Sample records for core study rats

  1. Electrolytic lesions of the nucleus accumbens core (but not the medial shell) and the basolateral amygdala enhance context-specific locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Gerety, Lyle P; Guerriero, Rejean M

    2009-06-01

    We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. Copyright (c) 2009 APA, all rights reserved.

  2. Effect of hypoxia on metabolic rate, core body temperature, and c-fos expression in the naked mole rat.

    PubMed

    Nathaniel, Thomas I; Otukonyong, Effiong; Abdellatif, Ahmed; Soyinka, Julius O

    2012-10-01

    Recent investigations of hypoxia physiology in the naked mole rat have opened up an interesting line of research into the basic physiological and genomic alterations that accompany hypoxia survival. The extent to which such findings connect the effect of hypoxia to metabolic rate (O₂ consumption), core body temperature (Tb), and transcripts encoding the immediate early gene product (such as c-fos) under a constant ambient temperature (Ta) is not well known. We investigated this issue in the current study. Our first sets of experiments measured Tb and metabolic rates during exposure of naked mole rats to hypoxia over a constant Ta. Hypoxia significantly decreased metabolic rates in the naked mole rat. Although core Tb also decreased during hypoxia, the effect of hypoxia in suppressing core Tb was not significant. The second series of experiments revealed that c-fos protein and mRNA expression in the hippocampus neurons (CA1) increased in naked mole rats that were repeatedly exposed to 3% O₂ for 60 min per day for 5 days when compared to normoxia. Our findings provide evidence for the up-regulation of c-fos and suppression of metabolic rate in hypoxia tolerating naked mole rats under constant ambient temperature. Metabolic suppression and c-fos upregulation constitute part of the physiological complex associated with adaptation to hypoxia. Published by Elsevier Ltd.

  3. Peri-OVLT E-series prostaglandins and core temperature do not increase after intravenous IL-1beta in pregnant rats.

    PubMed

    Fewell, James E; Eliason, Heather L; Auer, Roland N

    2002-08-01

    Rats have an attenuated febrile response to endogenous pyrogen near the term of pregnancy. Given the fundamental role of E-series prostaglandins (PGEs) in mediating the febrile response to blood-borne endogenous pyrogen, the present experiments were carried out to determine whether PGEs increase in the area surrounding the organum vasculosum laminae terminalis (peri-OVLT) of near-term pregnant (P) rats as in nonpregnant (NP) rats after intravenous (iv) administration of recombinant rat interleukin-1beta (rrIL-1beta). Core temperature was measured by telemetry and peri-OVLT interstitial fluid was sampled in 12 NP and 12 P chronically instrumented, Sprague-Dawley rats by microdialysis for determination of total PGEs by radioimmunoassay. Basal core temperatures were higher in NP compared with P rats (NP 37.9 degrees C +/- 0.5, P 36.9 degrees C +/- 0.4; P < 0.05), but basal peri-OVLT PGEs were similar in both groups (NP 260 +/- 153 pg/ml, P 278 +/- 177 pg/ml; P =not significant). Intravenous administration of rrIL-1beta to NP rats produced a significant increase in core temperature with a latency, magnitude, and duration of 10 min, 0.87 degrees C, and at least 170 min, respectively; peri-OVLT PGEs were increased significantly by 30 min and averaged 270% above basal levels throughout the experiment. In P rats, however, neither core temperature nor peri-OVLT PGEs increased significantly after iv administration of rrIL-1beta. Intravenous administration of vehicle did not significantly alter core temperature or peri-OVLT PGEs in either group of rats. Thus peri-OVLT PGEs do not increase in P rats as they do in NP rats after iv administration of rrIL-1beta. The mechanism of this interesting component of the maternal adaptation to pregnancy, which likely plays a major role in mediating the attenuated febrile response to endogenous pyrogen near the term of pregnancy, warrants further investigation.

  4. Resistance exercise decreases heroin self-administration and alters gene expression in the nucleus accumbens of heroin-exposed rats.

    PubMed

    Smith, Mark A; Fronk, Gaylen E; Abel, Jean M; Lacy, Ryan T; Bills, Sarah E; Lynch, Wendy J

    2018-04-01

    Preclinical studies consistently report that aerobic exercise decreases drug self-administration and other forms of drug-seeking behavior; however, relatively few studies have examined other types of physical activity. The purpose of the present study was to examine the effects of resistance exercise (i.e., strength training) on heroin self-administration and mRNA expression of genes known to mediate opioid reinforcement and addictive behavior in the nucleus accumbens (NAc) of heroin-exposed rats. Female rats were obtained during late adolescence and divided into two groups. Resistance exercise rats were trained to climb a vertical ladder wearing a weighted vest; sedentary control rats were placed repeatedly on the ladder oriented horizontally on its side. All rats were implanted with intravenous catheters and trained to self-administer heroin on a fixed ratio (FR1) schedule of reinforcement. mRNA expression in the NAc core and shell was examined following behavioral testing. Resistance exercise significantly decreased heroin self-administration, resulting in a downward shift in the dose-effect curve. Resistance exercise also reduced mRNA expression for mu opioid receptors and dopamine D1, D2, and D3 receptors in the NAc core. Resistance exercise increased mRNA expression of dopamine D5 receptors in the NAc shell and increased mRNA expression of brain-derived neurotrophic factor (exons I, IIB, IIC, IV, VI, IX) in the NAc core. These data indicate that resistance exercise decreases the positive reinforcing effects of heroin and produces changes in opioid and dopamine systems in the NAc of heroin-exposed rats.

  5. Augmentation of Heroin Seeking Following Chronic Food Restriction in the Rat: Differential Role for Dopamine Transmission in the Nucleus Accumbens Shell and Core.

    PubMed

    D'Cunha, Tracey M; Daoud, Emilie; Rizzo, Damaris; Bishop, Audrey B; Russo, Melissa; Mourra, Gabrielle; Hamel, Laurie; Sedki, Firas; Shalev, Uri

    2017-04-01

    Caloric restriction during drug abstinence increases the risk for relapse in addicts. In rats, chronic food restriction during a period of withdrawal following heroin self-administration augments heroin seeking. The mechanisms underlying this effect are largely unknown. Here, we investigated the role of nucleus accumbens (NAc) shell and core dopamine (DA) in food restriction-induced augmentation of heroin seeking. Rats were trained to self-administer heroin (0.1 mg/kg/infusion) for 10 days. Next, rats were moved to the animal colony for a withdrawal period, during which rats were food restricted to 90% of their original body weight (FDR group) or given unrestricted access to food (sated group). On day 14 of food restriction, rats were returned to the operant conditioning chambers for a heroin-seeking test under extinction conditions. Extracellular DA levels were assessed using in vivo microdialysis. In separate experiments, the DA D1-like receptor antagonist SCH39166 (12.5, 25.0, or 50.0 ng/side) was administered into the NAc before the heroin-seeking test. In the NAc shell, pre-test exposure to the heroin-associated context increased DA only in FDR rats; but in the NAc core, DA increased regardless of feeding condition. Food restriction significantly augmented heroin seeking and increased DA in the NAc shell and core during the test. Intra-NAc shell administration of SCH39166 decreased heroin seeking in all rats. In contrast, in the NAc core, SCH39166 selectively decreased the augmentation of heroin-seeking induced by chronic food restriction. Taken together, these results suggest that activation of the DA D1-like receptor in the NAc core is important for food restriction-induced augmentation of heroin seeking.

  6. Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex.

    PubMed

    Bassareo, Valentina; De Luca, Maria Antonietta; Di Chiara, Gaetano

    2007-04-01

    Conditioned stimuli (CSs) by pavlovian association with reinforcing drugs (US) are thought to play an important role in the acquisition, maintenance and relapse of drug dependence. The aim of this study was to investigate by microdialysis the impact of pavlovian drug CSs on behaviour and on basal and drug-stimulated dopamine (DA) in three terminal DA areas: nucleus accumbens shell, core and prefrontal cortex (PFCX). Conditioned rats were trained once a day for 3 days by presentation of Fonzies filled box (FFB, CS) for 10 min followed by administration of morphine (1 mg/kg), nicotine (0.4 mg/kg) or saline, respectively. Pseudo-conditioned rats were presented with the FFB 10 h after drug or saline administration. Rats were implanted with microdialysis probes in the shell, core and PFCX. The effect of stimuli conditioned with morphine and nicotine on DA and on DA response to drugs was studied. Drug CSs elicited incentive reactions and released DA in the shell and PFCX but not in the core. Pre-exposure to morphine CS potentiated DA release to morphine challenge in the shell but not in the core and PFCX. This effect was related to the challenge dose of morphine and was stimulus-specific since a food CS did not potentiate the shell DA response to morphine. Pre-exposure to nicotine CS potentiated DA release in the shell and PFCX. The results show that drug CSs stimulate DA release in the shell and medial PFCX and specifically potentiate the primary stimulant drug effects on DA transmission.

  7. Chronic suppression of μ-opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats.

    PubMed

    Lenard, N R; Zheng, H; Berthoud, H-R

    2010-06-01

    To test the hypothesis that micro-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic micro-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. Chronic blockade of micro-opioid receptor signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4-5 days) of the irreversible receptor antagonist beta-funaltrexamine (BFNA) over 3-5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure and regular chow (each nutritionally complete) or regular chow only. Intake of each food item, body weight and body fat mass were monitored throughout the study. The BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain and fat accretion, compared with vehicle control injections. The injection of BFNA in the core did not significantly change these parameters in chow-fed control rats. The injection of BFNA in the core and shell differentially affected intake of the two palatable food items: in the core, BFNA significantly reduced the intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced the intake of Ensure, but not of high-fat, compared with vehicle treatment. Endogenous micro-opioid receptor signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.

  8. Estradiol alters body temperature regulation in the female mouse.

    PubMed

    Krajewski-Hall, Sally J; Blackmore, Elise M; McMinn, Jessi R; Rance, Naomi E

    2018-01-01

    Hot flushes are due to estrogen withdrawal and characterized by the episodic activation of heat dissipation effectors. Recent studies (in humans and rats) have implicated neurokinin 3 (NK 3 ) receptor signaling in the genesis of hot flushes. Although transgenic mice are increasingly used for biomedical research, there is limited information on how 17β-estradiol and NK 3 receptor signaling alters thermoregulation in the mouse. In this study, a method was developed to measure tail skin temperature (T SKIN ) using a small data-logger attached to the surface of the tail, which, when combined with a telemetry probe for core temperature (T CORE ), allowed us to monitor thermoregulation in freely-moving mice over long durations. We report that estradiol treatment of ovariectomized mice reduced T CORE during the light phase (but not the dark phase) while having no effect on T SKIN or activity. Estradiol also lowered T CORE in mice exposed to ambient temperatures ranging from 20 to 36°C. Unlike previous studies in the rat, estradiol treatment of ovariectomized mice did not reduce T SKIN during the dark phase. Subcutaneous injections of an NK 3 receptor agonist (senktide) in ovariectomized mice caused an acute increase in T SKIN and a reduction in T CORE , consistent with the activation of heat dissipation effectors. These changes were reduced by estradiol, suggesting that estradiol lowers the sensitivity of central thermoregulatory pathways to NK 3 receptor activation. Overall, we show that estradiol treatment of ovariectomized mice decreases T CORE during the light phase, reduces the thermoregulatory effects of senktide and modulates thermoregulation differently than previously described in the rat.

  9. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    PubMed

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. © 2015 American Heart Association, Inc.

  10. Alterations in endogenous circadian rhythm of core temperature in senescent Fischer 344 rats

    NASA Technical Reports Server (NTRS)

    McDonald, R. B.; Hoban-Higgins, T. M.; Ruhe, R. C.; Fuller, C. A.; Horwitz, B. A.

    1999-01-01

    We assessed whether alterations in endogenous circadian rhythm of core temperature (CRT) in aging rats are associated with chronological time or with a biological marker of senescence, i.e., spontaneous rapid body weight loss. CRT was measured in male Fischer 344 (F344) rats beginning at age 689 days and then continuously until death. Young rats were also monitored. The rats were housed under constant dim red light at 24-26 degrees C, and core temperature was recorded every 10 min via biotelemetry. The CRT amplitude of the body weight-stable (presenescent) old rats was significantly less than that of young rats at all analysis periods. At the onset of spontaneous rapid weight loss (senescence), all measures of endogenous CRT differed significantly from those in the presenescent period. The suprachiasmatic nucleus (a circadian pacemaker) of the senescent rats maintained its light responsiveness as determined by an increase in c-fos expression after a brief light exposure. These data demonstrate that some characteristics of the CRT are altered slowly with chronological aging, whereas others occur rapidly with the onset of senescence.

  11. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Chen, Haiqin; Mao, Bingyong; Yang, Qin; Zhao, Jianxin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei

    2017-04-01

    As a long-standing biomedical model, rats have been frequently used in studies exploring the correlations between gastrointestinal (GI) bacterial biota and diseases. In the present study, luminal and mucosal samples taken along the longitudinal axis of the rat digestive tract were subjected to 16S rRNA gene sequencing-based analysis to determine the baseline microbial composition. Results showed that the community diversity increased from the upper to lower GI segments and that the stratification of microbial communities as well as shift of microbial metabolites were driven by biogeographic location. A greater proportion of lactate-producing bacteria (such as Lactobacillus, Turicibacter and Streptococcus) were found in the stomach and small intestine, while anaerobic Lachnospiraceae and Ruminococcaceae, fermenting carbohydrates and plant aromatic compounds, constituted the bulk of the large-intestinal core microbiota where topologically distinct co-occurrence networks were constructed for the adjacent luminal and mucosal compartments. When comparing the GI microbiota from different hosts, we found that the rat microbial biogeography might represent a new reference, distinct from other murine animals. Our study provides the first comprehensive characterization of the rat GI microbiota landscape for the research community, laying the foundation for better understanding and predicting the disease-related alterations in microbial communities.

  12. D1 receptors in the nucleus accumbens-shell, but not the core, are involved in mediating ethanol-seeking behavior of alcohol-preferring (P) rats.

    PubMed

    Hauser, S R; Deehan, G A; Dhaher, R; Knight, C P; Wilden, J A; McBride, W J; Rodd, Z A

    2015-06-04

    Clinical and preclinical research suggest that activation of the mesolimbic dopamine (DA) system is involved in mediating the rewarding actions of drugs of abuse, as well as promoting drug-seeking behavior. Inhibition of DA D1 receptors in the nucleus accumbens (Acb) can reduce ethanol (EtOH)-seeking behavior of non-selective rats triggered by environmental context. However, to date, there has been no research on the effects of D1 receptor agents on EtOH- seeking behavior of high alcohol-preferring (P) rats following prolonged abstinence. The objective of the present study was to examine the effects of microinjecting the D1 antagonist SCH 23390 or the D1 agonist A-77636 into the Acb shell or Acb core on spontaneous recovery of EtOH-seeking behavior. After 10 weeks of concurrent access to EtOH and water, P rats underwent seven extinction sessions (EtOH and water withheld), followed by 2 weeks in their home cages without access to EtOH or operant sessions. In the 2nd week of the home cage phase, rats were bilaterally implanted with guide cannula aimed at the Acb shell or Acb core; rats were allowed 7d ays to recover before EtOH-seeking was assessed by the Pavlovian Spontaneous Recovery (PSR) model. Administration of SCH23390 (1μg/side) into the Acb shell inhibited responding on the EtOH lever, whereas administration of A-77636 (0.125μg/side) increased responding on the EtOH lever. Microinfusion of D1 receptor agents into the Acb core did not alter responding on the EtOH lever. Responses on the water lever were not altered by any of the treatments. The results suggest that activation of D1 receptors within the Acb shell, but not Acb core, are involved in mediating PSR of EtOH-seeking behavior of P rats. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Gene transcripts selectively down-regulated in the shell of the nucleus accumbens long after heroin self-administration are up-regulated in the core independent of response contingency.

    PubMed

    Jacobs, Edwin H; de Vries, Taco J; Smit, August B; Schoffelmeer, Anton N M

    2004-01-01

    Long-term drug-induced alterations in neurotransmission within the nucleus accumbens (NAc) shell and core may underlie relapse to drug-seeking behavior and drug-taking upon re-exposure to drugs and drug-associated stimuli (cues) during abstinence. Using an open screening strategy, we recently identified 25 gene transcripts, encoding for proteins involved in neuronal functioning and structure that are down-regulated in rat NAc shell after contingent (active), but not after non-contingent (passive), heroin administration. Studying the expression of the same transcripts in the NAc core by means of quantitative PCR, we now demonstrate that most of these transcripts are up-regulated in that NAc subregion long (3 weeks) after heroin self-administration in rats. A similar up-regulation in gene expression was also apparent in the NAc core of animals with a history of non-contingent heroin administration (yoked controls). These data indicate that heroin self-administration differentially regulates genes in the NAc core as compared with the shell. Moreover, whereas cognitive processes involved in active drug self-administration (e.g., instrumental learning) seems to direct gene expression in the NAc shell, neuroplasticity in the NAc core may be due to the pharmacological effects of heroin (including Pavlovian conditioning), as expressed in rats upon contingent as well as non-contingent administration of heroin.

  14. Alterations in heat loss and heat production mechanisms in rat exposed to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Horwitz, B. A.; Oyama, J.

    1982-01-01

    A review of studies investigating the thermal response of rats exposed to hypergravic fields well below maximum tolerance levels is presented. It is concluded that several lines of evidence indicate that the neural switching network for temperature regulation and cardiovascular channeling of blood flow is transiently affected during the first hour a rat is exposed to hypergravity. Moreover, even after one hour of exposure, when the core temperature has fallen several degrees, shivering and nonshivering thermogenesis are not fully activated. Only after prolonged exposure to hypergravic fields do heat production mechanisms recover sufficiently to bring the core temperature back to a normal level. Thus, the data indicate a more rapid recovery of effector mechanisms for heat loss than for heat production.

  15. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats.

    PubMed

    Salvioni, Lucia; Fiandra, Luisa; Del Curto, Maria Dorly; Mazzucchelli, Serena; Allevi, Raffaele; Truffi, Marta; Sorrentino, Luca; Santini, Benedetta; Cerea, Matteo; Palugan, Luca; Corsi, Fabio; Colombo, Miriam

    2016-08-01

    In this study, insulin-containing nanoparticles were loaded into pellet cores and orally administered to diabetic rats. Polyethylene imine-based nanoparticles, either placebo or loaded with insulin, were incorporated by extrusion and spheronization technology into cores that were subsequently coated with three overlapping layers and a gastroresistant film. The starting and coated systems were evaluated in vitro for their physico-technololgical characteristics, as well as disintegration and release performance. Nanoparticles-loaded cores showed homogeneous particle size distribution and shape. When a superdisintegrant and a soluble diluent were included in the composition enhanced disintegration and release performance were observed. The selected formulations, coated either with enteric or three-layer films, showed gastroresistant and release delayed behavior in vitro, respectively. The most promising formulations were finally tested for their hypoglycemic effect in diabetic rats. Only the nanoformulations loaded into the three-layer pellets were able to induce a significant hypoglycemic activity in diabetic rats. Our results suggest that this efficient activity could be attributed to a retarded release of insulin into the distal intestine, characterized by relatively low proteolytic activity and optimal absorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. MODULATING EFFECT OF BODY TEMPERATURE ON THE TOXIC RESPONSE PRODUCED BY THE PESTICIDE CHLORIDEMEFORM IN RATS

    EPA Science Inventory

    Previous studies from this laboratory have demonstrated significant deficits in cardiovascular function in rats exposed to the pesticide chlordimeform (CDM) when body core temperature (Tco) was maintained at 37oC. o investigate the role of Tco on CDM toxicity, similar experiments...

  17. Ceftriaxone treatment affects the levels of GLT1 and ENT1 as well as ethanol intake in alcohol-preferring rats.

    PubMed

    Sari, Youssef; Sreemantula, Sai N; Lee, Moonnoh R; Choi, Doo-Sup

    2013-11-01

    Studies have demonstrated that deletion of equilibrative nucleoside transporter 1 (ENT1) is associated with reduced glutamate transporter 1 (GLT1) level, and consequently increased ethanol intake. In this study, we measured changes in GLT1 and ENT1 levels in prefrontal cortex (PFC), and nucleus accumbens (NAc) core and shell associated with alcohol drinking in alcohol-preferring (P) rats. We examined, then, whether ceftriaxone (CEF) would affect both GLT1 and ENT1 levels in these brain regions. P rats were given 24-h concurrent access to 15 and 30% ethanol, water, and food for 5 weeks. On Week 6, P rats received 100 mg/kg CEF (i.p.) or a saline vehicle for five consecutive days. Ethanol intake was measured daily for 8 days starting on the first day of injections. We found a significant reduction in daily ethanol intake in CEF-treated group, starting on Day 2 of injections. Western blot for GLT1 and binding assay for ENT1 revealed downregulation of GLT1 level, whereas ENT1 levels were increased in the NAc core and NAc shell, respectively, but not in the PFC in saline vehicle group. Importantly, CEF treatment reversed these effects in both NAc core and shell. These findings provide evidence for potential regulatory effects of CEF on both GLT1 and ENT1 expression in reducing ethanol intake.

  18. The extracellular matrix of rat pacinian corpuscles: an analysis of its fine structure.

    PubMed

    Dubový, P; Bednárová, J

    1999-12-01

    The Pacinian corpuscle consists of a sensory axon terminal that is enveloped by two different structures, the inner core and the capsule. Since proteoglycans are extremely water soluble and are extracted by conventional methods for electron microscopy, the current picture of the structural composition of the extracellular matrix in the inner core and the capsule of the Pacinian corpuscle is incomplete. To study the structural composition of the extracellular matrix of the Pacinian corpuscles, cationic dyes (ruthenium red, alcian blue, acridine orange) and tannic acid were applied simultaneously with the aldehyde fixation. The interosseal Pacinian corpuscles of the rat were fixed either in 2% formaldehyde and 1.5% glutaraldehyde, with the addition of one of these cationic dyes or, in Zamboni's fixative, with tannic acid added. The cationic dyes and tannic acid revealed a different structural pattern of proteoglycans in the extracellular matrix in the inner core and in the capsule of the rat Pacinian corpuscles. The inner core surrounding the sensory axon terminal is a compartment containing proteoglycans that were distributed not only in the extracellular matrix but also in the cytoplasm of the lamellae. In addition, this excitable domain was separated from the capsular fluid by a thick layer of proteoglycans on its surface. An enlarged interlamellar space of the capsule contained large amounts of proteoglycans that were removed by digestion with chondroitinase-ABC. Ruthenium red and alcian blue provided only electron dense granules, probably corresponding to collapsed monomeric proteoglycan molecules. Acridine orange and tannic acid preserved proteoglycans very well and made it possible to visualize them as "bottlebrush" structures in the electron microscope. These results show that the inner core and the capsule of rat Pacinian corpuscles have different structural patterns of proteoglycans, which are probably involved in different functions.

  19. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    PubMed

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  20. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats

    PubMed Central

    Ishiwari, Keita; Madson, Lisa J.; Farrar, Andrew M.; Mingote, Susana M.; Valenta, John P.; DiGianvittorio, Michael D.; Frank, Lauren E.; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D.

    2009-01-01

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5–10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 µg or 5.0 µg in 0.5 µl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core. PMID:17223207

  1. CHANGES IN THE RAT EEG SPECTRA AND CORE TEMPERATURE AFTER EXPOSURE TO DIFFERENT DOSES OF CHLORPYRIFOS.

    EPA Science Inventory

    Our previous study showed that single exposure to 25 mg/kg (p.o.) of organophsphate pesticide chlorpyrifos (CHP) led to significant alterations in all EEG frequency bands within 0.1-50 Hz range, reduction in core temperature (Tc) and motor activity (MA). The alterations in EEG pe...

  2. Oxygen consumption during cold exposure at 2.1 G in rats adapted to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Horowitz, J.; Patterson, S.; Monson, C.

    1985-01-01

    The thermoregulation ability of rats exposed to various gravitational fields is examined. Male Sprague-Dawley rats were exposed to 22 C and 1 G, and 9 C and 2.1 G in experiment one, 1 G, 2.4 G, 5.8 G and 22 + or - 1.5 C in experiment two, and 1 G, 19-22 C, and 5 C in experiment three. It is observed that the core temperature in the control rats was 36.8 + or 0.4 C at 22C and 30.8 + or - 0.6 C at 9 C, and oxygen consumption dropped from 37 + or - 0.3 C core temperature at 22 C, 36.4 + or - 0.3 C at 9 C, 0.4 oxygen consumption was 8.18 + or - 0.9 ml/min at 22 C, and 14.2 + or - 0.4 ml/min at 9 C. The data from experiment two reveal that tail temperature in the control rats peaked at 2.4 G and at 5.8 G for the acclimated rats, and in experiment three a greater decrease in core temperature is detected in the 2.1-G rats. It is noted that prior acclimation to 2.1 G enhances the thermoregulation ability when exposed to the cold.

  3. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  4. Nucleus Accumbens Core and Shell Differentially Encode Reward-Associated Cues after Reinforcer Devaluation

    PubMed Central

    West, Elizabeth A.

    2016-01-01

    Nucleus accumbens (NAc) neurons encode features of stimulus learning and action selection associated with rewards. The NAc is necessary for using information about expected outcome values to guide behavior after reinforcer devaluation. Evidence suggests that core and shell subregions may play dissociable roles in guiding motivated behavior. Here, we recorded neural activity in the NAc core and shell during training and performance of a reinforcer devaluation task. Long–Evans male rats were trained that presses on a lever under an illuminated cue light delivered a flavored sucrose reward. On subsequent test days, each rat was given free access to one of two distinctly flavored foods to consume to satiation and were then immediately tested on the lever pressing task under extinction conditions. Rats decreased pressing on the test day when the reinforcer earned during training was the sated flavor (devalued) compared with the test day when the reinforcer was not the sated flavor (nondevalued), demonstrating evidence of outcome-selective devaluation. Cue-selective encoding during training by NAc core (but not shell) neurons reliably predicted subsequent behavioral performance; that is, the greater the percentage of neurons that responded to the cue, the better the rats suppressed responding after devaluation. In contrast, NAc shell (but not core) neurons significantly decreased cue-selective encoding in the devalued condition compared with the nondevalued condition. These data reveal that NAc core and shell neurons encode information differentially about outcome-specific cues after reinforcer devaluation that are related to behavioral performance and outcome value, respectively. SIGNIFICANCE STATEMENT Many neuropsychiatric disorders are marked by impairments in behavioral flexibility. Although the nucleus accumbens (NAc) is required for behavioral flexibility, it is not known how NAc neurons encode this information. Here, we recorded NAc neurons during a training session in which rats learned that a cue predicted a specific reward and during a test session when that reward value was changed. Although encoding in the core during training predicted the ability of rats to change behavior after the reward value was altered, the NAc shell encoded information about the change in reward value during the test session. These findings suggest differential roles of the core and shell in behavioral flexibility. PMID:26818502

  5. Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage

    PubMed Central

    Dang, Ge; Yang, Yuefan; Wu, Gang; Hua, Ya; Keep, Richard F.; Xi, Guohua

    2016-01-01

    Erythrolysis occurs in the clot after intracerebral hemorrhage (ICH) and the release of hemoglobin causes brain injury but it is unclear when such lysis occurs. The present study examined early erythrolysis in rats. ICH rats had an intra-caudate injection of 100 µl autologous blood and sham rats had a needle insertion. All rats had T2 and T2* MRI scanning and brains were used for histology and CD163 (a hemoglobin scavenger receptor) and DARPP-32 (a neuronal marker) immunohistochemistry. There was marked heterogeneity within the hematoma on T2* MRI, with a hyper- or isointense core and a hypointense periphery. Hematoxylin and eosin staining in the same animals showed significant erythrolysis in the core with the formation of erythrocyte ghosts. The degree of erythrolysis correlated with the severity of perihematomal neuronal loss. Perihematomal CD163 was increased by day 1 after ICH and may be involved in clearing hemoglobin caused by early hemolysis. Furthermore, ICH resulted in more severe erythrolysis, neuronal loss and perihematomal CD163 upregulation in spontaneously hypertensive rats compared to Wistar Kyoto rats. In conclusions, T2*MRI detectable early erythrolysis occurred in the clot after ICH, and activated CD163. Hypertension is associated with enhanced erythrolysis in the hematoma. PMID:27783383

  6. Dynamics of myelin content decrease in the rat stroke model

    NASA Astrophysics Data System (ADS)

    Kisel, A.; Khodanovich, M.; Atochin, D.; Mustafina, L.; Yarnykh, V.

    2017-08-01

    The majority of studies were usually focused on neuronal death after brain ischemia; however, stroke affects all cell types including oligodendrocytes that form myelin sheath in the CNS. Our study is focused on the changes of myelin content in the ischemic core and neighbor structures in early terms (1, 3 and 10 days) after stroke. Stroke was modeled with middle cerebral artery occlusion (MCAo) in 15 male rats that were divided into three groups by time points after operation. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. The significant demyelination was found in the ischemic core, corpus callosum, anterior commissure, whereas myelin content was increased in caudoputamen, internal capsule and piriform cortex compared with the contralateral hemisphere. The motor cortex showed a significant increase of myelin content on the 1st day and a significant decrease on the 3rd and 10th days after MCAo. These results suggest that stroke influences myelination not only in the ischemic core but also in distant structures.

  7. Design and intestinal mucus penetration mechanism of core-shell nanocomplex.

    PubMed

    Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui

    2018-02-28

    The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Systemic salt loading decreases body temperature and increases heat-escape/cold-seeking behaviour via the central AT1 and V1 receptors in rats.

    PubMed

    Konishi, Masahiro; Nagashima, Kei; Kanosue, Kazuyuki

    2002-11-15

    Salt loading decreases body core temperature (T(core)) at neutral ambient temperature (26 degrees C) and increases heat-escape/cold-seeking behaviour in desalivated rats. In this study, we tested the hypothesis that brain angiotensin II (AII) and arginine vasopressin (AVP) are associated with these responses. Surgically desalivated rats (n = 28) were administered an injection (S.C., 10 ml kg(-1)) of either normal saline (154 mM, NS) or hypertonic saline (2500 mM, HS) following an intracerebroventricular injection (10 microl kg(-1)) of an AII AT(1)-receptor antagonist (candesartan, 5 microg microl(-1)), an AVP V(1)-receptor antagonist ((beta-mercapto-beta, beta-cyclopenta-methylene propionyl(1), O-Me-Tyr(2), Arg(8))-vasopressin, 0.5 microg microl(-1)), or normal saline (154 mM). Each rat was placed in a behaviour box, first at 26 degrees C for 1 h to allow the measurement of baseline T(core) and movement. The ambient temperature was then elevated to 40 degrees C for the next 2 h, during which time the rat was able to trigger a 0 degrees C air reward for 30 s by moving into a specific area of the box (operant behaviour). The S.C. HS significantly decreased baseline T(core) at 26 degrees C (36.5 +/- 0.1 degrees C) and increased counts of operant behaviour at 40 degrees C (57 +/- 3) compared with results obtained following S.C. NS injection (37.4 +/- 0.1 degrees C and 42 +/- 1, respectively). These responses to s.c. HS were inhibited by the intracerebroventricular injection of AT(1) (37.3 +/- 0.1 degrees C and 43 +/- 2, respectively; P < 0.05) and V(1) antagonists (37.2 +/- 0.2 degrees C and 42 +/- 2, respectively; P < 0.05), although administration of both antagonists with S.C. NS had no effect. These results suggest that brain AII and AVP are involved in the decrease in T(core) observed at neutral ambient temperature and the increase in heat-escape/cold-seeking behaviour in response to osmotic stimulation, via the central AT(1) and V(1) receptors, respectively

  9. Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide.

    PubMed

    Hester, Susan D; Nesnow, Stephen

    2008-03-15

    Conazoles are azole-containing fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay. The goal of this study was to identify pathways and networks of genes that were associated with thyroid tumorigenesis through transcriptional analyses. To this end, we compared transcriptional profiles from tissues of rats treated with a tumorigenic and a non-tumorigenic conazole. Triadimefon, a rat thyroid tumorigen, and myclobutanil, which was not tumorigenic in rats after a 2-year bioassay, were administered in the feed to male Wistar/Han rats for 30 or 90 days similar to the treatment conditions previously used in their chronic bioassays. Thyroid gene expression was determined using high density Affymetrix GeneChips (Rat 230_2). Gene expression was analyzed by the Gene Set Expression Analyses method which clearly separated the tumorigenic treatments (tumorigenic response group (TRG)) from the non-tumorigenic treatments (non-tumorigenic response group (NRG)). Core genes from these gene sets were mapped to canonical, metabolic, and GeneGo processes and these processes compared across group and treatment time. Extensive analyses were performed on the 30-day gene sets as they represented the major perturbations. Gene sets in the 30-day TRG group had over representation of fatty acid metabolism, oxidation, and degradation processes (including PPARgamma and CYP involvement), and of cell proliferation responses. Core genes from these gene sets were combined into networks and found to possess signaling interactions. In addition, the core genes in each gene set were compared with genes known to be associated with human thyroid cancer. Among the genes that appeared in both rat and human data sets were: Acaca, Asns, Cebpg, Crem, Ddit3, Gja1, Grn, Jun, Junb, and Vegf. These genes were major contributors in the previously developed network from triadimefon-treated rat thyroids. It is postulated that triadimefon induces oxidative response genes and activates the nuclear receptor, Ppargamma, initiating transcription of gene products and signaling to a series of genes involved in cell proliferation.

  10. Effects of food restriction on expression of place conditioning and biochemical correlates in rat nucleus accumbens.

    PubMed

    Jung, Caroline; Rabinowitsch, Ariana; Lee, Wei Ting; Zheng, Danielle; de Vaca, Soledad Cabeza; Carr, Kenneth D

    2016-09-01

    When ad libitum-fed rats undergo cocaine place preference conditioning (CPP) but are switched to food restriction for testing, CPP becomes resistant to extinction and correlates with phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 at Ser845 in nucleus accumbens (NAc) core. This study tested whether food restriction increases persistence of morphine CPP and conditioned place aversions (CPA) induced by LiCl and naloxone-precipitated morphine withdrawal. Ad libitum-fed rats were conditioned with morphine (6.0 mg/kg, i.p.), LiCl (50.0/75.0 mg/kg, i.p.), or naloxone (1.0 mg/kg, s.c.) 22 h post-morphine (20.0 mg/kg, s.c.). Half of the subjects were then switched to food restriction. Daily testing resumed 3 weeks later, and brains were harvested when one diet group met extinction criterion. Western analyses probed for pSer845-GluA1, pERK1, and pERK2 in NAc. Food restriction increased persistence of morphine CPP and preference scores correlated with pSer845-GluA1 in NAc core and shell. LiCl CPA was curtailed by food restriction, yet pSer845-GluA1 and pERK2 were elevated in NAc core of food-restricted rats. Food restriction increased persistence of naloxone CPA and elevated pSer845-GluA1 in NAc core and shell, and aversion scores were negatively correlated with pERK1 and pERK2 in NAc core. These results suggest that food restriction prolongs responsiveness to environmental contexts paired with subjective effects of both morphine and morphine withdrawal. A mechanistic scheme, attributing these effects to upregulation of pSer845-GluA1, but subject to override by CPA-specific, pERK2-mediated extinction learning, is explored to accommodate opposite effects of food restriction on LiCl and naloxone CPA.

  11. Blockade of mGluR5 in the nucleus accumbens shell but not core attenuates heroin seeking behavior in rats

    PubMed Central

    Lou, Zhong-ze; Chen, Ling-hong; Liu, Hui-feng; Ruan, Lie-min; Zhou, Wen-hua

    2014-01-01

    Aim: Glutamatergic neurotransmission in the nucleus accumbens (NAc) is crucial for the relapse to heroin seeking. The aim of this study was to determine whether mGluR5 in the NAc core or shell involved in heroin seeking behavior in rats. Methods: Male SD rats were self-administered heroin under a fixed-ratio 1 (FR1) reinforcement schedule for 14 d, and subsequently withdrawn for 2 weeks. The selective mGluR5 antagonist 2-methyl-6-phenylethynyl-pyridine (MPEP, 5, 15 and 50 nmol per side) was then microinjected into the NAc core or shell 10 min before a heroin-seeking test induced by context, cues or heroin priming. Results: Microinjection of MPEP into the NAc shell dose-dependently decreased the heroin seeking induced by context, cues or heroin priming. In contrast, microinjection of MPEP into the NAc core did not alter the heroin seeking induced by cues or heroin priming. In addition, microinjection with MPEP (15 nmol per side) in the NAc shell reversed both the percentage of open arms entries (OE%) and the percentage of time spent in open arms (OT%) after heroin withdrawal. Microinjection of MPEP (50 nmol per side) in the striatum as a control location did not affect the heroin seeking behavior. Microinjection of MPEP in the 3 locations did not change the locomotion activities. Conclusion: Blockade of mGluR5 in NAc shell in rats specifically suppresses the relapse to heroin-seeking and anxiety-like behavior, suggesting that mGluR5 antagonists may be a potential candidate for the therapy of heroin addiction. PMID:25399651

  12. Analysis of ultradian heat production and aortic core temperature rhythms in the rat.

    PubMed

    Gómez-Sierra, J M; Canela, E I; Esteve, M; Rafecas, I; Closa, D; Remesar, X; Alemany, M

    1993-01-01

    The rhythms of aortic core temperature and overall heat production in Wistar rats was analyzed by using long series of recordings of temperature obtained from implanted thermocouple probes and heat release values from a chamber calorimeter. There was a very high degree of repetitiveness in the presentation of actual heat rhythms, with high cross-correlation values ascertained wit paired periodograms. No differences were observed between heat production between male and female adult rats. The cross-correlation for temperature gave similar figures. The cross-correlation study between heat production and aortic core temperature in the same animals was significant and showed a displacement of about 30 minutes between heat release and aortic core temperature. The analysis of heat production showed a strong predominance of rhythms with periods of 24 hours (frequencies < 11.6 microHz) or more; other rhythms detected (of roughly the same relative importance) had periods of 8 or 2.2 hours (35 or 126 microHz, respectively). The analysis of aortic core temperature showed a smaller quantitative contribution of the 8 or 2.2 hours (35 or 126 microHz) rhythms, with other harmonic rhythms interspersed (5.1 and 4.0 hours, i.e. 54 and 69 microHz). The proportion of 'noise' or cycles lower than 30 minutes (< 550 microHz) was higher in internal temperature than in the actual release of heat. The results are in agreement with the existence of a basic period of about 130 minutes (126 microHz) of warming/cooling of the blood, with a number of other harmonic rhythms superimposed upon the basic circadian rhythm.

  13. Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-transferase P enhancer I.

    PubMed

    Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De

    2002-03-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  14. Depletion of serotonin synthesis with p-CPA pretreatment alters EEG in urethane anesthetized rats under whole body hyperthermia.

    PubMed

    Sinha, Rakesh Kumar; Aggarwal, Yogender

    2007-01-01

    Serotonin is believed as an important factor in brain function. The role of serotonin in cerebral psycho-patho-physiology has already been well established. However, the function of serotonin antagonist in anesthetized subjects under hyperthermia has not been studied properly. Experiments were performed in three groups of urethane-anesthetized rats, such as: (i) control group, (ii) whole body hyperthermia group and (iii) p-CPA (para-Chlorophenylalanine) pretreated hyperthermia group. Hyperthermia was produced by subjecting the rats to high ambient temperature of 38 +/- 1 degrees C (relative humidity 45-50%). Each group was divided for EEG (electroencephalogram) study and for determination of edematous swelling in the brain. Urethane anesthetized rats under hyperthermia show highly significant reduction in their survival time. The body temperature recorded during the hyperthermia was observed with significant and linear rise with marked increase in brain water content, which was analyzed just after the death of the subjects. The results of the electroencephalographic study in urethane-anesthetized rats recorded before death indicate that brain function varies in systematic manner during hyperthermia as sequential changes in EEG patterns were observed. However, a serotonin antagonist, p-CPA pretreatment increases the survival time with significant reduction in edematous swelling in brain but it does not affect the relationship between the core body temperature and the brain cortical potentials as observed in urethane anesthetized subjects exposed to whole body hyperthermia. The core body temperature in p-CPA pretreated rats show non-linear relationship with respect to the exposure time as it was observed in drug untreated subjects. The findings of the present study indicate that although pretreatment of p-CPA in rats has a marked correlation between the extravasations of the blood-brain barrier under hyperthermia but shows minimum effect on the EEG in a model of hyperthermia under irreversible anesthesia.

  15. Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning.

    PubMed

    Saddoris, Michael P; Carelli, Regina M

    2014-01-15

    Cocaine use is often associated with diminished cognitive function, persisting even after abstinence from the drug. Likely targets for these changes are the core and shell of the nucleus accumbens (NAc), which are critical for mediating the rewarding aspects of drugs of abuse as well as supporting associative learning. To understand this deficit, we recorded neural activity in the NAc of rats with a history of cocaine self-administration or control subjects while they learned Pavlovian first- and second-order associations. Rats were trained for 2 weeks to self-administer intravenous cocaine or water. Later, rats learned a first-order Pavlovian discrimination where a conditioned stimulus (CS)+ predicted food, and a control (CS-) did not. Rats then learned a second-order association where, absent any food reinforcement, a novel cued (SOC+) predicted the CS+ and another (SOC-) predicted the CS-. Electrophysiological recordings were taken during performance of these tasks in the NAc core and shell. Both control subjects and cocaine-experienced rats learned the first-order association, but only control subjects learned the second-order association. Neural recordings indicated that core and shell neurons encoded task-relevant information that correlated with behavioral performance, whereas this type of encoding was abolished in cocaine-experienced rats. The NAc core and shell perform complementary roles in supporting normal associative learning, functions that are impaired after cocaine experience. This impoverished encoding of motivational behavior, even after abstinence from the drug, might provide a key mechanism to understand why addiction remains a chronically relapsing disorder despite repeated attempts at sobriety. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Core temperature is regulated, although at a lower temperature, in rats exposed to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Monson, C. B.; Horowitz, J. M.; Horwitz, B. A.

    1988-01-01

    1. In rats acclimated to 23 degrees C (RT rats) or 5 degrees C (CA rats), core temperature (Tc), tail temperature (Tt) and oxygen consumption (VO2) were measured during exposure to a hypergravic field. 2. Rats were exposed for 5.5 h to a 3 g field while ambient temperature (Ta) was varied. For the first 2 h, Ta was 25 degrees C; then Ta was raised to 34 degrees C for 1.5 h. During this period of warm exposure, Tc increased 4 degrees C in both RT and CA rats. Finally, Ta was returned to 25 degrees C for 2 h, and Tc decreased toward the levels measured prior to warm exposure. 3. In a second experiment at 3 g, RT and CA rats were exposed to cold (12 degrees C) after two hours at 25 degrees C. During the one hour cold exposure, Tc fell 1.5 degrees C in RT and 0.5 degree C in CA rats. After cold exposure, when ambient temperature was again 25 degrees C, Tc of RT and CA rats returned toward the levels measured prior to the thermal disturbance. 4. Rats appear to regulate their temperature, albeit at a lower level, in a 3 g field.

  17. 18F-labeled Rhodamines as Potential Myocardial Perfusion Agents: Comparison of Pharmacokinetic Properties of Several Rhodamines

    PubMed Central

    Bartholoma, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2015-01-01

    Introduction We recently reported the development of the [18F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18F using the corresponding rhodamine lactones as the precursors and [18F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18F-labeled rhodamine B, [18F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions Based on these results, the 18F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have been evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. PMID:26205075

  18. (18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines.

    PubMed

    Bartholomä, Mark D; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2015-10-01

    We recently reported the development of the [(18)F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with (18)F using the corresponding rhodamine lactones as the precursors and [(18)F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the (18)F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the (18)F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with (18)F-labeled rhodamine B, [(18)F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Based on these results, the (18)F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease.

    PubMed

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Rahbar Rooshandel, Nahid; Omidzahir, Shila

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and Beta amyloid (ABeta) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 muL of ABeta (1-40) into the hippocampal fissure. In the present study, ABeta (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. ABeta injection CA1 caused ABeta deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group.

  20. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature?

    PubMed Central

    Gutierrez, Silvia; Carnes, Ansley; Finucane, Beth; Oelsner, Gabrielle Musci William; Hicks, Lucretia; Russell, Gregory B.; Liu, Chun; Turner, Christopher P.

    2010-01-01

    General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature. PMID:20298758

  1. Neuroimmunophilin GPI-1046 reduces ethanol consumption in part through activation of GLT1 in alcohol-preferring rats.

    PubMed

    Sari, Y; Sreemantula, S N

    2012-12-27

    We have previously shown that ceftriaxone, β-lactam antibiotic known to upregulate glutamate transporter 1 (GLT1), reduced ethanol intake in alcohol-preferring (P) rats. GLT1 is a glial glutamate transporter that regulates the majority of extracellular glutamate uptake. We tested in this study the effects of neuroimmunophilin GPI-1046 (3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidinecarboxylate), known also to upregulate GLT1 expression, in ethanol intake in P rats. Male P rats had concurrent access to free choice of 15% and 30% ethanol, water, and food for five weeks. On Week 6, P rats continued in this drinking and food regimen and they were administered either 10 or 20mg/kg GPI-1046 (i.p.), or a vehicle for five consecutive days. Body weight, ethanol intake, and water consumption were measured daily for 8 days starting on Day 1 of GPI-1046 or vehicle i.p. injections. We have also tested the effect of GPI-1046 (20mg/kg) on daily sucrose (10%) intake. The data revealed significant dose-dependent effects in the reduction of ethanol intake starting 48 h after the first treatment with GPI-1046 throughout treatment and post-treatment periods. There were also dose-dependent increases in water intake. However, GPI-1046 treatment did not affect the body weight of all animals nor sucrose intake. Importantly, GPI-1046 (20mg/kg) increased GLT1 level compared to all groups in nucleus accumbens core (NAc-core). Alternatively, GPI-1046 (10mg/kg) upregulated GLT1 level in NAc-core compared to vehicle (ethanol naïve) group. Moreover, both doses of GPI-1046 increased significantly GLT1 level in the prefrontal cortex (PFC) compared to ethanol naïve vehicle group. GPI-1046 (20mg/kg) increased GLT1 level in PFC compared to naïve control group that was exposed to water and food only. These findings demonstrated that neuroimmunophilin GPI-1046 attenuates ethanol intake in part through the upregulation of GLT1 in PFC and NAc-core. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. A role of nucleus accumbens dopamine receptors in the nucleus accumbens core, but not shell, in fear prediction error.

    PubMed

    Li, Susan S Y; McNally, Gavan P

    2015-08-01

    Two experiments used an associative blocking design to study the role of dopamine receptors in the nucleus accumbens shell (AcbSh) and core (AcbC) in fear prediction error. Rats in the experimental groups were trained to a visual fear-conditioned stimulus (conditional stimulus [CS]) A in Stage I, whereas rats in the control groups were not. In Stage II, all rats received compound fear conditioning of the visual CSA and an auditory CSB. Rats were later tested for their fear responses to CSB. All rats received microinjections of saline or the D1-D2 receptor antagonist cis-(z)-flupenthixol prior to Stage II. These microinjections targeted either the AcbSh (Experiment 1) or the AcbC (Experiment 2). In each experiment, Stage I fear conditioning of CSA blocked fear learning to CSB. Microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbSh (Experiment 1) had no effect on fear learning or associative blocking. In contrast, microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbC (Experiment 2) attenuated blocking and so enabled fear learning to CSB. These results identify the AcbC as the critical locus for dopamine receptor contributions to fear prediction error and the associative blocking of fear learning. (c) 2015 APA, all rights reserved).

  3. Spread of the Rat Lungworm (Angiostrongylus cantonensis) in Giant African Land Snails (Lissachatina fulica) in Florida, USA.

    PubMed

    Iwanowicz, Deborah D; Sanders, Lakyn R; Schill, W Bane; Xayavong, Maniphet V; da Silva, Alexandre J; Qvarnstrom, Yvonne; Smith, Trevor

    2015-07-01

    The rat lungworm (Angiostrongylus cantonensis) is a parasitic nematode that causes rat lungworm disease. It is the leading cause of eosinophilic meningitis and is a zoonotic health risk. We confirmed the presence of A. cantonensis using species-specific, quantitative PCR in 18 of 50 (36%) giant African land snails (Lissachatina fulica) collected from Miami, Florida, US in May 2013. These snails were collected from seven of 21 core areas that the Florida Department of Agriculture and Consumer Services monitor weekly. Rat lungworms have not previously been identified in these areas. Duplicate DNA extractions of foot muscle tissue from each snail were tested. Of the seven core areas we examined, six were positive for A. cantonensis and prevalence of infection ranged from 27% to 100%. Of the 18 positive snails, only five were positive in both extractions. Our results confirm an increase in the range and prevalence of rat lungworm infection in Miami. We also emphasize the importance of extracting sufficient host tissue to minimize false negatives.

  4. Spread of the Rat Lungworm (Angiostrongylus cantonensis) in Giant African Land Snails (Lissachatina fulica) in Florida, USA

    USGS Publications Warehouse

    Iwanowicz, Deborah; Sanders, Lakyn R.; Schill, W. Bane; Xayavong, Maniphet V; da Silva, Alexandre J; Qvarnstrom, Yvonne; Smith, Trevor

    2015-01-01

    The rat lungworm (Angiostrongylus cantonensis) is a parasitic nematode that causes rat lungworm disease. It is the leading cause of eosinophilic meningitis and is a zoonotic health risk. We confirmed the presence of A. cantonensis using species-specific, quantitative PCR in 18 of 50 (36%) giant African land snails (Lissachatina fulica) collected from Miami, Florida in May 2013. These snails were collected from seven of 21 core areas that the Florida Department of Agriculture and Consumer Services monitor weekly. Rat lungworms have not previously been identified in these areas. Duplicate DNA extractions of foot muscle tissue from each snail were tested. Of the seven core areas we examined, six were positive for A. cantonensis and prevalence of infection ranged from 27% to 100%. Of the 18 positive snails, only five were positive in both extractions. Our results confirm an increase in the range and prevalence of rat lungworm infection in Miami. We also emphasize the importance of extracting sufficient host tissue to minimize false negatives.

  5. Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations

    PubMed Central

    Sela, Yaniv; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Tononi, Giulio; Nir, Yuval

    2016-01-01

    Study Objectives: Sleep is defined as a reversible state of reduction in sensory responsiveness and immobility. A long-standing hypothesis suggests that a high arousal threshold during non-rapid eye movement (NREM) sleep is mediated by sleep spindle oscillations, impairing thalamocortical transmission of incoming sensory stimuli. Here we set out to test this idea directly by examining sensory-evoked neuronal spiking activity during natural sleep. Methods: We compared neuronal (n = 269) and multiunit activity (MUA), as well as local field potentials (LFP) in rat core auditory cortex (A1) during NREM sleep, comparing responses to sounds depending on the presence or absence of sleep spindles. Results: We found that sleep spindles robustly modulated the timing of neuronal discharges in A1. However, responses to sounds were nearly identical for all measured signals including isolated neurons, MUA, and LFPs (all differences < 10%). Furthermore, in 10% of trials, auditory stimulation led to an early termination of the sleep spindle oscillation around 150–250 msec following stimulus onset. Finally, active ON states and inactive OFF periods during slow waves in NREM sleep affected the auditory response in opposite ways, depending on stimulus intensity. Conclusions: Responses in core auditory cortex are well preserved regardless of sleep spindles recorded in that area, suggesting that thalamocortical sensory relay remains functional during sleep spindles, and that sensory disconnection in sleep is mediated by other mechanisms. Citation: Sela Y, Vyazovskiy VV, Cirelli C, Tononi G, Nir Y. Responses in rat core auditory cortex are preserved during sleep spindle oscillations. SLEEP 2016;39(5):1069–1082. PMID:26856904

  6. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats.

    PubMed

    Li, Longkai; Shen, Nan; Wang, Nan; Wang, Weidong; Tang, Qingzhu; Du, Xiangning; Carrero, Juan Jesus; Wang, Keping; Deng, Yiyao; Li, Zhitong; Lin, Hongli; Wu, Taihua

    2018-06-01

    Ultrafiltration failure is a major complication of long-term peritoneal dialysis, resulting in dialysis failure. Peritoneal fibrosis induced by continuous exposure to high glucose dialysate is the major contributor of ultrafiltration failure, for which there is no effective treatment. Overactivation of several signaling pathways, including transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) pathways, contribute to the development of peritoneal fibrosis. Therefore, simultaneously blocking multiple signaling pathways might be a potential novel method of treating peritoneal fibrosis. Previously, we showed that core fucosylation, an important posttranslational modification of the TGF-β1 receptors, can regulate the activation of TGF-β1 signaling in renal interstitial fibrosis. However, it remains unclear whether core fucosylation affects the progression of peritoneal fibrosis. Herein, we show that core fucosylation was enriched in the peritoneal membrane of rats accompanied by peritoneal fibrosis induced by a high glucose dialysate. Blocking core fucosylation dramatically attenuated peritoneal fibrosis in the rat model achieved by simultaneously inactivating the TGF-β1 and PDGF signaling pathways. Next the protective effects of blocking core fucosylation and imatinib (a selective PDGF receptor inhibitor) on peritoneal fibrosis were compared and found to exhibit a greater inhibitory effect over imatinib alone, suggesting that blocking activation of multiple signaling pathways may have superior inhibitory effects on the development of peritoneal fibrosis. Thus, core fucosylation is essential for the development of peritoneal fibrosis by regulating the activation of multiple signaling pathways. This may be a potential novel target for drug development to treat peritoneal fibrosis. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. The relationship between core body temperature and 3,4-methylenedioxymethamphetamine metabolism in rats: implications for neurotoxicity.

    PubMed

    Goni-Allo, Beatriz; O Mathúna, Brian; Segura, Mireia; Puerta, Elena; Lasheras, Berta; de la Torre, Rafael; Aguirre, Norberto

    2008-04-01

    A close relationship appears to exist between 3,4-methylenedioxymethamphetamine (MDMA)-induced changes in core body temperature and long-term serotonin (5-HT) loss. We investigated whether changes in core body temperature affect MDMA metabolism. Male Wistar rats were treated with MDMA at ambient temperatures of 15, 21.5, or 30 degrees C to prevent or exacerbate MDMA-induced hyperthermia. Plasma concentrations of MDMA and its main metabolites were determined for 6 h. Seven days later, animals were killed and brain indole content was measured. The administration of MDMA at 15 degrees C blocked the hyperthermic response and long-term 5-HT depletion found in rats treated at 21.5 degrees C. At 15 degrees C, plasma concentrations of MDMA were significantly increased, whereas those of three of its main metabolites were reduced when compared to rats treated at 21.5 degrees C. By contrast, hyperthermia and indole deficits were exacerbated in rats treated at 30 degrees C. Noteworthy, plasma concentrations of MDMA metabolites were greatly enhanced in these animals. Instrastriatal perfusion of MDMA (100 microM for 5 h at 21 degrees C) did not potentiate the long-term depletion of 5-HT after systemic MDMA. Furthermore, interfering in MDMA metabolism using the catechol-O-methyltransferase inhibitor entacapone potentiated the neurotoxicity of MDMA, indicating that metabolites that are substrates for this enzyme may contribute to neurotoxicity. This is the first report showing a direct relationship between core body temperature and MDMA metabolism. This finding has implications on both the temperature dependence of the mechanism of MDMA neurotoxicity and human use, as hyperthermia is often associated with MDMA use in humans.

  8. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats

    PubMed Central

    Salti, Ahmad; Kummer, Kai K.; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2016-01-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  9. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Neuropathological Changes in Brain Cortex and Hippocampus in a Rat Model of Alzheimer’s Disease

    PubMed Central

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Roosh, Nahid Rahbar; Omidzahir, Shila

    2011-01-01

    Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Methods: Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and β-amyloid (Aβ) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 µL of Aβ (1-40) into the hippocampal fissure. Results: In the present study, Aβ (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. Aβ injection CA1 caused Aβ deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. Conclusion: We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group. PMID:21725500

  11. Estrogen receptor {alpha} gene promoter 0/B usage in the rat sexually dimorphic nucleus of the preoptic area.

    PubMed

    Hamada, Tomohiro; Sakuma, Yasuo

    2010-04-01

    The volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) is two to four times larger in male rats than in females; however, the mechanism for the establishment of sexual dimorphism and the function of this nucleus is almost unknown. Perinatal estrogen can cause sexual dimorphism via the estrogen receptor alpha (ERalpha). Recently, transgenic rats were generated that express enhanced green fluorescent protein (EGFP) under the control of the ERalpha gene promoter 0/B to tag ERalpha-positive neurons in the brain. In the present study, we examined whether this EGFP expression could be a marker for the SDN-POA in adults. EGFP-labeled cells were distributed in the core of the SDN-POA (0/B-SDN) of male and female transgenic rats, in accordance with the Nissl staining and immunoreactivity for the SDN marker, calbindin. They were also immunoreactive for ERalpha. The core was bigger in volume and contained more 0/B-SDN neurons in males than in females. The EGFP-tagged cells were packed more densely in the female core than that in males. Subcutaneous injection of 100 mug 17beta-estradiol to females on the day of birth, or orchidectomy of male neonates, reversed the sexually dimorphic phenotype of the volume of the 0/B-SDN, despite not affecting the cell number. We suggest that this EGFP expression in the SDN-POA could be a useful marker to clarify the sexual differentiation and function of the SDN-POA. Moreover, the ERalpha gene promoter 0/B plays a key role in the organization of the sexual differentiation of the SDN-POA.

  12. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster.

    PubMed

    Willett, Jaime A; Johnson, Ashlyn G; Vogel, Andrea R; Patisaul, Heather B; McGraw, Lisa A; Meitzen, John

    2018-04-01

    Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and probes the relationship between cellular excitability and social behavior.

  13. [Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].

    PubMed

    Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing

    2012-10-01

    To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.

  14. Optimization and validation of a high performance liquid chromatography method for rapid determination of sinafloxacin, a novel fluoroquinolone in rat plasma using a fused-core C(18)-silica column.

    PubMed

    Wang, Shuowen; Wen, Jun; Cui, Lijun; Zhang, Xiurong; Wei, Hua; Xie, Rui; Feng, Bo; Wu, Yutian; Fan, Guorong

    2010-03-11

    A novel, simple and rapid high performance liquid chromatographic method has been developed and validated for the determination of sinafloxacin, a new fluoroquinolone, in rat plasma using 96-well protein precipitation, fused-core C(18)-silica column (4.6mmx50mm, 2.7microm) packed with a new solid support, which is made of 2.7microm particles that consist of a 1.7microm solid core covered with a 0.5microm thick shell of porous silica.The chromatographic separation was achieved with a mobile phase of 20:80 (v/v) of acetonitrile and phosphate buffer (pH=3.0) at a flow rate of 1mlmin(-1). Fluorescence detection was employed with lambda(ex) 295nm and lambda(em) 505nm. Lomefloxacin was used as internal standard (IS). The total analysis time was as short as 3min. The method was sensitive with a limit of detection (LOD) of 2ngml(-1), with good linearity (R(2)=0.9996) over the linear range of 5-500ngml(-1). The intra-day and inter-day precision was less than 5.8% and accuracy ranged from 100.3% to 103.5% for quality control (QC) samples at three concentrations of 10, 50 and 400ngml(-1).The fused-core C(18)-silica column method offered high sample throughput, low injection volume and low consumption of organic solvents. The method was successfully employed in the pharmacokinetic study of sinafloxacin formulation product after tail vein injection to healthy rats. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, A.D.; Overstreet, D.H.; Crocker, J.M.

    1986-06-01

    Rats treated with iodine-131 were confirmed to be hypothyroid by their reduced baseline core body temperatures, reduced serum thyroxine concentrations and elevated serum thyroid stimulating hormone concentrations. When hypothyroid rats were compared to euthyroid controls they were more sensitive to the effects of apomorphine (1.0 mumol/kg) on stereotypy, operant responding and body temperature and showed a smaller reduction in locomotor activity after injection of haloperidol (0.25 mumol/kg). Receptor binding studies on striatal homogenates indicated that hypothyroid rats had increased concentrations of D2 dopamine receptors but there was no change in the affinity. It is concluded that hypothyroidism increases dopamine receptormore » sensitivity by increasing receptor concentration.« less

  16. Circadian and extracircadian exploration during daytime hours of circulating corticosterone and other endocrine chronomes.

    PubMed

    Jozsa, R; Olah, A; Cornélissen, G; Csernus, V; Otsuka, K; Zeman, M; Nagy, G; Kaszaki, J; Stebelova, K; Csokas, N; Pan, W; Herold, M; Bakken, E E; Halberg, F

    2005-10-01

    During 7 consecutive days, blood and several tissues were collected during daytime working hours only, three times per day at 4-h intervals from inbred Wistar rats, which had been previously standardized for 1 month in two rooms on a regimen of 12 h of light (L) alternating with 12 h of darkness (LD12:12). In one room, lights were on from 09:00 to 21:00 and in the other room, lights were on from 21:00 to 09:00 (DL12:12; reversed lighting regimen). This setup provides a convenient design to study circadian and extracircadian variations over long (e.g., 7-day) spans. Prior checking of certain circadian rhythms in animals reared in the room on reversed lighting (DL) as compared with animals in the usual (LD) regimen provided evidence that the 180 degrees phase-shift had occurred. These measurements were limited to the circadian (and not extended to infradian) variation. As marker rhythm, the core temperature of a subsample of rats was measured every 4 h around the clock (by night as well as by day) before the start of the 7-day sampling. An antiphase of the circadian rhythm in core temperature was thus demonstrated between rats in the LD vs. DL rooms. A sex difference in core temperature was also found in each room. A reversed rhythm in animals kept in DL and an antiphase between rats kept in DL vs. LD was again shown for the circulating corticosterone rhythm documented in subsamples of 8 animals of each sex sampled around the clock during the first approximately 1.5 day of the 7-day sampling. The findings were in keeping with the proposition that sampling rats at three timepoints 4 h apart during daytime from two rooms on opposite lighting regimens allows the assessment of circadian changes, the daytime samples from animals kept on the reversed lighting regimen accounting for the samples that would have to be obtained by night from animals kept in the room with the usual lighting regimen. During the 7-day-long follow-up, circadian and extracircadian spectral components were mapped for serum corticosterone, taking into account the large day-to-day variability. A third check on the synchronization of the animals to their respective lighting regimen was a comparison (and a good agreement) between studies carried out earlier on the same variables and the circadian results obtained on core temperature and serum corticosterone in this study as a whole. The present study happened to start on the day of the second extremum of a moderate double magnetic storm. The study of any associations of corticosterone with the storm is beyond our scope herein, as are the results on circulating prolactin, characterized by a greater variability and a larger sex difference than corticosterone. Sex differences and extracircadian aspects of prolactin and endothelin determined in the same samples are reported elsewhere, as are results on melatonin. Prior studies on melatonin were confirmed insofar as a circadian profile is concerned by sampling on two antiphasic lighting regimens, as also reported elsewhere. Accordingly, a circadian map for the rat will eventually be extended by the result of this study and aligned with other maps with the qualification of the unassessed contribution in this study of a magnetic storm.

  17. A 3-D mathematical model to identify organ-specific risks in rats during thermal stress.

    PubMed

    Rakesh, Vineet; Stallings, Jonathan D; Helwig, Bryan G; Leon, Lisa R; Jackson, David A; Reifman, Jaques

    2013-12-01

    Early prediction of the adverse outcomes associated with heat stress is critical for effective management and mitigation of injury, which may sometimes lead to extreme undesirable clinical conditions, such as multiorgan dysfunction syndrome and death. Here, we developed a computational model to predict the spatiotemporal temperature distribution in a rat exposed to heat stress in an attempt to understand the correlation between heat load and differential organ dysfunction. The model includes a three-dimensional representation of the rat anatomy obtained from medical imaging and incorporates the key mechanisms of heat transfer during thermoregulation. We formulated a novel approach to estimate blood temperature by accounting for blood mixing from the different organs and to estimate the effects of the circadian rhythm in body temperature by considering day-night variations in metabolic heat generation and blood perfusion. We validated the model using in vivo core temperature measurements in control and heat-stressed rats and other published experimental data. The model predictions were within 1 SD of the measured data. The liver demonstrated the greatest susceptibility to heat stress, with the maximum temperature reaching 2°C higher than the measured core temperature and 95% of its volume exceeding the targeted experimental core temperature. Other organs also attained temperatures greater than the core temperature, illustrating the need to monitor multiple organs during heat stress. The model facilitates the identification of organ-specific risks during heat stress and has the potential to aid in the development of improved clinical strategies for thermal-injury prevention and management.

  18. Circadian manifestations of barbiturate habituation, addiction and withdrawal in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehret, C. F.; Peraino, C.; Meinert, J. C.

    1979-01-01

    The present study uses circadian rhythm observations on rats to include diverse habituation and drug ingestion (phenobarbital) circumstances, including a comparison of the effect of pre-entrainment cycles of programmed feeding and illumination and subsequent conditions of exposure of duration sufficient to permit a steady-state in the appearance of circadian patterns derived from core-temperature telemetry and from automated food-consumption measurements. Finally, measurements were permitted to continue long enough after the drug was withdrawn from the diet to allow characterization of an abstinence syndrome, indicative of addiction.

  19. Activation of Neurokinin 3 Receptors in the Median Preoptic Nucleus Decreases Core Temperature in the Rat

    PubMed Central

    Dacks, Penny A.; Krajewski, Sally J.

    2011-01-01

    Estrogens have pronounced effects on thermoregulation, as illustrated by the occurrence of hot flushes secondary to estrogen withdrawal in menopausal women. Because neurokinin B (NKB) gene expression is markedly increased in the infundibular (arcuate) nucleus of postmenopausal women, and is modulated by estrogen withdrawal and replacement in multiple species, we have hypothesized that NKB neurons could play a role in the generation of flushes. There is no information, however, on whether the primary NKB receptor [neurokinin 3 receptor (NK3R)] modulates body temperature in any species. Here, we determine the effects of microinfusion of a selective NK3R agonist (senktide) into the rat median preoptic nucleus (MnPO), an important site in the heat-defense pathway. Senktide microinfusion into the rat MnPO decreased core temperature in a dose-dependent manner. The hypothermia induced by senktide was similar in ovariectomized rats with and without 17β-estradiol replacement. The hypothermic effect of senktide was prolonged in rats exposed to an ambient temperature of 29.0 C, compared with 21.5 C. Senktide microinfusion also altered tail skin vasomotion in rats exposed to an ambient temperature of 29.0 but not 21.5 C. Comparisons of the effects of senktide at different ambient temperatures indicated that the hypothermia was not secondary to thermoregulatory failure or a reduction in cold-induced thermogenesis. Other than a very mild increase in drinking, senktide microinfusion did not affect behavior. Terminal fluorescent dextran microinfusion showed targeting of the MnPO and adjacent septum, and immunohistochemical studies revealed that senktide induced a marked increase in Fos-activation in the MnPO. Because MnPO neurons expressed NK3R-immunoreactivity, the induction of MnPO Fos by senktide is likely a direct effect. By demonstrating that NK3R activation in the MnPO modulates body temperature, these studies support the hypothesis that hypothalamic NKB neurons could be involved in the generation of menopausal flushes. PMID:22028440

  20. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Hattori, Kenji; Kunugita, Naoki; Wang, Jianqing; Ishii, Kazuyuki

    2016-01-01

    We investigated the thermal effects of radiofrequency electromagnetic fields (RF-EMFs) on the variation in core temperature and gene expression of some stress markers in rats. Sprague-Dawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum.

  1. A Virtual Rat for Simulating Environmental and Exertional Heat Stress

    DTIC Science & Technology

    2014-10-02

    unsuitable for accurately determin- ing the spatiotemporal temperature distribution in the animal due to heat stress and for performing mechanistic analysis ...possible in the original experiments. Finally, we performed additional simu- lations using the virtual rat to facilitate comparative analysis of the...capability of the virtual rat to account for the circadian rhythmicity in core temperatures during an in- crease in the external temperature from 22

  2. Dopamine in the nucleus accumbens core, but not shell, increases during signaled food reward and decreases during delayed extinction.

    PubMed

    Biesdorf, C; Wang, A-L; Topic, B; Petri, D; Milani, H; Huston, J P; de Souza Silva, M A

    2015-09-01

    Microdialysis studies in rat have generally shown that appetitive stimuli release dopamine (DA) in the nucleus accumbens (NAc) shell and core. Here we examined the release of DA in the NAc during delivery of reward (food) and during extinction of food reward in the freely moving animal by use of in vivo microdialysis and HPLC. Fifty-two male Wistar rats were trained to receive food reward associated with appearance of cue-lights in a Skinner-box during in vivo microdialysis. Different behavioral protocols were used to assess the effects of extinction on DA and its metabolites. Results Exp. 1: (a) During a 20-min period of cued reward delivery, DA increased significantly in the NAc core, but not shell subregion; (b) for the next 60min period half of the rats underwent immediate extinction (with the CS light presented during non-reward) and the other half did not undergo extinction to the cue lights (CS was not presented during non-reward). DA remained significantly increased in both groups, providing no evidence for a decrease in DA during extinction in either NAc core or shell regions. (c) In half of the animals of the group that was not subjected to extinction, the cue lights were turned on for 30min, thus, initiating extinction to cue CS at a 1h delay from the period of reward. In this group DA in the NAc core, but not shell, significantly decreased. Behavioral analysis showed that while grooming is an indicator of extinction-induced behavior, glances toward the cue-lights (sign tracking) are an index of resistance to extinction. Results Exp. 2: (a) As in Exp. 1, during a 30-min period of cued reward delivery, DA levels again increased significantly in the NAc core but not in the NAc shell. (b) When extinction (the absence of reward with the cue lights presented) was administered 24h after the last reward session, DA again significantly decreased in the NAc core, but not in the NAc shell. (a) These results confirm the importance of DA release in the NAc for reward-related states, with DA increasing in the core, but not shell subregion. (b) They provide first evidence that during the withholding of expected reward, DA decreases in the NAc core, but not shell region. (c) This decrease in DA appears only after a delay between delivery of reward and extinction likely due to it being masked by persisting DA release. We hypothesize the decrease in extinction-induced release of DA in the NAc core to be a marker for the despair/depression that is known to accompany the failure to obtain expected rewards/reinforcers. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Rats and bunnies: core kids in an American mall.

    PubMed

    Lewis, G H

    1989-01-01

    Although adolescents use shopping malls as important places of congregation, very little attention has been paid to this phenomenon by social scientists. This paper reports on a qualitative, interview-based study of adolescents in a New England shopping mall. Regular, day-to-day frequenters (N = 23) were identified and interviewed extensively over a six-week period in 1988. These "core kids" exhibited a good deal of alienation from both family and school, and used the mall as a neutral ground on which to create a fragile but mutually supportive community of kind.

  4. Interaction of tachykinins with their receptors studied with cyclic analogues of substance P and neurokinin B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploux, O.; Lavielle, S.; Chassaing, G.

    1987-11-01

    The activities of two groups of cyclic agonists of substance P (SP) have been studied. The disulfide bridge constraints have been designed on the basis of conformational studies on SP and physalaemin indicating an ..cap alpha..-helical structure for the core of these two tachykinins (group I) and a folding of the C-terminal carboxamide towards the side chains of the glutamines 5 and 6 (group II). Only peptides simulating the ..cap alpha..-helix present substantial potencies. (Cys/sup 3,6/)SP is as active as SP in inhibiting /sup 125/I-labeled Bolton and Hunter SP-specific binding on rat brain synaptosomes and on dog carotid bioassay, twomore » assays specific for the neurokinin 1 receptor. Moreover, (Cys/sup 3,6/)SP is a potent as neurokinin B in inhibiting /sup 125/I-labeled Bolton and Hunter eledoisin-specific binding on rat cortical synaptosomes as well as in stimulating rat portal vein, two tests specific for the neurokinin 3 receptor. Interestingly, in contrast to neurokinin B, (Cys/sup 3,6/)SP is a weak agonist of the neurokinin 2 receptor subtype, as evidenced by its binding potency in inhibiting /sup 3/H-labeled neurokinin A-specific binding on rat duodenum and in inducing the contractions of the rabbit pulmonary artery, a neurokinin 2-type bioassay. To increase the specificity of the cyclic analogue (Cys/sup 3,6/)SP positions 8 and 9 were modified. Collectively, these results suggest that the neurokinin 1 and neurokinin 3 tachykinin receptors may recognize a similar three-dimensional structure of the core of the tachykinins. Different orientations of the common C-terminal tripeptide may be related to the selectivity for the different receptor subtypes.« less

  5. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    PubMed

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  6. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    PubMed Central

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  7. The effects of the β1 antagonist, metoprolol, on methamphetamine-induced changes in core temperature in the rat.

    PubMed

    Harrell, Ricki; Speaker, H Anton; Mitchell, Scott L; Sabol, Karen E

    2015-11-16

    Methamphetamine (METH) results in hyperthermia or hypothermia depending on environmental conditions. Here we studied the role of the β1 adrenergic receptor in mediating METH's temperature effects. Core temperature measurements were made telemetrically over a 7.5h session, two days/week, in test chambers regulated at either 18°C, 24°C, or 30°C ambient temperature. Rats were treated with the β1 antagonist metoprolol (5.0, 10.0, and 15.0mg/kg) alone (Experiment 1), or in combination with 5.0mg/kg METH (Experiment 2). In experiment 3, we combined a lower dose range of metoprolol (0.75, 1.5, and 3.0mg/kg) with 5.0mg/kg METH at 18°C and 30°C. Confirming prior findings, METH alone resulted in hyperthermia in warm (30°) and hypothermia in cool environments (18°C). Metoprolol alone induced small but significant increases in core temperature. In combination, however, metoprolol reduced METH-induced changes in core temperature. Specifically, at 30°C, 3.0, 5.0, 10.0, and 15.0mg/kg metoprolol decreased METH-induced hyperthermia; at 18°C, all six doses of metoprolol enhanced METH-induced hypothermia. Our metoprolol findings suggest that one component of METH's temperature effects involves increasing core temperature at all ambient conditions via β1 receptors. Since β receptors are involved in brown adipose tissue (BAT)-mediated thermogenesis, skeletal muscle-mediated thermogenesis, heart rate, and the metabolism of glucose and lipids, we discuss each of these as possible mechanisms for metoprolol's effects on METH-induced changes in core temperature. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Reciprocal responsiveness of nucleus accumbens shell and core dopamine to food- and drug-conditioned stimuli.

    PubMed

    Bassareo, Valentina; Musio, Paolo; Di Chiara, Gaetano

    2011-04-01

    Drugs of abuse and palatable food share the ability to stimulate dopamine (DA) transmission in the nucleus accumbens shell. However, while the stimulation of shell DA by food undergoes habituation, that by drugs of abuse does not. This study aims to directly compare the changes of extracellular DA, by microdialysis, in shell and core and prefrontal cortex (PFCX) in response to food- and drug-conditioned stimuli (CSs). Rats were trace-conditioned by Fonzies box (FB) or vanilla box (VB; CS), followed by food: Fonzies, intraoral chocolate solution (food-unconditioned stimulus (US)) and morphine (1.0 mg/Kg sc; drug US). Control (unconditioned) rats received standard food instead of Fonzies, tap water instead of chocolate, saline instead of morphine. Food-CSs increased core but not shell DA, while drug-CSs did the opposite. Food and drug-CSs both increased PFCX DA. Exposure to food-CSs potentiated core and PFCX DA response to food while shell responsiveness was dependent upon the relative CS and US nature. If the CS was intrinsic to the food US (CS = FB/US = Fonzies) the response of shell DA to the US was abolished. If the CS was extrinsic to the food US (CS = FB/US = chocolate; CS = VB/US = Fonzies), shell DA increased in response to the US. Exposure to the drug-CS potentiated the DA response to the drug-US in the shell and in the PFCX, but not in the core. Drug-CSs differentially activate DA as compared to food-CSs in shell and core and differentially affect DA response to the US in these areas. These differences might be relevant for the role of DA in the mechanism of drug addiction.

