hofer, Kevin D

    2011-04-01

    Blood flow changes and inactivity associated with motion sickness appear to exacerbate the rate of core temperature decrease during subsequent body cooling. We investigated the effects of various classes of anti-motion sickness drugs on core temperature changes. There were 12 healthy male and female subjects (20-35 yr old) who were given selected classes of anti-motion sickness drugs prior to vestibular Coriolis cross coupling induced by graded yaw rotation and periodic pitch-forward head movements in the sagittal plane. All subjects were then immersed in water at 18 degrees C for a maximum of 90 min or until their core temperature reached 35 degrees C. Double-blind randomized trials were administered, including a placebo, a non-immersion control with no drug, and six anti-motion sickness drugs: meclizine, dimenhydrinate, chlorpheniramine, promethazine + dexamphetamine, promethazine + caffeine, and scopolamine + dexamphetamine. A 7-d washout period was observed between trials. Core temperature and the severity of sickness were monitored throughout each trial. A repeated measures design was performed on the severity of sickness and core temperature changes prior to motion provocation, immediately after the motion sickness end point, and throughout the period of cold-water immersion. The most effective anti-motion sickness drugs, promethazine + dexamphetamine (with a sickness score/duration of 0.65 +/- 0.17) and scopolamine + dexamphetamine (with a sickness score/duration of 0.79 +/- 0.17), significantly attenuated the decrease in core temperature. The effect of this attenuation was lower in less effective drugs. Our results suggest that the two most effective anti-motion sickness drugs are also the most effective in attenuating the rate of core temperature decrease.

  17. Effect of long-term isometric training on core/torso stiffness.

    PubMed

    Lee, Benjamin C Y; McGill, Stuart M

    2015-06-01

    Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  18. The Assessment for Sensitivity of a NO2 Gas Sensor with ZnGa2O4/ZnO Core-Shell Nanowires—a Novel Approach

    PubMed Central

    Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Hsu, Cheng-Liang; Hsueh, Ting Jen; Shieh, Tien-Yu

    2010-01-01

    The application of novel core-shell nanowires composed of ZnGa2O4/ZnO to improve the sensitivity of NO2 gas sensors is demonstrated in this study. The growth of ZnGa2O4/ZnO core-shell nanowires is performed by reactive evaporation on patterned ZnO:Ga/SiO2/Si templates at 600 °C. This is to form the homogeneous structure of the sensors investigated in this report to assess their sensitivity in terms of NO2 detection. These novel NO2 gas sensors were evaluated at working temperatures of 25 °C and at 250 °C, respectively. The result reveals the ZnGa2O4/ZnO core-shell nanowires present a good linear relationship (R2 > 0.99) between sensitivity and NO2 concentration at both working temperatures. These core-shell nanowire sensors also possess the highest response (<90 s) and recovery (<120 s) values with greater repeatability seen for NO2 sensors at room temperature, unlike traditional sensors that only work effectively at much higher temperatures. The data in this study indicates the newly-developed ZnGa2O4/ZnO core-shell nanowire based sensors are highly promising for industrial applications. PMID:22319286

  19. Repeat analysis of intraoral digital imaging performed by undergraduate students using a complementary metal oxide semiconductor sensor: An institutional case study.

    PubMed

    Yusof, Mohd Yusmiaidil Putera Mohd; Rahman, Nur Liyana Abdul; Asri, Amiza Aqiela Ahmad; Othman, Noor Ilyani; Wan Mokhtar, Ilham

    2017-12-01

    This study was performed to quantify the repeat rate of imaging acquisitions based on different clinical examinations, and to assess the prevalence of error types in intraoral bitewing and periapical imaging using a digital complementary metal-oxide-semiconductor (CMOS) intraoral sensor. A total of 8,030 intraoral images were retrospectively collected from 3 groups of undergraduate clinical dental students. The type of examination, stage of the procedure, and reasons for repetition were analysed and recorded. The repeat rate was calculated as the total number of repeated images divided by the total number of examinations. The weighted Cohen's kappa for inter- and intra-observer agreement was used after calibration and prior to image analysis. The overall repeat rate on intraoral periapical images was 34.4%. A total of 1,978 repeated periapical images were from endodontic assessment, which included working length estimation (WLE), trial gutta-percha (tGP), obturation, and removal of gutta-percha (rGP). In the endodontic imaging, the highest repeat rate was from WLE (51.9%) followed by tGP (48.5%), obturation (42.2%), and rGP (35.6%). In bitewing images, the repeat rate was 15.1% and poor angulation was identified as the most common cause of error. A substantial level of intra- and interobserver agreement was achieved. The repeat rates in this study were relatively high, especially for certain clinical procedures, warranting training in optimization techniques and radiation protection. Repeat analysis should be performed from time to time to enhance quality assurance and hence deliver high-quality health services to patients.

