Sample records for core excited polymers

  1. Structure-Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts.

    PubMed

    McCarthy, Blaine G; Pearson, Ryan M; Lim, Chern-Hooi; Sartor, Steven M; Damrauer, Niels H; Miyake, Garret M

    2018-04-18

    Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.

  2. The Chemical and Physical Properties of Pyrrole-Based Conducting Polymers: The Characterization of As-Grown Films by X-Ray Photoemission Spectroscopy.

    DTIC Science & Technology

    1983-04-07

    has been the subject of the most extensive experimental and theoretical investigations because in this particular polymer bond-alternation defects6...systems2 3 " 2 4 that such structures can arise from simultaneous core electron photoionization and valence electron excitation ("shake up") or ionization...34shake off"). While structures on the high energy side of the direct photoionization peak could also arise from characteristic energy losses (Le

  3. Research on ultrasonic excitation for the removal of drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng

    2017-05-01

    Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. First-Principles Predictions of Near-Edge X-ray Absorption Fine Structure Spectra of Semiconducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gregory M.; Patel, Shrayesh N.; Pemmaraju, C. D.

    The electronic structure and molecular orientation of semiconducting polymers in thin films determine their ability to transport charge. Methods based on near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can be used to probe both the electronic structure and microstructure of semiconducting polymers in both crystalline and amorphous films. However, it can be challenging to interpret NEXAFS spectra on the basis of experimental data alone, and accurate, predictive calculations are needed to complement experiments. Here, we show that first-principles density functional theory (DFT) can be used to model NEXAFS spectra of semiconducting polymers and to identify the nature of transitions inmore » complicated NEXAFS spectra. Core-level X-ray absorption spectra of a set of semiconducting polymers were calculated using the excited electron and core-hole (XCH) approach based on constrained-occupancy DFT. A comparison of calculations on model oligomers and periodic structures with experimental data revealed the requirements for accurate prediction of NEXAFS spectra of both conjugated homopolymers and donor–acceptor polymers. The NEXAFS spectra predicted by the XCH approach were applied to study molecular orientation in donor–acceptor polymers using experimental spectra and revealed the complexity of using carbon edge spectra in systems with large monomeric units. The XCH approach has sufficient accuracy in predicting experimental NEXAFS spectra of polymers that it should be considered for design and analysis of measurements using soft X-ray techniques, such as resonant soft X-ray scattering and scanning transmission X-ray microscopy.« less

  5. Improvement of both bandwidth and driving voltage of polymer phase modulators using buried in-plane coupled micro-strip driving electrodes

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2017-06-01

    A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.

  6. Influence of the CdSe quantum dots concentration on the amplified spontaneous emission from the conjugated polymer (MEH-PPV) in solution

    NASA Astrophysics Data System (ADS)

    Ibnaouf, K. H.

    2015-04-01

    The spectral properties of a conjugated polymer poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) in benzene have been studied intensively. The fluorescence spectra for MEH-PPV, under low concentrations, have shown two peaks around 560 nm and 600 nm, which could be attributed to the monomer and excimer states respectively. In our earlier communication, we had shown that MEH-PPV alone could produce amplified spontaneous emission (ASE) only in its excimeric state (600 nm). The spectral properties of 5 nm size of CdSe (core) quantum dots have been investigated. The fluorescence spectra of CdSe core in benzene showed only one band at 590 nm. Mixtures made of MEH-PPV and CdSe (core) quantum dots have been utilized for studying the amplified spontaneous emission characteristics (ASE) in an organic solution under laser excitation. When the mixture was pumped by the third harmonic of Nd:YAG (355 nm), we observed two ASE peaks; one at 575 nm and another at 595 nm. These ASE peaks could arise from the monomer and excimer states of MEH-PPV. This is perhaps the first report on the influence of quantum dots on the laser from the conjugated polymer MEH-PPV, in liquid solution.

  7. Polymer nanoassemblies with solvato- and halo-fluorochromism for drug release monitoring and metastasis imaging

    PubMed Central

    Reichel, Derek; Rychahou, Piotr; Bae, Younsoo

    2015-01-01

    Background: Theranostics, an emerging technique that combines therapeutic and diagnostic modalities for various diseases, holds promise to detect cancer in early stages, eradicate metastatic tumors and ultimately reduce cancer mortality. Methods & results: This study reports unique polymer nanoassemblies that increase fluorescence intensity upon addition of hydrophobic drugs and either increase or decrease fluorescence intensity in acidic environments, depending on nanoparticle core environment properties. Extensive spectroscopic analyses were performed to determine optimal excitation and emission wavelengths, which enabled real time measurement of drugs releasing from the nanoassemblies and ex vivo imaging of acidic liver metastatic tumors from mice. Conclusion: Polymer nanoassemblies with solvato- and halo-fluorochromic properties are promising platforms to develop novel theranostic tools for the detection and treatment of metastatic tumors. PMID:26446432

  8. Lasing from colloidal InP/ZnS quantum dots.

    PubMed

    Gao, Shuai; Zhang, Chunfeng; Liu, Yanjun; Su, Huaipeng; Wei, Lai; Huang, Tony; Dellas, Nicholas; Shang, Shuzhen; Mohney, Suzanne E; Wang, Jingkang; Xu, Jian

    2011-03-14

    High-quality InP/ZnS core-shell nanocrystal quantum dots (NQDs) were synthesized as a heavy-metal-free alternative to the gain media of cadmium-based colloidal nanoparticles. Upon UV excitation, amplified spontaneous emission (ASE) and optical gain were observed, for the first time, in close-packed InP/ZnS core-shell NQDs. The ASE wavelength can be selected by tailoring the nanocrystal size over a broad range of the spectrum. Moreover, the optical gain profile of InP/ZnS NQDs was matched to the second order feedback of holographic polymer-dispersed liquid crystal gratings, leading to the very first demonstration of an optically-pumped, nanocrystal laser based on InP/ZnS core-shell NQDs.

  9. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    DOE PAGES

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; ...

    2016-01-06

    A near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) can broaden the absorption range and boost upconversion efficiency of UCNPs. We achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb 3+ ) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. As a result, we synergized the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. We also demonstrated two biomedical applications using these UCNPs. By using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogeneticmore » neuron excitation window to a biocompatible and deep tissue penetrable 800 nm wavelength. Furthermore, UCNPs were water-solubilized with Pluronic F127 with high upconversion efficiency and can be imaged in a mouse model.« less

  10. Study of thermal annealing effect on Bragg gratings photo-inscribed in step-index polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Mégret, P.; Caucheteur, C.

    2016-04-01

    In this paper, both non-annealed and annealed trans-4-stilbenemethanol-doped step-index polymer optical fibers were photo-inscribed using a 325 nm HeCd laser with two different beam power densities reaching the fiber core. In the high density regime where 637 mW/mm2 are used, the grating reflectivity is stable over time after the photo-writing process but the reflected spectrum is of limited quality, as the grating physical length is limited to 1.2 mm. To produce longer gratings exhibiting more interesting spectral features, the beam is enlarged to 6 mm, decreasing the power density to 127 mW/mm2. In this second regime, the grating reflectivity is not stable after the inscription process but tends to decay for both kinds of fibers. A fortunate property in this case results from the possibility to fully recover the initial reflectivity using a post-inscription thermal annealing, where the gratings are annealed at 80 °C during 2 days. The observed evolutions for both regimes are attributed to the behavior of the excited intermediate states between the excited singlet and the ground singlet state of trans- and cis-isomers as well as the temperature-dependent glassy polymer matrix.

  11. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra

    2016-01-26

    Near Infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) have recently been proposed in order to broaden the absorption range and to boost upconversion efficiency. However, implementing this strategy has been limited only to bare core UCNP structures that are faintly luminescent. Herein, we report on an approach to achieve significantly enhanced upconversion luminescence in dye-sensitized core-active shell UCNPs with a broadened absorption range via the doping of ytterbium ions in the UCNP shell in order to bridge the energy transfer from the dye to the UCNP core. As a result, we have been able to synergize the two most practical upconversionmore » booster effectors (dye-sensitizing and core/shell enhancement). The absolute quantum yield of our dye-sensitized core/active shell UCNPs at 800 nm was determined to be ~6% at 2 W/cm2, about 33 times larger than the highest value reported to date for existing 800 nm excitable UCNPs. Moreover, for the first time, by using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a wavelength that is compatible with deep tissue penetrable near the infrared wavelength at 800 nm. Finally, amphiphilic triblock copolymer, Pluronic F127 coatings permit the transfer of hydrophobic UCNPs into water, resulting in water-soluble nanoparticles with well-preserved optical property in aqueous solution. We believe that this research offers a new solution to enhance upconversion efficiency for photonic and biophotonic purposes and opens up new opportunities to use UCNPs as a NIR relay for optogenetic applications.« less

  12. Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity.

    PubMed

    Wang, Jie; Lv, Yanlin; Wan, Wei; Wang, Xuefei; Li, Alexander D Q; Tian, Zhiyuan

    2016-02-01

    As a very sensitive technique, photoswitchable fluorescence not only gains ultrasensitivity but also imparts many novel and unexpected applications. Applications of near-infrared (NIR) fluorescence have demonstrated low background noises, high tissue-penetrating ability, and an ability to reduce photodamage to live cells. Because of these desired features, NIR-fluorescent dyes have been the premium among fluorescent dyes, and probes with photoswitchable NIR fluorescence are even more desirable for enhanced signal quality in the emerging optical imaging modalities but rarely used because they are extremely challenging to design and construct. Using a spiropyran derivative functioning as both a photoswitch and a fluorophore to launch its periodically modulated red fluorescence excitation energy into a NIR acceptor, we fabricated core-shell polymer nanoparticles exhibiting a photoswitchable fluorescence signal within the biological window (∼700-1000 nm) with a peak maximum of 776 nm. Live cells constantly synthesize new molecules, including fluorescent molecules, and also endocytose exogenous particles, including fluorescent particles. Upon excitation at different wavelengths, these fluorescent species bring about background noises and interferences covering nearly the whole visible region and therefore render many intracellular targets unaddressable. The oscillating NIR fluorescence signal with an on/off ratio of up to 67 that the polymer nanoparticles display is beyond the typical background noises and interferences, thus producing superior sharpness, reliability, and signal-to-noise ratios in cellular imaging. Taking these salient features, we anticipate that these types of nanoparticles will be useful for in vivo imaging of biological tissue and other complex specimens, where two-photon activation and excitation are used in combination with NIR-fluorescence photoswitching.

  13. Excited-State Complexes of Conjugated Polymers: Novel Photophysical Processes and Optoelectronic Materials.

    DTIC Science & Technology

    1995-03-20

    corresponding excited-state complexes were only recently discovered. The results of our extensive studies of intermolecular excimers and exciplexes of many...the luminescence of conjugated polymers. The luminescence and charge photogeneration in exciplexes of conjugated polymers with donor triarylamines will also be presented. jg

  14. Chromophores in phenylenevinylene-based conjugated polymers: role of conformational kinks and chemical defects.

    PubMed

    Hennebicq, Emmanuelle; Deleener, Caroline; Brédas, Jean-Luc; Scholes, Gregory D; Beljonne, David

    2006-08-07

    The influence of chemical defects and conformational kinks on the nature of the lowest electronic excitations in phenylenevinylene-based polymers is assessed at the semiempirical quantum-chemical level. The amount of excited-state localization and the amplitude of through-space (Coulomb-like) versus through-bond (charge-transfer-like) interactions have been quantified by comparing the results provided by excitonic and supermolecular models. While excitation delocalization among conjugated segments delineated by the defects occurs in the acceptor configuration, self-confinement on individual chromophores follows from geometric relaxation in the excited-state donor configuration. The extent of excited-state localization is found to be sensitive to both the nature of the defect and the length of the conjugated chains. Implications for resonant energy transfer along conjugated polymer chains are discussed.

  15. High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111).

    PubMed

    Koester, Robert; Sager, Daniel; Quitsch, Wolf-Alexander; Pfingsten, Oliver; Poloczek, Artur; Blumenthal, Sarah; Keller, Gregor; Prost, Werner; Bacher, Gerd; Tegude, Franz-Josef

    2015-04-08

    The high speed on-off performance of GaN-based light-emitting diodes (LEDs) grown in c-plane direction is limited by long carrier lifetimes caused by spontaneous and piezoelectric polarization. This work demonstrates that this limitation can be overcome by m-planar core-shell InGaN/GaN nanowire LEDs grown on Si(111). Time-resolved electroluminescence studies exhibit 90-10% rise- and fall-times of about 220 ps under GHz electrical excitation. The data underline the potential of these devices for optical data communication in polymer fibers and free space.

  16. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    NASA Astrophysics Data System (ADS)

    Yao, Atsushi; Sugimoto, Takaya; Odawara, Shunya; Fujisaki, Keisuke

    2018-05-01

    We report core loss properties of permanent magnet synchronous motors (PMSM) with amorphous magnetic materials (AMM) core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO) core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space) harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  17. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    NASA Astrophysics Data System (ADS)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and functional groups) and dielectric properties were explored. The results indicate that backbone rigidity and the inclusion of fluorine lead to excellent dielectric properties, however, often at the expense of mechanical properties. Chapter 5 explores the optimization of PTFE core-shell nanoparticles via a novel PTFE/polyimide (PI) core-shell nanoparticle. PTFE/PI core-shell nanoparticles were synthesized via electrostatic interaction between the PTFE cores and a PI precursor, poly(amic) acid salt (PAAS). The PAAS is converted to PI by thermal imidization. The PI has properties superior to those of PA for microwave applications and the results suggest the promise of PTFE/PI core-shell nanoparticles for use in AM of microwave devices. Chapter 6 describes the first report of on actively-tunable microwave substrate made possible by a semiconducting polymer composite blend. The composite blend is comprised of poly(3-hexylthiophene) (P3HT) as the semiconducting polymer and [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) while the remainder of the composite is comprised of a low dielectric constant polymer polydimethylsiloxane (PDMS). When subjected to photo excitation (white light, spectrum centered at 532 nm), the composite exhibits a tunability of the permittivity up to 20%. The results suggest strong promise for the use of semiconducting polymers in actively-tunable microwave devices. Finally, Chapter 7 presents a summary of the salient conclusions of the reported studies. The chapter concludes with a few brief remarks of my personal experience as a non-traditional student and the challenges therein.

  18. Determination of Magnetic Parameters of Maghemite (γ-Fe2O3) Core-Shell Nanoparticles from Nonlinear Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Syvorotka, Ihor I.; Pavlyk, Lyubomyr P.; Ubizskii, Sergii B.; Buryy, Oleg A.; Savytskyy, Hrygoriy V.; Mitina, Nataliya Y.; Zaichenko, Oleksandr S.

    2017-04-01

    Method of determining of magnetic moment and size from measurements of dependence of the nonlinear magnetic susceptibility upon magnetic field is proposed, substantiated and tested for superparamagnetic nanoparticles (SPNP) of the "magnetic core-polymer shell" type which are widely used in biomedical technologies. The model of the induction response of the SPNP ensemble on the combined action of the magnetic harmonic excitation field and permanent bias field is built, and the analysis of possible ways to determine the magnetic moment and size of the nanoparticles as well as the parameters of the distribution of these variables is performed. Experimental verification of the proposed method was implemented on samples of SPNP with maghemite core in dry form as well as in colloidal systems. The results have been compared with the data obtained by other methods. Advantages of the proposed method are analyzed and discussed, particularly in terms of its suitability for routine express testing of SPNP for biomedical technology.

  19. Coordination Chemistry Inside Polymeric Nanoreactors: Interparticle Metal Exchange and Ionic Compound Vectorization in Phosphine-Functionalized Amphiphilic Polymer Latexes.

    PubMed

    Chen, Si; Gayet, Florence; Manoury, Eric; Joumaa, Ahmad; Lansalot, Muriel; D'Agosto, Franck; Poli, Rinaldo

    2016-04-25

    Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optical excitations dynamics at hetero-interfaces fullerene/quantum dots

    NASA Astrophysics Data System (ADS)

    Righetto, Marcello; Privitera, Alberto; Franco, Lorenzo; Bozio, Renato

    2017-08-01

    Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.

  1. Scattering of 42 MeV alpha particles from copper-65

    NASA Technical Reports Server (NTRS)

    Stewart, W. M.; Seth, K. K.

    1973-01-01

    Beams of 42-MeV alpha particles were elastically and inelastically scattered from Cu-65 in an attempt to excite states which may be described in terms of an excited core model. Angular distributions were measured for 17 excited states. Seven of the excited states had angular distributions similar to a core quadrupole excitation and eight of the excited states had angular distributions similar to a core octupole excitation. The excited state at 2.858 MeV had an angular distribution which suggests that it may have results from the particle coupling to a two-phonon core state. An extended particle-core coupling calculation was performed and the predicted energy levels and reduced transition probabilities compared to the experimental data. The low lying levels are described quite well and the wavefunctions of these states explain the large spectroscopic factors measured in stripping reactions. For Cu-65 the coupling of the particle to the core is no larger weak as in the simpler model, and configuration mixing results.

  2. Development and Applications of Orthogonality Constrained Density Functional Theory for the Accurate Simulation of X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Derricotte, Wallace D.

    The aim of this dissertation is to address the theoretical challenges of calculating core-excited states within the framework of orthogonality constrained density functional theory (OCDFT). OCDFT is a well-established variational, time independent formulation of DFT for the computation of electronic excited states. In this work, the theory is first extended to compute core-excited states and generalized to calculate multiple excited state solutions. An initial benchmark is performed on a set of 40 unique core-excitations, highlighting that OCDFT excitation energies have a mean absolute error of 1.0 eV. Next, a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects is presented and combined with OCDFT in an effort to calculate core excited states of transition metal complexes. The X2C-OCDFT spectra of three organotitanium complexes (TiCl4, TiCpCl3, and TiCp2Cl2) are shown to be in good agreement with experimental results and show a maximum absolute error of 5-6 eV. Next the issue of assigning core excited states is addressed by introducing an automated approach to analyzing the excited state MO by quantifying its local contributions using a unique orbital basis known as localized intrinsic valence virtual orbitals (LIVVOs). The utility of this approach is highlighted by studying sulfur core-excitations in ethanethiol and benzenethiol, as well as the hydrogen bonding in the water dimer. Finally, an approach to selectively target specic core-excited states in OCDFT based on atomic orbital subspace projection is presented in an effort to target core excited states of chemisorbed organic molecules. The core excitation spectrum of pyrazine chemisorbed on Si(100) is calculated using OCDFT and further characterized using the LIVVO approach.

  3. Method of making hermetic seals for hermetic terminal assemblies

    DOEpatents

    Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.

    2010-04-13

    This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.

  4. Photophysics of conjugated polymers: interplay between Förster energy migration and defect concentration in shaping a photochemical funnel in PPV.

    PubMed

    Saini, Sangeeta; Bagchi, Biman

    2010-07-21

    Recent single molecule experiments have suggested the existence of a photochemical funnel in the photophysics of conjugated polymers, like poly[2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene] (MEH-PPV). The funnel is believed to be a consequence of the presence of conformational or chemical defects along the polymer chain and efficient non-radiative energy transfer among different chromophore segments. Here we address the effect of the excitation energy dynamics on the photophysics of PPV. The PPV chain is modeled as a polymer with the length distribution of chromophores given either by a Gaussian or by a Poisson distribution. We observe that the Poisson distribution of the segment lengths explains the photophysics of PPV better than the Gaussian distribution. A recently proposed version of an extended 'particle-in-a-box' model is used to calculate the exciton energies and the transition dipole moments of the chromophores, and a master equation to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Förster expression. The observed excitation population dynamics confirms the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The time scale of spectral shift and energy transfer for our model polymer, with realistic values of optical parameters, is in the range of 200-300 ps. We find that the excitation energy may not always migrate towards the longest chromophore segments in the polymer chain as the efficiency of energy transfer between chromophores depends on the separation distance between the two and their relative orientation.

  5. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts.

    PubMed

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-04-01

    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO 2 (PDs-TiO 2 ) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO 4 ) 2 . Under visible light irradiation, the PDs-TiO 2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO 2 is 3.6 and 9.5 times higher than that of pure TiO 2 and commercial P25, respectively. In addition, the PDs-TiO 2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO 2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO 2 , therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Research advances in polymer emulsion based on "core-shell" structure particle design.

    PubMed

    Ma, Jian-zhong; Liu, Yi-hong; Bao, Yan; Liu, Jun-li; Zhang, Jing

    2013-09-01

    In recent years, quite many studies on polymer emulsions with unique core-shell structure have emerged at the frontier between material chemistry and many other fields because of their singular morphology, properties and wide range of potential applications. Organic substance as a coating material onto either inorganic or organic internal core materials promises an unparalleled opportunity for enhancement of final functions through rational designs. This contribution provides a brief overview of recent progress in the synthesis, characterization, and applications of both inorganic-organic and organic-organic polymer emulsions with core-shell structure. In addition, future research trends in polymer composites with core-shell structure are also discussed in this review. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  8. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    NASA Astrophysics Data System (ADS)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  9. Large core plastic planar optical splitter fabricated by 3D printing technology

    NASA Astrophysics Data System (ADS)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  10. Laser patterning of transparent polymers assisted by plasmon excitation.

    PubMed

    Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O

    2018-06-13

    Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.

  11. Role of core excitation in (d ,p ) transfer reactions

    NASA Astrophysics Data System (ADS)

    Deltuva, A.; Ross, A.; Norvaišas, E.; Nunes, F. M.

    2016-10-01

    Background: Recent work found that core excitations can be important in extracting structure information from (d ,p ) reactions. Purpose: Our objective is to systematically explore the role of core excitation in (d ,p ) reactions and to understand the origin of the dynamical effects. Method: Based on the particle-rotor model of n +10Be , we generate a number of models with a range of separation energies (Sn=0.1 -5.0 MeV), while maintaining a significant core excited component. We then apply the latest extension of the momentum-space-based Faddeev method, including dynamical core excitation in the reaction mechanism to all orders, to the 10Be(d ,p )11Be -like reactions, and study the excitation effects for beam energies Ed=15 -90 MeV. Results: We study the resulting angular distributions and the differences between the spectroscopic factor that would be extracted from the cross sections, when including dynamical core excitation in the reaction, and that of the original structure model. We also explore how different partial waves affect the final cross section. Conclusions: Our results show a strong beam-energy dependence of the extracted spectroscopic factors that become smaller for intermediate beam energies. This dependence increases for loosely bound systems.