  9. NEUROTOXICITY OF CARBARYL IN THE AGING BROWN NORWAY RAT: EFFECTS ON CORE TEMPERATURE AND MOTOR ACTIVITY.

    EPA Science Inventory

    The US EPA is pursuing a variety of research efforts to assess the susceptibility of the aged to neurotoxicants. The BN strain is a popular animal model for aging studies but there is a need for improved methods of monitoring their physiological responses to neurotoxicants over t...

  10. Syntactic Structure and Artificial Grammar Learning: The Learnability of Embedded Hierarchical Structures

    ERIC Educational Resources Information Center

    de Vries, Meinou H.; Monaghan, Padraic; Knecht, Stefan; Zwitserlood, Pienie

    2008-01-01

    Embedded hierarchical structures, such as "the rat the cat ate was brown", constitute a core generative property of a natural language theory. Several recent studies have reported learning of hierarchical embeddings in artificial grammar learning (AGL) tasks, and described the functional specificity of Broca's area for processing such structures.…

  11. Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles: the case of magnetic core mesoporous silica nanoparticles.

    PubMed

    Pinto, Suyene Rocha; Helal-Neto, Edward; Paumgartten, Francisco; Felzenswalb, Israel; Araujo-Lima, Carlos Fernando; Martínez-Máñez, Ramón; Santos-Oliveira, Ralph

    2018-04-24

    Whether in the cosmetic or as therapeutic, the use of nanoparticles has been increasing and taking on global proportion. However, there are few studies about the physical potential of long-term use or use in special conditions such as chronic, AIDS, pregnant women and other special health circumstances. In this context, the study of the mutagenicity and the transplacental passage represents an important and reliable model for the primary evaluation of potential health risks, especially maternal and child health. In this study we performed mutagenicity, cytotoxic and transplacental evaluation of magnetic core mesoporous silica nanoparticles, radiolabeled with 99m Tc for determination of toxicogenic and embryonic/fetuses potential risk in animal model. Magnetic core mesoporous silica nanoparticles were produced and characterized by obtaining nanoparticles with a size of (58.9 ± 8.1 nm) in spherical shape and with intact magnetic core. The 99 m Tc radiolabeling process demonstrated high efficacy and stability in 98% yield over a period of 8 hours of stability. Mutagenicity assays were performed using Salmonella enteric serovar Typhimurium standard strains TA98, TA100 and TA102. Cytotoxicity assays were performed using WST-1. The transplacental evaluation assays were performed using the in vivo model with rats in two periods: embryonic and fetal stage. The results of both analyzes corroborate that the nanoparticles can i) generate DNA damage; ii) generate cytotoxic potential and iii) cross the transplantation barrier in both stages and bioaccumulates in both embryos and fetuses. The results suggest that complementary evaluations should be conducted in order to attest safety, efficacy and quality of nanoparticles before unrestricted approval of their use.

  12. Microinjection of muscimol into the dorsomedial hypothalamus suppresses MDMA-evoked sympathetic and behavioral responses

    PubMed Central

    Rusyniak, Daniel E.; Zaretskaia, Maria V.; Zaretsky, Dmitry V.; DiMicco, Joseph A.

    2008-01-01

    When given systemically to rats and humans, the drug of abuse 3–4 methylenedioxymethamphetamine (ecstasy, MDMA) elicits hyperthermia, hyperactivity, tachycardia, and hypertension. Chemically stimulating the dorsomedial hypothalamus (DMH), a brain region known to be involved in thermoregulation and in stress responses, causes similar effects. We therefore tested the hypothesis that neuronal activity in the DMH plays a role in MDMA-evoked sympathetic and behavioral responses by microinjecting artificial CSF or muscimol, a neuronal inhibitor, into the DMH prior to intravenous infusion of saline or MDMA in conscious rats. Core temperature, heart rate, mean arterial pressure and locomotor activity were recorded by telemetry every minute for 120 minutes. In rats previously microinjected with CSF, MDMA elicited significant increases from baseline in core temperature (+1.3 ± 0.3°C), locomotion (+50 ± 6 counts/min), heart rate (+142 ± 16 beats/min), and mean arterial pressure (+26 ±3 mmHg). Microinjecting muscimol into the DMH prior to MDMA prevented increases in core temperature and locomotion and attenuated increases in heart rate and mean arterial pressure. These results indicate that neuronal activity in the DMH is necessary for the sympathetic and behavioral responses evoked by MDMA. PMID:18586013

  13. Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model

    PubMed Central

    Flagel, Shelly B.; Chaudhury, Sraboni; Waselus, Maria; Kelly, Rebeca; Sewani, Salima; Clinton, Sarah M.; Thompson, Robert C.; Watson, Stanley J.; Akil, Huda

    2016-01-01

    This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with “temperament,” including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor. PMID:27114539

  14. Lesion of medial prefrontal dopamine terminals abolishes habituation of accumbens shell dopamine responsiveness to taste stimuli.

    PubMed

    Bimpisidis, Zisis; De Luca, Maria Antonietta; Pisanu, Augusta; Di Chiara, Gaetano

    2013-02-01

    Taste stimuli increase extracellular dopamine (DA) in the nucleus accumbens (NAc) and in the medial prefrontal cortex (mPFC). This effect shows single-trial habituation in NAc shell but not in core or in mPFC. Morphine sensitization abolishes habituation of DA responsiveness in NAc shell but induces it in mPFC. These observations support the hypothesis of an inhibitory influence of mPFC DA on NAc DA. To test this hypothesis, we used in vivo microdialysis to investigate the effect of mPFC 6-hydroxy-dopamine (6-OHDA) lesions on the NAc DA responsiveness to taste stimuli. 6-OHDA was infused bilaterally in the mPFC of rats implanted with guide cannulae. After 1 week, rats were implanted with an intraoral catheter, microdialysis probes were inserted into the guide cannulae, and dialysate DA was monitored in NAc shell/core after intraoral chocolate. 6-OHDA infusion reduced tissue DA in the mPFC by 75%. Tyrosine hydroxylase immunohistochemistry showed that lesions were confined to the mPFC. mPFC 6-OHDA lesion did not affect the NAc shell DA responsiveness to chocolate in naive rats but abolished habituation in rats pre-exposed to the taste. In the NAc core, mPFC lesion potentiated, delayed and prolonged the stimulatory DA response to taste but failed to affect DA in pre-exposed rats. Behavioural taste reactions and motor activity were not affected. The results indicate a top-down control of NAc DA by mPFC and a reciprocal relationship between DA transmission in these two areas. Moreover, habituation of DA responsiveness in the NAc shell is dependent upon an intact DA input to the mPFC. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Widespread reduction of dopamine cell bodies and terminals in adult rats exposed to a low dose regimen of MDMA during adolescence.

    PubMed

    Cadoni, Cristina; Pisanu, Augusta; Simola, Nicola; Frau, Lucia; Porceddu, Pier Francesca; Corongiu, Silvia; Dessì, Christian; Sil, Annesha; Plumitallo, Antonio; Wardas, Jadwiga; Di Chiara, Gaetano

    2017-09-01

    Although MDMA (3,4-methylendioxymethamphetamine, ecstasy) neurotoxicity in serotonin neurons is largely recognized in a wide variety of species including man, neurotoxicity in dopamine (DA) neurons is thought to be species-specific. MDMA is mainly consumed by adolescents, often in conjunction with caffeine (Energy Drinks) and this association has been reported to exacerbate MDMA toxic effects. In order to model these aspects of MDMA use, vis-à-vis their impact on DA neurons, we investigated the effects of adolescent exposure to low doses of MDMA (5 mg/kg for 10 days), alone or in combination with caffeine (10 mg/kg) on neuronal and functional DA indices and on recognition memory in adult rats. MDMA reduced density of tyrosine hydroxylase (TH) positive neurons in the ventral tegmental area and in the substantia nigra pars compacta, and immunoreactivity of TH and DA transporter in the nucleus accumbens (NAc) shell and core, and caudate-putamen. This same treatment caused a reduction of basal dialysate DA in the NAc core. MDMA-pretreated rats also showed behavioral sensitization to a MDMA challenge at adulthood and potentiation of MDMA-induced increase of dialysate DA in the NAc core, but not in the NAc shell. In addition, MDMA-treated rats displayed a deficit in recognition memory. Caffeine co-administration did not affect the above outcomes. Our results show that adolescent exposure of rats to low doses of MDMA induces long-lasting and widespread reduction of DA neurons indicative of a neurotoxic effect on DA neurons and suggestive of a degeneration of the same neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well aslimbic corticostriatal connectivity.

    PubMed

    Barlow, Rebecca L; Gorges, Martin; Wearn, Alfie; Niessen, Heiko G; Kassubek, Jan; Dalley, Jeffrey W; Pekcec, Anton

    2018-03-15

    Low dopamine D2/3 receptor availability in the nucleus accumbens (NAcb) shell is associated with highly-impulsive behavior in rats, as measured by premature responses in a cued attentional task. However, it is unclear whether dopamine D2/3 receptor availability in the NAcb is equally linked to intolerance for delayed rewards, a related form of impulsivity. We investigated the relationship between D2/3 receptor availability in the NAcb and impulsivity in a delay-discounting task (DDT) where animals must choose between immediate small-magnitude rewards and delayed larger-magnitude rewards. Corticostriatal D2/3 receptor availability was measured in rats stratified for high-, and low-impulsivity using in-vivo [18F]fallypride positron emission tomography (PET) and ex-vivo [3H]raclopride autoradiography. Resting-state functional connectivity in limbic corticostriatal networks was also assessed using fMRI. DDT impulsivity was inversely related to D2/3 receptor availability in the NAcb core but not the dorsal striatum with higher D2/3 binding in the NAcb shell of high-impulsive rats compared with low-impulsive rats. D2/3 receptor availability was associated with stronger connectivity between the cingulate cortex and hippocampus of high versus low impulsive rats. We conclude that DDT impulsivity is associated with low D2/3 receptor binding in the NAcb core. Thus two related forms of waiting impulsivity - premature responding and delay intolerance in a delay-of-reward task - implicate an involvement of D2/3 receptor availability in the NAcb shell and core, respectively. This dissociation may be causal or consequential to enhanced functional connectivity of limbic brain circuitry and hold relevance for attention-deficit/hyperactivity disorder, drug addiction and other psychiatric disorders.

  17. Dynamic imaging of cerebral blood flow in rat reperfused mini-stroke model using laser speckle temporal contrast analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Luo, Weihua; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming

    2007-05-01

    Laser speckle temporal contrast analysis (LSTCA) was used to image the cerebral blood flow (CBF) of ischemic area in reperfused mini-stroke model in rats. Focal cortical ischemia in male Sprague-Dawley rats (n=20) was induced by deliberate ligation of multiple branches of the middle cerebral artery (MCA) together with a nylon ring and the dura. LSTCA was used to monitor the spatio-temporal characteristics of cerebral blood flow dynamics in the rat somatosensory cortex in the ischemic and reperfused stages. The infarction volume was measured by 2, 3, 5- triphenyltetrazolium chloride (TTC) staining 24 hours after reperfusion. The distribution of changes in cerebral blood flow which outlined by the laser speckle imaging represented the relative CBF gradient (21.98+/-1.96%, 67.2+/-1.67 %, 107.24+/-4.71 % of the baseline) from ischemic core, penumbra zone to normal tissue immediately after cortical ischemia, in which a central ischemic core had little or no perfusion surrounded by a penumbral region with reduced perfusion, in addition, we had shown the existence of a surrounding region of hyperemic tissue; Thereafter a postrecanalization hyperperfusion occurred in the same infarct core since 24 hours after reperfusion (242.62+/-18.52% of the baseline). Histology of the ischemic regions at 24 hours after reperfusion revealed small focal infarcts that were typically 3~4 mm in diameter, approximately equal to the nylon ring in size and position and essentially accordant with the spatial distribution of the ischemic cortex with below 30% residual CBF of the pre-ischemic baseline. It was demonstrated that this technique of LSTCA was easy to implement and availably used to image the spatial and temporal evolution of CBF changes with high resolution in rat reperfused mini-stroke model.

  18. Nonlinear pharmacokinetics of (+/-)3,4-methylenedioxymethamphetamine (MDMA) and its pharmacodynamic consequences in the rat.

    PubMed

    Concheiro, Marta; Baumann, Michael H; Scheidweiler, Karl B; Rothman, Richard B; Marrone, Gina F; Huestis, Marilyn A

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA's safety are needed. We evaluated MDMA's pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography-tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and <20% of MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P < 0.0001) and core temperature correlated with MDA concentrations (r = 0.7595; P < 0.0001), suggesting that MDMA's behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses.

  19. Nonlinear Pharmacokinetics of (±)3,4-Methylenedioxymethamphetamine (MDMA) and Its Pharmacodynamic Consequences in the Rat

    PubMed Central

    Concheiro, Marta; Baumann, Michael H.; Scheidweiler, Karl B.; Rothman, Richard B.; Marrone, Gina F.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA’s safety are needed. We evaluated MDMA’s pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography–tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and <20% of MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P < 0.0001) and core temperature correlated with MDA concentrations (r = 0.7595; P < 0.0001), suggesting that MDMA’s behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses. PMID:24141857

  20. Heating Pad Performance and Efficacy of 2 Durations of Warming after Isoflurane Anesthesia of Sprague-Dawley Rats (Rattus norvegicus).

    PubMed

    Zhang, Emily Q; Knight, Cameron G; Pang, Daniel Sj

    2017-11-01

    Anesthetic agents depress thermoregulatory mechanisms, causing hypothermia within minutes of induction of general anesthesia. The consequences of hypothermia include delayed recovery and increased experimental variability. Even when normothermia is maintained during anesthesia, hypothermia may occur during recovery. The primary aim of this study was to identify an effective warming period for maintaining normothermia during recovery. Adult male (n = 8) and female (n = 9) Sprague-Dawley rats were randomized to 30 min (post30) or 60 min (post60) of warming after recovery from anesthesia. During a 40-min anesthetic period, normothermia (target, 37.5 ± 1.1 °C) was maintained by manual adjustment of an electric heating pad in response to measured rectal temperatures (corrected to estimate core body temperature). Warming was continued in a recovery cage according to treatment group. Rectal temperature was measured for a total of 120 min after anesthesia. Heating pad performance was assessed by measuring temperatures at various sites over its surface. One female rat in the post30 group was excluded from analysis. Normothermia was effectively maintained during and after anesthesia without significant differences between groups. In the post60 group, core temperature was slightly but significantly increased at 90 and 100 min compared with baseline. One rat in each treatment group became hyperthermic (>38.6 °C) during recovery. During recovery, the cage floor temperature required approximately 30 min to stabilize. The heating pad produced heat unevenly over its surface, and measured temperatures frequently exceeded the programmed temperature. Providing 30 min of warming immediately after anesthesia effectively prevented hypothermia in rats. Shorter warming periods may be useful when recovery cages are preheated.

  1. Behavioral, Thermal and Neurochemical Effects Of Acute And Chronic 3,4-Methylenedioxymethamphetamine (“Ecstasy”) Self-Administration

    PubMed Central

    Reveron, Maria Elena; Maier, Esther Y.; Duvauchelle, Christine L.

    2009-01-01

    3,4-methylenedioxymethamphetamine (MDMA) is a popular methamphetamine derivative associated with young adults and all-night dance parties. However, the enduring effects of MDMA at voluntary intake levels have not been extensively investigated. In this study, MDMA-influenced behaviors and core temperatures were assessed over the course of 20 daily MDMA self-administration sessions in rats. In vivo microdialysis techniques were used in a subsequent MDMA challenge test session to determine extracellular nucleus accumbens dopamine (NAcc DA) and serotonin (5-HT) levels in MDMA-experienced and naïve animals before and after a self-administered MDMA injection (3.0 mg/kg, i.v.). During self-administration sessions, gradual and significant increases in MDMA intake and MDMA-stimulated locomotor activity were observed across sessions. Core temperature significantly decreased during initial MDMA sessions, but was unaltered by the last 10 sessions. In the MDMA challenge test, MDMA-naïve rats showed significantly higher NAcc 5-HT responses compared to MDMA-experienced rats, though MDMA experience did not affect the magnitude of NAcc DA response. The overall findings suggest that changes in MDMA-induced responses over the course of increasing levels of drug exposure may reflect the development of tolerance to a number of MDMA effects. PMID:19891989

  2. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia

    PubMed Central

    Laird, A S; Carrive, P; Waite, P M E

    2006-01-01

    In patients with high spinal cord injuries autonomic dysfunction can be dangerous, leading to medical complications such as postural hypotension, autonomic dysreflexia and temperature disturbance. While animal models have been developed to study autonomic dysreflexia, associated temperature changes have not been documented. Our aim here was to use radiotelemetry and infrared thermography in rodents to record the development of cardiovascular and skin temperature changes following complete T4 transection. In adult male Wistar rats (n = 5), responses were assessed prior to spinal cord injury (intact) and for 6 weeks following injury. Statistical analysis by a repeated-measure ANOVA revealed that following spinal cord injury (SCI), rats exhibited decreased mean arterial pressure (MAP, average decrease of 26 mmHg; P < 0.035) and elevated heart rate (HR, average increase of 65 bpm, P < 0.035) at rest. The basal core body temperature following SCI was also significantly lower than intact levels (−0.9°C; P < 0.0035). Associated with this decreased basal core temperature following SCI was an increased skin temperature of the mid-tail and hindpaw (+5.6 and +4.0°C, respectively; P < 0.0003) consistent with decreased cutaneous vasoconstrictor tone. Autonomic dysreflexia, in response to a 1 min colorectal distension (25 mmHg), was fully developed by 4 weeks after spinal cord transection, producing increases in MAP greater than 25 mmHg (P < 0.0003). In contrast to the tachycardia seen in intact animals in response to colorectal distension, SCI animals exhibited bradycardia (P < 0.0023). During episodes of autonomic dysreflexia mid-tail surface temperature decreased (approx. −1.7°C, P < 0.012), consistent with cutaneous vasoconstriction. This is the first study to compare cardiovascular dysfunction with temperature changes following spinal cord transection in rats. PMID:16973703

  3. Lesions of the anteroventral third ventricle region exaggerate neuroendocrine and thermogenic but not behavioral responses to a novel environment.

    PubMed

    Whyte, Douglas G; Johnson, Alan Kim

    2007-01-01

    Mild psychological stressors provoke an acute rise in core temperature (T(C)), stimulate the hypothalamo-pituitary-adrenocortical (HPA) axis, and induce various stress-related behaviors. In the present study, we examined the effect of ablation of the anteroventral third ventricle region (AV3V) on both physiological and behavioral responses to a novel environment. T(C) was monitored in male Sprague-Dawley rats, with either sham or AV3V lesions, during a 5-h exposure to a novel environment. Trunk blood was collected, in a second group of rats, for the assessment of plasma levels of ACTH and corticosterone. Novelty-induced grooming and rearing behaviors were assessed in a third group of animals. T(C) was elevated in all animals after 30 min in the novel environment, but the rise was exaggerated in rats with AV3V lesions ( approximately 0.5 degrees C). AV3V-lesion rats maintained a higher core temperature for 2 h before it returned to the same level as the control group. Plasma levels of ACTH and corticosterone were also exaggerated in the AV3V lesion group after 30 min in a novel environment. In contrast to the physiological responses, the behavioral measures of grooming and rearing revealed no differences between the groups. The results from the current study suggest that neurons within the AV3V region exert an inhibitory influence on the HPA axis and fever developed in response to stressful psychological stimuli. They also confirm that the physiological and hormonal components of the stress response are independent of certain behavioral measures of stress.

  4. Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences.

    PubMed

    Randall, Patrick A; Pardo, Marta; Nunes, Eric J; López Cruz, Laura; Vemuri, V Kiran; Makriyannis, Alex; Baqi, Younis; Müller, Christa E; Correa, Mercè; Salamone, John D

    2012-01-01

    Mesolimbic dopamine (DA) is involved in behavioral activation and effort-related processes. Rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. In the present study, the effects of several drug treatments were assessed using a progressive ratio (PROG)/chow feeding concurrent choice task. With this task, rats can lever press on a PROG schedule reinforced by a preferred high-carbohydrate food pellet, or alternatively approach and consume the less-preferred but concurrently available laboratory chow. Rats pass through each ratio level 15 times, after which the ratio requirement is incremented by one additional response. The DA D(2) antagonist haloperidol (0.025-0.1 mg/kg) reduced number of lever presses and highest ratio achieved but did not reduce chow intake. In contrast, the adenosine A(2A) antagonist MSX-3 increased lever presses and highest ratio achieved, but decreased chow consumption. The cannabinoid CB1 inverse agonist and putative appetite suppressant AM251 decreased lever presses, highest ratio achieved, and chow intake; this effect was similar to that produced by pre-feeding. Furthermore, DA-related signal transduction activity (pDARPP-32(Thr34) expression) was greater in nucleus accumbens core of high responders (rats with high lever pressing output) compared to low responders. Thus, the effects of DA antagonism differed greatly from those produced by pre-feeding or reduced CB1 transmission, and it appears unlikely that haloperidol reduces PROG responding because of a general reduction in primary food motivation or the unconditioned reinforcing properties of food. Furthermore, accumbens core signal transduction activity is related to individual differences in work output.

  5. A 90-day safety study in Sprague-Dawley rats fed milk powder containing recombinant human lactoferrin (rhLF) derived from transgenic cloned cattle.

    PubMed

    Zhou, Cui; Wang, Jian Wu; Huang, Kun Lun; He, XiaoYun; Chen, Xiu Ping; Sun, Hong; Yu, Tian; Che, Hui Lian

    2011-10-01

    Transgenic cloned animals expressing beneficial human nutritional traits offer a new strategy for large-scale production of some kinds of functional substances. In some cases, the required safety testing for genetically modified (GM) foods do not seem appropriate for human food safety, though regulations do not seem to provide alternatives. A 90-day rat feeding study is the core study for the safety assessment of GM foods. The test material in this 90-day study was prepared nonfat milk powder containing recombinant human lactoferrin (rhLF), which was expressed in transgenic cloned cattle. Groups of 10 male and female Sprague-Dawley rats were given a nutritionally balanced purified diet containing 7.5, 15, or 30% transgenic or conventional milk powder for 90 days. A commercial AIN93G diet was used as an additional control group. Clinical, biological, and pathological parameters were compared between groups. The only significant effect of treatment was higher mean ferritin and Fe(+) concentrations for both male and female rats fed the transgenic milk powder diets, as compared to rats fed nontransgenic milk diets or the commercial diet. The results of the present study are consistent with previous research, which indicates that milk powder containing rhLF derived from healthy transgenic cloned cattle is as safe as conventional milk powder.

  6. Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats.

    PubMed

    Yamaoka, Ippei; Nakayama, Mitsuo; Miki, Takanori; Yokoyama, Toshifumi; Takeuchi, Yoshiki

    2008-02-01

    We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.

  7. Amphetamine enhances endurance by increasing heat dissipation.

    PubMed

    Morozova, Ekaterina; Yoo, Yeonjoo; Behrouzvaziri, Abolhassan; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, Yaroslav

    2016-09-01

    Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine-trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine-treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise-induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Silun; Tryggestad, Erik; Zhou Tingting

    Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necroticmore » cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.« less

  9. Body and brain temperature coupling: the critical role of cerebral blood flow

    PubMed Central

    Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.

    2010-01-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681

  10. Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain.

    PubMed

    Wang, Silun; Tryggestad, Erik; Zhou, Tingting; Armour, Michael; Wen, Zhibo; Fu, De-Xue; Ford, Eric; van Zijl, Peter C M; Zhou, Jinyuan

    2012-07-01

    Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T(1), T(2), apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 × 10 mm(2)) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at ~25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T(1), T(2), MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T(1), T(2), MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Body and brain temperature coupling: the critical role of cerebral blood flow.

    PubMed

    Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A

    2009-08-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.

  12. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification

    PubMed Central

    Hummer, Blake H.; de Leeuw, Noah F.; Burns, Christian; Chen, Lan; Joens, Matthew S.; Hosford, Bethany; Fitzpatrick, James A. J.; Asensio, Cedric S.

    2017-01-01

    Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN. PMID:29074564

  13. Disturbed diurnal rhythm of three classical phase markers in the chronic mild stress rat model of depression.

    PubMed

    Christiansen, S L; Højgaard, K; Wiborg, O; Bouzinova, E V

    2016-09-01

    Disturbances of circadian rhythms have been suggested to be a causal factor in the development of major depressive disorder. However, the mechanisms underlying the association between circadian rhythm abnormalities and mood disorders are still unknown. In the current study the association between diurnal pattern of key phase markers (melatonin, corticosterone, and core body temperature) and anhedonic-like behavior was investigated using the highly validated rat chronic mild stress (CMS) model of depression. Phase marker measurements were done after 3.5 weeks of CMS in 48 control rats and 48 anhedonic-like rats at 6 time points within 24h. The results showed that anhedonic-like behavior associates with changes in all three phase markers: an increased dark phase melatonin secretion, an additional peak in corticosterone level in the beginning of the light phase, and hypothermia in the dark phase. The result adds to the validity of the CMS model in general and in particular to be adequate as a model for studying the chronobiology of depressive disorder. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  14. Interactions between Early Life Stress, Nucleus Accumbens MeCP2 Expression, and Methamphetamine Self-Administration in Male Rats

    PubMed Central

    Lewis, Candace R; Bastle, Ryan M; Manning, Tawny B; Himes, Sarah M; Fennig, Paulette; Conrad, Phoebe R; Colwell, Jenna; Pagni, Broc A; Hess, Lyndsay A; Matekel, Caitlin G; Newbern, Jason M; Olive, M Foster

    2016-01-01

    Early life stress (ELS) is highly related to the development of psychiatric illnesses in adulthood, including substance use disorders. A recent body of literature suggests that long-lasting changes in the epigenome may be a mechanism by which experiences early in life can alter neurobiological and behavioral phenotypes in adulthood. In this study, we replicate our previous findings that ELS, in the form of prolonged maternal separation, increases adult methamphetamine self-administration (SA) in male rats as compared with handled controls. In addition, we show new evidence that both ELS and methamphetamine SA alter the expression of the epigenetic regulator methyl CpG-binding protein 2 (MeCP2) in key brain reward regions, particularly in the nucleus accumbens (NAc) core. In turn, viral-mediated knockdown of MeCP2 expression in the NAc core reduces methamphetamine SA, as well as saccharin intake. Furthermore, NAc core MeCP2 knockdown reduces methamphetamine, but not saccharin, SA on a progressive ratio schedule of reinforcement. These data suggest that NAc core MeCP2 may be recruited by both ELS and methamphetamine SA and promote the development of certain aspects of drug abuse-related behavior. Taken together, functional interactions between ELS, methamphetamine SA, and the expression of MeCP2 in the NAc may represent novel mechanisms that can ultimately be targeted for intervention in individuals with adverse early life experiences who are at risk for developing substance use disorders. PMID:27312406

  15. 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) DISRUPTS EARLY MORPHOGENETIC EVENTS THAT FORM THE LOWER REPRODUCTIVE TRACT IN FEMALE RAT FETUSES

    EPA Science Inventory

    In female rats, in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during critical periods of organogenesis causes a permanent thread of tissue across the vaginal opening, which consists of a core of mesenchyme surrounded by keratinized epithelia. The objective of t...

  16. Aging and episodic ozone exposure in Brown Norway rats: Effects on heart rate, core temperature, pulmonary function, and expression of serum biomarkers.

    EPA Science Inventory

    Ozone (03) is an air pollutant that is associated with cardiovascular and respiratory diseases. The aged population is considered to be more sensitive to pollutants such as 03;however, relatively few studies have demonstrated increased susceptibility in aged or senescent animal m...

  17. Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus

    PubMed Central

    Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E

    2015-01-01

    The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80 pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5 mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10 m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. PMID:25725382

  18. Morphine sensitization as a model of mania: comparative study of the effects of repeated lithium or carbamazepine administration.

    PubMed

    Grappi, Silvia; Marchese, Giovanna; Secci, Maria Elena; De Montis, Maria Graziella; Gambarana, Carla; Scheggi, Simona

    2011-10-01

    Repeated unavoidable stress induces in rats decreased reactivity to avoidable stressors and an anhedonia-like condition that are reverted by long-term antidepressant treatments and regarded as models of core symptoms of depression. Morphine-sensitized rats present resilience to stress-induced behavioral deficits and, if hyporeactivity to stress models a depressive symptom, stress resistance can be regarded as a manic symptom. This hypothesis is supported by the observation that long-term lithium administration reinstates sensitivity to stress in sensitized rats. The first aim of the study was to examine the effects of carbamazepine, a standard antimanic treatment, on the stress resilience of sensitized rats, to further characterize morphine sensitization as a model of manic symptom. Carbamazepine administration abolished stress resilience but did not interfere with the expression of sensitization. The second aim of the study was to assess whether repeated carbamazepine treatment affected the dopaminergic and behavioral responses to a natural reward, a palatable food (vanilla sugar, VS), in non food-deprived sensitized and control rats and compare these possible effects with those of repeated lithium administration. Control and sensitized rats showed increased extraneuronal dopamine levels in the nucleus accumbens shell after VS consumption and competence to acquire an instrumental VS-sustained appetitive behavior (VAB). Repeated carbamazepine treatment abolished the dopaminergic response to VS consumption and disrupted the competence to acquire VAB in control rats. Lithium-treated rats showed a dopaminergic response to VS and easily acquired the appetitive behavior. In sensitized rats, neither carbamazepine nor lithium administration interfered with the dopaminergic response to VS and the acquisition of VAB. In summary, the effect of carbamazepine on the stress resilience of sensitized rats further supported the hypothesis that morphine sensitization might model some symptoms of mania. Moreover, in control rats carbamazepine treatment elicited an anhedonia-like condition that clearly distinguished the effects of this drug from those of lithium. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  20. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  1. Identification of ischemic regions in a rat model of stroke.

    PubMed

    Popp, Anke; Jaenisch, Nadine; Witte, Otto W; Frahm, Christiane

    2009-01-01

    Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study.

  2. Identification of Ischemic Regions in a Rat Model of Stroke

    PubMed Central

    Popp, Anke; Jaenisch, Nadine; Witte, Otto W.; Frahm, Christiane

    2009-01-01

    Background Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Methodology/Principal Findings Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. Conclusions/Significance TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study. PMID:19274095

  3. Prolonged withdrawal from cocaine self-administration affects prefrontal cortex- and basolateral amygdala-nucleus accumbens core circuits but not accumbens GABAergic local interneurons.

    PubMed

    Purgianto, Anthony; Weinfeld, Michael E; Wolf, Marina E

    2017-11-01

    Withdrawal from extended-access cocaine self-administration leads to progressive intensification ('incubation') of cocaine craving. After prolonged withdrawal (1-2 months), when craving is high, expression of incubation depends on strengthening of excitatory inputs to medium spiny neurons (MSN) of the nucleus accumbens (NAc). These excitatory inputs interact with the intra-NAc GABAergic 'microcircuit', composed of MSN axon collaterals and GABAergic interneurons. Here, we investigated whether the increased glutamatergic neurotransmission observed after prolonged withdrawal is accompanied by altered GABAergic neurotransmission, focusing on NAc core. Rats self-administered cocaine or saline (6 hours/day) and then underwent >40 days of withdrawal. First, we investigated parvalbumin positive (PV+) interneurons, GABAergic fast-spiking interneurons that regulate MSN activity. Immunohistochemical studies revealed no significant change in PV signal intensity or the number of PV+ cells in cocaine rats versus saline controls. We then screened PV and other interneuron markers using immunoblotting. We detected no changes in levels of PV, calretinin, calbindin or neuronal nitric oxide synthase. Because expression of these markers is activity dependent, our results suggest no marked changes in interneuron activity. Finally, we utilized local field potential recording, which can detect GABA-mediated alterations at the circuit level, to investigate potential changes in two circuits implicated in cocaine craving: prelimbic prefrontal cortex to NAc core and basolateral amygdala to NAc core. We detected differential adaptations in these circuits, some of which may involve GABA. Overall, our results suggest that alterations in GABA transmission may accompany incubation of cocaine craving, but they are circuit specific and less pronounced than alterations in glutamate transmission. © 2016 Society for the Study of Addiction.

  4. Organizational influence of the postnatal testosterone surge on the circadian rhythm of core body temperature of adult male rats.

    PubMed

    Zuloaga, Damian G; McGivern, Robert F; Handa, Robert J

    2009-05-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates physiological and behavioral circadian rhythms such as activity, body temperature, and hormone secretion. Circadian rhythms coordinated by the SCN often show sex differences arising from both organizational and activational effects of gonadal hormones. In males, little is known about the organizational role of testosterone on the circadian regulation of core body temperature (CBT) in adulthood. To explore this, we castrated or sham-operated male rats on the day of birth, and at 4 months of age, implanted them with transmitters that measured CBT rhythms under a 12:12 light/dark cycle. This study revealed a significantly earlier rise in CBT during the light phase in neonatally castrated males. Subsequently, we found that treating neonatally castrated males with testosterone propionate (TP) in adulthood did not reverse the effect of neonatal castration, thus indicating an organizational role for testosterone. In contrast, a single injection of TP at the time of neonatal surgery, to mimic the postnatal surge of testosterone, coupled with TP treatment in adulthood, normalized the circadian rise in CBT. In a final study we examined CBT circadian rhythms in intact adult male and female rats and detected no differences in the rise of CBT during the light phase, although there was a greater overall elevation in female CBT. Together, results of these studies reveal an early organizational role of testosterone in males on the timing of the circadian rise of CBT, a difference that does not appear to reflect "defeminization".

  5. Restraint hypothermia in cold-exposed rats at 3 G and 1 G

    NASA Technical Reports Server (NTRS)

    Monson, C. B.; Horowitz, J. M.; Horwitz, B. A.

    1982-01-01

    The relationship between heat loss, heat production, and hypothermia was investigated in experiments with rats which determined if hypergravity affects heat production by altering oxygen consumption and if restraint modifies the ability of the rats to activate thermogenic mechanisms after cold exposure in a hypergravic field. Restrained and unrestrained rats were exposed for 1 hr periods to 1 G and 3 G at ambient temperatures of 24 C or 10 C, and the rate of oxygen consumption, the core temperatures, and the tail temperatures were measured. Results show that thermoregulatory mechanisms are impaired when rats are exposed to 3 G fields, and at 24 C as well as at 10 C this impairment leads to an inappropriate increase in heat loss.

  6. Acute starvation alters lipopolysaccharide-induced fever in leptin-dependent and -independent mechanisms in rats.

    PubMed

    Inoue, Wataru; Luheshi, Giamal N

    2010-12-01

    A decrease in leptin levels with the onset of starvation triggers a myriad of physiological responses including immunosuppression and hypometabolism/hypothermia, both of which can counteract the fever response to pathogens. Here we examined the role of leptin in LPS-induced fever in rats that were fasted for 48 h prior to inflammation with or without leptin replacement (12 μg/day). The preinflammation fasting alone caused a progressive hypothermia that was almost completely reversed by leptin replacement. The LPS (100 μg/kg)-induced elevation in core body temperature (T(core)) was attenuated in the fasted animals at 2-6 h after the injection, an effect that was not reversed by leptin replacement. Increasing the LPS dose to 1,000 μg/kg caused a long-lasting fever that remained unabated for up to 36 h after the injection in the fed rats. This sustained response was strongly attenuated in the fasted rats whose T(core) started to decrease by 18 h after the injection. Leptin replacement almost completely restored the prolonged fever. The attenuation of the prolonged fever in the fasted animals was accompanied by the diminution of proinflammatory PGE(2) in the cerebrospinal fluid and mRNA of proopiomelanocortin (POMC) in the hypothalamus. Leptin replacement prevented the fasting-induced reduction of POMC but not PGE(2). Moreover, the leptin-dependent fever maintenance correlated closely with hypothalamic POMC levels (r = 0.77, P < 0.001). These results suggest that reduced leptin levels during starvation attenuate the sustained fever response by lowering hypothalamic POMC tone but not PGE(2) synthesis.

  7. Sex differences in neurotensin and substance P following nicotine self-administration in rats.

    PubMed

    Pittenger, Steven T; Swalve, Natashia; Chou, Shinnyi; Smith, Misty D; Hoonakker, Amanda J; Pudiak, Cindy M; Fleckenstein, Annette E; Hanson, Glen R; Bevins, Rick A

    2016-08-01

    Investigator-administered nicotine alters neurotensin and substance P levels in Sprague-Dawley rats. This finding suggested a role of the dopamine-related endogenous neuropeptides in nicotine addiction. We sought to extend this observation by determining the responses of neurotensin and substance P systems (assessed using radioimmunoassay) in male and female rats following nicotine self-administration (SA). Male and female Sprague-Dawley were trained to self-administer nicotine, or receive saline infusions yoked to a nicotine-administering rat during daily sessions (1-h; 21 days). Brains were extracted 3 h after the last SA session. Nicotine SA increased tissue levels of neurotensin in the males in the anterior and posterior caudate, globus pallidus, frontal cortex, nucleus accumbens core and shell, and ventral tegmental area. Nicotine SA also increased tissue levels of neurotensin in the females in the anterior caudate, globus pallidus, nucleus accumbens core and shell, but not in the posterior caudate, frontal cortex, or ventral tegmental area. There were fewer sex differences observed in the substance P systems. Nicotine SA increased tissue levels of substance P in both the males and females in the posterior caudate, globus pallidus, frontal cortex, nucleus accumbens shell, and ventral tegmental area. A sex difference was observed in the nucleus accumbens core, where nicotine SA increased tissue levels of substance P in the males, yet decreased levels in the females. The regulation of neuropeptides following nicotine SA may play a role in the susceptibility to nicotine dependence in females and males. Synapse 70:336-346, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. NGFI-B and nor1 mRNAs are upregulated in brain reward pathways by drugs of abuse: different effects in Fischer and Lewis rats.

    PubMed

    Werme, M; Olson, L; Brené, S

    2000-03-10

    The two inbred Fischer and Lewis rat strains display differences in acquisition of drug self-administration, suggesting genetic factors controlling the vulnerability to drugs of abuse. In this study, we analyzed the effects of acute and chronic cocaine and morphine on mRNAs encoding the NGFI-B/Nur77 family of nuclear orphan receptors in reward pathways in Fischer and Lewis rats. After a single injection of cocaine, a similar upregulation of NGFI-B mRNA in striatal subregions and cortex cinguli was seen in both Fischer and Lewis rats. In contrast, Nor1 mRNA was only significantly upregulated by cocaine in the Fischer rats. Morphine increased NGFI-B mRNA in medial caudate putamen and cortex cinguli in Lewis rats and Nor1 mRNA in medial caudate putamen in Fischer rats. Chronic cocaine upregulated NGFI-B mRNA in nucleus accumbens core, lateral caudate putamen and cingulate cortex in Fischer rats, whereas no effect was seen in Lewis rats. In contrast, Nor1 mRNA levels were upregulated in Lewis rats in medial caudate putamen and cingulate cortex after chronic cocaine and in cingulate cortex after chronic morphine. No effect on Nor1 mRNA levels was seen in Fischer rats after chronic treatments. Our results demonstrate different responses in addiction-prone Lewis rats as compared to the less addiction-prone Fischer rats with respect to NGFI-B and Nor1 mRNA regulation after acute and repeated administration of cocaine and morphine. Thus, we suggest that the transcription factors NGFI-B and Nor1 might be involved in the control of behaviors such as sensitized locomotor response, craving and aversion that appears after repeated administration of abused drugs.

  9. Food Protein Based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers.

    PubMed

    Alqahtani, Mohammed S; Islam, M Saiful; Podaralla, Satheesh; Kaushik, Radhey S; Reineke, Joshua; Woyengo, Tofuko; Perumal, Omathanu

    2017-03-06

    The study was aimed at systematically investigating the influence of shell composition on the particle size, stability, release, cell uptake, permeability, and in vivo gastrointestinal distribution of food protein based nanocarriers for oral delivery applications. Three different core-shell nanocarriers were prepared using food-grade biopolymers including zein-casein (ZC) nanoparticles, zein-lactoferrin (ZLF), nanoparticles and zein-PEG (ZPEG) micelles. Nile red was used as a model hydrophobic dye for in vitro studies. The nanocarriers had negative, positive, and neutral charge, respectively. All three nanocarriers had a particle size of less than 200 nm and a low polydispersity index. The nanoparticles were stable at gastrointestinal pH (2-9) and ionic strength (10-200 mM). The nanocarriers sustained the release of Nile red in simulated gastric and intestinal fluids. ZC nanoparticles showed the slowest release followed by ZLF nanoparticles and ZPEG micelles. The nanocarriers were taken up by endocytosis in Caco-2 cells. ZPEG micelles showed the highest cell uptake and transepithelial permeability followed by ZLF and ZC nanoparticles. ZPEG micelles also showed P-gp inhibitory activity. All three nanocarriers showed bioadhesive properties. Cy 5.5, a near IR dye, was used to study the in vivo biodistribution of the nanocarriers. The nanocarriers showed longer retention in the rat gastrointestinal tract compared to the free dye. Among the three formulations, ZC nanoparticles was retained the longest in the rat gastrointestinal tract (≥24 h). Overall, the outcomes from this study demonstrate the structure-function relationship of core-shell protein nanocarriers. The findings from this study can be used to develop food protein based oral drug delivery systems with specific functional attributes.

  10. Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist.

    PubMed

    Shirayama, Yukihiko; Yang, Chun; Zhang, Ji-chun; Ren, Qian; Yao, Wei; Hashimoto, Kenji

    2015-12-01

    Role of brain-derived neurotrophic factor (BDNF)-TrkB signaling in a learned helplessness (LH) model of depression was investigated. LH rats showed a reduction of BDNF in the medial prefrontal cortex (mPFC), CA3, and dentate gyrus (DG) of the hippocampus, whereas LH rats showed an increase in BDNF in the nucleus accumbens (NAc). Furthermore, levels of proBDNF, a BDNF precursor, were higher in the mPFC, but lower in the NAc, of LH rats. A single bilateral infusion of a TrkB agonist 7,8-DHF, but not a TrkB antagonist ANA-12, into the infralimbic (IL) of mPFC, DG, and CA3, but not the prelimbic (PrL) of mPFC, exerted antidepressant effects in LH rats. In contrast, a single bilateral infusion of ANA-12, but not 7,8-DHF, into the core and shell of NAc exerted antidepressant-like effects in LH rats, with more potent effects observed for the NAc core than for NAc shell. Interestingly, a single administration of 7,8-DHF (10mg/kg, i.p.) significantly improved a decreased phosphorylation of TrkB in the mPFC, CA3, and DG of LH rats. Additionally, ANA-12 (0.5mg/kg, i.p.) significantly improved an increased phosphorylation of TrkB in the NAc of LH rats. In conclusion, these results suggest that LH causes depression-like behavior by altering BDNF in the brain regions, and that proBDNF-BDNF processing and transport may be altered in the mPFC-NAc circuit of LH rats. Therefore, TrkB agonists might exert antidepressant effects by stimulating TrkB in the IL, CA3, and DG, while TrkB antagonists might exert antidepressant effects by blocking TrkB in the NAc. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  11. Discovery of a novel, CNS penetrant M4 PAM chemotype based on a 6-fluoro-4-(piperidin-1-yl)quinoline-3-carbonitrile core.

    PubMed

    Bewley, Blake R; Spearing, Paul K; Weiner, Rebecca L; Luscombe, Vincent B; Zhan, Xiaoyan; Chang, Sichen; Cho, Hyekyung P; Rodriguez, Alice L; Niswender, Colleen M; Conn, P Jeffrey; Bridges, Thomas M; Engers, Darren W; Lindsley, Craig W

    2017-09-15

    This Letter details the discovery and subsequent optimization of a novel M 4 PAM scaffold based on an 6-fluoro-4-(piperidin-1-yl)quinoline-3-carbonitrile core, which represents a distinct departure from the classical M 4 PAM chemotypes. Optimized compounds in this series demonstrated improved M 4 PAM potency on both human and rat M 4 (4 to 5-fold relative to HTS hit), and displayed attractive physicochemical and DMPK profiles, including good CNS penetration (rat brain:plasma K p =5.3, K p,uu =2.4; MDCK-MDR1 (P-gp) ER=1.1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training.

    PubMed

    Segovia, Kristen N; Correa, Merce; Lennington, Jessica B; Conover, Joanne C; Salamone, John D

    2012-04-01

    Nucleus accumbens is involved in several aspects of instrumental behavior, motivation and learning. Recent studies showed that dopamine (DA) release in the accumbens shell was significantly increased on the first day of training on a fixed ratio (FR) 5 schedule (i.e. the transition from FR1 to FR5) compared with those rats that continued FR1 training, even though the rats on their first day of FR5 training received less food reinforcement than rats continuing on the FR1 schedule. Additionally, the second day of FR5 responding was marked by a significant increase in DA release in accumbens core. The present studies employed immunohistochemical methods to characterize the changes in cellular markers of accumbens and neostriatal neural activity that occur during various stages of food-reinforced FR5 training. c-Fos and DARPP-32 immunoreactivity in accumbens shell was significantly increased on the first day of FR5 training, while core c-Fos and DARPP-32 expression showed large increases on the second day of FR5 training. Additional studies showed that c-Fos and DARPP-32 expression in neostriatum increased after more extensive training. Double-labeling studies with immunofluorescence methods indicated that increases in accumbens c-Fos and DARPP-32 expression were primarily seen in substance-P-positive neurons. These increases in accumbens c-Fos and DARPP-32 immunoreactivity seen during the initial phases of FR training may reflect several factors, including novelty, learning, stress or the presentation of a work-related challenge to the organism. Moreover, it appears that the separate subregions of the striatal complex are differentially activated at distinct phases of instrumental training. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. A microprobe for parallel optical and electrical recordings from single neurons in vivo.

    PubMed

    LeChasseur, Yoan; Dufour, Suzie; Lavertu, Guillaume; Bories, Cyril; Deschênes, Martin; Vallée, Réal; De Koninck, Yves

    2011-04-01

    Recording electrical activity from identified neurons in intact tissue is key to understanding their role in information processing. Recent fluorescence labeling techniques have opened new possibilities to combine electrophysiological recording with optical detection of individual neurons deep in brain tissue. For this purpose we developed dual-core fiberoptics-based microprobes, with an optical core to locally excite and collect fluorescence, and an electrolyte-filled hollow core for extracellular single unit electrophysiology. This design provides microprobes with tips < 10 μm, enabling analyses with single-cell optical resolution. We demonstrate combined electrical and optical detection of single fluorescent neurons in rats and mice. We combined electrical recordings and optical Ca²(+) measurements from single thalamic relay neurons in rats, and achieved detection and activation of single channelrhodopsin-expressing neurons in Thy1::ChR2-YFP transgenic mice. The microprobe expands possibilities for in vivo electrophysiological recording, providing parallel access to single-cell optical monitoring and control.

  14. ENP11, a potential CB1R antagonist, induces anorexia in rats.

    PubMed

    Méndez-Díaz, Mónica; Amancio-Belmont, Octavio; Hernández-Vázquez, Eduardo; Ruiz-Contreras, Alejandra E; Hernández-Luis, Francisco; Prospéro-García, Oscar

    2015-08-01

    Over the past decade, pharmacological manipulation of cannabinoid 1 receptor (CB1R) has become an interesting approach for the management of food ingestion disorders, among other physiological functions. Searching for new substances with similar desirable effects, but fewer side-effects we have synthesized a SR141716A (a cannabinoid receptor inverse agonist also called Rimonabant) analog, 1-(2,4-Difluorophenyl)-4-methyl-N-(1-piperidinyl)-5-[4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carboxamide, ENP11, that so far, as we have previously shown, has induced changes in glucose availability, i.e. hypoglycemia, in rats. In this study we tested the effects, if any, of ENP11 (0.5, 1.0, and 3.0mg/kg) in food ingestion, core temperature, pain perception and motor control in adult Wistar rats. Results showed that ENP11 reduced food ingestion during the first hour immediately after administration. Likewise, ENP11 (1.0mg/kg) blocked anandamide (AEA)-induced hyperphagia during the first 4h of the dark phase of the light-dark cycle, and it also blocked AEA-induced hypothermia. However, none of the ENP11 doses used affected pain perception or motor control. We believe that ENP11 is a potential useful CB1R antagonist that reduces food ingestion and regulates core temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    PubMed

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  16. NTP 3-month toxicity studies of estragole (CAS No. 140-67-0) administered by gavage to F344/N rats and B6C3F1 mice.

    PubMed

    Bristol, D W

    2011-01-01

    Estragole is a natural organic compound that is used as an additive, flavoring agent, or fragrance in a variety of food, cleaning, and cosmetic products; as an herbal medicine; as an antimicrobial agent against acid-tolerant food microflora; and to produce synthetic anise oil. Estragole was nominated for toxicity testing by the National Institute of Environmental Health Sciences to characterize its toxicity when administered by gavage to F344/N rats and B6C3F1 mice and to determine how similar its effects might be to those of the structurally related compound, methyleugenol. Male and female F344/N rats and B6C3F1 mice were given estragole (greater than 99% pure) in corn oil by gavage for 3 months. Genetic toxicology studies were conducted in Salmonella typhimurium and mouse peripheral blood erythrocytes. Core and special study (rats only) groups of 10 male and 10 female rats and mice were administered 37.5, 75, 150, 300, or 600 mg estragole/kg body weight in corn oil by gavage, 5 days per week. The core study groups were given estragole for 3 months and the special study groups for 30 days. All core study rats survived the 3-month exposure period. Mean body weights of the 300 and 600 mg/kg groups were 73% to 92%, respectively, of those of the vehicle control groups. A staining pattern on the ventral surface anterior to the genitalia beginning at week 9 in the 300 and 600 mg/kg groups was attributed to residue of estragole or metabolites in the urine. Alterations in the erythron related to estragole administration occurred in male and female rats; male rats demonstrated a stronger response. The changes in the erythron were characterized as a microcytic, normochromic, nonresponsive anemia. There were decreases in serum iron concentration in the 300 mg/kg females and 600 mg/kg males and females. The average percent saturation of total iron binding capacity was decreased in the 600 mg/kg males and females. Dose-related increases in platelet counts occurred in most of the dosed groups of rats; the effect appeared to be stronger in males. The increase could be consistent with a reactive thrombocytosis. Increases in the serum alanine aminotransferase and sorbitol dehydrogenase activities suggested a hepatocellular effect (increased leakage) and were consistent with the morphological liver changes observed. There were dose-related increases in serum bile salt concentration in most treated male rats at all time points; females were less affected. Absolute and relative liver weights were significantly increased in 300 and 600 mg/kg males and in 75 mg/kg or greater females. Relative kidney weights were significantly increased in all dosed groups of male rats and in female rats given 75 mg/kg or greater. Absolute and relative testis weights of 300 and 600 mg/kg males were significantly decreased. Two 600 mg/kg male rats had multiple cholangiocarcinomas in the liver and a third had an hepatocellular adenoma. All 600 mg/kg males exhibited cholangiofibrosis. All 75 mg/kg or greater males and all 150 mg/kg or greater females had hepatocellular hypertrophy. Incidences of bile duct hyperplasia, oval cell hyperplasia, and chronic periportal inflammation were significantly increased in all dosed groups. Incidences of basophilic and mixed cell foci were significantly increased in 150 mg/kg or greater males and females. Incidences of eosinophilic focus were significantly increased in 300 and 600 mg/kg males and 600 mg/kg females. Incidences of cellular infiltration of the periportal region by histiocytes increased significantly in all dosed groups of males and in 150 mg/kg or greater females. Incidences of bone marrow hyperplasia were significantly increased in 75, 300, and 600 mg/kg male rats. Incidences of renal tubule papillary mineralization were significantly increased in 300 mg/kg males and females and 600 mg/kg males. Incidences of cortical renal tubule pigmentation were significantly increased in 150 mg/kg or greater males, and the incidence of renal tubule regeneration was significantly increased in 600 mg/kg females. Incidences of degeneration of the olfactory epithelium in the nose were significantly increased in 300 and 600 mg/kg rats. Incidences of hypertrophied chromophobe cells in the pars distalis of the pituitary gland were significantly increased in 300 and 600 mg/kg males. Cytoplasmic alteration of the submandibular salivary gland occurred in all 75 mg/kg or greater rats. Incidences of atrophy of the gastric glands in the stomach were significantly increased in 150 mg/kg or greater rats. Bilateral degeneration of the germinal epithelium in the testes and bilateral hypospermia of the epididymis occurred in all 300 and 600 mg/kg males. In the special study, serum gastrin concentration and stomach pH were significantly increased in rats exposed to 600 mg/kg for 30 days. Gastric gland atrophy was significantly increased in the stomach of 300 and 600 mg/kg rats. Hepatic 7-pentoxyresorufin-O-deethylase activity was significantly increased in all exposed groups except 37.5 mg/kg females, and the increases were generally dose related. In the mouse core study, a 600 mg/kg male died during week 9, and all 600 mg/kg female mice died during week 1; the female deaths were attributed to liver necrosis caused by estragole exposure. Mean body weights of 300 and 600 mg/kg males and 75 mg/kg or greater females were 79% to 89% those of the vehicle control groups. Liver weights were generally increased in 75 mg/kg or greater males and in 300 mg/kg females. Relative thymus weights were significantly increased in all dosed groups of female mice. The incidences of hepatocellular hypertrophy and hepatocellular degeneration were significantly increased in 300 and 600 mg/kg male mice and 150 and 300 mg/kg female mice. Incidences of oval cell hyperplasia were significantly increased in 300 and 600 mg/kg males and in 75 mg/kg or greater females. Liver necrosis occurred in all 600 mg/kg female mice, along with a significant increase in the incidence of diffuse fatty change. In addition, 600 mg/kg females exhibited significant increases in the incidences of degeneration of the gastric glands of the glandular stomach, as well as squamous hyperplasia, mineralization, and ulcer in the forestomach. Degeneration of the olfactory epithelium in the nose occurred in all 300 and 600 mg/kg mice. Estragole was not mutagenic in Salmonella typhimurium strains TA98, TA100, TA1535, or TA1537 when tested in the presence or absence of exogenous metabolic activation enzymes. No increases in the frequencies of micronucleated normochromatic erythrocytes were observed in peripheral blood samples from male and female mice in the 3-month study. Under the conditions of these 3-month studies, estragole showed carcinogenic activity based on the occurrence of two cholangiocarcinomas and one hepatocellular adenoma in the liver of three of 10 male F344/N rats in the high dose group. Because rats and mice were exposed for only 3 months, these studies do not access the full carcinogenic potential of estragole. Nonneoplastic effects were observed in the liver, glandular stomach, nose, kidney, and salivary gland of male and female rats and in the testes, epididymides, and pituitary gland of male rats. Nonneoplastic effects were also observed in the liver and nose of male and female mice and in the stomach of female mice.

  17. Evidence that exercise-induced heat storage is dependent on adrenomedullary secretion.

    PubMed

    Rodrigues, A G; Lima, N R V; Coimbra, C C; Marubayashi, U

    2008-06-09

    To investigate the influence of medullary adrenal secretion on thermoregulation during exercise, Phy (Eserine, 5x10(-3) M) was injected into the lateral cerebral ventricle of normal (INT) or bilaterally adrenodemedullated (ADM) untrained rats. Body temperature (Tb) and metabolic rate were measured in the rats while they were exercising on a treadmill (20 m min(-1), 5% inclination) until fatigue or while they were at rest after drug injection. In resting rats, Phy increased oxygen consumption in both INT or ADM rats without any effect on core temperature. During the dynamic phase of exercise (first 20 min), ADM attenuated the exercise-induced increase in core temperature (0.86+/-0.12 degrees C ADM Sal vs 1.48+/-0.21 degrees C INT Sal), thus reducing heat storage (HS) levels. Icv injection of Phy in ADM rats significantly reduced the increase in Tb (0.012+/-0.10 degrees C min(-1) Phy vs 0.042+/-0.006 degrees C min(-1) Sal; p<0.02) and HS (65.8+/-56.1 cal Phy vs 207.7+/-32.7 cal Sal; p<0.04) compared to ADM Sal rats. In conclusion, the exercise-induced increase in heat storage was attenuated by adrenodemedullation in rats. Furthermore, the activation of heat loss mechanisms by the central cholinergic system during exercise occurs independently of adrenal medullary secretion suppression and can be improved by previous adrenodemedullation. Our data indicate the existence of a dual mechanism of heat loss control during the dynamic phase of exercise: one involving sympathoadrenal system activation that impairs heat loss and another that counteracts the increased sympathoadrenal activity through the hypothalamic cholinergic system to promote heat loss.

  18. Exercise activates compensatory thermoregulatory reaction in rats: a modeling study

    PubMed Central

    Yoo, Yeonjoo; LaPradd, Michelle; Kline, Hannah; Zaretskaia, Maria V.; Behrouzvaziri, Abolhassan; Rusyniak, Daniel E.; Molkov, Yaroslav I.

    2015-01-01

    The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats (Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures (Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this “ready-to-run” phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry. PMID:26472864

  19. Effects of nucleus accumbens core and shell lesions on autoshaped lever-pressing.

    PubMed

    Chang, Stephen E; Holland, Peter C

    2013-11-01

    Certain Pavlovian conditioned stimuli (CSs) paired with food unconditioned stimuli (USs) come to elicit approach and even consumption-like behaviors in rats (sign-tracking). We investigated the effects of lesions of the nucleus accumbens core (ACbC) or shell (ACbS) on the acquisition of sign-tracking in a discriminative autoshaping procedure in which presentation of one lever CS was followed by delivery of sucrose, and another was not. Although we previously found that bilateral lesions of the whole ACb disrupted the initial acquisition of sign-tracking, neither ACbC or ACbS lesions affected the rate or percentage of trials in which rats pressed the CS+. In addition, detailed video analysis showed no effect of either lesion on the topography of the sign-tracking conditioned response (CR). These and other results from lesion studies of autoshaping contrast with those from previous sign-tracking experiments that used purely visual cues (Parkinson et al., 2000a,b), suggesting that the neural circuitry involved in assigning incentive value depends upon the nature of the CS. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Core temperature of tailless rats exposed to centrifugation

    NASA Technical Reports Server (NTRS)

    Monson, C. B.; Oyama, J.

    1984-01-01

    The role of the tail in the altered thermoregulation of rats during acute exposure to hypergravity was investigated, using groups of rats of two ages: 55 days (young) and 138 days (old). Rectal and foot temperature changes were measured in intact and tailless rats subjected to 1 h centrifugation of 2.8 G, with preceding (1 h) and following (1-3 h) 1 G periods. At 22 C, the loss of body heat from the tail per se does not measurably contribute to the hypothermia induced by hypergravity. However, the heat loss from the feet was greater in the tailless rats than in the intact rats from the young group of animals, although there was no significant difference between the tailless and intact rats in the old animal group. It is concluded that the inhibition of heat production is a significant factor in the hypothermia of centrifuged tailless rats, as it has been previously shown to be in the intact animals.

  1. Computational modeling of temperature elevation and thermoregulatory response in the brains of anesthetized rats locally exposed at 1.5 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Masuda, Hiroshi; Kanai, Yuya; Asai, Ryuichi; Fujiwara, Osamu; Arima, Takuji; Kawai, Hiroki; Watanabe, Soichi; Lagroye, Isabelle; Veyret, Bernard

    2011-12-01

    The dominant effect of human exposures to microwaves is caused by temperature elevation ('thermal effect'). In the safety guidelines/standards, the specific absorption rate averaged over a specific volume is used as a metric for human protection from localized exposure. Further investigation on the use of this metric is required, especially in terms of thermophysiology. The World Health Organization (2006 RF research agenda) has given high priority to research into the extent and consequences of microwave-induced temperature elevation in children. In this study, an electromagnetic-thermal computational code was developed to model electromagnetic power absorption and resulting temperature elevation leading to changes in active blood flow in response to localized 1.457 GHz exposure in rat heads. Both juvenile (4 week old) and young adult (8 week old) rats were considered. The computational code was validated against measurements for 4 and 8 week old rats. Our computational results suggest that the blood flow rate depends on both brain and core temperature elevations. No significant difference was observed between thermophysiological responses in 4 and 8 week old rats under these exposure conditions. The computational model developed herein is thus applicable to set exposure conditions for rats in laboratory investigations, as well as in planning treatment protocols in the thermal therapy.

  2. Biocompatibility and safety of a hybrid core-shell nanoparticulate OP-1 delivery system intramuscularly administered in rats.

    PubMed

    Haidar, Ziyad S; Hamdy, Reggie C; Tabrizian, Maryam

    2010-04-01

    A hybrid, localized and release-controlled delivery system for bone growth factors consisting of a liposomal core incorporated into a shell of alternating layer-by-layer self-assembled natural polyelectrolytes has been formulated. Hydrophilic, monodisperse, spherical and stable cationic nanoparticles (< or =350 nm) with an extended shelf-life resulted. Cytocompatibility was previously assayed with MC3T3-E1.4 mouse preosteoblasts showing no adverse effects on cell viability. In this study, the in vivo biocompatibility of unloaded and loaded nanoparticles with osteogenic protein-1 or OP-1 was investigated. Young male Wistar rats were injected intramuscularly and monitored over a period of 10 weeks for signs of inflammation and/or adverse reactions. Blood samples (600 microL/collection) were withdrawn followed by hematological and biochemical analysis. Body weight changes over the treatment period were noted. Major organs were harvested, weighed and examined histologically for any pathological changes. Finally, the injection site was identified and examined immunohistochemically. Overall, all animals showed no obvious toxic health effects, immune responses and/or change in organ functions. This hybrid core-shell nanoparticulate delivery system localizes the effect of the released bioactive load within the site of injection in muscle with no significant tissue distress. Hence, a safe and promising carrier for therapeutic growth factors and possibly other biomolecules is presented. 2009 Elsevier Ltd. All rights reserved.

  3. Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus.

    PubMed

    Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E

    2015-05-22

    The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Normobaric hyperoxia retards the evolution of ischemic brain tissue toward infarction in a rat model of transient focal cerebral ischemia.

    PubMed

    Xu, Ji; Zhang, Yuan; Liang, Zhouyuan; Wang, Ting; Li, Weiping; Ren, Lijie; Huang, Shaonong; Liu, Wenlan

    2016-01-01

    Oxygen therapy has been long considered a logical therapy for ischemic stroke. Our previous studies showed that normobaric hyperoxia (normobaric hyperoxia (NBO), 95% O2 with 5% CO2) treatment during ischemia reduced ischemic neuronal death and cerebromicrovascular injury in animal stroke models. In this study, we studied the effects of NBO on the evolution of ischemic brain tissue to infarction in a rat model of transient focal cerebral ischemia. Male Sprague-Dawley rats were given NBO (95% O2) or normoxia (21% O2) during 90-min filament occlusion of the middle cerebral artery (MCAO), followed by 3 or 22.5 h of reperfusion. 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to evaluate the longitudinal evolution of tissue infarction. Results: In normoxic rats, MCA-supplied cortical and striatal tissue was infarcted after 90-min MCAO with 22.5 h of reperfusion. NBO-treated rats showed a 61.4% reduction in infarct size and tissue infarction mainly occurred in the ischemic striatum. When infarction was assessed at an earlier time point, i.e. at 3 h of reperfusion, normoxic rats showed significantly smaller but mature infarction (no TTC staining, white color), with the infarction mainly occurring in the striatum. Unexpectedly, NBO-treated rats only showed immature lesion (partially stained by TTC, light white color) in the ischemic striatum, indicating that NBO treatment also retarded the process of neuronal death in the ischemic core. Of note, NBO-preserved striatal tissue underwent infarction after prolonged reperfusion. Conclusions: Our results demonstrate that NBO treatment given during cerebral ischemia retards the evolution of ischemic brain tissue toward infarction and NBO-preserved cortical tissue survives better than NBO-preserved striatal tissue during the phase of reperfusion.

  5. Combined micro computed tomography and histology study of bone augmentation and distraction osteogenesis

    NASA Astrophysics Data System (ADS)

    Ilgenstein, Bernd; Deyhle, Hans; Jaquiery, Claude; Kunz, Christoph; Stalder, Anja; Stübinger, Stefan; Jundt, Gernot; Beckmann, Felix; Müller, Bert; Hieber, Simone E.

    2012-10-01

    Bone augmentation is a vital part of surgical interventions of the oral and maxillofacial area including dental implantology. Prior to implant placement, sufficient bone volume is needed to reduce the risk of peri-implantitis. While augmentation using harvested autologous bone is still considered as gold standard, many surgeons prefer bone substitutes to reduce operation time and to avoid donor site morbidity. To assess the osteogenic efficacy of commercially available augmentation materials we analyzed drill cores extracted before implant insertion. In younger patients, distraction osteogenesis is successfully applied to correct craniofacial deformities through targeted bone formation. To study the influence of mesenchymal stem cells on bone regeneration during distraction osteogenesis, human mesenchymal stem cells were injected into the distraction gap of nude rat mandibles immediately after osteotomy. The distraction was performed over eleven days to reach a distraction gap of 6 mm. Both the rat mandibles and the drill cores were scanned using synchrotron radiation-based micro computed tomography. The three-dimensional data were manually registered and compared with corresponding two-dimensional histological sections to assess bone regeneration and its morphology. The analysis of the rat mandibles indicates that bone formation is enhanced by mesenchymal stem cells injected before distraction. The bone substitutes yielded a wide range of bone volume and degree of resorption. The volume fraction of the newly formed bone was determined to 34.4% in the computed tomography dataset for the augmentation material Geistlich Bio-Oss®. The combination of computed tomography and histology allowed a complementary assessment for both bone augmentation and distraction osteogenesis.

  6. Construction and Evaluation of Rodent-Specific rTMS Coils.

    PubMed

    Tang, Alexander D; Lowe, Andrea S; Garrett, Andrew R; Woodward, Robert; Bennett, William; Canty, Alison J; Garry, Michael I; Hinder, Mark R; Summers, Jeffery J; Gersner, Roman; Rotenberg, Alexander; Thickbroom, Gary; Walton, Joseph; Rodger, Jennifer

    2016-01-01

    Rodent models of transcranial magnetic stimulation (TMS) play a crucial role in aiding the understanding of the cellular and molecular mechanisms underlying TMS induced plasticity. Rodent-specific TMS have previously been used to deliver focal stimulation at the cost of stimulus intensity (12 mT). Here we describe two novel TMS coils designed to deliver repetitive TMS (rTMS) at greater stimulation intensities whilst maintaining spatial resolution. Two circular coils (8 mm outer diameter) were constructed with either an air or pure iron-core. Peak magnetic field strength for the air and iron-cores were 90 and 120 mT, respectively, with the iron-core coil exhibiting less focality. Coil temperature and magnetic field stability for the two coils undergoing rTMS, were similar at 1 Hz but varied at 10 Hz. Finite element modeling of 10 Hz rTMS with the iron-core in a simplified rat brain model suggests a peak electric field of 85 and 12.7 V/m, within the skull and the brain, respectively. Delivering 10 Hz rTMS to the motor cortex of anaesthetized rats with the iron-core coil significantly increased motor evoked potential amplitudes immediately after stimulation (n = 4). Our results suggest these novel coils generate modest magnetic and electric fields, capable of altering cortical excitability and provide an alternative method to investigate the mechanisms underlying rTMS-induced plasticity in an experimental setting.

  7. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    PubMed Central

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  8. Chronic consumption of dietary proanthocyanidins modulates peripheral clocks in healthy and obese rats.

    PubMed

    Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C

    2015-02-01

    Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    PubMed

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  10. Protein Changes in Macrophages Induced by Plasma from Rats Exposed to 35-GHz Millimeter Waves

    DTIC Science & Technology

    2010-12-01

    HumanEffectiveness Directorate, Air Force Research Laboratory, Brooks City-Base,Texas A macrophage assay and proteomic screening were used to...mW/cm2 until core temperature reached 41.0 8C. Two-dimensional polyacrylamide gel electrophoresis, image analysis, and Western blotting were used to...stimulation. Proteins of interest were identified using peptide mass fingerprinting. Compared to plasma from sham- exposed rats, plasma from

  11. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats.

    PubMed

    Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2011-05-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.

  12. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats

    PubMed Central

    MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE

    2015-01-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772

  13. Brown adipose tissue thermogenesis does not explain the intra-administration hyperthermic sign-reversal induced by serial administrations of 60% nitrous oxide to rats.

    PubMed

    Al-Noori, Salwa; Ramsay, Douglas S; Cimpan, Andreas; Maltzer, Zoe; Zou, Jessie; Kaiyala, Karl J

    2016-08-01

    Initial administration of ≥60% nitrous oxide (N2O) to rats promotes hypothermia primarily by increasing whole-body heat loss. We hypothesized that the drug promotes heat loss via the tail and might initially inhibit thermogenesis via brown adipose tissue (BAT), major organs of thermoregulation in rodents. Following repeated administrations, N2O inhalation evokes hyperthermia underlain by increased whole-body heat production. We hypothesized that elevated BAT thermogenesis plays a role in this thermoregulatory sign reversal. Using dual probe telemetric temperature implants and infrared (IR) thermography, we assessed the effects of nine repeated 60% N2O administrations compared to control (con) administrations on core temperature, BAT temperature, lumbar back temperature and tail temperature. Telemetric core temperature, telemetric BAT temperature, and IR BAT temperature were reduced significantly during initial 60% N2O inhalation (p≤0.001 compared to con). IR thermography revealed that acute N2O administration unexpectedly reduced tail temperature (p=0.0001) and also inhibited IR lumbar temperature (p<0.0001). In the 9th session, N2O inhalation significantly increased telemetric core temperature (p=0.007) indicative of a hyperthermic sign reversal, yet compared to control administrations, telemetric BAT temperature (p=0.86), IR BAT temperature (p=0.85) and tail temperature (p=0.47) did not differ significantly. Thus, an initial administration of 60% N2O at 21°C may promote hypothermia via reduced BAT thermogenesis accompanied by tail vasoconstriction as a compensatory mechanism to limit body heat loss. Following repeated N2O administrations rats exhibit a hyperthermic core temperature but a normalized BAT temperature, suggesting induction of a hyperthermia-promoting thermogenic adaptation of unknown origin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism

    PubMed Central

    Peng, Xiao-Qing; Li, Xia; Gilbert, Jeremy G.; Pak, Arlene C.; Ashby, Charles R.; Brodie, Jonathan D.; Dewey, Stephen L.; Gardner, Eliot L.; Xi, Zheng-Xiong

    2008-01-01

    Relapse to drug use is a core feature of addiction. Previous studies demonstrate that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, attenuates the acute rewarding effects of cocaine and other addictive drugs. We here report that systemic administration of GVG (25–300 mg/kg) dose-dependently inhibits cocaine- or sucrose-induced reinstatement of reward-seeking behavior in rats. In vivo microdialysis data indicated that the same doses of GVG dose-dependently elevate extracellular GABA levels in the nucleus accumbens (NAc). However, GVG, when administered systemically or locally into the NAc, failed to inhibit either basal or cocaine-priming enhanced NAc dopamine in either naïve rats or cocaine extinction rats. These data suggest that: (1) GVG significantly inhibits cocaine- or sucrose-triggered reinstatement of reward-seeking behavior; and (2) a GABAergic-, but not dopaminergic-, dependent mechanism may underlie the antagonism by GVG of cocaine-triggered reinstatement of drug-seeking behavior, at least with respect to GVG's action on the NAc. PMID:18063319

  15. Enhancement of myofibrillar proteolysis following infusion of amino acid mixture correlates positively with elevation of core body temperature in rats.

    PubMed

    Yamaoka, Ippei; Mikura, Mayumi; Nishimura, Masuhiro; Doi, Masako; Kawano, Yuichi; Nakayama, Mitsuo

    2008-12-01

    Administration of an amino acid (AA) mixture stimulates muscle protein synthesis and elevates core body temperature (T(b)), as characteristically found under anesthetic conditions. We tested the hypothesis that not only AA given, but also AA produced by degradation of endogenous muscular protein are provided for muscle protein synthesis, which is further reflected in T(b) modifications. Rats were intravenously administered an AA mixture or saline in combination with the anesthetic propofol or lipid emulsion. We measured plasma 3-methylhistidine (MeHis) concentrations as an index of myofibrillar protein degradation, rectal temperature and mRNA expression of atrogin-1, MuRF-1 and ubiquitin in gastrocnemius and soleus muscles of rats following 3 h infusion of test solutions. T(b) did not differ significantly between conscious groups, but was higher in the AA group than in the saline group among anesthetized rats. Plasma MeHis concentrations were higher in the AA group than in the saline group under both conditions. Plasma MeHis levels correlated positively with T(b) of rats under both conditions. AA administration decreased mRNA levels of atrogin-1 and ubiquitin in gastrocnemius muscle and all mRNA levels in soleus muscle. These results suggest that AA administration enhances myofibrillar protein degradation and that the change is a determinant of T(b) modification by AA administration. However, the mechanisms underlying AA administration-associated enhancement of myofibrillar proteolysis remains yet to be determined.

  16. Therapeutic Effect of Intravenous Infusion of Perfluorocarbon Emulsion on LPS-Induced Acute Lung Injury in Rats

    PubMed Central

    Lv, Qi; Yin, Xiaofeng; Song, Jianqi; Landén, Ning Xu; Fan, Haojun

    2014-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are the leading causes of death in critical care. Despite extensive efforts in research and clinical medicine, mortality remains high in these diseases. Perfluorocarbon (PFC), a chemical compound known as liquid ventilation medium, is capable of dissolving large amounts of physiologically important gases (mainly oxygen and carbon dioxide). In this study we aimed to investigate the effect of intravenous infusion of PFC emulsion on lipopolysaccharide (LPS) induced ALI in rats and elucidate its mechanism of action. Forty two Wistar rats were randomly divided into three groups: 6 rats were treated with saline solution by intratracheal instillation (control group), 18 rats were treated with LPS by intratracheal instillation (LPS group) and the other 18 rats received PFC through femoral vein prior to LPS instillation (LPS+PFC group). The rats in the control group were sacrificed 6 hours later after saline instillation. At 2, 4 and 6 hours of exposure to LPS, 6 rats in the LPS group and 6 rats in LPS+PFC group were sacrificed at each time point. By analyzing pulmonary pathology, partial pressure of oxygen in the blood (PaO2) and lung wet-dry weight ratio (W/D) of each rat, we found that intravenous infusion of PFC significantly alleviated acute lung injury induced by LPS. Moreover, we showed that the expression of pulmonary myeloperoxidase (MPO), intercellular adhesion molecule-1 (ICAM-1) of endothelial cells and CD11b of polymorphonuclear neutrophils (PMN) induced by LPS were significantly decreased by PFC treatment in vivo. Our results indicate that intravenous infusion of PFC inhibits the infiltration of PMNs into lung tissue, which has been shown as the core pathogenesis of ALI/ARDS. Thus, our study provides a theoretical foundation for using intravenous infusion of PFC to prevent and treat ALI/ARDS in clinical practice. PMID:24489970

  17. Assessing the role of the medial preoptic area in ethanol-induced hypothermia.

    PubMed

    Westerman, Ashley T; Roma, Peter G; Price, Rebecca C; Dominguez, Juan M

    2010-05-07

    Administration of ethanol produces hypothermia. The preoptic area/anterior hypothalamus (POA/AH) contains warm- and cold-sensitive neurons that are important for temperature regulation. The present study evaluated the effect of ethanol on Fos immunoreactivity (Fos-ir) in the medial preoptic area (MPOA) and the effect of lesions to the MPOA on ethanol-induced hypothermia. Rats receiving 1.5-g/kg ethanol showed an increase in Fos-ir in the MPOA. However, lesions to the MPOA did not affect core body temperature. These findings indicate that ethanol increases neural activity in the MPOA, but this increased activity does not influence ethanol-induced changes in core body temperature. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Fos expression in the rat brain and spinal cord evoked by noxious stimulation to low back muscle and skin.