  20. The Accumulating Data to Optimally Predict Obesity Treatment (ADOPT) Core Measures Project: Rationale and Approach.

    PubMed

    MacLean, Paul S; Rothman, Alexander J; Nicastro, Holly L; Czajkowski, Susan M; Agurs-Collins, Tanya; Rice, Elise L; Courcoulas, Anita P; Ryan, Donna H; Bessesen, Daniel H; Loria, Catherine M

    2018-04-01

    Individual variability in response to multiple modalities of obesity treatment is well documented, yet our understanding of why some individuals respond while others do not is limited. The etiology of this variability is multifactorial; however, at present, we lack a comprehensive evidence base to identify which factors or combination of factors influence treatment response. This paper provides an overview and rationale of the Accumulating Data to Optimally Predict obesity Treatment (ADOPT) Core Measures Project, which aims to advance the understanding of individual variability in response to adult obesity treatment. This project provides an integrated model for how factors in the behavioral, biological, environmental, and psychosocial domains may influence obesity treatment responses and identify a core set of measures to be used consistently across adult weight-loss trials. This paper provides the foundation for four companion papers that describe the core measures in detail. The accumulation of data on factors across the four ADOPT domains can inform the design and delivery of effective, tailored obesity treatments. ADOPT provides a framework for how obesity researchers can collectively generate this evidence base and is a first step in an ongoing process that can be refined as the science advances. © 2018 The Obesity Society.

  1. Optimization and development of a core-in-cup tablet for modulated release of theophylline in simulated gastrointestinal fluids.

    PubMed

    Danckwerts, M P

    2000-07-01

    A triple-layer core-in-cup tablet that can release theophylline in simulated gastrointestinal (GI) fluids at three distinct rates has been developed. The first layer is an immediate-release layer; the second layer is a sustained-release layer; and the last layer is a boost layer, which was designed to coincide with a higher nocturnal dose of theophylline. The study consisted of two stages. The first stage optimized the sustained-release layer of the tablet to release theophylline over a period of 12 hr. Results from this stage indicated that 30% w/w acacia gum was the best polymer and concentration to use when compressed to a hardness of 50 N/m2. The second stage of the study involved the investigation of the final triple-layer core-in-cup tablet to release theophylline at three different rates in simulated GI fluids. The triple-layer modulated core-in-cup tablet successfully released drug in simulated fluids at an initial rate of 40 mg/min, followed by a rate of 0.4085 mg/min, in simulated gastric fluid TS, 0.1860 mg/min in simulated intestinal fluid TS, and finally by a boosted rate of 0.6952 mg/min.

  2. Evaluating genetic diversity and constructing core collections of Chinese Lentinula edodes cultivars using ISSR and SRAP markers.

    PubMed

    Liu, Jun; Wang, Zhuo-Ren; Li, Chuang; Bian, Yin-Bing; Xiao, Yang

    2015-06-01

    Genetic diversity among 89 Chinese Lentinula edodes cultivars was analyzed by inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers. A 123 out of 126 ISSR loci (97.62%) and 108 out of 129 SRAP loci (83.73%) were polymorphic between two or more strains. A dendrogram constructed by cluster analysis based on the ISSR and SRAP markers separated the L. edodes strains into two major groups, of which group B was further divided into five subgroups. Clustering results also showed a positive correlation with the main agronomic traits of the strains, and that strains with similar traits clustered together into the same groups or subgroups in most cases. The average coefficient of pairwise genetic similarity was 0.820 (range: 0.576-0.988). Compared to the wild strains, Chinese L. edodes cultivars indicated a lower level of genetic diversity. Two preliminary core collections of L. edodes, Core1 and Core2, were established based on the ISSR and SRAP data, respectively. Core1 was constructed by the advanced M (maximization) strategy using the PowerCore version 1.0 software and contained 21 strains, whereas Core2 was created by the allele preferred sampling strategy using the cluster method and contained 18 strains. Both core collections were highly representative of the genetic diversity of the original germplasm, as confirmed by the values of Na (observed number of alleles), Ne (effective number of alleles), H (Nei's gene diversity) and I (Shannon's information index), as well as results of principal coordinate analysis. The loci retention ratio of Core1 (99.61%) was higher than that of Core2 (97.65%). Moreover, Core1 contained strains with more types of agronomic traits than those in Core2. This study builds the basis for further effective protection, management and use of L. edodes germplasm resource. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Detail and Gestalt Focus in Individuals with Optimal Outcomes from Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Fitch, Allison; Fein, Deborah A.; Eigsti, Inge-Marie