  12. Pulse excitation method for measurement of high frequency magnetic properties of large cores (abstract)

    NASA Astrophysics Data System (ADS)

    Hikosaka, Tomoyuki; Miyamoto, Masahiro; Yamada, Mamoru; Morita, Tadashi

    1993-05-01

    It is very important to obtain saturated magnetic properties from reverse saturation (full B-H curve) of ferromagnetic cores to design magnetic switches which are used in high power pulse generators. The magnetic switch is excited in the high frequency range (˜MHz). But, it is extremely difficult to measure full B-H curve of large toroidal cores of which diameter is some hundreds of mm, using the conventional ac excitation method at high frequency. The main reason is poor output ability of power source for core excitation. Therefore we have developed pulse excitation method to get high frequency magnetic properties. The measurement circuit has two sections. One is excitation part composed by charge transfer circuit. The others is reset part for adjustment initial point on direct B-H curve. The sample core is excited by sinusoidal voltage pulse expressed as 1-cos(2π ft). Excitation frequency f is decided by the constants of the elements of the charge transfer circuit. The change of magnetic flux density ΔB and magnetic field H are calculated, respectively, by measuring the induced voltage of search coil and magnetizing current. ΔB-H characteristics from reverse saturation of four different kinds of large cores were measured in frequency range from 50 kHz to 1 MHz. Core loss increases in proportion to Nth powers of the frequency, where the index N depends on each of cores. N is about 0.5 in case of winding ribbon cores, such as Fe-based amorphous, Co-based amorphous, and Finemet, but N is about 0.2 in case of the Ni-Zn ferrite.

  13. Nanostructured core-shell electrode materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  14. Seed-Surface Grafting Precipitation Polymerization for Preparing Microsized Optically Active Helical Polymer Core/Shell Particles and Their Application in Enantioselective Crystallization.

    PubMed

    Zhao, Biao; Lin, Jiangfeng; Deng, Jianping; Liu, Dong

    2018-05-14

    Core/shell particles constructed by polymer shell and silica core have constituted a significant category of advanced functional materials. However, constructing microsized optically active helical polymer core/shell particles still remains as a big academic challenge due to the lack of effective and universal preparation methods. In this study, a seed-surface grafting precipitation polymerization (SSGPP) strategy is developed for preparing microsized core/shell particles with SiO 2 as core on which helically substituted polyacetylene is covalently bonded as shell. The resulting core/shell particles exhibit fascinating optical activity and efficiently induce enantioselective crystallization of racemic threonine. Taking advantage of the preparation strategy, novel achiral polymeric and hybrid core/shell particles are also expected. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Role of core excitation in ( d , p ) transfer reactions

    DOE PAGES

    Deltuva, A.; Ross, A.; Norvaišas, E.; ...

    2016-10-24

    In our recent work we found that core excitations can be important in extracting structure information from (d,p) reactions. Our objective is to systematically explore the role of core excitation in (d,p) reactions and to understand the origin of the dynamical effects. Based on the particle-rotor model of n+Be 10, we generate a number of models with a range of separation energies (S n=0.1–5.0 MeV), while maintaining a significant core excited component. We then apply the latest extension of the momentum-space-based Faddeev method, including dynamical core excitation in the reaction mechanism to all orders, to the Be 10(d,p)Be 11-like reactions,more » and study the excitation effects for beam energies E d=15–90 MeV. We study the resulting angular distributions and the differences between the spectroscopic factor that would be extracted from the cross sections, when including dynamical core excitation in the reaction, and that of the original structure model. We also explore how different partial waves affect the final cross section. Our results show a strong beam-energy dependence of the extracted spectroscopic factors that become smaller for intermediate beam energies. Finally, this dependence increases for loosely bound systems.« less

  16. Core excitations across the neutron shell gap in 207Tl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, E.; Podolyák, Zs.; Grawe, H.

    2015-05-05

    The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less

  17. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core

    NASA Astrophysics Data System (ADS)

    D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.

    2017-05-01

    Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation-emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0-18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0-11.5 kyr BP), to the mid-Holocene (11.5-6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation-emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.

  18. Magnetic and Electrical Characteristics of Permalloy Thin Tape Bobbin Cores

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Wieserman, William R.; Niedra, Janis M.

    2005-01-01

    The core loss, that is, the power loss, of a soft ferromagnetic material is a function of the flux density, frequency, temperature, excitation type (voltage or current), excitation waveform (sine, square, etc.) and lamination or tape thickness. In previously published papers we have reported on the specific core loss and dynamic B-H loop results for several polycrystalline, nanocrystalline, and amorphous soft magnetic materials. In this previous research we investigated the effect of flux density, frequency, temperature, and excitation waveform for voltage excitation on the specific core loss and dynamic B-H loop. In this paper, we will report on an experimental study to investigate the effect of tape thicknesses of 1, 1/2, 1/4, and 1/8-mil Permalloy type magnetic materials on the specific core loss. The test cores were fabricated by winding the thin tapes on ceramic bobbin cores. The specific core loss tests were conducted at room temperature and over the frequency range of 10 kHz to 750 kHz using sine wave voltage excitation. The results of this experimental investigation will be presented primarily in graphical form to show the effect of tape thickness, frequency, and magnetic flux density on the specific core loss. Also, the experimental results when applied to power transformer design will be briefly discussed.

  19. Metal-Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis.

    PubMed

    Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu

    2016-05-25

    We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component.

  20. Many-electron aspects of molecular promotion in ion-atom collisions - Production of core-excited states of Li in Li/+/-He collisions

    NASA Technical Reports Server (NTRS)

    Elston, S. B.; Vane, C. R.; Schumann, S.

    1979-01-01

    Production of core-excited autoionizing states of neutral Li having configurations of the form 1snln(prime)l(prime) has been observed over the impact-energy range from 10-50 keV. Although the results for production of all such states is remarkably consistent with a quasi-molecular-excitation model proposed by Stolterfoht and Leithaeuser (1976), production of individual lines in the observed spectra exhibits collision-velocity dependencies indicative of considerably more complex processes, including processes which appear to be inherently two-electron in nature. Excitation functions are presented for (1s2s/2/)/2/S, 1s(2s2p/3/P)/2/P, 1s(2s2p/1/P)/2/P, and (1s2p/2/)/2/D core-excited state of Li and for total core excitation.

  1. Preparation and application of hollow molecularly imprinted polymers with a super-high selectivity to the template protein.

    PubMed

    Chen, Yang; He, Xi-Wen; Mao, Jie; Li, Wen-You; Zhang, Yu-Kui

    2013-10-01

    Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient synthetic access to thermo-responsive core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima

    2017-03-01

    Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe3O4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe3O4/polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.

  3. Efficient synthetic access to thermo-responsive core/shell nanoparticles.

    PubMed

    Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima

    2017-03-24

    Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe 3 O 4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe 3 O 4 /polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.

  4. Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin

    PubMed Central

    Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

    2009-01-01

    Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272

  5. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    PubMed

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  6. Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography.

    PubMed

    Ishigure, Takaaki; Nitta, Yosuke

    2010-06-21

    We successfully fabricate a polymer optical waveguide with multiple graded-index (GI) cores directly on a substrate utilizing the soft-lithography method. A UV-curable polymer (TPIR-202) supplied from Tokyo Ohka Kogyo Co., Ltd. is used, and the GI cores are formed during the curing process of the core region, which is similar to the preform process we previously reported. We experimentally confirm that near parabolic refractive index profiles are formed in the parallel cores (more than 50 channels) with 40 microm x 40 microm size at 250-microm pitch. Although the loss is still as high as 0.1 approximately 0.3 dB/cm at 850 nm, which is mainly due to scattering loss inherent to the polymer matrix, the scattering loss attributed to the waveguide's structural irregularity could be sufficiently reduced by a graded refractive index profile. For comparison, we fabricate step-index (SI)-core waveguides with the same materials by means of the same process. Then, we evaluate the inter-channel crosstalk in the SI- and GI-core waveguides under almost the same conditions. It is noteworthy that remarkable crosstalk reduction (5 dB and beyond) is confirmed in the GI-core waveguides, since the propagating modes in GI-cores are tightly confined near the core center and less optical power is found near the core cladding boundary. This significant improvement in the inter-channel crosstalk allows the GI-core waveguides to be utilized for extra high-density on-board optical interconnections.

  7. Liquid-filled hollow core microstructured polymer optical fiber.

    PubMed

    Cox, F M; Argyros, A; Large, M C J

    2006-05-01

    Guidance in a liquid core is possible with microstructured optical fibers, opening up many possibilities for chemical and biochemical fiber-optic sensing. In this work we demonstrate how the bandgaps of a hollow core microstructured polymer optical fiber scale with the refractive index of liquid introduced into the holes of the microstructure. Such a fiber is then filled with an aqueous solution of (-)-fructose, and the resulting optical rotation measured. Hence, we show that hollow core microstructured polymer optical fibers can be used for sensing, whilst also fabricating a chiral optical fiber based on material chirality, which has many applications in its own right.

  8. Nanoparticle (star polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation.

    PubMed

    Duong, Hien T T; Jung, Kenward; Kutty, Samuel K; Agustina, Sri; Adnan, Nik Nik M; Basuki, Johan S; Kumar, Naresh; Davis, Thomas P; Barraud, Nicolas; Boyer, Cyrille

    2014-07-14

    Biofilms are increasingly recognized as playing a major role in human infectious diseases, as they can form on both living tissues and abiotic surfaces, with serious implications for applications that rely on prolonged exposure to the body such as implantable biomedical devices or catheters. Therefore, there is an urgent need to develop improved therapeutics to effectively eradicate unwanted biofilms. Recently, the biological signaling molecule nitric oxide (NO) was identified as a key regulator of dispersal events in biofilms. In this paper, we report a new class of core cross-linked star polymers designed to store and release nitric oxide, in a controlled way, for the dispersion of biofilms. First, core cross-linked star polymers were prepared by reversible addition-fragmentation chain transfer polymerization (RAFT) via an arm first approach. Poly(oligoethylene methoxy acrylate) chains were synthesized by RAFT polymerization, and then chain extended in the presence of 2-vinyl-4,4-dimethyl-5-oxazolone monomer (VDM) with N,N-methylenebis(acrylamide) employed as a cross-linker to yield functional core cross-linked star polymers. Spermine was successfully attached to the star core by reaction with VDM. Finally, the secondary amine groups were reacted with NO gas to yield NO-core cross-linked star polymers. The core cross-linked star polymers were found to release NO in a controlled, slow delivery in bacterial cultures showing great efficacy in preventing both cell attachment and biofilm formation in Pseudomonas aeruginosa over time via a nontoxic mechanism, confining bacterial growth to the suspended liquid.

  9. Tidal excitation of elliptical instability in the Martian core: Possible mechanism for generating the core dynamo

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Seyed-Mahmoud, B.; Aldridge, K. D.; Baker, R. E.

    2008-06-01

    We propose a causal relationship between the creation of the giant impact basins on Mars by a large asteroid, ruptured when it entered the Roche limit, and the excitation of the Martian core dynamo. Our laboratory experiments indicate that the elliptical instability of the Martian core can be excited if the asteroid continually exerts tidal forces on Mars for ~20,000 years. Our numerical experiments suggest that the growth-time of the instability was 5,000-15,000 years when the asteroid was at a distance of 50,000-75,000 km. We demonstrate the stability of the orbital motion of an asteroid captured by Mars at a distance of 100,000 km in the presence of the Sun and Jupiter. We also present our results for the tidal interaction of the asteroid with Mars. An asteroid captured by Mars in prograde fashion can survive and excite the elliptical instability of the core for only a few million years, whereas a captured retrograde asteroid can excite the elliptical instability for hundreds of millions of years before colliding with Mars. The rate at which tidal energy dissipates in Mars during this period is over two orders of magnitude greater than the rate at which magnetic energy dissipates. If only 1% of the tidal energy dissipation is partitioned to the core, sufficient energy would be available to maintain the core dynamo. Accordingly, a retrograde asteroid is quite capable of exciting an elliptical instability in the Martian core, thus providing a candidate process to drive a core dynamo.

  10. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    NASA Astrophysics Data System (ADS)

    Kazlauskas, Karolis; Kreiza, Gediminas; Bobrovas, Olegas; AdomÄ--nienÄ--, Ona; AdomÄ--nas, Povilas; Jankauskas, Vygintas; JuršÄ--nas, Saulius

    2015-07-01

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10-2 cm2/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 109 s-1) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm2) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm-1) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  11. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    PubMed Central

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-01-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673

  12. Optical waveguiding properties of colloidal quantum dots doped polymer microfibers.

    PubMed

    Yu, Jiahao; Wang, Xiongbin; Chen, Rui

    2018-05-14

    QDs-doped polymer microfibers are fabricated through direct drawing method. By adding the polymethylmethacrylate into polystyrene, the surface quality and flexibility of microfiber are improved. Under direct excitation by the focused laser, the polymer microfibers doped with different quantum dots emit different colors and act as an optical waveguide. The waveguide properties of the microfiber are studied in detail. It is found that refractive index of the substrate and diameter of microfiber are the most important factors that affect the optical loss of this waveguide. The microfiber does not produce significant polarization after being deposited on the substrate. Moreover, exciting the QDs-doped polymer microfiber through a blue LED is demonstrated. This structure may find widespread applications in integrated photonic devices.

  13. Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.

    PubMed

    Myhre, Rolf H; Coriani, Sonia; Koch, Henrik

    2016-06-14

    Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.

  14. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    PubMed Central

    Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-01-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443–900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser. PMID:28368021

  15. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    NASA Astrophysics Data System (ADS)

    Park, Bong Je; Hong, A.-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-04-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

  16. Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips.

    PubMed

    Geissler, David; Belder, Detlev

    2015-12-01

    One of the most commonly employed detection methods in microfluidic research is fluorescence detection, due to its ease of integration and excellent sensitivity. Many analytes though do not show luminescence when excited in the visible light spectrum, require suitable dyes. Deep-ultraviolet (UV) excitation (<300 nm) allows label-free detection of a broader range of analytes but also mandates the use of expensive fused silica glass, which is transparent to UV light. Herein, we report the first application of label-free deep UV fluorescence detection in non-UV transparent full-body polymer microfluidic devices. This was achieved by means of two-photon excitation in the visible range (λex = 532 nm). Issues associated with the low optical transmittance of plastics in the UV range were successfully circumvented in this way. The technique was investigated by application to microchip electrophoresis of small aromatic compounds. Various polymers, such as poly(methyl methacrylate), cyclic olefin polymer, and copolymer as well as poly(dimethylsiloxane) were investigated and compared with respect to achievable LOD and ruggedness against photodamage. To demonstrate the applicability of the technique, the method was also applied to the determination of serotonin and tryptamine in fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Guided wave technique for non-destructive testing of StifPipe

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel K.; Nguyen, Chi H.; Ehsani, Mohammad; Kundu, Tribikram

    2015-03-01

    The newly-developed StifPipe® is an effective technology for repair and strengthening of existing pipes and culverts. The wall of this pipe consists of a lightweight honeycomb core with carbon or glass fiber reinforced polymer (FRP) applied to the skin. The presence of the hollow honeycomb introduces challenges in the nondestructive testing (NDT) of this pipe. In this study, it is investigated if guided waves, excited by PZT (Lead ZirconateTitanate) transducer can detect damages in the honeycomb layer of the StifPipe®. Multiple signal processing techniques are used for in-depth study and understanding of the recorded signals. The experimental technique for damage detection in StifPipe® material is described and the obtained results are presented in this paper.

  18. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells. Electronic supplementary information (ESI) available: TGA profile and DSC thermogram of all polymers, DLS data, AFM image, 1H-NMR, 13C-NMR, and MALDI spectra of all polymers and monomers. See DOI: 10.1039/c5nr04963f

  19. Improved open-circuit voltage in polymer/oxide-nanoarray hybrid solar cells by formation of homogeneous metal oxide core/shell structures.

    PubMed

    Wu, Fan; Cui, Qi; Qiu, Zeliang; Liu, Changwen; Zhang, Hui; Shen, Wei; Wang, Mingtai

    2013-04-24

    Incorporation of vertically aligned nanorod/nanowire arrays of metal oxide (oxide-NAs) with a polymer can produce efficient hybrid solar cells with an ideal bulk-heterojunction architecture. However, polymer/oxide-NAs solar cells still suffer from a rather low (normally, < 0.4 V) open-circuit voltage (Voc). Here we demonstrate, for the first time, a novel strategy to improve the Voc in polymer/oxide-NAs solar cells by formation of homogeneous core/shell structures and reveal the intrinsic principles involved therein. A feasible hydrothermal-solvothermal combined method is developed for preparing homogeneous core/shell nanoarrays of metal oxides with a single-crystalline nanorod as core and the aggregation layer of corresponding metal oxide quantum dots (QDs) as shell, and the shell thickness (L) is easily controlled by the solvothermal reaction time for growing QDs on the nanorod. The core/shell formation dramatically improves the device Voc up to ca. 0.7-0.8 V depending on L. Based on steady-state and dynamic measurements, as well as modeling by space-charge-limited current method, it is found that the improved Voc originates from the up-shifted conduction band edge in the core by the interfacial dipole field resulting from the decreased mobility difference between photogenerated electrons and holes after the shell growth, which increases the energy difference between the quasi-Fermi levels of photogenerated electrons in the core and holes in the polymer for a higher Voc. Our results indicate that increasing Voc by the core/shell strategy seems not to be dependent on the kinds of metal oxides.

  20. Synthesis of Core-shell Lanthanide-doped Upconversion Nanocrystals for Cellular Applications.

    PubMed

    Ai, Xiangzhao; Lyu, Linna; Mu, Jing; Hu, Ming; Wang, Zhimin; Xing, Bengang

    2017-11-10

    Lanthanide-doped upconversion nanocrystals (UCNs) have attracted much attention in recent years based on their promising and controllable optical properties, which allow for the absorption of near-infrared (NIR) light and can subsequently convert it into multiplexed emissions that span over a broad range of regions from the UV to the visible to the NIR. This article presents detailed experimental procedures for high-temperature co-precipitation synthesis of core-shell UCNs that incorporate different lanthanide ions into nanocrystals for efficiently converting deep-tissue penetrable NIR excitation (808 nm) into a strong blue emission at 480 nm. By controlling the surface modification with biocompatible polymer (polyacrylic acid, PAA), the as-prepared UCNs acquires great solubility in buffer solutions. The hydrophilic nanocrystals are further functionalized with specific ligands (dibenzyl cyclooctyne, DBCO) for localization on the cell membrane. Upon NIR light (808 nm) irradiation, the upconverted blue emission can effectively activate the light-gated channel protein on the cell membrane and specifically regulate the cation (e.g., Ca 2+ ) influx in the cytoplasm. This protocol provides a feasible methodology for the synthesis of core-shell lanthanide-doped UCNs and subsequent biocompatible surface modification for further cellular applications.

  1. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.

    PubMed

    Zhu, Ming; Huang, Xingyi; Yang, Ke; Zhai, Xing; Zhang, Jun; He, Jinliang; Jiang, Pingkai

    2014-11-26

    The interfacial region plays a critical role in determining the electrical properties and energy storage density of dielectric polymer nanocomposites. However, we still know a little about the effects of electrical properties of the interfacial regions on the electrical properties and energy storage of dielectric polymer nanocomposites. In this work, three types of core-shell structured polymer@BaTiO3 nanoparticles with polymer shells having different electrical properties were used as fillers to prepare ferroelectric polymer nanocomposites. All the polymer@BaTiO3 nanoparticles were prepared by surface-initiated reversible-addition-fragmentation chain transfer (RAFT) polymerization, and the polymer shells were controlled to have the same thickness. The morphology, crystal structure, frequency-dependent dielectric properties, breakdown strength, leakage currents, energy storage capability, and energy storage efficiency of the polymer nanocomposites were investigated. On the other hand, the pure polymers having the same molecular structure as the shells of polymer@BaTiO3 nanoparticles were also prepared by RAFT polymerization, and their electrical properties were provided. Our results show that, to achieve nanocomposites with high discharged energy density, the core-shell nanoparticle filler should simultaneously have high dielectric constant and low electrical conductivity. On the other hand, the breakdown strength of the polymer@BaTiO3-based nanocomposites is highly affected by the electrical properties of the polymer shells. It is believed that the electrical conductivity of the polymer shells should be as low as possible to achieve nanocomposites with high breakdown strength.

  2. A microbial trigger for gelled polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, S.; Bryant, R.; Zhu, T.

    1995-12-31

    A process using a microbially gelled biopolymer was developed and used to modify permeability in coreflood experiments. Alkaline-soluble curdlan biopolymer was mixed with microbial nutrients and acid-producing alkaliphilic bacteria, and injected into Berea sandstone cores. Concurrent bottle tests with the polymer solution were incubated beside the core. Polymer in the bottle tests formed rigid gel in 2-5 days at 27{degree}C. After 7 days incubation, 25-35 psi fluid pressure was required to begin flow through the cores. Permeability of the cores was decreased from 852 md to 2.99 md and from 904 md to 4.86 md, respectively, giving residual resistance factorsmore » of 334 and 186.« less

  3. Effects of core turbulence on jet excitability

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.

  4. Theoretical study of geometry relaxation following core excitation: H2O, NH3, and CH4

    NASA Astrophysics Data System (ADS)

    Takahashi, Osamu; Kunitake, Naoto; Takaki, Saya

    2015-10-01

    Single core-hole (SCH) and double core-hole excited state molecular dynamics (MD) calculations for neutral and cationic H2O, NH3, and CH4 have been performed to examine geometry relaxation after core excitation. We observed faster X-H (X = C, N, O) bond elongation for the core-ionized state produced from the valence cationic molecule and the double-core-ionized state produced from the ground and valence cationic molecules than for the first resonant SCH state. Using the results of SCH MD simulations of the ground and valence cationic molecules, Auger decay spectra calculations were performed. We found that fast bond scission leads to peak broadening of the spectra.

  5. Two-photon oxygen nanosensors based on a conjugated fluorescent polymer doped with platinum porphyrins.

    PubMed

    Wang, Xiao-Hui; Peng, Hong-Shang; Cheng, Kun; Liu, Xiao-Ming; Liu, Yuan-An; Yang, Wei

    2018-04-27

    Ratiometric fluorescent nanoparticles (NPs) under two-photon excitation are successfully developed for sensing dissolved oxygen. The NPs comprise the oxygen probe Pt(II)-porphyrins (PtTFPP) and fluorescent organic semiconducting polymer (PFO). PFO polymer acts as both a two-photon antenna and a reference dye, while PtTFPP absorbs the photonic energy transferred by the PFO under two-photon excitation at 740 nm to sense oxygen. The red fluorescence of PtTFPP is sensitive to oxygen with a quenching response of 88% from nitrogen saturation to oxygen saturation, and PFO gives oxygen-insensitive referenced blue fluorescence. The fluorescence quenching of the NPs against oxygen at two-photon excitation follows a linear Stern-Volmer behavior. The nanosensors exhibit low cytotoxic effects as well as effortless cellular uptake. When incorporated into cells, the ratio of the signals increases up to about 500% from oxygen-saturated to oxygen-free environment.

  6. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    PubMed

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  7. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    PubMed

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Prakash; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energymore » corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.« less

  9. Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory

    PubMed Central

    Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin

    2010-01-01

    With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. In this review article, we discuss the calculation of excitation energies with time-dependent density functional theory, which is one of the most successful methods in the investigation of the dynamical response of molecular systems to external perturbation, owing to its high computational efficiency.