    PubMed

    Ohtori, S; Takahashi, K; Chiba, T; Takahashi, Y; Yamagata, M; Sameda, H; Moriya, H

    2000-10-01

    Acute noxious stimulation delivered to lumbar muscles and skin of rats was used to study Fos expression patterns in the brain and spinal cord. The present study was conducted to determine the differences in Fos expression in the brain and spinal cord as evoked by stimuli delivered to lumbar muscles and skin in rats. Patients with low back pain sometimes show psychological symptoms, such as quiescence, loss of interest, decreased activities, appetite loss, and restlessness. The pathway of deep somatic pain to the brain has been reported to be different from that of cutaneous pain. However, Fos expression has not been studied in the central nervous systems after stimulation of low back muscles. Rats were injected with 100 L of 5% formalin into the multifidus muscle (deep pain group; n = 10) and into the back skin of the L5 dermatome (cutaneous pain group; n = 10). Two hours after injection, the distribution of Fos-immunoreactive neurons was studied in the brain and spinal cord. Fos-immunoreactive neurons were observed in laminae I-V in the spinal cord in the cutaneous pain group, but they were not seen in lamina II in the deep pain group. In the brain, Fos-immunoreactive neurons were significantly more numerous in the deep pain group than in the cutaneous pain group in the piriform cortex, the accumbens nucleus core, the basolateral nucleus of amygdala, the paraventricular hypothalamic nucleus, the ventral tegmental area, and the ventrolateral periaqueductal gray. The finding that Fos-immunoreactive neurons were absent from lamina II of the spinal cord in the deep pain group is similar to that of the projection pattern of the visceral pain pathway. Fos expression in the ventrolateral periaqueductal gray in the deep pain group may represent a reaction of quiescence and a loss of interest, activities, or appetite. Furthermore, the detection of large numbers of Fos-immunoreactive neurons in the core of accumbens nucleus, basolateral nucleus of amygdala, paraventricular hypothalamic nucleus, and ventral tegmental area in the deep pain group may suggest a dominant reaction of dopaminergic neurons to stress, and a different information processing pathway than from that of cutaneous pain.

  19. AMPA receptor plasticity in accumbens core contributes to incubation of methamphetamine craving

    PubMed Central

    Scheyer, Andrew F.; Loweth, Jessica A.; Christian, Daniel T.; Uejima, Jamie; Rabei, Rana; Le, Tuan; Dolubizno, Hubert; Stefanik, Michael T.; Murray, Connor H.; Sakas, Courtney; Wolf, Marina E.

    2016-01-01

    BACKGROUND The incubation of cue-induced drug craving in rodents provides a model of persistent vulnerability to craving and relapse in human addicts. After prolonged withdrawal, incubated cocaine craving depends on strengthening of nucleus accumbens (NAc) core synapses through incorporation of Ca2+-permeable AMPA receptors (CP-AMPARs). Through mGlu1-mediated synaptic depression, mGlu1 positive allosteric modulators (PAMs) remove CP-AMPARs from these synapses and thereby reduce cocaine craving. This study aimed to determine if similar plasticity accompanies incubation of methamphetamine craving. METHODS Rats self-administered saline or methamphetamine under extended-access conditions. Cue-induced seeking tests demonstrated incubation of methamphetamine craving. After withdrawal periods ranging from 1 to >40 days, rats underwent one of the following procedures: 1) whole-cell patch clamp recordings to characterize AMPAR transmission, 2) intra-NAc core injection of the CP-AMPAR antagonist 1-napthyl acetyl spermine (naspm) prior to a seeking test, or 3) systemic administration of an mGlu1 PAM prior to a seeking test. RESULTS Incubation of methamphetamine craving was associated with CP-AMPAR accumulation in NAc core, and both effects were maximal after ~1 week of withdrawal. Expression of incubated craving was decreased by intra-NAc naspm injection or systemic mGlu1 PAM administration. CONCLUSIONS These results are the first to demonstrate a role for the NAc in the incubation of methamphetamine craving and describe adaptations in synaptic transmission associated with this model. They establish that incubation of craving and associated CP-AMPAR plasticity occur much more rapidly during withdrawal from methamphetamine than cocaine. However, a common mGlu1-based therapeutic strategy may be helpful for recovering cocaine and methamphetamine addicts. PMID:27264310

  20. AMPA/Kainate, NMDA, and Dopamine D1 Receptor Function in the Nucleus Accumbens Core: A Context-Limited Role in the Encoding and Consolidation of Instrumental Memory

    ERIC Educational Resources Information Center

    Hernandez, Pepe J.; Andrzejewski, Matthew E.; Sadeghian, Kenneth; Panksepp, Jules B.; Kelley, Ann E.

    2005-01-01

    Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of…

  1. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes

    PubMed Central

    Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.

    2015-01-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495

  2. AMPA Receptor Plasticity in Accumbens Core Contributes to Incubation of Methamphetamine Craving.

    PubMed

    Scheyer, Andrew F; Loweth, Jessica A; Christian, Daniel T; Uejima, Jamie; Rabei, Rana; Le, Tuan; Dolubizno, Hubert; Stefanik, Michael T; Murray, Conor H; Sakas, Courtney; Wolf, Marina E

    2016-11-01

    The incubation of cue-induced drug craving in rodents provides a model of persistent vulnerability to craving and relapse in human addicts. After prolonged withdrawal, incubated cocaine craving depends on strengthening of nucleus accumbens (NAc) core synapses through incorporation of Ca 2+ -permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (CP-AMPARs). Through metabotropic glutamate receptor 1 (mGluR1)-mediated synaptic depression, mGluR1 positive allosteric modulators remove CP-AMPARs from these synapses and thereby reduce cocaine craving. This study aimed to determine if similar plasticity accompanies incubation of methamphetamine craving. Rats self-administered saline or methamphetamine under extended-access conditions. Cue-induced seeking tests demonstrated incubation of methamphetamine craving. After withdrawal periods ranging from 1 to >40 days, rats underwent one of the following procedures: 1) whole-cell patch clamp recordings to characterize AMPAR transmission, 2) intra-NAc core injection of the CP-AMPAR antagonist 1-naphthyl acetyl spermine followed by a seeking test, or 3) systemic administration of a mGluR1 positive allosteric modulator followed by a seeking test. Incubation of methamphetamine craving was associated with CP-AMPAR accumulation in NAc core, and both effects were maximal after ~1 week of withdrawal. Expression of incubated craving was decreased by intra-NAc core 1-naphthyl acetyl spermine injection or systemic mGluR1 positive allosteric modulator administration. These results are the first to demonstrate a role for the NAc in the incubation of methamphetamine craving and describe adaptations in synaptic transmission associated with this model. They establish that incubation of craving and associated CP-AMPAR plasticity occur much more rapidly during withdrawal from methamphetamine compared with cocaine. However, a common mGluR1-based therapeutic strategy may be helpful for recovering cocaine and methamphetamine addicts. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Effects of a single bilateral infusion of R-ketamine in the rat brain regions of a learned helplessness model of depression.

    PubMed

    Shirayama, Yukihiko; Hashimoto, Kenji

    2017-03-01

    Effects of a single bilateral infusion of R-enantiomer of ketamine in rat brain regions of learned helplessness model of depression were examined. A single bilateral infusion of R-ketamine into infralimbic (IL) portion of medial prefrontal cortex (mPFC), CA3 and dentate gyrus (DG) of the hippocampus showed antidepressant effects. By contrast, a single bilateral infusion of R-ketamine into prelimbic (PL) portion of mPFC, shell and core of nucleus accumbens, basolateral amygdala and central nucleus of the amygdala had no effect. This study suggests that IL of mPFC, CA3 and DG of hippocampus might be involved in the antidepressant actions of R-ketamine.

  4. Role of Vascular Endothelial Cells in Disseminated Intravascular Coagulation Induced by Seawater Immersion in a Rat Trauma Model

    PubMed Central

    Zhang, Dajin; Qu, Jia; Xiong, Ming; Qiao, Yuanyuan; Wang, Dapeng; Liu, Fengjiao; Li, Dandan; Hu, Ming; Zhang, Jiashu

    2017-01-01

    Trauma complicated by seawater immersion is a complex pathophysiological process with higher mortality than trauma occurring on land. This study investigated the role of vascular endothelial cells (VECs) in trauma development in a seawater environment. An open abdominal injury rat model was used. The rat core temperatures in the seawater (SW, 22°C) group and normal sodium (NS, 22°C) group declined equivalently. No rats died within 12 hours in the control and NS groups. However, the median lethal time of the rats in the SW group was only 260 minutes. Among the 84 genes involved in rat VEC biology, the genes exhibiting the high expression changes (84.62%, 11/13) on a qPCR array were associated with thrombin activity. The plasma activated partial thromboplastin time and fibrinogen and vWF levels decreased, whereas the prothrombin time and TFPI levels increased, indicating intrinsic and extrinsic coagulation pathway activation and inhibition, respectively. The plasma plasminogen, FDP, and D-dimer levels were elevated after 2 hours, and those of uPA, tPA, and PAI-1 exhibited marked changes, indicating disseminated intravascular coagulation (DIC). Additionally, multiorgan haemorrhagia was observed. It indicated that seawater immersion during trauma may increase DIC, elevating mortality. VECs injury might play an essential role in this process. PMID:28744465

  5. Effects of chronic exercise conditioning on thermal responses to lipopolysaccharide and turpentine abscess in female rats.

    PubMed

    Rowsey, Pamela Johnson; Metzger, Bonnie L; Carlson, John; Gordon, Christopher J

    2006-02-01

    Chronic exercise conditioning has been shown to alter basal thermoregulatory processes as well as the response to inflammatory agents. Two such agents, lipopolysaccharide (LPS) and turpentine (TPT) are inducers of fever in rats. LPS, given intraperitoneally (i.p.), involves a systemic inflammatory response whereas TPT given intramuscularly (i.m.) elicits a localized inflammation. We assessed if chronic exercise training in the rat would alter the thermoregulatory response to LPS and TPT. Core temperature (T (c)) and motor activity were monitored by radiotelemetry. Female Sprague Dawley rats were divided into two groups (trained and sedentary) and housed at an ambient temperature of 22 degrees C. Animals voluntarily trained on running wheels for 8 weeks. In the first study, trained and sedentary female rats were injected i.p. with LPS (50 microg/kg) or an equal volume of 0.9% normal saline. In another study, trained and sedentary female rats were injected i.m. with TPT (10 microl)/rat or an equal volume of 0.9% normal saline. The time course of the LPS fever was very short compared to TPT. TPT injected animals displayed a smaller but more prolonged fever compared to LPS; however, training accentuated the febrile response to LPS (DeltaT (c)=0.6 degrees C in sedentary and 1.2 degrees C in trained). Training had a slight suppression on TPT-induced fever during the daytime but had no effect on motor activity or nighttime T (c). In contrast, exercise training led to a marked increase in the pyrogenic effects of LPS. We conclude that the effect of exercise training and source of infection (i.e., systemic versus localized in muscle) on fever is directly linked to type of pyrogenic agent.

  6. Male rats treated with subchronic PCP show intact olfaction and enhanced interest for a social odour in the olfactory habituation/dishabituation test.

    PubMed

    Tarland, Emilia; Brosda, Jan

    2018-06-01

    The olfactory system participates in many sensory processes, and olfactory endophenotypes appear in a variety of neurological disorders such as Alzheimer's and Parkinson's disease, depression and schizophrenia. Social withdrawal is a core negative symptom of schizophrenia and animal models have proven to be invaluable for studying the neurobiological mechanisms and cognitive processes behind the formation of social relationships. The subchronic phencyclidine (PCP) rat model is a validated model for negative symptoms of schizophrenia, such as impaired sociability. However, the complete range of social behaviour and deficits in the model are still not fully understood. Intact rodent olfaction is essential for a wide range of social behaviour and disrupted olfactory function could have severe effects on social communication and recognition. In order to examine the olfactory ability of male rats treated with subchronic PCP, we conducted an olfactory habituation/dishabituation test including both non-social and social odours. The subchronic PCP-treated rats successfully recognized and discriminated among the odours, indicative of intact olfaction. Interestingly, the subchronic PCP-treated rats showed greater interest for a novel social odour compared to the saline-treated rats and the rationale remains to be elucidated. Our data indicate that subchronic PCP treatment does not disrupt olfactory function in male rats. By ruling out impaired olfaction as cause for the poor social interaction performance in subchronic PCP-treated rats, our data supports the use of NMDA receptor antagonists to model the negative symptoms of schizophrenia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Autonomic changes induced by provocative motion in rats bred for high (HAB) and low (LAB) anxiety-related behavior: Paradoxical responses in LAB animals.

    PubMed

    Carnevali, Luca; Andrews, Paul L; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2016-12-01

    In humans, associations between anxiety and nausea (including motion-induced) are reported but the underlying mechanisms are not known. Hypothermia is proposed to be an index of nausea in rats. Utilising hypothermia and heart rate as outcome measures we investigated the response to provocative motion in rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviors and in non-selected (NAB) rats to further elucidate the potential relationship between hypothermia and nausea-like state. Core temperature and electrocardiogram were monitored in each group (n=10 per group) using telemetry, with or without circular motion (40min; 0.75Hz) and vehicle or diazepam (2mg/kg, i.p.) pre-treatment. Heart rate and time- and frequency-domain parameters of heart rate variability were derived from the electrocardiogram. There was no baseline difference in core temperature between the three groups (mean 38.0±0.1°C), but HAB animals had a significantly lower resting heart rate (330±7bpm) compared to LAB (402±5bpm) and NAB (401±9bpm). Animals in all groups exhibited hypothermia during motion (HAB: 36.3±0.1°C; NAB: 36.4±0.1°C; LAB: 34.9±0.2°C) with the magnitude (area under the curve, AUC) of the response during 40-min motion being greater in LAB compared to NAB and HAB rats, and this was also the case for the motion-induced bradycardia. Diazepam had minimal effects on baseline temperature and heart rate in all groups, but significantly reduced the hypothermia response (AUC) to motion in all groups by ~30%. Breeding for extremes in anxiety-related behavior unexpectedly selects animals with low trait anxiety that have enhanced bradycardia and hypothermic responses to motion; consequently, this animal model appears to be not suitable for exploring relationships between anxiety and autonomic correlates of nausea. Thermal and cardiovascular responses to motion were little different between HAB and NAB rats indicating that either hypothermia is not an index of a nausea-like state in rats, or that the positive correlation between anxiety and nausea demonstrated in humans does not exist in rats. The mechanism underlying the enhanced physiological responses in LAB requires more detailed study and may provide a novel model to investigate factors modulating motion sensitivity. Copyright © 2016. Published by Elsevier Inc.

  8. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies.

    PubMed

    El-Zaafarany, Ghada M; Soliman, Mahmoud E; Mansour, Samar; Awad, Gehanne A S

    2016-04-30

    Lipid-based nanovectors offer effective carriers for brain delivery by improving drug potency and reducing off-target effects. Emulsomes are nano-triglyceride (TG) carriers formed of lipid cores supported by at least one phospholipid (PC) sheath. Due to their surface active properties, PC forms bilayers at the aqueous interface, thereby enabling encapsulated drug to benefit from better bioavailability and stability. Emulsomes of oxcarbazepine (OX) were prepared, aimed to offer nanocarriers for nasal delivery for brain targeting. Different TG cores (Compritol(®), tripalmitin, tristearin and triolein) and soya phosphatidylcholine in different amounts and ratios were used for emulsomal preparation. Particles were modulated to generate nanocarriers with suitable size, charge, encapsulation efficiency and prolonged release. Cytotoxicity and pharmacokinetic studies were also implemented. Nano-spherical OX-emulsomes with maximal encapsulation of 96.75% were generated. Stability studies showed changes within 30.6% and 11.2% in the size and EE% after 3 months. MTT assay proved a decrease in drug toxicity by its encapsulation in emulsomes. Incorporation of OX into emulsomes resulted in stable nanoformulations. Tailoring emulsomes properties by modulating the surface charge and particle size produced a stable system for the lipophilic drug with a prolonged release profile and mean residence time and proved direct nose-to-brain transport in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Electrolytic lesions of the nucleus accumbens enhance locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Willmore, Ellen J

    2006-06-01

    Electrolytic lesions of the medial core of the nucleus accumbens (NAc) in male Long-Evans rats increased spontaneous locomotion, enhanced the locomotor stimulating effect of acute 5.0 mg/kg cocaine, enhanced the development and subsequent expression of locomotor sensitization produced by repeated injections of 0.4 mg/kg nicotine but not 7.5 mg/kg cocaine, and enhanced the expression of conditioned locomotion. Given that 6-hydroxydopamine lesions of the NAc typically have effects on locomotor-related processes that are opposite of those produced by electrolytic and excitotoxic lesions, these data are consistent with a hypothesis that the NAc output, especially from the core, inhibits a variety of such processes and that the DA input to the NAc enhances these processes by inhibiting this inhibitory output. Copyright 2006 APA, all rights reserved.

  10. Effects of adenosine monophosphate on induction of therapeutic hypothermia and neuronal damage after cardiopulmonary resuscitation in rats.

    PubMed

    Knapp, Jürgen; Schneider, Andreas; Nees, Corinna; Bruckner, Thomas; Böttiger, Bernd W; Popp, Erik

    2014-09-01

    Animal studies and pathophysiological considerations suggest that therapeutic hypothermia after cardiopulmonary resuscitation is the more effective the earlier it is induced. Therefore this study is sought to examine whether pharmacological facilitated hypothermia by administration of 5'-adenosine monophosphate (AMP) is neuroprotective in a rat model of cardiac arrest (CA) and resuscitation. Sixty-one rats were subjected to CA. After 6 min of ventricular fibrillation advanced cardiac life support was started. After successful return of spontaneous circulation (ROSC, n=40), animals were randomized either to placebo group (n=14) or AMP group (800 mg/kg body weight, n=14). Animals were kept at an ambient temperature of 18°C for 12 h after ROSC and core body temperature was measured using a telemetry temperature probe. Neuronal damage was analyzed by counting Nissl-positive (i.e. viable) neurons and TUNEL-positive (i.e. apoptotic) cells in coronal brain sections 7 days after ROSC. Functional status evaluated on days 1, 3 and 7 after ROSC by a tape removal test. Time until core body temperature dropped to <34.0°C was 31 min [28; 45] in AMP-treated animals and 125 min [90; 180] in the control group (p=0.003). Survival until 7 days after ROSC was comparable in both groups. Also number of Nissl-positive cells (AMP: 1 [1; 7] vs. placebo: 2 [1; 3] per 100 pixel; p=0.66) and TUNEL-positive cells (AMP: 56 [44; 72] vs. placebo: 53 [41; 67] per 100 pixel; p=0.70) did not differ. Neither did AMP affect functional neurological outcome up to 7 days after ROSC. Mean arterial pressure 20 min after ROSC was 49 [45; 55] mmHg in the AMP group in comparison to 91 [83; 95] mmHg in the control group (p<0.001). Although application of AMP reduced the time to reach a core body temperature of <34°C neither survival was improved nor neuronal damage attenuated. Reason for this is probably induction of marked hypotension as an adverse reaction to AMP treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Fructose:Glucose Ratios—A Study of Sugar Self-Administration and Associated Neural and Physiological Responses in the Rat

    PubMed Central

    Levy, AnneMarie; Marshall, Paul; Zhou, Yan; Kreek, Mary Jeanne; Kent, Katrina; Daniels, Stephen; Shore, Ari; Downs, Tiana; Fernandes, Maria Fernanda; Mutch, David M.; Leri, Francesco

    2015-01-01

    This study explored whether different ratios of fructose (F) and glucose (G) in sugar can engender significant differences in self-administration and associated neurobiological and physiological responses in male Sprague-Dawley rats. In Experiment 1, animals self-administered pellets containing 55% F + 45% G or 30% F + 70% G, and Fos immunoreactivity was assessed in hypothalamic regions regulating food intake and reward. In Experiment 2, rats self-administered solutions of 55% F + 42% G (high fructose corn syrup (HFCS)), 50% F + 50% G (sucrose) or saccharin, and mRNA of the dopamine 2 (D2R) and mu-opioid (MOR) receptor genes were assessed in striatal regions involved in addictive behaviors. Finally, in Experiment 3, rats self-administered HFCS and sucrose in their home cages, and hepatic fatty acids were quantified. It was found that higher fructose ratios engendered lower self-administration, lower Fos expression in the lateral hypothalamus/arcuate nucleus, reduced D2R and increased MOR mRNA in the dorsal striatum and nucleus accumbens core, respectively, as well as elevated omega-6 polyunsaturated fatty acids in the liver. These data indicate that a higher ratio of fructose may enhance the reinforcing effects of sugar and possibly lead to neurobiological and physiological alterations associated with addictive and metabolic disorders. PMID:26007337

  12. Fructose:glucose ratios--a study of sugar self-administration and associated neural and physiological responses in the rat.

    PubMed

    Levy, AnneMarie; Marshall, Paul; Zhou, Yan; Kreek, Mary Jeanne; Kent, Katrina; Daniels, Stephen; Shore, Ari; Downs, Tiana; Fernandes, Maria Fernanda; Mutch, David M; Leri, Francesco

    2015-05-22

    This study explored whether different ratios of fructose (F) and glucose (G) in sugar can engender significant differences in self-administration and associated neurobiological and physiological responses in male Sprague-Dawley rats. In Experiment 1, animals self-administered pellets containing 55% F + 45% G or 30% F + 70% G, and Fos immunoreactivity was assessed in hypothalamic regions regulating food intake and reward. In Experiment 2, rats self-administered solutions of 55% F + 42% G (high fructose corn syrup (HFCS)), 50% F + 50% G (sucrose) or saccharin, and mRNA of the dopamine 2 (D2R) and mu-opioid (MOR) receptor genes were assessed in striatal regions involved in addictive behaviors. Finally, in Experiment 3, rats self-administered HFCS and sucrose in their home cages, and hepatic fatty acids were quantified. It was found that higher fructose ratios engendered lower self-administration, lower Fos expression in the lateral hypothalamus/arcuate nucleus, reduced D2R and increased MOR mRNA in the dorsal striatum and nucleus accumbens core, respectively, as well as elevated omega-6 polyunsaturated fatty acids in the liver. These data indicate that a higher ratio of fructose may enhance the reinforcing effects of sugar and possibly lead to neurobiological and physiological alterations associated with addictive and metabolic disorders.

  13. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    PubMed Central

    Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity. PMID:26740664

  14. Hepatic transcriptomic responses to TCDD in dioxin-sensitive and dioxin-resistant rats during the onset of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutros, Paul C.; Yao, Cindy Q.; Watson, John D.

    2011-03-01

    The dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a wide range of toxic effects in rodent species, all of which are mediated by a ligand-dependent transcription-factor, the aryl hydrocarbon receptor (AHR). The Han/Wistar (Kuopio) (H/W) strain shows exceptional resistance to many TCDD-induced toxicities; the LD{sub 50} of > 9600 {mu}g/kg for H/W rats is higher than for any other wild-type mammal known. We previously showed that this resistance primarily results from H/W rats expressing a variant AHR isoform that has a substantial portion of the AHR transactivation domain deleted. Despite this large deletion, H/W rats are not entirely refractory to the effectsmore » of TCDD; the variant AHR in these animals remains fully competent to up-regulate well-known dioxin-inducible genes. TCDD-sensitive (Long-Evans, L-E) and resistant (H/W) rats were treated with either corn-oil (with or without feed-restriction) or 100 {mu}g/kg TCDD for either four or ten days. Hepatic transcriptional profiling was done using microarrays, and was validated by RT-PCR analysis of 41 genes. A core set of genes was altered in both strains at all time points tested, including CYP1A1, CYP1A2, CYP1B1, Nqo1, Aldh3a1, Tiparp, Exoc3, and Inmt. Outside this core, the strains differed significantly in the breadth of response: three-fold more genes were altered in L-E than H/W rats. At ten days almost all expressed genes were dysregulated in L-E rats, likely reflecting emerging toxic responses. Far fewer genes were affected by feed-restriction, suggesting that only a minority of the TCDD-induced changes are secondary to the wasting syndrome.« less

  15. A choice-based screening method for compulsive drug users in rats.

    PubMed

    Lenoir, Magalie; Augier, Eric; Vouillac, Caroline; Ahmed, Serge H

    2013-07-01

    We describe a protocol for screening compulsive drug users among cocaine self-administering rats, the most frequently used animal model in addiction research. Rats are first trained on several alternating days to self-administer either cocaine (i.v.) or saccharin-sweetened water (by mouth)--a potent, albeit nonessential, nondrug reward. Then rats are allowed to choose between the two rewards over several days until the preference stabilizes. Most rats choose to stop using cocaine and pursue the alternative reward. Only a minority of Wistar strain rats (generally 15%) persist in taking the drug, regardless of the severity of past cocaine use and even when made hungry and offered the possibility to relieve their physiological need. Persistence of cocaine use in the face of a high-stakes choice is a core defining feature of compulsion. This choice-based screening method for compulsive drug users is easy to implement, has several important applications, and compares well with other methods in the field. 2013 by John Wiley & Sons, Inc.

  16. Effect of oral administration of Pheretima aspergillum (earthworm) in rats with cerebral infarction induced by middle-cerebral artery occlusion.

    PubMed

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Huang, Chih-Yang; Hsieh, Ching-Liang

    2012-01-01

    We investigated the curative effect of Pheretima aspergillum (earthworm, PA) on rats with middle cerebral artery occlusion (MCAo). The MCAo-induced cerebral infarction was established and its underlying mechanisms by counting the infarction areas and evaluating the rats' neurological status. Immunostaining was used to test the expression of NeuN, and glial fibrillary acidic (GFAP), S100B, and brain-derived neurotrophic factor (BDNF) proteins. Our results showed that oral administration of PA for two weeks to rats with MCAo successfully reduced cerebral infarction areas in the cortex and striatum, and also reduced scores of neurological deficit. The PA-treated MCAo rats showed greatly decreased neuronal death, glial proliferation, and S100B proteins in the penumbra area of the cortex and in the ischemic core area of the cortex, but BDNF did not changed. These results demonstrated novel and detailed cellular mechanisms underlying the neuroprotective effects of PA in MCAo rats.

  17. NTP toxicology and carcinogenesis studies of 5-(Hydroxymethyl)-2-furfural (CAS No. 67-47-0) in F344/N rats and B6C3F1 mice (gavage studies).

    PubMed

    2010-06-01

    5-(Hydroxymethyl)-2-furfural is formed when reducing sugars such as fructose and sucrose are heated in the presence of amino acids. 5-(Hydroxymethyl)-2-furfural is ubiquitous in the human diet and occurs at concentrations greater than 1 g/kg in dried fruits, caramel products, certain types of fruit juices, and up to 6.2 g/kg in instant coffee. 5-(Hydroxymethyl)-2-furfural also occurs naturally and has been identified in honey, apple juice, citrus juices, beer, brandy, milk, breakfast cereal, baked foods, tomato products, and home cooking of sugar and carbohydrates. Industrially, 5-(hydroxymethyl)-2-furfural is used in the synthesis of dialdehydes, glycols, ethers, aminoalcohols, acetals, and phenol/furfural novolak-type resins. 5-(Hydroxymethyl)-2-furfural was nominated by the National Institute of Environmental Health Sciences for study because of extensive human exposure and the lack of adequate data characterizing its toxicity and carcinogenicity. Male and female F344/N rats and B6C3F1 mice were administered 5-(hydroxymethyl)-2-furfural (at least 99% pure) by gavage in deionized water for 3 weeks, 3 months, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and Escherichia coli and mouse peripheral blood erythrocytes. 3-WEEK STUDY IN RATS: core study groups of five male and five female rats were administered 0, 94, 188, 375, 750, or 1,500 mg 5-(hydroxymethyl)-2-furfural/kg body weight in deionized water by gavage for a total of 13 doses over a 22-day period. Special study groups of five male and five female rats designated for neuropathology were administered 0 or 1,500 mg/kg on the same schedule. Except for one 1,500 mg/kg core study male rat, all rats survived to the end of the study. The final mean body weight of 1,500 mg/kg males was significantly less than that of the vehicle control group. No chemical-related histopathologic lesions were observed in core or special study animals. 3-WEEK STUDY IN MICE: groups of five male and five female mice were administered 0, 94, 188, 375, 750, or 1,500 mg 5-(hydroxymethyl)-2-furfural/kg body weight in deionized water by gavage for a total of 13 doses over a 22-day period. Three male and three female mice administered 1,500 mg/kg died before the end of the study. Mean body weights of 1,500 mg/kg males were significantly less than those of the vehicle control group. Heart weights of 1,500 mg/kg females were significantly greater than those of the vehicle controls. No chemical-related lesions were observed. 3-MONTH STUDY IN RATS: core groups and special study groups (for clinical pathology and neuropathological evaluation) of 10 male and 10 female rats were administered 0, 94, 188, 375, 750, or 1,500 mg 5-(hydroxymethyl)-2-furfural/kg body weight in deionized water by gavage for 3 months. One male and three female rats administered 1,500 mg/kg died before the end of the study; the male died as a result of gavage trauma. Mean body weights of 750 and 1,500 mg/kg males were significantly less than those of the vehicle control group. Female rats had elongated estrous cycles; fewer 750 and 1,500 mg/kg females had regular cycles, and 375, 750, and 1,500 mg/kg females had a significantly increased probability of extended diestrus. No chemical-related lesions were observed in core or special study animals. 3-MONTH STUDY IN MICE: groups of 10 male and 10 female mice were administered 0, 47, 94, 188, 375, or 750 mg 5-(hydroxymethyl)-2-furfural/kg body weight in deionized water by gavage for 3 months. One 750 mg/kg male and one 375 mg/kg female died before the end of the study; the death of the female was attributed to ovarian teratoma. The final mean body weight of 750 mg/kg males and body weight gains of 750 mg/kg males and females were significantly less than those of the vehicle controls. The incidences of minimal to mild cytoplasmic alteration of the kidney were significantly increased in males administered 188 mg/kg or greater. 2-YEAR STUDY IN RATS: groups of 50 male and 50 female rats were administered 0, 188, 375, or 750 mg 5-(hydroxymethyl)-2-furfural/kg body weight in deionized water by gavage for 104 weeks. Survival of 188 and 750 mg/kg males was greater than that of the vehicle control group. Mean body weights of dosed groups of males and females were generally similar to those of the vehicle controls throughout the study. Incidences of olfactory epithelium degeneration were significantly increased in 750 mg/kg males and 188 and 375 mg/kg females. Incidences of olfactory epithelium respiratory metaplasia and respiratory epithelium squamous metaplasia were significantly increased in 750 mg/kg males and females. Incidences of suppurative inflammation of the nose and chronic active inflammation of the nasolacrimal duct were significantly increased in 750 mg/kg females. 2-YEAR STUDY IN MICE: groups of 50 male and 50 female mice were administered 0, 188, 375, or 750 mg 5-(hydroxymethyl)-2-furfural/kg body weight in deionized water by gavage for 104 weeks. Survival of 750 mg/kg males and females was significantly less than that of the vehicle control groups. Mean body weights of 750 mg/kg males were 14% less than those of the vehicle controls after week 26. Mean body weights of 375 and 750 mg/kg females were 9% and 30% less, respectively, than those of the vehicle controls after week 36. Beginning in month 8 and continuing until the end of the study, 750 mg/kg males and females exhibited clinical signs indicative of neurological effects of 5-(hydroxymethyl)-2-furfural administration. These signs included decreased exploratory behavior, piloerection, salivation, Straub tail, catatonia, excitation, dyspnea, clonic-tonic seizures, and unconsciousness. Because of the reduced survival of this group and the presence of the treatment-related clinical signs, groups of mice that received 750 mg/kg were not included in the evaluation of carcinogenic potential. The incidences of hepatocellular adenoma were significantly increased in 188 and 375 mg/kg females. In the nose, the incidences of olfactory epithelium metaplasia, degeneration, and hyaline droplet accumulation; chronic active inflammation; respiratory epithelium hyaline droplet accumulation; and hyperplasia, dilatation, and chronic active inflammation of the glands were significantly increased in 375 and 750 mg/kg males and females. Incidences of olfactory epithelium hyperplasia were significantly increased in 375 and 750 mg/kg females. GENETIC TOXICOLOGY 5-(Hydroxymethyl)-2-furfural was tested in two independent bacterial mutagenicity assays. In the first study, the chemical was weakly mutagenic in Salmonella typhimurium strain TA100 in the absence of exogenous metabolic activation; no mutagenic activity was detected in TA100 with activation or in strains TA97, TA98, TA102, or TA1535, with or without activation. In the second study, no mutagenicity was detected, with or without activation, in TA98 or TA100 or Escherichia coli WP2 uvrA/pKM101. No increases in the frequencies of micronucleated erythrocytes were observed in peripheral blood of male or female mice administered 5-(hydroxymethyl)-2-furfural by gavage for 3 months. under the conditions of these 2-year gavage studies, there was no evidence of carcinogenic activity of 5-(hydroxymethyl)-2-furfural in male or female F344/N rats administered 188, 375, or 750 mg/kg. There was no evidence of carcinogenic activity of 5-(hydroxymethyl)-2-furfural in male B6C3F1 mice administered 188 or 375 mg/kg. There was some evidence of carcinogenic activity of 5-(hydroxymethyl)-2-furfural in female B6C3F1 mice based on increased incidences of hepatocellular adenoma in the 188 and 375 mg/kg groups. Administration of 5-(hydroxymethyl)-2-furfural was associated with increased incidences of lesions of the olfactory and respiratory epithelium of the nose in male and female rats and mice.

  18. Leptin in the nucleus accumbens core disrupts acute cocaine effects: Implications for GSK3β connections.

    PubMed

    Lee, Jung Won; Kim, Wha Young; Cho, Bo Ram; Vezina, Paul; Kim, Jeong-Hoon

    2018-01-30

    An adipose-derived peptide hormone, leptin, has a regulatory role in reward-related behaviors produced by drugs of abuse. Although it is known that leptin modulates mesolimbic dopaminergic pathways, little is known about its direct role in the nucleus accumbens (NAcc). In the present study, we measured acute cocaine-induced locomotor activity in the rat and the phosphorylation levels of GSK3β after bilateral microinjections of leptin into the NAcc core. Interestingly, leptin in the NAcc core significantly disrupts acute cocaine's effects on both locomotor activity and signaling molecules. In order to further confirm the role of GSK3β in these processes, we microinjected S9 peptide, a small synthetic peptide acting as a competitive inhibitor against phosphorylation site of GSK3β, followed by leptin co-microinjection, and found that leptin's effects on cocaine were all nullified. These results indicate that leptin in the NAcc core has a negative regulatory role in acute cocaine' effects, and suggest that GSK3β may play a major role in mediating these processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion

    PubMed Central

    Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying

    2013-01-01

    Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615

  20. Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia

    PubMed Central

    2014-01-01

    Background Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols. Methods Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals. Results The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the SDI at its maximum was significantly larger than the pixels covered by bolus maximum (p = 0.05). Conclusions These results demonstrate that the SDI protocol resulted in a spread of the MRCA beyond the ischemic core. Whether plasma-borne acute stroke therapeutics can be delivered to the ischemic penumbra in a similar way needs to be investigated. PMID:25276343

  1. Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia.

    PubMed

    Nagaraja, Tavarekere N; Keenan, Kelly A; Aryal, Madhava P; Ewing, James R; Gopinath, Saarang; Nadig, Varun S; Shashikumar, Sukruth; Knight, Robert A

    2014-01-01

    Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols. Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals. The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the SDI at its maximum was significantly larger than the pixels covered by bolus maximum (p = 0.05). These results demonstrate that the SDI protocol resulted in a spread of the MRCA beyond the ischemic core. Whether plasma-borne acute stroke therapeutics can be delivered to the ischemic penumbra in a similar way needs to be investigated.

  2. Alterations of reward mechanisms in bulbectomised rats.

    PubMed

    Grecksch, Gisela; Becker, Axel

    2015-06-01

    The positive association between alcoholism and depression is a common clinical observation. We investigated the relationship between depression and reward mechanisms using a validated animal model for depressive-like behaviour, the olfactory bulbectomy in rats. The effects of bilateral olfactory bulbectomy on reward mechanisms were studied in two different experimental paradigms - the voluntary self-administration of ethanol and the conditioned place preference to alcohol injection and compared to the effects of ethanol on locomotor activity and body core temperature. The voluntary ethanol intake was increased significantly in bulbectomised rats in a drinking experiment and also after a period of abstinence. Conditioned place preference (CPP) was induced in all animals. However, bulbectomised rats needed a higher dose of alcohol to produce CPP. The sedative effect of ethanol on locomotor activity was reduced in bulbectomised animals. Measurement of body temperature revealed a dose-dependent hypothermic effect of ethanol in both groups. These results suggest that the reward mechanisms may be altered in this animal model as a common phenomenon associated with depression. Furthermore, they support the hypothesis that the addictive and/or rewarding properties of some drugs of abuse may be modified in depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation

    PubMed Central

    Collins, Anne L.; Greenfield, Venuz Y.; Bye, Jeffrey K.; Linker, Kay E.; Wang, Alice S.; Wassum, Kate M.

    2016-01-01

    Prolonged mesolimbic dopamine concentration changes have been detected during spatial navigation, but little is known about the conditions that engender this signaling profile or how it develops with learning. To address this, we monitored dopamine concentration changes in the nucleus accumbens core of rats throughout acquisition and performance of an instrumental action sequence task. Prolonged dopamine concentration changes were detected that ramped up as rats executed each action sequence and declined after earned reward collection. With learning, dopamine concentration began to rise increasingly earlier in the execution of the sequence and ultimately backpropagated away from stereotyped sequence actions, becoming only transiently elevated by the most distal and unexpected reward predictor. Action sequence-related dopamine signaling was reactivated in well-trained rats if they became disengaged in the task and in response to an unexpected change in the value, but not identity of the earned reward. Throughout training and test, dopamine signaling correlated with sequence performance. These results suggest that action sequences can engender a prolonged mode of dopamine signaling in the nucleus accumbens core and that such signaling relates to elements of the motivation underlying sequence execution and is dynamic with learning, overtraining and violations in reward expectation. PMID:26869075

  4. Daily chronomics of proteomic profile in aging and rotenone-induced Parkinson's disease model in male Wistar rat and its modulation by melatonin.

    PubMed

    Jagota, Anita; Mattam, Ushodaya

    2017-08-01

    Aging is associated with changes in several basic parameters of circadian timing system (CTS) in mammals leading to circadian dysfunction. We had reported earlier that upon aging and in rotenone induced Parkinson's disease (RIPD) rat model there were significant alterations in the core clock genes expression levels and daily pulses. To identify biomarkers of aging and PD chronomics of proteomic day-night profiles in suprachiasmatic nucleus (SCN), pineal and substantia nigra (SN) in 3 month (m), 12, 24 m and RIPD rat model were studied at two time points i.e. Zeitgeber Time (ZT)-6 (mid-day) and ZT-18 (mid-night). Proteome analysis was done by using two dimensional (2-D) electrophoresis and the spots showing robust day-night variations were identified by using MALDI TOF/TOF analysis. In 3 m rats the number of proteins showing day-night variations were relatively more than 12, 24 m and RIPD rat model in SCN and SN. But in pineal there was increase in number of protein spots showing day-night variations in 24 m. Mass spectroscopy of the protein spots showing robust day night variation in aging and RIPD rats were identified. As melatonin, a multitasking molecule, an endogenous synchronizer of rhythm, an antioxidant and an antiaging drug, declines with aging, the effects of melatonin administration on differential alterations in chronomics of 2-D protein profiles in aging and RIPD male Wistar rats were studied. We report here that the melatonin could be playing an important role in modulating the chronomics of 2-D protein profiles. Additionally, various proteins were identified for the first time in this study showing significant day night variation in SCN, pineal and SN may prove useful towards targeting novel treatments for circadian dysfunction, good health and longevity.

  5. A 3-D Mathematical Model to Identify Organ-Specific Risks in Rats During Thermal Stress

    DTIC Science & Technology

    2013-01-01

    increases in rat core temperature in antic- ipation of the lights-off (active) period at 1800. This response is anticipatory of the active period when...Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports Exerc 37: 1338–1344, 2005. 11. Casa DJ, Armstrong LE, Ganio...MS, Yeargin SW. Exertional heat stroke in competitive athletes. Curr Sports Med Rep 4: 309–317, 2005. 12. Chang CK, Chang CP, Chiu WT, Lin MT

  6. Exercise in the Heat is Limited by a Critical Internal Temperature

    DTIC Science & Technology

    2000-08-01

    various strains of antelope (20), the cheetah (21), dogs (24), and humans (6, 12, 14, 15). There is evidence that limitations in endurance performance in...On receipt, all rats were main- tained on a calorically restricted diet , receiving 60–63% of the diet consumed by rats fed ad libitum, as determined by...occurred when Thyp reached 42.0–42.9°C in exercising goats. Furthermore, cheetahs cease running when their core temperature reaches 40.5°C (21

  7. Differential sensitivity of ethanol-elicited ERK phosphorylation in nucleus accumbens of Sardinian alcohol-preferring and -non preferring rats.

    PubMed

    Rosas, Michela; Zaru, Alessandro; Sabariego, Marta; Giugliano, Valentina; Carboni, Ezio; Colombo, Giancarlo; Acquas, Elio

    2014-08-01

    Sardinian alcohol-preferring (sP) and -non preferring (sNP) rats have been selectively bred for opposite ethanol preference and consumption; sP rats represent a validated experimental tool to model several aspects of excessive ethanol drinking in humans. Phosphorylated Extracellular signal-Regulated Kinase (pERK) in dopamine-rich terminal areas plays a critical role in several psychopharmacological effects of addictive drugs, including ethanol. This study was aimed at investigating whether ethanol-elicited ERK activation may differ in key brain areas of ethanol-naïve sP and sNP rats. To this end, the effects of ethanol (0, 0.5, 1, and 2 g/kg, administered intra-gastrically [i.g.]) on ERK phosphorylation were assessed by pERK immunohistochemistry in the shell (AcbSh) and core (AcbC) of the nucleus accumbens (Acb) as well as in the prelimbic (PrL) and infralimbic (IL) prefrontal cortex (PFCx), in the bed nucleus of stria terminalis (BSTL) and in the central nucleus of the amygdala (CeA). Ethanol (1 g/kg) significantly increased pERK immunoreactivity in AcbSh and AcbC of sP but not sNP rats. Conversely, ethanol failed to affect pERK expression in PrL and IL PFCx as well as in BSTL and CeA of both sP and sNP rats. These results suggest that selective breeding of these rat lines results in differential effects of acute ethanol on ERK phosphorylation in brain regions critical for the psychopharmacological effects of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  9. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes.

    PubMed

    Yun, Bo; Azad, Mohammad A K; Nowell, Cameron J; Nation, Roger L; Thompson, Philip E; Roberts, Kade D; Velkov, Tony; Li, Jian

    2015-12-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Effect of a pharmacologically induced decrease in core temperature in rats resuscitated from cardiac arrest.

    PubMed

    Katz, Laurence M; Frank, Jonathan E; Glickman, Lawrence T; McGwin, Gerald; Lambert, Brice H; Gordon, Christopher J

    2015-07-01

    Hypothermia is recommended by international guidelines for treatment of unconscious survivors of cardiac arrest to improve neurologic outcomes. However, temperature management is often underutilized because it may be difficult to implement. The present study evaluated the efficacy of pharmacologically induced hypothermia on survival and neurological outcome in rats resuscitated from cardiac arrest. Cardiac arrest was induced for 10 min in 120 rats. Sixty-one rats were resuscitated and randomized to normothermia, physical cooling or pharmacological hypothermia 5 min after resuscitation. Pharmacological hypothermia rats received a combination of ethanol, vasopressin and lidocaine (HBN-1). Physical hypothermia rats were cooled with intravenous iced saline and cooling pads. Rats in the pharmacological hypothermia group received HBN-1 at ambient temperature (20 °C). Normothermic rats were maintained at 37.3 ± 0.2 °C. HBN-1 (p < 0.0001) shortened the time (85 ± 71 min) to target temperature (33.5 °C) versus physical hypothermia (247 ± 142 min). The duration of hypothermia was 17.0 ± 6.8h in the HBN-1 group and 17.3 ± 7.5h in the physical hypothermia group (p = 0.918). Survival (p = 0.034), neurological deficit scores (p < 0.0001) and Morris Water Maze performance after resuscitation (p = 0.041) was improved in the HBN-1 versus the normothermic group. HBN-1 improved survival and early neurological outcome compared to the physical hypothermia group while there was no significant difference in performance in the Morris water maze. HBN-1 induced rapid and prolonged hypothermia improved survival with good neurological outcomes after cardiac arrest suggesting that pharmacologically induced regulated hypothermia may provide a practical alternative to physical cooling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Myrtol ameliorates cartilage lesions in an osteoarthritis rat model.

    PubMed

    Ying, Binbin; Maimaiti, Abudu Kelimujiang; Song, Donghui; Zhu, Songsong

    2015-01-01

    The aim of this study is to evaluate the effects of myrtol standardized on cartilage lesions in osteoarthritis (OA) rats. Fifty-six healthy Sprague-Dawley rats were randomly divided into sham group (13 rats) and OA model group (43 rats) with interior meniscus excision. Then serum estradiol (E2) and glycosaminoglycan (GAG) content in cartilage tissue were measured by radioimmunoassay and toluidine blue staining, respectively. After that, the model rats were randomly divided into low dose myrtol (LDM) group, middle dose myrtol (MDM) group and high dose myrtol (HDM) group (10 rats in each group) with treatment of 450 mg/kg, 300 mg/kg and 150 mg/kg myrtol, respectively. Then, Mankin scores were used to evaluate lesion extent of knee joint cartilage. Expression of tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), interleukin (IL)-6, Bax and Bcl-2 were investigated using PCR gel electrophoresis method. Mankin cores were lower in sham group and myrtol group than in model group. There were statistically significant differences (P < 0.01) between sham group and model group in expression of TNF-α, TGF-β1, IL-6, Bax and Bcl-2 in the cartilage tissue. Myrtol significantly reduced the expression of TNF-α, IL-6 and Bax, and increased the expression of TGF-β1 and Bcl-2 in myrtol group, comparing with those in model group (P < 0.01). Myrtol could down-regulate the expression of TNF-α, IL-6 and Bax, and up-regulate the expression of TGF-β1 and Bcl-2. Myrtol standardized is a promising drug to ameliorate knee cartilage lesions in the OA rat model.

  12. Repeated nitrous oxide exposure in rats causes a thermoregulatory sign-reversal with concurrent activation of opposing thermoregulatory effectors

    PubMed Central

    Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J

    2014-01-01

    Initial administration of 60% nitrous oxide (N2O) to rats at an ambient temperature of 21°C decreases core temperature (Tc), primarily via increased heat loss (HL). Over repeated N2O administrations, rats first develop tolerance to this hypothermia and subsequently exhibit hyperthermia (a sign-reversal) due primarily to progressive increases in heat production (HP). When rats initially receive 60% N2O in a thermal gradient, they become hypothermic while selecting cooler ambient temperatures that facilitate HL. This study investigated whether rats repeatedly administered 60% N2O in a thermal gradient would use the gradient to behaviorally facilitate, or oppose, the development of chronic tolerance and a hyperthermic sign-reversal. Male Long-Evans rats (N = 16) received twelve 3-h administrations of 60% N2O in a gas-tight, live-in thermal gradient. Hypothermia (Sessions 1–3), complete chronic tolerance (Sessions 4–6), and a subsequent transient hyperthermic sign-reversal (Sessions 7–12) sequentially developed. Despite the progressive recovery and eventual hyperthermic sign-reversal of Tc, rats consistently selected cooler ambient temperatures during all N2O administrations. A final 60% N2O administration in a total calorimeter indicated that the hyperthermic sign-reversal resulted primarily from increased HP. Thus, rats did not facilitate chronic tolerance development by moving to warmer locations in the gradient, and instead selected cooler ambient temperatures while simultaneously increasing autonomic HP. The inefficient concurrent activation of opposing effectors and the development of a sign-reversal are incompatible with homeostatic models of drug-adaptation and may be better interpreted using a model of drug-induced allostasis. PMID:25938127

  13. Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats

    PubMed Central

    D’Amore, V.; Santolini, I.; van Rijn, C.M.; Biagioni, F.; Molinaro, G.; Prete, A.; Conn, P.J.; Lindsley, C.W.; Zhou, Y.; Vinson, P.N.; Rodriguez, A.L.; Jones, C.K.; Stauffer, S.R.; Nicoletti, F.; van Luijtelaar, G.; Ngomba, R.T.

    2013-01-01

    Absence epilepsy is generated by the cortico-thalamo-cortical network, which undergoes a finely tuned regulation by metabotropic glutamate (mGlu) receptors. We have shown previously that potentiation of mGlu1 receptors reduces spontaneous occurring spike and wave discharges (SWDs) in the WAG/Rij rat model of absence epilepsy, whereas activation of mGlu2/3 and mGlu4 receptors produces the opposite effect. Here, we have extended the study to mGlu5 receptors, which are known to be highly expressed within the cortico-thalamo-cortical network. We used presymptomatic and symptomatic WAG/Rij rats and aged-matched ACI rats. WAG/Rij rats showed a reduction in the mGlu5 receptor protein levels and in the mGlu5-receptor mediated stimulation of polyphosphoinositide hydrolysis in the ventrobasal thalamus, whereas the expression of mGlu5 receptors was increased in the somatosensory cortex. Interestingly, these changes preceded the onset of the epileptic phenotype, being already visible in pre-symptomatic WAG/Rij rats. SWDs in symptomatic WAG/Rij rats were not influenced by pharmacological blockade of mGlu5 receptors with MTEP (10 or 30 mg/kg, i.p.), but were significantly decreased by mGlu5 receptor potentiation with the novel enhancer, VU0360172 (3 or 10 mg/kg, s.c.), without affecting motor behaviour. The effect of VU0360172 was prevented by co-treatment with MTEP. These findings suggest that changes in mGlu5 receptors might lie at the core of the absence-seizure prone phenotype of WAG/Rij rats, and that mGlu5 receptor enhancers are potential candidates to the treatment of absence epilepsy. PMID:22705340

  14. Caudal Nucleus Accumbens Core Is Critical in the Regulation of Cue-Elicited Approach-Avoidance Decisions

    PubMed Central

    Hamel, Laurie; Thangarasa, Tharshika; Samadi, Osai

    2017-01-01

    The nucleus accumbens (NAc) is thought to be a site of integration of positively and negatively valenced information and action selection. Functional differentiation in valence processing has previously been found along the rostrocaudal axis of the shell region of the NAc in assessments of unconditioned motivation. Given that the core region of the NAc has been implicated in the elicitation of motivated behavior in response to conditioned cues, we sought to assess the role of caudal, intermediate, and rostral sites within this subregion in cue-elicited approach-avoidance decisions. Rats were trained to associate visuo-tactile cues with appetitive, aversive, and neutral outcomes. Following the successful acquisition of the cue-outcome associations, rats received microinfusions of GABAA and GABAB receptor agonists (muscimol/baclofen) or saline into the caudal, intermediate, or rostral NAc core and were then exposed to a superimposition of appetitively and aversively valenced cues versus neutral cues in a “conflict test,” as well as to the appetitive versus neutral cues, and aversive cues versus neutral cues, in separate conditioned preference/avoidance tests. Disruption of activity in the intermediate to caudal parts of the NAc core resulted in a robust avoidance bias in response to motivationally conflicting cues, as well as a potentiated avoidance of aversive cues as compared with control animals, coupled with an attenuated conditioned preference for the appetitive cue. These results suggest that the caudal NAc core may have the capacity to exert bidirectional control over appetitively and aversively motivated responses to valence signals. PMID:28275709

  15. Milrinone ameliorates cardiac mechanical dysfunction after hypothermia in an intact rat model.

    PubMed

    Dietrichs, Erik Sveberg; Kondratiev, Timofei; Tveita, Torkjel

    2014-12-01

    Rewarming from hypothermia is often complicated by cardiac dysfunction, characterized by substantial reduction in stroke volume. Previously we have reported that inotropic agents, working via cardiac β-receptor agonism may exert serious side effects when applied to treat cardiac contractile dysfunction during rewarming. In this study we tested whether Milrinone, a phosphodiesterase III inhibitor, is able to ameliorate such dysfunction when given during rewarming. A rat model designed for circulatory studies during experimental hypothermia with cooling to a core temperature of 15°C, stable hypothermia at this temperature for 3h and subsequent rewarming was used, with a total of 3 groups: (1) a normothermic group receiving Milrinone, (2) a hypothermic group receiving Milrinone the last hour of hypothermia and during rewarming, and (3) a hypothermic saline control group. Hemodynamic function was monitored using a conductance catheter introduced to the left ventricle. After rewarming from 15°C, stroke volume and cardiac output returned to within baseline values in Milrinone treated animals, while these variables were significantly reduced in saline controls. Milrinone ameliorated cardiac dysfunction during rewarming from 15°C. The present results suggest that at low core temperatures and during rewarming from such temperatures, pharmacologic efforts to support cardiovascular function is better achieved by substances preventing cyclic AMP breakdown rather than increasing its formation via β-receptor stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effect of K+ and Na+ on calcium-dependent electron-dense particles in the monoaminergic synaptic vesicles of rat pineal nerves fixed in Ca2+-containing solutions.

    PubMed

    Pellegrino de Iraldi, A; Corazza, J P

    1983-01-01

    The effect of K+ and Na+ on the Ca2+ binding site in the dense core of monoaminergic vesicles of pineal nerves was investigated in the rat. Rat pineal glands, bisected immediately after decapitation, were incubated at room temperature in solutions containing high K+ or high Na+ in the presence or absence of Ca2+. Fixation was performed in glutaraldehyde-osmium tetroxide in collidine buffer, with and without CaCl2. It was confirmed that, after fixation in Ca2+-containing solutions, an electron-dense particle, located in the vesicle core, which can be considered a calcium deposit, appears within the synaptic vesicles. It was observed that this Ca2+ deposit may be modified by incubation in a high K+ or high Na+ milieu before fixation in Ca2+ containing solutions. When the incubation was carried out with high K+ and high Ca2+ simultaneously, Ca2+ deposits were considerably increased. With K+ alone, no Ca2+ deposits were apparent, as when electrical stimulation is applied before fixation. This effect was not observed when the incubation was done in high Na+. Consecutive incubations in high K+ and high Na+, respectively, restored the capability of the vesicle cores to bind Ca2+. Prolonged incubation in high Na+ before fixation increased Ca2+ deposits within the vesicles. These findings are in line with data on the effect of these ions upon the storage and release of biogenic amines and suggest that these ions modify the capability of synaptic vesicles to bind Ca2+.

  17. Concentration-related metabolic rate and behavioral thermoregulatory adaptations to serial administrations of nitrous oxide in rats

    PubMed Central

    2018-01-01

    Background Initial administration of ≥60% nitrous oxide (N2O) to rats evokes hypothermia, but after repeated administrations the gas instead evokes hyperthermia. This sign reversal is driven mainly by increased heat production. To determine whether rats will behaviorally oppose or assist the development of hyperthermia, we previously performed thermal gradient testing. Inhalation of N2O at ≥60% causes rats to select cooler ambient temperatures both during initial administrations and during subsequent administrations in which the hyperthermic state exists. Thus, an available behavioral response opposes (but does not completely prevent) the acquired hyperthermia that develops over repeated high-concentration N2O administrations. However, recreational and clinical uses of N2O span a wide range of concentrations. Therefore, we sought to determine the thermoregulatory adaptations to chronic N2O administration over a wide range of concentrations. Methods This study had two phases. In the first phase we adapted rats to twelve 3-h N2O administrations at either 0%, 15%, 30%, 45%, 60% or 75% N2O (n = 12 per group); outcomes were core temperature (via telemetry) and heat production (via respirometry). In the second phase, we used a thermal gradient (range 8°C—38°C) to assess each adapted group’s thermal preference, core temperature and locomotion on a single occasion during N2O inhalation at the assigned concentration. Results In phase 1, repeated N2O administrations led to dose related hyperthermic and hypermetabolic states during inhalation of ≥45% N2O compared to controls (≥ 30% N2O compared to baseline). In phase 2, rats in these groups selected cooler ambient temperatures during N2O inhalation but still developed some hyperthermia. However, a concentration-related increase of locomotion was evident in the gradient, and theoretical calculations and regression analyses both suggest that locomotion contributed to the residual hyperthermia. Conclusions Acquired N2O hyperthermia in rats is remarkably robust, and occurs even despite the availability of ambient temperatures that might fully counter the hyperthermia. Increased locomotion in the gradient may contribute to hyperthermia. Our data are consistent with an allostatic dis-coordination of autonomic and behavioral thermoregulatory mechanisms during drug administration. Our results have implications for research on N2O abuse as well as research on the role of allostasis in drug addiction. PMID:29672605

  18. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Down-Regulation of Hippocampal Genes Regulating Dopaminergic, GABAergic, and Glutamatergic Function Following Combined Neonatal Phencyclidine and Post-Weaning Social Isolation of Rats as a Neurodevelopmental Model for Schizophrenia

    PubMed Central

    Gaskin, Philip LR; Toledo-Rodriguez, Maria; Alexander, Stephen PH

    2016-01-01

    Background: Dysfunction of dopaminergic, GABAergic, and glutamatergic function underlies many core symptoms of schizophrenia. Combined neonatal injection of the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP), and post-weaning social isolation of rats produces a behavioral syndrome with translational relevance to several core symptoms of schizophrenia. This study uses DNA microarray to characterize alterations in hippocampal neurotransmitter-related gene expression and examines the ability of the sodium channel blocker, lamotrigine, to reverse behavioral changes in this model. Methods: Fifty-four male Lister-hooded rat pups either received phencyclidine (PCP, 10mg/kg, s.c.) on post-natal days (PND) 7, 9, and 11 before being weaned on PND 23 into separate cages (isolation; PCP-SI; n = 31) or received vehicle injection and group-housing (2–4 per cage; V-GH; n = 23) from weaning. The effect of lamotrigine on locomotor activity, novel object recognition, and prepulse inhibition of acoustic startle was examined (PND 60–75) and drug-free hippocampal gene expression on PND 70. Results: Acute lamotrigine (10–15mg/kg i.p.) reversed the hyperactivity and novel object recognition impairment induced by PCP-SI but had no effect on the prepulse inhibition deficit. Microarray revealed small but significant down-regulation of hippocampal genes involved in glutamate metabolism, dopamine neurotransmission, and GABA receptor signaling and in specific schizophrenia-linked genes, including parvalbumin (PVALB) and GAD67, in PCP-SI rats, which resemble changes reported in schizophrenia. Conclusions: Findings indicate that alterations in dopamine neurotransmission, glutamate metabolism, and GABA signaling may contribute to some of the behavioral deficits observed following PCP-SI, and that lamotrigine may have some utility as an adjunctive therapy to improve certain cognitive deficits symptoms in schizophrenia. PMID:27382048

  20. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats.

    PubMed

    Sinclair, Elaine B; Culbert, Kristen M; Gradl, Dana R; Richardson, Kimberlei A; Klump, Kelly L; Sisk, Cheryl L

    2015-12-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague-Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial prefrontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex than in nucleus accumbens. These data confirm that PF activates brain regions responsible for encoding the incentive salience and hedonic properties of PF, and suggest that binge eating proneness is associated with enhanced responses to PF in brain regions that exert executive control over food reward. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats

    PubMed Central

    Sinclair, Elaine B.; Culbert, Kristen M.; Gradl, Dana R.; Richardson, Kimberlei A.; Klump, Kelly L.; Sisk, Cheryl L.

    2017-01-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague–Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1 h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial pre-frontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex than in nucleus accumbens. These data confirm that PF activates brain regions responsible for encoding the incentive salience and hedonic properties of PF, and suggest that binge eating proneness is associated with enhanced responses to PF in brain regions that exert executive control over food reward. PMID:26459117

  2. Chemoenzymatic synthesis and cannabinoid activity of a new diazabicyclic amide of phenylacetylricinoleic acid.

    PubMed

    López-Ortíz, Manuel; Herrera-Solís, Andrea; Luviano-Jardón, Axel; Reyes-Prieto, Nidia; Castillo, Ivan; Monsalvo, Ivan; Demare, Patricia; Méndez-Díaz, Mónica; Regla, Ignacio; Prospéro-García, Oscar

    2010-06-01

    Endocannabinoids (eCBs) are endogenous neuromodulators of synaptic transmission. Their dysfunction may cause debilitating disorders of diverse clinical manifestation. For example, drug addiction, lack of sex desire, eating disorders, such as anorexia or bulimia and dyssomnias. eCBs also participate in the regulation of core temperature and pain perception. In this context, it is important to recognize the utility of cannabinoid receptor 1 (CB1R) agonists, natural as Delta(9)-tetrahydrocannabinol (THC) or synthetic as Nabilone as useful drugs to alleviate this kind of patients' suffering. Therefore, we have developed a new drug, (R,Z)-18-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-oxooctadec-9-en-7-yl phenylacetate (PhAR-DBH-Me), that appears to bind and activate the CB1R. This diazabicyclic amide was synthesized from phenylacetylricinoleic acid and (1S,4S)-2,5-diazabicyclo[2.2.1]heptane. To test its cannabinergic properties we evaluated its effects on core temperature, pain perception, and the sleep-waking cycle of rats. Results indicate that 20 and 40mg/kg of PhAR-DBH-Me readily reduced core temperature and increased pain perception threshold. In addition, 20mg/kg increased REM sleep in otherwise normal rats. All these effects were prevented or attenuated by AM251, a CB1R antagonist. Place preference conditioning studies indicated that this molecule does not produce rewarding effects. These results strongly support that PhAR-DBH-Me possesses cannabinoid activity without the reinforcement effects. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence.

    PubMed

    Marchant, Nathan J; Kaganovsky, Konstantin

    2015-06-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, in which extinction training in context (B) suppresses alcohol seeking, and renewal of this seeking occurs when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence in response to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here, we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol-preferring "P rats" to self-administer 20% alcohol in Context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in Context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment. (c) 2015 APA, all rights reserved).

  4. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats.

    PubMed

    Saddoris, Michael P; Wang, Xuefei; Sugam, Jonathan A; Carelli, Regina M

    2016-01-06

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity. Copyright © 2016 the authors 0270-6474/16/360235-16$15.00/0.

  5. THE MOUSE: AN "AVERAGE" HOMEOTHERM

    EPA Science Inventory

    Mice, rats, and nearly all mammals and birds are classified as homeothermic, meaning that their core temperature is regulated at a constant level over a relatively wide range of ambient temperatures. In one sense, this homeothermic designation has been confirmed by the advent of ...

  6. A Critical Role for Protein Degradation in the Nucleus Accumbens Core in Cocaine Reward Memory

    PubMed Central

    Ren, Zhen-Yu; Liu, Meng-Meng; Xue, Yan-Xue; Ding, Zeng-Bo; Xue, Li-Fen; Zhai, Suo-Di; Lu, Lin

    2013-01-01

    The intense associative memories that develop between cocaine-paired contexts and rewarding stimuli contribute to cocaine seeking and relapse. Previous studies have shown impairment in cocaine reward memories by manipulating a labile state induced by memory retrieval, but the mechanisms that underlie the destabilization of cocaine reward memory are unknown. In this study, using a Pavlovian cocaine-induced conditioned place preference (CPP) procedure in rats, we tested the contribution of ubiquitin-proteasome system-dependent protein degradation in destabilization of cocaine reward memory. First, we found that polyubiquitinated protein expression levels and polyubiquitinated N-ethylmaleimide-sensitive fusion (NSF) markedly increased 15 min after retrieval while NSF protein levels decreased 1 h after retrieval in the synaptosomal membrane fraction in the nucleus accumbens (NAc) core. We then found that infusion of the proteasome inhibitor lactacystin into the NAc core prevented the impairment of memory reconsolidation induced by the protein synthesis inhibitor anisomycin and reversed the effects of anisomycin on NSF and glutamate receptor 2 (GluR2) protein levels in the synaptosomal membrane fraction in the NAc core. We also found that lactacystin infusion into the NAc core but not into the shell immediately after extinction training sessions inhibited CPP extinction and reversed the extinction training-induced decrease in NSF and GluR2 in the synaptosomal membrane fraction in the NAc core. Finally, infusions of lactacystin by itself into the NAc core immediately after each training session or before the CPP retrieval test had no effect on the consolidation and retrieval of cocaine reward memory. These findings suggest that ubiquitin-proteasome system-dependent protein degradation is critical for retrieval-induced memory destabilization. PMID:23303053

  7. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies.

    PubMed

    Coradini, Karine; Friedrich, Rossana B; Fonseca, Francisco N; Vencato, Marina S; Andrade, Diego F; Oliveira, Cláudia M; Battistel, Ana Paula; Guterres, Silvia S; da Rocha, Maria Izabel U M; Pohlmann, Adriana R; Beck, Ruy C R

    2015-10-12

    Resveratrol and curcumin are two natural polyphenols extensively used due to their remarkable anti-inflammatory activity. The present work presents an inedited study of the in vivo antioedematogenic activity of these polyphenols co-encapsulated in lipid-core nanocapsules on Complete Freund's adjuvant (CFA)-induced arthritis in rats. Lipid-core nanocapsules were prepared by interfacial deposition of preformed polymer. Animals received a single subplantar injection of CFA in the right paw. Fourteen days after arthritis induction, they were treated with resveratrol, curcumin, or both in solution or loaded in lipid-core nanocapsules (1.75 mg/kg/twice daily, i.p.), for 8 days. At the doses used, the polyphenols in solution were not able to decrease paw oedema. However, nanoencapsulation improved the antioedematogenic activity of polyphenols at the same doses. In addition, the treatment with co-encapsulated polyphenols showed the most pronounced effects, where an inhibition of 37-55% was observed between day 16 and 22 after arthritis induction. This treatment minimized most of the histological changes observed, like fibrosis in synovial tissue, cartilage and bone loss. In addition, unlike conventionally arthritis treatment, resveratrol and curcumin co-encapsulated in lipid-core nanocapsules did not alter important hepatic biochemical markers (ALP, AST, and ALT). In conclusion, the strategy of co-encapsulating resveratrol and curcumin in lipid-core nanocapsules improves their efficacy as oedematogenic agents, with no evidence of hepatotoxic effects. This is a promising strategy for the development of new schemes for treatment of chronic inflammation diseases, like arthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Absence of “Warm-Up” during Active Avoidance Learning in a Rat Model of Anxiety Vulnerability: Insights from Computational Modeling

    PubMed Central

    Myers, Catherine E.; Smith, Ian M.; Servatius, Richard J.; Beck, Kevin D.

    2014-01-01

    Avoidance behaviors, in which a learned response causes omission of an upcoming punisher, are a core feature of many psychiatric disorders. While reinforcement learning (RL) models have been widely used to study the development of appetitive behaviors, less attention has been paid to avoidance. Here, we present a RL model of lever-press avoidance learning in Sprague-Dawley (SD) rats and in the inbred Wistar Kyoto (WKY) rat, which has been proposed as a model of anxiety vulnerability. We focus on “warm-up,” transiently decreased avoidance responding at the start of a testing session, which is shown by SD but not WKY rats. We first show that a RL model can correctly simulate key aspects of acquisition, extinction, and warm-up in SD rats; we then show that WKY behavior can be simulated by altering three model parameters, which respectively govern the tendency to explore new behaviors vs. exploit previously reinforced ones, the tendency to repeat previous behaviors regardless of reinforcement, and the learning rate for predicting future outcomes. This suggests that several, dissociable mechanisms may contribute independently to strain differences in behavior. The model predicts that, if the “standard” inter-session interval is shortened from 48 to 24 h, SD rats (but not WKY) will continue to show warm-up; we confirm this prediction in an empirical study with SD and WKY rats. The model further predicts that SD rats will continue to show warm-up with inter-session intervals as short as a few minutes, while WKY rats will not show warm-up, even with inter-session intervals as long as a month. Together, the modeling and empirical data indicate that strain differences in warm-up are qualitative rather than just the result of differential sensitivity to task variables. Understanding the mechanisms that govern expression of warm-up behavior in avoidance may lead to better understanding of pathological avoidance, and potential pathways to modify these processes. PMID:25183956

  9. Survival and engraftment of dopaminergic neurons manufactured by a Good Manufacturing Practice-compatible process.

    PubMed

    Peng, Jun; Liu, Qiuyue; Rao, Mahendra S; Zeng, Xianmin

    2014-09-01

    We have previously reported a Good Manufacturing Practice (GMP)-compatible process for generating authentic dopaminergic neurons in defined media from human pluripotent stem cells and determined the time point at which dopaminergic precursors/neurons (day 14 after neuronal stem cell [NSC] stage) can be frozen, shipped and thawed without compromising their viability and ability to mature in vitro. One important issue we wished to address is whether dopaminergic precursors/neurons manufactured by our GMP-compatible process can be cryopreserved and engrafted in animal Parkinson disease (PD) models. In this study, we evaluated the efficacy of freshly prepared and cryopreserved dopaminergic neurons in the 6-hydroxydopamine-lesioned rat PD model. We showed functional recovery up to 6 months post-transplantation in rats transplanted with our cells, whether freshly prepared or cryopreserved. In contrast, no motor improvement was observed in two control groups receiving either medium or cells at a slightly earlier stage (day 10 after NSC stage). Histologic analysis at the end point of the study (6 months post-transplantation) showed robust long-term survival of donor-derived tyrosine hydroxylase (TH)(+) dopaminergic neurons in rats transplanted with day 14 dopaminergic neurons. Moreover, TH(+) fibers emanated from the graft core into the surrounding host striatum. Consistent with the behavioral analysis, no or few TH(+) neurons were detected in animals receiving day 10 cells, although human cells were present in the graft. Importantly, no tumors were detected in any grafted rats, but long-term tumorigenic studies will need to determine the safety of our products. Dopaminergic neurons manufactured by a GMP-compatible process from human ESC survived and engrafted efficiently in the 6-OHDA PD rat model. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Brain-penetrating 2-aminobenzimidazole H(1)-antihistamines for the treatment of insomnia.

    PubMed

    Coon, Timothy; Moree, Wilna J; Li, Binfeng; Yu, Jinghua; Zamani-Kord, Said; Malany, Siobhan; Santos, Mark A; Hernandez, Lisa M; Petroski, Robert E; Sun, Aixia; Wen, Jenny; Sullivan, Sue; Haelewyn, Jason; Hedrick, Michael; Hoare, Samuel J; Bradbury, Margaret J; Crowe, Paul D; Beaton, Graham

    2009-08-01

    The benzimidazole core of the selective non-brain-penetrating H(1)-antihistamine mizolastine was used to identify a series of brain-penetrating H(1)-antihistamines for the potential treatment of insomnia. Using cassette PK studies, brain-penetrating H(1)-antihistamines were identified and in vivo efficacy was demonstrated in a rat EEG/EMG model. Further optimization focused on strategies to attenuate an identified hERG liability, leading to the discovery of 4i with a promising in vitro profile.

  11. Effects of the Sigma-1 Receptor Agonist 1-(3,4-Dimethoxyphenethyl)-4-(3-Phenylpropyl)-Piperazine Dihydro-Chloride on Inflammation after Stroke

    PubMed Central

    Ruscher, Karsten; Inácio, Ana R.; Kuric, Enida; Wieloch, Tadeusz

    2012-01-01

    Activation of the sigma-1 receptor (Sig-1R) improves functional recovery in models of experimental stroke and is known to modulate microglia function. The present study was conducted to investigate if Sig-1R activation after experimental stroke affects mediators of the inflammatory response in the ischemic hemisphere. Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (MCAO) and injected with the specific Sig-1R agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (SA4503) or saline for 5 days starting on day 2 after MCAO. Treatment did not affect the increased levels of the pro-inflammatory cytokines interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin 4 (IL-4), interleukin 5 (IL-5), and interleukin 13 (IL-13) in the infarct core and peri-infarct area after MCAO. In addition, treatment with SA4503 did not affect elevated levels of nitrite, TNF-α and IL-1β observed in primary cultures of microglia exposed to combined Hypoxia/Aglycemia, while the unspecific sigma receptor ligand 1,3-di-o-tolylguanidine (DTG) significantly decreased the production of nitrite and levels of TNF-α. Analysis of the ischemic hemisphere also revealed increased levels of ionized calcium binding adaptor molecule 1 (Iba1) levels in the infarct core of SA4503 treated animals. However, no difference in Iba1 immunoreactivity was detected in the infarct core. Also, levels of the proliferation marker proliferating cell nuclear antigen (PCNA) and OX-42 were not increased in the infarct core in rats treated with SA4503. Together, our results suggest that sigma-1 receptor activation affects Iba1 expression in microglia/macrophages of the ischemic hemisphere after experimental stroke but does not affect post-stroke inflammatory mediators. PMID:23028794

  12. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    PubMed

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  13. The Effects of Resistance Exercise on Cocaine Self-Administration, Muscle Hypertrophy, and BDNF Expression in the Nucleus Accumbens

    PubMed Central

    Strickland, Justin C.; Abel, Jean M.; Lacy, Ryan T.; Beckmann, Joshua S.; Witte, Maryam A.; Lynch, Wendy J.; Smith, Mark A.

    2016-01-01

    Background Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Methods Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set “pyramid” in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Results Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. Conclusions These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. PMID:27137405

  14. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats.

    PubMed

    Salman, Zenat K; Refaat, Rowaida; Selima, Eman; El Sarha, Ashgan; Ismail, Menna A

    2013-08-15

    Increasing evidence has established causative links between obesity, chronic inflammation and insulin resistance; the core pathophysiological feature in type 2 diabetes mellitus. This study was designed to examine whether the combination of L-cysteine and metformin would provide additional benefits in reducing oxidative stress, inflammation and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Male Wistar rats were fed a high-fat diet (HFD) for 8 weeks to induce insulin resistance after which they were rendered diabetic with low-dose streptozotocin. Diabetic rats were treated with metformin (300 mg/kg/day), L-cysteine (300 mg/kg/day) and their combination along with HFD for another 2 weeks. Control rats were fed normal rat chow throughout the experiment. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index (HOMA-IR) and serum free fatty acids (FFAs) were measured. Serum levels of the inflammatory markers; monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) and nitrite/nitrate were also determined. The liver was isolated and used for determination of malondialdehyde (MDA), reduced glutathione (GSH), caspase-3 and cytochrome c levels. The hypoglycemic effect of the combination therapy exceeded that of metformin and L-cysteine monotherapies with more improvement in insulin resistance. All treated groups exhibited significant reductions in serum FFAs, oxidative stress and inflammatory parameters, caspase-3 and cytochrome c levels compared to untreated diabetic rats with the highest improvement observed in the combination group. In conclusion, the present results clearly suggest that L-cysteine can be strongly considered as an adjunct to metformin in management of type 2 diabetes. © 2013 Elsevier B.V. All rights reserved.

  15. The effects of resistance exercise on cocaine self-administration, muscle hypertrophy, and BDNF expression in the nucleus accumbens.

    PubMed

    Strickland, Justin C; Abel, Jean M; Lacy, Ryan T; Beckmann, Joshua S; Witte, Maryam A; Lynch, Wendy J; Smith, Mark A

    2016-06-01

    Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set "pyramid" in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Early-Life Social Isolation Stress Increases Kappa Opioid Receptor Responsiveness and Downregulates the Dopamine System

    PubMed Central

    Karkhanis, Anushree N; Rose, Jamie H; Weiner, Jeffrey L; Jones, Sara R

    2016-01-01

    Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress. PMID:26860203

  17. Expression of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) in the nucleus accumbens is critical for the acquisition, expression and reinstatement of morphine-induced conditioned place preference.

    PubMed

    Lv, Xiu-Fang; Xu, Ya; Han, Ji-Sheng; Cui, Cai-Lian

    2011-09-30

    Activity-regulated cytoskeleton-associated protein (Arc), also known as activity-regulated gene 3.1 (Arg3.1), is an immediate early gene whose mRNA is selectively targeted to recently activated synaptic sites, where it is translated and enriched. This unique feature suggests a role for Arc/Arg3.1 in coupling synaptic activity to protein synthesis, leading to synaptic plasticity. Although the Arc/Arg3.1 gene has been shown to be induced by a variety of abused drugs and its protein has been implicated in diverse forms of long-term memory, relatively little is known about its role in drug-induced reward memory. In this study, we investigated the potential role of Arc/Arg3.1 protein expression in reward-related associative learning and memory using morphine-induced conditioned place preference (CPP) in rats. We found that (1) intraperitoneal (i.p.) injection of morphine (10mg/kg) increased Arc/Arg3.1 protein levels after 2h in the NAc core but not in the NAc shell. (2) In CPP experiments, Arc/Arg3.1 protein was increased in the NAc shell of rats following both morphine conditioning and the CPP expression test compared to rats that received the conditioning without the test or those that did not receive morphine conditioning. (3) Microinjection of Arc/Arg3.1 antisense oligodeoxynucleotide (AS) into the NAc core inhibited the acquisition, expression and reinstatement of morphine CPP; however, intra-NAc shell infusions of the AS only blocked the expression of CPP. These findings suggest that expression of the Arc/Arg3.1 protein in the NAc core is required for the acquisition, context-induced retrieval and reinstatement of morphine-associated reward memory, whereas Arc/Arg3.1 protein expression in the NAc shell is only critical for the context-induced retrieval of memory. As a result, Arc/Arg3.1 may be a potential therapeutic target for the prevention of drug abuse or the relapse of drug use. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effects of kainic acid on rat body temperature: unmasking by dizocilpine.