    2015-01-01

    Individuals with high-functioning autism (HFA) have a cognitive style that privileges local over global or gestalt details. While not a core symptom of autism, individuals with HFA seem to reliably show this bias. Our lab has been studying a sample of children who have overcome their early ASD diagnoses, showing "optimal outcomes" (OO).…

  4. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  5. Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Balan, A. V.; Shivasankaran, N.; Magibalan, S.

    2018-04-01

    Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.

  6. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools.

    PubMed

    Rodríguez-Dorado, Rosalia; Landín, Mariana; Altai, Ayça; Russo, Paola; Aquino, Rita P; Del Gaudio, Pasquale

    2018-03-01

    Numerous studies have been focused on hydrophobic compounds encapsulation as oils. In fact, oils can provide numerous health benefits as synergic ingredient combined with other hydrophobic active ingredients. However, stable microparticles for pharmaceutical purposes are difficult to achieve when commonly techniques are used. In this work, sunflower oil was encapsulated in calcium-alginate capsules by prilling technique in co-axial configuration. Core-shell beads were produced by inverse gelation directly at the nozzle using a w/o emulsion containing aqueous calcium chloride solution in sunflower oil pumped through the inner nozzle while an aqueous alginate solution, coming out from the annular nozzle, produced the beads shell. To optimize process parameters artificial intelligence tools were proposed to optimize the numerous prilling process variables. Homogeneous and spherical microcapsules with narrow size distribution and a thin alginate shell were obtained when the parameters as w/o constituents, polymer concentrations, flow rates and frequency of vibration were optimized by two commercial software, FormRules® and INForm®, which implement neurofuzzy logic and Artificial Neural Networks together with genetic algorithms, respectively. This technique constitutes an innovative approach for hydrophobic compounds microencapsulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization

    NASA Astrophysics Data System (ADS)

    Pourfard, Mohammadreza; Abdollahifard, Mohammad J.; Faez, Karim; Motamedi, Sayed Ahmad; Hosseinian, Tahmineh

    2017-05-01

    Multiple-point Geostatistics is a well-known general statistical framework by which complex geological phenomena have been modeled efficiently. Pixel-based and patch-based are two major categories of these methods. In this paper, the optimization-based category is used which has a dual concept in texture synthesis as texture optimization. Our extended version of texture optimization uses the energy concept to model geological phenomena. While honoring the hard point, the minimization of our proposed cost function forces simulation grid pixels to be as similar as possible to training images. Our algorithm has a self-enrichment capability and creates a richer training database from a sparser one through mixing the information of all surrounding patches of the simulation nodes. Therefore, it preserves pattern continuity in both continuous and categorical variables very well. It also shows a fuzzy result in its every realization similar to the expected result of multi realizations of other statistical models. While the main core of most previous Multiple-point Geostatistics methods is sequential, the parallel main core of our algorithm enabled it to use GPU efficiently to reduce the CPU time. One new validation method for MPS has also been proposed in this paper.

  8. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott; Chen, Yang

    2013-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the OpenACC compiler directives and Fortran CUDA. Mixed implementation of both Open-ACC and CUDA is demonstrated. CUDA is required for optimizing the particle deposition algorithm. We have implemented the GPU acceleration on a third generation Core I7 gaming PC with two NVIDIA GTX 680 GPUs. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. We also see enormous speedups (10 or more) on the Titan supercomputer at Oak Ridge with Kepler K20 GPUs. Results show speed-ups comparable or better than that of OpenMP models utilizing multiple cores. The use of hybrid OpenACC, CUDA Fortran, and MPI models across many nodes will also be discussed. Optimization strategies will be presented. We will discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  9. Synthesis: Deriving a Core Set of Recommendations to Optimize Diabetes Care on a Global Scale.