  10. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons couldmore » not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.« less

  11. Enhanced upconversion emission in colloidal (NaYF4:Er(3+))/NaYF4 core/shell nanoparticles excited at 1523 nm.

    PubMed

    Shao, Wei; Chen, Guanying; Damasco, Jossana; Wang, Xianliang; Kachynski, Aliaksandr; Ohulchanskyy, Tymish Y; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2014-03-15

    In this work, we report on efficient visible and near-IR upconversion emissions in colloidal hexagonal-phase core/shell NaYF4:Er(3+)/NaYF4 nanoparticles (∼38  nm) under IR laser excitation at 1523 nm. Varying amounts of Er(3+) dopants were introduced into the core NaYF4:Er(3+) nanoparticles, revealing an optimized Er(3+) concentration of 10% for the highest luminescent efficiency. An inert epitaxial shell layer of NaYF4 grown onto the core of the NaYF4:Er(3+) 10% nanoparticle increased its upconversion emission intensity fivefold due to suppression of surface-related quenching mechanisms, yielding the absolute upconversion efficiency to be as high as ∼3.9±0.3% under an excitation density of 18  W/cm(2). The dependence of the intensity of upconversion emission peaks on laser excitation density in the core/shell nanoparticle displayed "saturation effects" at low excitation density in the range of 1.5-18  W/cm(2), which again demonstrates high upconversion efficiency.

  12. SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation.

    PubMed

    Dimchevska, Simona; Geskovski, Nikola; Petruševski, Gjorgji; Chacorovska, Marina; Popeski-Dimovski, Riste; Ugarkovic, Sonja; Goracinova, Katerina

    2017-03-01

    One of the most important problems in nanoencapsulation of extremely hydrophobic drugs is poor drug loading due to rapid drug crystallization outside the polymer core. The effort to use nanoprecipitation, as a simple one-step procedure with good reproducibility and FDA approved polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), will only potentiate this issue. Considering that drug loading is one of the key defining characteristics, in this study we attempted to examine whether the nanoparticle (NP) core composed of two hydrophobic polymers will provide increased drug loading for 7-Ethyl-10-hydroxy-camptothecin (SN-38), relative to NPs prepared using individual polymers. D-optimal design was applied to optimize PLGA/PCL ratio in the polymer blend and the mode of addition of the amphiphilic copolymer Lutrol ® F127 in order to maximize SN-38 loading and obtain NPs with acceptable size for passive tumor targeting. Drug/polymer and polymer/polymer interaction analysis pointed to high degree of compatibility and miscibility among both hydrophobic polymers, providing core configuration with higher drug loading capacity. Toxicity studies outlined the biocompatibility of the blank NPs. Increased in vitro efficacy of drug-loaded NPs compared to the free drug was confirmed by growth inhibition studies using SW-480 cell line. Additionally, the optimized NP formulation showed very promising blood circulation profile with elimination half-time of 7.4 h.

  13. Report of the Polymer Core Course Committee: Inclusion of Polymer Topics into Undergraduate Inorganic Chemistry Courses.

    ERIC Educational Resources Information Center

    Miller, Norman E.; And Others

    1984-01-01

    Suggests polymer topics for study in inorganic chemistry courses. Commercial materials (including list of inorganic compounds utilized in polymer industry), anchored metal catalysis, polymers modified or formed by coordination, polysiloxanes, phosphazene or phosphonitrilic halide polymers, and hetergeneous polymerization catalysts are considered.…

  14. Rydberg excitation of cold atoms inside a hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Langbecker, Maria; Noaman, Mohammad; Kjærgaard, Niels; Benabid, Fetah; Windpassinger, Patrick

    2017-10-01

    We report on a versatile, highly controllable hybrid cold Rydberg atom fiber interface, based on laser cooled atoms transported into a hollow-core kagome crystal fiber. Our experiments demonstrate the feasibility of exciting cold Rydberg atoms inside a hollow-core fiber and we study the influence of the fiber on Rydberg electromagnetically induced transparency (EIT) signals. Using a temporally resolved detection method to distinguish between excitation and loss, we observe two different regimes of the Rydberg excitations: one EIT regime and one regime dominated by atom loss. These results are a substantial advancement towards future use of our system for quantum simulation or information.

  15. One-pot synthesis of iniferter-bound polystyrene core nanoparticles for the controlled grafting of multilayer shells

    NASA Astrophysics Data System (ADS)

    Marchyk, Nataliya; Maximilien, Jacqueline; Beyazit, Selim; Haupt, Karsten; Sum Bui, Bernadette Tse

    2014-02-01

    A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis.A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05295h

  16. Vibration mode and vibration shape under excitation of a three phase model transformer core

    NASA Astrophysics Data System (ADS)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  17. Strategies Toward Well-Defined Polymer Nanoparticles Inspired by Nature: Chemistry versus Versatility

    PubMed Central

    Elsabahy, Mahmoud; Wooley, Karen L.

    2014-01-01

    Polymeric nanoparticles are promising delivery platforms for various biomedical applications. One of the main challenges toward the development of therapeutic nanoparticles is the premature disassembly and release of the encapsulated drug. Among the different strategies to enhance the kinetic stability of polymeric nanoparticles, shell- and core-crosslinking have been shown to provide robust character, while creating a suitable environment for encapsulation of a wide range of therapeutics, including hydrophilic, hydrophobic, metallic, and small and large biomolecules, with gating of their release as well. The versatility of shell- and core-crosslinked nanoparticles is driven from the ease by which the structures of the shell- and core-forming polymers and crosslinkers can be modified. In addition, postmodification with cell-recognition moieties, grafting of antibiofouling polymers, or chemical degradation of the core to yield nanocages allow the use of these robust nanostructures as “smart” nanocarriers. The building principles of these multifunctional nanoparticles borrow analogy from the synthesis, supramolecular assembly, stabilization, and dynamic activity of the naturally driven biological nanoparticles such as proteins, lipoproteins, and viruses. In this review, the chemistry involved during the buildup from small molecules to polymers to covalently stabilized nanoscopic objects is detailed, with contrast of the strategies of the supramolecular assembly of polymer building blocks followed by intramicellar stabilization into shell-, core-, or core–shell-crosslinked knedel-like nanoparticles versus polymerization of polymers into nanoscopic molecular brushes followed by further intramolecular covalent stabilization events. The rational design of shell-crosslinked knedel-like nanoparticles is then elaborated for therapeutic packaging and delivery, with emphasis on the polymer chemistry aspects to accomplish the synthesis of such nanoparticulate systems. PMID:25574072

  18. Predictable Particle Engineering: Programming the Energy Level, Carrier Generation, and Conductivity of Core-Shell Particles.

    PubMed

    Yuan, Conghui; Wu, Tong; Mao, Jie; Chen, Ting; Li, Yuntong; Li, Min; Xu, Yiting; Zeng, Birong; Luo, Weiang; Yu, Lingke; Zheng, Gaofeng; Dai, Lizong

    2018-06-20

    Core-shell structures are of particular interest in the development of advanced composite materials as they can efficiently bring different components together at nanoscale. The advantage of this structure greatly relies on the crucial design of both core and shell, thus achieving an intercomponent synergistic effect. In this report, we show that decorating semiconductor nanocrystals with a boronate polymer shell can easily achieve programmable core-shell interactions. Taking ZnO and anatase TiO 2 nanocrystals as inner core examples, the effective core-shell interactions can narrow the band gap of semiconductor nanocrystals, change the HOMO and LUMO levels of boronate polymer shell, and significantly improve the carrier density of core-shell particles. The hole mobility of core-shell particles can be improved by almost 9 orders of magnitude in comparison with net boronate polymer, while the conductivity of core-shell particles is at most 30-fold of nanocrystals. The particle engineering strategy is based on two driving forces: catechol-surface binding and B-N dative bonding and having a high ability to control and predict the shell thickness. Also, this approach is applicable to various inorganic nanoparticles with different components, sizes, and shapes.

  19. Proton-hole and core-excited states in the semi-magic nucleus 131In82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taprogge, J.; Jungclaus, A.; Grawe, H.

    2016-11-01

    The decay of the N = 83 nucleus Cd-131 has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the and proton-hole states and the energies of core-excited configurations in the semi-magic nucleus In-131. From the radiation emitted following the decay, a level scheme of In-131 was established and the feeding to each excited state determined. Similarities between the single-particle transitions observed in the decays of the N = 83 isotones In-132 and Cd-131 are discussed. Finally the excitation energies of several core-excited configurations in In-131more » are compared to QRPA and shell-model calculations.« less

  20. Core excitation effects on oscillator strengths for transitions in four electron atomic systems

    NASA Astrophysics Data System (ADS)

    Chang, T. N.; Luo, Yuxiang

    2007-06-01

    By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).

  1. State-specific enhancement of Cl+ and Cl- desorption for SiCl4 adsorbed on a Si(100) surface following Cl 2 p and Si 2 p core-level excitations.

    PubMed

    Chen, J M; Lu, K T

    2001-04-02

    State-specific desorption for SiCl4 adsorbed on a Si(100) surface at approximately 90 K with variable coverage following the Cl 2p and Si 2p core-level excitations has been investigated using synchrotron radiation. The Cl+ yields show a significant enhancement following the Cl 2p-->8a*1 excitation. The Cl- yields are notably enhanced at the 8a*1 resonance at both Cl 2p and Si 2p edges. The enhancement of the Cl- yield occurs through the formation of highly excited states of the adsorbed molecules. These results provide some new dissociation processes from adsorbates on surfaces via core-level excitation.

  2. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials.

    PubMed

    Verma, Prakash; Bartlett, Rodney J

    2016-07-21

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  3. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  4. Photo-processing P3HT conjugated polymers, in solution: A new route towards ordered polymeric structures.

    NASA Astrophysics Data System (ADS)

    Barbosa Neto, Newton; Dutra, Marcia; Araujo, Paulo; Sampaio, Renato

    Solution aggregated thin films of conjugated polymers have demonstrated to be promising materials for many applications, e.g., solar cells and field-effect transistors. There are many standard methods to generate aggregates in polymeric solution, which includes poor solvent addiction and solution temperature manipulation. Here, we demonstrate a new approach to induce aggregate formation on solution of P3HT polymer. Under light excitation with 355 nm or 532 nm pulsed laser the polymer exhibit significant changes on its UV-Vis spectrum which are most known in the literature as the formation of H-J aggregates and additional new bands associated with polaron formation. Such changes in the amorphous phase of the polymers are seen in specific conditions of solvent combinations. We show also the dependency on the excitation laser power which can be identified as a threshold to ignite the formation of the new structure. We are grateful to CNPq and CAPES for financial support.

  5. Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging.

    PubMed

    Zhang, Mingming; Li, Shuya; Yan, Xuzhou; Zhou, Zhixuan; Saha, Manik Lal; Wang, Yu-Cai; Stang, Peter J

    2016-10-04

    The covalent linkage of supramolecular monomers provides a powerful strategy for constructing dynamic polymeric materials whose properties can be readily tuned either by the selection of monomers or the choice of functional linkers. In this strategy, the stabilities of the supramolecular monomers and the reactions used to link the monomers are crucial because such monomers are normally dynamic and can disassemble during the linking process, leading to mixture of products. Therefore, although noncovalent interactions have been widely introduced into metallacycle structures to prepare metallosupramolecular polymers, metallacycle-cored polymers linked by covalent bonds have been rarely reported. Herein, we used the mild, highly efficient amidation reaction between alkylamine and N-hydroxysuccinimide-activated carboxylic acid to link the pendent amino functional groups of a rhomboidal metallacycle 10 to give metallacycle-cored polymers P1 and P2, which further yielded nanoparticles at low concentration and transformed into network structures as the concentration increased. Moreover, these polymers exhibited enhanced emission and showed better quantum yields than metallacycle 10 in methanol and methanol/water (1/9, vol/vol) due to the aggregation-induced emission properties of a tetraphenylethene-based pyridyl donor, which serves as a precursor for metallacycle 10. The fluorescence properties of these polymers were further used in cell imaging, and they showed a significant enrichment in lung cells after i.v. injection. Considering the anticancer activity of rhomboidal Pt(II) metallacycles, this type of fluorescent metallacycle-cored polymers can have potential applications toward lung cancer treatment.

  6. Asymptotics of quasi-classical localized states in 2D system of charged hard-core bosons

    NASA Astrophysics Data System (ADS)

    Panov, Yu. D.; Moskvin, A. S.

    2018-05-01

    The continuous quasi-classical two-sublattice approximation is constructed for the 2D system of charged hard-core bosons to explore metastable inhomogeneous states analogous to inhomogeneous localized excitations in magnetic systems. The types of localized excitations are determined by asymptotic analysis and compared with numerical results. Depending on the homogeneous ground state, the excitations are the ferro and antiferro type vortices, the skyrmion-like topological excitations or linear domain walls.

  7. Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology

    NASA Astrophysics Data System (ADS)

    Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg

    2016-09-01

    The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.

  8. Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence.

    PubMed

    Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O

    2018-01-26

    The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effects of substrate size, surface area, and density on coat thickness of multi-particulate dosage forms.

    PubMed

    Heinicke, Grant; Matthews, Frank; Schwartz, Joseph B

    2005-01-01

    Drugs layering experiments were performed in a fluid bed fitted with a rotor granulator insert using diltiazem as a model drug. The drug was applied in various quantities to sugar spheres of different mesh sizes to give a series of drug-layered sugar spheres (cores) of different potency, size, and weight per particle. The drug presence lowered the bulk density of the cores in proportion to the quantity of added drug. Polymer coating of each core lot was performed in a fluid bed fitted with a Wurster insert. A series of polymer-coated cores (pellets) was removed from each coating experiment. The mean diameter of each core and each pellet sample was determined by image analysis. The rate of change of diameter on polymer addition was determined for each starting size of core and compared to calculated values. The core diameter was displaced from the line of best fit through the pellet diameter data. Cores of different potency with the same size distribution were made by layering increasing quantities of drug onto sugar spheres of decreasing mesh size. Equal quantities of polymer were applied to the same-sized core lots and coat thickness was measured. Weight/weight calculations predict equal coat thickness under these conditions, but measurable differences were found. Simple corrections to core charge weight in the Wurster insert were successfully used to manufacture pellets having the same coat thickness. The sensitivity of the image analysis technique in measuring particle size distributions (PSDs) was demonstrated by measuring a displacement in PSD after addition of 0.5% w/w talc to a pellet sample.

  10. Gradual collapse of nuclear wave functions regulated by frequency tuned X-ray scattering.

    PubMed

    Ignatova, Nina; Cruz, Vinícius V; Couto, Rafael C; Ertan, Emelie; Zimin, Andrey; Guimarães, Freddy F; Polyutov, Sergey; Ågren, Hans; Kimberg, Victor; Odelius, Michael; Gel'mukhanov, Faris

    2017-03-07

    As is well established, the symmetry breaking by isotope substitution in the water molecule results in localisation of the vibrations along one of the two bonds in the ground state. In this study we find that this localisation may be broken in excited electronic states. Contrary to the ground state, the stretching vibrations of HDO are delocalised in the bound core-excited state in spite of the mass difference between hydrogen and deuterium. The reason for this effect can be traced to the narrow "canyon-like" shape of the potential of the state along the symmetric stretching mode, which dominates over the localisation mass-difference effect. In contrast, the localisation of nuclear motion to one of the HDO bonds is preserved in the dissociative core-excited state . The dynamics of the delocalisation of nuclear motion in these core-excited states is studied using resonant inelastic X-ray scattering of the vibrationally excited HDO molecule. The results shed light on the process of a wave function collapse. After core-excitation into the state of HDO the initial wave packet collapses gradually, rather than instantaneously, to a single vibrational eigenstate.

  11. Magnetic vortex core reversal by excitation of spin waves.

    PubMed

    Kammerer, Matthias; Weigand, Markus; Curcic, Michael; Noske, Matthias; Sproll, Markus; Vansteenkiste, Arne; Van Waeyenberge, Bartel; Stoll, Hermann; Woltersdorf, Georg; Back, Christian H; Schuetz, Gisela

    2011-01-01

    Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.

  12. Porous and non-porous water soluble polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Henselwood, Fred William

    Water soluble polymer nanospheres have been prepared from the photo-cross-linking of diblock copolymer micelles formed either in water or in N,N-dimethylformamide/water mixtures. The diblock copolymers utilized in this study were poly(2-cinnamoyl-ethyl methacrylate)-block-poly(acrylic acid), poly ((2-cinnamoylethyl methacrylate)-random-(2-octanoylethyl methacrylate)) -block-poly(acrylic acid), and poly ((2-cinnamoyl-ethyl methacrylate)-random-(2-oleoylethyl methacrylate)) -block-poly(acrylic acid). These polymers were synthesized by the functionalization of diblock copolymers prepared by anionic polymerization. The photo-cross-linking was achieved through the dimerization of cinnamoyl groups by ultraviolet irradiation. Transmission electron microscopy confirmed that the polymer nanospheres had an inner core region formed by the cinnamoyl containing polymer blocks, and an outer shell layer formed by the acrylic acid polymer blocks. The hydrodynamic radius of the polymer nanospheres in water was approximately 50 to 75 nm as determined by dynamic light scattering. It has been found that the polymer nanospheres, when in water, could be readily impregnated with organic molecules. Fluorescence measurements showed that the polymer nanospheres could uptake polyaromatic hydrocarbons by the direct mixing of polyaromatic hydrocarbons with the polymer nanospheres in water. Perylene was found to be between 2.0 × 10sp5 and 4.0 × 10sp5 times more soluble in the core region of the polymer nanospheres than in water. The addition of divalent cations was shown to induce aggregation of the polymer nanospheres and resulted in the precipitation of the polymer nanospheres along with any captured perylene. This suggests that the polymer nanospheres may be useful in water remediation. Porous polymer nanospheres were prepared by the incorporation of low molecular weight polymeric porogens within the core region of the polymer nanospheres. Following photo-cross-linking the polymeric porogens were extracted out of the polymer nanospheres resulting in pore formation. Perylene loading experiments revealed that the loading of the porous polymer nanospheres was 41% higher than that achieved for non-porous polymer nanospheres prepared from the same initial diblock copolymer. This indicates that the porous polymer nanospheres may be preferred over the non-porous polymer nanospheres in applications such as drug delivery.

  13. The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell.

    PubMed

    Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo

    2011-01-01

    A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.

  14. Systematics on the low-lying spectra in N = 78 ~ 80 isotones

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Y.; Zhang, S. Q.; Li, X. Q.; Hua, H.; Xu, C.; Li, Z. H.; Zhao, P. W.; Meng, J.; Sun, J. J.; Bai, Z. J.; Xu, F. R.; Ye, Y. L.; Jiang, D. X.; Wang, E. H.; He, C.; Han, R.; Wu, X. G.; Li, G. S.; He, C. Y.; Zheng, Y.; Li, C. B.; Hu, S. P.; Yao, S. H.; Yu, B. B.; Cao, X. P.; Wang, J. L.

    2014-07-01

    Combining the new spectroscopy results of 144Tb and previous spectroscopy studies of neighboring nuclei, a systematic investigation on the low-lying spectra in N = 78 80 isotones is performed. Good systematics have been found for the coupling patterns which couple the odd nucleon(s), such as πh11/2, ν h-111/2, π h11/22, ν h-211/2, π h11/2ν h-111/2, to the 2+, 4+, 6+ and 3- core excitations. It is found that the relative excitation energies of the states formed by coupling h11/2 proton(s) to the 2+, 4+ core excitations are pushed up, in contrast with those formed by coupling h11/2 neutron hole(s) to the 2+, 4+ core excitations, which are pulled down. According to the systematics, the interpretation that the 17/2+ states observed in 141Sm and 143Gd are the fully aligned member of coupling the odd h11/2 neutron hole to the octupole 3- core excitation, is explored to the isotones 145Dy, 142Eu, and 144Tb.

  15. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of themore » exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.« less

  16. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    PubMed

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  18. Reconfigurable Polymer Shells on Shape-Anisotropic Gold Nanoparticle Cores.

    PubMed

    Kim, Juyeong; Song, Xiaohui; Kim, Ahyoung; Luo, Binbin; Smith, John W; Ou, Zihao; Wu, Zixuan; Chen, Qian

    2018-05-03

    Reconfigurable hybrid nanoparticles made by decorating flexible polymer shells on rigid inorganic nanoparticle cores can provide a unique means to build stimuli-responsive functional materials. The polymer shell reconfiguration has been expected to depend on the local core shape details, but limited systematic investigations have been undertaken. Here, two literature methods are adapted to coat either thiol-terminated polystyrene (PS) or polystyrene-poly(acrylic acid) (PS-b-PAA) shells onto a series of anisotropic gold nanoparticles of shapes not studied previously, including octahedron, concave cube, and bipyramid. These core shapes are complex, rendering shell contours with nanoscale details (e.g., local surface curvature, shell thickness) that are imaged and analyzed quantitatively using the authors' customized analysis codes. It is found that the hybrid nanoparticles based on the chosen core shapes, when coated with the above two polymer shells, exhibit distinct shell segregations upon a variation in solvent polarity or temperature. It is demonstrated for the PS-b-PAA-coated hybrid nanoparticles, the shell segregation is maintained even after a further decoration of the shell periphery with gold seeds; these seeds can potentially facilitate subsequent deposition of other nanostructures to enrich structural and functional diversity. These synthesis, imaging, and analysis methods for the hybrid nanoparticles of anisotropically shaped cores can potentially aid in their predictive design for materials reconfigurable from the bottom up. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Cheng; Chen, Jien-Lian; Hu, Wei-Ping; Lin, Yi-Shiue; Lin, Huei-Ru; Lee, Tsai-Yun; Lee, Yuan T.; Ni, Chi-Kung; Liu, Chen-Lin

    2016-09-01

    The selective dissociation of a peptide bond upon excitation of a core electron in acetanilide and N-benzylacetamide was investigated. The total-ion-yield near-edge X-ray absorption fine structure spectra were recorded and compared with the predictions from time-dependent density functional theory. The branching ratios for the dissociation of a peptide bond are observed as 16-34% which is quite significant. This study explores the core-excitation, the X-ray photodissociation pathways, and the theoretical explanation of the NEXAFS spectra of organic molecules containing both a peptide bond and a phenyl group.

  20. Gas response behaviour and photochemistry of borondiketonate in acrylic polymer matrices for sensing applications.

    PubMed

    Arias Espinoza, Juan Diego; Sazhnikov, Viacheslav; Smits, Edsger C P; Ionov, Dmirity; Kononevich, Yuriy; Yakimets, Iryna; Alfimov, Mikael; Schoo, Herman F M

    2014-11-01

    The fluorescent spectra in combination with gas response behavior of acrylic polymers doped with dibenzoyl(methanato)boron difluoride (DBMBF2) were studied by fluorescence spectroscopy and time-resolved fluorescence lifetime. The role of acrylic matrix polarity upon the fluorescence spectra and fluorescence lifetime was analyzed. Changes in emission of the dye doped polymers under exposure to toluene, n-hexane and ethanol were monitored. The fluorescence lifetimes were measured for the singlet excited state as well as the exciplex formed between DBMBF2 and toluene. A reduction of the transition energy to the first singlet-excited state in the four polymers was observed, compared to solution. Reversible exciplex formation, viz. a red shifted fluorescence emission was perceived when exposing the polymers to toluene, while for hexane and ethanol only reversible reduction of the fluorescence occurred. Longer singlet and shorter exciplex lifetimes were observed for non-polar matrixes. The latter mechanism is explained in function of the lower charge transfer character of the exciplex in non-polar matrixes. Additionally, the quantum yield of the dye in the polymer matrix increased almost seventh-fold compared to values for solution.