    PubMed

    Ahlenius, S; Oprica, M; Eriksson, C; Winblad, B; Schultzberg, M

    2002-07-01

    The effects of intraperitoneal (i.p.) administration of kainic acid (KA) and dizocilpine, alone or in combination, on body temperature of freely moving rats were examined. Injection of saline or dizocilpine (3.0 or 5.0 mg/kg) was followed after an hour by injection of saline or KA (10 mg/kg) and the body temperature was measured at different time points during the first 5 h. KA alone produced an initial short-lasting hypothermia followed by a longer-lasting hyperthermic effect. Administration of dizocilpine alone produced an early increase in core temperature. Pretreatment of KA-injected rats with dizocilpine potentiated the KA-induced hypothermic effect at 30 min and dose-dependently reduced the temperature measured at 1 h after KA-injection without influencing the ensuing hyperthermia.These data suggest that the KA-induced changes in body temperature do not necessarily involve the activation of NMDA-receptors as opposed to KA-induced behavioural changes that are blocked by dizocilpine in a dose-dependent manner. It is unlikely, therefore, that the KA-induced hyperthermia is a result of the KA-induced seizure motor activity. Furthermore, our findings indicate that KA-induced changes in core temperature may be used as a criterion of drug-responsiveness when the behavioural changes are blocked, e.g. with dizocilpine.

  19. Effects of cabergoline and rotigotine on tacrine-induced tremulous jaw movements in rats.

    PubMed

    Koganemaru, Go; Abe, Hiroshi; Kuramashi, Aki; Ebihara, Kosuke; Matsuo, Hisae; Funahashi, Hideki; Yasuda, Kazuya; Ikeda, Tetsuya; Nishimori, Toshikazu; Ishida, Yasushi

    2014-11-01

    We examined the effects of two dopamine agonists, cabergoline and rotigotine, on tacrine-induced tremor and c-Fos expression in rats. Rats received intraperitoneal injection of cabergoline (0.5, 1.0, or 5.0mg/kg), rotigotine (1.0, 2.5, or 10.0mg/kg), or vehicle 30min before intraperitoneal injection of tacrine (5.0mg/kg). The number of tremulous jaw movements (TJMs) after tacrine administration was counted for 5min. Animals were sacrificed 2h later under deep anesthesia, and the brain sections were immunostained in order to evaluate the c-Fos expression. Induction of TJMs by tacrine was dose-dependently reduced by pretreatment with cabergoline and rotigotine. The number of c-Fos-positive cells was significantly enhanced in the medial striatum, nucleus accumbens core, and nucleus accumbens shell after tacrine administration, and the enhanced expression of c-Fos in these three regions was significantly attenuated by cabergoline, while rotigotine suppressed c-Fos expression in two regions except the nucleus accumbens core. These results suggest that tacrine-induced TJMs would be relieved by either cabergoline or rotigotine and that anticholinesterase-induced TJMs and the ameliorating effects of dopamine agonists would relate to neuronal activation in the striatum and nucleus accumbens. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus.

    PubMed

    Conceição, Ellen Paula Santos da; Madden, Christopher J; Morrison, Shaun F

    2017-06-01

    The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycine A receptors (Gly A R) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the Gly A R antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (T BAT , +1.1°C), expired CO 2 , (+0.4%), core body temperature (T CORE , +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), T BAT (-0.2°C), T CORE (-0.2°C), expired CO 2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO 2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), T BAT (-0.5°C), expired CO 2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure. Copyright © 2017 the American Physiological Society.

  1. Alterations to prepulse inhibition magnitude and latency in adult rats following neonatal treatment with domoic acid and social isolation rearing.

    PubMed

    Marriott, Amber L; Tasker, R Andrew; Ryan, Catherine L; Doucette, Tracy A

    2016-02-01

    Deficits in perceptual, informational, and attentional processing are consistently identified as a core feature in schizophrenia and related neuropsychiatric disorders. Neonatal injections of low doses of the AMPA/kainate agonist domoic acid (DOM) have previously been shown to alter various aspects of perceptual and attentional processing in adult rats. The current study investigated the effects of combined neonatal DOM treatment with isolation rearing on prepulse inhibition behaviour and relevant neurochemical measures, to assess the usefulness of these paradigms in modeling neurodevelopmental disorders. Daily subcutaneous injections of DOM (20 μg/kg) or saline were administered to male and female rat pups from postnatal days (PND) 8-14. After weaning, rats were either housed alone or in groups of 4. Both the magnitude and latency of prepulse inhibition were determined in adulthood (approximately 4.5 months of age) and post-mortem brain tissue was assayed using Western blot. Social isolation alone significantly lowered PPI magnitude in male (but not female) rats while DOM treatment appeared to make animals refractory to this effect. Combining social isolation and DOM treatment caused an additive decrease in PPI startle latency. No statistically significant differences were found in the expression of D1, D2, TH, GAD65 or GAD67 protein in either the prefrontal cortex or hippocampus, although some tendencies toward differences were noted. We conclude that both neonatal low-dose DOM and social isolation affect prepulse inhibition in rats but that each paradigm exerts these effects through different neuronal signalling systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Individual Differences in Initial Sensitivity and Acute Tolerance Predict Patterns of Chronic Drug Tolerance to Nitrous-Oxide-Induced Hypothermia in Rats

    PubMed Central

    Ramsay, Douglas S.; Kaiyala, Karl J.; Leroux, Brian G.; Woods, Stephen C.

    2006-01-01

    Rationale: A preventive strategy for drug addiction would benefit from being able to identify vulnerable individuals. Understanding how an individual responds during an initial drug exposure may be useful for predicting how that individual will respond to repeated drug administrations. Objectives: This study investigated whether individual differences in initial drug sensitivity and acute tolerance can predict how chronic tolerance develops. Methods: During an initial 3-h administration of 60% nitrous oxide (N2O), male Long-Evans rats were screened for N2O’s hypothermic effect into subsets based on being initially insensitive (II), sensitive with acute tolerance (AT), or sensitive with no intrasessional recovery (NR). Animals in each individual difference category were randomly assigned to receive six 90-min exposures of either 60% N2O or placebo gas. Core temperature was measured telemetrically. Results: Rats that exhibited a comparable degree of hypothermia during an initial N2O exposure, but differed in acute tolerance development, developed different patterns of chronic tolerance. Specifically, the NR group did not become fully tolerant over repeated N2O exposures while the AT group developed an initial hyperthermia followed by a return of core temperature to control levels indicative of full tolerance development. By the second N2O exposure, the II group breathing N2O became hyperthermic relative to the placebo control group and this hyperthermia persisted throughout the multiple N2O exposures. Conclusions: Individual differences in initial drug sensitivity and acute tolerance development predict different patterns of chronic tolerance. The hypothesis is suggested that individual differences in opponent adaptive responses may mediate this relationship. PMID:15778887

  3. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    NASA Astrophysics Data System (ADS)

    Roversi, Katiane; Benvegnú, Dalila M.; Roversi, Karine; Trevizol, Fabíola; Vey, Luciana T.; Elias, Fabiana; Fracasso, Rafael; Motta, Mariana H.; Ribeiro, Roseane F.; dos S. Hausen, Bruna; Moresco, Rafael N.; Garcia, Solange C.; da Silva, Cristiane B.; Burger, Marilise E.

    2015-04-01

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups ( n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

  4. Diet-induced obesity reduces core body temperature across the estrous cycle and pregnancy in the rat.

    PubMed

    Crew, Rachael C; Waddell, Brendan J; Maloney, Shane K; Mark, Peter J

    2018-04-16

    Obesity during pregnancy causes adverse maternal and fetal health outcomes and programs offspring for adult-onset diseases, including cardiovascular disease. Obesity also disrupts core body temperature (T c ) regulation in nonpregnant rodents; however, it is unknown whether obesity alters normal maternal T c adaptations to pregnancy. Since T c is influenced by the circadian system, and both obesity and pregnancy alter circadian biology, it was hypothesized that obesity disrupts the normal rhythmic patterns of T c before and during gestation. Obesity was induced by cafeteria (CAF) feeding in female Wistar rats for 8 weeks prior to and during gestation, whereas control (CON) animals had free access to chow. Intraperitoneal temperature loggers measured daily T c profiles throughout the study, while maternal body composition and leptin levels were assessed near term. Daily temperature profiles were examined for rhythmic features (mesor, amplitude and acrophase) by cosine regression analysis. CAF animals exhibited increased fat mass (93%) and associated hyperleptinemia (3.2-fold increase) compared to CON animals. CAF consumption reduced the average T c (by up to 0.29°C) across the estrous cycle and most of pregnancy; however, T c for CAF and CON animals converged toward the end of gestation. Obesity reduced the amplitude of T c rhythms at estrus and proestrus and on day 8 of pregnancy, but increased the amplitude at day 20 of pregnancy. Photoperiod analysis revealed that obesity reduced T c exclusively in the light period during pre-pregnancy but only during the dark period in late gestation. In conclusion, obesity alters rhythmic T c profiles and reduces the magnitude of the T c decline late in rat gestation, which may have implications for maternal health and fetal development.

  5. Dietary fats significantly influence the survival of penumbral neurons in a rat model of chronic ischemic by modifying lipid mediators, inflammatory biomarkers, NOS production, and redox-dependent apoptotic signals.

    PubMed

    Lausada, Natalia; Arnal, Nathalie; Astiz, Mariana; Marín, María Cristina; Lofeudo, Juan Manuel; Stringa, Pablo; Tacconi de Alaniz, María J; Tacconi de Gómez Dumm, Nelva; Hurtado de Catalfo, Graciela; Cristalli de Piñero, Norma; Pallanza de Stringa, María Cristina; Illara de Bozzolo, Eva María; Bozzarello, Enrique Gustavo; Cristalli, Diana Olga; Marra, Carlos Alberto

    2015-01-01

    Brain stroke is the third most important cause of death in developed countries. We studied the effect of different dietary lipids on the outcome of a permanent ischemic stroke rat model. Wistar rats were fed diets containing 7% commercial oils (S, soybean; O, olive; C, coconut; G, grape seed) for 35 d. Stroke was induced by permanent middle cerebral artery occlusion. Coronal slices from ischemic brains and sham-operated animals were supravitally stained. Penumbra and core volumes were calculated by image digitalization after 24, 48, and 72 h poststroke. Homogenates and mitochondrial fractions were prepared from different zones and analyzed by redox status, inflammatory markers, ceramide, and arachidonate content, phospholipase A2, NOS, and proteases. Soybean (S) and G diets were mainly prooxidative and proinflammatory by increasing the liberation of arachidonate and its transformation into prostaglandins. O was protective in terms of redox homeostatic balance, minor increases in lipid and protein damage, conservation of reduced glutathione, protective activation of NOS in penumbra, and net ratio of anti-to proinflammatory cytokines. Apoptosis (caspase-3, milli- and microcalpains) was less activated by O than by any other diet. Dietary lipids modulate NOS and PLA2 activities, ceramide production, and glutathione import into the mitochondrial matrix, finally determining the activation of the two main protease systems involved in programmed cell death. Olive oil appears to be a biological source for the isolation of protective agents that block the expansion of brain core at the expense of penumbral neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Modafinil attenuates reinstatement of cocaine seeking: role for cystine-glutamate exchange and metabotropic glutamate receptors.

    PubMed

    Mahler, Stephen V; Hensley-Simon, Megan; Tahsili-Fahadan, Pouya; LaLumiere, Ryan T; Thomas, Charles; Fallon, Rebecca V; Kalivas, Peter W; Aston-Jones, Gary

    2014-01-01

    Modafinil may be useful for treating stimulant abuse, but the mechanisms by which it acts to do so are unknown. Indeed, a primary effect of modafinil is to inhibit dopamine transport, which typically promotes rather than inhibits motivated behavior. Therefore, we examined the role of nucleus accumbens extracellular glutamate and the group II metabotropic glutamate receptor (mGluR2/3) in modafinil effects. One group of rats was trained to self-administer cocaine for 10 days and extinguished, then given priming injections of cocaine to elicit reinstatement. Modafinil (300 mg/kg, intraperitoneal) inhibited reinstated cocaine seeking (but did not alter extinction responding by itself), and this effect was prevented by pre-treatment with bilateral microinjections of the mGluR2/3 antagonist LY-341495 (LY) into nucleus accumbens core. No reversal of modafinil effects was seen after unilateral accumbens core LY, or bilateral LY in the rostral pole of accumbens. Next, we sought to explore effects of modafinil on extracellular glutamate levels in accumbens after chronic cocaine. Separate rats were administered non-contingent cocaine, and after 3 weeks of withdrawal underwent accumbens microdialysis. Modafinil increased extracellular accumbens glutamate in chronic cocaine, but not chronic saline-pre-treated animals. This increase was prevented by reverse dialysis of cystine-glutamate exchange or voltage-dependent calcium channel antagonists. Voltage-dependent sodium channel blockade partly attenuated the increase in glutamate, but mGluR1 blockade did not. We conclude that modafinil increases extracellular glutamate in nucleus accumbens from glial and neuronal sources in cocaine-exposed rats, which may be important for its mGluR2/3-mediated antirelapse properties. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  7. Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats

    PubMed Central

    Cardinal, Rudolf N; Howes, Nathan J

    2005-01-01

    Background Animals must frequently make choices between alternative courses of action, seeking to maximize the benefit obtained. They must therefore evaluate the magnitude and the likelihood of the available outcomes. Little is known of the neural basis of this process, or what might predispose individuals to be overly conservative or to take risks excessively (avoiding or preferring uncertainty, respectively). The nucleus accumbens core (AcbC) is known to contribute to rats' ability to choose large, delayed rewards over small, immediate rewards; AcbC lesions cause impulsive choice and an impairment in learning with delayed reinforcement. However, it is not known how the AcbC contributes to choice involving probabilistic reinforcement, such as between a large, uncertain reward and a small, certain reward. We examined the effects of excitotoxic lesions of the AcbC on probabilistic choice in rats. Results Rats chose between a single food pellet delivered with certainty (p = 1) and four food pellets delivered with varying degrees of uncertainty (p = 1, 0.5, 0.25, 0.125, and 0.0625) in a discrete-trial task, with the large-reinforcer probability decreasing or increasing across the session. Subjects were trained on this task and then received excitotoxic or sham lesions of the AcbC before being retested. After a transient period during which AcbC-lesioned rats exhibited relative indifference between the two alternatives compared to controls, AcbC-lesioned rats came to exhibit risk-averse choice, choosing the large reinforcer less often than controls when it was uncertain, to the extent that they obtained less food as a result. Rats behaved as if indifferent between a single certain pellet and four pellets at p = 0.32 (sham-operated) or at p = 0.70 (AcbC-lesioned) by the end of testing. When the probabilities did not vary across the session, AcbC-lesioned rats and controls strongly preferred the large reinforcer when it was certain, and strongly preferred the small reinforcer when the large reinforcer was very unlikely (p = 0.0625), with no differences between AcbC-lesioned and sham-operated groups. Conclusion These results support the view that the AcbC contributes to action selection by promoting the choice of uncertain, as well as delayed, reinforcement. PMID:15921529

  8. CARDIOVASCULAR AND THERMOREGULATORY RESPONSE TO ORAL TOLUENE IN THE RAT.

    EPA Science Inventory

    Toluene and other volatile organic compounds have often been shown to affect behavior in animals when given by inhalation, and less effective when given orally. Previous work showed that toluene increased heart rate (HR) and motor activity (MA), and reduced core temperature (Tc) ...

  9. Effect of a pharmacologically induced decrease in core temperature in rats resuscitated from cardiac arrest

    EPA Science Inventory

    Targeted temperature management is recommended to reduce brain damage after resuscitation from cardiac arrest in humans although the optimal target temperature remains controversial. 1 4 The American Heart Association (AHA) and the International Liaison Committee on Resuscitation...

  10. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    PubMed Central

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-01-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view. PMID:27493064

  11. Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.

    PubMed

    Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot

    2016-01-01

    Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.

  12. Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder.

    PubMed

    Anshu, Kumari; Nair, Ajay Kumar; Kumaresan, U D; Kutty, Bindu M; Srinath, Shoba; Laxmi, T Rao

    2017-12-01

    Attention is foundational to efficient perception and optimal goal driven behavior. Intact attentional processing is crucial for the development of social and communication skills. Deficits in attention are therefore likely contributors to the core pathophysiology of autism spectrum disorder (ASD). Clinical evidence in ASD is suggestive of impairments in attention and its control, but the underlying mechanisms remain elusive. We examined sustained, spatially divided attention in a prenatal valproic acid (VPA) model of ASD using the 5-choice serial reaction time task (5-CSRTT). As compared to controls, male and female VPA rats had progressively lower accuracy and higher omissions with increasing attentional demands during 5-CSRTT training, and showed further performance decrements when subjected to parametric task manipulations. It is noteworthy that although VPA exposure induced attentional deficits in both sexes, there were task parameter specific sex differences. Importantly, we did not find evidence of impulsivity or motivational deficits in VPA rats but we did find reduced social preference, as well as sensorimotor deficits that suggest pre-attentional information processing impairments. Importantly, with fixed rules, graded difficulty levels, and more time, VPA rats could be successfully trained on the attentional task. To the best of our knowledge, this is the first study examining attentional functions in a VPA model. Our work underscores the need for studying both sexes in ASD animal models and validates the use of the VPA model in the quest for mechanistic understanding of aberrant attentional functions and for evaluating suitable therapeutic targets. Autism Res 2017, 10: 1929-1944. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. We studied rats prenatally exposed to valproic acid (VPA), an established rodent model of autism. Both male and female VPA rats had a range of attentional impairments with sex-specific characteristics. Importantly, with fixed rules, graded difficulty levels, and more time, VPA rats could be successfully trained on the attentional task. Our work validates the use of the VPA model in the quest for evaluating suitable therapeutic targets for improving attentional performance. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  13. A novel NMDA receptor glycine-site partial agonist, GLYX-13, has therapeutic potential for the treatment of autism.

    PubMed

    Moskal, Joseph R; Burgdorf, Jeffrey; Kroes, Roger A; Brudzynski, Stefan M; Panksepp, Jaak

    2011-10-01

    Deficits in social approach behavior, rough-and-tumble play, and speech abnormalities are core features of autism that can be modeled in laboratory rats. Human twin studies show that autism has a strong genetic component, and a recent review has identified 99 genes that are dysregulated in human autism. Bioinformatic analysis of these 99 genes identified the NMDA receptor complex as a significant interaction hub based on protein-protein interactions. The NMDA receptor glycine site partial agonist d-cycloserine has been shown to treat the core symptom of social withdrawal in autistic children. Here, we show that rats selectively bred for low rates of play-induced pro-social ultrasonic vocalizations (USVs) can be used to model certain core symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations, compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR glycine site partial agonist GLYX-13 rescued the deficits in play-induced pro-social 50-kHz and reduced monotonous USVs. Thus, the NMDA receptor has been shown to play a functional role in autism, and GLYX-13 shows promise for the treatment of autism. We dedicate this paper to Ole Ivar Lovaas (May 8, 1927-August 2, 2010), a pioneer in the field of autism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effect of beta-phenylethylamine on extracellular concentrations of dopamine in the nucleus accumbens and prefrontal cortex.

    PubMed

    Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji

    2009-05-07

    It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.

  15. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    PubMed

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  16. Corticosteroid dependent and independent effects of a cannabinoid agonist on core temperature, motor activity, and prepulse inhibition of the acoustic startle reflex in Wistar rats.

    PubMed

    Avdesh, Avdesh; Cornelisse, Vincent; Martin-Iverson, Mathew Thomas

    2012-03-01

    There are inconsistent reports on the effects of cannabinoid agonists on prepulse inhibition of the startle reflex (PPI) with increases, decreases, and no effects. It has been hypothesized that the conflicting observations may be as a result of modulation of the effects of cannabinoid agonists by the regulation of corticosteroid release. The purpose of the present study was to determine the effects of CP55940, a cannabinoid agonist, and metyrapone, a corticosteroid synthesis inhibitor on core temperature, motor activity, the startle reflex, and PPI. Startle responses were measured in 64 male Wistar rats while varying startling stimulus intensities, analogous to dose-response curves. A stimulus potency measure (ES(50)) and a response measure, the maximal achievable response (R (MAX)) were derived from the stimulus-response curves. CP55940 reduced core temperature and motor activity; these effects were potentiated by metyrapone. CP55940 increased R (MAX) of startle in the absence of a prepulse by a corticosteroid-dependent mechanism but decreased it when metyrapone was administered before CP55940, a corticosteroid-independent mechanism. The inverse of stimulus potency (ES(50)) was not affected by either drug alone but was increased by the combined drugs. CP55940 increased the prepulse motor gating effects and decreased the prepulse sensory gating effects of the same prepulses but only when given after metyrapone. The most parsimonious interpretation of these effects is that CP55940 has some effects through corticosteroid-dependent actions and opposite effects by corticosteroid-independent actions. These two putative sites of actions affect stimulus gating opposite to their effects on response gating.

  17. Thermoregulatory deficits in adult long evans rat offspring exposed perinatally to the antithyroidal drug, propylthiouracil

    EPA Science Inventory

    Developmental exposure to endocrine disrupting toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (Tc) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic-pituitary-thyroid...

  18. An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function.

    PubMed

    Fone, Kevin C F

    2008-11-01

    As the 5-hydroxytryptamine(6) (5-HT(6)) receptor is almost exclusively expressed in the CNS, particularly in areas associated with learning and memory, many studies have examined its role in cognitive function in the rodent, as reviewed herein. Most studies, in healthy adult rats, report that 5-HT(6) receptor antagonists enhance retention of spatial learning in the Morris water maze, improve consolidation in autoshaping tasks and reverse natural forgetting in object recognition. Antagonists appear to facilitate both cholinergic and glutamatergic neurotransmission, reversing scopolamine- and NMDA receptor antagonist-induced memory impairments. Recent reports show that the 5-HT(6) receptor antagonist, PRX-07034, restores the impairment of novel object recognition produced in rats reared in social isolation, a neurodevelopmental model producing behavioural changes similar to several core symptoms seen in schizophrenia. The 5-HT(6) receptor antagonist, Ro 04-6790, modestly improved reversal learning in isolation reared but not group-housed controls in the water maze. Ro 04-6790 also improved novel object discrimination both in adult rats that received chronic intermittent phencyclidine and drug-naïve 18-month-old rats. However, more information on their effect in animal models of schizophrenia and Alzheimer's disease is required. Several selective high-affinity 5-HT(6) receptor agonists developed recently also improve object discrimination and extra-dimensional set-shifting behaviour. Thus both 5-HT(6) receptor agonist and antagonist compounds show promise as pro-cognitive agents in pre-clinical studies but the explanation for their paradoxical analogous effect is currently unclear, and is discussed in this article.

  19. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders.

    PubMed

    Bhandari, Ranjana; Kuhad, Anurag

    2017-02-01

    Neuronal dysfunction caused by neuroinflammation triggered by the stimulation of matrix metalloproteinases and the subsequent release of pro-inflammatory cytokines, as a result of oxidative stress and mitochondrial dysfunction, is one of the probable mechanisms involved in the pathogenesis of autism spectrum disorders (ASD). The aim of the present study was to explore the ameliorative potential of resveratrol on neuroinflammation in the experimental paradigm of neuroinflammatory model of ASD in rats. 1M Propanoic acid (PPA) (4 μl) was infused over 10 min into the anterior portion of the lateral ventricle to induce ASD like symptoms in rats. Resveratrol (5, 10 and 15 mg/kg) was administered starting from the 2nd day of the surgery and continued upto 28th day. Rats were tested for various behavioural paradigms such as social interaction, stereotypy, locomotor activity, anxiety, novelty, depression, spatial learning, memory, repetitive and pervasive behaviour between the 7th day and 28th day. In addition, biochemical tests for oxidative stress, mitochondrial complexes, TNF-α and MMP-9 were also assessed. Treatment with resveratrol for four weeks restored, significantly and dose dependently, all the neurological, sensory, behavioural, biochemical and molecular deficits in PPA induced autistic phenotype in rats. The major finding of the study is that resveratrol restored the core and associated symptoms of autistic phenotype by suppressing oxidative-nitrosative stress, mitochondrial dysfunction, TNF-α and MMP-9 expression in PPA induced ASD in rats. Therefore, resveratrol might serve as an adjunct potential therapeutic agent for amelioration of neurobehavioural and biochemical deficits associated with autism spectrum disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Black pepper constituent piperine: genotoxicity studies in vitro and in vivo.

    PubMed

    Thiel, Anette; Buskens, Carin; Woehrle, Tina; Etheve, Stéphane; Schoenmakers, Ankie; Fehr, Markus; Beilstein, Paul

    2014-04-01

    Piperine is responsible for the hot taste of black pepper. Publications on genotoxicity of piperine are reported: negative Ames Tests and one in vitro micronucleus test (MNT). In vivo tests were mainly negative. In the majority of the data the administered dose levels did not follow the dose selection requirements of regulatory guidelines of having dose levels up to the maximum tolerated dose (MTD). The only oral high dose studies were a positive in vivo MNT in mice in contrast to a negative in vivo chromosome aberration test in rats. Thus, conflicting results in genotoxicity testing are published. To investigate this further, we administered piperine to mice up to the MTD and determined micronuclei-frequency. Piperine reduces core body temperature and interferes with blood cells both being known to result in irrelevant positive in vivo MNTs. Therefore we added mechanistic endpoints: core body temperature, haematology, erythropoietin level, and organ weights. Additionally an in vitro MNT in Chinese hamster ovary cells was performed. Piperine was negative in the in vitro MNT. It caused significant reduction of core body temperature, decrease of white blood cells and spleen weights but no increase in the micronucleus-frequency. Thus, in our studies piperine was not genotoxic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats

    PubMed Central

    Huang, Cao; Tong, Jianbin; Bi, Fangfang; Zhou, Hongxia; Xia, Xu-Gang

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron degeneration, which ultimately leads to paralysis and death. Mutation of TAR DNA binding protein 43 (TDP-43) has been linked to the development of an inherited form of ALS. Existing TDP-43 transgenic animals develop a limited loss of motor neurons and therefore do not faithfully reproduce the core phenotype of ALS. Here, we report the creation of multiple lines of transgenic rats in which expression of ALS-associated mutant human TDP-43 is restricted to either motor neurons or other types of neurons and skeletal muscle and can be switched on and off. All of these rats developed progressive paralysis reminiscent of ALS when the transgene was switched on. Rats expressing mutant TDP-43 in motor neurons alone lost more spinal motor neurons than rats expressing the disease gene in varying neurons and muscle cells, although these rats all developed remarkable denervation atrophy of skeletal muscles. Intriguingly, progression of the disease was halted after transgene expression was switched off; in rats with limited loss of motor neurons, we observed a dramatic recovery of motor function, but in rats with profound loss of motor neurons, we only observed a moderate recovery of motor function. Our finding suggests that mutant TDP-43 in motor neurons is sufficient to promote the onset and progression of ALS and that motor neuron degeneration is partially reversible, at least in mutant TDP-43 transgenic rats. PMID:22156203

  2. Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats.

    PubMed

    Ding, Zeng-Bo; Wu, Ping; Luo, Yi-Xiao; Shi, Hai-Shui; Shen, Hao-Wei; Wang, Shen-Jun; Lu, Lin

    2013-08-01

    Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories. Therefore, we hypothesized that Rac in the NAc and amygdala plays a role in the consolidation and reconsolidation of cocaine-associated cue memory. Conditioned place preference (CPP) and microinjection of Rac inhibitor NSC23766 were used to determine the role of Rac in the NAc and amygdala in the consolidation and reconsolidation of cocaine-associated cue memory in rats. Microinjections of NSC23766 into the NAc core but not shell, basolateral (BLA), or central amygdala (CeA) after each cocaine-conditioning session inhibited the consolidation of cocaine-induced CPP. A microinjection of NSC23766 into the BLA but not CeA, NAc core, or NAc shell immediately after memory reactivation induced by exposure to a previously cocaine-paired context disrupted the reconsolidation of cocaine-induced CPP. The effect of memory disruption on cocaine reconsolidation was specific to reactivated memory, persisted at least 2 weeks, and was not reinstated by a cocaine-priming injection. Our findings indicate that Rac in the NAc core and BLA are required for the consolidation and reconsolidation of cocaine-associated cue memory, respectively.

  3. A PERIPHERAL CHOLINERGIC PATHWAY MODULATES STRESS-INDUCED HYPERTHERMIA IN THE RAT EXPOSED TO AN OPEN FIELD.

    EPA Science Inventory

    Exposure to an open-field is psychologically stressful and leads to an elevation in core temperature (Tc). This increase in Tc associated with open-field is usually referred to as stress-induced hyperthermia (SIH) and can be blocked centrally with cyclooxygenase inhibitors suc...

  4. SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, K-H; Lee, D-W; Choe, B-Y

    2015-06-15

    Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley ratsmore » were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)« less

  5. Nucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward.

    PubMed

    Sackett, Deirdre A; Saddoris, Michael P; Carelli, Regina M

    2017-01-01

    Effective decision-making requires organisms to predict reward values and bias behavior toward the best available option. The mesolimbic dopamine system, including the nucleus accumbens (NAc) shell and core, is involved in this process. Although studies support a role of the shell and core in specific aspects of decision-making (e.g., risk, effort, delay), no studies have directly compared dopamine release dynamics in these subregions to cues exclusively signaling the availability of different reward magnitudes. Here, fast-scan cyclic voltammetry was used to compare rapid dopamine release dynamics in the NAc subregions during a magnitude-based decision-making task. Rats learned that distinct cues signaled the availability of either a small or large reward (one or two sugar pellets), and then were given an opportunity to choose their preferred option. We found that peak dopamine release tracked the more preferred (higher-magnitude) option in both core and shell subregions. Critically, however, overall (i.e., global) dopamine release was significantly higher and longer lasting in the shell and tracked the preferred magnitude during the entire cue period. Further, in the shell (not core), dopamine signaling significantly declined immediately at the lever press for reward but increased during the period of reward consumption. Collectively, the results indicate that although dopamine release in both the core and shell are activated by cues signaling the opportunity to respond for rewards of different magnitudes, dopamine release in the shell plays a differential and unique role in tracking information related to the outcome value of reward.

  6. Ingestion of insoluble dietary fibre increased zinc and iron absorption and restored growth rate and zinc absorption suppressed by dietary phytate in rats.

    PubMed

    Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P

    2001-10-01

    We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre.

  7. Limiting prolonged inflammation during proliferation and remodeling phases of wound healing in streptozotocin-induced diabetic rats supplemented with camel undenatured whey protein.

    PubMed

    Ebaid, Hossam; Ahmed, Osama M; Mahmoud, Ayman M; Ahmed, Rasha R

    2013-07-25

    Impaired diabetic wound healing occurs as a consequence of excessive reactive oxygen species (ROS) and inflammatory cytokine production. We previously found that whey protein (WP) was able to normally regulate the ROS and inflammatory cytokines during the inflammatory phase (first day) in streptozotocin (STZ)-diabetic wound healing. This study was designed to assess the effect of WP on metabolic status, the inflammation and anti-inflammation response, oxidative stress and the antioxidant defense system during different phases of the wound healing process in diabetic rats. WP at a dosage of 100 mg/kg of body weight, dissolved in 1% CMC, was orally administered daily to wounded normal (non-diabetic) and STZ-induced diabetic rats for 8 days starting from the 1st day after wounding. The data revealed that WP enhanced wound closure and was associated with an increase in serum insulin levels in diabetic rats and an alleviation of hyperglycemic and hyperlipidemic states in diabetic animals. The increase in insulin levels as a result of WP administration is associated with a marked multiplication of β-cells in the core of islets of Langerhans. WP induced a reduction in serum TNF-α, IL-1β and IL-6 levels and an increase in IL-10 levels, especially on the 4th day after wounding and treatment. WP also suppressed hepatic lipid peroxidation and stimulated the antioxidant defense system by increasing the level of glutathione and the activity of glutathione-S-transferase, glutathione peroxidase and superoxide dismutase (SOD) in wounded diabetic rats. WP was observed to enhance wound closure by improving the diabetic condition, limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats.

  8. Pre-treatment with 3,4-methylenedioxymethamphetamine (MDMA) causes long-lasting changes in 5-HT2A receptor-mediated glucose utilization in the rat brain.

    PubMed

    Bull, Eleanor J; Porkess, Veronica; Rigby, Michael; Hutson, Peter H; Fone, Kevin C F

    2006-03-01

    The current study examined the long-term effect of brief exposure to 3,4-methylenedioxymethamphetamine (MDMA) on local cerebral glucose utilization (LCGU) in specific brain regions immediately following administration of the 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Wistar rats (post-natal day (PND) 28, n = 24) were administered MDMA (5 mg/kg, i.p.) or saline (1 ml/kg, i.p.) four times daily for 2 consecutive days and core body temperature was recorded. Fifty-five days later and 10 min following injection of DOI (1 mg/kg, i.p.) or saline, LCGU was measured using the [14C]2-deoxyglucose (2-DG) technique. In the 4 hours following the initial injection (PND 28), MDMA-treated rats exhibited significant hyperthermia compared with saline-treated controls (p < 0.05-0.01). Eight weeks later, immediately following DOI challenge, LCGU was significantly elevated (an increase of 47%, p < 0.05) in the nucleus accumbens of MDMA/DOI pretreated rats, compared with that in MDMA/saline pre-treated controls. A similar trend was observed in other areas such as the lateral habenula, somatosensory cortex and hippocampal regions (percentage changes of 27-41%), but these did not reach significance. Blood glucose levels were significantly elevated in both groups of DOI-treated rats (p < 0.05-0.01). Thus, brief exposure of young rats to an MDMA regimen previously shown to cause anxiety-like behaviour and modest serotonergic neurotoxicity (Bull et al., 2004) increased DOI-induced energy metabolism in the nucleus accumbens and tended to increase metabolism in other brain regions, including the hippocampus, consistent with the induction of long-term brain region specific changes in synaptic plasticity.

  9. Does the relief of glucose toxicity act as a mediator in proliferative actions of vanadium on pancreatic islet beta cells in streptozocin diabetic rats?

    PubMed

    Pirmoradi, Leila; Mohammadi, Mohammad Taghi; Safaei, Akbar; Mesbah, Fakhardin; Dehghani, Gholam Abbas

    2014-07-01

    Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Rats were divided into five groups of normal and diabetic. Diabetes was induced with streptozocin (40 mg/kg, i.v.). Normal rats used water (CN) or vanadium (1 mg/ml VOSO4, VTN). Diabetic rats used water (CD), water plus daily neutral protamine Hagedorn insulin injection (80 U/kg, ITD) or vanadium (VTD). Blood samples were taken for blood glucose (BG, mg/dL) and insulin (ng/dL) measurements. After two months, the pancreata of sacrificed rats were prepared for islet staining. Pre-treated normal BG was 88 ± 2, and diabetic BG was 395 ± 9. The final BG in CD, VTD, and ITD was 509 ± 22, 138 ± 14, and 141 ± 14, respectively. Insulin in VTN (0.75 ± 0.01) and VTD (0.78 ± 0.01) was similar, higher than CD (0.51 ± 0.07) but lower than CN (2.51 ± 0.02). VTN islets compared to CN had larger size and denser central core insulin immunoreactivity with plentiful BC. CD and ITD islets were atrophied and had scattered insulin immunoreactivity spots and low BC mass. VTD islets were almost similar to CN. Besides insulin-like activity, vanadium protected pancreatic islet BC, and the relief of glucose toxicity happening with vanadium had a little role in this action.

  10. Does the Relief of Glucose Toxicity Act As a Mediator in Proliferative Actions of Vanadium on Pancreatic Islet Beta Cells in Streptozocin Diabetic Rats?

    PubMed Central

    Pirmoradi, Leila; Mohammadi, Mohammad Taghi; Safaei, Akbar; Mesbah, Fakhardin; Dehghani, Gholam Abbas

    2014-01-01

    Background: Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Methods: Rats were divided into five groups of normal and diabetic. Diabetes was induced with streptozocin (40 mg/kg, i.v.). Normal rats used water (CN) or vanadium (1 mg/ml VOSO4, VTN). Diabetic rats used water (CD), water plus daily neutral protamine Hagedorn insulin injection (80 U/kg, ITD) or vanadium (VTD). Blood samples were taken for blood glucose (BG, mg/dL) and insulin (ng/dL) measurements. After two months, the pancreata of sacrificed rats were prepared for islet staining. Results: Pre-treated normal BG was 88 ± 2, and diabetic BG was 395 ± 9. The final BG in CD, VTD, and ITD was 509 ± 22, 138 ± 14, and 141 ± 14, respectively. Insulin in VTN (0.75 ± 0.01) and VTD (0.78 ± 0.01) was similar, higher than CD (0.51 ± 0.07) but lower than CN (2.51 ± 0.02). VTN islets compared to CN had larger size and denser central core insulin immunoreactivity with plentiful BC. CD and ITD islets were atrophied and had scattered insulin immunoreactivity spots and low BC mass. VTD islets were almost similar to CN. Conclusion: Besides insulin-like activity, vanadium protected pancreatic islet BC, and the relief of glucose toxicity happening with vanadium had a little role in this action. PMID:24842144

  11. High Trait Impulsivity Predicts Food Addiction-Like Behavior in the Rat

    PubMed Central

    Velázquez-Sánchez, Clara; Ferragud, Antonio; Moore, Catherine F; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2014-01-01

    Impulsivity is a behavioral trait frequently seen not only in drug-addicted individuals but also in individuals who pathologically overeat. However, whether impulsivity predates the development of uncontrollable feeding is unknown. In this study, we hypothesized that a high impulsivity trait precedes and confers vulnerability for food addiction-like behavior. For this purpose, we trained ad libitum-fed male Wistar rats in a differential reinforcement of low rates of responding (DRL) task to select Low- and High-impulsive rats. Then, we allowed Low- and High-impulsive rats to self-administer a highly palatable diet (Palatable group) or a regular chow diet (Chow group) in 1-h daily sessions, under fixed ratio (FR) 1, FR3, FR5, and under a progressive ratio (PR) schedules of reinforcement. In addition, we tested the compulsiveness for food in Low- and High-impulsive rats by measuring the food eaten in the aversive, open compartment of a light/dark conflict test. Finally, we measured the expression of the transcription factor ΔFosB in the shell and the core of the nucleus accumbens, which is a marker for neuroadaptive changes following addictive drug exposure. The data we obtained demonstrate that impulsivity is a trait that predicts the development of food addiction-like behaviors, including: (i) excessive intake, (ii) heightened motivation for food, and (iii) compulsive-like eating, when rats are given access to highly palatable food. In addition, we show that the food addiction phenotype in high impulsive subjects is characterized by an increased expression of the transcription factor ΔFosB in the nucleus accumbens shell. These results reveal that impulsivity confers an increased propensity to develop uncontrollable overeating of palatable food. PMID:24776685

  12. High trait impulsivity predicts food addiction-like behavior in the rat.

    PubMed

    Velázquez-Sánchez, Clara; Ferragud, Antonio; Moore, Catherine F; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2014-09-01

    Impulsivity is a behavioral trait frequently seen not only in drug-addicted individuals but also in individuals who pathologically overeat. However, whether impulsivity predates the development of uncontrollable feeding is unknown. In this study, we hypothesized that a high impulsivity trait precedes and confers vulnerability for food addiction-like behavior. For this purpose, we trained ad libitum-fed male Wistar rats in a differential reinforcement of low rates of responding (DRL) task to select Low- and High-impulsive rats. Then, we allowed Low- and High-impulsive rats to self-administer a highly palatable diet (Palatable group) or a regular chow diet (Chow group) in 1-h daily sessions, under fixed ratio (FR) 1, FR3, FR5, and under a progressive ratio (PR) schedules of reinforcement. In addition, we tested the compulsiveness for food in Low- and High-impulsive rats by measuring the food eaten in the aversive, open compartment of a light/dark conflict test. Finally, we measured the expression of the transcription factor ΔFosB in the shell and the core of the nucleus accumbens, which is a marker for neuroadaptive changes following addictive drug exposure. The data we obtained demonstrate that impulsivity is a trait that predicts the development of food addiction-like behaviors, including: (i) excessive intake, (ii) heightened motivation for food, and (iii) compulsive-like eating, when rats are given access to highly palatable food. In addition, we show that the food addiction phenotype in high impulsive subjects is characterized by an increased expression of the transcription factor ΔFosB in the nucleus accumbens shell. These results reveal that impulsivity confers an increased propensity to develop uncontrollable overeating of palatable food.

  13. Limiting prolonged inflammation during proliferation and remodeling phases of wound healing in streptozotocin-induced diabetic rats supplemented with camel undenatured whey protein

    PubMed Central

    2013-01-01

    Background Impaired diabetic wound healing occurs as a consequence of excessive reactive oxygen species (ROS) and inflammatory cytokine production. We previously found that whey protein (WP) was able to normally regulate the ROS and inflammatory cytokines during the inflammatory phase (first day) in streptozotocin (STZ)-diabetic wound healing. This study was designed to assess the effect of WP on metabolic status, the inflammation and anti-inflammation response, oxidative stress and the antioxidant defense system during different phases of the wound healing process in diabetic rats. WP at a dosage of 100 mg/kg of body weight, dissolved in 1% CMC, was orally administered daily to wounded normal (non-diabetic) and STZ-induced diabetic rats for 8 days starting from the 1st day after wounding. Results The data revealed that WP enhanced wound closure and was associated with an increase in serum insulin levels in diabetic rats and an alleviation of hyperglycemic and hyperlipidemic states in diabetic animals. The increase in insulin levels as a result of WP administration is associated with a marked multiplication of β-cells in the core of islets of Langerhans. WP induced a reduction in serum TNF-α, IL-1β and IL-6 levels and an increase in IL-10 levels, especially on the 4th day after wounding and treatment. WP also suppressed hepatic lipid peroxidation and stimulated the antioxidant defense system by increasing the level of glutathione and the activity of glutathione-S-transferase, glutathione peroxidase and superoxide dismutase (SOD) in wounded diabetic rats. Conclusions WP was observed to enhance wound closure by improving the diabetic condition, limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats. PMID:23883360

  14. In vivo imaging of brain infarct with the novel fluorescent probe PSVue 794 in a rat middle cerebral artery occlusion-reperfusion model.

    PubMed

    Chu, Chun; Huang, Xiaofang; Chen, Chiung-Tong; Zhao, Yuanli; Luo, Jin J; Gray, Brian D; Pak, Koon Y; Dun, Nae J

    2013-01-01

    The utility of PSVue 794 (PS794), a near-infrared fluorescent dye conjugated to a bis[zinc (II)-dipicolylamine] (Zn-DPA) targeting moiety, in imaging brain infarct was assessed in a rat middle cerebral artery occlusion-reperfusion model. Following reperfusion, 1 mM PS794 solution was administered intravenously via a tail vein. Fluorescence images were captured between 6 to 72 hours postinjection using a LI-COR Biosciences Pearl Imaging System. Strong fluorescence signals, which may represent the infarct core, were detected in the right hemisphere, ipsilateral to the injured site, and weaker signals in areas surrounding the core. In ischemia-reperfusion rats injected with a control dye not linked to a targeting agent, fluorescence was distributed diffusely throughout the brain. To address the issue of whether Zn-DPA targets apoptotic/necrotic cells, HT22 mouse hippocampal neurons were cultured in either Dulbecco's Modified Eagle's Medium, serum-deprived medium, Hank's Balanced Salt Solution, or L-glutamate (10 mM)-containing medium for up to 33 hours. Cells were then double-labeled with PSVue 480 (Zn-DPA conjugated to fluorescein isothiocyanate) and propidium iodide, which labels necrotic cells. Microscopic examination revealed that PS480 targeted apoptotic and necrotic cells. The result indicates that PS794 is applicable to in vivo imaging of brain infarct and that Zn-DPA selectively targets apoptotic/necrotic cells.

  15. Effect of altered gravity on temperature regulation in mammals: Investigation of gravity effect on temperature regulation in mammals

    NASA Technical Reports Server (NTRS)

    Horwitz, B. A.; Horowitz, J. M.

    1977-01-01

    Male, Long-Evans hooded rats were instrumented for monitoring core and hypothalamic temperatures as well as shivering and nonshivering thermogenesis in response to decreased ambient temperature in order to characterize the nature of the neural controller of temperature in rats at 1G and evaluate chronic implantation techniques for the monitoring of appropriate parameters at hypergravic fields. The thermoregulatory responses of cold-exposed rats at 2G were compared to those at 1G. A computer model was developed to simulate the thermoregulatory system in the rat. Observations at 1 and 2G were extended to acceleration fields of 1.5, 3.0 and 4.0G and the computer model was modified for application to altered gravity conditions. Changes in the acceleration field resulted in inadequate heat generation rather than increased heat loss. Acceleration appears to impair the ability of the neurocontroller to appropriately integrate input signals for body temperature maintenance.

  16. Dysfunction of Iron Metabolism and Iron-Regulatory Proteins in the Rat Hippocampus After Heat Stroke.

    PubMed

    Liu, Jing; Wan, Shengming; Zhang, Yun; Zhang, Shu; Zhang, Hongying; Wu, Shiwen

    2018-05-11

    Heat stroke, the most serious type of heat illness, refers to the presence of hyperthermia (core temperature >40°C), accompanied by central nervous system dysfunction. The hippocampus is a particularly vulnerable region in the early stage of heat stroke. Increasing evidence suggests that dysregulation of brain iron metabolism is involved in many neurodegenerative diseases. However, whether heat stroke causes dysfunction of iron metabolism, as well as iron-regulatory proteins, in the hippocampus remains unknown. The present study was conducted to explore the effects on spatial learning and memory, as well as iron content, ferroportin 1 (Fpn1), and hepcidin expression in the hippocampus after heat stroke in rats. Compared with the Sham group, learning ability and memory declined in rats after heat stroke. Iron concentration was significantly increased in the hippocampus. Expression of Fpn1 protein significantly decreased in the hippocampus, while expression of hepcidin increased. Interestingly, Fpn1 mRNA expression in the hippocampus increased. Our data thereby indicate that heat stroke can decrease learning ability and memory in rats. The mechanism may be related to changes of iron levels, as well as Fpn1 and hepcidin expression, in the hippocampus. Furthermore, hepcidin may rapidly decrease cellular Fpn1 protein levels, even under conditions of iron loading, indicating that hepcidin is a more dominant regulator of Fpn1 than is iron.

  17. Retrospective revaluation and its neural circuit in rats.

    PubMed

    San-Galli, Aurore; Marchand, Alain R; Decorte, Laurence; Di Scala, Georges

    2011-10-01

    Contingency learning is essential for establishing predictive or causal judgements. Retrospective revaluation captures essential aspects of the updating of this knowledge, according to new experience. In the present study, retrospective revaluation and its neural substrate was investigated in a rat conditioned magazine approach. One element of a previously food-reinforced Tone-Light compound stimulus was either further reinforced (inflation) or extinguished (extinction). These treatments affected the predictive value of the alternate stimulus (target), but only when the target was a weakly salient stimulus such as a Light, and the inflation/extinction procedure concerned the more salient element, that is the Tone. As the predictive value of the Light was decreased in comparison with a relevant control group, this revaluation was interpreted as backward blocking, and not unovershadowing. This observation challenges retrospective revaluation models focused on acquisition and prediction error detection, and is better accounted for by retrieval-based associative theories such as the comparator model (Miller and Matzel) [5]. Immunohistochemical detection of the Fos protein after the test phase revealed activation of the orbitofrontal and infralimbic cortices as well as nucleus accumbens core and shell, in rats that exhibited retrospective revaluation. Our results suggest that rats integrate successive experiences at the retrieval stage of retrospective revaluation, and that prefronto-accumbal interactions are involved in this function. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effects of gallic acid on delta - aminolevulinic dehydratase activity and in the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats.

    PubMed

    de Oliveira, Lizielle Souza; Thomé, Gustavo Roberto; Lopes, Thauan Faccin; Reichert, Karine Paula; de Oliveira, Juliana Sorraila; da Silva Pereira, Aline; Baldissareli, Jucimara; da Costa Krewer, Cristina; Morsch, Vera Maria; Chitolina Schetinger, Maria Rosa; Spanevello, Roselia Maria

    2016-12-01

    Diabetes mellitus (DM) is characterised by hyperglycaemia associated with the increase of oxidative stress. Gallic acid has potent antioxidant properties. The aim of this study was to evaluate the effect of gallic acid on the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats. Male rats were divided in groups: control, gallic acid, diabetic and diabetic plus gallic acid. DM was induced in the animals by intraperitoneal injection of streptozotocin (65mg/kg). Gallic acid (30mg/kg) was administered orally for 21days. Our results showed an increase in reactive species levels and lipid peroxidation, and a decrease in activity of the enzymes superoxide dismutase and delta-aminolevulinic acid dehydratase in the liver and kidney of the diabetic animals (P<0.05). Gallic acid treatment showed protective effects in these parameters evaluated, and also prevented a decrease in the activity of catalase and glutathione S-transferase, and vitamin C levels in the liver of diabetic rats. In addition, gallic acid reduced the number of nuclei and increased the area of the core in hepatic tissue, and increased the glomerular area in renal tissue. These results indicate that gallic acid can protect against oxidative stress-induced damage in the diabetic state. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. A novel gallium bisaminothiolate complex as a myocardial perfusion imaging agent

    PubMed Central

    Plössl, Karl; Chandra, Rajesh; Qu, Wenchao; Lieberman, Brian P.; Kung, Mei-Ping; Zhou, Rong; Huang, Bin; Kung, Hank F.

    2010-01-01

    The development of new myocardial perfusion imaging agents for positron emission tomography (PET) may improve the resolution and quantitation of changes in regional myocardial perfusion measurement. It is known that a 68Ge/68Ga generator can provide a convenient source of PET tracers because of the long physical half-life of 68Ge (271 days). A new ligand, 7,8-dithia-16,24-diaza-trispiro[5.2.5.2.5.3] pentacosa-15,24-diene, which consists of a N2S2-chelating core incorporated into three cyclohexyl rings, was prepared. To test feasibility and potential utility, the N2S2 ligand was successfully labeled and tested with 67Ga (half-life=3.26 day; γ=93.3, 184.6 and 300.2 keV), which showed >92% radiochemical purity. The corresponding “cold” Ga complex was synthesized, and its structure containing a pyramidal N2S2 chloride core was elucidated with X-ray crystallography. In vivo biodistribution of this novel 67Ga complex, evaluated in normal rats, exhibited excellent heart uptake and retention, with 2.1% and 0.9% initial dose/organ at 2 and 60 min, respectively, after an intravenous injection. Autoradiography was performed in normal rats and in rats that had the left anterior descending coronary artery permanently ligated surgically. Autoradiography showed an even uptake of activity in the normal heart, and there was a distinctively lower uptake in the damaged side of the surgically modified heart. In conclusion, the new N2S2 ligand was readily prepared and labeled with radioactive 67Ga. Biodistribution in rats revealed high initial heart uptake and relatively high retention reflecting regional myocardial perfusion. PMID:18158947

  20. Adolescent social defeat increases adult amphetamine conditioned place preference and alters D2 dopamine receptor expression

    PubMed Central

    Burke, Andrew R.; Watt, Michael J.; Forster, Gina L.

    2011-01-01

    Components of the brain’s dopaminergic system, such as dopamine receptors, undergo final maturation in adolescence. Exposure to social stress during human adolescence contributes to substance abuse behaviors. We utilized a rat model of adolescent social stress to investigate the neural mechanisms underlying this correlation. Rats exposed to repeated social defeat in adolescence (P35–P39) exhibited increased conditioned place preference (CPP) for amphetamine (1 mg/kg) in adulthood (P70). In contrast, rats experiencing foot-shock during the same developmental period exhibited amphetamine CPP levels similar to non-stressed controls. Our previous experiments suggested adolescent defeat alters dopamine activity in the mesocorticolimbic system. Furthermore, dopamine receptors have been implicated in the expression of amphetamine CPP. Therefore, we hypothesized that alteration to dopamine receptor expression in the mesocorticolimbic system may be associated with to heightened amphetamine CPP of adult rats exposed to adolescence defeat. We measured D1 and D2 dopamine receptor protein content in the medial prefrontal cortex, nucleus accumbens (NAc) and dorsal striatum following either adolescent social defeat or foot-shock stress and then adult amphetamine CPP. In controls, amphetamine CPP training reduced D2 receptor protein content in the NAc core. However, this down-regulation of NAc core D2 receptors was blocked by exposure to social defeat but not foot-shock stress in adolescence. These results suggest social defeat stress in adolescence alters the manner in which later amphetamine exposure down-regulates D2 receptors. Furthermore, persistent alterations to adult D2 receptor expression and amphetamine responses may depend on the type of stress experienced in adolescence. PMID:21933700

  1. Virus-like particles vaccine containing Clonorchis sinensis tegumental protein induces partial protection against Clonorchis sinensis infection.

    PubMed

    Lee, Dong-Hun; Kim, Ah-Ra; Lee, Su-Hwa; Quan, Fu-Shi

    2017-12-29

    Human clonorchiasis, caused by the infection of Clonorchis sinensis, is one of the major health problems in Southeast Asia. However, vaccine efficacy against C. sinensis infection remains largely unknown. In this study, for the first time, we generated virus-like particles (VLPs) vaccine containing the C. sinensis tegumental protein 22.3 kDa (CsTP 22.3) and the influenza matrix protein (M1) as a core protein, and investigated the vaccine efficacy in Sprague-Dawley rats. Intranasal immunization of VLPs vaccine induced C. sinensis-specific IgG, IgG2a and IgG2c in the sera and IgA responses in the feces and intestines. Notably, upon challenge infection with C. sinensis metacercariae, significantly lower adult worm loads (70.2%) were measured in the liver of rats immunized with VLPs, compared to those of naïve rats. Furthermore, VLPs immunization induced antibody secreting cells (ASC) responses and CD4+/CD8+ T cell responses in the spleen. Our results indicated that VLPs vaccine containing C. sinensis CsTP 22.3 kDa provided partial protection against C. sisnensis infection. Thus, VLPs could be a potential vaccine candidate against C. sinensis.

  2. The activity of the acidic phosphoproteins from the 80 S rat liver ribosome.

    PubMed

    MacConnell, W P; Kaplan, N O

    1982-05-25

    The selective removal of acidic phosphoproteins from the 80 S rat liver ribosome was accomplished by successive alcohol extractions at low salt concentration. The resulting core ribosomes lost over 90% of their translation activity and were unable to support the elongation factor 2 GTPase reaction. Both activities were partially restored when the dialyzed extracts were added back to the core ribosome. The binding of labeled adenosine diphosphoribosyl-elongation factor 2 to ribosomes was also affected by extraction and could be reconstituted, although not to the same extent as the GTPase activity associated with elongation factor 2 in the presence of the ribosome. The alcohol extracts of the 80 S ribosome contained mostly phosphoproteins P1 and P2 which could be dephosphorylated and rephosphorylated in solution by alkaline phosphatase and protein kinase, respectively. Dephosphorylation of the P1/P2 mixture in the extracts caused a decrease in the ability of these proteins to reactivate the polyphenylalanine synthesis activity of the core ribosome. However, treatment of the dephosphorylated proteins with the catalytic subunit of 3':5'-cAMP-dependent protein kinase in the presence of ATP reactivated the proteins when compared to the activity of the native extracts. Rabbit antisera raised against the alcohol-extracted proteins were capable of impairing both the polyphenylalanine synthesis reaction and the elongation factor 2-dependent GTPase reaction in the intact ribosomes.

  3. Cocaine sensitization models an anhedonia-like condition in rats.

    PubMed

    Scheggi, Simona; Marchese, Giovanna; Grappi, Silvia; Secci, Maria Elena; De Montis, Maria Graziella; Gambarana, Carla

    2011-04-01

    Anhedonia is a core symptom of depression that also characterizes substance abuse-related mood disorders, in particular those secondary to stimulant abuse. This study investigated the long-lasting condition of cocaine sensitization as an inducing condition for anhedonia in rats. Cortical-mesolimbic dopamine plays a central role in assessing the incentive value of a stimulus and an increased dopamine output in these areas after a novel palatable meal seems to correlate with the ability to acquire an instrumental behaviour aimed at earning it again. This dopaminergic response is associated with consistent modifications in the phosphorylation pattern of some cAMP-dependent protein kinase (PKA) substrates and it is mediated by dopamine D1 receptor stimulation. Thus, since behavioural cocaine sensitization is characterized by tonically increased levels of phospho-Thr75 DARPP-32 that is a potent PKA inhibitor, we hypothesized that cocaine-sensitized rats might reveal deficits in palatable food responding. Indeed, non-food-deprived cocaine-sensitized rats showed no interest in palatable food, no dopaminergic response after a palatable meal in terms of increased dopamine output and DARPP-32 phosphorylation changes, and no ability to acquire a palatable food-sustained instrumental behaviour. Repeated administration of an established antidepressant compound, imipramine, corrected these deficits and reinstated the dopaminergic response in the cortico-mesolimbic areas to control values. Thus, the behavioural modifications observed in cocaine-sensitized rats satisfy some requirements for an experimental model of anhedonia since they are induced by repeated cocaine administration (aetiological validity), they mimic an anhedonia-like symptom (construct validity), and are reversed by the administration of imipramine (predictive validity).

  4. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    PubMed

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  5. Wheel Running Improves REM Sleep and Attenuates Stress-induced Flattening of Diurnal Rhythms in F344 Rats

    PubMed Central

    Thompson, Robert S.; Roller, Rachel; Greenwood, Benjamin N.; Fleshner, Monika

    2016-01-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12hr light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise. PMID:27124542

  6. Fecal microbiota variation across the lifespan of the healthy laboratory rat.

    PubMed

    Flemer, Burkhardt; Gaci, Nadia; Borrel, Guillaume; Sanderson, Ian R; Chaudhary, Prem P; Tottey, William; O'Toole, Paul W; Brugère, Jean-François

    2017-09-03

    Laboratory rats are commonly used in life science research as a model for human biology and disease, but the composition and development of their gut microbiota during life is poorly understood. We determined the fecal microbiota composition of healthy Sprague Dawley laboratory rats from 3 weeks to 2 y of age, kept under controlled environmental and dietary conditions. Additionally, we determined fecal short-chain fatty acid profiles, and we compared the rat fecal microbiota with that of mice and humans. Gut microbiota and to a lesser extent SCFAs profiles separated rats into 3 different clusters according to age: before weaning, first year of life (12- to 26-week-old animals) and second year of life (52- to 104-week-old). A core of 46 bacterial species was present in all rats but its members' relative abundance progressively decreased with age. This was accompanied by an increase of microbiota α-diversity, likely due to the acquisition of environmental microorganisms during the lifespan. Contrastingly, the functional profile of the microbiota across animal species became more similar upon aging. Lastly, the microbiota of rats and mice were most similar to each other but at the same time the microbiota profile of rats was more similar to that of humans than was the microbiota profile of mice. These data offer an explanation as to why germ-free rats are more efficient recipients and retainers of human microbiota than mice. Furthermore, experimental design should take into account dynamic changes in the microbiota of model animals considering that their changing gut microbiota interacts with their physiology.

  7. The biodistribution of gold nanoparticles designed for renal clearance

    NASA Astrophysics Data System (ADS)

    Alric, Christophe; Miladi, Imen; Kryza, David; Taleb, Jacqueline; Lux, François; Bazzi, Rana; Billotey, Claire; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2013-06-01

    Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements (99mTc, 111In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats.Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements (99mTc, 111In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats. Electronic supplementary information (ESI) available: Planar scintigraphy image. See DOI: 10.1039/c3nr00012e

  8. Immunochemical Investigations of Cell Surface Antigens of Anaerobic Bacteria

    DTIC Science & Technology

    1984-10-15

    portion is linked to a carbohydrate core, which contains two unusual sugars (2- keto -3-deoxyoctonate and a heptose), as well as glucose, galactose, and...present in human intestinal contents. However, placing rats on a diet of lean ground beef for a two-week period resulted in alteration of the cecal

  9. THE EFFECTS OF AN ORGANOPHOSPHATE (OP)-CARBAMATE (CB) PESTICIDE MIXTURE ON CORE TEMPERATURE AND MOTOR ACTIVITY IN THE RAT.

    EPA Science Inventory

    Pesticide risk assessment has traditionally been based on the toxicological response to single agents. Dose-additivity has been the default in risk assessment evaluations of pesticides with a common mechanism of action, but there could be supra-additive or infra-additive inter...

  10. Thermoregulatory, Cardiovascular, and Metabolic Responses to Mild Caloric Restriction in the Brown Norway Rat

    EPA Science Inventory

    Caloric restriction (CR) has been demonstrated to prolong the life span of a variety of species. CR-induced reduction in core temperature (Tc) is considered a key mechanism responsible for prolonging life span in rodents; however, little is known on the regulation of CR-induced h...

  11. Rats and Bunnies: Core Kids in an American Mall.

    ERIC Educational Resources Information Center

    Lewis, George H.

    1989-01-01

    Extensively interviewed over a six-week period regular, day-to-day adolescent frequenters (N=23) at a shopping mall. Found that subjects exhibited good deal of alienation from both family and school and used the mall as neutral ground on which to create fragile but mutually supportive community of kind. (Author/NB)

  12. Modulation of ozone toxicity with changes in ambient temperature in the unanesthetized, unrestrained rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkinson, W.P.; Wiester, M.J.

    1991-03-15

    Previous studies from this laboratory have demonstrated an attenuating effect of moderate decreases in body core temperature (T{sub co}) on the toxic response to xenobiotic agents. This study examined an additional modulating effect induced by changes in ambient temperature (T{sub a}). Male Fischer 344 rats were implanted with radiometry transmitters that permitted continuous monitoring of T{sub co}, activity, and electrocardiogram (ECG); heart rate (HR) was derived from the ECG signal. Animals were divided into nine treatment groups and continuously exposed to one of three concentrations of O{sub 3} for 48 hrs while maintained at one of three T{sub a}'s. O{submore » 3} exposure led to hypothermia and bradycardia at all three T{sub a}'s. Decreases in T{sub co} and HR ranged from 1.5C and 75 bpm in the high T{sub a} group to 6.1C and 250 bpm in the low T{sub a} group. The only lethalities occurred in the high O{sub 3}-low T{sub a} group. Following O{sub 3} exposure, rats were anesthetized with urethane, intubated, and their lungs were lavaged with warm saline. The number of cells/ml in lavage fluid increased proportionally with decreases in T{sub a} and increases in O{sub 3} concentration. Cellular debris and the ratio of white cells/alveolar macrophages increased with increases in O{sub 3}. These results demonstrate the profound impact of T{sub a} on T{sub co} and the subsequent toxic response in the conscious, unrestrained rat exposed to O{sub 3}.« less

  13. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain.

    PubMed

    Shnitko, Tatiana A; Taylor, Sarah C; Stringfield, Sierra J; Zandy, Shannon L; Cofresí, Roberto U; Doherty, James M; Lynch, William B; Boettiger, Charlotte A; Gonzales, Rueben A; Robinson, Donita L

    2016-06-01

    Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

  14. Defining the macroscopic and microscopic findings of experimental focal brain ischemia in rats from a forensic scientist's point of view.

    PubMed

    Tatlisumak, Ertugrul; Inan, Sevinc; Asirdizer, Mahmut; Apaydin, Nihal; Hayretdag, Ceyda; Kose, Can; Tekdemir, Ibrahim

    2009-03-01

    Approximately 10% of all deaths in the world occur as a result of stroke. Determination of the time schedule of the pathologic events in a stroke patient is invaluable for a forensic specialist. The aim of this study was to define the schedule of the macroscopic and microscopic changes that occurred in a rat model of permanent focal ischemia for providing useful clues for the evaluation of stroke patients. Male Wistar rats weighing 250 to 350 g were used in this study. Permanent focal brain ischemia was applied by the suture occlusion method. The animals were divided into 7 experimental groups (n = 6) with time schedules including 1.5, 3, 6, 12, 24, 72 hours, and the sham. Brains were harvested at the end of the determined time schedule. Lesions in the frontoparietal cortex were evaluated macroscopically first and later hematoxylin eosin stained sections from the infarct core were investigated microscopically. Macroscopically, enlargement of the ipsilateral hemisphere was mild at 6 hour, apparent at 12 and 24 hours, and mild again at 72 hours. Microscopically, ischemic changes were apparent even at 1.5 hour. Red neurons and infiltration of the parenchyma with neutrophil leukocytes were observed at 12 hours. Pannecrosis and massive leukocyte infiltration were observed at 72 hours. Macroscopic and microscopic findings obtained from a rat model may provide clues for determination of the time-dependent changes due to brain ischemia in human subjects. Finally, the benefits of determination of time course of pathologic changes in the brain for forensic scientists were discussed.

  15. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    PubMed Central

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  16. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders.

    PubMed

    Bhandari, Ranjana; Kuhad, Anurag

    2015-11-15

    Neuroinflammatory response triggered by the stimulation of matrix metalloproteinases plays a pivotal role in the development of autistic phenotype. MMPs stimulate inflammatory cytokines release along with mitochondrial deficits that ultimately lead to neuronal dysfunction and precipitate autistic symptoms. The aim of the present study was to explore the neuropsychopharmacotherapeutic efficacy of curcumin in the experimental paradigm of autism spectrum disorders. 1M propanoic acid (4μl) was infused over 10min into the anterior portion of the caudoputamen to induce autistic behavior in rats. Curcumin (50, 100 and 200mg/kg) was administered per orally starting from 2nd day of surgery and continued up to 28th day. Rats were tested for various neurobehavioural paradigms like social interaction, stereotypy, locomotor activity, anxiety, novelty, depression, spatial learning and memory as well as for repetitive and pervasive behavior. In addition, biochemical tests for oxidative stress, mitochondrial complexes, TNF-α and MMP-9 were also carried out. Intracerebroventricular injection of propanoic acid produced neurological, sensory, behavioral, biochemical and molecular deficits which were assessed as endophenotype of autism spectrum disorders. Regular treatment with curcumin for four weeks significantly and dose dependently restored neurological, behavioral, biochemical and molecular changes associated with autistic phenotype in rats. The major finding of the study is that curcumin restored the core and associated symptoms of autistic phenotype by suppressing oxidative-nitrosative stress, mitochondrial dysfunction, TNF-α and MMP-9 in PPA-induced autism in rats. Therefore, curcumin can be developed as a potential neuropsychopharmacotherapeutic adjunct for autism spectrum disorders (ASD). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Changing patterns of daily rhythmicity across reproductive states in diurnal female Nile grass rats (Arvicanthis niloticus)

    PubMed Central

    Schradera, Jessica A.; Walaszczykb, Erin J.; Smalea, Laura

    2009-01-01

    SCHRADER, J.A., E. J. WALASZCZYK, AND L. SMALE. Changing patterns of daily rhythmicity across reproductive states in diurnal female Nile grass rats (Arvicanthis niloticus). PHYSIOL BEHAV XX(X) XXX-XXX, XXXX. -- A suite of changes in circadian rhythms have been described in nocturnal rodents as females go through pregnancy and lactation, but there is no information on such patterns in diurnal species. As the challenges faced by these two groups of animals are somewhat different, we characterized changes in activity and core body temperature (Tb) in female diurnal Nile grass rats (Arvicanthis niloticus) as they went through a series of reproductive states: virgin, pregnant, pregnant and lactating, lactating only, and post-weaning. The phase of neither rhythm varied, but the amplitude did. Females increased their overall levels of daily activity from early to late pregnancy, regardless of whether they were also lactating. The pattern of activity was less rhythmic during early than mid-lactation, in both non-pregnant and pregnant females, as a consequence of a decrease in daytime relative to nighttime activity. The Tb rhythm amplitude dropped from mid-pregnancy through mid-lactation, and there were rises in Tb troughs during the mid-light and mid-dark phases of the day, though pregnancy and lactation affected Tb at these times in somewhat different ways. This study demonstrates that rhythms in diurnal grass rats change during pregnancy and lactation in different ways than those of nocturnal species that have been studied to date and that the effects of pregnancy and lactation are not additive in any simple way. PMID:19744504

  18. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats.

    PubMed

    Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J

    2002-08-01

    The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.

  19. Decreased social behaviour following 3,4-methylenedioxymethamphetamine (MDMA) is accompanied by changes in 5-HT2A receptor responsivity.

    PubMed

    Bull, Eleanor J; Hutson, Peter H; Fone, Kevin C F

    2004-02-01

    This study examined the involvement of the 5-HT(2A) receptor in the long-term anxiogenic effect of a brief exposure of young rats to 3,4-methylenedioxymethamphetamine (MDMA) using the social interaction and elevated plus-maze paradigms. Wistar rats (post-natal day (PND) 28) received either MDMA (5 mg/kg i.p.) or saline (1 ml/kg i.p.) hourly for 4 h on 2 consecutive days. Locomotor activity was measured for 60 min after the first injection and core body temperature was recorded at regular intervals over 4 h. On PND 84, without further drug administration, social interaction was assessed between treatment-matched rat pairs derived from separate litters. On PND 86, rats received either the 5-HT(2A/2C) receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 1 mg/kg i.p.) or saline and locomotor activity, wet-dog shakes and back muscle contractions were monitored. The change in elevated plus-maze behaviour was assessed following the same injection on PND 87. Acutely, MDMA produced a significant hyperlocomotion and hyperthermia (p<0.01). Following 55 days of abstinence, social interaction was reduced by 27% in MDMA pre-treated rats compared with that in controls (p<0.01). On the elevated plus-maze, pre-treatment with MDMA prevented the anxiogenic effect of DOI. On PND 92, hippocampal, frontal cortical and striatal 5-hydroxytryptamine (5-HT) was significantly reduced in MDMA pre-treated rats by between 16% and 22%, without any accompanying change in [(3)H]paroxetine binding in cortical homogenates. In conclusion, exposure of young rats to repeated MDMA caused serotonin depletion and induced 'anxiety-like' behaviour in the social interaction test accompanied by a long-lasting reduction in specific 5-HT(2A) receptor mediated behaviour.

  20. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat.

    PubMed

    Jou, I M

    2000-08-01

    Acute spinal cord injury was induced by a clip compression model in rats to approximate spinal cord injury encountered in spinal surgery. Spinal somatosensory-evoked potential neuromonitoring was used to study the electrophysiologic change. To compare and correlate changes in evoked potential after acute compression at different core temperatures with postoperative neurologic function and histologic change, to evaluate current intraoperative neuromonitoring warning criteria for neural damage, and to confirm the protective effect of hypothermia in acute spinal cord compression injury by electrophysiologic, histologic, and clinical observation. With the increase in aggressive correction of spinal deformities, and the invasiveness of surgical instruments, the incidence of neurologic complication appears to have increased despite the availability of sensitive intraoperative neuromonitoring techniques designed to alert surgeons to impending neural damage. Many reasons have been given for the frequent failures of neuromonitoring, but the influence of temperature-a very important and frequently encountered factor-on evoked potential has not been well documented. Specifically, decrease in amplitude and elongation of latency seem not to have been sufficiently taken into account when intraoperative neuromonitoring levels were interpreted and when acceptable intraoperative warning criteria were determined. Experimental acute spinal cord injury was induced in rats by clip compression for two different intervals and at three different core temperatures. Spinal somatosensory-evoked potential, elicited by stimulating the median nerve and recorded from the cervical interspinous C2-C3, was monitored immediately before and after compression, and at 15-minute intervals for 1 hour. Spinal somatosensory-evoked potential change is almost parallel to temperature-based amplitude reduction and latency elongation. Significant neurologic damage induced by acute compression of the cervical spinal cord produced a degree of effect on the amplitude of spinal somatosensory-evoked potential in normothermic conditions that differed from the effect in moderately hypothermic conditions. Using the same electromonitoring criteria,moderately hypothermic groups showed a significantly higher false-negative rate statistically (35%) than normothermic groups (10%). Systemic cooling may protect against the detrimental effects of aggressive spinal surgical procedures. There is still not enough published information available to establish statistically and ethically acceptable intraoperative neuromonitoring warning and intervention criteria conclusively. Therefore, an urgent need exists for further investigation. Although a reduction of more than 50% in evoked potential still seems acceptable as an indicator of impending neural function loss, maintenance of more than 50% of baseline evoked potential is no guarantee of normal postoperative neural function, especially at lower than normal temperatures.

  1. The Antiepileptic Drug Levetiracetam Suppresses Non-Convulsive Seizure Activity and Reduces Ischemic Brain Damage in Rats Subjected to Permanent Middle Cerebral Artery Occlusion

    PubMed Central

    Cuomo, Ornella; Rispoli, Vincenzo; Leo, Antonio; Politi, Giovanni Bosco; Vinciguerra, Antonio; di Renzo, Gianfranco; Cataldi, Mauro

    2013-01-01

    The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug. PMID:24236205

  2. Global analysis of the rat and human platelet proteome – the molecular blueprint for illustrating multi-functional platelets and cross-species function evolution

    PubMed Central

    Yu, Yanbao; Leng, Taohua; Yun, Dong; Liu, Na; Yao, Jun; Dai, Ying; Yang, Pengyuan; Chen, Xian

    2013-01-01

    Emerging evidences indicate that blood platelets function in multiple biological processes including immune response, bone metastasis and liver regeneration in addition to their known roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the molecular base of these platelet functions. Here, we set up a high throughput platform for maximum exploration of the rat/human platelet proteome using integrated proteomics technologies, and then applied to identify the largest number of the proteins expressed in both rat and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched with at least two unique peptides were precisely identified, making it the first comprehensive protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-stimulated platelets offered great insights into the biological functions of platelet proteins and therefore confirmed our global profiling data. A comparative proteomic analysis between rat and human platelets was also conducted, which revealed not only a significant similarity, but also an across-species evolutionary link that the orthologous proteins representing ‘core proteome’, and the ‘evolutionary proteome’ is actually a relatively static proteome. PMID:20443191

  3. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles

    PubMed Central

    Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.

    2016-01-01

    The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843

  4. The thermoregulatory effects of noradrenaline, serotonin and carbachol injected into the rat spinal subarachnoid space.

    PubMed

    Lopachin, R M; Rudy, T A

    1982-12-01

    1. We have examined the effects on thermoregulation in the rat of noradrenaline bitartrate (NA), 5-hydroxytryptamine hydrochloride (5-HT) and carbamylcholine chloride (CCh) injected into the lumbar spinal subarachnoid space via a chronic indwelling catheter.2. Intrathecal injections of the monoamines and CCh reproducibly affected thermoregulation, whereas injections of control solutions had no effect.3. Intrathecal injections of NA (0.01-0.30 mumol) produced a dose-dependent hypothermia associated with a decrease in tail skin vasomotor tone. Shivering activity was not depressed during the hypothermia and sometimes increased. Intrathecal administration of the alpha-adrenergic agonist clonidine (0.0175-0.070 mumol) elicited changes in T(c) and T(sk) similar to those induced by intrathecal NA.4. Intrathecal 5-HT (0.030-0.90 mumol) elicited a dose-dependent hyperthermia accompanied by increased tail skin vasomotor tone and increased shivering.5. CCh injected intrathecally (0.001-0.06 mumol) evoked a dose-dependent hyperthermia. During the period when core temperature was rising, tail skin vasomotor tone increased and shivering-like activity was present. Once the maximum core temperature had been reached, tail skin vasodilatation occurred. Vasodilatation persisted until core temperature had returned to normal.6. Intravenous injections of 5-HT (0.30 and 0.90 mumol) or CCh (0.006 and 0.03 mumol) caused no thermoregulatory effect. The effects of these agents injected intrathecally were therefore not due to an action in the periphery.7. Intravenous infusions of NA (0.06 and 0.10 mumol) produced hypothermia and transient tail skin vasodilatation. We suggest that an action at peripheral sites may have contributed to the effects produced by intrathecal injection of this monamine.8. These findings suggest that spinal noradrenergic, serotonergic and cholinergic synapses may be importantly involved in the control of body temperature in the rat. The possible functional roles of these synapses and the putative spinal sites of action of the injected substances are discussed.