    PubMed

    Mechanick, Jeffrey I; Leroith, Derek

    2015-01-01

    Diabetes afflicts 382 million people worldwide, with increasing prevalence rates and adverse effects on health, well-being, and society in general. There are many drivers for the complex presentation of diabetes, including environmental and genetic/epigenetic factors. The aim was to synthesize a core set of recommendations from information from 14 countries that can be used to optimize diabetes care on a global scale. Information from 14 papers in this special issue of Annals of Global Health was reviewed, analyzed, and sorted to synthesize recommendations. PubMed was searched for relevant studies on diabetes and global health. Key findings are as follows: (1) Population-based transitions distinguish region-specific diabetes care; (2) biological drivers for diabetes differ among various populations and need to be clarified scientifically; (3) principal resource availability determines quality-of-care metrics; and (4) governmental involvement, independent of economic barriers, improves the contextualization of diabetes care. Core recommendations are as follows: (1) Each nation should assess region-specific epidemiology, the scientific evidence base, and population-based transitions to establish risk-stratified guidelines for diagnosis and therapeutic interventions; (2) each nation should establish a public health imperative to provide tools and funding to successfully implement these guidelines; and (3) each nation should commit to education and research to optimize recommendations for a durable effect. Systematic acquisition of information about diabetes care can be analyzed, extrapolated, and then used to provide a core set of actionable recommendations that may be further studied and implemented to improve diabetes care on a global scale. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The Habitability of Enceladus from Cassini and Enceladus Life Finder as the Next Step

    NASA Astrophysics Data System (ADS)

    Spilker, L. J.; Lunine, J. I.

    2016-12-01

    Enceladus is a tiny moon circling Saturn. Through Cassini's discoveries we now know that it has a global, geologically long-lived salt-water ocean inside, in contact with the silicate core, at which interface there is moderate-temperature hydrothermal activity perhaps akin to the Lost City vent structure on Earth's seafloor, which hosts a rich ecology. The ocean water, containing nanosilica grains from the hydrothermal vents, and large organic molecules not yet identified, is expressed directly and continuously into space via fissures in Enceladus' south polar region. Cassini has analyzed the composition of ice grains and gas by repeatedly flying through this plume on multiple flybys, so now we know how to detect unmistakable signs of ocean life with modern instruments on a subsequent mission. This makes Enceladus a natural laboratory for understanding how life - carbon- and water-based but not sharing Earth life's origin -arose. To do so quickly without waiting for the next Flagship opportunity requires a focussed mission that applies the most focussed and robust analytic techniques on the most easily accessed samples of the ocean—the plume itself. Enceladus Life Finder (ELF) was proposed to do just this, and we describe why a graceful, elvish approach to life detection is optimal.

  11. A new systematic calibration method of ring laser gyroscope inertial navigation system

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  12. Terahertz Light-Matter Interaction beyond Unity Coupling Strength.

    PubMed

    Bayer, Andreas; Pozimski, Marcel; Schambeck, Simon; Schuh, Dieter; Huber, Rupert; Bougeard, Dominique; Lange, Christoph

    2017-10-11

    Achieving control over light-matter interaction in custom-tailored nanostructures is at the core of modern quantum electrodynamics. In strongly and ultrastrongly coupled systems, the excitation is repeatedly exchanged between a resonator and an electronic transition at a rate known as the vacuum Rabi frequency Ω R . For Ω R approaching the resonance frequency ω c , novel quantum phenomena including squeezed states, Dicke superradiant phase transitions, the collapse of the Purcell effect, and a population of the ground state with virtual photon pairs are predicted. Yet, the experimental realization of optical systems with Ω R /ω c ≥ 1 has remained elusive. Here, we introduce a paradigm change in the design of light-matter coupling by treating the electronic and the photonic components of the system as an entity instead of optimizing them separately. Using the electronic excitation to not only boost the electronic polarization but furthermore tailor the shape of the vacuum mode, we push Ω R /ω c of cyclotron resonances ultrastrongly coupled to metamaterials far beyond unity. As one prominent illustration of the unfolding possibilities, we calculate a ground state population of 0.37 virtual photons for our best structure with Ω R /ω c = 1.43 and suggest a realistic experimental scenario for measuring vacuum radiation by cutting-edge terahertz quantum detection.

  13. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method.

    PubMed

    Habibi, Mohammad Hossein; Rahmati, Mohammad Hossein

    2015-02-25

    Photocatalytic degradation of Congo red was investigated using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method in aqueous solution under irradiation. Field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were used for the morphological and structural characterization of ZnO-CdS core-shell nanostructures. XRD results showed diffractions of wurtzite zinc oxide core and wurtzite cadmium sulfide shell. FESEM results showed that nanoparticles are nearly hexagonal with an average diameter of about 50 nm. The effect of catalyst loading, UV-light irradiation time and solution pH on photocatalytic degradation of Congo red was studied and optimized values were obtained. Results showed that the employment of efficient photocatalyst and selection of optimal operational parameters may lead to complete decolorization of dye solutions. It was found that ZnO-CdS core-shell nano-structure is more favorable for the degradation of Congo red compare to pure ZnO or pure CdS due to lower electron hole recombination. The results showed that the photocatalytic degradation rate of Congo red is enhanced with increasing the content of ZnO up to ZnO(0.2 M)/CdS(0.075 M) which is reached 88.0% within 100 min irradiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Safety and core design of large liquid-metal cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  15. Device-independent secret-key-rate analysis for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Holz, Timo; Kampermann, Hermann; Bruß, Dagmar

    2018-01-01

    The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.