  1. Investigation of energy transfer between semiconducting polymer dot donors and hydrophilic and hydrophobic Cy5 acceptors

    NASA Astrophysics Data System (ADS)

    Lix, Kelsi; Algar, W. Russ

    2016-09-01

    Semiconducting polymer dots (Pdots) are rapidly emerging fluorescent probes for bioanalysis. Pdots have extraordinarily strong absorption and bright emission compared to other commonly used fluorescent probes, making them very attractive for applications involving Förster resonance energy transfer (FRET). Here, we investigated two FRET systems with green-emitting poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) Pdots as donors and two different Cyanine 5 (Cy5) dyes as acceptors. A hydrophilic sulfo-Cy5 dye was directly conjugated to the Pdot surface using carbodiimide chemistry, and a hydrophobic Cy5 dye was observed to spontaneously partition into the core of the Pdot. FRET was observed to depend on the acceptor dye concentration with both systems, and was characterized using a combination of fluorescence emission spectra, excitation spectra, and lifetime measurements. Much stronger quenching of Pdot emission and FRET-sensitized acceptor dye emission were observed for the hydrophobic Cy5 system, and these trends were attributed to reduced donor-acceptor distances in comparison to the hydrophilic sulfo-Cy5 system. Current limitations in the experimental format are discussed. The results show that Pdots are effective FRET donors for acceptor dyes located both within and at the surface of Pdots.

  2. Synthesis and study of conjugated polymers containing Di- or Triphenylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukwattanasinitt, M.

    1996-06-21

    This thesis consists of two separate parts. The first part addresses the synthesis and study of conjugated polymers containing di- or triphenylamine. Two types of polymers: linear polymers and dendrimers, were synthesized. The polymers were characterized by NMR, IR, UV, GPC, TGA and DSC. Electronic and optical properties of the polymers were studied through the conductivity measurements and excitation- emission spectra. the second part of this thesis deals with a reaction of electron-rich acetylenes with TCNE. The discovery of the reaction from charge transfer complex studies and the investigation of this reaction on various electron-rich acetylenes are presented.

  3. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1995-01-01

    Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.

  4. Method for the production of fabricated hollow microspheroids

    DOEpatents

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  5. Thinking Outside the 'Block': Alternative Polymer Compositions for Micellar Drug Delivery.

    PubMed

    Jones, Marie-Christine

    2015-01-01

    With a number of formulations currently in clinical trials, the interest in polymer micelles as drug carriers in unlikely to subside. Historically, linear diblock copolymers have been used as the building blocks for micelle preparation. Yet, recent advances in polymer chemistry have meant that a wider variety of polymer architectures and compositions have become available and been trialed for pharmaceutical applications. This mini-review aims to provide an overview of recent, exciting developments in triblock, graft and hyperbranched polymer chemistries that may change the way polymeric micelles drug formulations are prepared.

  6. Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization.

    PubMed

    Xie, Zhongxi; Deng, Xiaoran; Liu, Bei; Huang, Shanshan; Ma, Pingan; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun; Luan, Shifang

    2017-09-13

    Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF 4 :Yb/Tm@NaYbF 4 :Gd@NaNdF 4 :Yb@NaYF 4 ), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.

  7. Coaxial lithography

    NASA Astrophysics Data System (ADS)

    Ozel, Tuncay; Bourret, Gilles R.; Mirkin, Chad A.

    2015-05-01

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowire that can be created and studied in the laboratory. Here, we report a high-throughput technique that can be used to prepare coaxial nanowires with sub-10 nm control over the architectural parameters in both axial and radial dimensions. The method, termed coaxial lithography (COAL), relies on templated electrochemical synthesis and can create coaxial nanowires composed of combinations of metals, metal oxides, metal chalcogenides and conjugated polymers. To illustrate the possibilities of the technique, a core/shell semiconductor nanowire with an embedded plasmonic nanoring was synthesized—a structure that cannot be prepared by any previously known method—and its plasmon-excitation-dependent optoelectronic properties were characterized.

  8. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures.

    PubMed

    Mu, Mingwei; Konno, Tomohiro; Inoue, Yuuki; Ishihara, Kazuhiko

    2017-10-01

    To achieve stable and effective solubilization of poorly water-soluble bioactive compounds, water-soluble and amphiphilic polymers composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) units and hydrophobic n-butyl methacrylate (BMA) units were prepared. MPC polymers having different molecular architectures, such as random-type monomer unit sequences and block-type sequences, formed polymer aggregates when they were dissolved in aqueous media. The structure of the random-type polymer aggregate was loose and flexible. On the other hand, the block-type polymer formed polymeric micelles, which were composed of very stable hydrophobic poly(BMA) cores and hydrophilic poly(MPC) shells. The solubilization of a poorly water-soluble bioactive compound, paclitaxel (PTX), in the polymer aggregates was observed, however, solubilizing efficiency and stability were strongly depended on the polymer architecture; in other words, PTX stayed in the poly(BMA) core of the polymer micelle formed by the block-type polymer even when plasma protein was present in the aqueous medium. On the other hand, when the random-type polymer was used, PTX was transferred from the polymer aggregate to the protein. We conclude that water-soluble and amphiphilic MPC polymers are good candidates as solubilizers for poorly water-soluble bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  10. A theoretical and experimental benchmark study of core-excited states in nitrogen

    NASA Astrophysics Data System (ADS)

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; Nandi, Saikat; Coriani, Sonia; Gühr, Markus; Koch, Henrik

    2018-02-01

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. The computational results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.

  11. Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Kim, Dongho; Lee, Minyung

    1995-01-01

    The photophysical properties of Methyl Red molecules embedded in a poly(methyl methacrylate) (PMMA) matrix were investigated with photoinduced absorption, absorption kinetics, steady-state, and time-resolved luminescence spectroscopy. The excited singlet (S1) state lifetimes for trans and cis isomers of Methyl Red in PMMA at room temperature have been measured as 35 and 420 ps, respectively. The excited triplet (T1) state energy level and its lifetime at 77 K were also obtained. A slow trans-cis isomerization process having a time constant of a few hundred seconds was observed for the illuminated Methyl Red in rigid polymer. Based on measured photophysical properties and dynamic processes, an energy-level diagram for Methyl Red molecules in rigid polymer is introduced to explain these observations.

  12. Absolute measurements of the triplet-triplet annihilation rate and the charge-carrier recombination layer thickness in working polymer light-emitting diodes based on polyspirobifluorene

    NASA Astrophysics Data System (ADS)

    Rothe, C.; Al Attar, H. A.; Monkman, A. P.

    2005-10-01

    The triplet exciton densities in electroluminescent devices prepared from two polyspirobifluorene derivatives have been investigated by means of time-resolved transient triplet absorption as a function of optical and electrical excitation power at 20 K. Because of the low mobility of the triplet excitons at this temperature, the triplet generation profile within the active polymer layer is preserved throughout the triplet lifetime and as a consequence the absolute triplet-triplet annihilation efficiency is not homogeneously distributed but depends on position within the active layer. This then gives a method to measure the charge-carrier recombination layer after electrical excitation relative to the light penetration depth, which is identical to the triplet generation layer after optical excitation. With the latter being obtained from ellipsometry, an absolute value of 5 nm is found for the exciton formation layer in polyspirobifluorene devices. This layer increases to 11 nm if the balance between the electron and the hole mobility is improved by chemically modifying the polymer backbone. Also, and consistent with previous work, triplet diffusion is dispersive at low temperature. As a consequence of this, the triplet-triplet annihilation rate is not a constant in the classical sense but depends on the triplet excitation dose. At 20 K and for typical excitation doses, absolute values of the latter rate are of the order of 10-14cm3s-1 .

  13. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    PubMed

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Core structure of two-dimensional Fermi gas vortices in the BEC-BCS crossover region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madeira, Lucas; Gandolfi, Stefano; Schmidt, Kevin E.

    2017-05-02

    We report T = 0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. We investigate how vortex core structure properties behave over the BEC-BCS crossover. We calculate the vortex excitation energy, density pro les, and vortex core properties related to the current. We nd a density suppression at the vortex core on the BCS side of the crossover and a depleted core on the BEC limit. Size-effect dependencies in the disk geometry were carefully studied.

  15. Wired enzyme electrodes--a retroperspective story about an exciting time at University of Texas at Austin and its impact on my scientific career.

    PubMed

    Lindquist, Sten-Eric

    2013-07-22

    The present paper features an exciting time in the late 1980s when I, as a visiting scientist, had the privilege to participate in the early and very exciting development of the in vivo redox-polymer-wired glucose sensor in Professor Adam Heller's laboratory at the Department of Chemical Engineering at University of Texas at Austin. This story is followed by an overview of the research my visit initiated at Uppsala University. In collaboration with Swedish colleagues, we explored a few of the many possibilities to form new biosensors by utilizing Prof. Heller's concept of cross-linked redox-polymer/redox-enzyme electrodes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bio-Magnetics Interfacing Concepts: A Microfluidic System Using Magnetic Nanoparticles for Quantitative Detection of Biological Species

    DTIC Science & Technology

    2004-09-30

    nanoparticles that consist of a polymer coated ?-Fe2O3 superparamagnetic core and CdSe/ZnS quantum dots (QDs) shell. A single layer of QDs was bound to the...Fe2O3) with polymer coating, the scale bar is 20 nm; b) A TEM image of QDs magnetic beads core-shell nanoparticles. The scale bar is 20 nm. c) A High...common practice in microfluidic/GMR sensor integration is using hybrid approaches by adding-on polymer based fluidic structures (such as PDMS fluidic

  17. Comparison of sensitivity and resolution load sensor at various configuration polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Arifin, A.; Yusran, Miftahuddin, Abdullah, Bualkar; Tahir, Dahlang

    2017-01-01

    This study uses a load sensor with a macro-bending on polymer optical fiber loop model which is placed between two plates with a buffer spring. The load sensor with light intensity modulation principle is an infrared LED emits light through the polymer optical fiber then received by the phototransistor and amplifier. Output voltage from the amplifier continued to arduino sequence and displayed on the computer. Load augment on the sensor resulted in an increase of curvature on polymer optical fibers that can cause power losses gets bigger too. This matter will result in the intensity of light that received by phototransistor getting smaller, so that the output voltage that ligable on computer will be getting smaller too. The sensitivity and resolution load sensors analyzed based on configuration with various amount of loops, imperfection on the jacket, and imperfection at the cladding and core of polymer optical fiber. The results showed that the augment on the amount of load, imperfection on the jacket and imperfection on the sheath and core polymer optical fiber can improve the sensitivity and resolution of the load sensor. The best sensors resolution obtained on the number of loops 4 with imperfection 8 on the core and cladding polymer optical fiber that is 0.037 V/N and 0,026 N. The advantages of the load sensor based on polymers optical fiber are easy to make, low cost and simple to use measurement methods.

  18. Universal ultrafast signatures of photoexcitations in conjugated polymers: excitons and charge-transfer polarons

    NASA Astrophysics Data System (ADS)

    McBranch, Duncan W.; Kraabel, Brett; Xu, Su; Wang, Hsing-Lin; Klimov, Victor I.

    1999-12-01

    Using subpicosecond transient absorption spectroscopy, we have investigated the primary photoexcitations in thin films and solution of several phenylene-based conjugated polymers and an oligomer. We identify two features in the transient absorption spectra and dynamics that are common to all of the materials which we have studied from this family. The first spectral feature is a photoinduced absorption (PA) band peaking near 1 eV which has intensity-dependent dynamics which match the stimulated emission dynamics exactly over two orders of magnitude in excitation density. This band is associated with singlet intrachain excitons. The second spectral feature (observed only in thin films and aggregated solutions) is a PA band peaking near 1.8 eV, which is longer-lived than the 1 eV exciton PA band, and which has dynamics that are independent (or weakly-dependent) on excitation density. This feature is attributed to charge separated (interchain) excitations. These excitations are generated through a bimolecular process. By comparing to samples in which charged excitations are created deliberately by doping with C6O, we assign these secondary species as bound polarons.

  19. Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco

    2011-03-01

    The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.

  20. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    PubMed

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Spectroscopic study of excitations in pi-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Yang, Cungeng

    This dissertation deals with spin-physics of photo excitations in pi-conjugated polymers. Optical and magneto-optical spectroscopies, including continuous wave and time-resolved photo-induced absorption, photoluminescence, electroluminescence, and their optically detected magnetic resonance, were used to study steady state and transient photogeneration, energy transfer, spin relaxation, and spin dependent recombination process in the time domain from tens of nanoseconds to tens of milliseconds in polymer materials including regio-random poly (3-hexyl-thiophene-2,5-diyl), regio-regular poly (3-hexyl-thiophene-2,5-diyl), poly (9,9-dioctyl-fluorenyl-2,7-diyl), poly (poly (2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) of various morphologies, and transition metal complex poly (Pt-quinoxene). Our studies provided the tools to clarify the physical pictures regarding two types of long-lived photoexcitations, namely polarons (both germinate polaron-pairs, and unpaired polarons) and triplet excitons, which are the major excitations in these exotic semiconductors in electrical and optical related applications. From measurements of transient fluorescence and transient fluorescence detected magnetic resonance we show that photogenerated geminate polaron pairs live up to hundreds of microseconds following laser pulsed excitation. This conclusion is in agreement with the delayed formation of triplet excitons that we measured by transient photoinduced absorption. It also agrees with the weak spin-lattice relaxation rate in polymers that we measured using the optically detected magnetic resonance dynamic in thin films and organic light emitting devices. Randomly captured nongeminate polaron pairs were shown to be the major source of optically detected magnetic resonance signal at steady, state. We found that the dynamics and magnitude of the signal depend on the spin-relaxation rate, generation rate and decay rate of the geminate pairs and nongeminate pairs. Importantly we found that the spin-relaxation rate depends weakly on temperature and strongly on coupled heavy atom orbital and magnetic momentum dipole induced by dopants or high intensity excitation. Also the polaron generation rate is excitation energy and nano-morphology dependent; whereas the polaron decay rate is morphology and spin dependent.

  2. A theoretical and experimental benchmark study of core-excited states in nitrogen

    DOE PAGES

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; ...

    2018-02-14

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less

  3. A theoretical and experimental benchmark study of core-excited states in nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less

  4. Thermosensitive polymer stabilized core-shell AuNR@Ag nanostructures as "smart" recyclable catalyst

    NASA Astrophysics Data System (ADS)

    Li, Dongxiang; Liu, Na; Gao, Yuanyuan; Lin, Weihong; Li, Chunfang

    2017-11-01

    Core-shell AuNR@Ag nanostructures were synthesized and surface-grafted with thermosensitive poly( N-isopropylacrylamide) to enhance stability and endow stimuli-responsive property. The AuNR cores showed average dimensions of 8-nm diameter and 33-nm length, while the anisotropic silver shells displayed 1-2 nm thin side and maximal 8 nm fat side. The obtained polymer-stabilized AuNR@Ag nanostructures as catalysts showed normal Arrhenius change of apparent rate constant, k app, in catalyzed reaction between 20 and 30 °C, but displayed a decrease of k app with respect to the temperature increasing between 32.5-40 °C, showing self-inhibition of the observed catalytic activity. Such "smart" self-inhibition of catalytic activity at enhanced temperature can be attributed to the thermosensitive response of the grafted polymer molecules and should be significant to control the reaction rate and avoid superheat for exothermic reactions. Such polymer-stabilized nanocatalyst also could be recovered and reused in the catalytic system. [Figure not available: see fulltext.

  5. LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window

    NASA Astrophysics Data System (ADS)

    Ximendes, Erving Clayton; Rocha, Uéslen; Kumar, Kagola Upendra; Jacinto, Carlos; Jaque, Daniel

    2016-06-01

    We report on Ytterbium and Neodymium codoped LaF3 core/shell nanoparticles capable of simultaneous heating and thermal sensing under single beam infrared laser excitation. Efficient light-to-heat conversion is produced at the Neodymium highly doped shell due to non-radiative de-excitations. Thermal sensing is provided by the temperature dependent Nd3+ → Yb3+ energy transfer processes taking place at the core/shell interface. The potential application of these core/shell multifunctional nanoparticles for controlled photothermal subcutaneous treatments is also demonstrated.

  6. The influence of pore structure parameters on the digital core recovery degree

    NASA Astrophysics Data System (ADS)

    Xia, Huifen; Zhao, Ling; Sun, Yanyu; Yuan, Shi

    2017-05-01

    Constructing digital core in the research of water flooding or polymer flooding oil displacement efficiency has its unique advantage. Using mercury injection experiment measured pore throat size distribution frequency, coordination number measured by CT scanning method and imbibition displacement method is used to measure the wettability of the data, on the basis of considering pore throat ratio, wettability, using the principle of adaptive porosity, on the basis of fitting the permeability to complete the construction of digital core. The results show that the model of throat distribution is concentrated water flooding recovery degree is higher, and distribution is more decentralized model polymer flooding recovery degree is higher. Around the same number of PV in poly, coordination number model of water flooding and polymer flooding recovery degree is higher.

  7. Advances and challenges in the field of plasma polymer nanoparticles

    PubMed Central

    Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847

  8. Advances and challenges in the field of plasma polymer nanoparticles.

    PubMed

    Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

  9. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  10. Rational design for enhancing inflammation-responsive in vivo chemiluminescence via nanophotonic energy relay to near-infrared AIE-active conjugated polymer.

    PubMed

    Seo, Young Hun; Singh, Ajay; Cho, Hong-Jun; Kim, Youngsun; Heo, Jeongyun; Lim, Chang-Keun; Park, Soo Young; Jang, Woo-Dong; Kim, Sehoon

    2016-04-01

    H2O2-specific peroxalate chemiluminescence is recognized as a potential signal for sensitive in vivo imaging of inflammation but the effect of underlying peroxalate-emitter energetics on its efficiency has rarely been understood. Here we report a simple nanophotonic way of boosting near-infrared chemiluminescence with no need of complicated structural design and synthesis of an energetically favored emitter. The signal enhancement was attained from the construction of a nanoparticle imaging probe (∼26 nm in size) by dense nanointegration of multiple molecules possessing unique photonic features, i.e., i) a peroxalate as a chemical fuel generating electronic excitation energy in response to inflammatory H2O2, ii) a low-bandgap conjugated polymer as a bright near-infrared emitter showing aggregation-induced emission (AIE), and iii) an energy gap-bridging photonic molecule that relays the chemically generated excitation energy to the emitter for its efficient excitation. From static and kinetic spectroscopic studies, a green-emissive BODIPY dye has proven to be an efficient relay molecule to bridge the energy gap between the AIE polymer and the chemically generated excited intermediate of H2O2-reacted peroxalates. The energy-relayed nanointegration of AIE polymer and peroxalate in water showed a 50-times boosted sensing signal compared to their dissolved mixture in THF. Besides the high H2O2 detectability down to 10(-9) M, the boosted chemiluminescence presented a fairly high tissue penetration depth (>12 mm) in an ex vivo condition, which enabled deep imaging of inflammatory H2O2 in a hair-covered mouse model of peritonitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Report of the Polymer Core Course Committee: Polymer Principles in the Undergraduate Physical Chemistry Course, Part 1.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Demonstrates, with a set of definitive examples, how polymer principles can be introduced into the first undergraduate physical chemistry course in a very natural way. The intent is to encourage introduction of polymer-related material into conventional physical chemistry courses without sacrificing any rigor associated with such courses. (JN)

  12. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    PubMed

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  13. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally, we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  14. High sensitivity waveguide micro-displacement sensor based on intermodal interference

    NASA Astrophysics Data System (ADS)

    Ji, Lanting; He, Guobing; Gao, Yang; Xu, Yan; Liang, Honglei; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming

    2017-11-01

    An optical waveguide displacement sensor according to core-cladding modes interference is theoretically proposed and experimentally demonstrated. Ultraviolet sensitive SU-8 polymer on silica is used as the guiding layer. It is covered by a 12 nm thick planar gold grating. The air gap sensing head which consists of the waveguide end and the single-mode fiber facet can realize the displacement detection by monitoring the wavelength dip shifting in transmission spectra. Cladding modes propagating in the exposed SU-8 can be effectively excited by the end-fire coupling because of the mode field mismatch between the SU-8 waveguide and lead-in fiber. A sinusoidal pattern transmission spectrum in C-band with the depth of over 14 dB can be observed due to the interference between the core and cladding modes. Peaks in the transmission spectrum vary continuously with the position offset of input fiber facet from the center of waveguide end. Both the sensitivity and the stability of sensing are enhanced by the introduction of nanometric gold gratings. The fabricated displacement sensor exhibits a high sensitivity of 2.3 nm μm-1, promising potentials for micromechanical processing and integrated optics application.

  15. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.

    PubMed

    Kashyap, Smita; Singh, Nitesh; Surnar, Bapurao; Jayakannan, Manickam

    2016-01-11

    Dual responsive polymer nanoscaffolds for administering anticancer drugs both at the tumor site and intracellular compartments are made for improving treatment in cancers. The present work reports the design and development of new thermo- and enzyme-responsive amphiphilic copolymer core-shell nanoparticles for doxorubicin delivery at extracellular and intracellular compartments, respectively. A hydrophobic acrylate monomer was tailor-made from 3-pentadecylphenol (PDP, a natural resource) and copolymerized with oligoethylene glycol acrylate (as a hydrophilic monomer) to make new classes of thermo and enzyme dual responsive polymeric amphiphiles. Both radical and reversible addition-fragmentation chain transfer (RAFT) methodologies were adapted for making the amphiphilic copolymers. These amphiphilic copolymers were self-assembled to produce spherical core-shell nanoparticles in water. Upon heating, the core-shell nanoparticles underwent segregation to produce larger sized aggregates above the lower critical solution temperature (LCST). The dual responsive polymer scaffold was found to be capable of loading water insoluble drug, such as doxorubicin (DOX), and fluorescent probe-like Nile Red. The drug release kinetics revealed that DOX was preserved in the core-shell assemblies at normal body temperature (below LCST, ≤ 37 °C). At closer to cancer tissue temperature (above LCST, ∼43 °C), the polymeric scaffold underwent burst release to deliver 90% of loaded drugs within 2 h. At the intracellular environment (pH 7.4, 37 °C) in the presence of esterase enzyme, the amphiphilic copolymer ruptured in a slow and controlled manner to release >95% of the drugs in 12 h. Thus, both burst release of cargo at the tumor microenvironment and control delivery at intracellular compartments were accomplished in a single polymer scaffold. Cytotoxicity assays of the nascent and DOX-loaded polymer were carried out in breast cancer (MCF-7) and cervical cancer (HeLa) cells. Among the two cell lines, the DOX-loaded polymers showed enhanced killing in breast cancer cells. Furthermore, the cellular uptake of the DOX was studied by confocal and fluorescence microscopes. The present investigation opens a new enzyme and thermal-responsive polymer scaffold approach for DOX delivery in cancer cells.

  16. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    PubMed

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  17. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  18. Electromagnetic torques in the core and resonant excitation of decadal polar motion

    NASA Astrophysics Data System (ADS)

    Mound, Jon E.

    2005-02-01

    Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core-mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner-core boundary (ICB) and core-mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30-yr-period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.