  5. Changes in EEG power spectra and behavioral states in rats exposed to the acetylcholinesterase inhibitor chlorpyrifos and muscarinic agonist oxotremorine.

    PubMed

    Timofeeva, O A; Gordon, C J

    2001-03-02

    Organophosphates (OPs) inhibit acetylcholinesterase (AChE) activity causing cholinergic stimulation in the central nervous system (CNS). Cholinergic systems are crucial in electroencephalogram (EEG) generation and regulation of behavior; however, little is known about how OP exposure affects the EEG and behavioral states. We recorded EEG, core temperature and motor activity before and after exposure to the OP pesticide chlorpyrifos (CHP) in adult female rats implanted with telemetric transmitters. The recording and reference electrodes were placed in the occipital and frontal bones, respectively. The animals received CHP, 25 mg/kg, p.o., or oxotremorine (OX), 0.2 mg/kg, s.c. CHP led to a significant increase in delta (0.1-3.5 Hz), slow theta (4-6.5 Hz), gamma 2 (35.5-50 Hz), reduction in fast theta (7-8.5 Hz), alpha/sigma (9-14 Hz), beta 1 (14.5-24 Hz), beta 2 (24.5-30 Hz) and gamma 1 (30.5-35 Hz) powers, slowing of peak frequencies in 1-9 Hz range, hypothermia and decrease in motor activity. The drop in 7-14 Hz was associated with cholinergic suppression of sleep spindles. Changes in behavioral state were characterized by dramatic diminution of sleep postures and exploring activity and prolongation of quiet waking. There was recovery in all bands in spite of continued inhibition of AChE activity [44,45] in rats exposed to CHP. OX-induced EEG and behavioral alterations were similar to CHP except there was no increase in delta and the onset and recovery were more rapid. We did not find a correlation between the EEG and core temperature alterations. Overall, changes in EEG (except in delta band) and behavior following CHP were attributable to muscarinic stimulation. Cortical arousal together with increased quiet waking and decreased sleep after CHP occurred independently from inhibition of motor activity and lowering of core temperature.

  6. Hypothermia blocks beta-catenin degradation after focal ischemia in rats.

    PubMed

    Zhang, Hanfeng; Ren, Chuancheng; Gao, Xuwen; Takahashi, Tetsuya; Sapolsky, Robert M; Steinberg, Gary K; Zhao, Heng

    2008-03-10

    Dephosphorylated and activated glycogen synthase kinase (GSK) 3beta hyperphosphorylates beta-catenin, leading to its ubiquitin-proteosome-mediated degradation. beta-catenin-knockdown increases while beta-catenin overexpression prevents neuronal death in vitro; in addition, protein levels of beta-catenin are reduced in the brain of Alzheimer's patients. However, whether beta-catenin degradation is involved in stroke-induced brain injury is unknown. Here we studied activities of GSK 3beta and beta-catenin, and the protective effect of moderate hypothermia (30 degrees C) on these activities after focal ischemia in rats. The results of Western blot showed that GSK 3beta was dephosphorylated at 5 and 24 h after stroke in the normothermic (37 degrees C) brain; hypothermia augmented GSK 3beta dephosphorylation. Because hypothermia reduces infarction, these results contradict with previous studies showing that GSK 3beta dephosphorylation worsens neuronal death. Nevertheless, hypothermia blocked degradation of total GSK 3beta protein. Corresponding to GSK 3beta activity in normothermic rats, beta-catenin phosphorylation transiently increased at 5 h in both the ischemic penumbra and core, and the total protein level of beta-catenin degraded after normothermic stroke. Hypothermia did not inhibit beta-catenin phosphorylation, but it blocked beta-catenin degradation in the ischemic penumbra. In conclusion, moderate hypothermia can stabilize beta-catenin, which may contribute to the protective effect of moderate hypothermia.

  7. Gamma irradiation or hydrocortisone treatment of rats increases the proteinase activity associated with histones of thymus nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsyi, M.P.; Gaziev, A.I.

    An increase in the activity of histone-associated rat thymus nucleus proteinases specific for histones H2A, H2B and H1 was shown after {gamma} irradiation or hydrocortisone treatment of animals. Histone H1-specific proteinase activity is dependent on DNA and increases in the presence of denatured DNA, whereas proteinases specific for core histones are inhibited in the presence of denatured DNA. The increase in the activity of histone-associated proteinases depends on the radiation dose and the time after irradiation or hydrocortisone injection. In the presence of dithiothreitol and sodium dodecyl sulfate, these proteinases dissociate from histones. It was found by gel electrophoresis thatmore » several proteinases of various molecular masses are closely associated with histones obtained from thymus nuclei of irradiated or hydrocortisone-treated rats. 43 refs., 7 figs.« less

  8. Experimental predictions drawn from a computational model of sign-trackers and goal-trackers.

    PubMed

    Lesaint, Florian; Sigaud, Olivier; Clark, Jeremy J; Flagel, Shelly B; Khamassi, Mehdi

    2015-01-01

    Gaining a better understanding of the biological mechanisms underlying the individual variation observed in response to rewards and reward cues could help to identify and treat individuals more prone to disorders of impulsive control, such as addiction. Variation in response to reward cues is captured in rats undergoing autoshaping experiments where the appearance of a lever precedes food delivery. Although no response is required for food to be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly the lever. The impulsive and often maladaptive characteristics of the latter response are reminiscent of addictive behaviour in humans. In a previous article, we developed a computational model accounting for a set of experimental data regarding sign-trackers and goal-trackers. Here we show new simulations of the model to draw experimental predictions that could help further validate or refute the model. In particular, we apply the model to new experimental protocols such as injecting flupentixol locally into the core of the nucleus accumbens rather than systemically, and lesioning of the core of the nucleus accumbens before or after conditioning. In addition, we discuss the possibility of removing the food magazine during the inter-trial interval. The predictions from this revised model will help us better understand the role of different brain regions in the behaviours expressed by sign-trackers and goal-trackers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe

    NASA Astrophysics Data System (ADS)

    Lo, Leu-Wei; Yang, Chung-Shi

    2005-02-01

    To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.

  10. Circadian changes in core body temperature, metabolic rate and locomotor activity in rats on a high-protein, carbohydrate-free diet.

    PubMed

    Yamaoka, Ippei; Hagi, Mieko; Doi, Masako

    2009-12-01

    Ingestion of a high-protein meal results in body weight loss due to elevated energy expenditure, while also increasing satiety and decreasing subsequent food intake. The present study aimed to clarify the effects of a high-protein, carbohydrate-free diet (HPCFD) on these physiological indicators from a circadian perspective. Rats were given HPCFD or a pair-fed normal protein content diet (20% protein; NPD) for 4 d. The HPCFD group lost more body weight than the NPD group. Oxygen consumption (VO(2)) in the HPCFD group did not change during the experimental period, and tended to be higher during the light (L) phase than in the NPD group. Carbon dioxide production (VCO(2)) during the L phase was higher in the HPCFD group than in the NPD group, where VCO(2) was gradually decreased during the last dark (D) phase and throughout the L phase. The HPCFD group exhibited higher daily core body temperature (T(b)), particularly during the late D phase and throughout the L phase when compared to the NPD group. Locomotor activities during the D phase of the NPD group tended to gradually increase and were thus significantly higher than in the HPCFD group. These results suggest that HPCFD, even if energy intake is insufficient, maintains circadian changes in metabolic rates, resulting in maintenance of elevated daily T(b) and body weight reduction without increasing activity.

  11. Comparison of blood pressure and thermal responses in rats exposed to millimeter wave energy or environmental heat.

    PubMed

    Millenbaugh, Nancy J; Kiel, Johnathan L; Ryan, Kathy L; Blystone, Robert V; Kalns, John E; Brott, Becky J; Cerna, Cesario Z; Lawrence, William S; Soza, Laura L; Mason, Patrick A

    2006-06-01

    Electromagnetic fields at millimeter wave lengths are being developed for commercial and military use at power levels that can cause temperature increases in the skin. Previous work suggests that sustained exposure to millimeter waves causes greater heating of skin, leading to faster induction of circulatory failure than exposure to environmental heat (EH). We tested this hypothesis in three separate experiments by comparing temperature changes in skin, subcutis, and colon, and the time to reach circulatory collapse (mean arterial blood pressure, 20 mmHg) in male Sprague-Dawley rats exposed to the following conditions that produced similar rates of body core heating within each experiment: (1) EH at 42 degrees C, 35 GHz at 75 mW/cm, or 94 GHz at 75 mW/cm under ketamine and xylazine anesthesia; (2) EH at 43 degrees C, 35 GHz at 90 mW/cm, or 94 GHz at 90 mW/cm under ketamine and xylazine anesthesia; and (3) EH at 42 degrees C, 35 GHz at 90 mW/cm, or 94 GHz at 75 mW/cm under isoflurane anesthesia. In all three experiments, the rate and amount of temperature increase at the subcutis and skin surface differed significantly in the rank order of 94 GHz more than 35 GHz more than EH. The time to reach circulatory collapse was significantly less only for rats exposed to 94 GHz at 90 mW/cm, the group with the greatest rate of skin and subcutis heating of all groups in this study, compared with both the 35 GHz at 90 mW/cm and the EH at 43 degrees C groups. These data indicate that body core heating is the major determinant of induction of hemodynamic collapse, and the influence of heating of the skin and subcutis becomes significant only when a certain threshold rate of heating of these tissues is exceeded.

  12. EXPOSURE TO DEXAMETHASONE DURING LATE GESTATION CAUSES FEMALE-SPECIFIC DECREASES IN CORE BODY TEMPERATURE AND PREPRO-THYROTROPIN-RELEASING HORMONE EXPRESSION IN THE PARAVENTRICULAR NUCLEUS OF THE HYPOTHALAMUS IN RATS

    PubMed Central

    Carbone, David L.; Zuloaga, Damian G.; Lacagnina, Anthony F.; McGivern, Robert F.; Handa, Robert J.

    2012-01-01

    Synthetic glucocorticoids (GC) have been used to promote lung development in preterm infants, thereby decreasing respiratory distress syndrome and mortality, yet, concern has arisen from reports that such treatment predisposes individuals to disease in adulthood. Given the variety of preclinical studies that show metabolic and behavioral abnormalities in adulthood following fetal exposure to synthetic GC, we examined the effect of in utero exposure to the synthetic GC, dexamethasone (DEX), on hypothalamic expression of thyrotropin-releasing hormone (TRH) a central neuropeptide involved in mediating behavior and metabolic balance. Pregnant Sprague-Dawley rats were administered 0.4 mg/kg DEX on gestational days 18–21. As adults (postnatal day (PD) 60), the offspring were fitted with temperature sensing transmitters allowing real-time monitoring of core body temperature (CBT) across the 24 hr light dark period. This revealed a significant decrease in CBT throughout the day in prenatal DEX-treated females on estrus and diestrus, but not in male offspring. The reduction in CBT by prenatal DEX exposure was accompanied by a significant decrease in the expression of Trh transcript in the paraventricular nucleus of the hypothalamus (PVN) of female rats at PD 60 and this effect was also present on PD7. There was also a female-specific reduction in the number of preproTRH -immunoreactive (ir) neurons in the PVN, with ppTRH-ir nerve fibers decreases that were present in both male and female offspring. No changes in thyroid hormone (triiodothyronine, T3; thyroxine, T4) were observed in adult offspring, but during development, both males and females (PD14) had lower T3 and T4 levels. These data indicate abnormal expression of TRH results from fetal DEX exposure during late gestation, possibly explaining the decreased CBT observed in the female offspring. PMID:22884559

  13. Body temperatures of selected amphibian and reptile species.

    PubMed

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  14. Olfactory bulbectomy induces rapid and stable changes in basal and stress-induced locomotor activity, heart rate and body temperature responses in the home cage.

    PubMed

    Vinkers, C H; Breuer, M E; Westphal, K G C; Korte, S M; Oosting, R S; Olivier, B; Groenink, L

    2009-03-03

    Olfactory bulbectomy (OBX) in rats causes several behavioral and neurochemical changes. However, the extent and onset of physiological and behavioral changes induced after bulbectomy have been little examined. Male Sprague-Dawley rats received telemetric implants. Before and immediately after OBX surgery, basal and stress-induced heart rate, body temperature, and locomotor activity were measured in the home cage in sham (n=9) and OBX animals (n=11). Stress was induced using novel cage stress or witness stress. Bulbectomized animals differed physiologically and behaviorally from shams. Nocturnally, OBX animals were significantly more active compared with shams, had a higher core body temperature and displayed a decreased heart rate variability. During the light period, OBX animals had a significantly lower basal heart rate and a reduced heart rate variability. These effects became apparent 2-3 days after OBX surgery, and were stable over time. After witness stress, OBX animals showed smaller autonomic (body temperature and heart rate) responses compared with shams, but showed no difference in locomotor responses. In contrast, novel cage stress led to increased locomotor responses in OBX rats compared with sham rats, while no differences were found in autonomic responses. Removal of the olfactory bulbs results in rapid, stable and persistent changes in basal locomotor activity, body temperature, heart rate and heart rate variability. Although the sleep-wake cycle of these parameters is not altered, increases in circadian amplitude are apparent within 3 days after surgery. This indicates that physiological changes in the OBX rat are the immediate result of olfactory bulb removal. Further, stress responsivity in OBX rats depends on stressor intensity. Bulbectomized rats display smaller temperature and heart rate responses to less intense witness stress compared with sham rats. Increased locomotor responses to more intense novel cage stress are present in the home cage as well as the open field. The present study shows that olfactory bulbectomy has rapid and persistent influence on basal and stress-induced physiological parameters.

  15. Chronically administered 3-nitropropionic acid produces selective lesions in the striatum and reduces muscle tonus.

    PubMed

    Shimano, Y; Kumazaki, M; Sakurai, T; Hida, H; Fujimoto, I; Fukuda, A; Nishino, H

    1995-12-01

    Systemically administered 3-nitropropionic acid (3- NPA), irreversible inhibitor of succinate dehydrogenase, produced characteristic bilateral lesions in the striatum (STR) in the rat. Inside the lesion, neutrophils invaded and strong immunoreaction for IgG as well as complement factor C3b/C4b receptor (C3b/C4br) were observed. The core of the lesion lost the immunoreaction for glial fibrillary acidic protein (GFAP) while the marginal area had abundant GFAP-labeled astrocytes around the vessels. Intoxicated rats often became somnolent and were awkward in cooperative movement on a pole climbing test, but they had a quite good memory retention in a passive avoidance learning. Muscle tonus in some of the intoxicated rats became hypotonic with low voltage electromyogram (EMG) activity, especially in lower limbs. In summary, 3-NPA intoxicated rats had selective bilateral lesions in the STR and exhibited disturbances in a cooperative movement owing to the impairment in muscle tonus, thus it would be a useful animal model to deduce the central pathogenesis of Huntington's disease.

  16. Selective enrichment of metal-binding proteins based on magnetic core/shell microspheres functionalized with metal cations.

    PubMed

    Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie

    2015-06-21

    Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.

  17. Interrelationship between 3,5,3′-triiodothyronine and the circadian clock in the rodent heart

    PubMed Central

    Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot

    2017-01-01

    Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally-based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day- (TOD) dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, whether oscillations in T3 sensitivity in the heart occur is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by Real-Time qPCR. Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2, and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g., Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes were interrogated at 3-h intervals over the subsequent 24h-period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed time-of-day-dependent rhythms in cardiac T3 sensitivity, and that T3 alters the circadian clock in the heart. PMID:27661292

  18. Wound Regeneration Deficit in Rats Correlates with Low Morphogenetic Potential and Distinct Transcriptome Profile of Epidermis.

    PubMed

    Guerrero-Juarez, Christian F; Astrowski, Aliaksandr A; Murad, Rabi; Dang, Christina T; Shatrova, Vera O; Astrowskaja, Aksana; Lim, Chae Ho; Ramos, Raul; Wang, Xiaojie; Liu, Yuchen; Lee, Hye-Lim; Pham, Kim T; Hsi, Tsai-Ching; Oh, Ji Won; Crocker, Daniel; Mortazavi, Ali; Ito, Mayumi; Plikus, Maksim V

    2018-06-01

    Large excisional wounds in mice prominently regenerate new hair follicles (HFs) and fat, yet humans are deficient for this regenerative behavior. Currently, wound-induced regeneration remains a clinically desirable, but only partially understood phenomenon. We show that large excisional wounds in rats across seven strains fail to regenerate new HFs. We compared wound transcriptomes between mice and rats at the time of scab detachment, which coincides with the onset of HF regeneration in mice. In both species, wound dermis and epidermis share core dermal and epidermal transcriptional programs, respectively, yet prominent interspecies differences exist. Compared with mice, rat epidermis expresses distinct transcriptional and epigenetic factors, markers of epidermal repair, hyperplasia, and inflammation, and lower levels of WNT signaling effectors and regulators. When recombined on the surface of excisional wounds with vibrissa dermal papillae, partial-thickness skin grafts containing distal pelage HF segments, but not interfollicular epidermis, readily regenerated new vibrissa-like HFs. Together, our findings establish rats as a nonregenerating rodent model for excisional wound healing and suggest that low epidermal competence and associated transcriptional profile may contribute to its regenerative deficiency. Future comparison between rat and mouse may lend further insight into the mechanism of wounding-induced regeneration and causes for its deficit. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues

    PubMed Central

    Aitken, Tara J.; Greenfield, Venuz Y.; Wassum, Kate M.

    2016-01-01

    Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc). This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one’s current need state, such that cues only motivate actions when this is adaptive. But it is unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer (PIT) task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (grape-flavored polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the PIT effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. PMID:26715366

  20. Diurnal Corticosterone Presence and Phase Modulate Clock Gene Expression in the Male Rat Prefrontal Cortex

    PubMed Central

    Chun, Lauren E.; Hinds, Laura R.; Spencer, Robert L.

    2016-01-01

    Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation. PMID:26901093

  1. Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation.

    PubMed

    Chauhan, Nishant Ranjan; Kapoor, Medha; Prabha Singh, Laxmi; Gupta, Rajinder Kumar; Chand Meena, Ramesh; Tulsawani, Rajkumar; Nanda, Sarita; Bala Singh, Shashi

    2017-09-01

    Heat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.5°C and Relative Humidity, RH=30±10%) with real-time measurement of core temperature (Tc) and skin temperature (Ts). Animals were divided into two subgroups: Moderate HS (MHS) (Tc=40°C) and Severe HS (SHS)/Heat stroke (Tc=42°C). Rats with MHS showed an increase in Mean Arterial Pressure (MAP) and Heart Rate (HR) while fall in MAP and rise in HR was observed in rats with SHS. In addition, oxidative stress and an increase in pyknotic neurons were observed in HTH. High levels of Adrenocorticotropic-hormone (ACTH), Epinephrine (EPI), Norepinephrine (NE) and Dopamine (DA) in the systemic circulation and progressive increase in EPI and DA levels in HTH were recorded after the thermal insult. Moreover, a substantial increase in Glutamate (Glu) level was observed in HTH as well as in systemic circulation of heat stroke rats. We found a rise in NE whereas a fall in Serotonin (5-HT) level in HTH at MHS, without perturbing inflammatory mediators. However, rats with SHS exhibited significant elevations in NF-kB, IL-1β, COX2, GFAP and Iba1 protein expression in HTH. In conclusion, the data suggest that SHS induces neuroinflammation in HTH, which is associated with monoamines and Glu imbalances, leading to thermoregulatory disruption. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Pay attention to impulsivity: modelling low attentive and high impulsive subtypes of adult ADHD in the 5-choice continuous performance task (5C-CPT) in female rats.

    PubMed

    Tomlinson, Anneka; Grayson, Ben; Marsh, Samuel; Harte, Michael K; Barnes, Samuel A; Marshall, Kay M; Neill, Joanna C

    2014-08-01

    Varying levels of attention and impulsivity deficits are core features of the three subtypes of adult attention deficit-hyperactivity disorder (ADHD). To date, little is known about the neurobiological correlates of these subtypes. Development of a translational animal model is essential to improve our understanding and improve therapeutic strategies. The 5-choice continuous performance task (5C-CPT) in rats can be used to examine different forms of attention and impulsivity. Adult rats were trained to pre-set 5C-CPT criterion and subsequently separated into subgroups according to baseline levels of sustained attention, vigilance, premature responding and response disinhibition in the 5C-CPT. The behavioural subgroups were selected to represent the different subtypes of adult ADHD. Consequently, effects of the clinically used pharmacotherapies (methylphenidate and atomoxetine) were assessed in the different subgroups. Four subgroups were identified: low-attentive (LA), high-attentive (HA), high-impulsive (HI) and low-impulsive (LI). Methylphenidate and atomoxetine produced differential effects in the subgroups. Methylphenidate increased sustained attention and vigilance in LA animals, and reduced premature responding in HI animals. Atomoxetine also improved sustained attention and vigilance in LA animals, and reduced response disinhibition and premature responding in HI animals. This is the first study using adult rats to demonstrate the translational value of the 5C-CPT to select subgroups of rats, which may be used to model the subtypes observed in adult ADHD. Our findings suggest that this as an important paradigm to increase our understanding of the neurobiological underpinnings of adult ADHD-subtypes and their response to pharmacotherapy. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  3. Drug-induced regulatory overcompensation has motivational consequences: Implications for homeostatic and allostatic models of drug addiction

    PubMed Central

    Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J

    2014-01-01

    Initial administration of 60% nitrous oxide (N2O) at 21°C ambient temperature reduces core temperature (Tc) in rats, but tolerance develops to this hypothermic effect over several administrations. After additional N2O administrations, a hyperthermic overcompensation (sign-reversal) develops such that Tc exceeds control levels during N2O inhalation. This study investigated whether rats would employ behavioral thermoregulation to facilitate, or oppose, a previously acquired hyperthermic overcompensation during N2O administration. To establish a hyperthermic sign-reversal, male Long-Evans rats (N = 12) received 10 3-h administrations of 60% N2O while housed in a gas-tight, live-in, “inactive” thermal gradient (∼21°C). Following the tenth N2O exposure, the thermal gradient was activated (range of 10–37°C), and rats received both a control gas session and a 60% N2O test session in counterbalanced order. Mean Tc during N2O inhalation in the inactive gradient was reliably hypothermic during the first exposure but was reliably hyperthermic by the tenth exposure. When subsequently exposed to 60% N2O in the active gradient, rats selected a cooler Ta, which blunted the hyperthermic sign-reversal and lowered Tc throughout the remainder of the N2O exposure. Thus, autonomic heat production effectors mediating the hyperthermia were opposed by a behavioral effector that promoted increased heat loss via selection of a cooler ambient temperature. These data are compatible with an allostatic model of drug addiction that suggests that dysregulatory overcompensation in the drugged-state may motivate behaviors (e.g., drug taking) that oppose the overcompensation, thereby creating a vicious cycle of escalating drug consumption and recurring dysregulation. PMID:25938126

  4. Segmental neuropathic pain does not develop in male rats with complete spinal transections.

    PubMed

    Hubscher, Charles H; Kaddumi, Ezidin G; Johnson, Richard D

    2008-10-01

    In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. None of the rats developed signs of at-level allodynia (versus 18 of 26 male rats following severe contusion). However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.

  5. Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats

    PubMed Central

    Ravenelle, Rebecca; Santolucito, Hayley B.; Byrnes, Elizabeth M.; Byrnes, John J.; Tiffany Donaldson, S.

    2014-01-01

    Environmental enrichment can modulate mild and chronic stress, responses to anxiogenic stimuli as well as drug vulnerability in a number of animal models. The current study was designed to examine the impact of postnatal environmental enrichment on selectively bred 4th generation high (HAn) and low anxiety (LAn) male rats. After weaning, animals were placed in isolated, social and enriched environments (e.g., toys, wheels, ropes, changed weekly). We measured anxiety-like behavior (ALB) on the elevated plus maze (EPM; trial 1 at PND 46, trial 2 at PND 63), amphetamine (0.5 mg/kg, IP)-induced locomotor behavior, basal and post anxiogenic stimuli changes in (1) plasma corticosterone, (2) blood pressure and (3) core body temperature. Initially, animals showed consistent trait differences on EPM with HAn showing more ALB but after 40 days in select housing, HAn rats reared in an enriched environment (EE) showed less ALB and diminished AMPH-induced activity compared to HAn animals housed in isolated (IE) and social environments (SE). In the physiological tests, animals housed in EE showed elevated adrenocortical responses to forced novel object exposure but decreased body temperature and blood pressure changes after an air puff stressor. All animals reared in EE and SE had elevated BDNF-positive cells in the central amygdala (CeA), CA1 and CA2 hippocampal regions and the caudate putamen, but these differences were most pronounced in HAn rats for CeA, CA1 and CA2. Overall, these findings suggest that environmental enrichment offers benefits for trait anxiety rats including a reduction in behavioral and physiological responses to anxiogenic stimuli and amphetamine sensitivity, and these responses correlate with changes in BDNF expression in the central amygdala, hippocampus and the caudate putamen. PMID:24713371

  6. Preclinical evaluation of 99mTc(CO)3-aspartic-N-monoacetic acid, 99mTc(CO)3(ASMA), a new renal radiotracer with pharmacokinetic properties comparable to 131I-OIH

    PubMed Central

    Lipowska, Malgorzata; Klenc, Jeffrey; Marzilli, Luigi G.; Taylor, Andrew T.

    2014-01-01

    In an ongoing effort to develop a renal tracer with pharmacokinetic properties comparable to PAH and superior to those of both 99mTc-MAG3 and 131I-OIH, we evaluated a new renal tricarbonyl radiotracer based on the aspartic-N-monoacetic acid ligand, 99mTc(CO)3(ASMA). The ASMA ligand features two carboxyl groups and an amine function for the coordination of the {99mTc(CO)3}+ core as well as a dangling carboxylate to facilitate rapid renal clearance. Methods rac-ASMA and L-ASMA were labeled with a 99mTc-tricarbonyl precursor and radiochemical purity of the labeled products was determined by HPLC. Using 131I-OIH as an internal control, we evaluated biodistribution in normal rats with 99mTc(CO)3(ASMA) isomers and in rats with renal pedicle ligation with 99mTc(CO)3(rac-ASMA). Clearance studies were conducted in 4 additional rats. In vitro radiotracer stability was determined in PBS buffer pH 7.4 and in challenge studies with cysteine and histidine. 99mTc(CO)3(ASMA) metabolites in urine were analyzed by HPLC. Results Both 99mTc(CO)3(ASMA) preparations had > 99% radiochemical purity and were stable in PBS buffer pH 7.4 for 24 h. Challenge studies on both revealed no significant displacement of the ligand. In normal rats, % injected dose in urine at 10 and 60 min for both preparations averaged 103% and 106% that of 131I-OIH, respectively. The renal clearances of 99mTc(CO)3(rac-ASMA) and 131I-OIH were comparable (P = 0.48). The tracer was excreted unchanged in the urine, proving its in vivo stability. In pedicle-ligated rats, 99mTc(CO)3(rac-ASMA) had less excretion into the bowel (P < 0.05) and was better retained in the blood (P < 0.05) than 131I-OIH. Conclusion Both 99mTc(CO)3(ASMA) complexes have pharmacokinetic properties in rats comparable to or superior to those of 131I-OIH, and human studies are warranted for their further evaluation. PMID:22717977

  7. Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit.

    PubMed

    Kenkel, W M; Yee, J R; Moore, K; Madularu, D; Kulkarni, P; Gamber, K; Nedelman, M; Ferris, C F

    2016-03-22

    Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.

  8. Inhibition of CaMKII activity in the nucleus accumbens shell blocks the reinstatement of morphine-seeking behavior in rats.

    PubMed

    Liu, Zhuo; Zhang, Jian-Jun; Liu, Xiao-Dong; Yu, Long-Chuan

    2012-06-19

    The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) may be a core component in the common molecular pathways for drug addiction. Moreover, studies using animal models of drug addiction have demonstrated that changing CaMKII activity or expression influences animals' responses to the drugs of abuse. Here, we explored the roles of CaMKII in the nucleus accumbens (NAc) shell in the extinction and reinstatement of morphine-seeking behavior. Rats were trained to obtain intravenous morphine infusions through poking hole on a fixed-ratio one schedule. Selective CaMKII inhibitor myristoylated autocamtide-2-inhibitory peptide (myr-AIP) was injected into the NAc shell of rats after the acquisition of morphine self-administration (SA) or before the reinstatement test. The results demonstrated that injection of myr-AIP after acquisition of morphine SA did not influence morphine-seeking in the following extinction days and the number of days spent for reaching extinction criterion. However, pretreatment with myr-AIP before the reinstatement test blocked the reinstatement of morphine-seeking behavior induced by morphine-priming. Our results strongly indicate that CaMKII activity in the NAc shell is essential to the relapse to morphine-seeking. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Otoconial formation in the fetal rat

    NASA Technical Reports Server (NTRS)

    Salamat, M. S.; Ross, M. D.; Peacor, D. R.

    1980-01-01

    Otoconial formation in the fetal rat is examined by scanning and transmission electron microscopy, and by X-ray elemental analysis. The primitive otoconia appear highly organic, but are trigonal in cross section, indicating that they already possess a three-fold axis of symmetry and a complement of calcite. These otoconia develop into spindle-shaped and, subsequently, dumbbell-shaped units. Transmission electron microscopy of dumbbell-shaped otoconia not exposed to fluids during embedment showed that calcite deposits mimicked the arrangement of the organic material. X-ray elemental analysis demonstrated that calcium was present in lower quantities in the central core than peripherally. It is concluded that organic material is essential to otoconial seeding and directs otoconial growth.

  10. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model.

    PubMed

    Awde, Ali R; Boisgard, Raphaël; Thézé, Benoit; Dubois, Albertine; Zheng, Jinzi; Dollé, Frédéric; Jacobs, Andreas H; Tavitian, Bertrand; Winkeler, Alexandra

    2013-12-01

    On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkylphosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis-resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using (18)F-DPA-714 PET. In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with (18)F-DPA-714 for the time of treatment. A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in (18)F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive microglia/macrophages and glial fibrillary acidic protein-positive astrocytes. Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using (18)F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas.

  11. Cortical spreading depression preconditioning mediates neuroprotection against ischemic stroke by inducing AMP-activated protein kinase-dependent autophagy in a rat cerebral ischemic/reperfusion injury model.

    PubMed

    Shen, Pingping; Hou, Shuai; Zhu, Mingqin; Zhao, Mingming; Ouyang, Yibing; Feng, Jiachun

    2017-03-01

    Cortical spreading depression (CSD), based on its similarities with peri-infarct depolarization, is an ideal model for investigating transformation from the ischemic penumbra to infarct core. However, the underlying mechanisms remain unclear. To our knowledge, this is the first study to use a middle cerebral artery occlusion ischemic-reperfusion (I/R) injury model to determine whether AMP-activated protein kinase (AMPK)-dependent autophagy contributes to the neuroprotection of CSD preconditioning in rat cortex. In this study, we topically applied a pledget soaked in 1 mol/L KCl solution on rat cortex for 2 h to elicite CSD or 1 mol/L NaCl solution as a control. The results demonstrated that CSD preconditioning significantly decreased the infarct volume, neurological deficits and neuronal apoptosis in the cortical penumbra of middle cerebral artery occlusion rats, which was inhibited by the autophagy inhibitor 3-methyladenine (3-MA, 200 nmol). Furthermore, CSD increased the protein levels of the autophagy markers LC3-II, Beclin-1 and the p-AMPK (Thr 172 )/AMPK ratio at 12 h and decreased P62 and p-P70S6K (Thr 389 ). Moreover, the AMPK inhibitor Compound C (20 mg/kg) down-regulated the LC3-II, p-AMPK (Thr 172 )/AMPK and ULK1 levels, up-regulated the P62 and p-P70S6K (Thr 389 ) levels induced by CSD. The neuroprotection of CSD is likely a result of AMPK-mediated autophagy activity and autophagy-induced neuronal cells apoptosis inhibition. These novel findings support a central role for AMPK and autophagy in CSD-induced ischemic tolerance. AMPK-mediated autophagy may represent a new target for stroke. © 2016 International Society for Neurochemistry.

  12. Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications.

    PubMed

    Naseri-Nosar, Mahdi; Salehi, Majid; Hojjati-Emami, Shahriar

    2017-10-01

    The current study aimed to develop a biodegradable three-dimensional drug-loaded scaffold with the core-shell structured fibrils using coaxial wet-electrospinning for neural tissue engineering application. Poly lactic acid was wet-electrospun as the core, whereas cellulose acetate was fabricated into the fibril's shell. The scaffold then was coated with the citalopram-loaded gelatin nanocarriers (CGNs) produced by nanoprecipitation method. Scanning electron microscope observation revealed that the fibrils formed a nonwoven structure with the average diameter of ∼950nm. The particle size measurement by a dynamic light scattering device showed an average diameter of ∼200nm. The porosity measurement via the liquid displacement method showed that the scaffold could not meet the accepted ideal porosity percentage of above 80%, and the measured porosity percentage was ∼60%. The contact angle measurement displayed that the CGN coating made the scaffold highly hydrophilic with a zero degree contact angle. In vitro degradation study in the phosphate buffered saline revealed that the weight of the uncoated scaffold remained relatively constant. However, the CGNs-coated scaffold showed ∼45% weight-loss percentage after 40days. Cytocompatibility evaluation using rat Schwann cells demonstrated that the CGNs-coated scaffold possessed higher cell viability than the uncoated scaffold. Finally, the scaffold was developed into a nerve guidance conduit and surgically implanted in the sciatic nerve defect in Wistar rats. The results of the sciatic functional index, hot plate latency and weight-loss percentage of the wet gastrocnemius muscle, demonstrated that the citalopram-containing scaffold could ameliorate the functional recovery of the sciatic nerve-injured animals which makes it a potential candidate for the neural tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Role of oxotremorine in arginine vasopressin-induced hypothermia and its effects on behavioral thermoregulatory response in rats].

    PubMed

    Shen, Zi-Ling; Yang, Yong-Lu; Sun, Bing; Tang, Yu; Wang, Nian

    2012-03-01

    To investigate the role of oxotremorine in arginine vasopressin (AVP)-induced hypothermia and its effects on the behavioral thermoregulatory response. Core temperature (Tc), brown adipose tissue (BAT) temperature and motor activities were monitored in undisturbed female SD rats using radiotelemetry. The behavioral thermoregulatory response was monitored in rats using radiotelemetric temperature gradient apparatus. Effect of AVP (10 microg/kg) and oxotremorine (0.25 mg/kg) on Tc, motor activities, BAT temperature (T(BAT)), grooming activities and the behavioral thermoregulatory response were observed in rats. Administration of AVP and oxotremorine caused a significant drop in Tc, T(BAT), and an increases in grooming activities, respectively. The hypothermic responses were accompanied with a preference for cooler ambient temperature. Oxotremorine augmented the reduction of Tc, T(BAT), and the elevation of grooming activities resulting from AVP, and lasting a longer time. Administration of oxotremorine followed immediately by AVP injection in rats was also shown to induce a preference for cooler ambient temperature, but there was no significant difference compared with AVP. AVP-induced hypothermia was related with the set point temperature reduction, inhibiton of BAT thermogenesis and an increases in grooming activities. Oxotremorine could participate in peripheral AVP-induced hypothermia by affecting BAT thermogenesis and behavioral thermoregulation.

  14. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex.

    PubMed

    Demyanenko, S V; Panchenko, S N; Uzdensky, A B

    2015-06-01

    Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible cell damage within the infarction core propagates to adjacent tissue and forms a transition zone - the penumbra. Tissue necrosis in the infarction core is too fast (minutes) to be prevented, but much slower penumbral injury (hours) can be limited. We studied the changes in morphology and protein expression profile in penumbra 1 h after local photothrombotic infarction induced by laser irradiation of the cerebral cortex after Bengal Rose administration. Morphological study using standard hematoxylin/eosin staining showed a 3-mm infarct core surrounded by 1.5-2.0 mm penumbra. Morphological changes in the penumbra were lesser and decreased towards its periphery. Antibody microarrays against 224 neuronal and signaling proteins were used for proteomic study. The observed upregulation of penumbra proteins involved in maintaining neurite integrity and guidance (NAV3, MAP1, CRMP2, PMP22); intercellular interactions (N-cadherin); synaptic transmission (glutamate decarboxylase, tryptophan hydroxylase, Munc-18-1, Munc-18-3, and synphilin-1); mitochondria quality control and mitophagy (PINK1 and Parkin); ubiquitin-mediated proteolysis and tissue clearance (UCHL1, PINK1, Parkin, synphilin-1); and signaling proteins (PKBα and ERK5) could be associated with tissue recovery. Downregulation of PKC, PKCβ1/2, and TDP-43 could also reduce tissue injury. These changes in expression of some neuronal proteins were directed mainly to protection and tissue recovery in the penumbra. Some upregulated proteins might serve as markers of protection processes in a penumbra.

  15. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  16. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  17. Individual Differences in Dopamine Efflux in Nucleus Accumbens Shell and Core during Instrumental Learning

    ERIC Educational Resources Information Center

    Cheng, Jingjun; Feenstra, Matthijs G. P.

    2006-01-01

    Combined activation of dopamine D1- and NMDA-glutamate receptors in the nucleus accumbens has been strongly implicated in instrumental learning, the process in which an individual learns that a specific action has a wanted outcome. To assess dopaminergic activity, we presented rats with two sessions (30 trials each) of a one-lever appetitive…

  18. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Fenfen; Zhi, Debo; Luo, Yufeng; Zhang, Jiqian; Nan, Xiang; Zhang, Yunjiao; Zhou, Wei; Qiu, Bensheng; Wen, Longping; Liang, Gaolin

    2016-06-01

    T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future.T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future. Electronic supplementary information (ESI) available: Scheme S1, Fig. S1-S8, and Tables S1, S2. See DOI: 10.1039/c6nr02620f

  19. Measurements of neuron soma size and density in rat dorsal striatum, nucleus accumbens core and nucleus accumbens shell: differences between striatal region and brain hemisphere, but not sex.

    PubMed

    Meitzen, John; Pflepsen, Kelsey R; Stern, Christopher M; Meisel, Robert L; Mermelstein, Paul G

    2011-01-07

    Both hemispheric bias and sex differences exist in striatal-mediated behaviors and pathologies. The extent to which these dimorphisms can be attributed to an underlying neuroanatomical difference is unclear. We therefore quantified neuron soma size and density in the dorsal striatum (CPu) as well as the core (AcbC) and shell (AcbS) subregions of the nucleus accumbens to determine whether these anatomical measurements differ by region, hemisphere, or sex in adult Sprague-Dawley rats. Neuron soma size was larger in the CPu than the AcbC or AcbS. Neuron density was greatest in the AcbS, intermediate in the AcbC, and least dense in the CPu. CPu neuron density was greater in the left in comparison to the right hemisphere. No attribute was sexually dimorphic. These results provide the first evidence that hemispheric bias in the striatum and striatal-mediated behaviors can be attributed to a lateralization in neuronal density within the CPu. In contrast, sexual dimorphisms appear mediated by factors other than gross anatomical differences. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Opposite roles for neuropeptide S in the nucleus accumbens and bed nucleus of the stria terminalis in learned helplessness rats.

    PubMed

    Shirayama, Yukihiko; Ishima, Tamaki; Oda, Yasunori; Okamura, Naoe; Iyo, Masaomi; Hashimoto, Kenji

    2015-09-15

    The role of neuropeptide S (NPS) in depression remains unclear. We examined the antidepressant-like effects of NPS infusions into the shell or core regions of the nucleus accumbens (NAc) and into the bed nucleus of the stria terminalis (BNST) of learned helplessness (LH) rats (an animal model of depression). Infusions of NPS (10 pmol/side) into the NAc shell, but not the NAc core and BNST, exerted antidepressant-like effects in the LH paradigm. Implying that behavioral deficits could be improved in the conditioned avoidance test. Coinfusion of SHA68 (an NPS receptor antagonist, 100 pmol/side) with NPS into the NAc shell blocked these effects. In contrast, NPS receptor antagonism by SHA68 in the BNST induced antidepressant-like effects. Infusions of NPS into the NAc shell or SHA68 into the BNST did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. These results suggest that excitatory and inhibitory actions by the NPS system are integral to the depression in LH animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Microcautery based on zinc metallic nanoparticles photodeposited on the core of an optical fiber

    NASA Astrophysics Data System (ADS)

    Zaca-Morán, P.; Pastelín, C. F.; Morán, C.; Pérez-Sánchez, G. F.; Chávez, F.

    2017-01-01

    The experimental arrangement of a microcautery implemented by an optical fiber with zinc nanoparticles (ZnNPs) photodeposited on its core for the cauterization and coagulation in blood vessels hemostasis processes is presented. The interaction between a laser radiation source and the ZnNPS on the fiber core produces a controllable punctual heat source through the radiation intensity, which is capable of reaching a temperature up to 200 °C covering an area of approximately ten micrometers. By using three-to-four-month-old rats of CIIZ-V strain, we made several microcauterization experimental tests to stop blood flow. The findings show that the microcautery obliterates the smooth muscle of the blood vessels concatenating mutually to tissue in an average time of three seconds, at the same time, the blood elements responsible for the coagulation are thermally activated and thus the bleeding is stopped.

  2. [Identification of early irreversible damage area in a rat model of cerebral ischemia and reperfusion].

    PubMed

    Liu, S; Guo, Y

    2000-02-01

    To observe the early neuron ischemic damage in focal cerebral ischemia/reperfusion with histostaining methods of argyrophil III (AG III), Toludine blue(TB), and H&E, and to make out the 'separating line' between the areas of reversible and irreversible early ischemic damage. Forty-two male Wistar rats were randomly divided into the following groups: pseudo-surgical, blank-control, O2R0(occluded for 2 hours and reperfused for 0 hour), O2R0.5, O2R2, O2R4, O2R24. There were 6 rats in each group. Rats in experimental groups were suffered focal cerebral ischemia/reperfusion through a nylon suture method. After a special processor for tissue manage, the brain were coronal sectioned and stained with H&E, TB, and AG III. The area where dark neurons dwell in (ischemic core) were calculated with image analysis system. The success rate of ischemic model for this experiment is 90%. After being stained with argyrophil III method, normal neurons appear yellow or pale brown, which is hardly distinguished from the pale brown background. The ischemic neuron stained black, and has collapsed body and "corkscrew-like" axon or dentries, which were broken to some extent. The neuropil in the dark neurons dwelt area appears gray or pale black, which is apparently different from the pale brown neighborhood area. The distribution of dark neurons in cortex varies according to different layers, and has a character of columnar form. The dark neurons present as early as 2 hours ischemia without reperfusion with AG III method. AG III stain could selectively display early ischemic neurons, the area dwelt by dark neurons represent early ischemic core. Dark neuron is possibly the irreversibly damaged neuron. Identification of dark neurons could be helpful in the discrimination between early ischemic center and penumbra.

  3. Visualizing the engram: learning stabilizes odor representations in the olfactory network.

    PubMed

    Shakhawat, Amin M D; Gheidi, Ali; Hou, Qinlong; Dhillon, Sandeep K; Marrone, Diano F; Harley, Carolyn W; Yuan, Qi

    2014-11-12

    The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component. Copyright © 2014 the authors 0270-6474/14/3415394-08$15.00/0.

  4. Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.

    PubMed

    Hołuj, Małgorzata; Popik, Piotr; Nikiforuk, Agnieszka

    2015-12-01

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3 mg/kg) and SB-269970 (1 mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30 mg/kg) and haloperidol (0.2 mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10 mg/kg) abolished the prosocial efficacy of amisulpride (3 mg/kg). The coadministration of an inactive dose of SB-269970 (0.2 mg/kg) showed the prosocial effects of inactive doses of amisulpride (1 mg/kg) and sulpiride (20 mg/kg). The anxiolytic chlordiazepoxide (2.5 mg/kg) and the antidepressant fluoxetine (2.5 mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal.

  5. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Qi, Xian Rong; Maitani, Yoshie; Nagai, Tsuneji

    2009-02-01

    The purpose of this study was to characterize the properties in vitro, i.e. release, degradation, hemolytic potential and anticancer activity, and in vivo disposition of all-trans-retinoic acid (ATRA) in rats after administration of ATRA-loaded micelle-like nanoparticles. The amphiphilic block copolymers consisted of a micellar shell-forming mPEG block and a core-forming PLA block. The mPEG-PLA nanoparticles prepared by an acetone volatilization dialysis procedure were identified as having core-shell structure by 1H NMR spectroscopy. Critical association concentration, drug contents, loading efficiency, particle size and ξ potential were evaluated. The release of ATRA from the nanoparticles and the degradation of PLA were found to be mostly associated with the compositions of the nanoparticles. ATRA release was faster at smaller molecular weight of copolymer and lower drug contents. In vitro, the incorporation of ATRA in mPEG-PLA nanoparticles reduced the hemolytic potential of ATRA. Furthermore, anticancer activity of ATRA against HepG2 cell was increased by encapsulation, which showed an enhancement of tumor treatment of ATRA. In vivo, after intravenous injection to rats, the levels of ATRA in the blood stream and the bioavailability were higher for ATRA-loaded mPEG-PLA nanoparticles than those for ATRA solution. In conclusion, the structure of the mPEG-PLA diblock copolymer could be modulated to fit the demand of in vitro and in vivo characterizations of nanoparticles. The mPEG-PLA nanoparticles' loading ATRA have a promising future for injection administration.

  6. Reduction of diffusion barriers in isolated rat islets improves survival, but not insulin secretion or transplantation outcome

    PubMed Central

    Janette Williams, S; Huang, Han-Hung; Kover, Karen; Moore, Wayne; Berkland, Cory; Singh, Milind; Smirnova, Irina V; MacGregor, Ronal

    2010-01-01

    For people with type 1 diabetes and severe hypoglycemic unawareness, islet transplants offer hope for improving the quality of life. However, islet cell death occurs quickly during or after transplantation, requiring large quantities of islets per transplant. The purpose of this study was to determine whether poor function demonstrated in large islets was a result of diffusion barriers and if removing those barriers could improve function and transplantation outcomes. Islets were isolated from male DA rats and measured for cell viability, islet survival, glucose diffusion and insulin secretion. Modeling of diffusion barriers was completed using dynamic partial differential equations for a sphere. Core cell death occurred in 100% of the large islets (diameter >150 µm), resulting in poor survival within 7 days after isolation. In contrast, small islets (diameter <100 µm) exhibited good survival rates in culture (91%). Glucose diffusion into islets was tracked with 2-NBDG; 4.2 µm/min in small islets and 2.8 µm/min in large islets. 2-NBDG never permeated to the core cells of islets larger than 150 µm diameter. Reducing the diffusion barrier in large islets improved their immediate and long-term viability in culture. However, reduction of the diffusion barrier in large islets failed to improve their inferior in vitro insulin secretion compared to small islets, and did not return glucose control to diabetic animals following transplantation. Thus, diffusion barriers lead to low viability and poor survival for large islets, but are not solely responsible for the inferior insulin secretion or poor transplantation outcomes of large versus small islets. PMID:20885858

  7. Pods: a Powder Delivery System for Mars In-situ Organic, Mineralogic and Isotopic Analysis Instruments

    NASA Technical Reports Server (NTRS)

    Saha, C. P.; Bryson, C. E.; Sarrazin, P.; Blake, D. F.

    2005-01-01

    Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.

  8. The effect of chemical carcinogenesis on rat glutathione S-transferase P1 gene transcriptional regulation.

    PubMed

    Liu, D; Liao, M; Zuo, J; Henner, W D; Fan, F

    2001-03-01

    To investigate mechanisms of rat glutathione S-transferase P1 gene (rGSTP1) expression regulation during chemical carcinogenesis. we studied enhancer elements located in the region between -2.5 kb to -2.2 kb. The region was upstream from the start site of transcription and was divided into two major fragments, GPEI and GPEII. The GPEII fragment was further divided into two smaller fragments, GPEII- I and GPEII-2. Using a luciferase reporter system, we identified a strong enhancer of GPEI and a weak enhancer of GPEII in HeLa and a rat hepatoma cell line CBRH79 19 cell. The enhancer of GPEII was located within the GPEII-I region. Chemical stimulation by glycidyl methatylate (GMA) and phorbol 12-o-tetradecanoate 13-acetate (TPA) analysis revealed that induction of rGSTP1 expression was mainly through GPEI. Although H2O2 could enhance GPEII enhancer activity, the enhancement is not mediated by the NF-kappaB factor that bound the NF-kappaB site in GPEII. Using electrophoretic mobility shift assays (EMSA) and the UV cross-linking assays, we found that HeLa and CBRH7919 cells had proteins that specifically bound GPEI core sequence and a 64 kDa protein that interacted with GPEII-1. The cells from normal rat liver did not express the binding proteins. Therefore, the trans-acting factors seem to be closely related to GPEI, GPEII enhancer activities and may play an important role in high expression of rGSTPI gene.

  9. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery.

    PubMed

    Zou, Peng; Stern, Stephan T; Sun, Duxin

    2014-03-01

    Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly (lactic-coglycolicacid) (PLGA). BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 min. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 h. The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs.

  10. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    PubMed

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia

    PubMed Central

    Ewing, Samuel G.; Grace, Anthony A.

    2012-01-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia, but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. PMID:23269227

  12. Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat.

    PubMed

    Harony-Nicolas, Hala; Kay, Maya; Hoffmann, Johann du; Klein, Matthew E; Bozdagi-Gunal, Ozlem; Riad, Mohammed; Daskalakis, Nikolaos P; Sonar, Sankalp; Castillo, Pablo E; Hof, Patrick R; Shapiro, Matthew L; Baxter, Mark G; Wagner, Shlomo; Buxbaum, Joseph D

    2017-01-31

    Mutations in the synaptic gene SHANK3 lead to a neurodevelopmental disorder known as Phelan-McDermid syndrome (PMS). PMS is a relatively common monogenic and highly penetrant cause of autism spectrum disorder (ASD) and intellectual disability (ID), and frequently presents with attention deficits. The underlying neurobiology of PMS is not fully known and pharmacological treatments for core symptoms do not exist. Here, we report the production and characterization of a Shank3 -deficient rat model of PMS, with a genetic alteration similar to a human SHANK3 mutation. We show that Shank3 -deficient rats exhibit impaired long-term social recognition memory and attention, and reduced synaptic plasticity in the hippocampal-medial prefrontal cortex pathway. These deficits were attenuated with oxytocin treatment. The effect of oxytocin on reversing non-social attention deficits is a particularly novel finding, and the results implicate an oxytocinergic contribution in this genetically defined subtype of ASD and ID, suggesting an individualized therapeutic approach for PMS.

  13. ZIO impregnation and cytochemical localization of thiamine pyrophosphatase and acid phosphatase activities in small granule-containing (SGC) cells of rat superior cervical ganglia.

    PubMed

    Chau, Y P; Lu, K S

    1994-10-01

    Cytochemical relationship between Golgi complex and dense-cored granules (DCGs) of small granule-containing (SGC) cells in rat superior cervical ganglia was examined in electron microscopy by zinc-iodide-osmium tetroxide (ZIO) method and by enzyme cytochemistry for thiamine pyrophosphatase (TPPase) and acid phosphatase (ACPase). After ZIO impregnation, all the saccules of Golgi apparatus and some of tubular rough endoplasmic reticulum (rER) were stained. DCGs in periphery of SGC cells were not stained, but varying degrees of dense deposits occurred in the DCGs in vicinity of Golgi trans-saccules. Both TPPase and ACPase activities were localized in one or two stacked layers of saccules on the trans side of the Golgi complex. No reaction products were demonstrated in the DCGs. From these results, we suggest that the DCGs of SGC cells in rat superior cervical ganglia are derived from the Golgi complex, and that lysosomal cleavage of protein contents in the DCGs may occur in the trans Golgi saccules.

  14. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking

    PubMed Central

    Chaudhri, N.; Woods, C. A.; Sahuque, L.L.; Gill, T. M.; Janak, P.H.

    2014-01-01

    Environmental contexts associated with drug use promote craving in humans and drug-seeking in animals. We hypothesized that the basolateral amygdala (BLA) itself, as well as serial connectivity between the basolateral amygdala (BLA) and nucleus accumbens core (NAC core), were required for context-induced renewal of Pavlovian-conditioned alcohol-seeking. Male, Long-Evans rats were trained to discriminate between two conditioned stimuli (CS) - a CS+ that was paired with ethanol (EtOH, 20%, v/v) delivery into a fluid port (0.2 ml/CS+, 3.2 ml/session) and a CS− that was not. Entries into the port during each CS were measured. Next, rats received extinction in a different context where both cues were presented without EtOH. At test, responding to the CS+ and CS− without EtOH was evaluated in the prior training context. Control subjects showed a selective increase in CS+ responding relative to extinction, indicative of renewal. This effect was blocked by pre-test, bilateral inactivation of the BLA using a solution of gamma-amino-butyric-acid receptor agonists (0.1 mM muscimol and 1.0 mM baclofen; M/B; 0.3 µl/side). Renewal was also attenuated following unilateral injections of M/B into the BLA, combined with either M/B, the dopamine D1 receptor antagonist SCH 23390 (0.6 µg/side), or saline infusion in the contralateral NAC core. Hence, unilateral BLA inactivation was sufficient to disrupt renewal, highlighting a critical role for functional activity in the BLA in enabling the reinstatement of alcohol-seeking driven by an alcohol context. PMID:23758059

  15. A novel microsphere with a three-layer structure for duodenum-specific drug delivery.

    PubMed

    Zhu, Xi; Zhou, Dan; Jin, Yun; Song, Yu-pin; Zhang, Zhi-rong; Huang, Yuan

    2011-07-15

    Owing to the quick elimination of drug from duodenum and the depth of Helicobacter pylori (H. pylori) colonized in mucus, antibiotic therapy often fails in the eradication of H. pylori infection for duodenal ulcer. A novel duodenum-specific microsphere (DSM) consisting of three-layer structure was developed to enhance the drug concentration and retention time in duodenal mucus layer. Firstly a core-shell mucoadhesive microsphere was prepared with a novel emulsification/coagulation coating method by introducing drug loaded Eudragit cores into a thiolated chitosan mucoadhesive layer. Then the obtained core-shell mucoadhesive microspheres were further coated with hydroxypropyl methylcellulose acetate maleate as the pH-sensitive layer for the trigger of mucoadhesion and drug release in duodenum. From the fluorescence microscopic and scanning electron microscopic images, the three-layer structure was successfully established. The microspheres exhibited a duodenum-specific trigger performance, good mucoadhesive property and pH-dependent drug release. In vivo study performed in rats demonstrated that DSM exhibited about 3-fold augmentation of AUC and about 5-fold augmentation of C(max) for duodenal mucus drug concentration compared with free drug suspension. These results suggest that the three-layer structure microspheres may provide a promising approach for duodenum-targeting drug delivery system. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Electron microscopic immunocytochemical study of somatostatin neurons in the periventricular nucleus of the rat hypothalamus with special reference to their relationships with homologous neuronal processes.

    PubMed

    Alonso, G; Tapia-Arancibia, L; Assenmacher, I

    1985-10-01

    The neurons containing somatostatin in the rat periventricular nucleus were studied by using a modified electron microscopic immunocytochemical technique that improves both the penetration of immunoreagents into unembedded immunostained tissues and the preservation of ultrastructural morphology. Inside perikarya and dendrites, immunostaining was not only associated with neurosecretory granules but also with ribosomes and saccules of the cis face of the Golgi apparatus. In the axonal profiles found in this region the labeling was observed both on neurosecretory granule cores and on the limiting membrane of small synaptic-like vesicles. Throughout the periventricular nucleus, both non-synaptic and synaptic relationships were shown between labeled neurons. Non-synaptic relationships mainly consisted of direct apposition of the membranes of neighboring neurons by dendrosomatic, somasomatic or dendrodendritic contacts. These labeled perikarya and dendrites were also synaptically contacted by labeled axonal endings containing numerous aggregated synaptic-like vesicles. The physiological significance of the synaptic and non-synaptic relationships between somatostatinergic neurons is discussed in terms of possible synchronization between homologous neurons of the somatostatin neuroendocrine system and control of these neurons by a central ultra-short loop feedback mechanism.

  17. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    PubMed

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  18. Sodium-23 magnetic resonance imaging has potential for improving penumbra detection but not for estimating stroke onset time

    PubMed Central

    Wetterling, Friedrich; Gallagher, Lindsay; Mullin, Jim; Holmes, William M; McCabe, Chris; Macrae, I Mhairi; Fagan, Andrew J

    2015-01-01

    Tissue sodium concentration increases in irreversibly damaged (core) tissue following ischemic stroke and can potentially help to differentiate the core from the adjacent hypoperfused but viable penumbra. To test this, multinuclear hydrogen-1/sodium-23 magnetic resonance imaging (MRI) was used to measure the changing sodium signal and hydrogen-apparent diffusion coefficient (ADC) in the ischemic core and penumbra after rat middle cerebral artery occlusion (MCAO). Penumbra and core were defined from perfusion imaging and histologically defined irreversibly damaged tissue. The sodium signal in the core increased linearly with time, whereas the ADC rapidly decreased by >30% within 20 minutes of stroke onset, with very little change thereafter (0.5–6 hours after MCAO). Previous reports suggest that the time point at which tissue sodium signal starts to rise above normal (onset of elevated tissue sodium, OETS) represents stroke onset time (SOT). However, extrapolating core data back in time resulted in a delay of 72±24 minutes in OETS compared with actual SOT. At the OETS in the core, penumbra sodium signal was significantly decreased (88±6%, P=0.0008), whereas penumbra ADC was not significantly different (92±18%, P=0.2) from contralateral tissue. In conclusion, reduced sodium-MRI signal may serve as a viability marker for penumbra detection and can complement hydrogen ADC and perfusion MRI in the time-independent assessment of tissue fate in acute stroke patients. PMID:25335803

  19. Acquisition and expression of conditioned taste aversion differentially affects extracellular signal regulated kinase and glutamate receptor phosphorylation in rat prefrontal cortex and nucleus accumbens

    PubMed Central

    Marotta, Roberto; Fenu, Sandro; Scheggi, Simona; Vinci, Stefania; Rosas, Michela; Falqui, Andrea; Gambarana, Carla; De Montis, M. Graziella; Acquas, Elio

    2014-01-01

    Conditioned taste aversion (CTA) can be applied to study associative learning and its relevant underpinning molecular mechanisms in discrete brain regions. The present study examined, by immunohistochemistry and immunocytochemistry, the effects of acquisition and expression of lithium-induced CTA on activated Extracellular signal Regulated Kinase (p-ERK) in the prefrontal cortex (PFCx) and nucleus accumbens (Acb) of male Sprague-Dawley rats. The study also examined, by immunoblotting, whether acquisition and expression of lithium-induced CTA resulted in modified levels of phosphorylation of glutamate receptor subunits (NR1 and GluR1) and Thr34- and Thr75-Dopamine-and-cAMP-Regulated PhosphoProtein (DARPP-32). CTA acquisition was associated with an increase of p-ERK-positive neurons and phosphorylated NR1 receptor subunit (p-NR1) in the PFCx, whereas p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels were not changed in this brain region. CTA expression increased the number of p-ERK-positive neurons in the shell (AcbSh) and core (AcbC) but left unmodified p-NR1, p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels. Furthermore, post-embedding immunogold quantitative analysis in AcbSh revealed that CTA expression significantly increased nuclear p-ERK immunostaining as well as p-ERK-labeled axo-spinous contacts. Overall, these results indicate that ERK and NR1, but not GluR1 and DARPP-32, are differentially phosphorylated as a consequence of acquisition and expression of aversive associative learning. Moreover, these results confirm that CTA represents an useful approach to study the molecular basis of associative learning in rats and suggest the involvement of ERK cascade in learning-associated synaptic plasticity. PMID:24847227

  20. Introducing Euro-Glo, a rare earth metal chelate with numerous applications for the fluorescent localization of myelin and amyloid plaques in brain tissue sections.

    PubMed

    Schmued, Larry; Raymick, James

    2017-03-01

    The vast majority of fluorochromes are organic in nature and none of the few existing chelates have been applied as histological tracers for localizing brain anatomy and pathology. In this study we have developed and characterized a Europium chelate with the ability to fluorescently label normal and pathological myelin in control and toxicant-exposed rats, as well as the amyloid plaques in aged AD/Tg mice. This study demonstrates how Euro-Glo can be used for the detailed labeling of both normal myelination in the control rat as well as myelin pathology in the kainic acid exposed rat. In addition, this study demonstrates how E-G will label the shell of amyloid plaques in an AD/Tg mouse model of Alzheimer's disease a red color, while the plaque core appears blue in color. The observed E-G staining pattern is compared with that of well characterized tracers specific for the localization of myelin (Black-Gold II), degenerating neurons (Fluoro-Jade C), A-beta aggregates (Amylo-Glo) and glycolipids (PAS). This study represents the first time a rare earth metal (REM) chelate has been used as a histochemical tracer in the brain. This novel tracer, Euro-Glo (E-G), exhibits numerous advantages over conventional organic fluorophores including high intensity emission, high resistance to fading, compatibility with multiple labeling protocols, high Stoke's shift value and an absence of bleed-through of the signal through other filters. Euro-Glo represents the first fluorescent metal chelate to be used as a histochemical tracer, specifically to localize normal and pathological myelin as well as amyloid plaques. Copyright © 2016. Published by Elsevier B.V.

  1. PLGA nanoparticles for the oral delivery of 5-Fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies.

    PubMed

    Li, XueMing; Xu, YuanLong; Chen, GuoGuang; Wei, Ping; Ping, QiNeng

    2008-01-01

    The objective of the present study was to incorporate the hydrophilic anti-cancer drug 5-Fluorouracil(5-FU) into poly(lactide-co-glycolide) (PLGA) nanoparticles(NP) to improve the oral bioavailability. Owing to the high solubility of 5-FU in basic water, the water-in-oil-in-water (w/o/w) emulsification process has been chosen as one of the most appropriate method for the encapsulation of 5-FU, and the ammonia solution was used as the inner aqueous phase solvent to increase the solubility of 5-FU. In order to reach submicron size as well as increasing the grade of monodispersity compared to previous preparation techniques, we prepared 5-FU loaded PLGA-NP by a high-pressure emulsification-solvent evaporation process. The PLGA-NPs were characterized with respect to their morphology, particle size, size distribution, 5-FU encapsulation efficiency, in vitro and in vivo studies in rats. In vitro release of 5-FU from nanoparticles appeared to have two components with an initial rapid release due to the surface associated drug and followed by a slower exponential release of 5-FU, which was dissolved in the core. The in vivo research was studied in male Sprague-Dawley rats after an oral 5-FU dose of 45 mg/kg. Single oral administration of 5-FU loaded PLGA-NP to rats produced bioavailability, which was statistically higher than 5-FU solution as negative control. And the MRT (mean residence time) of 5-FU loaded PLGA-NP was significantly (P < 0.05) modified. Thus, it is possible to design a controlled drug delivery system for oral 5-FU delivery, improving therapy efficiency by possible reduction of time intervals between peroral administrations and reduction of local gastrointestinal side effects.

  2. Modulatory effects of Ampicillin/Sulbactam on glial glutamate transporters and metabotropic glutamate receptor 1 as well as reinstatement to cocaine-seeking behavior.

    PubMed

    Hammad, Alaa M; Alasmari, Fawaz; Althobaiti, Yusuf S; Sari, Youssef

    2017-08-14

    Glutamatergic system has an important role in cocaine-seeking behavior. Studies have reported that chronic exposure to cocaine induces downregulation of glutamate transporter-1 (GLT-1) and cystine/glutamate exchanger (xCT) in the central reward brain regions. Ceftriaxone, a β-lactam antibiotic, restored GLT-1 expression and consequently reduced cue-induced reinstatement of cocaine-seeking behavior. In this study, we investigated the reinstatement to cocaine (20mg/kg, i.p.) seeking behavior using a conditioned place preference (CPP) paradigm in male alcohol-preferring (P) rats. In addition, we investigated the effects of Ampicillin/Sulbactam (AMP/SUL) (200mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement. We also investigated the effects of AMP/SUL on the expression of glial glutamate transporters and metabotropic glutamate receptor 1 (mGluR1) in the nucleus accumbens (NAc) core and shell and the dorsomedial prefrontal cortex (dmPFC). We found that AMP/SUL treatment reduced cocaine-triggered reinstatement. This effect was associated with a decrease in locomotor activity. Moreover, GLT-1 and xCT were downregulated in the NAc core and shell, but not in the dmPFC, following cocaine-primed reinstatement. However, cocaine exposure increased the expression of mGluR1 in the NAc core, but not in the NAc shell or dmPFC. Importantly, AMP/SUL treatment normalized GLT-1 and xCT expression in the NAc core and shell; however, the drug normalized mGluR1 expression in the NAc core only. Additionally, AMP/SUL increased the expression of GLT-1 and xCT in the dmPFC as compared to the water naïve group. These findings demonstrated that glial glutamate transporters and mGluR1 in the mesocorticolimbic area could be potential therapeutic targets for the attenuation of reinstatement to cocaine-seeking behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cellular activation in limbic brain systems during social play behaviour in rats.

    PubMed

    van Kerkhof, Linda W M; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J M J

    2014-07-01

    Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-Fos as a marker. After a session of social play behaviour, pronounced increases in c-Fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organized in this network, as indicated by play-specific correlations in c-Fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organized neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats.

  4. Tolerance to 3,4-Methylenedioxymethamphetamine (MDMA) in Rats Exposed to Single High-Dose Binges

    PubMed Central

    Baumann, Michael H.; Clark, Robert D.; Franken, Frederick H.; Rutter, John J.; Rothman, Richard B.

    2008-01-01

    3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy) stimulates the transporter-mediated release of monoamines, including serotonin (5-HT). High-dose exposure to MDMA causes persistent 5-HT deficits (e.g., depletion of brain 5-HT) in animals, yet the functional and clinical relevance of such deficits are poorly defined. Here we examine functional consequences of MDMA-induced 5-HT depletions in rats. Male rats received binges of 3 ip injections of MDMA or saline, one injection every 2 h; MDMA was given at a threshold pharmacological dose (1.5 mg/kg × 3, low dose) or at a 5-fold higher amount (7.5 mg/kg × 3, high dose). One week later, jugular catheters and intracerebral guide cannulae were implanted. Two weeks after binges, rats received acute iv challenge injections of 1 and 3 mg/kg MDMA. Neuroendocrine effects evoked by iv MDMA (prolactin and corticosterone secretion) were assessed via serial blood sampling, while neurochemical effects (5-HT and dopamine release) were assessed via microdialysis in brain. MDMA binges elevated core temperatures only in the high-dose group, with these same rats exhibiting ~50% loss of forebrain 5-HT two weeks later. Prior exposure to MDMA did not alter baseline plasma hormones or dialysate monoamines, and effects of iv MDMA were similar in saline and low-dose groups. By contrast, rats pretreated with high-dose MDMA displayed significant reductions in evoked hormone secretion and 5-HT release when challenged with iv MDMA. As tolerance developed only in rats exposed to high-dose binges, hyperthermia and 5-HT depletion are implicated in this phenomenon. Our results suggest that MDMA tolerance in humans may reflect 5-HT deficits which could contribute to further dose escalation. PMID:18313226

  5. MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness.

    PubMed

    Smalheiser, Neil R; Lugli, Giovanni; Rizavi, Hooriyah S; Zhang, Hui; Torvik, Vetle I; Pandey, Ghanshyam N; Davis, John M; Dwivedi, Yogesh

    2011-11-01

    MicroRNA (miRNA) expression was measured within frontal cortex of male Holtzman rats subjected to repeated inescapable shocks at days 1 and 7, tested for learned helplessness (LH) at days 2 and 8, and sacrificed at day 15. We compared rats that did vs. did not exhibit LH, as well as rats that were placed in the apparatus and tested for avoidance but not given shocks (tested controls, TC). Non-learned helpless (NLH) rats showed a robust adaptive miRNA response to inescapable shock whereas LH rats showed a markedly blunted response. One set of 12 miRNAs showed particularly large, significant down-regulation in NLH rats relative to tested controls (mir-96, 141, 182, 183, 183*, 298, 200a, 200a*, 200b, 200b*, 200c, 429). These were encoded at a few shared polycistronic loci, suggesting that the down-regulation was coordinately controlled at the level of transcription. Most of these miRNAs are enriched in synaptic fractions. Moreover, almost all of these share 5'-seed motifs with other members of the same set, suggesting that they will hit similar or overlapping sets of target mRNAs. Finally, half of this set is predicted to hit Creb1 as a target. We also identified a core miRNA co-expression module consisting of 36 miRNAs that are highly correlated with each other across individuals of the LH group (but not in the NLH or TC groups). Thus, miRNAs participate in the alterations of gene expression networks that underlie the normal (NLH) as well as aberrant (LH) response to repeated shocks.

  6. Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats.

    PubMed

    Ciepluch, Karol; Ziemba, Barbara; Janaszewska, Anna; Appelhans, Dietmar; Klajnert, Barbara; Bryszewska, Maria; Fogel, Wiesława Agnieszka

    2012-09-01

    Biogenic amines and polyamines participate in all vital organism functions, their levels being important function determinants. Studies were performed to check whether repeated administration of poly(propylene imine) (PPI) dendrimers, synthetic macromolecules with diaminobutane core, and peripheral primary amine groups, may influence the endogenous level of amines, as represented by the two of them: spermidine, a natural derivative of diaminobutane, and histamine. The experiment was carried out on Wistar rats. Fourth generation PPI dendrimer, as well as maltotriose-modified fourth generation PPI dendrimers with (a) cationic open sugar shell and (b) neutral dense sugar shell that possess a higher biocompatibility, was used. Applying the combination of column chromatography on Cellex P and spectrofluorimetric assays of o-phthaldialdehyde, the final amine condensation products were employed to analyze tissue spermidine and histamine outside the central nervous system. Furthermore, radioenzymatic assay was used to measure histamine levels in the brain. The obtained results indicate that in some tissues, the endogenous concentrations of histamine and spermidine may be affected by dendrimers depending on their dose and type of dendrimers.

  7. The choroid plexus harbors a circadian oscillator modulated by estrogens.

    PubMed

    Quintela, Telma; Albuquerque, Tânia; Lundkvist, Gabriella; Carmine Belin, Andrea; Talhada, Daniela; Gonçalves, Isabel; Carro, Eva; Santos, Cecília R A

    2018-02-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is considered the master circadian oscillator in mammals. However, extra-SCN structures in the brain also display daily rhythms. Recently, we have demonstrated that the choroid plexus (CP) expresses core clock genes that are subjected to circadian regulation in a sex-dependent manner. By using CP explants cultured from female knock-in mice carrying the Period-luciferase transgene, we show that CP exhibits endogenous circadian rhythms of PERIOD2::LUCIFERASE expression. Furthermore, we demonstrate that estrogen declines following ovariectomy modulates the daily rhythm expression of Bmal1, Per1 and Per2 in female rat CP, corroborating data obtained in experiments where rat CP epithelial cell (CPEC) cultures were incubated with 17β-estradiol (E2). The molecular mechanism underlying these effects was also investigated, and we provide evidence that the estrogen receptor (ER) mediates the response of clock genes to E2. In conclusion, our study proves that the CP harbors a circadian oscillator that is modulated by estrogens and demonstrates that E2 regulation occurs through an estrogen-receptor-dependent mechanism.

  8. Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials.

    PubMed

    Jiang, Xiumei; Wang, Liming; Ji, Yinglu; Tang, Jinglong; Tian, Xin; Cao, Mingjing; Li, Jingxuan; Bi, Shuying; Wu, Xiaochun; Chen, Chunying; Yin, Jun-Jie

    2017-03-01

    As a widely used nanomaterial in daily life, silver nanomaterials may cause great concern to female reproductive system as they are found to penetrate the blood-placental barrier and gain access to the ovary. However, it is largely unknown about how silver nanomaterials influence ovarian physiology and functions such as hormone production. This study performs in vitro toxicology study of silver nanomaterials, focusing especially on cytotoxicity and steroidogenesis and explores their underlying mechanisms. This study exposes primary rat granulosa cells to gold nanorod core/silver shell nanostructures (Au@Ag NRs), and compares outcomes with cells exposed to gold nanorods. The Au@Ag NRs generate more reactive oxygen species and reduce mitochondrial membrane potential and less production of adenosine triphosphate. Au@Ag NRs promote steroidogenesis, including progesterone and estradiol, in a time- and dose-dependent manner. Chemical reactivity and transformation of Au@Ag NRs are then studied by electron spin resonance spectroscopy and X-ray absorption near edge structure, which analyze the generation of free radical and intracellular silver species. Results suggest that both particle-specific activity and intracellular silver ion release of Au@Ag NR contribute to the toxic response of granulosa cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance.

    PubMed

    Hayata, Hiroki; Miyazaki, Hiroaki; Niisato, Naomi; Yokoyama, Noriko; Marunaka, Yoshinori

    2014-02-28

    Insulin resistance in the skeletal muscle is manifested by diminished insulin-stimulated glucose uptake and is a core factor in the pathogenesis of type 2 diabetes mellitus (DM), but the mechanism causing insulin resistance is still unknown. Our recent study has shown that pH of interstitial fluids was lowered in early developmental stage of insulin resistance in OLETF rats, a model of type 2 DM. Therefore, in the present study, we confirmed effects of the extracellular pH on the insulin signaling pathway in a rat skeletal muscle-derived cell line, L6 cell. The phosphorylation level (activation) of the insulin receptor was significantly diminished in low pH media. The phosphorylation level of Akt, which is a downstream target of the insulin signaling pathway, also decreased in low pH media. Moreover, the insulin binding to its receptor was reduced by lowering extracellular pH, while the expression of insulin receptors on the plasma membrane was not affected by the extracellular pH. Finally, insulin-stimulated 2-deoxyglucose uptake in L6 cells was diminished in low pH media. Our present study suggests that lowered extracellular pH conditions may produce the pathogenesis of insulin resistance in skeletal muscle cells. Copyright © 2014. Published by Elsevier Inc.

  10. Acute central effects of alarin on the regulation on energy homeostasis.

    PubMed

    Mikó, Alexandra; Füredi, Nóra; Tenk, Judit; Rostás, Ildikó; Soós, Szilvia; Solymár, Margit; Székely, Miklós; Balaskó, Márta; Brunner, Susanne M; Kofler, Barbara; Pétervári, Erika

    2017-08-01

    Hypothalamic neuropeptides influence the main components of energy balance: metabolic rate, food intake, body weight as well as body temperature, by exerting either an overall anabolic or catabolic effect. The contribution of alarin, the most recently discovered member of the galanin peptide family to the regulation of energy metabolism has been suggested. Our aim was to analyze the complex thermoregulatory and food intake-related effects of alarin in rats. Adult male Wistar rats received different doses of alarin (0.3; 1; 3 and 15μg corresponding approximately to 0.1, 0.33, 1, and 5 nmol, respectively) intracerebroventricularly. Regarding thermoregulatory analysis, oxygen consumption (indicating metabolic rate), core temperature and heat loss (assessed by tail skin temperature) were recorded in an Oxymax indirect calorimeter system complemented with thermocouples and Benchtop thermometer. In order to investigate potential prostaglandin-mediated mechanisms of the hyperthermic effect of alarin, effects of intraperitoneally applied non-selective (indomethacin, 2mg/kg) or selective cyclooxygenase inhibitor (COX-2 inhibitor meloxicam, 1; 2mg/kg) were tested. Effects of alarin on daytime and nighttime spontaneous food intake, as well as, 24-h fasting-induced re-feeding were recorded in an automated FeedScale system. Alarin increased oxygen consumption with simultaneous suppression of heat loss leading to a slow coordinated rise in core temperature. Both applied COX-inhibitors suppressed this action. Alarin failed to induce daytime food intake, but suppressed spontaneous nighttime and also fasting-induced re-feeding food intake. Alarin appears to elicit a slow anorexigenic and prostaglandin-mediated, fever-like hyperthermic response in rats. Such a combination would characterize a catabolic mediator. The potential involvement of alarin in sickness behavior may be assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Auditory Responses and Stimulus-Specific Adaptation in Rat Auditory Cortex are Preserved Across NREM and REM Sleep

    PubMed Central

    Nir, Yuval; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Banks, Matthew I.; Tononi, Giulio

    2015-01-01

    Sleep entails a disconnection from the external environment. By and large, sensory stimuli do not trigger behavioral responses and are not consciously perceived as they usually are in wakefulness. Traditionally, sleep disconnection was ascribed to a thalamic “gate,” which would prevent signal propagation along ascending sensory pathways to primary cortical areas. Here, we compared single-unit and LFP responses in core auditory cortex as freely moving rats spontaneously switched between wakefulness and sleep states. Despite robust differences in baseline neuronal activity, both the selectivity and the magnitude of auditory-evoked responses were comparable across wakefulness, Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep (pairwise differences <8% between states). The processing of deviant tones was also compared in sleep and wakefulness using an oddball paradigm. Robust stimulus-specific adaptation (SSA) was observed following the onset of repetitive tones, and the strength of SSA effects (13–20%) was comparable across vigilance states. Thus, responses in core auditory cortex are preserved across sleep states, suggesting that evoked activity in primary sensory cortices is driven by external physical stimuli with little modulation by vigilance state. We suggest that sensory disconnection during sleep occurs at a stage later than primary sensory areas. PMID:24323498

  12. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics.