  16. ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Xinbang; Gong, Zhenfeng

    2018-03-01

    In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.

  17. Topology-dependent rationality and quantal response equilibria in structured populations

    NASA Astrophysics Data System (ADS)

    Roman, Sabin; Brede, Markus

    2017-05-01

    Given that the assumption of perfect rationality is rarely met in the real world, we explore a graded notion of rationality in socioecological systems of networked actors. We parametrize an actors' rationality via their place in a social network and quantify system rationality via the average Jensen-Shannon divergence between the games Nash and logit quantal response equilibria. Previous work has argued that scale-free topologies maximize a system's overall rationality in this setup. Here we show that while, for certain games, it is true that increasing degree heterogeneity of complex networks enhances rationality, rationality-optimal configurations are not scale-free. For the Prisoner's Dilemma and Stag Hunt games, we provide analytic arguments complemented by numerical optimization experiments to demonstrate that core-periphery networks composed of a few dominant hub nodes surrounded by a periphery of very low degree nodes give strikingly smaller overall deviations from rationality than scale-free networks. Similarly, for the Battle of the Sexes and the Matching Pennies games, we find that the optimal network structure is also a core-periphery graph but with a smaller difference in the average degrees of the core and the periphery. These results provide insight on the interplay between the topological structure of socioecological systems and their collective cognitive behavior, with potential applications to understanding wealth inequality and the structural features of the network of global corporate control.

  18. Topology-dependent rationality and quantal response equilibria in structured populations.

    PubMed

    Roman, Sabin; Brede, Markus

    2017-05-01

    Given that the assumption of perfect rationality is rarely met in the real world, we explore a graded notion of rationality in socioecological systems of networked actors. We parametrize an actors' rationality via their place in a social network and quantify system rationality via the average Jensen-Shannon divergence between the games Nash and logit quantal response equilibria. Previous work has argued that scale-free topologies maximize a system's overall rationality in this setup. Here we show that while, for certain games, it is true that increasing degree heterogeneity of complex networks enhances rationality, rationality-optimal configurations are not scale-free. For the Prisoner's Dilemma and Stag Hunt games, we provide analytic arguments complemented by numerical optimization experiments to demonstrate that core-periphery networks composed of a few dominant hub nodes surrounded by a periphery of very low degree nodes give strikingly smaller overall deviations from rationality than scale-free networks. Similarly, for the Battle of the Sexes and the Matching Pennies games, we find that the optimal network structure is also a core-periphery graph but with a smaller difference in the average degrees of the core and the periphery. These results provide insight on the interplay between the topological structure of socioecological systems and their collective cognitive behavior, with potential applications to understanding wealth inequality and the structural features of the network of global corporate control.

  19. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice.

    PubMed

    Ma, Jianxin; Jackson, Scott A

    2006-02-01

    The abundance of repetitive DNA varies greatly across centromeres within an individual or between different organisms. To shed light on the molecular mechanisms of centromere repeat proliferation, we performed structural analysis of LTR-retrotransposons, mostly centromere retrotransposons of rice (CRRs), and phylogenetic analysis of CentO satellite repeats harbored in the core region of the rice chromosome 4 centromere (CEN4). The data obtained demonstrate that the CRRs in the centromeric region we investigated have been enriched more significantly by recent rounds of segmental duplication than by original integration of active elements, suggesting that segmental duplication is an important process for CRR accumulation in the centromeric region. Our results also indicate that segmental duplication of large arrays of satellite repeats is primarily responsible for the amplification of satellite repeats, contributing to rapid reshuffling of CentO satellites. Intercentromere satellite homogenization was revealed by genome-wide comparison of CentO satellite monomers. However, a 10-bp duplication present in nearly half of the CEN4 monomers was found to be completely absent in rice centromere 8 (CEN8), suggesting that CEN4 and CEN8 may represent two different stages in the evolution of rice centromeres. These observations, obtained from the only complex eukaryotic centromeres to have been completely sequenced thus far, depict the evolutionary dynamics of rice centromeres with respect to the nature, timing, and process of centromeric repeat amplification.