  19. Structure analysis for hole-nuclei close to 132Sn by a large-scale shell-model calculation

    NASA Astrophysics Data System (ADS)

    Wang, Han-Kui; Sun, Yang; Jin, Hua; Kaneko, Kazunari; Tazaki, Shigeru

    2013-11-01

    The structure of neutron-rich nuclei with a few holes in respect of the doubly magic nucleus 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including orbitals allowing both neutron and proton core excitations, an effective interaction for the extended pairing-plus-quadrupole model with monopole corrections is tested through detailed comparison between the calculation and experimental data. By using the experimental energy of the core-excited 21/2+ level in 131In as a benchmark, monopole corrections are determined that describe the size of the neutron N=82 shell gap. The level spectra, up to 5 MeV of excitation in 131In, 131Sn, 130In, 130Cd, and 130Sn, are well described and clearly explained by couplings of single-hole orbitals and by core excitations.

  20. Effectively delivering a unique hsp90 inhibitor using star polymers.

    PubMed

    Kim, Seong Jong; Ramsey, Deborah M; Boyer, Cyrille; Davis, Thomas P; McAlpine, Shelli R

    2013-07-25

    We report the synthesis of a novel heat shock protein 90 (hsp90) inhibitor conjugated to a star polymer. Using reversible addition-fragmentation chain-transfer (RAFT) polymerization, we prepared star polymers comprised of PEG attached to a predesigned functional core. The stars were cross-linked using disulfide linkers, and a tagged version of our hsp90 inhibitor was conjugated to the polymer core to generate nanoparticles (14 nM). Dynamic light scattering showed that the nanoparticles were stable in cell growth media for 5 days, and HPLC analysis of compound-release at 3 different pH values showed that release was pH dependent. Cell cytotoxicity studies and confocal microscopy verify that our hsp90 inhibitor was delivered to cells using this nanoparticle delivery system. Further, delivery of our hsp90 inhibitor using star polymer induces apoptosis by a caspase 3-dependent pathway. These studies show that we can deliver our hsp90 inhibitor effectively using star polymers, and induce apoptosis by the same pathway as the parent compound.

  1. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    NASA Astrophysics Data System (ADS)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates for wound healing and skin regeneration. Polyelectrolyte fibrous tubes of highly-crosslinked poly (acrylic acid) were fabricated by means of electrospinning as polymer models for functional biological systems, with special attention to the axon cortical layer and its cation-exchange properties. The processing parameters of fiber formation and the reversible phase transitions of PAA tubes according to monovalent-divalent ion exchange in solution were systematically investigated. The results showed that the neutralized PAA tubes were responsive to calcium ions, exhibiting significant shrinkage that could be reversed with a chelator such as citrate. Study of such phase transitions may help to better understand the electrophysiological processes known as nerve excitation and conduction in the nervous system, and the resulting PAA tubes might be used as polymer models of artificial axons for potential tissue engineering and nerve repair applications.

  2. Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions.

    PubMed

    Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng

    2017-08-17

    A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.

  3. Sulfonated poly(ether ether ketone)/polypyrrole core-shell nanofibers: a novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gas sensors.

    PubMed

    Wang, Wei; Li, Zhenyu; Jiang, Tingting; Zhao, Zhiwei; Li, Ye; Wang, Zhaojie; Wang, Ce

    2012-11-01

    Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form one-dimensional polymeric adsorbent/conducting polymer core-shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH₃ can facilitate the mass diffusion of NH₃ through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH₃ (20 ppb) at room temperature.

  4. Polymer nano-particle hybrid micelles: Encapsulation of POSS into semi-fluorinated polymer micelles

    NASA Astrophysics Data System (ADS)

    Ratnaweera, Dilru; Perahia, Dvora; Iacono, Scott; Mabry, Joseph; Smith, Dennis

    2012-02-01

    Self-assembly of block copolymers in selective solvents was used to form a nanoparticle (NP)/polymer hybrid micelles. These micelles can be used as a cargo vehicle for other substances such as drug delivery, and as building blocks for polymer-nanocomposites with controlled NP distribution. Association of NPs into specific blocks of the copolymer depends on the compatibility between the NPs and the block as well as their preference to the solvent that micellization takes place. The current work introduces a small angle neutron scattering study of association of Polyhedral Oligomeric Silsesquioxane (POSS) NPs into micelles of a highly segregating random copolymer, Biphenyl Perfluorocyclobutane (BPh-PFCB), in toluene, which is a good solvent for BPh. Incompatibility between the blocks drives copolymer into micelles with PFCB in the core and BPh in swollen corona. Modification of NPs with polymer chains drives POSS cages into the micelle core and prevents the micelle dissociation at higher temperatures.

  5. Analytical core loss calculations for magnetic materials used in high frequency high power converter applications. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1979-01-01

    The basic magnetic properties under various operating conditions encountered in the state-of-the-art DC-AC/DC converters are examined. Using a novel core excitation circuit, the basic B-H and loss characteristics of various core materials may be observed as a function of circuit configuration, frequency of operation, input voltage, and pulse-width modulation conditions. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions.

  6. 16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, John S; Burress, Timothy A; Lee, Seong T

    2008-01-01

    This paper introduces a high speed brushless field excitation (BFE) machine that offers high torque per ampere (A) per core length at low speed and weakened flux at high speed. Lower core losses at high speeds, are attained by reducing the field excitation. Safety and reliability are increased by weakening the field when a winding short-circuit fault occurs. For a high-speed motor the bridges that link the rotor punching segments together must be thickened for mechanical integrity; BFE can ensure sufficient rotor flux when needed. Projected efficiency map including losses of the excitation coils confirms the advantage of this technology.

  7. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis.

    PubMed

    Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

  8. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis

    PubMed Central

    Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547

  9. Advancing flexible volatile compound sensors using liquid crystals encapsulated in polymer fibers

    NASA Astrophysics Data System (ADS)

    Reyes, Catherine G.; Lagerwall, Jan P. F.

    2018-02-01

    Until recently, organic vapor sensors using liquid crystals (LCs) have employed rigid glass substrates for confining the LC, and bulky equipment for vapor detection. Previously, we demonstrated that coaxially electrospinning nematic LC within the core of polymer fibers provides an alternative and improved form factor for confinement. This enables ppm level sensitivity to harmful industrial organics, such as toluene, while giving the flexibility of textile-like sheets (imparted by polymer encapsulation). Moreover, toluene vapor responses of the LC-core fiber mats were visible macroscopically with the naked eye depending on the morphology of the fibers produced, and whether they were oriented in specific geometries (aligned, or random). We identified two types of responses: one corresponds to the LC transition from nematic to isotropic, and the other we suggest is due to an anchoring change at the LC-polymer interface that influences the alignment. While we need to study the presence that defects can have in more detail, we noted that fiber mat thickness is crucial in attempting to understand how and why we are able to visualize two responses in aligned LC-fiber mats. Ultimately, we noted that the response of the polymer sheath itself (softening) to organic vapor exposure affects the liquid crystal confinement in the core. From the microscopic point of view, this will influence the threshold concentration that fibers in a mat will overall respond to. In this paper we will discuss three findings the morphologies enabling LC-core fiber mat response to vapor seen both micro- and macroscopically, how thickness of the fiber mat can play a role in the visualization of the responses, and the effect that the polymer structure has in the mat's sensitivity threshold.

  10. A fragmentation-based approach for evaluating the intra-chain excitonic couplings in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Ma, Haibo

    2017-07-01

    For computing the intra-chain excitonic couplings in polymeric systems, here we propose a new fragmentation approach. A comparison for the energetic and spatial properties of the low-lying excited states in PPV between our scheme and full quantum chemical calculations, reveals that our scheme can nicely reproduce full quantum chemical results in weakly coupled systems. Further wavefunction analysis indicate that improved description for strongly coupled system can be achieved by the inclusion of the higher excited states within each fragments. Our proposed scheme is helpful for building the bridge linking the phenomenological descriptions of excitons and microscopic modeling for realistic polymers.

  11. Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking.

    PubMed

    Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki

    2018-02-06

    New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.

  12. Low-cost integrated-optic fiber couplers

    NASA Astrophysics Data System (ADS)

    Sheem, Sang K.; Zhang, Feng; Choi, Jong-Ho; Lee, Yong-Woo; Low, Sarah; Lu, Shih-Yau

    1997-04-01

    In an effort to lower the cost of fiber optic couplers, integrated optic channel waveguide circuits are made of a UV-curable polymer using a molding technique, and then a novel fiber-to-channel connecting approach is employed in which UV light radiating from an optical fiber core cures the polymer in the channel, thus accomplishing a 'touchdown' of the core-extension waveguide onto the walls of the channel waveguide.

  13. Axial and radial nanostructures in electrospun polymer fibers

    NASA Astrophysics Data System (ADS)

    Greenfeld, Israel; Camposeo, Andrea; Tantussi, Francesco; Pagliara, Stefano; Fuso, Francesco; Allegrini, Maria; Pisignano, Dario; Zussman, Eyal

    2013-03-01

    The high tensional stresses during electrospinning of semidilute polymer solutions affect the dynamic conformation of the polymer network within the liquid jet, leaving a distinctive trace in the molecular structure after solidification. We investigated such effects in electrospun nanofibers made of conjugated polymers. Modeling the polymer network evolution during electrospinning showed that as the network stretches axially, it contracts towards the jet core. The model represents the semi-flexible conjugated polymer chains as flexible freely-jointed chains, whose joints are bonding defects. Using the conjugated polymer MEH-PPV dissolved in a mixture of THF and DMF solvents, and taking advantage of its unique photophysical characteristics, we investigated optically the variations in the density and orientation of the polymer macromolecules in electrospun nanofibers. In agreement with our model, we found higher density and axial orientation at the fiber core, while lower density and radial orientation closer to the fiber surface. The non-uniformity of the resulting molecular structure can be tuned and exploited in diverse optical and structural applications. We acknowledge: V. Fasano, G. Potente, S. Girardo and E. Caldi for assistance in measurements; United States-Israel BSF, RBNI Institute, and the Israel Science Foundation for financial support.

  14. Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA

    NASA Astrophysics Data System (ADS)

    Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.

    2018-06-01

    We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdep<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.

  15. Tracking the coherent generation of polaron pairs in conjugated polymers

    NASA Astrophysics Data System (ADS)

    de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2016-12-01

    The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.

  16. Ultrafast optical pulse convertor caused by oscillations of the energy level structure in the conjugated polymer poly(p-phenylenevinylene).

    PubMed

    Zhang, Yusong; Chen, Weikang; Lin, Zhe; Li, Sheng; George, Thomas F

    2017-08-21

    For a conjugated polymer irradiated by two optical pulses, the whole process of excitation, involving lattice oscillations, oscillations of the energy level structure, and evolution of the electron cloud, is investigated. Localization of the electron cloud appears in the first 100 fs of irradiation, which in turn induces vibrations of lattice of the polymer chain as well as oscillations of the band gap. These oscillations filter the absorption of the external optical field inversely and convert the original optical field to an ultrafast light field whose intensity varies with a certain period. Based on the mechanism, oscillations of the energy level structure, induced by the external excitation, can be designed as an ultrafast response optical convertor that is able to change the external optical pulse into a new effective light field with a certain oscillation period. This helps provide new insight into designing nanostructures for polymeric optoelectronics.

  17. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. Aluminum citrate-polyacrylamide gels, chromium acetate-polyacrylamide gels, silicate-polymer, and chromium-xanthan guin gels did not alter an alkaline-surfactant-polymer solution's ability to produce incremental oil. Incremental oil was reduced with the resorcinol-formaldehyde gel system. Total waterflood plus chemical flood oil recovery sequence recoveries were generally similar.« less

  18. Construction of digital core by adaptive porosity method

    NASA Astrophysics Data System (ADS)

    Xia, Huifen; Liu, Ting; Zhao, Ling; Sun, Yanyu; Pan, Junliang

    2017-05-01

    The construction of digital core has its unique advantages in the study of water flooding or polymer flooding oil displacement efficiency. The frequency distribution of pore size is measured by mercury injection experiment, the coordination number by CT scanning method, and the wettability data by imbibition displacement was measured, on the basis of considering the ratio of pore throat ratio and wettability, the principle of adaptive porosity is used to construct the digital core. The results show that the water flooding recovery, the degree of polymer flooding and the results of the Physical simulation experiment are in good agreement.

  19. The mutable nature of particle-core excitations with spin in the one-valence-proton nucleus 133Sb

    NASA Astrophysics Data System (ADS)

    Bocchi, G.; Leoni, S.; Fornal, B.; Colò, G.; Bortignon, P. F.; Bottoni, S.; Bracco, A.; Michelagnoli, C.; Bazzacco, D.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Régis, J.-M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Fraile, L. M.; Lozeva, R.; Belvito, B.; Benzoni, G.; Bruce, A.; Carroll, R.; Cieplicka-Oryǹczak, N.; Crespi, F. C. L.; Didierjean, F.; Jolie, J.; Korten, W.; Kröll, T.; Lalkovski, S.; Mach, H.; Mărginean, N.; Melon, B.; Mengoni, D.; Million, B.; Nannini, A.; Napoli, D.; Olaizola, B.; Paziy, V.; Podolyák, Zs.; Regan, P. H.; Saed-Samii, N.; Szpak, B.; Vedia, V.

    2016-09-01

    The γ-ray decay of excited states of the one-valence-proton nucleus 133Sb has been studied using cold-neutron induced fission of 235U and 241Pu targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe array, coincidences between γ-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 μs isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr3(Ce) scintillators, revealed a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus 132Sn and the valence proton, using the Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin.

  20. Singlet-triplet splittings and their relevance to the spin-dependent exciton formation in light-emitting polymers: an EOM/CCSD study.

    PubMed

    Chen, Liping; Zhu, Lingyun; Shuai, Zhigang

    2006-12-21

    By employing the coupled-cluster equation of motion method (EOM/CCSD) for excited-state structures, we have investigated the structure dependence of the singlet and triplet exciton splittings, through extensive calculations for polythiophene (PT), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(thienylenevinylene) (PTV), polyparaphenylene vinylene (PPV), MEHPPV, polyparaphenylene ethylene (PPE), polyfluorene (PFO), and ladder-type polyparaphenylene (mLPPP). The results for the polymer are extrapolated through computations for the oligomers with increasing length. Recent investigations have been quite controversial about whether the internal quantum efficiency of electroluminescence could be higher than the 25% spin statistics limit or not in polymeric materials. Using a simple relationship between the exciton formation rate and the excitation energy level, we have discussed the material-dependent ratios of singlet and triplet exciton formation, which are in good agreement with the magnetic-field resonance detected transient spectroscopy measurement by Wohlgenannt et al. for a series of electronic polymers. This provides another piece of evidence to support the view that the internal quantum efficiency for conjugated polymers can exceed the 25% limit.

  1. Programmable light-controlled shape changes in layered polymer nanocomposites.

    PubMed

    Zhu, Zhichen; Senses, Erkan; Akcora, Pinar; Sukhishvili, Svetlana A

    2012-04-24

    We present soft, layered nanocomposites that exhibit controlled swelling anisotropy and spatially specific shape reconfigurations in response to light irradiation. The use of gold nanoparticles grafted with a temperature-responsive polymer (poly(N-isopropylacrylamide), PNIPAM) with layer-by-layer (LbL) assembly allowed placement of plasmonic structures within specific regions in the film, while exposure to light caused localized material deswelling by a photothermal mechanism. By layering PNIPAM-grafted gold nanoparticles in between nonresponsive polymer stacks, we have achieved zero Poisson's ratio materials that exhibit reversible, light-induced unidirectional shape changes. In addition, we report rheological properties of these LbL assemblies in their equilibrium swollen states. Moreover, incorporation of dissimilar plasmonic nanostructures (solid gold nanoparticles and nanoshells) within different material strata enabled controlled shrinkage of specific regions of hydrogels at specific excitation wavelengths. The approach is applicable to a wide range of metal nanoparticles and temperature-responsive polymers and affords many advanced build-in options useful in optically manipulated functional devices, including precise control of plasmonic layer thickness, tunability of shape variations to the excitation wavelength, and programmable spatial control of optical response.

  2. Biopharmaceutical evaluation of time-controlled press-coated tablets containing polymers to adjust drug release.

    PubMed

    Halsas, M; Ervasti, P; Veski, P; Jürjenson, H; Marvola, M

    1998-01-01

    This paper deals with press-coated modified release tablets in which the drug dose is situated in the core or is divided between the core and the coat. The coat contains polymer (sodium alginate or hydroxypropylmethyl cellulose, HPMC) to control drug release. The main objective was to investigate how the pharmacokinetic profile of the model drug could be modified by altering the proportion of the drug between the core and the coat. The effect of the amount of the polymer in the coat was also studied. Bioavailability tests were carried out on healthy volunteers. In the absorption curves of the tablets containing 50%, 67% and 80% of the drug in the core and 180 mg HPMC in the coat a bimodal profile was observed. No bimodal release pattern in the in vitro dissolution studies was found. If the whole dose was incorporated in the core the absorption curve has only one clear t(max) value at about 10 h. Doubling the amount of HPMC in the coat dramatically decreased drug absorption. It was concluded that, if a slightly reduced t(max)-value was required, the viscosity grade of HPMC used should be lowered.

  3. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  4. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOEpatents

    Rice, John A.; Hazelton, Craig S.; Fabian, Paul E.

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  5. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles.

    PubMed

    Gallei, Markus

    2018-02-01

    Photonic band-gap materials attract enormous attention as potential candidates for a steadily increasing variety of applications. Based on the preparation of easily scalable monodisperse colloids, such optically attractive photonic materials can be prepared by an inexpensive and convenient bottom-up process. Artificial polymer opals can be prepared by shear-induced assembly of core/shell particles, yielding reversibly stretch-tunable materials with intriguing structural colors. This feature article highlights recent developments of core/shell particle design and shear-induced opal formation with focus on the combination of hard and soft materials as well as crosslinking strategies. Structure formation of opal materials relies on both the tailored core/shell architecture and the parameters for polymer processing. The emphasis of this feature article is on elucidating the particle design and incorporation of addressable moieties, i.e., stimuli-responsive polymers as well as elaborated crosslinking strategies for the preparation of smart (inverse) opal films, inorganic/organic opals, and ceramic precursors by shear-induced ordering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Behavior of polymer cladding materials under extremely high temperatures

    NASA Astrophysics Data System (ADS)

    Clark, Timothy E.; Chang, Selee; Kwak, SeungJo; Oh, Jung Hyun

    2012-01-01

    Polymer claddings with low refractive indices for silica core fibers were developed. Applications include fiber lasers and transmission of high power lasers in surgery. For many applications, operating fibers under high temperatures is desirable. In a previous publication, the results of testing polymer cladded silica core fiber at 150°C for 6400 hours were given, along with 5000 hours of testing polymer films. The results at 150°C were encouraging, with little additional loss measured. Here we test polymers under more severe conditions, at 270°C, for periods up to 10 hours. The polymers' cured indices range from 1.374 to 1.397 (at 852 nm). Changes in Young's modulus, refractive index, yellowing, weight, hardness, strength, and elongation were observed. While these polymers cannot function at 270°C for extended periods, it is possible to expose them for shorter durations without significant damage. Some polymer properties actually improved after 4 hours of heating. Fibers clad with such polymers have been successfully jacketed with extruded materials, and have endured high temperatures for a few minutes. It is possible that a sensor, fiber laser or other fiber device could function in these temperatures for short periods without the coating properties changing beyond values required for operation.

  7. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery.

    PubMed

    Rao, Shasha; Prestidge, Clive A

    2016-01-01

    A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.

  8. Report of the Polymer Core Course Committee: Polymer Principles for the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Offers suggestions for introducing polymer topics into: (1) introductory chemical engineering; (2) transport phenomena and unit operations; (3) chemical engineering thermodynamics; and (4) reaction engineering. Also included for each area are examples of textbooks in current use and a few typical problems. (JN)

  9. Novel fluorescent core-shell nanocontainers for cell membrane transport.

    PubMed

    Yin, Meizhen; Kuhlmann, Christoph R W; Sorokina, Ksenia; Li, Chen; Mihov, George; Pietrowski, Eweline; Koynov, Kaloian; Klapper, Markus; Luhmann, Heiko J; Müllen, Klaus; Weil, Tanja

    2008-05-01

    The synthesis and characterization of novel core-shell macromolecules consisting of a fluorescent perylene-3,4,9,10-tetracarboxdiimide chromophore in the center surrounded by a hydrophobic polyphenylene shell as a first and a flexible hydrophilic polymer shell as a second layer was presented. Following this strategy, several macromolecules bearing varying polymer chain lengths, different polymer shell densities, and increasing numbers of positive and negative charges were achieved. Because all of these macromolecules reveal a good water solubility, their ability to cross cellular membranes was investigated. In this way, a qualitative relationship between the molecular architecture of these macromolecules and the biological response was established.

  10. Molecules for Fluorescence Detection of Specific Chemicals

    NASA Technical Reports Server (NTRS)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at wavelengths of about 600 nm.

  11. Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulas, Dana B.; London, Alexander E.; Huang, Lifeng

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less

  12. Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors

    DOE PAGES

    Sulas, Dana B.; London, Alexander E.; Huang, Lifeng; ...

    2018-02-13

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetatexanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. Aluminum citrate-polyacrylamide gels, chromium acetate-polyacrylamide gels, silicate-polymer, and chromium-xanthan gum gels did not alter an alkaline-surfactant-polymer solution's ability to produce incremental oil. Incremental oil was reduced with the resorcinol-formaldehyde gel system. Total waterflood plus chemical flood oil recovery sequence recoveries were generally similar. Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow.« less

  14. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    PubMed

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. FT-Raman study of dehydrogenation polymer (DHP) lignins

    Treesearch

    Umesh P. Agarwal; Noritsugu Terashima

    2003-01-01

    Compared to conventional Raman spectroscopy where samples are excited using visible light lasers, 1064 nm-excited FT-Raman technique has the single most important advantage that the sample-fluorescence is significantly suppressed for samples that are strongly fluorescent. DHPs are difficult to analyze in conventional Raman because small amounts of chromophores present...

  16. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res

  17. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  18. Excitation efficiency of an optical fiber core source

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.; Tai, Alan C.

    1992-01-01

    The exact field solution of a step-index profile fiber is used to determine the excitation efficiency of a distribution of sources in the core of an optical fiber. Previous results of a thin-film cladding source distribution to its core source counterpart are used for comparison. The behavior of power efficiency with the fiber parameters is examined and found to be similar to the behavior exhibited by cladding sources. It is also found that a core-source fiber is two orders of magnitude more efficient than a fiber with a bulk distribution of cladding sources. This result agrees qualitatively with previous ones obtained experimentally.

  19. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  20. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    PubMed

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  1. Relativistic many-body XMCD theory including core degenerate effects

    NASA Astrophysics Data System (ADS)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.

  2. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less

  3. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    DOE PAGES

    Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; ...

    2015-03-18

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less

  4. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.

    PubMed

    Li, Kai; Liu, Bin

    2014-09-21

    Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.

  5. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  6. Large-scale fabrication of polymer/Ag core-shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition

    NASA Astrophysics Data System (ADS)

    Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Xu, Haifeng; He, Jian; Chen, Cunhua

    2014-06-01

    We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core-shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10-12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.