    PubMed

    Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A

    2013-08-01

    Novel casein (CAS)-based micelles loaded with the poorly soluble anti-cancer drug, flutamide (FLT), were successfully developed in a powdered form via spray-drying technique. Genipin (GNP) was used to crosslink CAS micelles as demonstrated by color variation of the micelles. Drug solubilization was enhanced by incorporation within the hydrophobic micellar core which was confirmed by solubility study and UV spectra. Spherical core-shell micelles were obtained with a particle size below 100 nm and zeta potential around -30 mV. At low drug loading, FLT was totally incorporated within micellar core as revealed by thermal analysis. However, at higher loading, excess non-incorporated drug at micelle surface caused a significant reduction in the surface charge density. Turbidity measurements demonstrated the high physical stability of micelles for 2 weeks dependent on GNP-crosslinking degree. In a dry powdered form, the micelles were stable for 6 months with no significant changes in drug content or particle size. A sustained drug release from CAS micelles up to 5 days was observed. After i.v. administration into rats, CAS micelles exhibited a prolonged plasma circulation of FLT compared to drug solution. Furthermore, a more prolonged drug systemic circulation was observed for GNP-crosslinked micelles. Overall, this study reports the application of spray-dried natural protein-based micelles for i.v. delivery of hydrophobic anti-cancer drugs such as FLT. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection

    PubMed Central

    Smith, Garry R.; Zhang, Yan; Du, Yanming; Kondaveeti, Sandeep K.; Zdilla, Michael J.; Reitz, Allen B.

    2012-01-01

    Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at ≤40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity. PMID:22535312

  14. Heatstroke model for desert dry-heat environment and observed organ damage.

    PubMed

    ou Zhou, Ren; Liu, Jiang Wei; Zhang, Dong; Zhang, Qiong

    2014-06-01

    Heatstroke is one of the most common clinical emergencies. Heatstroke that occurred in a dry-heat environment such as desert is usually more seriously effective and often leads to death. However, the report of the pathophysiologic mechanisms about heatstroke in dry-heat environment of desert has not been seen. Our objectives are to establish a rat model of heatstroke of dry-heat environment of desert, to assess the different degrees of damage of organ, and to preliminarily discuss the mechanism of heatstroke in dry-heat environment of desert. The first step, we have established a rat heatstroke model of dry heat environment of desert. The second step, we have accessed changes in morphology and blood indicators of heatstroke rats in dry-heat environment of desert. The heatstroke rats have expressed the changing characteristics of mean arterial pressure, core temperature, and heart rate. The organ damage changed from mild to serious level, specifically in the morphology and blood enzymology parameters such as alanine aminotransferase, aspartate aminotransferase, creatinine, urea, uric acid, creatine kinase-MB, creatine kinase, and blood gas parameters such as base excess extracellular fluid and bicarbonate ions (HCO3-). We have successfully established the rat heatstroke model of dry-heat environment of desert. We have identified heatstroke rats that presented changing characteristics on physiological indicators and varying degrees of organ damage, which are aggravated by the evolution of heatstroke in dry-heat environment of desert. We have preliminarily discussed the mechanism of heatstroke in dry-heat environment of desert. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The Natural History of Pneumonic Tularemia in Female Fischer 344 Rats after Inhalational Exposure to Aerosolized Francisella tularensis Subspecies tularensis Strain SCHU S4.

    PubMed

    Hutt, Julie A; Lovchik, Julie A; Dekonenko, Alexander; Hahn, Andrew C; Wu, Terry H

    2017-02-01

    The inbred Fischer 344 rat is being evaluated for testing novel vaccines and therapeutics against pneumonic tularemia. Although primary pneumonic tularemia in humans typically occurs by inhalation of aerosolized bacteria, the rat model has relied on intratracheal inoculation of organisms because of safety and equipment issues. We now report the natural history of pneumonic tularemia in female Fischer 344 rats after nose-only inhalational exposure to lethal doses of aerosolized Francisella tularensis subspecies tularensis, strain SCHU S4. Our results are consistent with initial uptake of aerosolized SCHU S4 from the nasal cavity, lungs, and possibly the gastrointestinal tract. Bacteremia with hematogenous dissemination was first detected 2 days after exposure. Shortly thereafter, the infected rats exhibited fever, tachypnea, and hypertension that persisted for 24 to 36 hours and then rapidly decreased as animals succumbed to infection between days 5 and 8 after exposure. Tachycardia was observed briefly, but only after the core body temperature and blood pressure began to decrease as the animals were near death. Initial neutrophilic and histiocytic inflammation in affected tissues became progressively more fibrinous and necrotizing over time. At death, as many as 10 10 colony-forming units were found in the lungs, spleen, and liver. Death was attributed to sepsis and disseminated intravascular coagulation. Overall, the pathogenesis of pneumonic tularemia in the female F344 rat model appears to replicate the disease in humans. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Sub-second changes in accumbal dopamine during sexual behavior in male rats.

    PubMed

    Robinson, D L; Phillips, P E; Budygin, E A; Trafton, B J; Garris, P A; Wightman, R M

    2001-08-08

    Transient (200--900 ms), high concentrations (200--500 nM) of dopamine, measured using fast-scan cyclic voltammetry, occurred in the nucleus accumbens core of male rats at the presentation of a receptive female. Additional dopamine signals were observed during subsequent approach behavior. Background-subtracted cyclic voltammograms of the naturally-evoked signals matched those of electrically-evoked dopamine measured at the same recording sites. Administration of nomifensine amplified natural and evoked dopamine release, and increased the frequency of detectable signals. While gradual changes in dopamine concentration during sexual behavior have been well established, these findings dramatically improve the time resolution. The observed dopamine transients, probably resulting from neuronal burst firing, represent the first direct correlation of dopamine with sexual behavior on a sub-second time scale.

  17. Dorsomedial Prefrontal Cortex Contribution to Behavioral and Nucleus Accumbens Neuronal Responses to Incentive Cues

    PubMed Central

    Ishikawa, Akinori; Ambroggi, Frederic; Nicola, Saleem M.; Fields, Howard L.

    2008-01-01

    Cue-elicited phasic changes in firing of nucleus accumbens (NAc) neurons can facilitate reward-seeking behavior. Here, we test the hypothesis that the medial prefrontal cortex (mPFC), which sends a dense glutamatergic projection to the NAc core, contributes to NAc neuronal firing responses to reward-predictive cues. Rats trained to perform an operant response to a cue for sucrose were implanted with recording electrodes in the core of the NAc and microinjection cannulas in the dorsal mPFC (dmPFC). The cue-evoked firing of NAc neurons was reduced by bilateral injection of GABAA and GABAB agonists into the dmPFC concomitant with loss of behavioral responding to the cue. In addition, unilateral dmPFC inactivation reduced ipsilateral cue excitations and contralateral cue inhibitions. These findings indicate that cue-evoked excitations and inhibitions of NAc core neurons depend on dmPFC projections to the NAc and that these phasic changes contribute to the behavioral response to reward-predictive cues. PMID:18463262

  18. Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats.

    PubMed

    Ravenelle, R; Santolucito, H B; Byrnes, E M; Byrnes, J J; Donaldson, S T

    2014-06-13

    Environmental enrichment can modulate mild and chronic stress, responses to anxiogenic stimuli as well as drug vulnerability in a number of animal models. The current study was designed to examine the impact of postnatal environmental enrichment on selectively bred 4th generation high- (HAn) and low-anxiety (LAn) male rats. After weaning, animals were placed in isolated (IE), social (SE) and enriched environments (EE) (e.g., toys, wheels, ropes, changed weekly). We measured anxiety-like behavior (ALB) on the elevated plus maze (EPM; trial 1 at postnatal day (PND) 46, trial 2 at PND 63), amphetamine (AMPH) (0.5mg/kg, IP)-induced locomotor behavior, basal and post anxiogenic stimuli changes in (1) plasma corticosterone, (2) blood pressure and (3) core body temperature. Initially, animals showed consistent trait differences on EPM with HAn showing more ALB but after 40 days in select housing, HAn rats reared in an EE showed less ALB and diminished AMPH-induced activity compared to HAn animals housed in IE and SE. In the physiological tests, animals housed in EE showed elevated adrenocortical responses to forced novel object exposure but decreased body temperature and blood pressure changes after an air puff stressor. All animals reared in EE and SE had elevated brain-derived neurotrophic factor (BDNF)-positive cells in the central amygdala (CeA), CA1 and CA2 hippocampal regions and the caudate putamen, but these differences were most pronounced in HAn rats for CeA, CA1 and CA2. Overall, these findings suggest that environmental enrichment offers benefits for trait anxiety rats including a reduction in behavioral and physiological responses to anxiogenic stimuli and AMPH sensitivity, and these responses correlate with changes in BDNF expression in the central amygdala, hippocampus and the caudate putamen. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats.

    PubMed

    Li, Na; Luo, Heng-Cong; Yang, Chuan; Deng, Jun-Jie; Ren, Meng; Xie, Xiao-Ying; Lin, Diao-Zhu; Yan, Li; Zhang, Li-Ming

    2014-01-01

    Excessive expression of matrix metalloproteinase-9 (MMP-9) is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of β-cyclodextrin (β-CD) core and poly(amidoamine) dendron arms (β-CD-[D₃]₇) could be used as the gene carrier of small interfering RNA (siRNA) to reduce MMP-9 expression for enhanced diabetic wound healing. The cytotoxicity of β-CD-(D₃)₇ was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MMT) method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of β-CD-(D₃)₇/MMP-9-small interfering RNA (siRNA) complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT) polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by β-CD-(D₃)₇/MMP-9-siRNA complexes. The β-CD-(D₃)₇/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. β-CD-(D₃)₇ exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The β-CD-(D₃)₇/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01). Animal experiments revealed that the treatment by β-CD-(D₃)₇/MMP-9-siRNA complexes enhanced wound closure in diabetic rats on day 7 post-wounding (P<0.05). β-CD-(D₃)₇ may be used as an efficient carrier for the delivery of MMP-9-siRNA to reduce MMP-9 expression in skin fibroblast cells and promote wound healing in diabetic rats.

  20. Effects of Electro-Acupuncture on Ovarian P450arom, P450c17α and mRNA Expression Induced by Letrozole in PCOS Rats

    PubMed Central

    Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and endocrine metabolic disorders in PCOS. PMID:24260211

  1. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats.

    PubMed

    Sun, Jie; Jin, Chunlan; Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1) of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and endocrine metabolic disorders in PCOS.

  2. Is the food-entrainable circadian oscillator in the digestive system?

    NASA Technical Reports Server (NTRS)

    Davidson, A. J.; Poole, A. S.; Yamazaki, S.; Menaker, M.

    2003-01-01

    Food-anticipatory activity (FAA) is the increase in locomotion and core body temperature that precedes a daily scheduled meal. It is driven by a circadian oscillator but is independent of the suprachiasmatic nuclei. Recent results that reveal meal-entrained clock gene expression in rat and mouse peripheral organs raise the intriguing possibility that the digestive system is the site of the feeding-entrained oscillator (FEO) that underlies FAA. We tested this possibility by comparing FAA and Per1 rhythmicity in the digestive system of the Per1-luciferase transgenic rat. First, rats were entrained to daytime restricted feeding (RF, 10 days), then fed ad libitum (AL, 10 days), then food deprived (FD, 2 days). As expected FAA was evident during RF and disappeared during subsequent AL feeding, but returned at the correct phase during deprivation. The phase of Per1 in liver, stomach and colon shifted from a nocturnal to a diurnal peak during RF, but shifted back to nocturnal phase during the subsequent AL and remained nocturnal during food deprivation periods. Second, rats were entrained to two daily meals at zeitgeber time (ZT) 0400 and ZT 1600. FAA to both meals emerged after about 10days of dual RF. However, all tissues studied (all five liver lobes, esophagus, antral stomach, body of stomach, colon) showed entrainment consistent with only the night-time meal. These two results are inconsistent with the hypothesis that FAA arises as an output of rhythms in the gastrointestinal (GI) system. The results also highlight an interesting diversity among peripheral oscillators in their ability to entrain to meals and the direction of the phase shift after RF ends.

  3. Individual differences in circadian locomotor parameters correlate with anxiety- and depression-like behavior.

    PubMed

    Anyan, Jeffrey; Verwey, Michael; Amir, Shimon

    2017-01-01

    Disrupted circadian rhythms are a core feature of mood and anxiety disorders. Circadian rhythms are coordinated by a light-entrainable master clock located in the suprachiasmatic nucleus. Animal models of mood and anxiety disorders often exhibit blunted rhythms in locomotor activity and clock gene expression. Interestingly, the changes in circadian rhythms correlate with mood-related behaviours. Although animal models of depression and anxiety exhibit aberrant circadian rhythms in physiology and behavior, it is possible that the methodology being used to induce the behavioral phenotype (e.g., brain lesions, chronic stress, global gene deletion) affect behavior independently of circadian system. This study investigates the relationship between individual differences in circadian locomotor parameters and mood-related behaviors in healthy rats. The circadian phenotype of male Lewis rats was characterized by analyzing wheel running behavior under standard 12h:12h LD conditions, constant dark, constant light, and rate of re-entrainment to a phase advance. Rats were then tested on a battery of behavioral tests: activity box, restricted feeding, elevated plus maze, forced swim test, and fear conditioning. Under 12h:12h LD conditions, percent of daily activity in the light phase and variability in activity onset were associated with longer latency to immobility in the forced swim test. Variability in onset also correlated positively with anxiety-like behavior in the elevated plus maze. Rate of re-entrainment correlated positively with measures of anxiety in the activity box and elevated plus maze. Lastly, we found that free running period under constant dark was associated with anxiety-like behaviors in the activity box and elevated plus maze. Our results provide a previously uncharacterized relationship between circadian locomotor parameters and mood-related behaviors in healthy rats and provide a basis for future examination into circadian clock functioning and mood.

  4. Reversible inactivation of rostral nucleus raphe pallidus attenuates acute autonomic responses but not their habituation to repeated audiogenic stress in rats.

    PubMed

    Nyhuis, Tara J; Masini, Cher V; Taufer, Kirsten L; Day, Heidi E W; Campeau, Serge

    2016-01-01

    The medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature. After surgical recovery, animals were injected with muscimol or vehicle (aCSF) in the RPa region, followed by 30 min of 95-dBA loud noise or no noise control exposures on 3 consecutive days at 24-h intervals. Forty-eight hours after the third exposure, animals were exposed to an additional, but injection-free, loud noise or no noise test to assess habituation of hyperthermia and tachycardia. Three days later, rats were restrained for 30-min to evaluate their ability to display normal acute autonomic responses following the repeated muscimol injection regimen. The results indicated that the inhibition of cellular activity induced by the GABAA-receptor agonist muscimol centered in the RPa region reliably attenuated acute audiogenic stress-evoked tachycardia and hyperthermia, compared with vehicle-injected rats. Animals in the stress groups exhibited similar attenuated tachycardia and hyperthermia during the injection-free fourth audiogenic stress exposure, and displayed similar and robust increases in these responses to the subsequent restraint test. These results suggest that cellular activity in neurons of the RPa region is necessary for the expression of acute audiogenic stress-induced tachycardia and hyperthermia, but may not be necessary for the acquisition of habituated tachycardic responses to repeated stress.

  5. Reversible inactivation of rostral nucleus raphe pallidus attenuates acute autonomic responses but not their habituation to repeated audiogenic stress in rats

    PubMed Central

    Nyhuis, Tara J.; Masini, Cher V.; Taufer, Kirsten L.; Day, Heidi E.W.; Campeau, Serge

    2016-01-01

    The medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature. After surgical recovery, animals were injected with muscimol or vehicle (aCSF) in the RPa region, followed by 30 minutes of 95-dBA loud noise or no noise control exposures on 3 consecutive days at 24-hr intervals. Forty-eight hours after the third exposure, animals were exposed to an additional, but injection-free, loud noise or no noise test to assess habituation of hyperthermia and tachycardia. Three days later, rats were restrained for 30-minutes to evaluate their ability to display normal acute autonomic responses following the repeated muscimol injection regimen. The results indicated that the inhibition of cellular activity induced by the GABAA-receptor agonist muscimol centered in the RPa region reliably attenuated acute audiogenic stress-evoked tachycardia and hyperthermia, compared with vehicle-injected rats. Animals in the stress groups exhibited similarly attenuated tachycardia and hyperthermia during the injection-free fourth audiogenic stress exposure, and displayed similar and robust increases in these responses to the subsequent restraint test. These results suggest that cellular activity in neurons of the RPa region is necessary for the expression of acute audiogenic stress-induced tachycardia and hyperthermia, but may not be necessary for the acquisition of habituated tachycardic responses to repeated stress. PMID:26998558

  6. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery

    PubMed Central

    Zou, Peng; Stern, Stephan T.; Sun, Duxin

    2014-01-01

    Purpose Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly( lactic-coglycolicacid) (PLGA). Methods BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). Results FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 minutes. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 hours. Conclusions The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs. PMID:24065591

  7. Activity-based anorexia is associated with reduced hippocampal cell proliferation in adolescent female rats.

    PubMed

    Barbarich-Marsteller, Nicole C; Fornal, Casimir A; Takase, Luiz F; Bocarsly, Miriam E; Arner, Candice; Walsh, B Timothy; Hoebel, Bartley G; Jacobs, Barry L

    2013-01-01

    Activity-based anorexia (ABA) is an animal model of anorexia nervosa that mimics core features of the clinical psychiatric disorder, including severe food restriction, weight loss, and hyperactivity. The ABA model is currently being used to study starvation-induced changes in the brain. Here, we examined hippocampal cell proliferation in animals with ABA (or the appropriate control conditions). Adolescent female Sprague-Dawley rats were assigned to 4 groups: control (24h/day food access), food-restricted (1h/day food access), exercise (24h/day food and wheel access), and ABA (1h/day food access, 24h/day wheel access). After 3 days of ABA, 5-bromo-2'-deoxyuridine (BrdU; 200mg/kg, i.p.) was injected and the rats were perfused 2h later. Brains were removed and subsequently processed for BrdU and Ki67 immunohistochemistry. The acute induction of ABA reduced cell proliferation in the dentate gyrus. This effect was significant in the hilus region of the dentate gyrus, but not in the subgranular zone, where adult neurogenesis occurs. Marked decreases in cell proliferation were also observed in the surrounding dorsal hippocampus and in the corpus callosum. These results indicate a primary effect on gliogenesis rather than neurogenesis following 3 days of ABA. For each brain region studied (except SGZ), there was a strong positive correlation between the level of cell proliferation and body weight/food intake. Future studies should examine whether these changes are maintained following long-term weight restoration and whether alterations in neurogenesis occur following longer exposures to ABA. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Response contingency directs long-term cocaine-induced neuroplasticity in prefrontal and striatal dopamine terminals.

    PubMed

    Wiskerke, Joost; Schoffelmeer, Anton N M; De Vries, Taco J

    2016-10-01

    Exposure to addictive substances such as cocaine is well-known to alter brain organisation. Cocaine-induced neuroadaptations depend on several factors, including drug administration paradigm. To date, studies addressing the consequences of cocaine exposure on dopamine transmission have either not been designed to investigate the role of response contingency or focused only on short-term neuroplasticity. We demonstrate a key role of response contingency in directing long-term cocaine-induced neuroplasticity throughout projection areas of the mesocorticolimbic dopamine system. We found enhanced electrically-evoked [(3)H]dopamine release from superfused brain slices of nucleus accumbens shell and core, dorsal striatum and medial prefrontal cortex three weeks after cessation of cocaine self-administration. In yoked cocaine rats receiving the same amount of cocaine passively, sensitised dopamine terminal reactivity was only observed in the nucleus accumbens core. Control sucrose self-administration experiments demonstrated that the observed neuroadaptations were not the result of instrumental learning per se. Thus, long-term withdrawal from cocaine self-administration is associated with widespread sensitisation of dopamine terminals throughout frontostriatal circuitries. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  9. Biodistribution of newly synthesized PHEA-based polymer-coated SPION in Sprague Dawley rats as magnetic resonance contrast agent

    PubMed Central

    Park, Junsung; Cho, Wonkyung; Park, Hee Jun; Cha, Kwang-Ho; Ha, Dae-Chul; Choi, Youn-Woong; Lee, Ha-Young; Cho, Sun-Hang; Hwang, Sung-Joo

    2013-01-01

    Objectives The purpose of this study was to observe the pharmacokinetic behavior of newly synthesized biocompatible polymers based on polyhydroxyethylaspartamide (PHEA) to be used to coat an iron oxide core to make superparamagnetic iron oxide nanoparticles (SPION). Materials and methods The isotopes [14C] and [59Fe] were used to label the polymer backbone (CLS) and iron oxide core (FLS), respectively. In addition, unradiolabeled cold superparamagnetic iron oxide nanoparticles (SPION/ULS) were synthesized to characterize particle size by dynamic light scattering, morphology by transmission electron microscopy, and in vivo magnetic resonance imaging (MRI). CLS and FLS were used separately to investigate the behavior of both the synthesized polymer and [Fe] in Sprague Dawley (SD) rats, respectively. Because radioactivity of the isotopes was different by β for CLS and γ for FLS, synthesis of the samples had to be separately prepared. Results The mean particle size of the ULS was 66.1 nm, and the biodistribution of CLS concentrations in various organs, in rank order of magnitude, was liver > kidney > small intestine > other. The biodistribution of FLS concentrations was liver > spleen > lung > other. These rank orders show that synthesized SPION mainly accumulates in the liver. The differences in the distribution were caused by the SPION metabolism. Radiolabeled polymer was metabolized by the kidney and excreted mainly in the urine; [59Fe] was recycled for erythrocyte production in the spleen and excreted mainly in the feces. The MR image of the liver after intravenous injection demonstrated that [Fe] effectively accumulated in the liver and exhibited high-contrast enhancement on T2-weighted images. Conclusion This newly synthesized, polymer-coated SPION appears to be a promising candidate for use as a liver-targeted, biocompatible iron oxide MR imaging agent. PMID:24204138

  10. Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress.

    PubMed

    Lin, Yu Wen; Chen, Tsung Ying; Hung, Chia Yang; Tai, Shih Huang; Huang, Sheng Yang; Chang, Che Chao; Hung, Hsin Yi; Lee, E Jian

    2018-07-01

    Endoplasmic reticulum (ER) stress plays a vital role in mediating ischemic reperfusion damage in brain. In this study, we evaluated whether melatonin inhibits ER stress in cultured neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to transient focal cerebral ischemia. Sprague-Dawley rats were treated with melatonin (5 mg/kg) or control at reperfusion onset after transient occlusion of the right middle cerebral artery (MCA) for 90 min. Brain infarction and hemorrhage within infarcts were measured. The expression of ER stress proteins of phosphorylation of PRKR‑like endoplasmic reticulum kinase (p-PERK), phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were detected by western blotting and immunohistochemistry analysis. The terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) method, cleaved caspase-3 and cytochrome c were used to investigate cell apoptosis in OGD-induced cultured neurons. Our results demonstrated that animals treated with melatonin had significantly reduced infarction volumes and individual cortical lesion sizes as well as increased numbers of surviving neurons. Melatonin can significantly modulate protein levels by decreasing both p-PERK and p-eIF2α in the ischemic core and penumbra. Moreover, the expressions of ATF4 and CHOP were restrained in the ischemic core and penumbra, respectively. Furthermore, pretreatment with melatonin at 10-100 µM effectively reduced the levels of p-PERK and p-eIF2α in cultured neurons after OGD injury. Melatonin treatment also effectively decreased neuron apoptosis resulting from OGD-induced neuron injury. These results indicate that melatonin effectively attenuated post-ischemic ER stress after ischemic stroke.

  11. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.

    PubMed

    Chen, Jing; Edwards, Aurélie; Layton, Anita T

    2009-08-01

    we extended the region-based mathematical model of the urine-concentrating mechanism in the rat outer medulla (OM) developed by Layton and Layton (Am J Physiol Renal Physiol 289: F1346-F1366, 2005) to examine the impact of the complex structural organization of the OM on O(2) transport and distribution. In the present study, we investigated the sensitivity of predicted Po(2) profiles to several parameters that characterize the degree of OM regionalization, boundary conditions, structural dimensions, transmural transport properties, and relative positions and distributions of tubules and vessels. Our results suggest that the fraction of O(2) supplied to descending vasa recta (DVR) that reaches the inner medulla, i.e., a measure of the axial Po(2) gradient in the OM, is insensitive to parameter variations as a result of the sequestration of long DVR in the vascular bundles. In contrast, O(2) distribution among the regions surrounding the vascular core strongly depends on the radial positions of medullary thick ascending limbs (mTALs) relative to the vascular core, the degree of regionalization, and the distribution of short DVR along the corticomedullary axis. Moreover, if it is assumed that the mTAL active Na(+) transport rate decreases when mTAL Po(2) falls below a critical level, O(2) availability to mTALs has a significant impact on the concentrating capability of the model OM. The model also predicts that when the OM undergoes hypertrophy, its concentrating capability increases significantly only when anaerobic metabolism supports a substantial fraction of the mTAL active Na(+) transport and is otherwise critically reduced by low interstitial and mTAL luminal Po(2) in a hypertrophied OM.

  12. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells

    PubMed Central

    2010-01-01

    Background Surface charge and oxidative stress are often hypothesized to be important factors in cytotoxicity of nanoparticles. However, the role of these factors is not well understood. Hence, the aim of this study was to systematically investigate the role of surface charge, oxidative stress and possible involvement of mitochondria in the production of intracellular reactive oxygen species (ROS) upon exposure of rat macrophage NR8383 cells to silicon nanoparticles. For this aim highly monodisperse (size 1.6 ± 0.2 nm) and well-characterized Si core nanoparticles (Si NP) were used with a surface charge that depends on the specific covalently bound organic monolayers: positively charged Si NP-NH2, neutral Si NP-N3 and negatively charged Si NP-COOH. Results Positively charged Si NP-NH2 proved to be more cytotoxic in terms of reducing mitochondrial metabolic activity and effects on phagocytosis than neutral Si NP-N3, while negatively charged Si NP-COOH showed very little or no cytotoxicity. Si NP-NH2 produced the highest level of intracellular ROS, followed by Si NP-N3 and Si NP-COOH; the latter did not induce any intracellular ROS production. A similar trend in ROS production was observed in incubations with an isolated mitochondrial fraction from rat liver tissue in the presence of Si NP. Finally, vitamin E and vitamin C induced protection against the cytotoxicity of the Si NP-NH2 and Si NP-N3, corroborating the role of oxidative stress in the mechanism underlying the cytotoxicity of these Si NP. Conclusion Surface charge of Si-core nanoparticles plays an important role in determining their cytotoxicity. Production of intracellular ROS, with probable involvement of mitochondria, is an important mechanism for this cytotoxicity. PMID:20831820

  13. The uncompetitive N-methyl-D-aspartate antagonist memantine reduces binge-like eating, food-seeking behavior, and compulsive eating: role of the nucleus accumbens shell.

    PubMed

    Smith, Karen L; Rao, Rahul R; Velázquez-Sánchez, Clara; Valenza, Marta; Giuliano, Chiara; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2015-03-13

    Binge-eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. The role of the glutamatergic N-methyl-D-aspartate (NMDA) receptor system in hedonic feeding is poorly understood. The aim of this study was to characterize the effects of the uncompetitive NMDA receptor antagonist memantine on palatable food-induced behavioral adaptations using a rat model, which mimics the characteristic symptomatology observed in binge-eating disorder. For this purpose, we allowed male Wistar rats to respond to obtain a highly palatable, sugary diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day, under a fixed-ratio 1 (FR1) schedule of reinforcement. Upon stabilization of food responding, we tested the effects of memantine on the Chow and Palatable food groups' intake. Then, we tested the effects of memantine on food-seeking behavior, under a second-order schedule of reinforcement. Furthermore, we investigated the effects of memantine on the intake of food when it was offered in an aversive, bright compartment of a light/dark conflict test. Finally, we evaluated the effects of memantine on FR1 responding for food, when microinfused into the nucleus accumbens (NAcc) shell or core. Memantine dose-dependently decreased binge-like eating and fully blocked food-seeking behavior and compulsive eating, selectively in the Palatable food group. The drug treatment did not affect performance of the control Chow food group. Finally, intra-NAcc shell, but not core, microinfusion of memantine decreased binge-like eating. Together, these findings substantiate a role of memantine as a potential pharmacological treatment for binge-eating disorder.

  14. The Uncompetitive N-methyl-D-Aspartate Antagonist Memantine Reduces Binge-Like Eating, Food-Seeking Behavior, and Compulsive Eating: Role of the Nucleus Accumbens Shell

    PubMed Central

    Smith, Karen L; Rao, Rahul R; Velázquez-Sánchez, Clara; Valenza, Marta; Giuliano, Chiara; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2015-01-01

    Binge-eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. The role of the glutamatergic N-methyl-D-aspartate (NMDA) receptor system in hedonic feeding is poorly understood. The aim of this study was to characterize the effects of the uncompetitive NMDA receptor antagonist memantine on palatable food-induced behavioral adaptations using a rat model, which mimics the characteristic symptomatology observed in binge-eating disorder. For this purpose, we allowed male Wistar rats to respond to obtain a highly palatable, sugary diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day, under a fixed-ratio 1 (FR1) schedule of reinforcement. Upon stabilization of food responding, we tested the effects of memantine on the Chow and Palatable food groups' intake. Then, we tested the effects of memantine on food-seeking behavior, under a second-order schedule of reinforcement. Furthermore, we investigated the effects of memantine on the intake of food when it was offered in an aversive, bright compartment of a light/dark conflict test. Finally, we evaluated the effects of memantine on FR1 responding for food, when microinfused into the nucleus accumbens (NAcc) shell or core. Memantine dose-dependently decreased binge-like eating and fully blocked food-seeking behavior and compulsive eating, selectively in the Palatable food group. The drug treatment did not affect performance of the control Chow food group. Finally, intra-NAcc shell, but not core, microinfusion of memantine decreased binge-like eating. Together, these findings substantiate a role of memantine as a potential pharmacological treatment for binge-eating disorder. PMID:25381776

  15. Novel secretory granule morphology in physically fixed pancreatic islets.

    PubMed

    Dudek, R W; Boyne, A F; Charles, T M

    1984-09-01

    Protein A-gold immunocytochemistry has been applied to physically fixed beta cells from rat islets of Langerhans. The punctate nature of the gold particles permits improved resolution of the antigenic sites without obscuring the fine ultrastructural preservation obtained by physical fixation. There is a filamentous material within the halo of the secretory granules that is not preserved by aqueous, chemical fixation. When viewed in stereo the filaments appear as an annular cobweb or a series of wheel spokes attached to a centrally located hub (the dense core of the granule). The filaments demonstrate insulin-like immunoreactivity using the protein A-gold technique. The immunoreactivity appears to be restricted to the filaments and the surface of the dense cores. This may be a consequence of the preservation of a solid, insolubilized core state that resists penetration by the antibody and/or the protein A-gold complex. However, the evidence that there is a halo pool of insulin which is separate from the massive core aggregate suggests that i) correspondingly massive exocytotic pits may not be as mandatory for insulin release as has been assumed and ii) the complex kinetics of insulin secretion may be, in part, a reflection of multiple insulin compartments within secretory granules.

  16. Ferrimagnetic ferritin cage nanoparticles used as MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Cao, C.; Zhang, T.; Xu, H.; Pan, Y.

    2017-12-01

    The nano-sized ferrimagnetic ferritin cage nanoparticles are ideal materials for understanding of superparamagnetism, biomimetic synthesis of ultrafine magnetic particles and their application in biomedicine. Ferrimagnetic M-HFn nanoparticles with size of magnetite cores in a mean size ranges from 2.7 nm to 5.3 nm were synthesized through loading different amount of iron into recombinant human H chain ferritin (HFn) shells. Both the saturation magnetization (Ms) and blocking temperature (Tb) were increased with the size of ferrimagnetic cores. In essence, magnetic resonance imaging (MRI) analysis showed that the synthesized M-HFn nanoparticles (5.3 nm magnetite core) has extremely high transverse relaxivity (r2) values up to 320.9 mM-1S-1, which indicate that M-HFn nanoparticles are promising negative contrast agent in early detection of tumors. In addition, the longitudinal relaxivity (r1) (10.4 mM-1S-1) and r2/r1 ratio ( 2.2) of M-HFn nanoparticles ( 2.7 nm magnetite core in diameter) will make it a considerable potential as a positive contrast agent in MRI. This means the M-HFn nanoparticles can be used as dual functional MR contrast agent. Acute toxicity study of M-HFn in rats showed that a dosage of 20 mg Fe/kg makes no abnormalities by serum biochemical and hematological analysis as well as histopathological examination. Compared with a similar commercial contrast agent, combidex (with a clinical dosage of 2.7 mg Fe/kg), it indicates that M-HFn nanoparticle is of a relative safe ferrimagnetic nanoparticle when used in vivo.

  17. Different neural circuitry is involved in physiological and psychological stress-induced PTSD-like “nightmares” in rats

    PubMed Central

    Yu, Bin; Cui, Su-Ying; Zhang, Xue-Qiong; Cui, Xiang-Yu; Li, Sheng-Jie; Sheng, Zhao-Fu; Cao, Qing; Huang, Yuan-Li; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Zhang, Yong-He

    2015-01-01

    Posttraumatic nightmares are a core component of posttraumatic stress disorder (PTSD) and mechanistically linked to the development and maintenance of this disorder, but little is known about their mechanism. We utilized a communication box to establish an animal model of physiological stress (foot-shock [FS]) and psychological stress (PS) to mimic the direct suffering and witnessing of traumatic events. Twenty-one days after traumatic stress, some of the experimental animals presented startled awakening (i.e., were startled awake by a supposed “nightmare”) with different electroencephalographic spectra features. Our neuroanatomical results showed that the secondary somatosensory cortex and primary auditory cortex may play an important role in remote traumatic memory retrieval in FS “nightmare” (FSN) rats, whereas the temporal association cortex may play an important role in PS “nightmare” (PSN) rats. The FSN and PSN groups possessed common emotion evocation circuits, including activation of the amygdala and inactivation of the infralimbic prefrontal cortex and ventral anterior cingulate cortex. The decreased activity of the granular and dysgranular insular cortex was only observed in PSN rats. The present results imply that different types of stress may cause PTSD-like “nightmares” in rodents and identified the possible neurocircuitry of memory retrieval and emotion evocation. PMID:26530305

  18. Specialised sympathetic neuroeffector associations in immature rat iris arterioles

    PubMed Central

    SANDOW, SHAUN L.; HILL, CARYL E.

    1999-01-01

    Sympathetic nerve-mediated vasoconstriction in iris arterioles of mature rats occurs via the activation of α1B-adrenoceptors alone, while in immature rat iris arterioles, vasoconstriction occurs via activation of both α1- and α2-adrenoceptors. In mature rats the vast majority of sympathetic varicosities form close neuroeffector junctions. Serial section electron microscopy of 14 d iris arterioles has been used to determine whether restriction in physiological receptor types with age may result from the establishment of these close neuroeffector junctions. Ninety varicosities which lay within 4 μm of arteriolar smooth muscle were followed for their entire length. Varicosities rarely contained dense cored vesicles even after treatment with 5-hydroxydopamine. 47% of varicosities formed close associations with muscle cells and 88% formed close associations with muscle cells or melanocytes. Varicosities in bundles were as likely as single varicosities to form close associations with vascular smooth muscle cells, although the distribution of synaptic vesicles in single varicosities did not show the asymmetric accumulation towards the smooth muscle cells seen in the varicosities in bundles which were frequently clustered together. We conclude that restriction of physiological receptor types during development does not appear to correlate with the establishment of close neuroeffector junctions, although changes in presynaptic structures may contribute to the refinement of postsynaptic responses. PMID:10529061

  19. Thermoregulation in rats: Effects of varying duration of hypergravic fields

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Horwitz, B. A.

    1980-01-01

    The effects of hypergravitational fields on the thermoregulatory system of the rat are examined. The question underlying the investigation was whether the response of the rat to the one hour cold exposure depends only upon the amplitude of the hypergravic field during the period of cold exposure or whether the response is also dependent on the amplitude and duration of the hypergravic field prior to cold exposure. One hour of cold exposure applied over the last hour of either a 1, 4, 7, 13, 19, 25, or 37 hr period of 3G evoked a decrease in core temperature (T sub c) of about 3 C. However, when rats were subjected concurrently to cold and acceleration following 8 days at 3G, they exhibited a smaller fall in T sub c, suggesting partial recovery of the acceleration induced impairment of temperature regulation. In another series of experiments, the gravitational field profile was changed in amplitude in 3 different ways. Despite the different gravitational field profiles used prior to cold, the magnitude of the fall in T sub c over the 1 hr period of cold exposure was the same in all cases. These results suggest that the thermoregulatory impairment has a rapid onset, is a manifestation of an ongoing effect of hypergravity, and is not dependent upon the prior G profile.

  20. Studies on stercuia gum formulations in the form of osmotic core tablet for colon-specific drug delivery of azathioprine.

    PubMed

    Nath, Bipul; Nath, Lila Kanta

    2013-01-01

    The purpose of this research is to evaluate Sterculia urens gum as a carrier for a colon-targeted drug delivery system. Microflora degradation studies of Sterculia gum was conducted in phosphate-buffered saline pH 7.4 containing rat caecal medium under an anaerobic environment. Solubility, swelling index, viscosity, and pH of the polymer solution were determined. Different formulation aspects considered were gum concentration (10-40%) and concentration of citric acid (10-30%) on the swelling index and in-vitro dissolution release. The results of the isothermal stress testing showed that there is no degradation of samples of model drug, azathioprine, the drug polymer mixture, and the core tablet excipients. Differential scanning calorimetry and Fourier transform infrared spectroscopy study proved the compatibility of the drug with Sterculia gum and other tablet excipients. Microflora degradation study revealed that Sterculia gum can be used as tablet excipient for drug release in the colonic region by utilizing the action of enterobacteria. The swelling force of the Sterculia gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the mixed film coating under colonic microflora-activated environment. Sterculia gum gives premature drug release in the upper gastrointestinal tract without enteric coating and may not reach the colonic region. Sterculia gum as a colon-targeting carrier is possible via double-layer coating with chitosan/Eudragit RLPO (ammonio-methacrylate copolymer) mixed blend as well as enteric polymers, which would provide acid as well as intestinal resistance but undergo enzymatic degradation once reaching the colon. The aim of the research is to evaluate wheather Sterculia urens, which is a polysaccharide, is suitable as a carrier for colonic delivery of drugs acting locally in the colon. Sterculia gum has been reported to have wide pharmaceutical applications such as tablet binder, disintegrant, gelling agent, and as a controlled release polymer. Sterculia gum falls under the category of a polysaccharide and is yet to be evaluated as a carrier for colonic delivery of drugs. First the susceptibility of the polysaccharide gum in rat caecal microflora was investigated because true polysaccharides are degraded by the action of normal colonic bacteria. Bacterial degradation of the gum in the colonic environment was confirmed by adding a small quantity of the gum in rat caecal content mixed with phosphate-buffered saline pH 7.4 under an anaerobic environment. Solubility, swelling index, viscosity, and pH of the polymer solution were determined. Different formulation aspects considered were gum concentration (10-40%), concentration of citric acid (10-30%) on swelling index, and in vitro dissolution behavior. Isothermal stress testing was done to determine that there was no degradation of the model drug, azathioprine, with Sterculia gum excipient mixtures under stressed conditions. Differential scanning calorimetry and Fourier transform infrared spectroscopy study proved the compatibility of the drug with Sterculia gum and other tablet excipients. Microflora degradation study revealed that Sterculia gum is digested by the colonic microflora and therefore can be used as a tablet excipient for drug release in the colonic region utilizing the microflora degradation mechanism. Sterculia gum gives premature drug release in the upper gastrointestinal tract without enteric coating and may not reach the colonic region. Sterculia gum as colon-targeting carrier is possible via double-layer coating with chitosan/Eudragit RLPO (ammonio-methacrylate copolymer) and Eudragit L100 polymers, which would provide acid as well as intestinal resistance but undergo enzymatic degradation once reaching the colon.

  1. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    PubMed

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  2. Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat

    PubMed Central

    Harony-Nicolas, Hala; Kay, Maya; du Hoffmann, Johann; Klein, Matthew E; Bozdagi-Gunal, Ozlem; Riad, Mohammed; Daskalakis, Nikolaos P; Sonar, Sankalp; Castillo, Pablo E; Hof, Patrick R; Shapiro, Matthew L; Baxter, Mark G; Wagner, Shlomo; Buxbaum, Joseph D

    2017-01-01

    Mutations in the synaptic gene SHANK3 lead to a neurodevelopmental disorder known as Phelan-McDermid syndrome (PMS). PMS is a relatively common monogenic and highly penetrant cause of autism spectrum disorder (ASD) and intellectual disability (ID), and frequently presents with attention deficits. The underlying neurobiology of PMS is not fully known and pharmacological treatments for core symptoms do not exist. Here, we report the production and characterization of a Shank3-deficient rat model of PMS, with a genetic alteration similar to a human SHANK3 mutation. We show that Shank3-deficient rats exhibit impaired long-term social recognition memory and attention, and reduced synaptic plasticity in the hippocampal-medial prefrontal cortex pathway. These deficits were attenuated with oxytocin treatment. The effect of oxytocin on reversing non-social attention deficits is a particularly novel finding, and the results implicate an oxytocinergic contribution in this genetically defined subtype of ASD and ID, suggesting an individualized therapeutic approach for PMS. DOI: http://dx.doi.org/10.7554/eLife.18904.001 PMID:28139198

  3. Ingestive behavior and body temperature during the ovarian cycle in normotensive and hypertensive rats.

    PubMed

    Rashotte, Michael E; Ackert, Allison M; Overton, J Michael

    2002-01-01

    The relationship between ingestive behavior (eating + drinking) and core body temperature (T(b)) in naturally cycling female rats was compared in a normotensive strain (Sprague-Dawley; SD) and a hypertensive strain reputed to have chronically elevated T(b) (spontaneously hypertensive rats; SHR). T(b) (by telemetry) and ingestive behavior (automated recording) were quantified every 30 s. Ingestive behavior and T(b) were related on all days of the ovarian cycle in both strains, but the strength of that relationship was reduced on the day of estrus (E) compared with nonestrous days. Several strain differences in T(b) were found as well. In SHR, dark-phase T(b) was elevated on E, whereas SD remained at the lower nonestrous values. Fluctuations in dark-phase T(b) were correlated with ingestive behavior in both strains but had greater amplitude in SHR except on E. Short-term fasting or sucrose availability did not eliminate elevated dark-phase T(b) on E in SHR. We propose that estrus-related changes unique to SHR may indicate heightened thermal reactivity to hormonal changes, ingestive behavior, and general locomotor activity.

  4. Building an organic computing device with multiple interconnected brains

    PubMed Central

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  5. Toxicology and carcinogenesis study of styrene-acrylonitrile trimer in F344/N rats (perinatal and postnatal feed studies).

    PubMed

    2012-07-01

    Styrene-acrylonitrile trimer (SAN Trimer) is a mixture of isomers formed by the condensation of two moles of acrylonitrile and one mole of styrene and has a molecular weight of 210. The mixture is composed of two structural forms: 4-cyano-1,2,3,4-tetrahydro-a-methyl-1-naphthaleneacetonitrile (THNA, CAS No. 57964-39-3) and 4-cyano-1,2,3,4-tetrahydro-1-naphthalenepropionitrile (THNP, CAS No. 57964-40-6). The THNA form consists of four stereoisomers. [Structure:see text]. The THNP form consists of two stereoisomers. [Structure:see text]. SAN Trimer is a by-product of the production of acrylonitrile styrene plastics and is created in specific manufacturing processes for polymers of acrylonitrile and styrene. In June 1998, due to community concerns about the toxicity of SAN Trimer, it was nominated to the NTP for carcinogenicity testing by a member of Congress. Male and female F344/N rats were exposed to SAN Trimer in feed in perinatal and postnatal studies for 7 weeks, 18 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and Escherichia coli, and in rat reticulocytes, leukocytes, liver cells, and brain cells. In vivo comet and micronucleus assays were performed in the juvenile rats. 7-WEEK STUDY IN RATS: Groups of 10 male and 10 female rats were fed diets containing 0, 250, 500, 1,000, 2,000, or 4,000 ppm SAN Trimer (equivalent to average daily doses of approximately 50, 90, 175, 270, or 410 mg SAN Trimer/kg body weight to males and 45, 90, 185, 295, or 430 mg/kg to females) for 2 weeks postweaning; the dams of these rats were fed the same concentrations of SAN Trimer from gestation day 7 until the pups were weaned. One 4,000 ppm male rat died 3 days after weaning; all other rats that started the postweaning phase survived to the end of the study. Mean body weights of 1,000, 2,000, and 4,000 ppm males and 2,000 and 4,000 ppm females were significantly less than those of the controls; weaning mean body weights were reduced in 4,000 ppm males and females and in 2,000 ppm females. Feed consumption by 2,000 and 4,000 ppm males and females was less than that by the control groups. Thinness in 4,000 ppm male rats was the only clinical finding related to SAN Trimer exposure. Nonneoplastic lesions were observed in the brain, thymus, spleen, liver, kidney, and reproductive organs of males and females and were considered due to overt toxicity. 18-WEEK STUDY IN RATS: Groups of 10 male and 10 female rats were fed diets of 0, 100, 200, 400, 800, or 1,600 ppm SAN Trimer (equivalent to average daily doses of 10, 20, 40, 80, or 150 mg/kg to males and females) for 3 months postweaning; the dams of these rats were fed the same concentrations from gestation day 7 until the pups were weaned. All rats survived to the end of the study. Mean body weights of 1,600 ppm males and females exposed to 200 ppm or greater were significantly less than those of the controls. At termination, brown staining of the urogenital fur was observed in females exposed to 200 ppm or greater. The liver weights of all exposed groups of males and the spleen weights of 800 and 1,600 ppm males and 1,600 ppm females were significantly greater than those of the controls. There were no significant differences in sperm parameters of male rats or the estrous cyclicity of female rats administered 400, 800, or 1,600 ppm in the diet when compared to the control groups. No exposure-related histopathologic lesions were observed. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female core study rats were fed diets of 0, 400, 800, or 1,600 ppm SAN Trimer (equivalent to average daily doses of approximately 20, 40, or 75 mg/kg to males and 20, 40, or 85 mg/kg to females) for 2 years. Special study groups of 20 males and 20 females were fed the same exposure concentrations and were evaluated at 27, 52, and 78 weeks for hematology and clinical chemistry or at 26, 51, and 77 weeks for urinalysis. The dams of core and special study rats were fed the same concentrations from gestation day 7 until the pups were weaned. Mean body weights of 1,600 ppm males were less than 90% of the controls after week 1; mean body weights of 800 and 1,600 ppm females were less than 90% of the controls after weeks 41 and 13, respectively. Feed consumption by exposed groups of males and females was generally similar to that by the control groups. Brown staining of the urogenital fur was observed in all exposed groups, and the number of animals affected increased with increasing exposure concentration. Rare neoplasms were present in the central nervous system of male and female rats. In the original evaluation, the 800 and 1,600 ppm groups of male rats each had one astrocytoma and one granular cell tumor in the brain. Also in the brain, one 400 ppm female had a granular cell tumor and one control, one 400 ppm, and one 800 ppm female had a mixed cell glioma. In the spinal cord, one astrocytoma was noted in a 1,600 ppm male in the original evaluation. In the expanded review of the spinal cord, one granular cell tumor was found in a 400 ppm male and one meningioma was found in an 800 ppm female. There were statistically significant increases in the incidence of spinal nerve root degeneration in 1,600 ppm males and the incidences of sciatic nerve degeneration in 800 and 1,600 ppm females. More importantly, there were increases in the severities of both nerve lesions in males and in the severity of spinal nerve root degeneration in females. The incidences of bone marrow hyperplasia were significantly increased in 1,600 ppm males and females and 800 ppm females. Incidences of bone marrow granulomatous inflammation were increased in 1,600 ppm males and 800 and 1,600 ppm females, and the increase in the 800 ppm females was significant. Because this lesion is very rare and did not occur in control animals, it should be considered biologically significant. In the liver, the incidence of eosinophilic focus was significantly increased in 1,600 ppm males and the incidences of mixed cell focus were significantly increased in 400 and 1,600 ppm males. Incidences of mixed cell focus were increased in the liver of all exposed groups of females, and the increase was significant in the 1,600 ppm group. The incidence of transitional epithelial hyperplasia of the urinary bladder in 1,600 ppm females was significantly greater than that in the controls. There were significant decreases in the incidences of pituitary gland pars distalis adenoma in 1,600 ppm males and females, and the incidences in both sexes occurred with negative trends. The incidences of mammary gland fibroadenoma occurred in females with a negative trend, and the incidences in 800 and 1,600 ppm females were significantly less than that in the control group. The incidences of mononuclear cell leukemia in all exposed groups of males and females were significantly less than those in the controls. SAN Trimer (Batch 3) was not mutagenic in Salmonella typhimurium strains TA98 or TA100 or in Escherichia coli strain WP2 uvrA/pKM101 in tests conducted with and without exogenous metabolic activation. In vivo, however, results of a comet assay indicated significantly increased levels of DNA damage in brain cells of male and female juvenile rats following administration of SAN Trimer (Batch 3) by oral gavage. Dose-related increases in DNA damage in liver cells of these rats were also observed, but the increases were smaller than those observed in brain cells and were judged to be equivocal in both males and females. Indications of DNA damage following exposure to SAN Trimer were also seen in leukocytes of male and female rats. Increases in male rats were significant, but in females, observed levels of DNA damage did not correlate with dose. Therefore, the results were judged to be positive in males and equivocal in females. In addition to the positive comet assay results, significant increases in the frequencies of micronucleated reticulocytes were observed in peripheral blood of male and female juvenile rats dosed with SAN Trimer. Under the conditions of this 2-year feed study preceded by perinatal exposure, there was no evidence of carcinogenic activity of SAN Trimer in male and female F344/N rats given feed containing 400, 800, or 1,600 ppm SAN Trimer. Exposure to SAN Trimer resulted in increased incidences and/or severities of peripheral nerve degeneration in male and female F344/N rats, increased incidences of nonneoplastic lesions of the bone marrow and liver in male and female F344/N rats, and of nonneoplastic urinary bladder lesions in female F344/N rats. The incidences of pituitary gland adenoma and mononuclear cell leukemia in male and female F344/N rats and mammary gland fibroadenoma in female F344/N rats were decreased.

  6. Deep Brain Stimulation Reveals a Dissociation of Consummatory and Motivated Behaviour in the Medial and Lateral Nucleus Accumbens Shell of the Rat

    PubMed Central

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P.; Vanderschuren, Louk J. M. J.

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa. PMID:22428054

  7. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    PubMed

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  8. NTP toxicology and carcinogenesis studies of decalin (CAS No. 91-17-8) in F344/N rats and B6C3F(1) mice and a toxicology study of decalin in male NBR rats (inhalation studies).

    PubMed

    2005-01-01

    Decalin is used as an industrial solvent for naphthalene, fats, resins, oils, and waxes. It is also used as a substitute for turpentine in lacquers, paints, and varnishes; as a solvent and stabilizer for shoe polishes and floor waxes; and as a constituent of motor fuels and lubricants. Other applications include use as a paint thinner and remover, a patent fuel in stoves, a high-density fuel in submarine-launched cruise missile systems, and in stain removal and cleaning machinery. Decalin was nominated for study by the National Cancer Institute because of its chemical structure, its potential for consumer exposure, and a lack of adequate testing of the chemical. Male and female F344/N rats and B6C3F(1) mice were exposed to decalin (greater than 99% pure) by inhalation for 2 weeks, 3 months, or 2 years. Groups of male NBR rats were exposed to decalin for 2 weeks. Male NBR rats do not produce alpha2u-globulin; the NBR rats were included to study the relationship of alpha2u-globulin and renal lesion induction. Genetic toxicology studies were conducted in Salmonella typhimurium and mouse peripheral blood erythrocytes. 2-WEEK STUDIES IN RATS: Groups of five male and five female F344/N rats and five male NBR rats were exposed to 0, 25, 50, 100, 200, or 400 ppm decalin vapor 6 hours per day, 5 days per week for 16 days. All rats survived to the end of the study, and mean body weights of exposed groups were similar to those of the chamber controls. Renal toxicity studies were performed in male F344/N and NBR rats. The numbers of labeled cells and the labeling indices in the left kidney of 200 and 400 ppm F344/N male rats were significantly greater than those in the chamber controls. The alpha2u-globulin/soluble protein ratios were significantly increased in all exposed groups of F344/N rats. Liver weights of male F344/N and NBR rats exposed to 100 ppm or greater were significantly increased, as were those of all exposed groups of females. Kidney weights of male F344/N rats exposed to 50 ppm or greater were significantly increased. Exposure-related hyaline droplet accumulation, degeneration and regeneration of renal cortical tubules, and granular casts occurred in the kidney of exposed F344/N male rats. 2-WEEK STUDIES IN MICE: Groups of five male and five female B6C3F(1) mice were exposed to 0, 25, 50, 100, 200, or 400 ppm decalin vapor 6 hours per day, 5 days per week for 17 days. All mice survived to the end of the study, and mean body weights of exposed groups were similar to those of the chamber control groups. Liver weights of 200 and 400 ppm males and females and 100 ppm females were significantly increased. 3-MONTH STUDY IN RATS: Groups of 25 male and 20 female F344/N rats were exposed to 0, 25, 50, 100, 200, or 400 ppm decalin vapor 6 hours per day, 5 days per week for 2 (five male renal toxicity rats), 6 (10 male and 10 female clinical pathology rats), or 14 (10 core study rats) weeks. All rats survived to the end of the study, and mean body weights of exposed groups were similar to those of the chamber control groups. Urinalysis results indicated that decalin exposure caused increases in urine glucose and protein concentrations and enzyme activities that were consistent with the renal lesions observed microscopically. Renal toxicity studies were performed on rats sacrificed at 2 and 6 weeks and at the end of the study. In kidney tissue examined for cell proliferation, the numbers of PCNA-labeled cells and labeling indices were generally significantly greater than those of the chamber controls in exposed groups of rats at all three time points. Concentrations of alpha2u-globulin in the kidney as well as the alpha2u-globulin/soluble protein ratios were significantly increased at week 2 in all exposed groups and in the 200 and 400 ppm groups at week 6 and at the end of the study. Absolute and/or relative kidney and liver weights of male rats exposed to 50 ppm or greater were increased. Incidences of renal tubule regeneration and granular casts in the medulla of the kidney in exposed male rats were increased, and the severities of hyaline droplets generally increased with increasing exposure concentration. 3-MONTH STUDY IN MICE: Groups of 10 male and 10 female B6C3F(1) mice were exposed to 0, 25, 50, 100, 200, or 400 ppm decalin vapor 6 hours per day, 5 days per week for 14 weeks. All mice survived to the end of the study, and mean body weights of exposed groups were similar to those of the chamber control groups. Liver weights of 200 and 400 ppm males and females were significantly increased. There was a significant exposure concentration-related decrease in the absolute spermatid head count and a significant decrease in absolute head count of the 400 ppm group compared to the chamber controls. Incidences of centrilobular cytomegaly of the liver were increased in exposed male mice. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female F344/N rats were exposed to 0, 25, 50 (male rats only), 100, or 400 ppm (female rats only) decalin vapor 6 hours per day, 5 days per week for 105 weeks. A group of 20 male rats was exposed to 400 ppm. Survival of exposed groups was similar to that of the chamber control groups. Mean body weights of 400 ppm males were slightly less than those of the chamber controls during the second year of the study. Incidences of renal tubule adenoma and adenoma or carcinoma (combined) and of benign or malignant pheochromocytoma (combined) of the adrenal medulla in 100 and 400 ppm males were significantly increased. There was a significant association between nephropathy severity and adrenal pheochromocytoma incidence. Nonneoplastic lesions related to decalin exposure occurred in the kidney of male rats. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female B6C3F(1) mice were exposed to 0, 25, 100, or 400 ppm decalin vapor 6 hours per day, 5 days per week for 105 weeks. Survival of exposed mice was similar to that of the chamber controls. Mean body weights of exposed groups were generally similar to those of the chamber control groups throughout the study. Increased incidences of hepatocellular neoplasms occurred in 25 and 400 ppm female mice, and the incidences of centrilobular hypertrophy, necrosis, syncytial alteration, and erythrophagocytosis of the liver in 400 ppm males were significantly increased. The incidences of uterine stromal polyp and stromal polyp or stromal sarcoma (combined) occurred with positive trends in female mice. The rate of metabolism of decalin was the same for males and females in rats and mice. Also in rats and mice, decalin metabolism was saturated at less than 400 ppm. Increased labeling indices in male rats were likely due to changes related to alpha2u-globulin. Decalin was not mutagenic in S. typhimurium strains TA97, TA98, TA100, or TA1535, with or without induced hamster or rat liver S9 enzymes. A small but significant increase in the frequency of micronucleated normochromatic erythrocytes was noted in male mice exposed to decalin for 3 months; however, no induction of micronuclei was observed in female mice. Under the conditions of these studies, there was clear evidence of carcinogenic activity of decalin in male F344/N rats based on increased incidences of renal tubule neoplasms. The increased incidences of benign or malignant pheochromocytoma (combined) of the adrenal medulla in male rats were also considered to be exposure related. There was no evidence of carcinogenic activity of decalin in female F344/N rats exposed to 25, 100, or 400 ppm. There was no evidence of carcinogenic activity of decalin in male B6C3F(1) mice exposed to 25, 100, or 400 ppm. There was equivocal evidence of carcinogenic activity of decalin in female B6C3F(1) mice based on marginally increased incidences of hepatocellular and uterine neoplasms. Exposure of male rats to decalin resulted in nonneoplastic lesions of the kidney characteristic of alpha2u-globulin accumulation. Nonneoplastic lesions of the liver were observed in male mice exposed to decalin.

  9. Design, development, and optimization of polymeric based-colonic drug delivery system of naproxen.

    PubMed

    Sharma, Pooja; Chawla, Anuj; Pawar, Pravin

    2013-01-01

    The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture and further coated with Eudragit S-100 by dip immerse method. The in vitro drug release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4 with or without rat caecal content to simulate GIT conditions. Surface morphology and cross-sectional view of the tablets were visualized by scanning electron microscopy (SEM). All prepared batches were in compliance with the pharmacopoeial standards. The tablets which are compression coated with HPC followed by Eudragit S-100 coated showed highest in vitro drug release of 98.10% in presence of rat caecal content. The SEM of tablets suggested that the number of pores got increased in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study suggested that the lag time depends upon the coating concentrations of polymers. A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated tablets of naproxen were promising delivery for colon targeting.

  10. Imaging, autoradiography, and biodistribution of (188)Re-labeled PEGylated nanoliposome in orthotopic glioma bearing rat model.

    PubMed

    Huang, Feng-Yun J; Lee, Te-Wei; Kao, Chih-Hao K; Chang, Chih-Hsien; Zhang, Xiaoning; Lee, Wan-Yu; Chen, Wan-Jou; Wang, Shu-Chi; Lo, Jem-Mau

    2011-12-01

    The (188)Re-labeled pegylated nanoliposome (abbreviated as (188)Re-Liposome) was prepared and evaluated for its potential as a theragnostic agent for glioma. (188)Re-BMEDA complex was loaded into the pegylated liposome core with pH 5.5 ammonium sulfate gradient to produce (188)Re-Liposome. Orthotopic Fischer344/F98 glioma tumor-bearing rats were prepared and intravenously injected with (188)Re-Liposome. Biodistribution, pharmacokinetic study, autoradiography (ARG), histopathology, and nano-SPECT/CT imaging were conducted for the animal model. The result showed that (188)Re-Liposome accumulated in the brain tumor of the animal model from 0.28%±0.09% injected dose (ID)/g (n=3) at 1 hour to a maximum of 1.95%±0.35% ID/g (n=3) at 24 hours postinjection. The tumor-to-normal brain uptake ratio (T/N ratio) increased from 3.5 at 1 hour to 32.5 at 24 hours. Both ARG and histopathological images clearly showed corresponding tumor regions with high T/N ratios. Nano-SPECT/CT detected a very clear tumor image from 4 hours till 48 hours. This study reveals the potential of (188)Re-Liposome as a theragnostic agent for brain glioma.

  11. Peptide-micelle hybrids containing fasudil for targeted delivery to the pulmonary arteries and arterioles to treat pulmonary arterial hypertension.

    PubMed

    Gupta, Nilesh; Ibrahim, Hany M; Ahsan, Fakhrul

    2014-11-01

    This study investigates the respirability and efficacy of peptide-micelle hybrid nanoparticles as carriers for inhalational therapy of pulmonary arterial hypertension (PAH). CARSKNKDC (CAR), a cell-penetrating and lung-homing peptide, conjugated polyethylene glycol-distearoyl-phosphoethanolamine micelles containing fasudil, an investigational anti-PAH drug, were prepared by solvent evaporation method and characterized for various physicochemical properties. The pharmacokinetics and pharmacological efficacy of hybrid particles containing fasudil were evaluated in healthy rats and monocrotaline-induced PAH rats. CAR micelles containing fasudil had an entrapment efficiency of approximately 58%, showed controlled release of the drug, and were monodispersed with an average size of approximately 14 nm. Nuclear magnetic resonance scan confirmed the drug's presence in the core of peptide-micelle hybrid particles. Compared with plain micelles, CAR peptide increased the cellular uptake by approximately 1.7-fold and extended the drug half-life by approximately fivefold. The formulations were more prone to accumulate in the pulmonary vasculature than in the peripheral blood, which is evident from the ratio of the extent of reduction of pulmonary and systemic arterial pressures. On the whole, this study demonstrates that peptide-polymer hybrid micelles can serve as inhalational carriers for PAH therapy. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Design, Development, and Optimization of Polymeric Based-Colonic Drug Delivery System of Naproxen

    PubMed Central

    Sharma, Pooja; Chawla, Anuj; Pawar, Pravin

    2013-01-01

    The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture and further coated with Eudragit S-100 by dip immerse method. The in vitro drug release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4 with or without rat caecal content to simulate GIT conditions. Surface morphology and cross-sectional view of the tablets were visualized by scanning electron microscopy (SEM). All prepared batches were in compliance with the pharmacopoeial standards. The tablets which are compression coated with HPC followed by Eudragit S-100 coated showed highest in vitro drug release of 98.10% in presence of rat caecal content. The SEM of tablets suggested that the number of pores got increased in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study suggested that the lag time depends upon the coating concentrations of polymers. A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated tablets of naproxen were promising delivery for colon targeting. PMID:24198725

  13. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  14. Cellular activation in limbic brain systems during social play behaviour in rats

    PubMed Central

    van Kerkhof, Linda W.M.; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J.M.J.

    2013-01-01

    Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-fos as a marker. After a session of social play behaviour, pronounced increases in c-fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organised in this network, as indicated by play-specific correlations in c-fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organised neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats. PMID:23670540

  15. Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats.

    PubMed

    Zlebnik, Natalie E; Hedges, Valerie L; Carroll, Marilyn E; Meisel, Robert L

    2014-03-15

    Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, i.p.) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Influence of fixed muscle length and contractile properties on atrophy and subsequent recovery in the rat soleus and plantaris muscles.

    PubMed

    Fujita, Naoto; Arakawa, Takamitsu; Matsubara, Takako; Ando, Hiroshi; Miki, Akinori

    2009-01-01

    This study examined muscular atrophy and the recovery process induced by hindlimb unloading and joint immobilization in the rat soleus and plantaris muscles. Rats were divided into control, hindlimb unloading (HU), hindlimb unloading with ankle joint immobilization at the maximum dorsiflexion (HUD), and maximum plantarflexion (HUP) groups. The hindlimb was reloaded after fourteen days of unloading, and muscle atrophy and walking ability were assessed at 0, 3, and 7 days of reloading. A cross sectional area of muscle fibers in the soleus muscle on day 0 of reloading revealed sizes in order from the control, HUD, HUP down to the HU group, indicating that the HU group was the most atrophied among the four groups. These values in the plantaris muscle ranged in order from the control, HU, HUD, to HUP groups, the HUP group being the most atrophied among the four groups. These muscles recovered from atrophy in the same descending order, and the values in the HUD and HUP groups slowly recovered during the reloading periods. The HUD and HUP groups showed a central core lesion and reloading-induced lesions in some type I muscle fibers after the immobilization and reloading, one possible reason for the delayed recovery in these groups. The muscle atrophy in the HU, HUD, and HUP groups remained at day 7 although the walking ability appeared to be normal. Accordingly, further rehabilitation therapy might be necessary even if the functional ability appears to be normal.

  17. [The influence of ultrahigh-frequency electromagnetic radiation and low-intensity laser radiation on the body core temperature and basal metabolism in rats with systemic inflammation].

    PubMed

    Zhavoronok, I P; Molchanova, A Iu; Ulashik, V S

    2012-01-01

    The effects of ultrahigh-frequency electromagnetic radiation (UHF EMR) and low-intensity laser irradiation (LILI) on the body and skin temperature, oxygen consumption, production of carbon dioxide and heat release were investigated in the experiments on intact rats and during LPS-induced polyphasic fever. It was found that UHF EMR with the wavelength of 4,9 mm, 5,6 mm or 7,1 mm and LILI with the wavelength of 0.47 microm, 0.67 microm and 0.87 microm caused modulation of basal metabolism and thermal response to systemically administered lipopolysaccharide (LPS). These findings suggest that the most pronounced antipyretic and hypometabolic effects were observed after the treatment with UHF EMR at 7,1 mm and LILI at 470 microm.

  18. Differential Contributions of Nucleus Accumbens Subregions to Cue-Guided Risk/Reward Decision Making and Implementation of Conditional Rules.

    PubMed

    Floresco, Stan B; Montes, David R; Tse, Maric M T; van Holstein, Mieke

    2018-02-21

    The nucleus accumbens (NAc) is a key node within corticolimbic circuitry for guiding action selection and cost/benefit decision making in situations involving reward uncertainty. Preclinical studies have typically assessed risk/reward decision making using assays where decisions are guided by internally generated representations of choice-outcome contingencies. Yet, real-life decisions are often influenced by external stimuli that inform about likelihoods of obtaining rewards. How different subregions of the NAc mediate decision making in such situations is unclear. Here, we used a novel assay colloquially termed the "Blackjack" task that models these types of situations. Male Long-Evans rats were trained to choose between one lever that always delivered a one-pellet reward and another that delivered four pellets with different probabilities [either 50% (good-odds) or 12.5% (poor-odds)], which were signaled by one of two auditory cues. Under control conditions, rats selected the large/risky option more often on good-odds versus poor-odds trials. Inactivation of the NAc core caused indiscriminate choice patterns. In contrast, NAc shell inactivation increased risky choice, more prominently on poor-odds trials. Additional experiments revealed that both subregions contribute to auditory conditional discrimination. NAc core or shell inactivation reduced Pavlovian approach elicited by an auditory CS+, yet shell inactivation also increased responding during presentation of a CS-. These data highlight distinct contributions for NAc subregions in decision making and reward seeking guided by discriminative stimuli. The core is crucial for implementation of conditional rules, whereas the shell refines reward seeking by mitigating the allure of larger, unlikely rewards and reducing expression of inappropriate or non-rewarded actions. SIGNIFICANCE STATEMENT Using external cues to guide decision making is crucial for adaptive behavior. Deficits in cue-guided behavior have been associated with neuropsychiatric disorders, such as attention deficit hyperactivity disorder and schizophrenia, which in turn has been linked to aberrant processing in the nucleus accumbens. However, many preclinical studies have often assessed risk/reward decision making in the absence of explicit cues. The current study fills that gap by using a novel task that allows for the assessment of cue-guided risk/reward decision making in rodents. Our findings identified distinct yet complementary roles for the medial versus lateral portions of this nucleus that provide a broader understanding of the differential contributions it makes to decision making and reward seeking guided by discriminative stimuli. Copyright © 2018 the authors 0270-6474/18/381901-14$15.00/0.

  19. Discovery of aminofurazan-azabenzimidazoles as inhibitors of Rho-kinase with high kinase selectivity and antihypertensive activity.

    PubMed

    Stavenger, Robert A; Cui, Haifeng; Dowdell, Sarah E; Franz, Robert G; Gaitanopoulos, Dimitri E; Goodman, Krista B; Hilfiker, Mark A; Ivy, Robert L; Leber, Jack D; Marino, Joseph P; Oh, Hye-Ja; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Zhang, Daohua; Zhao, Yongdong; Jolivette, Larry J; Head, Martha S; Semus, Simon F; Elkins, Patricia A; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Doe, Christopher P; Bentley, Ross; Chen, Zunxuan X; Hu, Erding; Lee, Dennis

    2007-01-11

    The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.

  20. Habitat Value of Man-Made Coastal Marshes in Florida

    DTIC Science & Technology

    1991-09-01

    extraneous material as possible, and preserved in plastic bags. All cores were taken directly over a culm of Spartina that had been clipped at ground...spoonbill Ajaia ajaja x Wood stork Mycteri.a .ne:-. ana X Mottled duck Anas tulvigula x Black rail Lateral/us jamaici-,A,. X Clapper rail Rat/us...erythrophthalmus X X LeConte’s or sharp-tailed sparrow Ammodramus spp. X X Seaside sparrow Ammodramus maritimus X X Red- winged blackbird Agelaius

  1. Design, Development, and Optimization of Sterculia Gum-Based Tablet Coated with Chitosan/Eudragit RLPO Mixed Blend Polymers for Possible Colonic Drug Delivery

    PubMed Central

    Nath, Bipul; Nath, Lila Kanta

    2013-01-01

    The purpose of this study is to explore the possible applicability of Sterculia urens gum as a novel carrier for colonic delivery system of a sparingly soluble drug, azathioprine. The study involves designing a microflora triggered colon-targeted drug delivery system (MCDDS) which consists of a central polysaccharide core and is coated to different film thicknesses with blends of chitosan/Eudragit RLPO, and is overcoated with Eudragit L00 to provide acid and intestinal resistance. The microflora degradation property of gum was investigated in rat caecal medium. Drug release study in simulated colonic fluid revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudargit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that the optimized MCDDS was fitted well into first-order model, and apparent lag time was found to be 6 hours, followed by Higuchi release kinetics. In vivo study in rabbits shows delayed T max, prolonged absorption time, decreased C max, and absorption rate constant (Ka), indicating a reduced systemic toxicity of the drug as compared to other dosage forms. PMID:26555985

  2. Susceptibility weighted imaging of stroke brain in response to normobaric oxygen (NBO) therapy

    NASA Astrophysics Data System (ADS)

    Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.

    2015-03-01

    The neuroprotective effect of oxygen leads to recent interest in normobaric oxygen (NBO) therapy after acute ischemic stroke. However, the mechanism remains unclear and inconsistent outcomes were reported in human studies. Because NBO aims to improve brain tissue oxygenation by enhancing oxygen delivery to ischemic tissue, monitoring the oxygenation level changes in response to NBO becomes necessary to elucidate the mechanism and to assess the efficacy. Susceptibility weighted imaging (SWI) which provides a new MRI contrast by combining the magnitude and phase images is fit for purpose. SWI is sensitive to deoxyhemoglobin level changes and thus can be used to evaluate the cerebral metabolic rate of oxygen. In this study, SWI was used for in vivo monitoring of oxygenation changes in a rat model of permanent middle cerebral artery occlusion (MCAO) before, during and after 30 min of NBO treatment. Regions of interest in ischemic core, penumbra and contralateral normal area were generated based on diffusionweighted imaging and perfusion imaging. Significant differences in SWI indicating different oxygenation levels were generally found: contralateral normal > penumbra > ischemic core. Ischemic core showed insignificant increase in oxygenation during NBO and returned to pre-treatment level after termination of NBO. Meanwhile, the oxygenation levels slightly increased in contralateral normal and penumbra regions during NBO and significantly decreased to a level lower than pre-treatment after termination of NBO, indicating secondary metabolic disruption upon the termination of transient metabolic support from oxygen. Further investigation of NBO effect combined with reperfusion is necessary while SWI can be used to detect hemorrhagic transformation after reperfusion.

  3. Hsp-72, a candidate prognostic indicator of heatstroke.

    PubMed

    Dehbi, Mohammed; Baturcam, Engin; Eldali, Abdelmoneim; Ahmed, Maqbool; Kwaasi, Aaron; Chishti, Muhammad Azhar; Bouchama, Abderrezak

    2010-09-01

    Exposure of rats to environmental heat enhances the expression of heat shock protein-72 (Hsp-72) in most of their organs proportionally to heat stress severity. Pre-induction or over-expression of Hsp-72 prevents organ damage and lethality, suggesting that heat shock proteins (Hsps) may have a pathogenic role in this condition. We investigated the expression profile of Hsps in baboons subjected to environmental heat stress until the core temperature attained 42.5 degrees C (moderate heatstroke) or occurrence of hypotension associated with core temperature > or = 43.5 degrees C (severe heatstroke). Western blot analysis demonstrated a differential induction of Hsp-72 among organs of heat-stressed animals with the highest induction in the liver and the lowest in lung. Hsp-60 and Hsc-70 expression was similar between control and heat-stressed animals. ELISA studies indicated a marked release of Hsp-72 into the circulation of baboons with severe heatstroke with a peak at 24 h post-heatstroke onset and remained sustained up to 72 h. Hsp-72 release was not associated with core temperature or systolic blood pressure, but correlated with markers of liver, myocardium, and skeletal muscle tissue necrosis. Non-survivors displayed significantly higher Hsp-72 levels than survivors. No Hsp-60 was detected in the circulation. These findings add further evidence that increased expression of Hsp-72 may be an important component of the host response to severe heatstroke. They also suggest that extracellular Hsp-72 is a marker of multiple organs tissue damage. Whether extracellular Hsp-72 plays a role in the host immune response to heat stress merits further studies.

  4. LC-MS/MS method for the determination of haemanthamine in rat plasma, bile and urine and its application to a pilot pharmacokinetic study.