  20. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  1. Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor.

    PubMed

    Usha, Sruthi P; Gupta, Banshi D

    2018-03-15

    A lossy mode resonance (LMR) based sensor for urinary p-cresol testing on optical fiber substrate is developed. The sensor probe fabrication includes dip coating of nanocomposite layer of zinc oxide and molybdenum sulphide (ZnO/MoS 2 ) over unclad core of optical fiber as the transducer layer followed by the layer of molecular imprinted polymer (MIP) as the recognition medium. The addition of molybdenum sulphide in the transducer layer increases the absorption of light in the medium which enhances the LMR properties of zinc oxide thereby increasing the conductivity and hence the sensitivity of the sensor. The sensor probe is characterized for p-cresol concentration range from 0µM (reference sample) to 1000µM in artificially prepared urine. Optimizations of various probe fabrication parameters are carried to bring out the sensor's optimal performance with a sensitivity of 11.86nm/µM and 28nM as the limit of detection (LOD). A two-order improvement in LOD is obtained as compared to the recently reported p-cresol sensor. The proposed sensor possesses a response time of 15s which is 8 times better than that reported in the literature utilizing electrochemical method. Its response time is also better than the p-cresol sensor currently available in the market for the medical field. Thus, with a fast response, significant stability and repeatability, the proposed sensor holds practical implementation possibilities in the medical field. Further, the realization of sensor probe over optical fiber substrate adds remote sensing and online monitoring feasibilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, Erika J.; Huang, Chao; Hamilton, Julie

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  3. Multilevel Modeling in Psychosomatic Medicine Research

    PubMed Central

    Myers, Nicholas D.; Brincks, Ahnalee M.; Ames, Allison J.; Prado, Guillermo J.; Penedo, Frank J.; Benedict, Catherine

    2012-01-01

    The primary purpose of this manuscript is to provide an overview of multilevel modeling for Psychosomatic Medicine readers and contributors. The manuscript begins with a general introduction to multilevel modeling. Multilevel regression modeling at two-levels is emphasized because of its prevalence in psychosomatic medicine research. Simulated datasets based on some core ideas from the Familias Unidas effectiveness study are used to illustrate key concepts including: communication of model specification, parameter interpretation, sample size and power, and missing data. Input and key output files from Mplus and SAS are provided. A cluster randomized trial with repeated measures (i.e., three-level regression model) is then briefly presented with simulated data based on some core ideas from a cognitive behavioral stress management intervention in prostate cancer. PMID:23107843

  4. Catheter placement for lysis of spontaneous intracerebral hematomas: does a catheter position in the core of the hematoma allow more effective and faster hematoma lysis?

    PubMed

    Malinova, Vesna; Schlegel, Anna; Rohde, Veit; Mielke, Dorothee

    2017-07-01

    For the fibrinolytic therapy of intracerebral hematomas (ICH) using recombinant tissue plasminogen activator (rtPA), a catheter position in the core of the hematoma along the largest clot diameter was assumed to be optimal for an effective clot lysis. However, it never had been proven that core position indeed enhances clot lysis if compared with less optimal catheter positions. In this study, the impact of the catheter position on the effectiveness and on the time course of clot lysis was evaluated. We analyzed the catheter position using a relative error calculating the distance perpendicular to the catheter's center in relation to hematoma's diameter and evaluated the relative hematoma volume reduction (RVR). The correlation of the RVR with the catheter position was evaluated. Additionally, we tried to identify patterns of clot lysis with different catheter positions. The patient's outcome at discharge was evaluated using the Glasgow outcome score. A total of 105 patients were included in the study. The mean hematoma volume was 56 ml. The overall RVR was 62.7 %. In 69 patients, a catheter position in the core of the clot was achieved. We found no significant correlation between catheter position and hematoma RVR (linear regression, p = 0.14). Core catheter position leads to more symmetrical hematoma RVR. Faster clot lysis happens in the vicinity of the catheter openings. We found no significant difference in the patient's outcome dependent on the catheter position (linear regression, p = 0.90). The catheter position in the core of the hematoma along its largest diameter does not significantly influence the effectiveness of clot lysis after rtPA application.