  7. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.

    PubMed

    Lei, Ting; Wang, Jie-Yu; Pei, Jian

    2014-04-15

    Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.

  8. Large-scale shell-model calculation with core excitations for neutron-rich nuclei beyond 132Sn

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Hasegawa, Munetake; Tazaki, Shigeru; Kaneko, Kazunari; Sun, Yang

    2011-10-01

    The structure of neutron-rich nuclei with a few nucleons beyond 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including neutron core excitations, a new effective interaction is determined by employing the extended pairing-plus-quadrupole model with monopole corrections. The model provides a systematical description for energy levels of A=133-135 nuclei up to high spins and reproduces available data of electromagnetic transitions. The structure of these nuclei is analyzed in detail, with emphasis of effects associated with core excitations. The results show evidence of hexadecupole correlation in addition to octupole correlation in this mass region. The suggested feature of magnetic rotation in 135Te occurs in the present shell-model calculation.

  9. Preparation and Structural Studies on Hybrid Core-Shell Nanoparticles Consisting of Silica Core and Conjugated Block Copolymer Shell Prepared by Surface-Initiated Polymerization

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Karam, Tony; Rosu, Cornelia; Li, Xin; Do, Changwoo; Youm, Sang Gil; Haber, Louis; Russo, Paul; Nesterov, Evgueni

    Controlled Kumada catalyst-transfer polymerization occurring by chain-growth mechanism was developed for the synthesis of conjugated polymers and block copolymers from the surface of inorganic substrates such as silica nanoparticles. Although synthesis of conjugated polymers via Kumada polymerization became an established method for solution polymerization, carrying out the same reaction in heterogeneous conditions to form monodisperse polymer chains still remains a challenge. We developed and described a simple and efficient approach to the preparation of surface-immobilized layer of catalytic Ni(II) initiator, and demonstrated using it to prepare polymers and block copolymers on silica nanoparticle. The structure of the resulting hybrid nanostructures was thoroughly studied using small-angle neutron and X-ray scattering, thermal analysis, and optical spectroscopy. The photoexcitation energy transfer processes in the conjugated polymer shell were studied via steady-state and time resolved transient absorption spectroscopy. This study uncovered important details of the energy transfer, which will be discussed in this presentation.

  10. Protein-Polymer Conjugates: Synthetic Approaches by Controlled Radical Polymerizations & Interesting Applications

    PubMed Central

    Grover, Gregory N.; Maynard, Heather D.

    2011-01-01

    Protein-polymer conjugates are of interest to researchers in diverse fields. Attachment of polymers to proteins results in improved pharmacokinetics, which is important in medicine. From an engineering standpoint, conjugates are exciting because they exhibit properties of both the biomolecules and synthetic polymers. This allows the activity of the protein to be altered or tuned, a key aspect in therapeutic design, anchoring conjugates to surfaces, and utilizing these materials for supramolecular self-assembly. Thus, there is broad interest in straightforward synthetic methods to make protein-polymer conjugates. Controlled radical polymerization (CRP) techniques have emerged as excellent strategies to make conjugates because the resulting polymers have narrow molecular weight distributions, targeted molecular weights, and attach to specific sites on proteins. Herein, recent advances in the synthesis and application of protein-polymer conjugates by CRP are highlighted. PMID:21071260

  11. Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Kaur, Gagandeep; Rai, S. B.

    2017-12-01

    Tb doped polyvinyl alcohol: polyvinyl pyrrolidone blends with dibenzoylmethane (DBM) and 1, 10 Phenanthroline (Phen) have been prepared by solution cast technique. Bond formation amongst the ligands and Tb3 + ions in the doped polymer has been confirmed employing Fourier Transform Infrared (FTIR) techniques. Optical properties of the Tb3 + ions have been investigated using UV-Vis absorption, excitation and fluorescence studies excited by different radiations. Addition of dimethylbenzoate and 1, 10 Phenanthroline to the polymer blend increases the luminescence from Tb3 + ions along with energy transfer from the polymer blend itself. Luminescence decay curve analysis affirms the non-radiative energy transfer from DBM and Phen to Tb3 + ions, which is identified as the reason behind this enhancement. The fluorescence decay time of PVA-PVP host decreases from 6.02 ns to 2.31 ns showing an evidence of energy transfer from the host blend to the complexed Tb ions. Similarly the lifetime of DBM and Phen and both in the blend reduces in the complexed system showing the feasibility of energy transfer from these excited DBM and Phen to Tb3 + and is proposed as the cause of the above observations. These entire phenomena have been explained by the energy level diagram.

  12. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    PubMed

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  13. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  14. Ligand-core NLO-phores: a combined experimental and theoretical approach to the two-photon absorption and two-photon excited emission properties of small-ligated silver nanoclusters.

    PubMed

    Russier-Antoine, Isabelle; Bertorelle, Franck; Calin, Nathalie; Sanader, Željka; Krstić, Marjan; Comby-Zerbino, Clothilde; Dugourd, Philippe; Brevet, Pierre-François; Bonačić-Koutecký, Vlasta; Antoine, Rodolphe

    2017-01-19

    We report a combined experimental and theoretical study of the two-photon absorption and excited emission properties of monodisperse ligand stabilized Ag 11 , Ag 15 and Ag 31 nanoclusters in aqueous solutions. The nanoclusters were synthesized using a cyclic reduction under oxidative conditions and separated by vertical gel electrophoresis. The two-photon absorption cross-sections of these protected noble metal nanoclusters measured within the biologically attractive 750-900 nm window are several orders of magnitude larger than that reported for commercially available standard organic dyes. The two-photon excited fluorescence spectra are also presented for excitation wavelengths within the same excitation spectral window. They exhibit size-tunability. Because the fundamental photophysical mechanisms underlying these multiphoton processes in ligand protected clusters with only a few metal atoms are not fully understood yet, a theoretical model is proposed to identify the key driving elements. Elements that regulate the dipole moments and the nonlinear optical properties are the nanocluster size, its structure and the charge distribution on both the metal core and the bound ligands. We coined this new class of NLO materials as "Ligand-Core" NLO-phores.

  15. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less

  16. High-spin terminating states in the N = 88 Ho 155 and Er 156 isotones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, J. M.; Paul, E. S.; Simpson, J.

    2015-05-01

    The Sn-124(Cl-37, 6n gamma) fusion-evaporation reaction at a bombarding energy of 180 MeV has been used to significantly extend the excitation level scheme of Ho-155(67)88. The collective rotational behavior of this nucleus breaks down above spin I similar to 30 and a fully aligned noncollective (band terminating) state has been identified at I-pi = 79/2(-). Comparison with cranked Nilsson-Strutinsky calculations also provides evidence for core-excited noncollective states at I-pi = 87/2(-) and (89/2(+)) involving particle-hole excitations across the Z = 64 shell gap. A similar core-excited state in Er-156(68)88 at I-pi = (46(+)) is also presented.

  17. Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness.

    PubMed

    Wang, Guanyao; Huang, Yanhui; Wang, Yuxin; Jiang, Pingkai; Huang, Xingyi

    2017-08-09

    Dielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO 3 nanowires (NWs) encapsulated by TiO 2 shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites. Compared with nanocomposites with bare BaTiO 3 NWs, significantly enhanced energy storage capability was achieved for nanocomposites with TiO 2 encapsulated BaTiO 3 NWs. For instance, an ultrahigh energy density of 9.53 J cm -3 at 440 MV m -1 could be obtained for nanocomposites comprising core-shell structured nanowires, much higher than that of nanocomposites with 5 wt% raw ones (5.60 J cm -3 at 360 MV m -1 ). The discharged energy density of the proposed nanocomposites with 5 wt% mTiO 2 @BaTiO 3 -1 NWs at 440 MV m -1 seems to rival or exceed those of some previously reported nanocomposites (mostly comprising core-shell structured nanofillers). More notably, this study revealed that the energy storage capability of the nanocomposites can be tailored by the TiO 2 shell thickness. Finite element simulations were employed to analyze the electric field distribution in the nanocomposites. The enhanced energy storage capability should be mainly attributed to the smoother gradient of dielectric constant between the nanofillers and polymer matrix, which alleviated the electric field concentration and leakage current in the polymer matrix. The methods and results herein offer a feasible approach to construct high-energy-density polymer nanocomposites with core-shell structured nanowires.

  18. The Role of Morphology and Electronic Chain Aggregation on the Optical Gain Properties of Semiconducting Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Lampert, Zachary Evan

    Conjugated polymers (CPs) are a novel class of materials that exhibit the optical and electrical properties of semiconductors while still retaining the durability and processability of plastics. CPs are also intrinsically 4-level systems with high luminescence quantum efficiencies making them particularly attractive as organic gain media for solid-state laser applications. However, before CPs can emerge as a commercially available laser technology, a more comprehensive understanding of the morphological dependence of the photophysics is required. In this thesis, the morphology and chain conformation dependence of amplified spontaneous emission (ASE) and optical gain in thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) was investigated. By changing the chemical nature of the solvent from which films were cast, as well as the temperature at which films were annealed, CP films with different morphologies, and hence different degrees of interchain interactions were achieved. Contrary to the common perception that polymer morphology plays a decisive role in determining the ASE behavior of thin CP films, we found that chromophore aggregation and degree of conformational order have minimal impact on optical gain. In fact, experimental results indicated that an extremely large fraction of interchain aggregate species and/or exciton dissociating defects are required to significantly alter the optical properties and suppress stimulated emission. These results are pertinent to the fabrication and optimization of an electrically pumped laser device, as improvements in charge carrier mobility through controlled increases in chain aggregation may provide a viable means of optimizing injection efficiency without significantly degrading optical gain. To offset charge-induced absorption losses under electrical pumping, and to enable the use of more compact and economical sources under optical pumping, conjugated polymers exhibiting low lasing thresholds and large net gains are highly desirable. In this thesis, we also discuss novel routes we developed for enhancement of ASE performance in MEH-PPV thin film planar waveguides. The first technique relied on improving the distribution of the TE0 guided mode in the CP gain layer through optimization of waveguide architecture. This was achieved by fabricating symmetric heterostructure waveguides formed from a core layer of MEH-PPV sandwiched between an SiO2 buffer and index matched poly(methyl methacrylate) (PMMA) cover layer. Relative to asymmetric waveguides of Si(100)/SiO2/MEH-PPV/Air, symmetric waveguides exhibited increased optical confinement and reduced propagation loss enabling lower ASE threshold (40%) and higher net gain (50%). Independent of device architecture and degree of aggregation in the films, we discovered that optical gain is also highly dependent on the excitation conditions, specifically the temporal width of the pump laser pulses. A 400% increase in net gain was achieved under transient (25 picosecond pulses), compared to quasi-steady state (8 nanosecond pulses), excitation conditions. This large difference is attributed to low pumping efficiency and increased non-radiative recombination under ns pumping, which reduces the emission cross-section resulting in a net decrease in gain. The gain values we achieved in the ps regime are to the best of our knowledge the largest gain values reported to date for thin conjugated polymer films measured using the variable stripe length (VSL) technique. Films pumped in the transient regime also required 30 times less pump energy density to reach threshold in comparison with films pumped in the quasi-steady state regime, although the excited state densities were essentially the same. These results demonstrate that the pumping efficiency, and hence generation rate of excited states in a gain medium, can be dramatically increased by using pump laser pulses that are shorter than the exciton luminescence lifetime

  19. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    PubMed

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.

  20. Magnetic, core-shell structured and surface molecularly imprinted polymers for the rapid and selective recognition of salicylic acid from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Zulei; Niu, Dechao; Li, Yongsheng; Shi, Jianlin

    2018-03-01

    In this work, a novel kind of magnetic, core-shell structured and surface molecularly imprinted polymers (MMIPs) for the recognition of salicylic acid (SA) was facilely synthesized through a surface imprinting and sol-gel polymerization approach. The as-synthesized MMIPs exhibit uniform core-shell structure and favorable magnetic properties with a saturation magnetization of 22.8 emu g-1. The binding experiments demonstrated that MMIPs possessed high binding and specific recognition capacity, as well as fast binding kinetics and phase separation rate. The maximum binding capacity of MMIPs is around 36.8 mg g-1, nearly 6 times that of the magnetic non-imprinted polymers (MNIPs). Moreover, the selectivity experiments show that all the relative selectivity coefficients towards SA over its structure analogs are higher than 18, further indicating the markedly enhanced binding selectivity of MMIPs. Furthermore, the MMIPs were successfully applied for the determination of SA in environmental water samples with the recovery rates ranging from 94.0 to 108.0 %. This strategy may provide a versatile approach for the fabrication of well-defined molecularly imprinted polymers on nanomaterials for the analysis of complicated matrixes.

  1. Ultrasound-induced capping of polystyrene on TiO2 nanoparticles by precipitation with compressed CO2 as antisolvent.

    PubMed

    Zhang, Jianling; Liu, Zhimin; Han, Buxing; Li, Junchun; Li, Zhonghao; Yang, Guanying

    2005-06-01

    In this work, a route for the synthesis of inorganic/polymer core/shell composite nanoparticles was proposed, which can be called the antisolvent-ultrasound method. Compressed CO2 was used as antisolvent to precipitate the polymer from its solution dispersed with inorganic nanoparticles, during which ultrasonic irradiation was used to induce the coating of precipitated polymers on the surfaces of the inorganic nanoparticles. TiO2/polystyrene (PS) core/shell nanocomposites have been successfully prepared using this method. The transmission electronic micrographs (TEM) of the obtained nanocomposites show that the TiO2 nanoparticles are coated by the PS shells, of which the thickness can be tuned by the pressure of CO2. The phase structure, absorption properties, and thermal stability of the composite were characterized by X-ray diffraction (XRD), UV-vis spectra, and thermogravimetry, respectively. The results of X-ray photoelectron spectra (XPS) indicate the formation of a strong interaction between PS and TiO2 nanoparticles in the resultant products. This method has some potential advantages for applications and may be easily applied to the preparation of a range of inorganic/polymer core/shell composite nanoparticles.

  2. Synthesis of core-shell molecularly imprinted polymer microspheres by precipitation polymerization for the inline molecularly imprinted solid-phase extraction of thiabendazole from citrus fruits and orange juice samples.

    PubMed

    Barahona, Francisco; Turiel, Esther; Cormack, Peter A G; Martín-Esteban, Antonio

    2011-01-01

    In this work, the synthesis of molecularly imprinted polymer microspheres with narrow particle size distributions and core-shell morphology by a two-step precipitation polymerization procedure is described. Polydivinylbenzene (poly DVB-80) core particles were used as seed particles in the production of molecularly imprinted polymer shells by copolymerization of divinylbenzene-80 with methacrylic acid in the presence of thiabendazole (TBZ) and an appropriate porogen. Thereafter, polymer particles were packed into refillable stainless steel HPLC columns used in the development of an inline molecularly imprinted SPE method for the determination of TBZ in citrus fruits and orange juice samples. Under optimized chromatographic conditions, recoveries of TBZ within the range 81.1-106.4%, depending upon the sample, were obtained, with RSDs lower than 10%. This novel method permits the unequivocal determination of TBZ in the samples under study, according to the maximum residue levels allowed within Europe, in less than 20 min and without any need for a clean-up step in the analytical protocol. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    PubMed

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  4. Surface-imprinted nanofilaments for europium-amplified luminescent detection of fluoroquinolone antibiotics.

    PubMed

    Zdunek, Jolanta; Benito-Peña, Elena; Linares, Ana; Falcimaigne-Cordin, Aude; Orellana, Guillermo; Haupt, Karsten; Moreno-Bondi, María C

    2013-07-29

    The development and characterization of novel, molecularly imprinted polymer nanofilament-based optical sensors for the analysis of enrofloxacin, an antibiotic widely used for human and veterinary applications, is reported. The polymers were prepared by nanomolding in porous alumina by using enrofloxacin as the template. The antibiotic was covalently immobilized on to the pore walls of the alumina by using different spacers, and the prepolymerization mixture was cast in the pores and the polymer synthesized anchored onto a glass support through UV polymerization. Various parameters affecting polymer selectivity were evaluated to achieve optimal recognition, namely, the spacer arm length and the binding solvent. The results of morphological characterization, binding kinetics, and selectivity of the optimized polymer material for ENR and its derivatives are reported. For sensing purposes, the nanofilaments were incubated in solutions of the target molecule in acetonitrile/HEPES buffer (100 mM, pH 7.5, 50:50, v/v) for 20 min followed by incubation in a 10 mM solution of europium(III) ions to generate a europium(III)-enrofloxacin complex on the polymer surface. The detection event was based on the luminescence of the rare-earth ion (λexc=340 nm; λem=612 nm) that results from energy transfer from the antibiotic excited state to the metal-ion emitting excited state. The limit of detection of the enrofloxacin antibiotic was found to be 0.58 μM. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Light-scattering study of a polymer nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1985-07-01

    We study the relaxation of thermally excited orientation fluctuations in a polymer nematic liquid crystal using photon correlation spectroscopy. The material studied is poly-γ-benzyl glutamate at a concentration just above the isotropic to nematic transition point. The relaxation rates of elastic deformation modes exhibit large anisotropies. Quantitative measurements of ratios of Frank elastic constants and Leslie viscosities are described.

  6. Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer-metal composites.

    PubMed

    Cha, Youngsu; Verotti, Matteo; Walcott, Horace; Peterson, Sean D; Porfiri, Maurizio

    2013-09-01

    In this paper, we study energy harvesting from the beating of a biomimetic fish tail using ionic polymer-metal composites. The design of the biomimetic tail is based on carangiform swimmers and is specifically inspired by the morphology of the heterocercal tail of thresher sharks. The tail is constituted of a soft silicone matrix molded in the form of the heterocercal tail and reinforced by a steel beam of rectangular cross section. We propose a modeling framework for the underwater vibration of the biomimetic tail, wherein the tail is assimilated to a cantilever beam with rectangular cross section and heterogeneous physical properties. We focus on base excitation in the form of a superimposed rotation about a fixed axis and we consider the regime of moderately large-amplitude vibrations. In this context, the effect of the encompassing fluid is described through a hydrodynamic function, which accounts for inertial, viscous and convective phenomena. The model is validated through experiments in which the base excitation is systematically varied and the motion of selected points on the biomimetic tail tracked in time. The feasibility of harvesting energy from an ionic polymer-metal composite attached to the vibrating structure is experimentally and theoretically assessed. The response of the transducer is described using a black-box model, where the voltage output is controlled by the rate of change of the mean curvature. Experiments are performed to elucidate the impact of the shunting resistance, the frequency of the base excitation and the placement of the ionic polymer-metal composite on energy harvesting from the considered biomimetic tail.

  7. Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy.

    PubMed

    Thompson, Hank T; Barroso-Bujans, Fabienne; Herrero, Julio Gomez; Reifenberger, Ron; Raman, Arvind

    2013-04-05

    The characterization of dispersion and connectivity of carbon nanotube (CNT) networks inside polymers is of great interest in polymer nanocomposites in new material systems, organic photovoltaics, and in electrodes for batteries and supercapacitors. We focus on a technique using amplitude modulation atomic force microscopy (AM-AFM) in the attractive regime of operation, using both single and dual mode excitation, which upon the application of a DC tip bias voltage allows, via the phase channel, the in situ, nanoscale, subsurface imaging of CNT networks dispersed in a polymer matrix at depths of 10-100 nm. We present an in-depth study of the origins of phase contrast in this technique and demonstrate that an electrical energy dissipation mechanism in the Coulomb attractive regime is key to the formation of the phase contrast which maps the spatial variations in the local capacitance and resistance due to the CNT network. We also note that dual frequency excitation can, under some conditions, improve the contrast for such samples. These methods open up the possibility for DC-biased amplitude modulation AFM to be used for mapping the variations in local capacitance and resistance in nanocomposites with conducting networks.

  8. Fiber optic strain measurements using an optically-active polymer

    NASA Astrophysics Data System (ADS)

    Buckley, Leonard J.; Neumeister, Gary C.

    1992-03-01

    A study encompassing the use of an optically-active polymer as the strain-sensing medium in an organic matrix composite was performed. Several compounds were synthesized for use as the inner cladding material for silica fiber-optic cores. These materials include a diacetylene containing polyamide. It is possible to dynamically modify the optical properties of these materials through changes in applied strain or temperature. By doing so the characteristic absorption in the visible is reversibly shifted to a higher energy state. The polymer-coated fiber-optic cores were initially studied in epoxy resin. Additionally, one of the polyamide/diacetylene polymers was studied in a spin-fiber form consisting of 15 micron filaments assembled in multifilament tows. The most promising configuration and materials were then investigated further by embedding in graphite/epoxy composite laminates. In each case the shift in the visible absorption peak was monitored as a function of applied mechanical strain.

  9. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    NASA Astrophysics Data System (ADS)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  10. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast.

    PubMed

    Barrow, Michael; Taylor, Arthur; García Carrión, Jaime; Mandal, Pranab; Park, B Kevin; Poptani, Harish; Murray, Patricia; Rosseinsky, Matthew J; Adams, Dave J

    2016-09-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as contrast agents for stem cell tracking using magnetic resonance imaging (MRI). The total mass of iron oxide that can be internalised into cells without altering their viability or phenotype is an important criterion for the generation of contrast, with SPIONs designed for efficient labelling of stem cells allowing for an increased sensitivity of detection. Although changes in the ratio of polymer and iron salts in co-precipitation reactions are known to affect the physicochemical properties of SPIONs, particularly core size, the effects of these synthesis conditions on stem cell labelling and magnetic resonance (MR) contrast have not been established. Here, we synthesised a series of cationic SPIONs with very similar hydrodynamic diameters and surface charges, but different polymer content. We have investigated how the amount of polymer in the co-precipitation reaction affects core size and modulates not only the magnetic properties of the SPIONs but also their uptake into stem cells. SPIONs with the largest core size and lowest polymer content presented the highest magnetisation and relaxivity. These particles also had the greatest uptake efficiency without any deleterious effect on either the viability or function of the stem cells. However, for all particles internalised in cells, the T 2 and T 2 * relaxivity was independent of the SPION's core size. Our results indicate that the relative mass of iron taken up by cells is the major determinant of MR contrast generation and suggest that the extent of SPION uptake can be regulated by the amount of polymer used in co-precipitation reactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Improving dielectric properties of BaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@Poly(methylmethacrylate) and BaTiO3@Poly(trifluoroethyl methacrylate) nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhong; Zhao, Sidi; Wang, Fang; Ma, Yuhong; Wang, Li; Chen, Dong; Zhao, Changwen; Yang, Wantai

    2017-05-01

    Polymer based dielectric composites were fabricated through incorporation of core-shell structured BaTiO3 (BT) nanoparticles into PVDF matrix by means of solution blending. Core-shell structured BT nanoparticles with different shell composition and shell thickness were prepared by grafting methacrylate monomer (MMA or TFEMA) onto the surface of BT nanoparticles via surface initiated atom transfer radical polymerization (SI-ATRP). The content of the grafted polymer and the micro-morphology of the core-shell structured BT nanoparticles were investigated by thermo gravimetric analyses (TGA) and transmission electron microscopy (TEM), respectively. The dielectric properties were measured by broadband dielectric spectroscopy. The results showed that high dielectric constant and low dielectric loss are successfully realized in the polymer based composites. Moreover, the type of the grafted polymer and its content had different effect on the dielectric constant. In detail, the attenuation of dielectric constant was 16.6% for BT@PMMA1/PVDF and 10.7% for BT@PMMA2/PVDF composite in the range of 10 Hz to 100 kHz, in which the grafted content of PMMA was 5.5% and 8.0%, respectively. However, the attenuation of dielectric constant was 5.5% for BT@PTFEMA1/PVDF and 4.0% for BT@PTFEMA2/PVDF composite, in which the grafted content of PTFEMA was 1.5% and 2.0%, respectively. These attractive features of BT@PTFEMA/PVDF composites suggested that dielectric ceramic fillers modified with fluorinated polymer can be used to prepare high performance composites, especially those with low dielectric loss and high dielectric constant.