    PubMed

    Hroch, Miloš; Mičuda, Stanislav; Havelek, Radim; Cermanová, Jolana; Cahlíková, Lucie; Hošťálková, Anna; Hulcová, Daniela; Řezáčová, Martina

    2016-07-01

    Evidence gathered in various studies points to the fact that haemanthamine, an isoquinoline alkaloid, has multiple medicinally interesting characteristics, including antitumor, antileukemic, antioxidant, antiviral, anticonvulsant and antimalarial activity. This work presents, for the first time, a universal LC-MS/MS method for analysis of haemanthamine in plasma, bile and urine which has been verified in a pilot pharmacokinetic experiment on rats. Chromatographic separation was performed on a pentafluorophenyl core-shell column in gradient elution mode with a mobile phase consisting of acetonitrile-methanol-ammonium formate buffer. A sample preparation based on liquid-liquid extraction with methyl tert-butyl ether was employed with ambelline used as an internal standard. Quantification was performed using LC-MS-ESI(+) in Selected Reaction Monitoring mode. The method was validated according to the European Medicines Agency guideline in a concentration range of 0.1-10 μmol/L in plasma, bile and urine. The concentration-time profiles of haemanthamine in plasma, bile and urine after a single i.v. bolus of 10 mg/kg have been described for the first time. The presented study addresses the lack of information on haemanthamine pharmacokinetics and also introduces a new universal method of haemanthamine analysis in complex biological matrices. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Preparation and biodistribution of 59Fe-radiolabelled iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pospisilova, Martina; Zapotocky, Vojtech; Nesporova, Kristina; Laznicek, Milan; Laznickova, Alice; Zidek, Ondrej; Cepa, Martin; Vagnerova, Hana; Velebny, Vladimir

    2017-02-01

    We report on the 59Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange (59Fe-IONPex) and precursor labelling (59Fe-IONPpre). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—59Fe-IONPpre exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of 59Fe-IONPpre coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high 59Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

  6. Technetium-99m and rhenium-188 complexes with one and two pendant bisphosphonate groups for imaging arterial calcification.

    PubMed

    Bordoloi, Jayanta Kumar; Berry, David; Khan, Irfan Ullah; Sunassee, Kavitha; de Rosales, Rafael Torres Martin; Shanahan, Catherine; Blower, Philip J

    2015-03-21

    The first (99m)Tc and (188)Re complexes containing two pendant bisphosphonate groups have been synthesised, based on the mononuclear M(v) nitride core with two dithiocarbamate ligands each with a pendant bisphosphonate. The structural identity of the (99)Tc and stable rhenium analogues as uncharged, mononuclear nitridobis(dithiocarbamate) complexes was determined by electrospray mass spectrometry. The (99m)Tc complex showed greater affinity for synthetic and biological hydroxyapatite, and greater stability in biological media, than the well-known but poorly-characterised and inhomogeneous bone imaging agent (99m)Tc-MDP. It gave excellent SPECT images of both bone calcification (mice and rats) and vascular calcification (rat model), but the improved stability and the availability of two pendant bisphosphonate groups conferred no dramatic advantage in imaging over the conventional (99m)Tc-MDP agent in which the bisphosphonate group is bound directly to Tc. The (188)Re complex also showed preferential uptake in bone. These tracers and the biological model of vascular calcification offer the opportunity to study the biological interpretation and clinical potential of radionuclide imaging of vascular calcification and to deliver radionuclide therapy to bone metastases.

  7. Expression of the sodium potassium chloride cotransporter (NKCC1) and sodium chloride cotransporter (NCC) and their effects on rat lens transparency.

    PubMed

    Chee, K N; Vorontsova, I; Lim, J C; Kistler, J; Donaldson, P J

    2010-05-04

    To characterize the expression patterns of the Na+-K+-Cl(-) cotransporter (NKCC) 1 and NKCC2, and the Na+-Cl(-) cotransporter (NCC) in the rat lens and to determine if they play a role in regulating lens volume and transparency. RT-PCR was performed on RNA extracted from fiber cells to identify sodium dependent cotransporters expressed in the rat lens. Western blotting and immunohistochemistry, using NKCC1, NKCC2, and NCC antibodies, were used to verify expression at the protein level and to localize transporter expression. Organ cultured rat lenses were incubated in Artificial Aqueous Humor (AAH) of varying osmolarities or isotonic AAH that contained either the NKCC specific inhibitor bumetanide, or the NCC specific inhibitor thiazide for up to 18 h. Lens transparency was monitored with dark field microscopy, while tissue morphology and antibody labeling patterns were recorded using a confocal microscope. Molecular experiments showed that NKCC1 and NCC were expressed in the lens at both the transcript and protein levels, but NKCC2 was not. Immunohistochemistry showed that both NKCC1 and NCC were expressed in the lens cortex, but NCC expression was also found in the lens core. In the lens cortex the majority of labeling for both transporters was cytoplasmic in nature, while in the lens core, NCC labeling was associated with the membrane. Exposure of lenses to either hypotonic or hypertonic AAH had no noticeable effects on the predominantly cytoplasmic location of either transporter in the lens cortex. Incubation of lenses in isotonic AAH plus the NKCC inhibitor bumetanide for 18 h induced a cortical opacity that was initiated by a shrinkage of peripheral fiber cells and the dilation of the extracellular space between fiber cells in a deeper zone located some approximately 150 microm in from the capsule. In contrast, lenses incubated in isotonic AAH and the NCC inhibitor thiazide maintained both their transparency and their regular fiber cell morphology. We have confirmed the expression of NKCC1 in the rat lens and report for the first time the expression of NCC in lens fiber cells. The expression patterns of the two transporters and the differential effects of their specific inhibitors on fiber cell morphology indicate that these transporters play distinct roles in the lens. NKCC1 appears to mediate ion influx in the lens cortex while NCC may play a role in the lens nucleus.

  8. Development of the precerebellar nuclei in the rat: IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray.

    PubMed

    Altman, J; Bayer, S A

    1987-03-22

    Sequential thymidine radiograms from rats injected on days E16, E17, E18, and E19 and killed 2 hours after injection and at daily intervals up to day E22 were used to establish the site of origin, migratory route, and settling patterns of neurons of the nucleus reticularis tegmenti pontis and basal pontine gray. The nucleus reticularis tegmenti pontis neurons, which are produced predominantly on days E15 and E16, derive from the primary precerebellar neuroepithelium. These cells, unlike those of the lateral reticular and external cuneate nuclei, take an anteroventral subpial route, forming the anterior precerebellar extramural migratory stream. This migratory stream reaches the anterior pole of the pons by day E18. In rats injected on day E16 and killed on day E18 some of the cells that reach the pons are unlabeled, indicating that they represent the early component of neurons generated on day E15. The cells labeled on day E16 begin to settle in the pons on day E19, 3 days after their production. These cells, migrating in an orderly temporal sequence, form a posterodorsal-to-anteroventral gradient in the nucleus reticularis tegmenti pontis. Unlike the neurons of all the other precerebellar nuclei, the basal pontine gray neurons derive from the secondary precerebellar neuroepithelium. The secondary precerebellar neuroepithelium forms on day E16 as an outgrowth of the primary precerebellar neuroepithelium, and it remains mitotically active through day E19, spanning the entire period of basal pontine gray neurogenesis. The secondary precerebellar neuroepithelium is surrounded by a horizontal layer of postmitotic cells, representing the head-waters of the anterior precerebellar extramural migratory stream. In rats injected on day E18 and killed on day E19 the cells are labeled in the proximal half of the stream around the medulla but those closer to the pons are unlabeled, indicating an orderly sequence of migration. In rats injected on day E18 and killed on day E20 the labeled cells reach the pole of the pons. In the basal pontine gray the sequentially generated neurons settle in a precise order. The neurons generated on day E16 form a small core posteriorly and the neurons generated on days E17, E18, and E19 form regular concentric rings around the core in an inside-out sequence.

  9. Role of Central Amygdala Neuronal Ensembles in Incubation of Nicotine Craving.

    PubMed

    Funk, Douglas; Coen, Kathleen; Tamadon, Sahar; Hope, Bruce T; Shaham, Yavin; Lê, A D

    2016-08-17

    The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. Here, we further characterized incubation of nicotine craving in the rat model by determining whether this incubation is observed after adolescent-onset nicotine self-administration. We also used the neuronal activity marker Fos and the Daun02 chemogenetic inactivation procedure to identify cue-activated neuronal ensembles that mediate incubation of nicotine craving. We trained adolescent and adult male rats to self-administer nicotine (2 h/d for 12 d) and assessed cue-induced nicotine seeking in extinction tests (1 h) after 1, 7, 14, or 28 withdrawal days. In both adult and adolescent rats, nicotine seeking in the relapse tests followed an inverted U-shaped curve, with maximal responding on withdrawal day 14. Independent of the withdrawal day, nicotine seeking in the relapse tests was higher in adult than in adolescent rats. Analysis of Fos expression in different brain areas of adolescent and adult rats on withdrawal days 1 and 14 showed time-dependent increases in the number of Fos-positive neurons in central and basolateral amygdala, orbitofrontal cortex, ventral and dorsal medial prefrontal cortex, and nucleus accumbens core and shell. In adult Fos-lacZ transgenic rats, selective inactivation of nicotine-cue-activated Fos neurons in central amygdala, but not orbitofrontal cortex, decreased "incubated" nicotine seeking on withdrawal day 14. Our results demonstrate that incubation of nicotine craving occurs after adolescent-onset nicotine self-administration and that neuronal ensembles in central amygdala play a critical role in this incubation. The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. It is currently unknown whether incubation of craving also occurs after adolescent-onset nicotine self-administration. The brain areas that mediate such incubation are also unknown. Here, we used a rat model of incubation of drug craving, the neuronal activity marker Fos, and the Daun02 chemogenetic inactivation method to demonstrate that incubation of nicotine craving is also observed after adolescent-onset nicotine self-administration and that neuronal ensembles in the central nucleus of the amygdala play a critical role in this incubation in adult rats. Copyright © 2016 the authors 0270-6474/16/368612-12$15.00/0.

  10. Role of Central Amygdala Neuronal Ensembles in Incubation of Nicotine Craving

    PubMed Central

    Coen, Kathleen; Tamadon, Sahar; Hope, Bruce T.; Shaham, Yavin; Lê, A.D.

    2016-01-01

    The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. Here, we further characterized incubation of nicotine craving in the rat model by determining whether this incubation is observed after adolescent-onset nicotine self-administration. We also used the neuronal activity marker Fos and the Daun02 chemogenetic inactivation procedure to identify cue-activated neuronal ensembles that mediate incubation of nicotine craving. We trained adolescent and adult male rats to self-administer nicotine (2 h/d for 12 d) and assessed cue-induced nicotine seeking in extinction tests (1 h) after 1, 7, 14, or 28 withdrawal days. In both adult and adolescent rats, nicotine seeking in the relapse tests followed an inverted U-shaped curve, with maximal responding on withdrawal day 14. Independent of the withdrawal day, nicotine seeking in the relapse tests was higher in adult than in adolescent rats. Analysis of Fos expression in different brain areas of adolescent and adult rats on withdrawal days 1 and 14 showed time-dependent increases in the number of Fos-positive neurons in central and basolateral amygdala, orbitofrontal cortex, ventral and dorsal medial prefrontal cortex, and nucleus accumbens core and shell. In adult Fos–lacZ transgenic rats, selective inactivation of nicotine-cue-activated Fos neurons in central amygdala, but not orbitofrontal cortex, decreased “incubated” nicotine seeking on withdrawal day 14. Our results demonstrate that incubation of nicotine craving occurs after adolescent-onset nicotine self-administration and that neuronal ensembles in central amygdala play a critical role in this incubation. SIGNIFICANCE STATEMENT The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. It is currently unknown whether incubation of craving also occurs after adolescent-onset nicotine self-administration. The brain areas that mediate such incubation are also unknown. Here, we used a rat model of incubation of drug craving, the neuronal activity marker Fos, and the Daun02 chemogenetic inactivation method to demonstrate that incubation of nicotine craving is also observed after adolescent-onset nicotine self-administration and that neuronal ensembles in the central nucleus of the amygdala play a critical role in this incubation in adult rats. PMID:27535909

  11. Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers.

    PubMed

    Feola, Iolanda; Volkers, Linda; Majumder, Rupamanjari; Teplenin, Alexander; Schalij, Martin J; Panfilov, Alexander V; de Vries, Antoine A F; Pijnappels, Daniël A

    2017-11-01

    Recently, a new ablation strategy for atrial fibrillation has emerged, which involves the identification of rotors (ie, local drivers) followed by the localized targeting of their core region by ablation. However, this concept has been subject to debate because the mode of arrhythmia termination remains poorly understood, as dedicated models and research tools are lacking. We took a unique optogenetic approach to induce and locally target a rotor in atrial monolayers. Neonatal rat atrial cardiomyocyte monolayers expressing a depolarizing light-gated ion channel (Ca 2+ -translocating channelrhodopsin) were subjected to patterned illumination to induce single, stable, and centralized rotors by optical S1-S2 cross-field stimulation. Next, the core region of these rotors was specifically and precisely targeted by light to induce local conduction blocks of circular or linear shapes. Conduction blocks crossing the core region, but not reaching any unexcitable boundary, did not lead to termination. Instead, electric waves started to propagate along the circumference of block, thereby maintaining reentrant activity, although of lower frequency. If, however, core-spanning lines of block reached at least 1 unexcitable boundary, reentrant activity was consistently terminated by wave collision. Lines of block away from the core region resulted merely in rotor destabilization (ie, drifting). Localized optogenetic targeting of rotors in atrial monolayers could lead to both stabilization and destabilization of reentrant activity. For termination, however, a line of block is required reaching from the core region to at least 1 unexcitable boundary. These findings may improve our understanding of the mechanisms involved in rotor-guided ablation. © 2017 American Heart Association, Inc.

  12. Thermal Stress and Toxicity | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  13. Fat emulsions based on structured lipids (1,3-specific triglycerides): an investigation of the in vivo fate.

    PubMed

    Hedeman, H; Brøndsted, H; Müllertz, A; Frokjaer, S

    1996-05-01

    Structured lipids (1,3-specific triglycerides) are new chemical entities made by enzymatic transesterification of the fatty acids in the 1,3 positions of the triglyceride. The purpose of this study is to characterize structured lipids with either short chain fatty acids or medium chain fatty acids in the 1,3 positions with regard to their hydrophobicity, and investigate the in vivo fate in order to evaluate the potential of structured lipids as core material in fat emulsions used as parenteral drug delivery system. The lipids were characterized by employing reversed phase high performance liquid chromatography. The biodistribution of radioactively labeled emulsions was studied in rats. By employing high performance liquid chromatography a rank order of the hydrophobicities of the lipids could be given, with the triglycerides containing long chain fatty acids being the most hydrophobic and the structured lipid with short chain fatty acids in the 1,3 positions the least. When formulated as fat emulsions, the emulsion based on structured lipids with short fatty acids in the 1,3 positions was removed slower from the general blood circulation compared to emulsions based on lipids with long chain fatty acids in the 1,3 positions. The type of core material influences the in vivo circulation time of fat emulsions.

  14. Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens.

    PubMed

    Mai, Bettina; Sommer, Susanne; Hauber, Wolfgang

    2012-03-01

    Decision-making policies are subject to modulation by changing motivational states. However, so far, little is known about the neurochemical mechanisms that bridge motivational states with decision making. Here we examined whether dopamine (DA) in the nucleus accumbens core (AcbC) modulates the effects of motivational states on effort-based decision making. Using a cost-benefit T-maze task in rats, we examined the effects of AcbC DA depletions on effort-based decision making, in particular on the sensitivity of effort-based decision making to a shift from a hungry to a sated state. The results demonstrated that, relative to sham controls, rats with AcbC DA depletion in a hungry as well as in a sated state had a reduced preference for effortful but large-reward action. This finding provides further support for the notion that AcbC DA regulates how much effort to invest for rewards. Importantly, our results further revealed that effort-based decision making in lesioned rats, as in sham controls, was still sensitive to a shift from a hungry to a sated state; that is, their preferences for effortful large-reward actions became lower after a shift from a restricted to a free-feeding regimen. These finding indicate that AcbC DA is not necessarily involved in mediating the effects of a shift in motivational state on decision-making policies.

  15. Reduction in heat-induced gastrointestinal hyperpermeability in rats by bovine colostrum and goat milk powders.

    PubMed

    Prosser, C; Stelwagen, K; Cummins, R; Guerin, P; Gill, N; Milne, C

    2004-02-01

    Male Sprague-Dawley rats were assigned to one of three dietary groups [standard diet (Cont; n = 8), standard diet plus bovine colostrum powder (BColost 1.7 g/kg; n = 8), or goat milk powder (GMilk 1.7 g/kg; n = 8)] to determine the ability of these supplements to reduce gastrointestinal hyperpermeability induced by heat. Raising core body temperature of rats to 41.5 degrees C increased transfer of (51)Cr-EDTA from gut into blood 34-fold relative to the ambient temperature value (P < 0.05) in the Cont group of rats, indicative of increased gastrointestinal permeability. Significantly less (P < 0.01) (51)Cr-EDTA was transferred into the blood of rats in either the BColost (27% of Cont) or GMilk group (10% of Cont) after heating, showing that prior supplementation with either bovine colostrum or goat milk powder significantly reduced the impact of heat stress on gastrointestinal permeability. The changes in the BColost group were not significantly different than those of the GMilk group. The potential mechanism of the protective effect of bovine colostrum and goat milk powders may involve modulation of tight junction permeability, because both powders were able to maintain transepithelial resistance in Madin Darby canine kidney cells challenged with EGTA compared with cells maintained in media only. The results show that bovine colostrum powder can partially alleviate the effects of hyperthermia on gastrointestinal permeability in the intact animal. Moreover, goat milk powder was equally as effective as bovine colostrum powder, and both may be of benefit in other situations where gastrointestinal barrier function is compromised.

  16. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality.

    PubMed

    Romanovsky, Andrej A; Ivanov, Andrei I; Shimansky, Yury P

    2002-06-01

    There is a misbelief that the same animal has the same thermoneutral zone (TNZ) in different experimental setups. In reality, TNZ strongly depends on the physical environment and varies widely across setups. Current methods for determining TNZ require elaborate equipment and can be applied only to a limited set of experimental conditions. A new, broadly applicable approach that rapidly determines whether given conditions are neutral for a given animal is needed. Consistent with the definition of TNZ [the range of ambient temperature (T(a)) at which body core temperature (T(c)) regulation is achieved only by control of sensible heat loss], we propose three criteria of thermoneutrality: 1) the presence of high-magnitude fluctuations in skin temperature (T(sk)) of body parts serving as specialized heat exchangers with the environment (e.g., rat tail), 2) the closeness of T(sk) to the median of its operational range, and 3) a strong negative correlation between T(sk) and T(c). Thermocouple thermometry and liquid crystal thermography were performed in five rat strains at 13 T(a). Under the conditions tested (no bedding or filter tops, no group thermoregulation), the T(a) range of 29.5-30.5 degrees C satisfied all three TNZ criteria in Wistar, BDIX, Long-Evans, and Zucker lean rats; Zucker fatty rats had a slightly lower TNZ (28.0-29.0 degrees C). Skin thermometry or thermography is a definition-based, simple, and inexpensive technique to determine whether experimental or housing conditions are neutral, subneutral, or supraneutral for a given animal.

  17. Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons

    PubMed Central

    1985-01-01

    Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously. PMID:4008529

  18. The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell, and olfactory tubercle valid?

    PubMed

    Ikemoto, Satoshi; Qin, Mei; Liu, Zhong-Hua

    2005-05-18

    When projection analyses placed the nucleus accumbens and olfactory tubercle in the striatal system, functional links between these sites began to emerge. The accumbens has been implicated in the rewarding effects of psychomotor stimulants, whereas recent work suggests that the medial accumbens shell and medial olfactory tubercle mediate the rewarding effects of cocaine. Interestingly, anatomical evidence suggests that medial portions of the shell and tubercle receive afferents from common zones in a number of regions. Here, we report results suggesting that the current division of the ventral striatum into the accumbens core and shell and the olfactory tubercle does not reflect the functional organization for amphetamine reward. Rats quickly learned to self-administer D-amphetamine into the medial shell or medial tubercle, whereas they failed to learn to do so into the accumbens core, ventral shell, or lateral tubercle. Our results suggest that primary reinforcement of amphetamine is mediated via the medial portion of the ventral striatum. Thus, the medial shell and medial tubercle are more functionally related than the medial and ventral shell or the medial and lateral tubercle. The current core-shell-tubercle scheme should be reconsidered in light of recent anatomical data and these functional findings.

  19. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion.

    PubMed

    Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo

    2012-05-21

    Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. [Studies on glial isomerization of lamina cribrosa in rat].

    PubMed

    Dai, Chao; Li, Da-qing; Li, Ying; Raisman, Geoffrey; Yin, Zheng-qin

    2013-08-01

    To explore the mechanism of optic nerve damage in glaucoma by study on structure of glial lamina cribrosa(LC) in rats. Experimental study. Albino Swiss(AS) rats were divided into 3 groups. Bilateral eyes of 10 normal rats were employed to be group I (right eye ) and group II (left eye) . Group III was from the left eyes of 13 rats underwent artificially intraocular hypertension in the right eyes. All rats were perfused and fixed with electronic microscopy fixative (2% paraformaldehyde +2% glutaraldehyde). Trimmed optic nerves were embedded with resin. Serial 1.5 µm thick 'semithin' sections were cut, either (2 eyes from group III) longitudinally, through the optic nerve head (ONH) from the retinal end to the commencement of the optic nerve, or (31 eyes) transversely (cross-sections). Ultrathin sections were cut in the middle of glial LC. The morphological observation of glial LC was obtained by light microscopy and transmission electron microscopy. Bonferroni correction was used to counteract the multiple comparison of each group. Fortified astrocytes formed the main supportive structure of glial LC in all rats, including group I, group II and group III. Astrocytes were ranked as a fan-like radial array, firmly attached ventrally to the sheath of the LC by thick basal processes, but dividing dorsally into progressively more slender processes with only delicate attachments to the sheath. These fortified astrocytes form ventral stout basal end feet, radial array, axon free-'preterminal' layer before terminating in a complex layer of fine interdigitating delicate branches at the dorsal. LC astrocytes were highly and uniformly electron dense throughout all the cell processes. An equally striking feature of the astrocytic processes was their massive cytoskeletal 'strengthening' of longitudinal massed filaments and tubules. Especially, massive filaments accumulated as cytoskeletal cores to form 'scaffold' of fortified astrocytes. There was vulnerable area in the dorsal of glial LC. This vulnerable area was isomerisation in bilateral eyes and different rats. There was different space in the vulnerable area. These space could be divided into 3 grades, (-), (+) and (++) . The number of (-), (+) and (++)were 1, 6, 3 eyes in group I, 1, 5, 4 eyes in group II, 1, 7, 3 eyes in group III. The Kruskal-Wallis test was used for statistical evaluations. There was no statistical differences of the ratio of (-), (+) and (++) in group I, group II and group III(χ(2) = 3.35, P = 0.187>0.05;group I vs group II, Z = -1.048, P = 0.294;group I vs group III Z = -1.691, P = 0.091;group II vs group III,Z = -1.343, P = 0.179). The ratio of space (-)was significantly less than space (+) and space (++) in group I, group II and group III(χ(2) = 23.88, P < 0.05; (-) vs (+) , Z = -2.821, P = 0.005; (-) vs (++) , Z = -2.726, P = 0.006). The ratio of space (+)was much more than space (++) in group I, group II and group III(Z = -4.410, P < 0.05). Glial isomerisation in LC may play a key role in glaucomatous optic nerve damage.

  1. Highly potent growth hormone secretagogues: hybrids of NN703 and ipamorelin.

    PubMed

    Hansen, T K; Ankersen, M; Raun, K; Hansen, B S

    2001-07-23

    A series of NN703 analogues with lysine mimetics combined with naphthyl- or biphenylalanine in the core has been prepared and tested in vitro in a rat pituitary cell based assay and subsequently in vivo in pigs in a single dose at 50 nmol/kg. Re-introduction of certain pharmacophores in the C-terminal of NN703, which were originally removed during optimisation for oral bioavailability, led to unexpectedly potent compounds in vitro as well as in vivo.

  2. Feasibility of an Electromagnetic Diaphragm Compressor for Cryocoolers.

    DTIC Science & Technology

    1995-05-01

    carried out with considerable precision by Dave Slezak and Leo Hoogenboom . The review of the report has been conducted with characteristic thoroughness by...COIL S NI(t) CORE F (t) DIAPHRAGM x(t) WORKING P(t)GEN RAT R DRVRB(t•) CH e’AMBER POWER POWER PRESSURIZED SUPPLY SUPPLY GAS Figure 6. Block Diagram...efficiency r1 , defined as the ratio of the output PV power and the input electrical power Pi, (3) the operating frequency f (4) the mean fill pressure

  3. The discovery of 1,2,3,9b-tetrahydro-5H-imidazo[2,1-a]isoindol-5-ones as a new class of respiratory syncytial virus (RSV) fusion inhibitors. Part 1.

    PubMed

    Bond, Silas; Draffan, Alistair G; Fenner, Jennifer E; Lambert, John; Lim, Chin Yu; Lin, Bo; Luttick, Angela; Mitchell, Jeffrey P; Morton, Craig J; Nearn, Roland H; Sanford, Vanessa; Stanislawski, Pauline C; Tucker, Simon P

    2015-02-15

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, young children and adults. Compound 1a (9b-(4-chlorophenyl)-1-(4-fluorobenzoyl)-1,2,3,9b-tetrahydro-5H-imidazo[2,1-a]isoindol-5-one) was identified as an inhibitor of A and B strains of RSV targeting the fusion glycoprotein. SAR was developed by systematic exploration of the phenyl (R(1)) and benzoyl (R(2)) groups. Furthermore, introduction of a nitrogen at the 8-position of the tricyclic core resulted in active analogues with improved properties (aqueous solubility, protein binding and logD) and excellent rat pharmacokinetics (e.g., rat oral bioavailability of 89% for compound 17). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. N-Acetylcysteine reverses cocaine-induced metaplasticity.

    PubMed

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M Foster; Gass, Justin T; Lavin, Antonieta; Kalivas, Peter W

    2009-02-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry crucial for regulating motivated behavior. We found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentiation (LTP) and long-term depression (LTD) in the nucleus accumbens core subregion after stimulation of the prefrontal cortex. N-acetylcysteine (NAC) treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). NAC treatment of rats restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Our findings show that cocaine self-administration induces metaplasticity that inhibits further induction of synaptic plasticity, and this impairment can be reversed by NAC, a drug that also prevents relapse.

  5. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.

    PubMed

    Engelbrecht, Christoph J; Johnston, Richard S; Seibel, Eric J; Helmchen, Fritjof

    2008-04-14

    We present a small, lightweight two-photon fiberscope and demonstrate its suitability for functional imaging in the intact brain. Our device consists of a hollow-core photonic crystal fiber for efficient delivery of near-IR femtosecond laser pulses, a spiral fiber-scanner for resonant beam steering, and a gradient-index lens system for fluorescence excitation, dichroic beam splitting, and signal collection. Fluorescence light is remotely detected using a standard photomultiplier tube. All optical components have 1 mm dimensions and the microscope's headpiece weighs only 0.6 grams. The instrument achieves micrometer resolution at frame rates of typically 25 Hz with a field-of-view of up to 200 microns. We demonstrate functional imaging of calcium signals in Purkinje cell dendrites in the cerebellum of anesthetized rats. The microscope will be easily portable by a rat or mouse and thus should enable functional imaging in freely behaving animals.

  6. Individual Differences in Animal Stress Models: Considering Resilience, Vulnerability, and the Amygdala in Mediating the Effects of Stress and Conditioned Fear on Sleep

    PubMed Central

    Wellman, Laurie L.; Fitzpatrick, Mairen E.; Hallum, Olga Y.; Sutton, Amy M.; Williams, Brook L.; Sanford, Larry D.

    2016-01-01

    Study Objectives: To examine the REM sleep response to stress and fearful memories as a potential marker of stress resilience and vulnerability and to assess the role of the basolateral amygdala (BLA) in mediating the effects of fear memory on sleep. Methods: Outbred Wistar rats were surgically implanted with electrodes for recording EEG and EMG and with bilateral guide cannulae directed at the BLA. Data loggers were placed intraperitoneally to record core body temperature. After recovery from surgery, the rats received shock training (ST: 20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval) and afterwards received microinjections of the GABAA agonist muscimol (MUS; 1.0 μM) to inactivate BLA or microinjections of vehicle (VEH) alone. Subsequently, the rats were separated into 4 groups (VEH-vulnerable (VEH-Vul; n = 14), VEH-resilient (VEH-Res; n = 13), MUS-vulnerable (MUS-Vul; n = 8), and MUS-resilient (MUS-Res; n = 11) based on whether or not REM was decreased, compared to baseline, during the first 4 h following ST. We then compared sleep, freezing, and the stress response (stress-induced hyperthermia, SIH) across groups to determine the effects of ST and fearful context re-exposure alone (CTX). Results: REM was significantly reduced on the ST day in both VEH-Vul and MUS-Vul rats; however, post-ST MUS blocked the reduction in REM on the CTX day in the MUS-Vul group. The VEH-Res and MUS-Res rats showed similar levels of REM on both ST and CTX days. The effects of post-ST inactivation of BLA on freezing and SIH were minimal. Conclusions: Outbred Wistar rats can show significant individual differences in the effects of stress on REM that are mediated by BLA. These differences in REM can be independent of behavioral fear and the peripheral stress response, and may be an important biomarker of stress resilience and vulnerability. Citation: Wellman LL, Fitzpatrick ME, Hallum OY, Sutton AM, Williams BL, Sanford LD. Individual differences in animal stress models: considering resilience, vulnerability, and the amygdala in mediating the effects of stress and conditioned fear on sleep. SLEEP 2016;39(6):1293–1303. PMID:27091518

  7. Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.

    PubMed

    Castranova, V; Ma, J Y; Yang, H M; Antonini, J M; Butterworth, L; Barger, M W; Roberts, J; Ma, J K

    2001-08-01

    There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposure to diesel exhaust particles on these alveolar macrophage functions and the role of adsorbed organic chemicals compared to the carbonaceous core in the toxicity of diesel particles. In vitro exposure of rat alveolar macrophages to diesel exhaust particles decreased the ability of lipopolysaccharide (LPS), a bacterial product] to stimulate the production of inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). Methanol extract exhibited this potential but methanol-washed diesel particles did not. Exposure of rats to diesel exhaust particles by intratracheal instillation also decreased LPS-induced TNF-alpha and IL-1 production from alveolar macrophages. In contrast, carbon black did not exhibit this inhibitory effect. Exposure of rats to diesel exhaust particles by inhalation decreased the ability of alveolar macrophages to produce antimicrobial reactive oxidant species in response to zymosan (a fungal component). In contrast, exposure to coal dust increased zymosan-stimulated oxidant production. In vivo exposure to diesel exhaust particles but not to carbon black decreased the ability of the lungs to clear bacteria. Inhalation exposure of mice to diesel exhaust particles but not to coal dust depressed the ability of the lung to produce the antiviral agent interferon and increased viral multiplication in the lung. These results support the hypothesis that exposure to diesel exhaust particles increases the susceptibility of the lung to infection by depressing the antimicrobial potential of alveolar macrophages. This inhibitory effect appears to be due to adsorbed organic chemicals rather than the carbonaceous core of the diesel particles.

  8. Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.

    PubMed Central

    Castranova, V; Ma, J Y; Yang, H M; Antonini, J M; Butterworth, L; Barger, M W; Roberts, J; Ma, J K

    2001-01-01

    There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposure to diesel exhaust particles on these alveolar macrophage functions and the role of adsorbed organic chemicals compared to the carbonaceous core in the toxicity of diesel particles. In vitro exposure of rat alveolar macrophages to diesel exhaust particles decreased the ability of lipopolysaccharide (LPS), a bacterial product] to stimulate the production of inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). Methanol extract exhibited this potential but methanol-washed diesel particles did not. Exposure of rats to diesel exhaust particles by intratracheal instillation also decreased LPS-induced TNF-alpha and IL-1 production from alveolar macrophages. In contrast, carbon black did not exhibit this inhibitory effect. Exposure of rats to diesel exhaust particles by inhalation decreased the ability of alveolar macrophages to produce antimicrobial reactive oxidant species in response to zymosan (a fungal component). In contrast, exposure to coal dust increased zymosan-stimulated oxidant production. In vivo exposure to diesel exhaust particles but not to carbon black decreased the ability of the lungs to clear bacteria. Inhalation exposure of mice to diesel exhaust particles but not to coal dust depressed the ability of the lung to produce the antiviral agent interferon and increased viral multiplication in the lung. These results support the hypothesis that exposure to diesel exhaust particles increases the susceptibility of the lung to infection by depressing the antimicrobial potential of alveolar macrophages. This inhibitory effect appears to be due to adsorbed organic chemicals rather than the carbonaceous core of the diesel particles. PMID:11544172

  9. Development of innovative oil-core self-organized nanovesicles prepared with chitosan and lecithin using a 2(3) full-factorial design.

    PubMed

    Haas, Sandra Elisa; de Andrade, Cristiane; Sansone, Pedro Ernesto da Silva; Guterres, Silvia; Dalla Costa, Teresa

    2014-11-01

    The aim of this study was to develop innovative nanosystems with isopropyl myristate as the oil core of self-assembly nanovesicles constituted of chitosan and lecithin using a 2(3) factorial design. The factors analyzed were chitosan (X1, levels 4 and 8  mg/ml), oil (X2, levels 10 and 20  mg/ml) and lecithin (X3, levels 4 and 8 mg/ml). The responses evaluated were diameter, zeta potential, pH, viscosity, and backscattering analysis. The bioavailability was evaluated after oral administration of clozapine free and nanoencapsulated in rats. The diameter ranged from 0.348 to 1.5 µm for F2 (X1, 4; X2, 10; X3, 8 mg/ml) and F7 (X1, 8; X2, 20; X3, 4  mg/ml), respectively. Laser diffractometry analysis revealed only one diameter population for all batches. Zeta potential was positive, being influenced by X1 and X2/X3 association. Viscosity values were dependent on the X1 and X2 concentrations used. A structure proposed for the nanosystem consists of chitosan forming the hydrophilic shell layer that protects the core comprised of lecithin and the hydrophobic groups of oil. The AUC0-∞ was almost 3 times higher with the clozapine nanoencapsuted in relation to free drug. It was developed a new nanosystem which is able of improving the absorption of drugs.

  10. A cocaine context renews drug seeking preferentially in a subset of individuals.

    PubMed

    Saunders, Benjamin T; O'Donnell, Elizabeth G; Aurbach, Elyse L; Robinson, Terry E

    2014-11-01

    Addiction is characterized by a high propensity for relapse, in part because cues associated with drugs can acquire Pavlovian incentive motivational properties, and acting as incentive stimuli, such cues can instigate and invigorate drug-seeking behavior. There is, however, considerable individual variation in the propensity to attribute incentive salience to reward cues. Discrete and localizable reward cues act as much more effective incentive stimuli in some rats ('sign-trackers', STs), than others ('goal-trackers', GTs). We asked whether similar individual variation exists for contextual cues associated with cocaine. Cocaine context conditioned motivation was quantified in two ways: (1) the ability of a cocaine context to evoke conditioned hyperactivity and (2) the ability of a context in which cocaine was previously self-administered to renew cocaine-seeking behavior. Finally, we assessed the effects of intra-accumbens core flupenthixol, a nonselective dopamine receptor antagonist, on context renewal. In contrast to studies using discrete cues, a cocaine context spurred greater conditioned hyperactivity, and more robustly renewed extinguished cocaine seeking in GTs than STs. In addition, cocaine context renewal was blocked by antagonism of dopamine receptors in the accumbens core. Thus, contextual cues associated with cocaine preferentially acquire motivational control over behavior in different individuals than do discrete cues, and in these individuals the ability of a cocaine context to create conditioned motivation for cocaine requires dopamine in the core of the nucleus accumbens. We speculate that different individuals may be preferentially sensitive to different 'triggers' of relapse.

  11. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats

    NASA Technical Reports Server (NTRS)

    Davidson, Alec J.; Stokkan, Karl-Arne; Yamazaki, Shin; Menaker, Michael

    2002-01-01

    The mammalian Per1 gene is an important component of the core cellular clock mechanism responsible for circadian rhythms. The rodent liver and other tissues rhythmically express Per1 in vitro but typically damp out within a few cycles. In the liver, the peak of this rhythm occurs in the late subjective night in an ad lib-fed rat, but will show a large phase advance in response to restricted availability of food during the day. The relationship between this shift in the liver clock and food-anticipatory activity (FAA), the circadian behavior entrained by daily feeding, is currently unknown. Insulin is released during feeding in mammals and could serve as an entraining signal to the liver. To test the role of insulin in the shift in liver Per1 expression and the generation of FAA, per-luciferase transgenic rats were made diabetic with a single injection of streptozotocine. Following 1 week of restricted feeding and locomotor activity monitoring, liver was collected for per-luc recording. In two separate experiments, FAA emerged and liver Per1 phase-shifted in response to daytime 8-h food restriction. The results rule out insulin as a necessary component of this system.

  12. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction.

    PubMed

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.

  13. TCDD dysregulation of 13 AHR-target genes in rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, John D., E-mail: john.watson@oicr.on.ca; Prokopec, Stephenie D., E-mail: stephenie.prokopec@oicr.on.ca; Smith, Ashley B., E-mail: ashleyblaines@gmail.com

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluatedmore » doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules following TCDD treatment. • TCDD-sensitive Long–Evans and TCDD-resistant Han/Wistar rats were compared. • Time courses and dose responses were analyzed for AHR-core gene changes. • 7 genes displayed inter-strain mRNA differences at times after TCDD exposure. • 2 of the AHR-core genes had significant inter-strain differences in their TCDD ED{sub 50}.« less

  14. A Combined Metabonomic and Proteomic Approach Identifies Frontal Cortex Changes in a Chronic Phencyclidine Rat Model in Relation to Human Schizophrenia Brain Pathology

    PubMed Central

    Wesseling, Hendrik; Chan, Man K; Tsang, T M; Ernst, Agnes; Peters, Fabian; Guest, Paul C; Holmes, Elaine; Bahn, Sabine

    2013-01-01

    Current schizophrenia (SCZ) treatments fail to treat the broad range of manifestations associated with this devastating disorder. Thus, new translational models that reproduce the core pathological features are urgently needed to facilitate novel drug discovery efforts. Here, we report findings from the first comprehensive label-free liquid-mass spectrometry proteomic- and proton nuclear magnetic resonance-based metabonomic profiling of the rat frontal cortex after chronic phencyclidine (PCP) intervention, which induces SCZ-like symptoms. The findings were compared with results from a proteomic profiling of post-mortem prefrontal cortex from SCZ patients and with relevant findings in the literature. Through this approach, we identified proteomic alterations in glutamate-mediated Ca2+ signaling (Ca2+/calmodulin-dependent protein kinase II, PPP3CA, and VISL1), mitochondrial function (GOT2 and PKLR), and cytoskeletal remodeling (ARP3). Metabonomic profiling revealed changes in the levels of glutamate, glutamine, glycine, pyruvate, and the Ca2+ regulator taurine. Effects on similar pathways were also identified in the prefrontal cortex tissue from human SCZ subjects. The discovery of similar but not identical proteomic and metabonomic alterations in the chronic PCP rat model and human brain indicates that this model recapitulates only some of the molecular alterations of the disease. This knowledge may be helpful in understanding mechanisms underlying psychosis, which, in turn, can facilitate improved therapy and drug discovery for SCZ and other psychiatric diseases. Most importantly, these molecular findings suggest that the combined use of multiple models may be required for more effective translation to studies of human SCZ. PMID:23942359

  15. Phosphorylation of the rat hepatic polymeric IgA receptor.

    PubMed Central

    Larkin, J M; Sztul, E S; Palade, G E

    1986-01-01

    In vivo labeling with [35S]cysteine has identified three transmembrane forms of the rat hepatic polymeric IgA receptor: (i) a 105-kDa core glycosylated precursor; (ii) a terminally glycosylated 116-kDa intermediate; and (iii) a mature 120-kDa form. In the current study we show that the 120-kDa form is phosphorylated. After in vivo labeling with [32P]orthophosphate, all receptor forms were immunoprecipitated from hepatic total microsomes (TM) (with an antireceptor antiserum), separated by NaDodSO4/PAGE, and detected by autoradiography. The 120-kDa form was selectively phosphorylated, whereas the 116- and 105-kDa forms incorporated no detectable 32P. To determine the topology of the phosphorylation sites, hepatic TM isolated from rats labeled in vivo with either [35S]cysteine or [32P]orthophosphate were treated with trypsin. TM were solubilized and receptors were immunoprecipitated from lysates. With increasing trypsin concentrations, the [35S]cysteine-labeled receptor triplet was degraded to a trypsin-resistant doublet of approximately 95 and 85 kDa, indicating that approximately 20 kDa was removed from the receptor endodomain by trypsin. The same treatment removed all detectable 32P from labeled receptors. Furthermore, no 32P was detected in the 80-kDa biliary form of the receptor. Serine was identified as the only phosphorylated residue in acid hydrolysates of 32P-labeled immunoprecipitated receptor. These findings indicate that (i) the 120-kDa form is the only phosphorylated species of the receptor; and (ii) the phosphorylated residues are serine(s) located in the endodomain of the protein. Images PMID:3460069

  16. Optimization of Allosteric With-No-Lysine (WNK) Kinase Inhibitors and Efficacy in Rodent Hypertension Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Ken; Levell, Julian; Yoon, Taeyong

    The observed structure–activity relationship of three distinct ATP noncompetitive With-No-Lysine (WNK) kinase inhibitor series, together with a crystal structure of a previously disclosed allosteric inhibitor bound to WNK1, led to an overlay hypothesis defining core and side-chain relationships across the different series. This in turn enabled an efficient optimization through scaffold morphing, resulting in compounds with a good balance of selectivity, cellular potency, and pharmacokinetic profile, which were suitable for in vivo proof-of-concept studies. When dosed orally, the optimized compound reduced blood pressure in mice overexpressing human WNK1, and induced diuresis, natriuresis and kaliuresis in spontaneously hypertensive rats (SHR), confirmingmore » that this mechanism of inhibition of WNK kinase activity is effective at regulating cardiovascular homeostasis.« less

  17. Rat astrocytes during anoxia: Secretome profile of cytokines and chemokines.

    PubMed

    Samy, Zeinab Adel; Al-Abdullah, Lulwa; Turcani, Marian; Craik, James; Redzic, Zoran

    2018-06-04

    The precise mechanisms of the inflammatory responses after cerebral ischemia in vivo are difficult to elucidate because of the complex nature of multiple series of interactions between cells and molecules. This study explored temporal patterns of secretion of 30 cytokines and chemokines from Sprague Dawley rat astrocytes in primary culture in order to elucidate signaling pathways that are triggered by astrocytes during anoxia. Primary cultures of rat brain astrocytes were incubated for periods of 2-24 hr in the absence of oxygen (anoxia) or under normal partial pressure of oxygen (controls). Simultaneous detection of 29 cytokines and chemokines in the samples was performed using a rat cytokine array panel, while the temporal pattern of angiopoietin-1 (Ang-1) secretion was determined separately using ELISA. Wilcoxon-Mann-Whitney test was used to compare normoxic and anoxic samples and the Hodge-Lehman estimator with exact 95% confidence intervals was computed to assess the size of differences in cytokine secretion. The obtained data were imported into the Core Analysis tool of Ingenuity Pathways Analysis software in order to relate changes in secretion of cytokines and chemokines from astrocytes during anoxia to potential molecular signal networks. With the exception of Ang-1, concentrations of all cytokines/chemokines in samples collected after anoxia exposure were either the same, or higher, than in control groups. No clear pattern of changes could be established for groups of cytokines with similar effects (i.e., pro- or anti-inflammatory cytokines). The pattern of changes in cytokine secretion during anoxia was associated with the HIF-1α-mediated response, as well as cytokines IL-1β and cathepsin S pathways, which are related to initiation of inflammation and antigen presentation, respectively, and to ciliary neurotrophic factor. These in vitro findings suggest that astrocytes may play a role in triggering inflammation during anoxia/ischemia of the brain. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  18. Combination treatment with Gua Sha and Blood-letting causes attenuation of systemic inflammation, activated coagulation, tissue ischemia and injury during heatstroke in rats.

    PubMed

    Tu, Wen-zhan; Cheng, Rui-dong; Hu, Jie; Wang, Jie-zhi; Lin, Hai-yan; Zou, En-miao; Wang, Wan-sheng; Lou, Xin-fa; Jiang, Song-he

    2015-08-01

    Gua Sha and Blood-letting at the acupoints were Chinese traditional therapies for heatstroke. The purpose of present study was to assess the therapeutic effect of Gua Sha on the DU Meridian and Bladder Meridian combined with Blood-letting acupoints at Shixuan (EX-UE 11) and Weizhong (BL 40) on heatstroke. Anesthetized rats, immediately after the onset of heatstroke, were divided into four major groups: Gua Sha group, Blood-letting group, Gua Sha combined with Blood-letting group and model group. They were exposed to ambient temperature of 43 °C to induce heatstroke. Another group of rats were exposed to room temperature (26 °C) and used as normal control group. Their survival times were measured. In addition, their physiological and biochemical parameters were continuously monitored. When rats underwent heatstroke, their survival time values were found to be 21-25 min. Treatment of Gua Sha combined with Bloodletting greatly improved the survival time (230±22 min) during heatstroke. All heatstoke animals displayed and activated coagulation evidenced by increased prothrombin time (PT), activated partial thromboplastin time (aPTT), D-dimer, and decreased platelet count, protein C. Furthermore, the animals displayed systemic inflammation evidenced by increased the serum levels of cytokines interleukin-1ß (IL-1ß), tumor necrosis factor α (TNF-α) and malondialdehyde (MDA). Biochemical markers evidenced by cellular ischemia and injury/dysfunction included increased plasma levels of blood urea nitrogen (BUN), creatinine, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), and alkaline phosphatase (ALP) were all elevated during heatstroke. Core temperatures (Tco) were also increased during heatstroke. In contrast, the values of mean arterial pressure were signifificantly lower during heatstroke. These heatstroke reactions were all signifificantly suppressed by treatment of Gua Sha and Blood-letting, especially the combination therapy. Gua Sha combined with Blood-letting after heatstroke may improve survival by ameliorating systemic inflflammation, hypercoagulable state, and tissue ischemia and injury in multiple organs.

  19. [Thyroid C cells are decreased in experimental CDH].

    PubMed

    Martínez, L; De Ceano-Vivas, M; González-Reyes, S; Fernández-Dumont, V; Calonge, W M; Ruiz, E; Rodríguez, J I; Tovar, J A

    2006-04-01

    Experimental CDH is often associated with malformations of neural crest origin. Several of these features are present in human CDH and therefore likely similar pathogenic mechanisms should be explored. The aim of the present study is to examine whether thyroid C-cells, another neural crest derivative, are abnormal in this rat model. Pregnant rats were exposed either to 100 mg of 2-4-dichlorophenyl-p-nitrophenyl ether (nitrofén) or vehicle (controls) on 9.5 day of gestation. Fetuses were recovered on day 21st and the thyroids of those with CDH (68%) were immuno-histochemically stained with anti-calcitonin antibody. The number of positively stained cells per high power field were counted using a computer-assisted image analysis method in at least 5 sections per thyroid. The distribution of the cells within the gland was assessed as well. Comparisons between CDH and control rats were made by non-parametric tests with a significance threshold of p<0.05. The number of c-cells was dramatically reduced in CDH animals in comparison with controls (101.2 +/- 61.3 vs 23.1 +/- 37, p<0.0001). Histology of the thyroid was similar in both groups, but the distribution of positive C-cells within the gland followed an abnormal pattern in CDH rats with the cells tending to be located at the periphery rather than at the core of the lobes. Nitrofén induces a severe decrease in thyroid C cells accompanied by abnormal distribution patterns. These results add further evidence of the involvement of a neural crest dysregulation as a component of the pathogenesis of experimental CDH. Whether there is or not a clinical counterpart to these findings is still unknown, but the nature of the cardiovascular and craneo-facial malformations in some babies with CDH strongly support further research in this field.

  20. Pathogenesis of trimethyltin neuronal toxicity. Ultrastructural and cytochemical observations.

    PubMed Central

    Bouldin, T. W.; Goines, N. D.; Bagnell, R. C.; Krigman, M. R.

    1981-01-01

    The ultrastructural cytopathologic and cytochemical effects of trimethyltin (TMT) neurotoxicity were delineated in hippocampal and pyriform neurons of acutely intoxicated adult rats. TMT produced neuronal necrosis that preferentially involved hippocampal formation pyriform cortex. The first subcellular alterations were multifocal collection of dense-cored vesicles and tubules and membrane-delimited vacuoles in the cytoplasm of the perikaryon and proximal dendrite. Ultrastructural cytochemical examination revealed that the vesicles and tubules had acid phosphatase activity analagous to Golgi-associated endoplasmic reticulum (GERL). Shortly after the appearance of the GERL-like vesicles and tubules, autophagic vacuoles and polymorphic dense bodies accumulated in the neuronal cytoplasm. Some dense bodies appeared to arise from the dense-cored tubules. Neuronal necrosis was characterized by increased electron density of the cytoplasm and large, electron-dense intranuclear masses. Alterations of mitochondria and other organelles were not observed in the early stages of cell injury. No light- or electron-microscopic alterations were found in liver or kidney. Comparable subcellular alterations were observed in adult and neonatal rats chronically intoxicated with TMT. A series of other trialkyl and tricyclic tins and dimethyltin did not produce similar pathologic findings. The GERL-like accumulations are unique in neuronal cytopathology. These findings suggests that GERL and autophagy play an important role in the pathogenesis of TMT-induced neuronal injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7294153

  1. Poly(D,L-Lactide-Co-Glycolide) Tubes With Multifilament Chitosan Yarn or Chitosan Sponge Core in Nerve Regeneration.

    PubMed

    Wlaszczuk, Adam; Marcol, Wiesław; Kucharska, Magdalena; Wawro, Dariusz; Palen, Piotr; Lewin-Kowalik, Joanna

    2016-11-01

    The influence of different kinds of nerve guidance conduits on regeneration of totally transected rat sciatic nerves through a 7-mm gap was examined. Five different types of conduits made of chitosan and poly(D,L-lactide-co-glycolide) (PLGA) were constructed and tested in vivo. We divided 50 animals into equal groups of 10, with a different type of conduit implanted in each group: chitosan sponge core with an average molecular mass of polymer (Mv) of 287 kDa with 7 channels in a PLGA sleeve, chitosan sponge core with an Mv of 423 kDa with 7 channels in a PLGA sleeve, chitosan sponge core (Mv, 423 kDa) with 13 channels in a PLGA sleeve, chitosan multifilament yarn in a PLGA sleeve, and a PLGA sleeve only. Seven weeks after the operation, we examined the distance covered by regenerating nerve fibers, growing of nerves into the conduit's core, and intensity and type of inflammatory reaction in the conduit, as well as autotomy behavior (reflecting neuropathic pain intensity) in the animals. Two types of conduits were allowing nerve outgrowth through the gap with minor autotomy and minor inflammatory reactions. These were the conduits with chitosan multifilament yarn in a PLGA sleeve and the conduits with 13-channel microcrystalline chitosan sponge in a PLGA sleeve. The type of chitosan used to build the nerve guidance conduit influences the intensity and character of inflammatory reaction present during nerve regeneration, which in turn affects the distance crossed by regenerating nerve fibers, growing of the nerve fibers into the conduit's core, and the intensity of autotomy in the animals. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine.

    PubMed

    Parkinson, J A; Olmstead, M C; Burns, L H; Robbins, T W; Everitt, B J

    1999-03-15

    Dopamine release within the nucleus accumbens (NAcc) has been associated with both the rewarding and locomotor-stimulant effects of abused drugs. The functions of the NAcc core and shell were investigated in mediating amphetamine-potentiated conditioned reinforcement and locomotion. Rats were initially trained to associate a neutral stimulus (Pavlovian CS) with food reinforcement (US). After excitotoxic lesions that selectively destroyed either the NAcc core or shell, animals underwent additional CS-US training sessions and then were tested for the acquisition of a new instrumental response that produced the CS acting as a conditioned reinforcer (CR). Animals were infused intra-NAcc with D-amphetamine (0, 1, 3, 10, or 20 microg) before each session. Shell lesions affected neither Pavlovian nor instrumental conditioning but completely abolished the potentiative effect of intra-NAcc amphetamine on responding with CR. Core-lesioned animals were impaired during the Pavlovian retraining sessions but showed no deficit in the acquisition of responding with CR. However, the selectivity in stimulant-induced potentiation of the CR lever was reduced, as intra-NAcc amphetamine infusions dose-dependently increased responding on both the CR lever and a nonreinforced (control) lever. Shell lesions produced hypoactivity and attenuated amphetamine-induced activity. In contrast, core lesions resulted in hyperactivity and enhanced the locomotor-stimulating effect of amphetamine. These results indicate a functional dissociation of subregions of the NAcc; the shell is a critical site for stimulant effects underlying the enhancement of responding with CR and locomotion after intra-NAcc injections of amphetamine, whereas the core is implicated in mechanisms underlying the expression of CS-US associations.

  3. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    NASA Astrophysics Data System (ADS)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations team the opportunity to gain insight into functional hardware requirements via lessons learned from executing the Desert RATS field test missions. This paper will detail the mission control team structure that was used during the 2009 and 2010 Desert RATS Lunar analog missions. It will also present a number of the lessons learned by the operations team during these field tests. Major lessons learned involved Mission Control Center (MCC) operations, pre-mission planning and training processes, procedure requirements, communication requirements, and logistic support for analogs. This knowledge will be applied to future Desert RATS field tests, and other Earth based analog testing for space exploration, to continue the evolution of manned space operations in preparation for human planetary exploration. It is important that operational knowledge for human space exploration missions be obtained during Earth-bound field tests to the greatest extent possible. This allows operations personnel the ability to examine various flight control and crew operations scenarios in preparation for actual space missions.

  4. Bolus oral or continuous intestinal amino acids reduce hypothermia during anesthesia in rats.

    PubMed

    Imoto, Akinobu; Yokoyama, Takeshi; Suwa, Kunio; Yamasaki, Fumiyasu; Yatabe, Tomoaki; Yokoyama, Reiko; Yamashita, Koichi; Selldén, Eva

    2010-01-01

    We hypothesized that, with oral or intestinal administration of amino acids (AA), we may reduce hypothermia during general anesthesia as effectively as with intravenous AA. We, therefore, examined the effect of bolus oral and continuous intestinal AA in preventing hypothermia in rats. Male Wistar rats were anesthetized with sevoflurane for induction and with propofol for maintenance. In the first experiment, 30 min before anesthesia, rats received one bolus 42 mL/kg of AA solution (100 g/L) or saline orally. Then for the next 3 h during anesthesia, they received 14 mL/kg/h of AA and/or saline intravenously. They were in 4 groups: I-A/A, both AA; I-A/S, oral AA and intravenous saline; I-S/A, oral saline and intravenous AA; I-S/S, both saline. In the second experiment, rats received 14 mL/kg/h duodenal AA and/or saline for 2 h. They were in 3 groups: II-A/S, duodenal AA and intravenous saline; II-S/A, duodenal saline and intravenous AA; II-S/S, both saline. Core body temperature was measured rectally. After the second experiment, serum electrolytes were examined. In both experiments, rectal temperature decreased in all groups during anesthesia. However, the decrease in rectal temperature was significantly less in groups receiving AA than in groups receiving only saline. In the second experiment, although there was no significant difference in the decrease in body temperature between II-A/S and II-S/A, Na(+) concentration was significantly lower in II-S/A. In conclusion, AA, administered orally or intestinally, tended to keep the body temperature stable during anesthesia without disturbing electrolyte balance. These results suggest that oral or enteral AA may be useful for prevention of hypothermia in patients.

  5. The effects of ceftriaxone on cue-primed reinstatement of cocaine-seeking in male and female rats: estrous cycle effects on behavior and protein expression in the nucleus accumbens

    PubMed Central

    Hamor, Peter U.; Schwendt, Marek; Knackstedt, Lori A.

    2018-01-01

    Rationale Effective pharmacological treatments to prevent cocaine relapse remain elusive. In male rats, ceftriaxone attenuates the reinstatement of cocaine-seeking while increasing glutamate transporter-1 (GLT-1) and xCT expression in the nucleus accumbens core (NAc). Despite reported sex differences in cocaine relapse, these effects have not yet been confirmed in female rats. Objective We investigated the effects of ceftriaxone on cue-primed reinstatement and cocaine-induced alterations in glutamatergic proteins in the NAc of female rats. Potential interactions between estrous phase and treatment were also assessed. Method Male and female rats self-administered cocaine in the presence of discrete cues for 12 days, followed by 2–3 weeks of extinction. Ceftriaxone or vehicle was administered daily for a minimum of 6 days immediately preceding a cue-primed reinstatement test. Results Total cocaine intake was greater in females than in males, but reinstatement behavior was similar. Ceftriaxone attenuated reinstatement in both sexes and was accompanied by increased expression of GLT-1a and xCT in the NAc. However, ceftriaxone attenuated reinstatement only when females were tested during met-, di-, and proestrus phases and not during estrus. A significant increase in AMPA receptor subunit GluA1 surface expression was also observed during estrus, potentially influencing reinstatement. Conclusion These findings extend the beneficial effects of ceftriaxone on persistent cocaine-seeking from males to females, increasing its potential as a pharmacological treatment for preventing relapse. The effects of estrus on GluA1 expression and reinstatement observed here indicate that females may need additional interventions during some phases of the menstrual cycle. PMID:29197981

  6. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary.

    PubMed

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Hindersson, Peter; Gräs, Søren

    2006-08-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.

  7. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats

    PubMed Central

    Shnitko, Tatiana A.; Spear, Linda P.; Robinson, Donita L.

    2015-01-01

    Rationale Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. Objectives We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. Methods Rats received intermittent intragastric ethanol, water or nothing during adolescence. In adulthood, electrically-evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. Results Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50% in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. Conclusions The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats, and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age. PMID:26487039

  8. Effects of L-carnitine pretreatment in methamphetamine and 3-nitropropionic acid-induced neurotoxicity.

    PubMed

    Binienda, Zbigniew K; Przybyla, Beata D; Robinson, Bonnie L; Salem, Nadia; Virmani, Ashraf; Amato, Antonino; Ali, Syed F

    2006-08-01

    Adult, male Sprague-Dawley rats were injected with 3-ni-tropropionic acid (3-NPA) at 30 mg/kg or methamphetamine (METH) at 20 mg/kg alone or following pretreatment with L-cartnitine (LC) at 100 mg/kg. Rectal temperature was measured before and 4 h following treatment. Animals were sacrificed at 4 h posttreatment. Monoamine neurotransmitters, dopamine (DA) and serotonin (5-HT), and their metabolites were analyzed in the striatum using high-performance liquid chromatography method coupled with electrochemical detection (HPLC/ED). Transcripts of several genes related to DA metabolism were quantified using real time reverse transciption polymerase chain reaction (RT-PCR). Core temperature decreased significantly after 3-NPA acid and increased in METH-treated rats (P < 0.05). Temperature change at 4 h exhibited a significant LC effect for 3-NPA, preventing hypothermia (P < 0.05) and no effect for METH. Concentration of DA and 5-HT, and their metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), increased significantly in 3-NPA and decreased in METH-treated rats. An increase in DOPAC/DA turnover and serotonin observed after 3-NPA was abolished in LC-/3-NPA-treated rats. In both 3-NPA- and METH-treated rats, LC prevented an increase in DA receptor D(1) gene expression. It appears that carnitine effect preventing hypothermia after 3-NPA treatments may be related not only to its mitochondriotropic actions but also to inhibitory effect on the DA and 5-HT systems activated after the exposure to 3-NPA. The same effect observed at the transcriptional level, at least for the DA receptor D(1), may account for protection against METH toxicity.

  9. Patterns of gene expression associated with recovery and injury in heat-stressed rats.

    PubMed

    Stallings, Jonathan D; Ippolito, Danielle L; Rakesh, Vineet; Baer, Christine E; Dennis, William E; Helwig, Bryan G; Jackson, David A; Leon, Lisa R; Lewis, John A; Reifman, Jaques

    2014-12-03

    The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.

  10. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    PubMed

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Application of 2-um wavelength holmium lasers for treatment of skin diseases

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Ivan A.; Klimov, Igor V.; Tsvetkov, Vladimir B.; Nerobeev, Alexander I.; Sadovnikova, Lija B.; Eliseenko, Vladimir I.

    1994-09-01

    Theoretical and experimental analysis of the efficiency of application of 2 micrometers pulsed holmium laser for cosmetic and plastic surgery and dermatology is carried out. Preliminary experiments were carried out on rats. Solid state 2 micrometers pulsed laser was allowed to operate in free running mode with pulse energy up to 1.5 J and pulse repetition rate up to 5 Hz. To deliver emission to the object a flexible quartz fiber without further focusing of 2.5 m in length and 400 micrometers of the core diameter was used. The effect of the different power density emission on the skin was studied. The second stage was the study of the influence of 2 micrometers emission on human skin. The results of the removal of hemangioma, papilloma, telangiectasia, nevus, nevus acantholytic, xanthelasma palpebral, verruca, chloasma, pigmental spots, tattoos, etc. are presented. Precision, simplicity, efficiency, and the high cosmetic effect of these operations is noted.

  12. A Relationship between Reduced Nucleus Accumbens Shell and Enhanced Lateral Hypothalamic Orexin Neuronal Activation in Long-Term Fructose Bingeing Behavior

    PubMed Central

    Rorabaugh, Jacki M.; Stratford, Jennifer M.; Zahniser, Nancy R.

    2014-01-01

    Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior. Specifically, long-term fructose bingeing activates a hyperphagic circuit composed in part of NAc shell and LH/PeF Orx neurons. PMID:24736531

  13. Dysregulation of gene expression in the striatum of BACHD rats expressing full-length mutant huntingtin and associated abnormalities on molecular and protein levels.

    PubMed

    Yu-Taeger, Libo; Bonin, Michael; Stricker-Shaver, Janice; Riess, Olaf; Nguyen, Hoa Huu Phuc

    2017-05-01

    Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the huntingtin protein (HTT). Mutant HTT (mHTT) has been proposed to cause neuronal dysfunction and neuronal loss through multiple mechanisms. Transcriptional changes may be a core pathogenic feature of HD. Utilizing the Affymetrix platform we performed a genome-wide RNA expression analysis in two BACHD transgenic rat lines (TG5 and TG9) at 12 months of age, both of which carry full-length human mHTT but with different expression levels. By defining the threshold of significance at p < 0.01, we found 1608 genes and 871 genes differentially expressed in both TG5 and TG9 rats when compared to the wild type littermates, respectively. We only chose the highly up-/down-regulated genes for further analysis by setting an additional threshold of 1.5 fold change. Comparing gene expression profiles of human HD brains and BACHD rats revealed a high concordance in both functional and IPA (Ingenuity Pathway Analysis) canonical pathways relevant to HD. In addition, we investigated the causes leading to gene expression changes at molecular and protein levels in BACHD rats including the involvement of polyQ-containing transcription factors TATA box-binding protein (TBP), Sp1 and CBP as well as the chromatin structure. We demonstrate that the BACHD rat model recapitulates the gene expression changes of the human disease supporting its role as a preclinical research animal model. We also show for the first time that TFIID complex formation is reduced, while soluble TBP is increased in an HD model. This finding suggests that mHTT is a competitor instead of a recruiter of polyQ-containing transcription factors in the transcription process in HD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Individual Differences in Animal Stress Models: Considering Resilience, Vulnerability, and the Amygdala in Mediating the Effects of Stress and Conditioned Fear on Sleep.

    PubMed

    Wellman, Laurie L; Fitzpatrick, Mairen E; Hallum, Olga Y; Sutton, Amy M; Williams, Brook L; Sanford, Larry D

    2016-06-01

    To examine the REM sleep response to stress and fearful memories as a potential marker of stress resilience and vulnerability and to assess the role of the basolateral amygdala (BLA) in mediating the effects of fear memory on sleep. Outbred Wistar rats were surgically implanted with electrodes for recording EEG and EMG and with bilateral guide cannulae directed at the BLA. Data loggers were placed intraperitoneally to record core body temperature. After recovery from surgery, the rats received shock training (ST: 20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval) and afterwards received microinjections of the GABAA agonist muscimol (MUS; 1.0 μM) to inactivate BLA or microinjections of vehicle (VEH) alone. Subsequently, the rats were separated into 4 groups (VEH-vulnerable (VEH-Vul; n = 14), VEH-resilient (VEH-Res; n = 13), MUS-vulnerable (MUS-Vul; n = 8), and MUS-resilient (MUS-Res; n = 11) based on whether or not REM was decreased, compared to baseline, during the first 4 h following ST. We then compared sleep, freezing, and the stress response (stress-induced hyperthermia, SIH) across groups to determine the effects of ST and fearful context re-exposure alone (CTX). REM was significantly reduced on the ST day in both VEH-Vul and MUS-Vul rats; however, post-ST MUS blocked the reduction in REM on the CTX day in the MUS-Vul group. The VEH-Res and MUS-Res rats showed similar levels of REM on both ST and CTX days. The effects of post-ST inactivation of BLA on freezing and SIH were minimal. Outbred Wistar rats can show significant individual differences in the effects of stress on REM that are mediated by BLA. These differences in REM can be independent of behavioral fear and the peripheral stress response, and may be an important biomarker of stress resilience and vulnerability. © 2016 Associated Professional Sleep Societies, LLC.

  15. Ondansetron and promethazine have differential effects on hypothermic responses to lithium chloride administration and to provocative motion in rats

    PubMed Central

    Guimaraes, Drielle D; Andrews, Paul L R; Rudd, John A; Braga, Valdir A; Nalivaiko, Eugene

    2015-01-01

    We recently reported that provocative motion (rotation in a home cage) causes hypothermic responses in rats, similar to the hypothermic responses associated with motion sickness in humans. Many stimuli inducing emesis in species with an emetic reflex also provoke hypothermia in the rat, therefore we hypothesized that a fall in body temperature may reflect a “nausea-like” state in these animals. As rats do not possess an emetic reflex, we employed a pharmacological approach to test this hypothesis. In humans, motion- and chemically-induced nausea have differential sensitivity to anti-emetics. We thus tested whether the hypothermia induced in rats by provocative motion (rotation at 0.7 Hz) and by the emetic LiCl (63 mg/kg i.p.) have a similar differential pharmacological sensitivity. Both provocations caused a comparable robust fall in core body temperature (−1.9 ± 0.3°C and −2.0 ± 0.2°C for chemical and motion provocations, respectively). LiCl−induced hypothermia was completely prevented by ondansetron (2mg/kg, i.p., a 5-HT3 receptor antagonist that reduces cancer chemotherapy-induced nausea and vomiting), but was insensitive to promethazine (10 mg/kg, i.p., a predominantly histamine-H1 and muscarinic receptor antagonist that is commonly used to treat motion sickness). Conversely, motion-induced hypothermia was unaffected by ondansetron but promethazine reduced the rate of temperature decline from 0.20 ± 0.02 to 0.11 ± 0.03°C/min (P < 0.05) with a trend to decrease the magnitude. We conclude that this differential pharmacological sensitivity of the hypothermic responses of vestibular vs. chemical etiology in rats mirrors the observations in other pre-clinical models and humans, and thus supports the idea that a “nausea-like” state in rodents is associated with disturbances in thermoregulation. PMID:27227074

  16. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes.

    PubMed

    Steppan, Scott; Adkins, Ronald; Anderson, Joel

    2004-08-01

    The muroid rodents are the largest superfamily of mammals, containing nearly one third of all mammal species. We report on a phylogenetic study comprising 53 genera sequenced for four nuclear genes, GHR, BRCA1, RAG1, and c-myc, totaling up to 6400 nucleotides. Most relationships among the subfamilies are resolved. All four genes yield nearly identical phylogenies, differing only in five key regions, four of which may represent particularly rapid radiations. Support is very strong for a fundamental division of the mole rats of the subfamilies Spalacinae and Rhizomyinae from all other muroids. Among the other "core" muroids, a rapid radiation led to at least four distinct lineages: Asian Calomyscus, an African clade of at least four endemic subfamilies, including the diverse Nesomyinae of Madagascar, a hamster clade with maximum diversity in the New World, and an Old World clade including gerbils and the diverse Old World mice and rats (Murinae). The Deomyinae, recently removed from the Murinae, is well supported as the sister group to the gerbils (Gerbillinae). Four key regions appear to represent rapid radiations and, despite a large amount of sequence data, remain poorly resolved: the base of the "core" muroids, among the five cricetid (hamster) subfamilies, within a large clade of Sigmodontinae endemic to South America, and among major geographic lineages of Old World Murinae. Because of the detailed taxon sampling within the Murinae, we are able to refine the fossil calibration of a rate-smoothed molecular clock and apply this clock to date key events in muroid evolution. We calculate rate differences among the gene regions and relate those differences to relative contribution of each gene to the support for various nodes. The among-gene variance in support is greatest for the shortest branches. We present a revised classification for this largest but most unsettled mammalian superfamily.

  17. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Jin; Wang, Ying; Su, Ke

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist formore » E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.« less

  18. Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia.

    PubMed

    Li, Yazi; Zhang, Yuying; Wang, Lei; Wang, Ping; Xue, Yanhong; Li, Xiaopeng; Qiao, Xinhua; Zhang, Xu; Xu, Tao; Liu, Guanghui; Li, Peng; Chen, Chang

    2017-07-03

    The majority of diabetic patients develop neuropathy and there is an increasing prevalence of neurodegeneration in the central nervous system (CNS). However, the mechanism behind this is poorly understood. Here we first observed that macroautophagy/autophagy was suppressed in the hippocampus of diabetic GK rats with hyperglycemia, whereas it was unchanged in ob/ob mice without hyperglycemia. Autophagy could be directly inhibited by high glucose in mouse primary hippocampal neurons. Moreover, autophagy was protective in high-glucose-induced neurotoxicity. Further studies revealed that autophagic flux was suppressed by high glucose due to impaired autophagosome synthesis illustrated by mRFP-GFP-LC3 puncta analysis. We showed that decreased autophagy was dependent on NO produced under high glucose conditions. Therefore, (LC-MS/MS)-based quantitative proteomic analysis of protein S-nitrosation was performed and a core autophagy protein, ATG4B was found to be S-nitrosated in the hippocampus of GK rats. ATG4B was also verified to be S-nitrosated in neuronal cells cultured with high glucose. The activities of ATG4B in the processing of unmodified, precursor Atg8-family proteins and in the deconjugation of PE from lipidated Atg8-family proteins, which are essential for efficient autophagosome biogenesis were both compromised by S-nitrosation at Cys189 and Cys292 sites. In addition, ATG4B processing of the GABARAPL1 precursor was affected the least by S-nitrosation compared with other substrates. Finally, ATG4B S-nitrosation was verified to be responsible for decreased autophagy and neurotoxicity in response to high glucose. In conclusion, autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Our research reveals a novel mechanism linking hyperglycemia with CNS neurotoxicity and shows that S-nitrosation is a novel post-transcriptional modification of the core autophagy machinery.

  19. Development, Characterization, and Functional Activity of a Panel of Specific Monoclonal Antibodies to Inner Core Lipopolysaccharide Epitopes in Neisseria meningitidis

    PubMed Central

    Gidney, Margaret Anne J.; Plested, Joyce S.; Lacelle, Suzanne; Coull, Philip A.; Wright, J. Claire; Makepeace, Katherine; Brisson, Jean-Robert; Cox, Andrew D.; Moxon, E. Richard; Richards, James C.

    2004-01-01

    A panel of six murine monoclonal antibodies (MAbs) recognizing inner core lipopolysaccharide (LPS) epitopes of Neisseria meningitidis was prepared and characterized in order to determine the diversity of inner core LPS glycoforms among disease and carrier isolates. Two of these MAbs, L2-16 (immunoglobulin G2b [IgG2b]) and LPT3-1 (IgG2a), together with a third, previously described MAb, L3B5 (IgG3), showed reactivity, either individually or in combination, with all except 3 of 143 disease and carriage isolates (125 of 126 strains from blood, cerebrospinal fluid, or skin biopsy samples and 15 of 17 from nasopharyngeal cultures). MAbs L3B5, L2-16, and LPT3-1 were further characterized in an indirect immunofluorescence assay. All three MAbs bound to the bacterial cell surface, findings that correlated strongly with whole-cell enzyme-linked immunosorbent assay and immunodot blots. However, in contrast to our findings with L3B5, cell surface binding of L2-16 or LPT 3-1 did not correlate with functional activity as determined by bactericidal or infant rat passive protection assays against wild-type N. meningitidis strains. These findings are provocative with respect to the requirements for protective activity of antibodies and the development of inner core LPS vaccines against invasive meningococcal disease. PMID:14688137

  20. Prolonged, 24-h delayed peripheral inflammation increases short- and long-term functional impairment and histopathological damage after focal ischemia in the rat.

    PubMed

    Langdon, Kristopher D; Maclellan, Crystal L; Corbett, Dale

    2010-08-01

    The incidence of infection among stroke patients is alarmingly high and both acute and delayed infections increase morbidity and mortality. Experimental studies support the acute clinical data, but little attention has focused on delayed systemic infections. Here, we investigated the effects of prolonged systemic inflammation either before or 24-h after ischemia. Systemic inflammation was induced by injecting rats with three separate doses of lipopolysaccharide (LPS; 50 mug/kg, i.p.) with core temperature monitoring for 48-h after middle cerebral artery occlusion (MCAo). Lipopolysaccharide injected before MCAo increased injury by approximately 30%, whereas delayed injection increased injury by approximately 85% (30-day survival). Proinflammatory cytokines assessed repeatedly for 72 h were significantly and persistently elevated with inflammation. This was accompanied by increases in microglia/macrophage and infiltrating leukocyte numbers in delayed LPS-treated animals. Behavioral assessments at 7 and 30 days revealed approximately 15% deficit in hindlimb function in animals treated with LPS 24-h after ischemia. Clearly, delayed and prolonged postischemic systemic inflammation has devastating effects on stroke outcome, in the absence of a prolonged febrile response. These findings, together with corroborative clinical data, emphasize the importance of early intervention to counteract the deleterious consequences of stroke-associated inflammation and infection.

  1. Synaptic Glutamate Spillover Due to Impaired Glutamate Uptake Mediates Heroin Relapse

    PubMed Central

    Scofield, Michael D.; Boger, Heather; Hensley, Megan; Kalivas, Peter W.

    2014-01-01

    Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration. PMID:24741055

  2. Chemical neuromodulation of frontal-executive functions in humans and other animals.

    PubMed

    Robbins, T W

    2000-07-01

    Neuromodulation of frontal-executive function is reviewed in the context of experiments on rats, monkeys and human subjects. The different functions of the chemically identified systems of the reticular core are analysed from the perspective of their possible different interactions with the prefrontal cortex. The role of dopamine in spatial working memory is reviewed, taking account of its deleterious as well as facilitatory effects. Baseline-dependent effects of dopaminergic manipulation are described in rats on an attentional task, including evidence of enhanced function following infusions of D1 receptor agonists into the prefrontal cortex. The precise nature of the cognitive task under study is shown to be a powerful determinant of the effects of mesofrontal dopamine depletion in monkeys. Parallels are identified in human subjects receiving drugs such as the indirect catecholamine agonists L-dopa, methylphenidate and the dopamine D2 receptor blocker sulpiride. The effects of these drugs on different types of cognitive function sensitive to frontal lobe dysfunction are contrasted with those of a manipulation of 5-HT function, dietary tryptophan depletion. Hypotheses are advanced that accord the ascending systems a greater deal of specificity in modulating prefrontal cortical function than has hitherto been entertained, and clinical and theoretical implications of this hypothesis are discussed.

  3. Vesicular glutamate transporters, VGluT1 and VGluT2, in the trigeminal ganglion neurons of the rat, with special reference to coexpression.

    PubMed

    Li, Jin-Lian; Xiong, Kang-Hui; Dong, Yu-Lin; Fujiyama, Fumino; Kaneko, Takeshi; Mizuno, Noboru

    2003-08-18

    Vesicular glutamate transporters are responsible for glutamate transport into synaptic vesicles. In the present study, we examined immunohistochemically the expression of vesicular glutamate transporters, VGluT1 and VGluT2, in trigeminal ganglion neurons of the rat. Immunohistochemistry for VGluT1 and VGluT2 indicated that more than 80% of trigeminal ganglion neurons express VGluT1 and/or VGluT2 in their cell bodies. It also indicated that large and small trigeminal ganglion neurons express VGluT2 more frequently than VGluT1. Dual immunofluorescence histochemistry for VGluT1 and VGluT2 indicated that trigeminal ganglion neurons express VGluT2 more frequently than VGluT1 and that more than 80% of VGluT-expressing trigeminal ganglion neurons express VGluT1 and VGluT2. Many axon terminals in the superficial layers of the medullary dorsal horn also showed VGluT1 and VGluT2 immunoreactivities. Some of these axon terminals were confirmed to form the central core of the synaptic glomerulus. These results indicated that VGluT1 and VGluT2 are coexpressed in the cell bodies and axon terminals in most trigeminal ganglion neurons. Copyright 2003 Wiley-Liss, Inc.