  5. A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.

    PubMed

    Kim, Seonghun

    2018-02-01

    Mucin-type O-glycans are involved in biological functions on the cell surface as well as the glycoproteins and can also be used as specific carbohydrate biomarkers of many diseases. In this study, I purified a novel core 1 O-linked glycan specific lectin, Hericium erinaceus lecin (HeL), from the fruiting body of the mushroom Hericium erinaceus, which is known as the natural source for a sialic acid-binding lectin. Upon optimization of the purification conditions, a sequence of ion exchange, affinity, ion exchange, and size-exclusion chromatography resulted in the highest yield and best quality of lectin without protease activity. The resulting purified HeL is an apparent hexameric protein with a subunit molecular weight of 15kDa, and a pI of 4.3. In hemagglutination inhibition assay, the purified lectin was only inhibited by glycoproteins containing mucin-type O-glycans and reacted weakly with Galβ(1,3)GalNAc. Glycan array analyses showed that HeL specifically interacts with core 1 O-linked glycans as well as extended O-glycan structures containing sialylation or fucosylation. The glycan binding specificity of HeL is comparable to that of peanut agglutinin for detection of a broader range of extended core 1 O-glycan structures. Taken together, these results provide an efficient and optimized procedure for the purification of HeL from the fruiting body of the mushroom Hericium erinaceus. Moreover, HeL represents a powerful tool for analyzing core 1 and extended core 1 O- glycan structures in diagnosis assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  7. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it maymore » be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.« less

  9. Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization

    NASA Astrophysics Data System (ADS)

    Blanchet, David; Fontaine, Bruno

    2017-09-01

    The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.

  10. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.

  11. Resource allocation for error resilient video coding over AWGN using optimization approach.

    PubMed

    An, Cheolhong; Nguyen, Truong Q

    2008-12-01

    The number of slices for error resilient video coding is jointly optimized with 802.11a-like media access control and the physical layers with automatic repeat request and rate compatible punctured convolutional code over additive white gaussian noise channel as well as channel times allocation for time division multiple access. For error resilient video coding, the relation between the number of slices and coding efficiency is analyzed and formulated as a mathematical model. It is applied for the joint optimization problem, and the problem is solved by a convex optimization method such as the primal-dual decomposition method. We compare the performance of a video communication system which uses the optimal number of slices with one that codes a picture as one slice. From numerical examples, end-to-end distortion of utility functions can be significantly reduced with the optimal slices of a picture especially at low signal-to-noise ratio.

  12. Fatigue design of a cellular phone folder using regression model-based multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Kim, Young Gyun; Lee, Jongsoo

    2016-08-01

    In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.

  13. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    NASA Astrophysics Data System (ADS)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  14. Air-Gapped Structures as Magnetic Elements for Use in Power Processing Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.

    1977-01-01

    Methodical approaches to the design of inductors for use in LC filters and dc-to-dc converters using air gapped magnetic structures are presented. Methods for the analysis and design of full wave rectifier LC filter circuits operating with the inductor current in both the continuous conduction and the discontinuous conduction modes are also described. In the continuous conduction mode, linear circuit analysis techniques are employed, while in the case of the discontinuous mode, the method of analysis requires computer solutions of the piecewise linear differential equations which describe the filter in the time domain. Procedures for designing filter inductors using air gapped cores are presented. The first procedure requires digital computation to yield a design which is optimized in the sense of minimum core volume and minimum number of turns. The second procedure does not yield an optimized design as defined above, but the design can be obtained by hand calculations or with a small calculator. The third procedure is based on the use of specially prepared magnetic core data and provides an easy way to quickly reach a workable design.

  15. Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste

    2013-03-01

    Tensor contractions are generalized multidimensional matrix multiplication operations that widely occur in quantum chemistry. Efficient execution of tensor contractions on Graphics Processing Units (GPUs) requires several challenges to be addressed, including index permutation and small dimension-sizes reducing thread block utilization. Moreover, to apply the same optimizations to various expressions, we need a code generation tool. In this paper, we present our approach to automatically generate CUDA code to execute tensor contractions on GPUs, including management of data movement between CPU and GPU. To evaluate our tool, GPU-enabled code is generated for the most expensive contractions in CCSD(T), a key coupledmore » cluster method, and incorporated into NWChem, a popular computational chemistry suite. For this method, we demonstrate speedup over a factor of 8.4 using one GPU (instead of one core per node) and over 2.6 when utilizing the entire system using hybrid CPU+GPU solution with 2 GPUs and 5 cores (instead of 7 cores per node). Finally, we analyze the implementation behavior on future GPU systems.« less

  16. Thermoregulatory and Immune Responses During Cold Exposure: Effects of Repeated Cold Exposure and Acute Exercise

    DTIC Science & Technology

    2000-03-01

    shivering thermogenesis and vasoconstriction) during cold exposure is unknown. Thus, a series of experiments were executed to determine if serial cold ...to cold exposure? The results of these studies suggest that 1) serial cold water blunts shivering leadmg™ower core temperatures, 2) thermoregulatory...fatigues (i.e., causes blunted shivering thermogenesis and vasoconstriction) during cold exposure is unknown. Thus, a series of experiments were

  17. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    PubMed

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Genetic mapping of 15 human X chromosomal forensic short tandem repeat (STR) loci by means of multi-core parallelization.