  12. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl more oil than only water injection.« less

  13. The radiative decays of excited states of transition elements located inside and near core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Pukhov, Konstantin K.

    2017-12-01

    Here we discuss the radiative decays of excited states of transition elements located inside and outside of the subwavelength core-shell nanoparticles embedded in dielectric medium. Based on the quantum mechanics and quantum electrodynamics, the general analytical expressions are derived for the probability of the spontaneous transitions in the luminescent centers (emitter) inside and outside the subwavelength core-shell nanoparticle. Obtained expressions holds for arbitrary orientation of the dipole moment and the principal axes of the quadrupole moment of the emitter with respect to the radius-vector r connecting the center of the emitter with the center of the nanoparticle. They have simple form and show how the spontaneous emission in core-shell NPs can be controlled and engineered due to the dependence of the emission rates on core-shell sizes, radius-vector r and permittivities of the surrounding medium, shell, and core.

  14. Particle-in-cell simulation study on halo formation in anisotropic beams

    NASA Astrophysics Data System (ADS)

    Ikegami, Masanori

    2000-11-01

    In a recent paper (M. Ikegami, Nucl. Instr. and Meth. A 435 (1999) 284), we investigated halo formation processes in transversely anisotropic beams based on the particle-core model. The effect of simultaneous excitation of two normal modes of core oscillation, i.e., high- and low-frequency modes, was examined. In the present study, self-consistent particle simulations are performed to confirm the results obtained in the particle-core analysis. In these simulations, it is confirmed that the particle-core analysis can predict the halo extent accurately even in anisotropic situations. Furthermore, we find that the halo intensity is enhanced in some cases where two normal modes of core oscillation are simultaneously excited as expected in the particle-core analysis. This result is of practical importance because pure high-frequency mode oscillation has frequently been assumed in preceding halo studies. The dependence of halo intensity on the 2:1 fixed point locations is also discussed.

  15. Photoionization of ground and excited levels of P II

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-01-01

    Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.

  16. Optimized polymer enhanced foam flooding for ordinary heavy oil reservoir after cross-linked polymer flooding.

    PubMed

    Sun, Chen; Hou, Jian; Pan, Guangming; Xia, Zhizeng

    2016-01-01

    A successful cross-linked polymer flooding has been implemented in JD reservoir, an ordinary heavy oil reservoir with high permeability zones. For all that, there are still significant volumes of continuous oil remaining in place, which can not be easily extracted due to stronger vertical heterogeneity. Considering selective plugging feature, polymer enhanced foam (PEF) flooding was taken as following EOR technology for JD reservoir. For low cost and rich source, natural gas was used as foaming gas in our work. In the former work, the surfactant systems CEA/FSA1 was recommended as foam agent for natural gas foam flooding after series of compatibility studies. Foam performance evaluation experiments showed that foaming volume reached 110 mL, half-life time reached 40 min, and dimensionless filter coefficient reached 1.180 when CEA/FSA1 reacted with oil produced by JD reservoir. To compare the recovery efficiency by different EOR technologies, series of oil displacement experiments were carried out in a parallel core system which contained cores with relatively high and low permeability. EOR technologies concerned in our work include further cross-linked polymer (C-P) flooding, surfactant-polymer (S-P) flooding, and PEF flooding. Results showed that PEF flooding had the highest enhanced oil recovery of 19.2 % original oil in place (OOIP), followed by S-P flooding (9.6 % OOIP) and C-P flooding (6.1 % OOIP). Also, produced liquid percentage results indicated PEF flooding can efficiently promote the oil recovery in the lower permeability core by modifying the injection profile.

  17. A Study of the X(sup 2) Sigma(sup +) and A(sup 2) Pi States of MgAr(sup +) and MgKr(sup +)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ground (sup 2)Sigma(sup +) and lowest excited (sup 2)Pi states of MgAr(sup +) and MgKr(sup +) are studied using the singles and doubles configuration interaction (SDCI) approach, in conjunction with large basis sets. The effect of Mg core correlation and core polarization are accounted for using the core-polarization potential (CPP) approach. Franck-Condon factors, oscillator strengths, radiative lifetimes, dissociation energies, bond lengths, and excitation energies are reported. The computed results are in good agreement with the available experimental data.

  18. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    PubMed

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers

    NASA Astrophysics Data System (ADS)

    Petrie, J. D.; Fredrickson, G. H.; Kramer, E. J.

    2009-03-01

    Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize either in the PS domains of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σc has been shown to scale as σc˜ ((R + Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σc as a function of R.

  20. Effect of Ligand Molecular Weight and Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers

    NASA Astrophysics Data System (ADS)

    Petrie, Joshua; Kim, Bumjoon; Fredrickson, Glenn; Kramer, Ed

    2008-03-01

    Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize in either domain of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σchas been shown to scale as σc˜ ((R+Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σcas a function of R.

  1. Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique.

    PubMed

    Lin, Jia-De; Chen, Che-Pei; Chen, Lin-Jer; Chuang, Yu-Chou; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-02-08

    This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs.

  2. Time-resolved spectroscopy of solid poly/1-vinyl naphthalene/ following electron beam pulse radiolysis - Pulse radiolytic studies on polymers

    NASA Technical Reports Server (NTRS)

    Coulter, D. R.; Liang, R. H.; Di Stefano, S.; Moacanin, J.; Gupta, A.

    1982-01-01

    Transient emission studies following pulse radiolysis of solid poly(1-vinyl naphthalene) show existence of excited monomers and two excimers. Quenching experiments indicate that excimers are not formed directly by recombination of ions but probably by trapping of migrating monomeric excitation in preformed traps whose density is approximately one in 1000.

  3. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

    PubMed

    Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang

    2012-06-01

    A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor.

    PubMed

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K

    2018-06-06

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  5. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor

    NASA Astrophysics Data System (ADS)

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K.

    2018-06-01

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  6. Investigation of star polymer nanoshells for use in diagnostic imaging and photothermal cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Gomez, Lizabeth

    Gold nanoshells can be designed to possess high light scattering and strong absorption of near-infrared light. Thus, they have the potential to be used in biological applications as contrast agents for diagnostic imaging as well as for thermal ablation of tumor cells in future cancer treatments. In this study, gold nanoshells with dye-loaded star polymer cores were investigated. Uniform near-infrared gold nanoshells with 100 nm diameters were successfully generated using different batches of star polymer templates and were characterized by UV-visible spectroscopy and scanning electron microscopy. The star polymers used were block copolymer structures with a hydrophobic polystyrene (PS) core and a hydrophilic poly(N,N-dimethylaminoethylmethracrylate) (DMAEMA) outer shell. Within this work, a general procedure was established in order to achieve a desired gold nanoshell size regardless of the star polymer batch used, since the synthesis process conditions can cause star polymers to vary in size as well in the number and length of amino-functionalized arms. Control of the gold nanoshell diameter was optimized after an in-depth analysis of the synthesis parameters that affected the formation and final size of the dye-loaded star polymer gold nanoshells. The main parameters examined were pH of the gold seeds used to nucleate the templates and the ratio of star polymer to gold hydroxide used during the growth of the outer gold shell.

  7. Novel photonics polymer and its application in IT

    NASA Astrophysics Data System (ADS)

    Koike, Yasuhiro

    2003-07-01

    In the field of LANs, transmission systems based on a multimode silica fiber network is heading towards capacities of Gb/s. We have proposed a low-loss, high-bandwidth and large-core graded-index plastic optical fiber (GI POF) in data-com. area. We sill show that GI POF enables to virtually eliminate the "modal noise" problem cased by the medium-core silica fibers. Therefore, stable high-speed data transmission is realized by GI POF rather than silica fibers. Furthermore, advent of perfluorinated (PF) polymer based GI POF network can support higher transmission than silica fibers network because of the small material dispersion of PF polymer compared with silica. In addition, we proposed a "highly scattering optical transmission (HSOT) polymer" and applied it to a light guide plate of a liquid crystal display (LCD) backlight. The advanced HSOT polymer backlight that was proposed using the HSOT designing simulation program demonstrated approximately three times higher luminance than the conventional flat-type HSOT backlight of 14.1-inch diagonal because of the microscopic prism structures at the bottom of the advanced HSOT light guide plate. The HSOT polymer containing the optimized heterogeneous structures produced homogeneous scattered light with forward directivity and sufficient color uniformity.

  8. Fabricating core (Au)-shell (different stimuli-responsive polymers) nanoparticles via inverse emulsion polymerization: Comparing DOX release behavior in dark room and under NIR lighting.

    PubMed

    Mazloomi-Rezvani, Mahsa; Salami-Kalajahi, Mehdi; Roghani-Mamaqani, Hossein

    2018-06-01

    Different core-shell nanoparticles with Au as core and stimuli-responsive polymers such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(N-isopropylacrylamide) (PNIPAAm), poly(N,N'-methylenebis(acrylamide)) (PMBA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) as shells were fabricated via inverse emulsion polymerization. Dynamic light scattering (DLS) was used to investigate particles sizes and particle size distributions and transmission electron microscopy (TEM) was applied to observe the core-shell structure of Au-polymer nanoparticles. Also, surface charge of all samples was studied by measurement of zeta potentials. Synthesized core-shell nanoparticles were utilized as nanocarriers of DOX as anti-cancer drug and drug release behaviors were investigated in dark room and under irradiation of near-infrared (NIR) light. Results showed that all core-shell samples have particle sizes less than 100 nm with narrow particle size distributions. Moreover, amount of drug loading decreased by increasing zeta potential. In dark room, lower pH resulted in higher cumulative drug release due to better solubility of DOX in acidic media. Also, NIR lighting on DOX-loaded samples led to increasing cumulative drug release significantly. However, DOX-loaded Au-PAA and Au-PMAA showed higher drug release at pH = 7.4 compared to 5.3 under NIR lighting. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Photoreactive, core-shell cross-linked/hollow microspheres prepared by delayed addition of cross-linker in dispersion polymerization for antifouling and immobilization of protein.

    PubMed

    Wang, Shengliu; Yue, Kai; Liu, Lianying; Yang, Wantai

    2013-01-01

    When dispersion polymerization of styrene (St) had run for 3h, after particle rapidly growing stage, 4,4'-dimethacryloyloxybenzophenone (DMABP) cross-linker was added to reaction system and photoreactive, core(PSt)-shell(Poly(St-co-DMABP)) particles with rich benzophenone (BP) groups on surface were prepared. Polymerization of DMABP could occurred mainly on the preformed core of PSt because its diffusion could be impeded by (1) compactness of particles formed at the moment of cross-linker addition (more than 80% of monomer had been consumed, particles were no longer fully swollen by monomer), (2) reduced polarity of continuous phase, and (3) immediate occurrence of cross-linking. Subsequently, photoreactive, cross-linked hollow particles were yielded by removal of uncross-linked core in THF. SEM and TEM observation demonstrated the formation of core-shell structure and improvement of shell thickness when DMABP content increased. UV-vis spectra analysis on polymer dissolved in THF indicated that there is no polymer of DMABP in core. FTIR spectra analysis and XPS measurement further revealed that BP component on particle surface was enriched when amount of DMABP increased. Finally, an anti-fouling polymer (poly (ethylene glycol), PEG) and protein of mouse IgG was immobilized on particle surface under UV irradiation, as confirmed by FTIR spectra analysis, SEM observation and TMB color reaction. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  10. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  11. Reduction of HAuCl 4 by Na 2S revisited: The case for Au nanoparticle aggregates and against Au 2S/Au core/shell particles

    DOE PAGES

    Schwartzberg, A. M.; Grant, C. D.; van Buuren, Tony; ...

    2007-03-10

    The reaction of sodium sulfide with chloroauric acid has been surrounded by a controversy over the structure of the resulting product. The original report proposed a Au 2S/Au core/shell structure based on strong near-IR resonance and limited transmission electron microscopy. Subsequent reports used the same model without further attempts to determine the structure of the products. With a significant body of experimental work compiled over a period of several years, we have shown that the major product of this reaction is aggregated spherical nanoparticles of gold with a minority component consisting of triangular and rod-like structures. This is in contradictionmore » to the core/shell structures as originally proposed. Recently, there have been additional reports that again suggest a Au 2S/Au core/shell structure or irregularly shaped Au nanoparticles as an explanation for the near-IR resonance. To help resolve this issue, we have carried out further experiments to determine how the reaction products may depend on experimental conditions such as concentration and aging of the reactants, particularly Na 2S. It has been determined that sodium thiosulfate is the likely product from Na 2S aging. In addition, persistent spectral hole burning experiments have been conducted on gold nanoparticle aggregate (GNA) samples at excitation intensities that are lower than that required to melt the nanostructures. We have observed a decrease in optical absorption on resonance with the excitation laser wavelength, with simultaneous increases in absorption to the blue and red of this wavelength region. However, in the presence of the stabilizer poly(vinyl pyrrolidone) (PVP), no increase in absorbance was observed but rather a blue shifting and decrease in intensity of the near-IR plasmon resonance. These results imply that the non-stabilized GNAs are able to break apart and reform into off resonant aggregate structures. In contrast, this behavior is suppressed in PVP stabilized GNAs because of the presence of polymer which quickly passivates the individual nanoparticles that comprise the GNAs after they are disrupted by laser irradiation. These results would be very difficult to explain if the nanostructures were core/shell. Furthermore, these new results again support the model of GNAs as the best possible explanation for the product of the HAuCl 4 and Na 2S reaction.« less

  12. Clad-pumped Er-nanoparticle-doped fiber laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Baker, Colin C.; Friebele, E. Joseph; Rhonehouse, Daniel L.; Marcheschi, Barbara A.; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder S.; Zhang, Jun; Chen, Youming; Pattnaik, Radha K.; Dubinskii, Mark

    2017-03-01

    Erbium-doped fiber lasers are attractive for directed energy weapons applications because they operate in a wavelength region that is both eye-safer and a window of high atmospheric transmission. For these applications a clad-pumped design is desirable, but the Er absorption must be high because of the areal dilution of the doped core vs. the pump cladding. High Er concentrations typically lead to Er ion clustering, resulting in quenching and upconversion. Nanoparticle (NP) doping of the core overcomes these problems by physically surrounding the Er ions with a cage of Al and O in the NP, which keeps them separated to minimize excited state energy transfer. A significant issue is obtaining high Er concentrations without the NP agglomeration that degrades the optical properties of the fiber core. We have developed the process for synthesizing stable Er-NP suspension which have been used to fabricate EDFs with Er concentrations >90 dB/m at 1532 nm. Matched clad fibers have been evaluated in a core-pumped MOPA with pump and signal wavelengths of 1475 and 1560 nm, respectively, and efficiencies of 72% with respect to absorbed pump have been obtained. We have fabricated both NP- and solution-doped double clad fibers, which have been measured in a clad-pumped laser testbed using a 1532 nm pump. The 1595 nm laser efficiency of the NP-doped fiber was 47.7%, which is high enough for what is believed to be the first laser experiment with the cladding pumped, NP-doped fiber. Further improvements are likely with a shaped cladding and new low-index polymer coatings with lower absorption in the 1500 - 1600 nm range.

  13. Characterization of the Dynamics of Photoluminescence Degradation in Aqueous CdTe/CdS Core-Shell Quantum Dots.

    PubMed

    Pankiewicz, C G; de Assis, P-L; Filho, P E Cabral; Chaves, C R; de Araújo, E N D; Paniago, R; Guimarães, P S S

    2015-09-01

    We investigate the effects of the excitation power on the photoluminescence spectra of aqueous CdTe/CdS core-shell quantum dots. We have focused our efforts on nanoparticles that are drop-cast on a silicon nitride substrate and dried out. Under such conditions, the emission intensity of these nanocrystals decreases exponentially and the emission center wavelength shifts with the time under laser excitation, displaying a behavior that depends on the excitation power. In the low-power regime a blueshift occurs, which we attribute to photo-oxidation of the quantum dot core. The blueshift can be suppressed by performing the measurements in a nitrogen atmosphere. Under high-power excitation the nanoparticles thermally expand and aggregate, and a transition to a redshift regime is then observed in the photoluminescence spectra. No spectral changes are observed for nanocrystals dispersed in the solvent. Our results show a procedure that can be used to determine the optimal conditions for the use of a given set of colloidal quantum dots as light emitters for photonic crystal optical cavities.

  14. Ultra-fast magnetic vortex core reversal by a local field pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less

  15. Controlled polymer synthesis--from biomimicry towards synthetic biology.

    PubMed

    Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron

    2010-01-01

    The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).

  16. Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core

    NASA Technical Reports Server (NTRS)

    Tyler, Robert H.; Kuang, Weijia

    2014-01-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  17. The Shock and Vibration Digest. Volume 14, Number 11

    DTIC Science & Technology

    1982-11-01

    cooled reactor 1981) ( HTGR ) core under seismic excitation his been developed . N82-18644 The computer program can be used to predict the behavior (In...French) of the HTGR core under seismic excitation. Key Words: Computer programs , Modal analysis, Beams, Undamped structures A computation method is...30) PROGRAMMING c c Dale and Cohen [221 extended the method of McMunn and Plunkett [201 developed a compute- McMunn and Plunkett to continuous systems

  18. Supercritical Mixing in a Shear Coaxial Injector

    DTIC Science & Technology

    2016-07-27

    in the core of the injected fluid emphasizes this observation. Two acoustically excited cases: pressure node and pressure anti-node at the center... acoustically excited cases: pressure node and pressure anti-node at the center plane of the jet are also studied in the same manner. The pressure anti-node...shortens the core flow of the injected jet. I. Introduction OCKET engines present a unique environment for injection of the propellants due to

  19. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.

    PubMed

    Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan

    2013-06-26

    We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.

  20. Star polymers as unit cells for coarse-graining cross-linked networks

    NASA Astrophysics Data System (ADS)

    Molotilin, Taras Y.; Maduar, Salim R.; Vinogradova, Olga I.

    2018-03-01

    Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments.

  1. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  2. Regional Differences in Striatal Neuronal Ensemble Excitability Following Cocaine and Extinction Memory Retrieval in Fos-GFP Mice.

    PubMed

    Ziminski, Joseph J; Sieburg, Meike C; Margetts-Smith, Gabriella; Crombag, Hans S; Koya, Eisuke

    2018-03-01

    Learned associations between drugs of abuse and the drug administration environment have an important role in addiction. In rodents, exposure to a drug-associated environment elicits conditioned psychomotor activation, which may be weakened following extinction (EXT) learning. Although widespread drug-induced changes in neuronal excitability have been observed, little is known about specific changes within neuronal ensembles activated during the recall of drug-environment associations. Using a cocaine-conditioned locomotion (CL) procedure, the present study assessed the excitability of neuronal ensembles in the nucleus accumbens core and shell (NAc core and NAc shell ), and dorsal striatum (DS) following cocaine conditioning and EXT in Fos-GFP mice that express green fluorescent protein (GFP) in activated neurons (GFP+). During conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a locomotor activity chamber (Paired) or home cage (Unpaired). Seven to 13 days later, both groups were re-exposed to the activity chamber under drug-free conditions and Paired, but not Unpaired, mice exhibited CL. In a separate group of mice, CL was extinguished by repeatedly exposing mice to the activity chamber under drug-free conditions. Following the expression and EXT of CL, GFP+ neurons in the NAc core (but not NAc shell and DS) displayed greater firing capacity compared to surrounding GFP- neurons. This difference in excitability was due to a generalized decrease in GFP- excitability following CL and a selective increase in GFP+ excitability following its EXT. These results suggest a role for both widespread and ensemble-specific changes in neuronal excitability following recall of drug-environment associations.

  3. Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izu, Noriya, E-mail: n-izu@aist.go.jp; Uchida, Toshio; Matsubara, Ichiro

    2011-08-15

    Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (ceriummore » oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.« less

  4. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  5. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.; Wu, Ke

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to havemore » the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.« less

  6. Spin Injection and its Effects on Lasing Action in Conjugated Polymers

    DTIC Science & Technology

    2009-06-16

    molecular excited states, namely exciplex states, can have significant response to a low magnetic field. This experimental funding makes it... exciplex states) formed between TPD and BBOT in PMMA matrix. It can be clearly seen that the photoluminescence from inter-molecular exciplex states is...field dependence of photoluminescence (PL) for inter- molecular excited states ( exciplex states). Note, the photoluminescence from pure TPD and

  7. The synthesis of four-layer gold-silver-polymer-silver core-shell nanomushroom with inbuilt Raman molecule for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Xiaolong; Zhou, Jun

    2017-12-01

    A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.

  8. A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core-shell nanocomposites.

    PubMed

    Guan, Buyuan; Wang, Xue; Xiao, Yu; Liu, Yunling; Huo, Qisheng

    2013-03-21

    A very simple cooperative template-directed coating method is developed for the preparation of core-shell, hollow, and yolk-shell microporous carbon nanocomposites. Particularly, the cationic surfactant C16TMA(+)·Br(-) used in the coating procedure improves the core dispersion in the reaction media and serves as the soft template for mesostructured resorcinol-formaldehyde resin formation, which results in the uniform polymer and microporous carbon shell coating on most functional cores with different surface properties. The core diameter and the shell thickness of the nanocomposites can be precisely tailored. This approach is highly reproducible and scalable. Several grams of polymer and carbon nanocomposites can be easily prepared by a facile one-pot reaction. The Au@hydrophobic microporous carbon yolk-shell catalyst favors the reduction of more hydrophobic nitrobenzene than hydrophilic 4-nitrophenol by sodium borohydride, which makes this type of catalyst@carbon yolk-shell composites promising nanomaterials as selective catalysts for hydrophobic reactants.

  9. Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core

    NASA Astrophysics Data System (ADS)

    Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.

    2017-12-01

    Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.

  10. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    PubMed

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  11. Enteric polymers as acidifiers for the pH-independent sustained delivery of a weakly basic drug salt from coated pellets.