  4. The effect of palytoxin on neuromuscular junctions in the anococcygeus muscle of the rat.

    PubMed

    Amir, I; Harris, J B; Zar, M A

    1997-06-01

    Palytoxin, a highly toxic natural product isolated from zoanthids of the genus Palythoa, is accumulated by a wide range of fishes and marine invertebrates used as food in the Indo-Pacific. It is responsible for many incidents of human morbidity and mortality. The toxin is a potent smooth muscle spasmogen. The cause of the contraction of smooth muscle is unclear, but recent work strongly suggests that it is primarily initiated by the release of neurotransmitters from the motor innervation of the smooth muscle. We show here that palytoxin caused the swelling of the muscle cells and some internal organelles of the anococcygeus muscle of the rat, but no substantial structural damage to the tissue. Axons and Schwann cells were also swollen but the most dramatic feature was the depletion of synaptic vesicles from putative release sites in the axons. Some axons were physically damaged following exposure to the toxin, but this was relatively uncommon (< 10% of all axons studied). In the majority of axons there was no damage to nerve terminal membranes, but there was damage to mitochondria. The depletion of vesicles involved all types-clear, dense-cored, large and small. Our observations and pharmacological data gathered elsewhere, provide a neuropathological basis for the spasmogenic activity of palytoxin.

  5. The endocannabinoid 2-arachidonoylglycerol mediates D1 and D2 receptor cooperative enhancement of rat nucleus accumbens core neuron firing.

    PubMed

    Seif, T; Makriyannis, A; Kunos, G; Bonci, A; Hopf, F W

    2011-10-13

    Many motivated and addiction-related behaviors are sustained by activity of both dopamine D1- and D2-type receptors (D1Rs and D2Rs) as well as CB1 receptors (CB1Rs) in the nucleus accumbens (NAc). Here, we use in vitro whole-cell patch-clamp electrophysiology to describe an endocannabinoid (eCB)-dopamine receptor interaction in adult rat NAc core neurons. D1R and D2R agonists in combination enhanced firing, with no effect of a D1R or D2R agonist alone. This D1R+D2R-mediated firing increase required CB1Rs, since it was prevented by the CB1R antagonists AM251 and Rimonabant. The D1R+D2R firing increase also required phospholipase C (PLC), the major synthesis pathway for the eCB 2-arachidonoylglycerol (2-AG) and one of several pathways for anandamide. Further, inhibition of 2-AG hydrolysis with the monoglyceride lipase (MGL) inhibitor JZL184 allowed subthreshold levels of D1R+D2R receptor agonists to enhance firing, while inhibition of anandamide hydrolysis with the fatty acid amide hydrolase (FAAH) inhibitors URB597 or AM3506 did not. Filling the postsynaptic neuron with 2-AG enabled subthreshold D1R+D2R agonists to increase firing, and the 2AG+D1R+D2R increase in firing was prevented by a CB1R antagonist. Also, the metabotropic glutamate receptor 5 (mGluR5) blocker MPEP prevented the ability of JZL184 to promote subthreshold D1R+D2R enhancement of firing, while the 2-AG+D1R+D2R increase in firing was not prevented by the mGluR5 blocker, suggesting that mGluR5s acted upstream of 2-AG production. Thus, our results taken together are consistent with the hypothesis that NAc core eCBs mediate dopamine receptor (DAR) enhancement of firing, perhaps providing a cellular mechanism underlying the central role of NAc core D1Rs, D2Rs, CB1Rs, and mGluR5s during many drug-seeking behaviors. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. THE ENDOCANNABINOID 2-ARACHIDONOYLGLYCEROL MEDIATES D1 AND D2 RECEPTOR COOPERATIVE ENHANCEMENT OF RAT NUCLEUS ACCUMBENS CORE NEURON FIRING

    PubMed Central

    Seif, T.; Makriyannis, A.; Kunos, G.; Bonci, A.; Hopf, F. W.

    2011-01-01

    Many motivated and addiction-related behaviors are sustained by activity of both dopamine D1- and D2-type receptors (D1Rs and D2Rs) as well as CB1 receptors (CB1Rs) in the nucleus accumbens (NAc). Here, we use in vitro whole-cell patch-clamp electrophysiology to describe an endocannabinoid (eCB)–dopamine receptor interaction in adult rat NAc core neurons. D1R and D2R agonists in combination enhanced firing, with no effect of a D1R or D2R agonist alone. This D1R+D2R-mediated firing increase required CB1Rs, since it was prevented by the CB1R antagonists AM251 and Rimonabant. The D1R+D2R firing increase also required phospholipase C (PLC), the major synthesis pathway for the eCB 2-arachidonoylglycerol (2-AG) and one of several pathways for anandamide. Further, inhibition of 2-AG hydrolysis with the monoglyceride lipase (MGL) inhibitor JZL184 allowed subthreshold levels of D1R+D2R receptor agonists to enhance firing, while inhibition of anandamide hydrolysis with the fatty acid amide hydrolase (FAAH) inhibitors URB597 or AM3506 did not. Filling the postsynaptic neuron with 2-AG enabled subthreshold D1R+D2R agonists to increase firing, and the 2AG+D1R+D2R increase in firing was prevented by a CB1R antagonist. Also, the metabotropic glutamate receptor 5 (mGluR5) blocker MPEP prevented the ability of JZL184 to promote subthreshold D1R+D2R enhancement of firing, while the 2-AG+D1R+D2R increase in firing was not prevented by the mGluR5 blocker, suggesting that mGluR5s acted upstream of 2-AG production. Thus, our results taken together are consistent with the hypothesis that NAc core eCBs mediate dopamine receptor (DAR) enhancement of firing, perhaps providing a cellular mechanism underlying the central role of NAc core D1Rs, D2Rs, CB1Rs, and mGluR5s during many drug-seeking behaviors. PMID:21821098

  7. The different effects of high-frequency stimulation of the nucleus accumbens shell and core on food consumption are possibly associated with different neural responses in the lateral hypothalamic area.

    PubMed

    Wei, N; Wang, Y; Wang, X; He, Z; Zhang, M; Zhang, X; Pan, Y; Zhang, J; Qin, Z; Zhang, K

    2015-08-20

    Obesity may result from dysfunction of the reward system, especially in the nucleus accumbens (Acb). Based on this hypothesis, many researchers have tested the effect of high-frequency stimulation (HFS) of the Acb shell (Acb-Sh) and/or core (Acb-Co) on ingestive behaviors, but few studies have explored the possible mechanisms involved in the differences between the Acb-Sh and Acb-Co. The present study tested effects of HFS of the Acb-Sh and Acb-Co on high-fat food (HFF) consumption in rats after 24h of food deprivation. Microdialysis and electrophysiological experiments were carried out in awake rats to explore potential mechanisms. The results showed that the Acb-Sh decreased HFF consumption after food deprivation both during and post-HFS. However, HFS of the Acb-Co did not induce similar changes in food consumption. HFS of the Acb-Sh (Sh-HFS) induced an increase in GABA level in the lateral hypothalamic area (LHA) during both phases, whereas HFS of the Acb-Co (Co-HFS) did not exhibit similar effects. The electrophysiological experiment showed that nearly all the LHA neurons were inhibited by Sh-HFS, and the mean firing rate decreased significantly both during and post-HFS. In contrast, the mean firing rate of the LHA neurons did not exhibit clear changes during Co-HFS, although some individual neurons appeared to exhibit responses to Co-HFS. Considering all the data, we postulated that Sh-HFS, rather than Co-HFS, might inhibit palatable food consumption after food deprivation by decreasing the reward value of that food, which suggested that it might also disturb the process of developing obesity. The mechanisms involved in the different effects of Sh-HFS and Co-HFS on food consumption may be associated with different neural responses in the LHA. The Acb-Sh has abundant GABAergic projections to the LHA, whereas the Acb-Co has few or no GABAergic innervations to the LHA. Thus, neural activity in the LHA exhibits different responses to Sh-HFS and Co-HFS. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres

    NASA Astrophysics Data System (ADS)

    Li, Joanne; Dobrucki, Lawrence W.; Marjanovic, Marina; Chaney, Eric J.; Suslick, Kenneth S.; Boppart, Stephen A.

    2015-01-01

    Cerenkov luminescence (CL) imaging is a new molecular imaging modality that utilizes the photons emitted during radioactive decay when charged particles travel faster than the phase velocity of light in a dielectric medium. Here we present a novel agent to convert and increase CL emission at longer wavelengths using multimodal protein microspheres (MSs). The 64Cu-labeled protein microspheres contain quantum dots (QDs) encapsulated within a high-refractive-index-oil core. Dark box imaging of the MSs was conducted to demonstrate the improvement in CL emission at longer wavelengths. To illustrate the versatile design of these MSs and the potential of CL in disease diagnosis, these MSs were utilized for in vitro cell targeting and ex vivo CL-excited QD fluorescence (CL-FL) imaging of atherosclerotic plaques in rats. It was shown that by utilizing both QDs and MSs with a high-refractive-index-oil core, the CL emission increases by four-fold at longer wavelengths. Furthermore, we demonstrate that these MSs generate both an in vivo and ex vivo contrast signal. The design concept of utilizing QDs and high-index core MSs may contribute to future developments of in vivo CL imaging.

  9. Macrophages influence a competition of contact guidance and chemotaxis for fibroblast alignment in a fibrin gel coculture assay.

    PubMed

    Bromberek, B A; Enever, P A J; Shreiber, D I; Caldwell, M D; Tranquillo, R T

    2002-05-01

    Rat dermal fibroblasts were dispersed initially in the outer shell of a fibrin gel sphere, while the inner core either was devoid of cells or contained peritoneal exudate cells (primarily macrophages), thereby mimicking the inflammatory phase of wound healing. The fibroblasts compacted floating fibrin microspheres over time. In the absence of macrophages, the initial distribution of fibroblasts (only in the shell) induced circumferential alignment of fibrin fibrils via compaction of the shell relative to the core. The aligned fibrils created a contact guidance field, which was manifested by strong circumferential alignment of the fibroblasts. However, in the presence of macrophages, the fibroblasts exhibited more radial alignment despite the simultaneous contact guidance field in the circumferential direction associated with compaction. This was attributed to a chemotactic gradient emanating from the core due to a putative factor(s) released by the macrophages. The presence of a radial chemotactic stimulus was supported by the finding of even greater radial alignment when fibrin microspheres were embedded in an agarose-fibrin gel that abolished compaction and consequently the contact guidance field. Our assay permits the simulation of tissue morphogenetic processes that involve cell guidance phenomena and tractional restructuring of the extracellular matrix.

  10. Aversive Stimuli Differentially Modulate Real-Time Dopamine Transmission Dynamics within the Nucleus Accumbens Core and Shell

    PubMed Central

    Badrinarayan, Aneesha; Wescott, Seth A.; Vander Weele, Caitlin M.; Saunders, Benjamin T.; Couturier, Brenann E.; Maren, Stephen

    2012-01-01

    Although fear directs adaptive behavioral responses, how aversive cues recruit motivational neural circuitry is poorly understood. Specifically, while it is known that dopamine (DA) transmission within the nucleus accumbens (NAc) is imperative for mediating appetitive motivated behaviors, its role in aversive behavior is controversial. It has been proposed that divergent phasic DA transmission following aversive events may correspond to segregated mesolimbic dopamine pathways; however, this prediction has never been tested. Here, we used fast-scan cyclic voltammetry to examine real-time DA transmission within NAc core and shell projection systems in response to a fear-evoking cue. In male Sprague Dawley rats, we first demonstrate that a fear cue results in decreased DA transmission within the NAc core, but increased transmission within the NAc shell. We examined whether these changes in DA transmission could be attributed to modulation of phasic transmission evoked by cue presentation. We found that cue presentation decreased the probability of phasic DA release in the core, while the same cue enhanced the amplitude of release events in the NAc shell. We further characterized the relationship between freezing and both changes in DA as well as local pH. Although we found that both analytes were significantly correlated with freezing in the NAc across the session, changes in DA were not strictly associated with freezing while basic pH shifts in the core more consistently followed behavioral expression. Together, these results provide the first real-time neurochemical evidence that aversive cues differentially modulate distinct DA projection systems. PMID:23136417

  11. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs)

    PubMed Central

    2015-01-01

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%). PMID:26819671

  12. Influence of the estrus cycle on the evaluation of a vaginal irritation study in intact and ovariectomized rats

    PubMed Central

    Ishii, Aiko; Ogawa, Bunichiro; Koyama, Tomoko; Nakanishi, Yutaka; Sasaki, Minoru

    2017-01-01

    When conducting vaginal irritation studies, ovariectomized rats or rabbits are typically used according to practical reports. In the present study, we evaluated the influence of the estrus cycle in a vaginal irritation study using intact rats and ovariectomized rats, which exhibit a late diestrus-like condition, to determine whether intact rats can be useful for evaluating vaginal irritancy. Rats were divided into 4 groups: proestrus, estrus, and metestrus or diestrus in intact rats and ovariectomized rats. All the rats in each group were treated with a vehicle or sodium dodecyl sulfate, as the irritant, in single-dose and 4-day repeat-dose vaginal irritation studies. Each rat’s vagina was examined histopathologically, and the irritation score was calculated using a semiquantitative scoring system. In the single-dose study, the irritation scores for the proestrus or ovariectomized groups treated with sodium dodecyl sulfate were higher than those of the estrus group or metestrus or diestrus group. In the 4-day repeat-dose study, a significant histopathological difference was not found among the intact rats (proestrus, estrus, and metestrus or diestrus groups), and the irritation score range of the intact rats was similar to that of the ovariectomized rats, though the mean score of the intact rats was slightly lower than that of the ovariectomized rats. These results suggest that intact rats might be well suited for 4-day vaginal irritation studies and useful for evaluating vaginal irritancy using not only the mean score, but also individual irritation score ranges, whereas the estrus cycle would need to be identified in single-dose vaginal irritation studies. PMID:28458454

  13. IMPACT OF ATRA ON OVALBUMIN AND MOLD-SENSITIZED F344 RATS AND REVERSAL OF HEALTH-RELATED IMPLICATIONS BY CITRAL.

    PubMed

    Farah, Ibrahim O; Holt-Gray, Carlene; Cameron, Joseph A; Tucci, Michelle; Benghuzzi, Hamed

    2017-01-01

    The role of retinoic acid (All Trans Retinoic Acid; ATRA) in the development of hypervitaminosis A pathophysiology is not well understood or established in the literature. As well, the role of Citral (inhibitor of retinoid function; a non-toxic chemical that exists in two forms (diethyl; C1 or cis-trans dimethyl; C2).) in the reversal of pathophysiological implications is also not ascertained under an in vivo setting. Therefore, it is hypothesized that ovalbumin exposure will sensitize the body to supra-physiologic levels of retinoic acid leading to a negative pathophysiological impact and that Citrals 1 and 2 will reverse or ameliorate the related damage to the body's pathophysiology. Even though ovalbumin and retinoic have been previously applied through intra-tracheal route in cancer prevention and immunological research, the objective of this study was to evaluate their interaction as a remedy for hypervitaminosis A. This IACUC approved in vivo study used Fischer 344 rats ( n = 80 ;229 to 273g), which were randomly assigned to controls as well as ovalbumin and mold-sensitized treatment groups (0.80 mg/kg and 1X109 mold spores combined from 4 strains/100 μl intra-tracheal; all others were dosed by intra-peritoneal injection at days 1 and 7 with 80 mg/kg each of ATRA as well as 20 and 50 mg/kg each of Citrals 1 or 2 individually or in combination to represent all four chemicals and mold spores treatments.. Positive and negative controls for each treatment were also included in the study. Animals were housed in rat cages at the JSU Research Animal Core Facilities and were placed on a 12:12 light dark cycle. A standard rodent diet and water access were provided ad-libidum. Rat weights were recorded on day 1 and 21, all animals were sacrificed on day 21 and blood was collected and processed for hematological parameters. Results showed that even though C1 and C2 were not toxic individually, their combination at high dosing was lethal. Exposure of ovalbumin-sensitized rats to ATRA showed various levels of weight losses and negative hematological implications that were ameliorated by exposure to Citrals at various combinations with retinoic acid. Taken together, the study showed that there are variable pathophysiological responses from the interaction of ovalbumin, mold spores and retinoic acid and that Citrals were found to be individually effective in reversing health-related pathophysiologies. These findings warrants further investigations as to the actual role of these interactions in relation to acute pathophysiologic health implications and the possibility of reversing hypervitaminosis A-mediated health-related impacts.

  14. Selective down-regulation of [(125)I]Y0-alpha-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine.

    PubMed

    Mugnaini, M; Garzotti, M; Sartori, I; Pilla, M; Repeto, P; Heidbreder, C A; Tessari, M

    2006-01-01

    Prolonged exposure to nicotine, as occurs in smokers, results in up-regulation of all the neuronal nicotinic acetylcholine receptor subtypes studied so far, the only differences residing in the extent and time course of the up-regulation. alpha6beta2*-Nicotinic acetylcholine receptors are selectively enriched in the mesostriatal dopaminergic system and may play a crucial role in nicotine dependence. Here we show that chronic nicotine treatment (3mg/kg/day for two weeks, via s.c. osmotic minipumps) caused a significant decrease (36% on average) in the binding of [(125)I]Y(0)-alpha-conotoxin MII (a selective ligand for alpha6beta2*-nicotinic acetylcholine receptors in this system) to all the five regions of the rat dopaminergic pathway analyzed in this study. After one week of withdrawal, binding was still lower than control in striatal terminal regions (namely the caudate putamen and the accumbens shell and core). In somatodendritic regions (the ventral tegmental area and the substantia nigra) the decrease was significant at the end of the treatment and recovered within one day of withdrawal. This effect was not due to displacement of [(125)I]Y(0)-alpha-conotoxin MII binding by residual nicotine. In fact the binding was not changed by 565 ng/g nicotine (obtained with a single injection of nicotine), a concentration much higher than that found in the brain of rats chronically treated with nicotine (240 ng/g). In addition, consistent with previous studies reporting an up-regulation of other subtypes of nicotinic acetylcholine receptors, we found that nicotine exposure significantly increased (40% on average) the binding of [(125)I]epibatidine (a non-selective agonist at most neuronal heteromeric nicotinic acetylcholine receptors) in three up to five regions containing only alpha-conotoxin MII-insensitive [(125)I]epibatidine binding sites, namely the primary motor, somatosensory and auditory cortices. In conclusion, this work is the first to demonstrate that alpha6beta2*-nicotinic acetylcholine receptors, unique within the nicotinic acetylcholine receptor family, are down-regulated following chronic nicotine treatment in rat dopaminergic mesostriatal pathway, a finding that may shed new light in the complex mechanisms of nicotine dependence.

  15. Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice

    PubMed Central

    Jhaveri, KA; Trammell, RA; Toth, LA

    2007-01-01

    Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232

  16. Chylomicron metabolism in rats: kinetic modeling indicates that the particles remain at endothelial sites for minutes[S

    PubMed Central

    Hultin, Magnus; Savonen, Roger; Chevreuil, Olivier; Olivecrona, Thomas

    2013-01-01

    Chylomicrons labeled in vivo with 14C-oleic acid (primarily in triglycerides, providing a tracer for lipolysis) and 3H-retinol (primarily in ester form, providing a tracer for the core lipids) were injected into rats. Radioactivity in tissues was followed at a series of times up to 40 min and the data were analyzed by compartmental modeling. For heart-like tissues it was necessary to allow the chylomicrons to enter into a compartment where lipolysis is rapid and then transfer to a second compartment where lipolysis is slower. The particles remained in these compartments for minutes and when they returned to blood they had reduced affinity for binding in the tissue. In contrast, the data for liver could readily be fitted with a single compartment for native and lipolyzed chylomicrons in blood, and there was no need for a pathway back to blood. A composite model was built from the individual tissue models. This whole-body model could simultaneously fit all data for both fed and fasted rats and allowed estimation of fluxes and residence times in the four compartments; native and lipolyzed chylomicrons (“remnants”) in blood, and particles in the tissue compartments where lipolysis is rapid and slow, respectively. PMID:23922383

  17. Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning.

    PubMed

    Nasser, Helen M; McNally, Gavan P

    2013-03-19

    We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of fear responses was retarded in rats that had received Stage I appetitive training. This counterconditioning was associated with increased levels of phosphorylated mitogen activated protein kinase immunoreactivity (pMAPK-IR) in several brain regions, including midline thalamus, rostral agranular insular cortex (RAIC), lateral amygdala, and nucleus accumbens core and shell, but decreased expression in the ventrolateral quadrant of the midbrain periaqueductal gray. These brain regions showing differential pMAPK-IR have previously been identified as part of the fear prediction error circuit. We then examined the causal role of RAIC MAPK in fear learning and showed that Stage II fear learning was prevented by RAIC infusions of the MEK inhibitor PD098059 (0.5 µg/hemisphere). Taken together, these results show that there are opponent interactions between the appetitive and aversive motivational systems during fear learning and that the transformation of a reward CS into a fear CS is linked to heightened activity in the fear prediction error circuit.

  18. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation.

    PubMed

    Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul

    2011-01-12

    The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs.

  19. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation

    PubMed Central

    Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul

    2011-01-01

    The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs. PMID:21289989

  20. Kangaroo rat bone compared to white rat bone after short-term disuse and exercise

    USGS Publications Warehouse

    Muths, E.; Reichman, O. J.

    1996-01-01

    Kangaroo rats (Dipodomys ordii) were used to study the effects of confinement on mechanical properties of bone with a long range objective of proposing an alternative to the white rat model for the study of disuse osteoporosis. Kangaroo rats exhibit bipedal locomotion, which subjects their limbs to substantial accelerative forces in addition to the normal stress of weight bearing. We subjected groups of kangaroo rats and white rats (Rattus norvegicus) to one of two confinement treatments or to an exercise regime; animals were exercised at a rate calculated to replicate their (respective) daily exercise patterns. White laboratory rats were used as the comparison because they are currently the accepted model used in the study of disuse osteoporosis. After 6 weeks of treatment, rats were killed and the long bones of their hind limbs were tested mechanically and examined for histomorphometric changes. We found that kangaroo rats held in confinement had less ash content in their hind limbs than exercised kangaroo rats. In general, treated kangaroo rats showed morphometric and mechanical bone deterioration compared to controls and exercised kangaroo rats appeared to have slightly “stronger” bones than confined animals. White rats exhibited no significant differences between treatments. These preliminary results suggest that kangaroo rats may be an effective model in the study of disuse osteoporosis.

  1. THE ACTION OF AVOCADO OIL ON THE LIPIDOGRAM OF WISTAR RATS SUBMITTED TO PROLONGED ANDROGENIC STIMULUM.

    PubMed

    de Souza Abboud, Renato; Alves Pereira, Vivian; Soares da Costa, Carlos Alberto; Teles Boaventura, Gilson; Alves Chagas, Mauricio

    2015-08-01

    the abuse of steroid hormones administered in chronic form may cause alterations in the lypidic profile, conveying na increase in the levels of LDL, and reduction in the levels of HDL. In average, 53.44% of the lypidic composition of the avocado core is composed of oleic acid (which is a phytosterol) and the study of the hypolipemiating effect of these substances has been performed aiming at the prevention and control of dislypidemias. to assess the potential hypolipemiant power of the avocado oil on the lypidogram of adult male Wistar rats submitted to prolonged androgenic hiperestimulation. twenty eight Wistar rats were divided in 4 groups of 7 animals: the control group (CG); Avocado Oil Group (AOG) fed with a staple based on Avocado Oil; Induced Grupo (IG); and the Induced Grupo fed with a staple based on Avocado Oil (AOIG). The inducing was performed through surgery to subcutaneously implant sillicon pellets suffed with 1 ml of testosterone propionate which were replaced at every 4 weeks. VLDL (AOIG: 28.14 ± 4.45; IG:36.83 ± 5.56 mg/ml); Triglicerides (AOIG: 140.07 ± 22.66; IG: 187.2 ± 27 mg/ml); HDL (AOIG: 40, 67 ± 1.2; GI: 35.09 ± 0.8; AOG: 32.31 ± 2.61 e CG: 32.36 ± 4.93 mg/ml) Testosterone (AOIG:1.42 ± 0.46; GI: 2.14 ± 0.88; AOG: 2.97 ± 1.34 e CG:1.86 ± 0.79 ng/ml). avocado Oil exerted a direct regulating effect on the lypidic profile, acting efficiently on animals submmited to androgenic stimulation through a prolonged period. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Sex and Trait Anxiety Differences in Psychological Stress are Modified by Environment.

    PubMed

    Liu, James; Scira, John; Donaldson, Simone; Kajiji, Nina; Dash, Gordon H; Donaldson, S Tiffany

    2018-05-09

    Evidence-based research has revealed how physiological and emotional responses to acute stress are adaptive. However, under conditions of unpredictable or protracted stress, health and drug vulnerability can be compromised. In this study, we examined anxiety-like behavioral responses of 4th generation adolescent male and female Long Evans rats selectively bred for high (HAn) and low (LAn) anxiety-like behavior when housed in an isolated environment (IE) versus a social environment (SE). After 35 days in IE or SE, animals were tested in the elevated plus maze (EPM), injected with amphetamine (AMPH: 0.5 mg/kg, IP) in the locomotor activity (LMA) chamber, measured for basal and post air puff-stressor core body temperature and blood pressure. Following select rearing, SE reduced the anxiogenic response in HAn rats with females displaying the lowest anxiety-like behavior in the EPM. During habituation in the LMA, IE rats remained active, while post-AMPH injection HAn females were hyperactive, followed closely by LAn females. Our findings from the post-stressor physiological measurements indicate that temperature differences due to environment are observed only in the SE females. We also observed group differences for diastolic (DBP) and systolic (SBP) blood pressure. HAn IE males experienced higher DBP and SBP but LAn IE females only experienced higher SBP. Not only do our findings corroborate earlier work on HAn/LAn lines but the findings obtained from this research offer new insights about the role of environment and the role of sex in (1) modulation of anxiety-like behavior, (2) AMPH sensitivity, and (3) basal and stress-induced physiological changes. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. PnPP-19, a Synthetic and Nontoxic Peptide Designed from a Phoneutria nigriventer Toxin, Potentiates Erectile Function via NO/cGMP.

    PubMed

    Silva, Carolina Nunes; Nunes, Kenia Pedrosa; Torres, Fernanda Silva; Cassoli, Juliana Silva; Santos, Daniel Moreira; Almeida, Flávia De Marco; Matavel, Alessandra; Cruz, Jader Santos; Santos-Miranda, Arthur; Nunes, Allancer Divino C; Castro, Carlos Henrique; Machado de Ávila, Ricardo Andrés; Chávez-Olórtegui, Carlos; Láuar, Stephanie Stransky; Felicori, Liza; Resende, Jarbas Magalhães; Camargos, Elizabeth Ribeiro da Silva; Borges, Márcia Helena; Cordeiro, Marta Nascimento; Peigneur, Steve; Tytgat, Jan; de Lima, Maria Elena

    2015-11-01

    We designed a peptide, PnPP-19, comprising the potential active core of the Phoneutria nigriventer native toxin PnTx2-6. We investigated its role on erectile function, and its toxicity and immunogenicity. Erectile function was evaluated by the intracavernous pressure-to-mean arterial pressure ratio during electrical field stimulation on rat pelvic ganglia. Cavernous strips were contracted with phenylephrine and relaxation was induced by electrical field stimulation with or without PnPP-19 (10(-8) M). Activity on sodium channels was evaluated by electrophysiological screening of transfected channels on Xenopus oocytes and dorsal root ganglion cells. Antibodies were detected by indirect enzyme-linked immunosorbent assay in mice previously treated with the peptide. Histopathological studies were performed with mouse organs treated with different doses of PnPP-19. PnPP-19 was able to potentiate erection at 4 and 8 Hz in vivo and ex vivo. It showed no toxicity and low immunogenicity in mice, and did not affect sodium channels or rat hearts. PnPP-19 increased cyclic guanosine monophosphate levels at 8 Hz. This effect was inhibited by L-NAME (10(-4) M). Erectile function was partially inhibited by 7-nitroindazole (10(-5) M), a selective inhibitor of neuronal nitric oxide synthase. PnPP-19 potentiates erection in vivo and ex vivo via the nitric oxide/cyclic guanosine monophosphate pathway. It does not affect sodium channels or rat hearts and shows no toxicity and low immunogenicity. These findings make it a promising candidate as a novel drug in the therapy of erectile dysfunction. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. The weakening effect of soluble epoxide hydrolase inhibitor AUDA on febrile response to lipopolysaccharide and turpentine in rat.

    PubMed

    Piotrowski, Jakub; Jędrzejewski, Tomasz; Pawlikowska, Małgorzata; Pacuła, Agata Joanna; Ścianowski, Jacek; Kozak, Wiesław

    2017-11-01

    A still growing body of evidence suggests the importance of epoxyeicosatrienoic acids (EETs) in the regulation of inflammatory response; therefore, drugs that stabilize their levels by targeting the soluble epoxide hydrolase (sEH), an enzyme responsible for their metabolism, are currently under investigation. The effect of sEH inhibitors on molecular components of fever mechanism, i.e., on synthesis of pro-inflammatory cytokines or prostaglandins, has been repeatedly proven; however, the hypothesis that sEH inhibitors affect febrile response has never been tested. The aim of this study was to examine if sEH inhibition affects core body temperature (Tb) as well as Tb changes during febrile response to infectious (lipopolysaccharide; LPS) or non-infectious (turpentine; TRP) stimuli. Male Wistar rats were implanted intra-abdominally with miniature biotelemeters to monitor Tb. A potent sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) was suspended in olive oil and administrated into animals in the intraperitoneal (i.p.) dose of 15 mg/kg, which, as we showed, has no significant influence on normal Tb. We have found that AUDA injected 3 h after LPS (50 μg/kg i.p.) significantly weakened febrile rise of Tb. Moreover, injection of sEH inhibitor 7 h after turpentine (administrated subcutaneously in a dose of 100 μL/rat) markedly reduced the peak period of aseptic fever. Obtained results provide first experimental evidence that sEH inhibitors possess anti-pyretic properties. Therefore, medicines targeting sEH enzymatic activity should be considered as a complement to the arsenal of topical medications used to treat fever especially in clinical situations when non-steroidal anti-inflammatory drugs are ineffective.

  5. D-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats.

    PubMed

    Karasawa, Jun-Ichi; Hashimoto, Kenji; Chaki, Shigeyuki

    2008-01-10

    Compounds enhancing N-methyl-d-aspartate (NMDA) glutamate receptor function have been reported to improve cognitive deficits. Since cognitive deficits are considered to be the core symptom of schizophrenia, enhancing NMDA receptor function represents a promising approach to treating schizophrenia. In the present study, we investigated whether d-serine or a glycine transporter inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), both of which enhance NMDA receptor function, could improve MK-801-induced cognitive deficits in rats, and compared their effects with those of the atypical antipsychotic clozapine and of the typical antipsychotic haloperidol. To assess cognitive function, we used a novel object recognition test in rats that measured spontaneous exploratory activity of a novel object when paired with a familiar object. We then evaluated the effects of the compounds on cognitive deficits induced by treatment with MK-801, the NMDA receptor antagonist. Pretreatment with clozapine (1, 5 mg/kg, i.p.) but not haloperidol (0.03, 0.1 mg/kg, i.p.) significantly improved MK-801-induced cognitive deficits. Pretreatment with D-serine at 800 mg/kg (i.p.) or NFPS (0.3, 1 mg/kg, i.p.) significantly improved MK-801-induced cognitive deficits under this test paradigm. These findings suggest that impaired preference for novel objects induced by MK-801 in the novel object recognition test could be a useful animal model for evaluating the efficacy of compounds targeting the cognitive deficits observed in schizophrenic patients. The results also suggest that enhancing NMDA receptor function is an effective way for treating the cognitive deficits associated with schizophrenia.

  6. Atorvastatin protects GABAergic and dopaminergic neurons in the nigrostriatal system in an experimental rat model of transient focal cerebral ischemia.

    PubMed

    Sabogal, Angélica María; Arango, César Augusto; Cardona, Gloria Patricia; Céspedes, Ángel Enrique

    2014-01-01

    Cerebral ischemia is the third leading cause of death and the primary cause of permanent disability worldwide. Atorvastatin is a promising drug with neuroprotective effects that may be useful for the treatment of stroke. However, the effects of atorvastatin on specific neuronal populations within the nigrostriatal system following cerebral ischemia are unknown. To evaluate the effects of atorvastatin on dopaminergic and GABAergic neuronal populations in exofocal brain regions in a model of transient occlusion of the middle cerebral artery. Twenty-eight male eight-week-old Wistar rats were used in this study. Both sham and ischemic rats were treated with atorvastatin (10 mg/kg) or carboxymethylcellulose (placebo) by gavage at 6, 24, 48 and 72 hours post-reperfusion. We analyzed the immunoreactivity of glutamic acid decarboxylase and tyrosine hydroxylase in the globus pallidus, caudate putamen and substantia nigra. We observed neurological damage and cell loss in the caudate putamen following ischemia. We also found an increase in tyrosine hydroxylase immunoreactivity in the medial globus pallidus and substantia nigra reticulata, as well as a decrease in glutamic acid decarboxylase immunoreactivity in the lateral globus pallidus in ischemic animals treated with a placebo. However, atorvastatin treatment was able to reverse these effects, significantly decreasing tyrosine hydroxylase levels in the medial globus pallidus and substantia nigra reticulata and significantly increasing glutamic acid decarboxylase levels in the lateral globus pallidus. Our data suggest that post-ischemia treatment with atorvastatin can have neuro-protective effects in exofocal regions far from the ischemic core by modulating the GABAergic and dopaminergic neuronal populations in the nigrostriatal system, which could be useful for preventing neurological disorders.

  7. Breathing and temperature control disrupted by morphine and stabilized by clonidine in neonatal rats.

    PubMed

    Kesavan, Kalpashri; Ezell, Tarrah; Bierman, Alexis; Nunes, Ana Rita; Northington, Frances J; Tankersley, Clarke G; Gauda, Estelle B

    2014-09-15

    Sedative-analgesics are often given to newborn infants and are known to affect many components of the autonomic nervous system. While morphine is most frequently used, α-2 adrenergic receptor agonists are being increasingly used in this population. Alpha-2 adrenergic receptors agonists also have anti-shivering properties which may make it a desirable drug to give to infants undergoing therapeutic hypothermia. The aim of this study was to systematically compare two different classes of sedative-analgesics, morphine, a μ-opioid receptor agonist, and clonidine an α-2 adrenergic receptor agonist on breathing, metabolism and core body temperature (CBT) in neonatal rodents. Breathing parameters, oxygen consumption (VO2) and carbon dioxide production (VCO2), were measured prior to, 10 and 90 min after intraperitoneal (IP) administration of morphine (2, 10 or 20 mg/kg), clonidine (40, 200 or 400 μg/kg), or saline in Sprague-Dawley rat pups at postnatal day 7 (p7) while continuously monitoring CBT. Morphine reduced the respiratory rate, VO2 and VCO2 greater than clonidine at all dosages used (p<0.05, morphine vs. clonidine, for all metabolic and respiratory parameters). Furthermore, morphine induced prolonged respiratory pauses, which were not observed in animals treated with clonidine or saline. Morphine caused hypothermia which was dose dependent, while clonidine stabilized CBT in comparison to saline treated animals (p<0.0001). In the newborn rat, morphine causes profound respiratory depression and hypothermia while clonidine causes minimal respiratory depression and stabilizes CBT. All together, we suggest that clonidine promotes autonomic stability and may be a desirable agent to use in infants being treated with therapeutic hypothermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effective transvascular drug delivery to glioma in rats by using a pulsed laser-induced photomechanical wave (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akutsu, Yusuke; Sato, Shunichi; Tomiyama, Arata; Tsunoi, Yasuyuki; Kawauchi, Satoko; Mori, Kentaro; Terakawa, Mitsuhiro

    2016-03-01

    Glioma is one of the most aggressive cancers, for which efficacy of conventional chemotherapy is often limited due to the blood-tumor barrier (BTB). Thus, the development of a method for enhancing the BTB permeability is strongly desired. In this study, we applied a photomechanical wave (PMW), which was generated by the irradiation of a light-absorbing material with a nanosecond laser pulse, to transiently open the BTB in a rat intracranial glioma model using C6 cells. A tumor was grown in the both hemispheres, and a solution of Evans blue (EB), as a test drug, was injected into the tail vein. Thereafter, we applied a PMW generated at a laser fluence of 0.2 J/cm2 (averaged peak pressure, ~27 MPa), 0.4 J/cm2 (~54 MPa) or 0.6 J/cm2 (~78MPa), to one hemisphere through the cranial window, while the other hemisphere served as a control. Four hours later, the rat was perfused, and we compared intensity distributions of EB fluorescence between the both hemispheres. Intensities of EB fluorescence both in the peritumoral and tumor core regions were increased with increasing the laser fluence, but hemorrhage was observed at the highest fluence. Thus, 0.4 J/cm2 would be optimum for efficient and safe BTB opening. On the basis of fluorescence microscopy with the use of enhanced green fluorescent protein-expressing C6 cells, we confirmed that a drug was delivered into targeted glioma cells in the peritumoral region. These results show the validity of the present transvascular drug delivery method to glioma.

  9. Bupropion and naltrexone combination alters high fructose corn syrup self-administration and gene expression in rats.

    PubMed

    Levy, AnneMarie; Daniels, Stephen; Hudson, Roger; Horman, Thomas; Flynn, Amanda; Zhou, Yan; Leri, Francesco

    2018-06-01

    Contrave ® is an adjunct pharmacotherapy for obesity that contains bupropion (BUP) and naltrexone (NTX). To further explore the psychopharmacology of this drug combination, male Sprague-Dawley rats were implanted with subcutaneous osmotic mini-pumps releasing: 40 mg/kg/day BUP, 4 mg/kg/day NTX, or 40 + 4 mg/kg/day BUP and NTX (BN). During 12 days of exposure, the animals were tested on operant intraoral self-administration (IOSA) of high fructose corn syrup (HFCS) on continuous (FR1) and progressive ratio (PR) schedules, on home cage drinking of HFCS, and on HFCS taste reactivity. Locomotion activity was also assessed. At the conclusion of the study, mRNA expression of genes involved in reward processing, appetite and mood were quantified. It was found that BN produced effects that could largely be ascribed to either BUP or NTX independently. More specifically, BN-induced reductions of HFCS IOSA on a FR1 schedule and home cage drinking, as well as alterations of MOR and POMC mRNA in the nucleus accumbens core and hypothalamus respectively, were attributable to NTX; while alterations of hippocampal BDNF mRNA was attributable to BUP. But, there was also some evidence of drug synergy: only BN caused persistent reductions of HFCS IOSA and drinking; BN produced the least gain of body weight; and only BN-treated rats displayed altered D2R mRNA in the caudate-putamen. Taken together, these observations support the use of BUP + NTX as a mean to alter consumption of sugars and reducing their impact on brain systems involved in reward, appetite and mood. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. BREATHING AND TEMPERATURE CONTROL DISRUPTED BY MORPHINE AND STABILIZED BY CLONIDINE IN NEONATAL RATS

    PubMed Central

    Kesavan, Kalpashri; Ezell, Tarrah; Bierman, Alexis; Nunes, Ana Rita; Northington, Frances J.; Tankersley, Clarke G.; Gauda, Estelle B.

    2014-01-01

    Background Sedative-analgesics are often given to newborn infants and are known to affect many components of the autonomic nervous system. While morphine is most frequently used, α-2 adrenergic receptor agonists are being increasingly used in this population. Alpha-2 adrenergic receptors agonists also have anti-shivering properties which may make it a desirable drug to give to infants undergoing therapeutic hypothermia. The aim of this study was to systematically compare two different classes of sedative-analgesics, morphine, a μ-opioid receptor agonist, and clonidine an α-2 adrenergic receptor agonist on breathing, metabolism and core body temperature (CBT) in neonatal rodents. Methods Breathing parameters, oxygen consumption (VO2) and carbon dioxide production (VCO2), were measured prior to, 10 and 90 minutes after intraperitoneal (IP) administration of morphine (2, 10 or 20mg/kg), clonidine (40, 200 or 400 μg/kg), or saline in Sprague-Dawley rat pups at postnatal day 7 (p7) while continuously monitoring CBT. Results Morphine reduced the respiratory rate, VO2 and VCO2 greater than clonidine at all dosages used (p<0.05, morphine vs. clonidine, for all metabolic and respiratory parameters). Furthermore, morphine induced prolonged respiratory pauses, which were not observed in animals treated with clonidine or saline. Morphine caused hypothermia which was dose dependent, while clonidine stabilized CBT in comparison to saline treated animals (p<0.0001). Conclusion In the newborn rat, morphine causes profound respiratory depression and hypothermia while clonidine causes minimal respiratory depression and stabilizes CBT. All together, we suggest that clonidine promotes autonomic stability and may be a desirable agent to use in infants being treated with therapeutic hypothermia. PMID:25008573

  11. Impact of water temperature and stressor controllability on swim stress-induced changes in body temperature, serum corticosterone, and immobility in rats.

    PubMed

    Drugan, Robert C; Eren, Senem; Hazi, Agnes; Silva, Jennifer; Christianson, John P; Kent, Stephen

    2005-10-01

    The present study compared the effects of three different water temperatures (20, 25, and 30 degrees C) and stressor controllability on several physiological and behavioral endpoints in an intermittent swim stress paradigm. The escape latency of rats in the 20 and 25 degrees C water was less than that observed for the 30 degrees C group. Both escape and yoked groups at 20 and 25 degrees C exhibited moderate to severe hypothermia following the swim stress session that returned to prestress levels 30-40 min post-stress. At 30 degrees C core body temperature (Tb) only decreased by 1 degree C for either swim group. Following swim, serum corticosterone (CORT) levels were significantly elevated in both escape and yoked groups in comparison to confined and home cage controls. The confined control group showed a significant elevation that was approximately halfway between the home cage control and the swim stress groups. At 30 degrees C, there was still a significant elevation of serum CORT in both swim groups in comparison to confined and home cage controls. Therefore, 30 degrees C appears to be the optimal water temperature to evaluate stress controllability effects in the current paradigm. In a final experiment, swim stressor controllability effects were examined in a 5 min forced swim test (FST) 24 h following the initial stress exposure. Rats exposed to yoked-inescapable swim stress at 30 degrees C exhibited more immobility than their escapable swim stress and confined counterparts, while the escape and confined controls did not differ. These results demonstrate that the behavioral deficits observed in the FST are attributable to the stress of inescapable swim and not swim stress per se.

  12. Nanomedicines for Inflammatory Arthritis: Head-To-Head Comparison of Glucocorticoid-Containing Polymers, Micelles and Liposomes

    PubMed Central

    Crielaard, Bart J.; Dusad, Anand; Lele, Subodh M.; Rijcken, Cristianne J. F.; Metselaar, Josbert M; Kostková, Hana; Etrych, Tomáš; Ulbrich, Karel; Kiessling, Fabian; Mikuls, Ted R.; Hennink, Wim E.; Storm, Gert; Lammers, Twan; Wang, Dong

    2014-01-01

    As an emerging research direction, nanomedicine has been increasingly utilized to treat inflammatory diseases. In this head-to-head comparison study, four established nanomedicine formulations of dexamethasone, including liposomes (L-Dex), core-crosslinked micelles (M-Dex), slow releasing polymeric prodrugs (P-Dex-slow) and fast releasing polymeric prodrugs (P-Dex-fast), were evaluated in an adjuvant-induced arthritis rat model with an equivalent dose treatment design. It was found that after a single i.v. injection, the formulations with the slower drug release kinetics (i.e. M-Dex and P-Dex-slow) maintained longer duration of therapeutic activity than those with relatively faster drug release kinetics, resulting in better joint protection. This finding will be instructional in the future development and optimization of nanomedicines for the clinical management of rheumatoid arthritis. The outcome of this study also illustrates the value of such head-to-head comparison studies in translational nanomedicine research. PMID:24341611

  13. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  14. Polarization anisotropy in fiber-optic second harmonic generation microscopy.

    PubMed

    Fu, Ling; Gu, Min

    2008-03-31

    We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.

  15. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens

    PubMed Central

    Lazarus, Michael; Shen, Hai-Ying; Cherasse, Yoan; Qu, Wei-Min; Huang, Zhi-Li; Bass, Caroline E.; Winsky-Sommerer, Raphaelle; Semba, Kazue; Fredholm, Bertil B.; Boison, Detlev; Hayaishi, Osamu; Urade, Yoshihiro; Chen, Jiang-Fan

    2011-01-01

    Caffeine, the most widely used psychoactive compound, is an adenosine receptor antagonist. It promotes wakefulness by blocking adenosine A2A receptors (A2ARs) in the brain, but the specific neurons on which caffeine acts to produce arousal have not been identified. Using selective gene deletion strategies based on the Cre/loxP technology in mice and focal RNA interference to silence the expression of A2ARs in rats by local infection with adeno-associated virus carrying short-hairpin RNA, we report that the A2ARs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness. Caffeine-induced arousal was not affected in rats when A2ARs were focally removed from the NAc core or other A2AR-positive areas of the basal ganglia. Our observations suggest that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain. PMID:21734299

  16. Regulation of myeloid leukemia factor-1 interacting protein (MLF1IP) expression in glioblastoma.

    PubMed

    Hanissian, Silva H; Teng, Bin; Akbar, Umar; Janjetovic, Zorica; Zhou, Qihong; Duntsch, Christopher; Robertson, Jon H

    2005-06-14

    The myelodysplasia/myeloid leukemia factor 1-interacting protein MLF1IP is a novel gene which encodes for a putative transcriptional repressor. It is localized to human chromosome 4q35.1 and is expressed in both the nuclei and cytoplasm of cells. Northern and Western blot analyses have revealed MLF1IP to be present at very low amounts in normal brain tissues, whereas a number of human and rat glioblastoma (GBM) cell lines demonstrated a high level expression of the MLF1IP protein. Immunohistochemical analysis of rat F98 and C6 GBM tumor models showed that MLF1IP was highly expressed in the tumor core where it was co-localized with MLF1 and nestin. Moreover, MLF1IP expression was elevated in the contralateral brain where no tumor cells were detected. These observations, together with previous data demonstrating a role for MLF1IP in erythroleukemias, suggest a possible function for this protein in glioma pathogenesis and potentially in other types of malignancies.

  17. Hair-bundle proteomes of avian and mammalian inner-ear utricles

    PubMed Central

    Wilmarth, Phillip A.; Krey, Jocelyn F.; Shin, Jung-Bum; Choi, Dongseok; David, Larry L.; Barr-Gillespie, Peter G.

    2015-01-01

    Examination of multiple proteomics datasets within or between species increases the reliability of protein identification. We report here proteomes of inner-ear hair bundles from three species (chick, mouse, and rat), which were collected on LTQ or LTQ Velos ion-trap mass spectrometers; the constituent proteins were quantified using MS2 intensities, which are the summed intensities of all peptide fragmentation spectra matched to a protein. The data are available via ProteomeXchange with identifiers PXD002410 (chick LTQ), PXD002414 (chick Velos), PXD002415 (mouse Velos), and PXD002416 (rat LTQ). The two chick bundle datasets compared favourably to a third, already-described chick bundle dataset, which was quantified using MS1 peak intensities, the summed intensities of peptides identified by high-resolution mass spectrometry (PXD000104; updated analysis in PXD002445). The mouse bundle dataset described here was comparable to a different mouse bundle dataset quantified using MS1 intensities (PXD002167). These six datasets will be useful for identifying the core proteome of vestibular hair bundles. PMID:26645194

  18. Design, synthesis, and in vivo SAR of a novel series of pyrazolines as potent selective androgen receptor modulators.

    PubMed

    Zhang, Xuqing; Li, Xiaojie; Allan, George F; Sbriscia, Tifanie; Linton, Olivia; Lundeen, Scott G; Sui, Zhihua

    2007-08-09

    A novel series of pyrazolines 2 have been designed, synthesized, and evaluated by in vivo screening as tissue-selective androgen receptor modulators (SARMs). Structure-activity relationships (SAR) were investigated at the R1 to R6 positions as well as the core pyrazoline ring and the anilide linker. Overall, strong electron-withdrawing groups at the R1 and R2 positions and a small group at the R5 and R6 position are optimal for AR agonist activity. The (S)-isomer of 7c exhibits more potent AR agonist activity than the corresponding (R)-isomer. (S)-7c exhibited an overall partial androgenic effect but full anabolic effect via oral administration in castrated rats. It demonstrated a noticeable antiandrogenic effect on prostate in intact rats with endogenous testosterone. Thus, (S)-7c is a tissue-selective nonsteroidal androgen receptor modulator with agonist activity on muscle and mixed agonist and antagonist activity on prostate.

  19. Quantitative analysis of pre-and postsynaptic sex differences in the nucleus accumbens

    PubMed Central

    Forlano, Paul M.; Woolley, Catherine S.

    2010-01-01

    The nucleus accumbens (NAc) plays a central role in motivation and reward. While there is ample evidence for sex differences in addiction-related behaviors, little is known about the neuroanatomical substrates that underlie these sexual dimorphisms. We investigated sex differences in synaptic connectivity of the NAc by evaluating pre- and postsynaptic measures in gonadally intact male and proestrous female rats. We used DiI labeling and confocal microscopy to measure dendritic spine density, spine head size, dendritic length and branching of medium spiny neurons (MSNs) in the NAc, and quantitative immunofluorescence to measure glutamatergic innervation using pre- (vesicular glutamate transporter 1 and 2) and postsynaptic (post synaptic density 95) markers, as well as dopaminergic innervation of the NAc. We also utilized electron microscopy to complement the above measures. Clear but subtle sex differences were identified, namely in distal dendritic spine density and the proportion of large spines on MSNs, both of which are greater in females. Sex differences in spine density and spine head size are evident in both the core and shell subregions, but are stronger in the core. This study is the first demonstration of neuroanatomical sex differences in the NAc and provides evidence that structural differences in synaptic connectivity and glutamatergic input may contribute to behavioral sex differences in reward and addiction. PMID:20151363

  20. An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity.

    PubMed

    Gutiérrez-García, Ana G; Contreras, Carlos M; Saldivar-Lara, Mauricio

    2018-06-21

    2-Heptanone (methyl n-amyl ketone) is a ketone that produces alarm reactions in insects (e.g., bees and ants). As an olfactory stimulus, 2-heptanone produces anxiety reactions in the short term and despair in the long term in rodent models. Among the anatomical connections of the olfactory system that integrate behavioral responses, connections between the amygdala and nucleus accumbens are important, which in turn form a circuit with the ventral tegmental area (VTA). 2-Heptanone increases the firing rate of amygdala neurons without participation of the vomeronasal organ. The olfactory amygdala-VTA-nucleus accumbens circuit may integrate defensive behaviors, but the possible actions of 2-heptanone on the responsivity of VTA-nucleus accumbens connections have not yet been explored. In the present study, multiunit activity recordings were obtained in adult Wistar rats from the core and shell subregions of the nucleus accumbens during electrical stimulation of the VTA under basal conditions and later during simultaneous stimulation of the VTA and olfactory exposure to 2-heptanone. 2-Heptanone reduced the responsivity of the VTA-nucleus accumbens shell but did not influence the responsivity of the VTA-nucleus accumbens core. The lower VTA-nucleus accumbens shell excitability may be related to a primary defensive warning when exposed to an alarm pheromone. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction

    PubMed Central

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K.; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex—nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction. PMID:23015784

  2. Modification of core body temperature by amino acid administration.

    PubMed

    Yamaoka, Ippei

    2008-01-01

    The feeling of warmth after a meal is caused by the ingestion of nutrients and the sensation is known as nutrition-induced thermogenesis or specific dynamic action. Core body temperature (Tb) is constantly maintained within a narrow range, but thermoregulation can become impaired by the inhalation or intravenous administration of anesthetics that inhibit hypothalamic thermoregulation. Hypothermia during surgery is directly associated with postoperative complications. Devices are available to maintain heat during surgery and thus prevent hypothermia. On the other hand, intravenous amino acid (AA) administration can attenuate hypothermia during anaesthesia, prompting many clinical trials of AA mixtures to maintain Tb. However, although the thermal effect of AA during anaesthesia is obvious, the underlying mechanism of metabolic heat production and accumulation remains obscure. A nutritional physiological approach using a rat model will be introduced in this symposium. Data from our recent studies suggest that the administration of an AA mixture during anaesthesia stimulates muscle protein synthesis via insulin-mTOR-dependent activation of the translation initiation factors, 4E-BP 1 and S6K1, as a result of increased insulin concentrations. Thus, heat accumulation in the body is facilitated. Furthermore, the content of the AA mixture applied during anaesthesia alters the thermal effect and branched chain AAs are necessary, but not sufficient, for the prevention of hypothermia.

  3. Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites.

    PubMed

    Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel; Skinner, Michael K

    2018-03-28

    A variety of environmental toxicants and factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. Epigenetic alterations in the germline (sperm or egg) are required to transmit transgenerational phenotypes. The current study was designed to investigate the potential role of histones in sperm to help mediate the epigenetic transgenerational inheritance. The agricultural fungicide vinclozolin and the pesticide DDT (dichlorodiphenyltrichloroethane) were independently used to promote the epigenetic transgenerational inheritance of disease. Purified cauda epididymal sperm were collected from the transgenerational F3 generation control and exposure lineage male rats for histone analysis. A reproducible core of histone H3 retention sites was observed using an H3 chromatin immunoprecipitation (ChIP-Seq) analysis in control lineage sperm. Interestingly, the same core group of H3 retention sites plus additional differential histone retention sites (DHRs) were observed in the F3 generation exposure lineage sperm. Although new histone H3 retention sites were observed, negligible change in histone modification (methylation of H3K27me3) was observed between the control and exposure lineages. Observations demonstrate that in addition to alterations in sperm DNA methylation and ncRNA previously identified, the induction of differential histone retention sites (DHRs) also appear to be involved in environmentally induced epigenetic transgenerational inheritance.

  4. [Reduction of the immunological rejection in composite tissue allotransplantation by heat stress preconditioning].

    PubMed

    Schorr, N; Sauerbier, M; Germann, G; Gebhard, M M; Ofer, N

    2011-12-01

    In spite of great advances in the field of composite tissue allotransplantations (CTA), there is still a major need for optimisation in terms of immunosuppression. Heat shock proteins are produced as a reaction of the body during a stress situation. Once elevated, they protect against a second stress and reduce ischaemia-reperfusion injury within transplantations. In the literature the effect of heat shock and HSP70 on rejection after CTA has not been described. The purpose of this experimental study was to examine the effect of heat shock proteins on rejection in a rat model of CTA. Evaluated was the effect of preconditioning by prior heat stress. Brown Norway rats were systemically heated to a core temperature of 42 °C in order to up-regulate HSP70. The expression of HSP70 in muscle was measured by Western blot analysis and showed a peak 24 h after heat shock. Allogeneic hindlimb transplantations were performed between Brown Norway rats (donor) and Lewis rats (recipients). Group 1 (n=12) was preheated 24 h prior to transplantation. In group 2 (n=12) the transplantation was performed without prior heat shock. Group 3 (n=6) was used as a control group with syngeneic hindlimb transplantations between Lewis rats. Postoperatively the appearance of the transplanted hindlimb was evaluated every 12 h. The beginning of rejection was defined when plantar erythema and foot oedema could be observed at the same time. To verify these discrete signs of rejection, the observation was continued for a further 24 h. In this time erythema and oedema spread over the whole transplanted hindlimb. The rat was sacrificed after specimens of skin and muscle had been taken for histological assessment. The rejection in group 1 (with preconditioning heat shock) began after 4.83±0.44 days, in group 2 (without heat shock) already after 3.88±0.53 days. The difference between these groups was significant because of the small standard deviation (Whitney-Mann U test: p<0.01). In our model of allogeneic composite tissue transplantation, a heat shock and subsequent up-regulation of HSP70 led to a significant delay of the immunological rejection. As the graft rejection is an important item influencing the outcome of allogeneic transplantations, these results represent an option to improve the final functional outcome of composite tissue allotransplantations. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.

    PubMed

    Li, Fu-rong; Yan, Wen-hui; Guo, Yue-hua; Qi, Hui; Zhou, Han-xin

    2009-08-01

    Magnetic fluid hyperthermia is a kind of technology for treating tumors based on nanotechnology. It is suitable to various types of tumors. The purpose of this study was to prepare carboplatin-Fe@C-loaded chitosan nanoparticles with Fe@C as a magnetic core and to investigate efficacy of hyperthermia combined with chemotherapy for transplanted liver cancer in rats. Fe@C nanopowder was treated with dilute hydrochloric acid to prepare Fe@C nanocage. Carboplatin-Fe@C-loaded chitosan nanoparticles were prepared by reverse microemulsion method with the nanocages as the magnetic cores, chitosan as the matrix. The shape, size, drug-loading rate, and in vitro cumulative release of the nanoparticles were observed and heat product under high frequency alternating electromagnetic field in vitro was explored. Eighty rats with transplanted liver cancer were randomly divided into 4 groups (group A: control group, group B: free carboplatin group, group C: nanoparticles with static magnetic field group, and group D: nanoparticles with static field and alternating magnetic field). Drug was injected into the hepatic artery. The therapeutic effect of hyperthermia combined with chemotherapy for tumor, toxicity and rat survival time were observed. Carboplatin-Fe@C-loaded chitosan nanoparticles were spherical in shape with an average size of (207 +/- 21) nm and high saturation magnetization. The drug-loading rate of the nanoparticles was 11.0 +/- 1.1%. The cumulative release percentage of carboplatin-Fe@C-loaded chitosan nanoparticles in vitro at different point time phase of 24 h, 48 h, 72 h, 96 h and 120 h were 51%, 68%, 80%, 87% and 91%, respectively. With an increase in carboplatin-Fe@C-loaded chitosan nanoparticle concentration and magnetic field strength, the heating rate and constant temperature of carboplatin-Fe@C-loaded chitosan nanoparticles dispersed in physiological saline were increased in an alternating magnetic field. In vivo experiments showed that after particle injection, tumor temperature reached 42.6 degrees +/- 0.2 degrees C within 10 min in the alternating magnetic field; and the temperatures in the right hepatic lobes and the rectum were significantly lower than in the tumor and the constant temperature could last up to 30 min. The inhibition ratio of tumor weight in group D was significantly enhanced, no obviously toxic and side-effect occurred and survival time was prolonged. Carboplatin-Fe@C-loaded chitosan nanoparticles possess good magnetic targeting and heat production properties. They can target liver cancer tissue by static magnetic field, and with the application of alternating magnetic field, effectively raise tumor tissue temperature and facilitate tumor apoptosis. The combination of chemotherapy and magnetic materials into nanoparticles as described herein demonstrates promising efficacy.

  6. Pharmacologically increasing collateral perfusion during acute stroke using a carboxyhemoglobin gas transfer agent (Sanguinate™) in spontaneously hypertensive rats.

    PubMed

    Cipolla, Marilyn J; Linfante, Italo; Abuchowski, Abe; Jubin, Ronald; Chan, Siu-Lung

    2018-05-01

    Similar to patients with chronic hypertension, spontaneously hypertensive rats (SHR) develop fast core progression during middle cerebral artery occlusion (MCAO) resulting in large final infarct volumes. We investigated the effect of Sanguinate™ (SG), a PEGylated carboxyhemoglobin (COHb) gas transfer agent, on changes in collateral and reperfusion cerebral blood flow and brain injury in SHR during 2 h of MCAO. SG (8 mL/kg) or vehicle ( n = 6-8/group) was infused i.v. after 30 or 90 min of ischemia with 2 h reperfusion. Multi-site laser Doppler probes simultaneously measured changes in core MCA and collateral flow during ischemia and reperfusion using a validated method. Brain injury was measured using TTC. Animals were anesthetized with choral hydrate. Collateral flow changed little in vehicle-treated SHR during ischemia (-8 ± 9% vs. prior to infusion) whereas flow increased in SG-treated animals (29 ± 10%; p < 0.05). In addition, SG improved reperfusion regardless of time of treatment; however, brain injury was smaller only with early treatment in SHR vs. vehicle (28.8 ± 3.2% vs. 18.8 ± 2.3%; p < 0.05). Limited collateral flow in SHR during MCAO is consistent with small penumbra and large infarction. The ability to increase collateral flow in SHR with SG suggests that this compound may be useful as an adjunct to endovascular therapy and extend the time window for treatment.

  7. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats.

    PubMed

    Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W M; Pasterkamp, R Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J M J

    2012-10-24

    The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4- to 5-week-old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signaling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats.

  8. Bronchus-associated Lymphoid Tissue in Pulmonary Hypertension Produces Pathologic Autoantibodies

    PubMed Central

    Colvin, Kelley L.; Cripe, Patrick J.; Ivy, D. Dunbar; Stenmark, Kurt R.

    2013-01-01

    Rationale: Autoimmunity has long been associated with pulmonary hypertension. Bronchus-associated lymphoid tissue plays important roles in antigen sampling and self-tolerance during infection and inflammation. Objectives: We reasoned that activated bronchus-associated lymphoid tissue would be evident in rats with pulmonary hypertension, and that loss of self-tolerance would result in production of pathologic autoantibodies that drive vascular remodeling. Methods: We used animal models, histology, and gene expression assays to evaluate the role of bronchus-associated lymphoid tissue in pulmonary hypertension. Measurements and Main Results: Bronchus-associated lymphoid tissue was more numerous, larger, and more active in pulmonary hypertension compared with control animals. We found dendritic cells in and around lymphoid tissue, which were composed of CD3+ T cells over a core of CD45RA+ B cells. Antirat IgG and plasma from rats with pulmonary hypertension decorated B cells in lymphoid tissue, resistance vessels, and adventitia of large vessels. Lymphoid tissue in diseased rats was vascularized by aquaporin-1+ high endothelial venules and vascular cell adhesion molecule–positive vessels. Autoantibodies are produced in bronchus-associated lymphoid tissue and, when bound to pulmonary adventitial fibroblasts, change their phenotype to one that may promote inflammation. Passive transfer of autoantibodies into rats caused pulmonary vascular remodeling and pulmonary hypertension. Diminution of lymphoid tissue reversed pulmonary hypertension, whereas immunologic blockade of CCR7 worsened pulmonary hypertension and hastened its onset. Conclusions: Bronchus-associated lymphoid tissue expands in pulmonary hypertension and is autoimmunologically active. Loss of self-tolerance contributes to pulmonary vascular remodeling and pulmonary hypertension. Lymphoid tissue–directed therapies may be beneficial in treating pulmonary hypertension. PMID:24093638

  9. Kalirin-7 Mediates Cocaine-Induced AMPA Receptor and Spine Plasticity, Enabling Incentive Sensitization

    PubMed Central

    Wang, Xiaoting; Cahill, Michael E.; Werner, Craig T.; Christoffel, Daniel J.; Golden, Sam A.; Xie, Zhong; Loweth, Jessica A.; Marinelli, Michela; Russo, Scott J.; Penzes, Peter

    2013-01-01

    It is well established that behavioral sensitization to cocaine is accompanied by increased spine density and AMPA receptor (AMPAR) transmission in the nucleus accumbens (NAc), but two major questions remain unanswered. Are these adaptations mechanistically coupled? And, given that they can be dissociated from locomotor sensitization, what is their functional significance? We tested the hypothesis that the guanine-nucleotide exchange factor Kalirin-7 (Kal-7) couples cocaine-induced AMPAR and spine upregulation and that these adaptations underlie sensitization of cocaine's incentive-motivational properties—the properties that make it “wanted.” Rats received eight daily injections of saline or cocaine. On withdrawal day 14, we found that Kal-7 levels and activation of its downstream effectors Rac-1 and PAK were increased in the NAc of cocaine-sensitized rats. Furthermore, AMPAR surface expression and spine density were increased, as expected. To determine whether these changes require Kal-7, a lentiviral vector expressing Kal-7 shRNA was injected into the NAc core before cocaine exposure. Knocking down Kal-7 abolished the AMPAR and spine upregulation normally seen during cocaine withdrawal. Despite the absence of these adaptations, rats with reduced Kal-7 levels developed locomotor sensitization. However, incentive sensitization, which was assessed by how rapidly rats learned to self-administer a threshold dose of cocaine, was severely impaired. These results identify a signaling pathway coordinating AMPAR and spine upregulation during cocaine withdrawal, demonstrate that locomotor and incentive sensitization involve divergent mechanisms, and link enhanced excitatory transmission in the NAc to incentive sensitization. PMID:23825406

  10. Targeting Neural Synchrony Deficits is Sufficient to Improve Cognition in a Schizophrenia-Related Neurodevelopmental Model

    PubMed Central

    Lee, Heekyung; Dvorak, Dino; Fenton, André A.

    2014-01-01

    Cognitive symptoms are core features of mental disorders but procognitive treatments are limited. We have proposed a “discoordination” hypothesis that cognitive impairment results from aberrant coordination of neural activity. We reported that neonatal ventral hippocampus lesion (NVHL) rats, an established neurodevelopmental model of schizophrenia, have abnormal neural synchrony and cognitive deficits in the active place avoidance task. During stillness, we observed that cortical local field potentials sometimes resembled epileptiform spike-wave discharges with higher prevalence in NVHL rats, indicating abnormal neural synchrony due perhaps to imbalanced excitation–inhibition coupling. Here, within the context of the hypothesis, we investigated whether attenuating abnormal neural synchrony will improve cognition in NVHL rats. We report that: (1) inter-hippocampal synchrony in the theta and beta bands is correlated with active place avoidance performance; (2) the anticonvulsant ethosuximide attenuated the abnormal spike-wave activity, improved cognitive control, and reduced hyperlocomotion; (3) ethosuximide not only normalized the task-associated theta and beta synchrony between the two hippocampi but also increased synchrony between the medial prefrontal cortex and hippocampus above control levels; (4) the antipsychotic olanzapine was less effective at improving cognitive control and normalizing place avoidance-related inter-hippocampal neural synchrony, although it reduced hyperactivity; and (5) olanzapine caused an abnormal pattern of frequency-independent increases in neural synchrony, in both NVHL and control rats. These data suggest that normalizing aberrant neural synchrony can be beneficial and that drugs targeting the pathophysiology of abnormally coordinated neural activities may be a promising theoretical framework and strategy for developing treatments that improve cognition in neurodevelopmental disorders such as schizophrenia. PMID:24592242

  11. Laser-activated protein bands for peripheral nerve repair

    NASA Astrophysics Data System (ADS)

    Lauto, Antonio; Trickett, Rodney I.; Malik, Richard; Dawes, Judith M.; Owen, Earl R.

    1996-01-01

    A 100 micrometer core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the protein based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 plus or minus 5 min. (n equals 24) compared to 23 plus or minus 9 min (n equals 13) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 plus or minus 5 g, while microsutured nerves had a tensile strength of 40 plus or minus 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study, with a total of fifty-seven adult male wistar rats, compared laser solder repaired tibial nerves to conventional microsuture repair. Twenty-four laser soldered nerves and thirteen sutured nerves were characterized at three months and showed successful regeneration with average compound muscle action potentials (CMAP) of 2.4 plus or minus 0.7 mV and 2.7 plus or minus 0.8 mV respectively. Histopathology of the in vivo study, confirmed the comparable regeneration of axons in laser and suture operated nerves. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  12. Pupils teach to pupils about genetics or global warming

    NASA Astrophysics Data System (ADS)

    Cuny, Delphine

    2013-04-01

    The idea of this project is to put pupils in a teaching situation. Classes of teenagers go to primary schools and animate a science workshop. Junior pupils are separated in small groups and they attend two different sessions in the same half-day. The whole workshop consists of 4 sessions. Each session is organized with an activity (microscope observation, counting of chromosomes, drawing of a curve, etc.) in which senior pupils coach the younger, and ends with a debate or an assessment. The first experiment of this type of project was realized with a class of 14 to 15 year old pupils on the theme: How do your parents transmit your characteristics? The four sessions are attended in disorder but when knowledge of other sessions are necessary, senior pupils explain them at the beginning of the session. Junior pupils have a notebook to write their activities and to note their conclusions. Session 1: What did my father give to make me? Drawing and measuring microscopic observations of human spermatozoons. Conclusion: my father gave a spermatozoon which measures less than one mm long, this spermatozoon met my mother's egg and it made my first cell. Session 2: What does the program that made me look like? Microscope observation of blood cells, identification of chromosomes in the core. On microscope pictures, counting of chromosomes. Conclusion: My program is in each cell of my body, inside the core. Sometimes, in this core, we can observe short sticks that are called chromosomes. All human beings have the same number of chromosomes in their cells: 46. Session 3: Where do my chromosomes come from? Counting of chromosomes in spermatozoons or ovums and playing with sets of chromosomes to deduct sex of a baby. Conclusion: Daddy gave me 23 chromosomes and mummy gave me 23 chromosomes too. My program is then constituted from half of daddy's program and half of mummy's program. My brothers and sisters also have half and half, but not the same halves! Session 4: Where is the program that made me situated? Virtual experiments on the first cell of rats (core transfers) Conclusion: The program that made that a rat is itself is situated in the core of its first cell. It is called a genetic program. Second experiment of this type of project is realized with a class of 16-17 year old pupils, on global warming for 8 to 11 year old pupils from the neighbor school. The older pupils use a teaching set created by "la main à la pâte" foundation, the set is called "le climat, ma planète et moi" (the climate, my planet and me, http://www.fondation-lamap.org/fr/climat). This project is to take place in March 2013.

  13. Calpain-GRIP Signaling in Nucleus Accumbens Core Mediates the Reconsolidation of Drug Reward Memory.

    PubMed

    Liang, Jie; Li, Jia-Li; Han, Ying; Luo, Yi-Xiao; Xue, Yan-Xue; Zhang, Yàn; Zhang, Yán; Zhang, Li-Bo; Chen, Man-Li; Lu, Lin; Shi, Jie

    2017-09-13

    Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression. SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the activation of calpain and decreased glutamate receptor interacting protein 1 (GRIP1) expression in the nucleus accumbens (NAc) core. The inhibition of calpain activity in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory that was blocked by prior GRIP1 knock-down. Our findings indicate that calpain-GRIP signaling is essential for the restabilization process that is associated with drug cue memory and the inhibition of calpain activity may be a novel strategy for the prevention of drug relapse. Copyright © 2017 the authors 0270-6474/17/378938-14$15.00/0.

  14. Air puff-induced 22-kHz calls in F344 rats.

    PubMed

    Inagaki, Hideaki; Sato, Jun

    2016-03-01

    Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The acute effects of different spironolactone doses on cardiac function in streptozotocin-induced diabetic rats.

    PubMed

    Vranic, Aleksandra; Simovic, Stefan; Ristic, Petar; Nikolic, Tamara; Stojic, Isidora; Srejovic, Ivan; Zivkovic, Vladimir; Jakovljevic, Vladimir; Djuric, Dusan

    2017-11-01

    Currently, cardiovascular diseases are the leading cause of global mortality, while diabetes mellitus remains an important cause of cardiovascular morbidity. A recent study showed that patients with diabetes mellitus treated with mineralocorticoid receptor antagonists have improved coronary microvascular function, leading to improved diastolic dysfunction. In this study, we evaluated the influence of acute administration of spironolactone on myocardial function in rats with streptozotocin-induced diabetes mellitus, with special emphasis on cardiodynamic parameters in diabetic rat hearts. The present study was carried out on 40 adult male Wistar albino rats (8 weeks old). Rats were randomly divided into 4 groups (10 animals per group): healthy rats treated with 0.1 μmol/L of spironolactone, diabetic rats treated with 0.1 μmol/L of spironolactone, healthy rats treated with 3 μmol/L of spironolactone, and diabetic rats treated with 3 μmol/L of spironolactone. Different, dose-dependent, acute responses of spironolactone treatment on isolated, working diabetic and healthy rat heart were observed in our study. In healthy rats, better systolic function was achieved with higher spironolactone dose, while in diabetic rats, similar effects of low and high spironolactone dose were observed.

  16. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Qiang, You; Meyer, Daniel; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald

    2008-04-01

    Nontoxic magnetic nanoparticles (MNPs) have expanded treatment delivery options in the medical world. With a size range from 2to200nm, MNPs can be compiled with most of the small cells and tissues in the living body. Monodispersive iron-iron oxide core-shell nanoparticles were prepared by our novel cluster deposition system. This unique method of preparing core-shell MNPs gives the nanoparticles a very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells. Since core iron enhances the heating effect [L. Baker, Q. Zeing, W. Li, and S. Sullivan, J. Appl. Phys. 99, 08H106 (2006)], the rate of oxidation of iron nanoparticles was also tested in de-ionized water at a certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by x-ray diffraction scan after 0, 24, 48, 96, and 204h. Due to the high magnetic moment offered by MNPs produced in our laboratory, we predict that even at low applied external alternating field, the desired temperature could be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover our MNPs do not require additional transfection agent, providing a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  17. Neural correlates of Pavlovian-to-instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-administration

    PubMed Central

    Saddoris, Michael P.; Stamatakis, Alice; Carelli, Regina M.

    2013-01-01

    During Pavlovian-to-instrumental transfer (PIT), learned Pavlovian cues significantly modulate ongoing instrumental actions. This phenomenon is suggested as a mechanism under which conditioned stimuli may lead to relapse in addicted populations. Following discriminative Pavlovian learning and instrumental conditioning with sucrose, one group of rats (naive) underwent electrophysiological recordings in the nucleus accumbens core and shell during a single PIT session. Other groups, following Pavlovian and instrumental conditioning, were subsequently trained to self-administer cocaine with nosepoke responses, or received yoked saline infusions and nosepoked for water rewards, and then performed PIT while electrophysiological recordings were taken in the nucleus accumbens. Behaviorally, although both naive and saline-treated groups showed increases in lever pressing during the conditioned stimulus cue, this effect was significantly enhanced in the cocaine-treated group. Neurons in the core and shell tracked these behavioral changes. In control animals, core neurons were significantly more likely to encode general information about cues, rewards and responses than those in the shell, and positively correlated with behavioral PIT performance, whereas PIT-specific encoding in the shell, but not core, tracked PIT performance. In contrast, following cocaine exposure, there was a significant increase in neural encoding of all task-relevant events that was selective to the shell. Given that cocaine exposure enhanced both behavior and shell-specific task encoding, these findings suggest that, whereas the core is important for acquiring the information about cues and response contingencies, the shell is important for using this information to guide and modulate behavior and is specifically affected following a history of cocaine self-administration. PMID:21507084

  18. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    PubMed

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-11-11

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF.

  19. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    PubMed Central

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-01-01

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF. Images PMID:7501455

  20. Brain penetrant liver X receptor (LXR) modulators based on a 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole core.

    PubMed

    Tice, Colin M; Noto, Paul B; Fan, Kristi Yi; Zhao, Wei; Lotesta, Stephen D; Dong, Chengguo; Marcus, Andrew P; Zheng, Ya-Jun; Chen, Guozhou; Wu, Zhongren; Van Orden, Rebecca; Zhou, Jing; Bukhtiyarov, Yuri; Zhao, Yi; Lipinski, Kerri; Howard, Lamont; Guo, Joan; Kandpal, Geeta; Meng, Shi; Hardy, Andrew; Krosky, Paula; Gregg, Richard E; Leftheris, Katerina; McKeever, Brian M; Singh, Suresh B; Lala, Deepak; McGeehan, Gerard M; Zhuang, Linghang; Claremon, David A

    2016-10-15

    Liver X receptor (LXR) agonists have been reported to lower brain amyloid beta (Aβ) and thus to have potential for the treatment of Alzheimer's disease. Structure and property based design led to the discovery of a series of orally bioavailable, brain penetrant LXR agonists. Oral administration of compound 18 to rats resulted in significant upregulation of the expression of the LXR target gene ABCA1 in brain tissue, but no significant effect on Aβ levels was detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top