    PubMed

    Diegoli, Toni Marie; Rohde, Heinrich; Borowski, Stefan; Krawczak, Michael; Coble, Michael D; Nothnagel, Michael

    2016-11-01

    Typing of X chromosomal short tandem repeat (X STR) markers has become a standard element of human forensic genetic analysis. Joint consideration of many X STR markers at a time increases their discriminatory power but, owing to physical linkage, requires inter-marker recombination rates to be accurately known. We estimated the recombination rates between 15 well established X STR markers using genotype data from 158 families (1041 individuals) and following a previously proposed likelihood-based approach that allows for single-step mutations. To meet the computational requirements of this family-based type of analysis, we modified a previous implementation so as to allow multi-core parallelization on a high-performance computing system. While we obtained recombination rate estimates larger than zero for all but one pair of adjacent markers within the four previously proposed linkage groups, none of the three X STR pairs defining the junctions of these groups yielded a recombination rate estimate of 0.50. Corroborating previous studies, our results therefore argue against a simple model of independent X chromosomal linkage groups. Moreover, the refined recombination fraction estimates obtained in our study will facilitate the appropriate joint consideration of all 15 investigated markers in forensic analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Toddlers' food preferences. The impact of novel food exposure, maternal preferences and food neophobia.

    PubMed

    Howard, Anika J; Mallan, Kimberley M; Byrne, Rebecca; Magarey, Anthea; Daniels, Lynne A

    2012-12-01

    Food preferences have been identified as a key determinant of children's food acceptance and consumption. The aim of this study was to identify factors that influence children's liking for fruits, vegetables and non-core foods. Participants were Australian mothers (median age at delivery=31years, 18-46years) and their two-year-old children (M=24months, SD=1month; 52% female) allocated to the control group (N=245) of the NOURISH RCT. The effects of repeated exposure to new foods, maternal food preferences and child food neophobia on toddlers' liking of vegetables, fruits and non-core foods and the proportion never tried were examined via hierarchical regression models; adjusting for key maternal (age, BMI, education) and child covariates (birth weight Z-score, gender), duration of breastfeeding and age of introduction to solids. Maternal preferences corresponded with child preferences. Food neophobia among toddlers was associated with liking fewer vegetables and fruits, and trying fewer vegetables. Number of repeated exposures to new food was not significantly associated with food liking at this age. Results highlight the need to: (i) encourage parents to offer a wide range of foods, regardless of their own food preferences, and (ii) provide parents with guidance on managing food neophobia. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Photopic Negative Response Obtained Using a Handheld Electroretinogram Device: Determining the Optimal Measure and Repeatability

    PubMed Central

    Wu, Zhichao; Hadoux, Xavier; Hui, Flora; Sarossy, Marc G.; Crowston, Jonathan G.

    2016-01-01

    Purpose To determine the measure of the photopic negative response (PhNR) of the full-field electroretinogram (ERG) that exhibits the optimal level of test-retest repeatability, and examine its repeatability under different conditions using a handheld, nonmydriatic ERG system and self-adhering skin electrodes. Methods Multiple ERG recordings (using 200 sweeps each) were performed in both eyes of 20 normal participants at two different sessions to compare its coefficient of repeatability (CoR; where 95% of the test-retest difference is expected to lie) between different PhNR measures and under different testing conditions (within and between examiners, and between sessions). Results The ratio between the PhNR trough to b-wave peak and b-wave peak to a-wave trough amplitude (PhNR/B ratio) exhibited the lowest CoR relative to its effective dynamic range (30 ± 4%) when including three recordings. There were no significant changes in the PhNR/B ratio over seven measurements (4 right and 3 left eyes) at either session (P ≥ 0.100), or significant difference in its CoR between different testing conditions (P = 0.314). Conclusion The PhNR/B ratio was the measure that minimized variability, and its measurements using a novel handheld ERG system with self-adhering skin electrodes and the protocols described in this study were comparable under different testing conditions and over multiple recordings. Translational Relevance The PhNR can be measured for clinical and research purposes using a simple-to-implement technique that is consistent within and between visits, and also between examiners. PMID:27540494

Top