    PubMed

    Körber, Martin; Ciper, Mesut; Hoffart, Valerie; Pearnchob, Nantharat; Walther, Mathias; Macrae, Ross J; Bodmeier, Roland

    2011-08-01

    Weakly basic drugs and their salts exhibit a decrease in aqueous solubility at higher pH, which can result in pH-dependent or even incomplete release of these drugs from extended release formulations. The objective of this study was to evaluate strategies to set-off the very strong pH-dependent solubility (solubility: 80 mg/ml at pH 2 and 0.02 mg/ml at pH 7.5, factor 4000) of a mesylate salt of weakly basic model drug (pK(a) 6.5), in order to obtain pH-independent extended drug release. Three approaches for pH-independent release were investigated: (1) organic acid addition in the core, (2) enteric polymer addition to the extended release coating and (3) an enteric polymer subcoating below the extended release coating. The layering of aspartic acid onto drug cores as well as the coating of drug cores with an ethylcellulose/Eudragit L (enteric polymer) blend were not effective to avoid the formation of the free base at pH 7.5 and thus failed to significantly improve the completeness of the release compared to standard ethylcellulose/hydroxypropyl cellulose (EC/HPC)-coated drug pellets. Interestingly, the incorporation of an enteric polymer layer underneath the EC/HPC coating decreased the free base formation at pH 7.5 and thus resulted in a more complete release of up to 90% of the drug loading over 18 h. The release enhancing effect was attributed to an extended acidification through the enteric polymer layer. Flexible release patterns with approximately pH-independent characteristics were successfully achieved. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  13. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    PubMed

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  14. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization.

    PubMed

    Yue, Yiying; Han, Jingquan; Han, Guangping; French, Alfred D; Qi, Yadong; Wu, Qinglin

    2016-08-20

    Core-shell structured hydrogels consisting of a flexible interpenetrating polymer network (IPN) core and a rigid semi-IPN shell were prepared through chemical crosslinking of polyvinyl alcohol (PVA) and sodium alginate (SA) with Ca(2+) and glutaraldehyde. Short cellulose nanofibers (CNFs) extracted from energycane bagasse were incorporated in the hydrogel. The shell was micro-porous and the core was macro-porous. The hydrogels could be used in multiple adsorption-desorption cycles for dyes, and the maximum methyl blue adsorption capacity had a 10% increase after incorporating CNFs. The homogeneous distribution of CNFs in PVA-SA matrix generated additional hydrogen bonds among the polymer molecular chains, resulting in enhanced density, viscoelasticity, and mechanical strength for the hydrogel. Specifically, the compressive strength of the hydrogel reached 79.5kPa, 3.2 times higher than that of the neat hydrogel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synthesis and characterization of monodispersed polymer/polydiacetylene nanocrystal composite particles.

    PubMed

    Wei, Zhong; Ujiiye-Ishii, Kento; Masuhara, Akito; Kasai, Hitoshi; Okada, Shuji; Matsune, Hideki; Asahi, Tsuyoshi; Masuhara, Hiroshi; Nakanishi, Hachiro

    2005-06-01

    Monodispersed polymer/polydiacetylenecomposite particles were synthesized by soap-free seeded emulsion polymerization of styrene andmethyl methacrylate; the products were characterized by XRD, SEM, TEM, UV-visible spectroscopy, and single particle scattering spectroscopy. In the synthesis process, polydiacetylene nanocrystals were found to act as inhibitor, and consequently a relatively low concentration was necessary. Different monomers lead to the differences in reaction condition and particle morphology; the PMMA composite particles were simpler in preparation than polystyrene particles, but the latter havebetter spherical morphology. The composite particles were composed of polymer shells and polydiacetylene cores, which kept their crystal structure and optical properties. A high percentage of cored particles could be achieved with optimized reaction conditions where the amount of seed was sufficient and the oily oligomer by-product was suppressed.

  16. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires.

    PubMed

    Erhard, N; Zenger, S; Morkötter, S; Rudolph, D; Weiss, M; Krenner, H J; Karl, H; Abstreiter, G; Finley, J J; Koblmüller, G; Holleitner, A W

    2015-10-14

    We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs core-shell nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consistent with an ultrafast lateral expansion of the photogenerated charge carriers. This Dember-effect does not occur for an excitation of the GaAs-based core of the nanowires. Instead, the core exhibits an ultrafast displacement current and a photothermoelectric current at the metal Schottky contacts. Our results uncover the optoelectronic dynamics in semiconductor core-shell nanowires comprising quantum wells, and they demonstrate the possibility to use the low-dimensional quantum well states therein for ultrafast photoswitches and photodetectors.

  18. Accurate core position control in polymer optical waveguides using the Mosquito method for three-dimensional optical wiring

    NASA Astrophysics Data System (ADS)

    Date, Kumi; Ishigure, Takaaki

    2017-02-01

    Polymer optical waveguides with graded-index (GI) circular cores are fabricated using the Mosquito method, in which the positions of parallel cores are accurately controlled. Such an accurate arrangement is of great importance for a high optical coupling efficiency with other optical components such as fiber ribbons. In the Mosquito method that we developed, a core monomer with a viscous liquid state is dispensed into another liquid state monomer for cladding via a syringe needle. Hence, the core positions are likely to shift during or after the dispensing process due to several factors. We investigate the factors, specifically affecting the core height. When the core and cladding monomers are selected appropriately, the effect of the gravity could be negligible, so the core height is maintained uniform, resulting in accurate core heights. The height variance is controlled in +/-2 micrometers for the 12 cores. Meanwhile, larger shift in the core height is observed when the needle-tip position is apart from the substrate surface. One of the possible reasons of the needle-tip height dependence is the asymmetric volume contraction during the monomer curing. We find a linear relationship between the original needle-tip height and the core-height observed. This relationship is implemented in the needle-scan program to stabilize the core height in different layers. Finally, the core heights are accurately controlled even if the cores are aligned on various heights. These results indicate that the Mosquito method enables to fabricate waveguides in which the cores are 3-dimensionally aligned with a high position accuracy.

  19. Nanofiber Based Optical Sensors for Oxygen Determination

    NASA Astrophysics Data System (ADS)

    Xue, Ruipeng

    Oxygen sensors based on luminescent quenching of nanofibers were developed for measurement of both gaseous and dissolved oxygen concentrations. Electrospinning was used to fabricate "core-shell" fiber configurations in which oxygen-sensitive transition metal complexes are embedded into a polymer 'core' while a synthetic biocompatible polymer provides a protective 'shell.' Various matrix polymers and luminescent probes were studied in terms of their sensitivity, linear calibration, reversibility, response time, stability and probe-matrix interactions. Due to the small size and high surface area of these nanofibers, all samples showed rapid response and a highly linear response to oxygen. The sensitivity and photostability of the sensors were controlled by the identity of both the probe molecule and the polymer matrix. Such nanofiber sensor forms are particularly suitable in biological applications due to the fact that they do not consume oxygen, are biocompatible and biomimetic and can be easily incorporated into cell culture. Applications of these fibers in cancer cell research, wound healing, breath analysis and waste water treatment were explored.

  20. Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles.

    PubMed

    Wang, Liwei; Huang, Xingyi; Zhu, Yingke; Jiang, Pingkai

    2018-02-14

    Introducing a high dielectric constant (high-k) nanofiller into a dielectric polymer is the most common way to achieve flexible nanocomposites for electrostatic energy storage devices. However, the significant decrease of breakdown strength and large increase of dielectric loss has long been known as the bottleneck restricting the enhancement of practical energy storage capability of the nanocomposites. In this study, by introducing ultra-small platinum (<2 nm) nanoparticles, high-k polymer nanocomposites with high breakdown strength and low dielectric loss were prepared successfully. Core-shell structured polydopamine@BaTiO 3 (PDA@BT) and core-satellite ultra-small platinum decorated PDA@BT (Pt@PDA@BT) were used as nanofillers. Compared with PDA@BT nanocomposites, the maximum discharged energy density of the Pt@PDA@BT nanocomposites is increased by nearly 70% because of the improved energy storage efficiency. This research provides a simple, promising and unique way to enhance energy storage capability of high-k polymer nanocomposites.

  1. A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs.

    PubMed

    Li, Qianwen; Cai, Tiange; Huang, Yinghong; Xia, Xi; Cole, Susan P C; Cai, Yu

    2017-05-27

    Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid-polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core-shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs', PNPs', and PLNs' structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.

  2. Investigation of the electronic structure of Be2+He and Be+He, and static dipole polarisabilities of the helium atom

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, J.; Bejaoui, M.; Farjallah, M.; Berriche, H.

    2018-05-01

    The potential energy and spectroscopic constants of the ground and many excited states of the Be+He van der Waals system have been investigated using a one-electron pseudo-potential approach, which is used to replace the effect of the Be2+ core and the electron-He interactions by effective potentials. Furthermore, the core-core interactions are incorporated. This permits the reduction of the number of active electrons of the Be+He van der Waals system to only one electron. Therefore, the potential energy of the ground state as well as the excited states is performed at the SCF level and considering the spin-orbit interaction. The core-core interaction for Be2+He ground state is included using accurate CCSD (T) calculations. Then, the spectroscopic properties of the Be+He electronic states are extracted and compared with the previous theoretical and experimental studies. This comparison has shown a very good agreement for the ground and the first excited states. Moreover, the transition dipole moment has been determined for a large and dense grid of internuclear distances including the spin orbit effect. In addition, a vibrational spacing analysis for the Be2+He and Be+He ground states is performed to extract the He atomic polarisability.

  3. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.

    PubMed

    Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2015-11-11

    Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.

  4. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability

    PubMed Central

    Oliveira Silva, Catarina; Petersen, Steffen B.; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2015-01-01

    The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N–formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a critical role in the photochemical pathways a protein enters upon UV excitation. PMID:26656259

  5. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability.

    PubMed

    Oliveira Silva, Catarina; Petersen, Steffen B; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2015-01-01

    The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a critical role in the photochemical pathways a protein enters upon UV excitation.

  6. A soluble star-shaped silsesquioxane-cored polymer-towards novel stabilization of pH-dependent high internal phase emulsions.

    PubMed

    Xing, Yuxiu; Peng, Jun; Xu, Kai; Gao, Shuxi; Gui, Xuefeng; Liang, Shengyuan; Sun, Longfeng; Chen, Mingcai

    2017-08-30

    A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T 10 ) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water. We explored the properties of the CMSQ/PDMA star-shaped polymer using the characteristic results of nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), dynamic light scattering (DLS), and zeta potential and conductivity measurements. The interfacial tension results showed that the CMSQ/PDMA star-shaped polymer reduced the interfacial tension between water and oil in a pH-dependent manner. Gelled high internal phase emulsions (HIPEs) including o/w and w/o types were formed in the pH ranges of 1.2-5.8 and 9.1-12.3 with the CMSQ/PDMA star-shaped polymer as a stabilizer, when the oil fractions were 80-90 vol% and 10-20 vol%, respectively. The soluble star-shaped polymer aggregated spontaneously to form a microgel that adsorbed to the two immiscible phases. Images of the fluorescently labeled polymers demonstrated that there was a star-shaped polymer in the continuous phase, and the non-Pickering stabilization based on the percolating network of the star-shaped polymer also contributed to the stabilization of the HIPE. This pH-dependent HIPE was prepared with a novel stabilization mechanism consisting of microgel adsorption and non-Pickering stabilization. Moreover, the preparation of HIPEs provided the possibility of their application in porous materials and responsive materials.

  7. Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.

    PubMed

    Mieszawska, Aneta J; Kim, YongTae; Gianella, Anita; van Rooy, Inge; Priem, Bram; Labarre, Matthew P; Ozcan, Canturk; Cormode, David P; Petrov, Artiom; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2013-09-18

    For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.

  8. Planar polymer waveguides with a graded-index profile resulting from intermixing of methacrylates in closed microchannels

    NASA Astrophysics Data System (ADS)

    Missinne, Jeroen; Misseeuw, Lara; Liu, Xiang; Salter, Patrick S.; Van Steenberge, Geert; Adesanya, Kehinde; Van Vlierberghe, Sandra; Booth, Martin J.; Dubruel, Peter

    2018-02-01

    Graded-index waveguides are known to exhibit lower losses and considerably larger bandwidths compared to step-index waveguides. The present work reports on a new concept for realizing such waveguides on a planar substrate by capillary filling microchannels (cladding) with monomer solution (core). A graded-index profile is obtained by intermixing between the core and cladding material at the microchannel interface. To this end, various ratios of methyl methacrylate (MMA) and octafluoropentyl methacrylate (OFPMA) were evaluated as starting monomers and the results showed that the polymers P50:50 (50:50 MMA:OFPMA) and P0:100 (100% OFPMA) were suitable to be applied as waveguide core and cladding material respectively. Light guiding in the resulting P50:50/P0:100 waveguides was demonstrated and the refractive-index profile was quantified and compared with that of conventional step-index waveguides. The results for both cases were clearly different and a gradual refractive index transition between the core and cladding was found for the newly developed waveguides. Although the concept has been demonstrated in a research environment, it also has potential for upscaling by employing drop-on-demand dispensing of polymer waveguide material in pre-patterned microchannels, for example in a roll-to-roll environment.

  9. Spatial Temperature Mapping within Polymer Nanocomposites Undergoing Ultrafast Photothermal Heating via Gold Nanorods

    PubMed Central

    Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.

    2015-01-01

    Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775

  10. Temporal switching of homo-FRET pathways in single-chromophore dimer models of π-conjugated polymers.

    PubMed

    Stangl, Thomas; Bange, Sebastian; Schmitz, Daniela; Würsch, Dominik; Höger, Sigurd; Vogelsang, Jan; Lupton, John M

    2013-01-09

    A set of π-conjugated oligomer dimers templated in molecular scaffolds is presented as a model system for studying the interactions between chromophores in conjugated polymers (CPs). Single-molecule spectroscopy was used to reveal energy transfer dynamics between two oligomers in either a parallel or oblique-angle geometry. In particular, the conformation of single molecules embedded in a host matrix was investigated via polarized excitation and emission fluorescence microscopy in combination with fluorescence correlation spectroscopy. While the intramolecular interchromophore conformation was found to have no impact on the fluorescence quantum yield, lifetime, or photon statistics (antibunching), the long-term nonequilibrium dynamics of energy transfer within these bichromophoric systems was accessible by studying the linear dichroism in emission at the single-molecule level, which revealed reversible switching of the emission between the two oligomers. In bulk polymer films, interchromophore coupling promotes the migration of excitation energy to quenching sites. Realizing the presence and dynamics of such interactions is crucial for understanding limitations on the quantum efficiency of larger CP materials.

  11. A water-soluble hybrid material of single-walled carbon nanotubes with an amphiphilic poly(phenyleneethynylene): preparation, characterization, and photovoltaic properties.

    PubMed

    Mao, Jie; Liu, Qian; Lv, Xin; Liu, Zunfeng; Huang, Yi; Ma, Yanfeng; Chen, Yongsheng; Yin, Shougen

    2007-08-01

    A novel rigid linear polymer poly(phenyleneethynylene) (PPE) was synthesized and the polymer exhibits good solubility in both water and common organic solvents. The interaction at both ground and excited state between this polymer and single-walled carbon nanotubes (SWNTs) was studied and a water-soluble nano-scale PPE/SWNTs hybrid was fabricated, where the water solubility of SWNTs was enhanced to 1.8 mg/ml. Steady state fluorescence spectra and fluorescence lifetime decay measurements showed that the emissions from PPEs in this hybrid at excited state were efficiently quenched by the attachment of SWNTs, where an efficient energy transfer happened from PPEs to SWNTs as the electron acceptor. Using this hybrid as the active layer we fabricated a photovoltaic cell with the bulk heterojunction configuration, and it showed a photoresponse with an open circuit voltage (Voc) of 105 mV and a short circuit current density (Isc) of 28.7 microA/cm2 under standard AM 1.5 illumination (100 mW/cm2).

  12. Microbubble-Triggered Spontaneous Separation of Transparent Thin Films from Substrates Using Evaporable Core-Shell Nanocapsules.

    PubMed

    Son, Intae; Lee, Byungsun; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Ahn, Byung Wook; Hwang, Jeongho; Lee, Jonghyuk; Lee, Jun Hyup

    2018-05-23

    The spontaneous separation of a polymer thin film from a substrate is an innovative technology that will enable material recycling and reduce manufacturing cost in the film industry, and this can be applied in a wide range of applications, from optical films to wearable devices. Here, we present an unprecedented spontaneous strategy for separating transparent polymer films from substrates on the basis of microbubble generation using nanocapsules containing an evaporable material. The core-shell nanocapsules are prepared from poly(methyl methacrylate)-polyethyleneimine nanoparticles via the encapsulation of methylcyclohexane (MCH). A spherical nanostructure with a vaporizable core is obtained, with the heat-triggered gas release ability leading to the formation of microbubbles. Our separation method applied to transparent polymer films doped with a small amount of the nanocapsules encapsulating evaporable MCH enables spontaneous detachment of thin films from substrates via vacuum-assisted rapid vaporization of MCH over a short separation time, and clear detachment of the film is achieved with no deterioration of the inherent optical transparency and adhesive property compared to a pristine film.

  13. Electronic Energy Transfer in New Polymer Nanocomposite Assemblies

    DTIC Science & Technology

    1994-07-13

    for public release and sale; its distribution is unlimited. OL AISTfrRACT fMaimunt 20o war*) New light-harvesting thin film supramolecular assemblies...be supression or reduction of exciplex formation between excited donor molecules and ground state acceptor molecules that may lead to nonradiative...nonradiative excited state decay exists other than EET.33 One possibility for this nonradiative and non-EET pathway is exciplex formation between the

  14. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities.

    PubMed

    Kee, Tak W

    2014-09-18

    Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.

  15. Electron Dynamics in the Core-Excited CS2 Molecule Revealed through Resonant Inelastic X-Ray Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marchenko, T.; Carniato, S.; Journel, L.; Guillemin, R.; Kawerk, E.; Žitnik, M.; Kavčič, M.; Bučar, K.; Bohinc, R.; Petric, M.; Vaz da Cruz, V.; Gel'mukhanov, F.; Simon, M.

    2015-07-01

    We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the carbon disulphide CS2 molecule near the sulfur K-absorption edge. We observe a strong evolution of the RIXS spectral profile with the excitation energy tuned below the lowest unoccupied molecular orbital (LUMO) absorption resonance. The reason for this is twofold. Reducing the photon energy in the vicinity of the LUMO absorption resonance leads to a relative suppression of the LUMO contribution with respect to the emission signal from the higher unoccupied molecular orbitals, which results in the modulation of the total RIXS profile. At even larger negative photon-energy detuning from the resonance, the excitation-energy dependence of the RIXS profile is dominated by the onset of electron dynamics triggered by a coherent excitation of multiple electronic states. Furthermore, our study demonstrates that in the hard x-ray regime, localization of the S 1s core hole occurs in CS2 during the RIXS process because of the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Core-hole localization leads to violation of the symmetry selection rules for the electron transitions observed in the spectra.

  16. Transient quantum coherent effects in the acetylene-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Rodríguez Casillas, N.; Ocegueda Miramontes, M.; Hernández Hernández, E.

    2017-02-01

    Low-pressure acetylene in the hollow-core photonic crystal structure fibers is an excellent medium for the room-temperature investigation of the coherent quantum effects in communication wavelength region. Pulsed excitation enables observation of new coherent phenomena like optical nutation or photon echo and evaluation of important temporal characteristics of the light-molecule interactions. We also report original experimental results on the pulsed excitation of the electromagnetically induced transparency in co- and counter-propagation configurations.

  17. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  18. Conjugated amplifying polymers for optical sensing applications.

    PubMed

    Rochat, Sébastien; Swager, Timothy M

    2013-06-12

    Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.

  19. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

    PubMed

    Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee

    2017-08-01

    Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enteric protection of naproxen in a fixed-dose combination product produced by hot-melt co-extrusion.

    PubMed

    Vynckier, A-K; De Beer, M; Monteyne, T; Voorspoels, J; De Beer, T; Remon, J P; Vervaet, C

    2015-08-01

    In this study hot-melt co-extrusion is used as processing technique to manufacture a fixed-dose combination product providing enteric protection to naproxen incorporated in the core and immediate release to esomeprazole magnesium embedded in the coat. The plasticizing effect of naproxen and triethyl citrate (TEC) was tested on the enteric polymers investigated (Eudragit(®) L100-55, HPMC-AS-LF and HPMCP-HP-50). Core matrix formulations containing HPMC-AS-LF, TEC and a naproxen load of 15, 30 and 50% were processed and characterized. The in vitro naproxen release in 0.1N HCl was prevented for 2h for all formulations. The physicochemical state of the drug in the extrudates was determined and a stability study was performed. Intermolecular interactions between naproxen and polymer were identified using attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy. When esomeprazole magnesium was formulated in a polyethylene oxide 100K:polyethylene glycol 4K (1:1) matrix, separated from the naproxen-containing layer, the formulation could be easily processed and complete in vitro drug release was observed after 45 min. When co-extruding the core/coat dosage form it was observed that a third layer of polymer, separating the naproxen loaded enteric formulation in the core from the coat, is required to prevent degradation of the acid-labile esomeprazole magnesium at the core/coat interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Hollow-core FRP-concrete-steel bridge columns under extreme loading.

    DOT National Transportation Integrated Search

    2015-04-01

    This report presents the behavior of hollow-core fiber reinforced polymer concrete - steel columns (HC-FCS) under : combined axial-flexural as well as vehicle collision loads. The HC-FCS column consists of a concrete wall sandwiched between an ou...

  2. Selective excitation of LP01 and LP02 in dual-concentric cores fiber using an adiabatically tapered microstructured mode converter

    NASA Astrophysics Data System (ADS)

    Sammouda, Marwa; Taher, Aymen Belhadj; Bahloul, Faouzi; Bin, Philippe Di

    2016-09-01

    We propose to connect a single-mode fiber (SMF) to a dual-concentric cores fiber (DCCF) using an adiabatically tapered microstructured mode converter, and to evaluate the SMF LP01 mode and the DCCF LP01 and LP02 modes selective excitations performances. We theoretically and numerically study this selective excitation method by calculating the effective indices of the propagated modes, the adiabaticity criteria, the coupling loss, and the modes amplitudes along the tapered structure. This study shows that this method is able to achieve excellent selective excitations of the first two linearly polarized modes (LP01 and LP02) among the five guided modes in the DCCF with a negligible loss. The part of the LP01 and LP02 modes from the total power are 99% and 84% corresponding to 0.1 and 0.8 dB losses, respectively.

  3. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2011-12-15

    In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less

  4. Infrasonic acoustic waves generated by fast air heating in sprite cores

    NASA Astrophysics Data System (ADS)

    Silva, Caitano L.; Pasko, Victor P.

    2014-03-01

    Acceleration, expansion, and branching of sprite streamers can lead to concentration of high electrical currents in regions of space, that are observed in the form of bright sprite cores. Driven by this electrical current, a series of chemical processes take place in the sprite plasma. Excitation, followed by quenching of excited electronic states leads to energy transfer from charged to neutral species. The consequence is heating and expansion of air leading to emission of infrasonic acoustic waves. Results indicate that ≳0.01 Pa pressure perturbations on the ground, observed in association with sprites, can only be produced by exceptionally strong currents in sprite cores, exceeding 2 kA.

  5. Program for Research on Conducting Polymers

    DTIC Science & Technology

    1991-07-17

    Excitations in Polyaniline (Synthetic Metals). 29. Transient Photoconductivity in Oriented Irans-Polyacetylene Prepared by the Naarmann-Theophilou Method...State Physics). 33. X-Ray Scattering from Crystalline Polyaniline (Polymer Commun.). 34. Photogenerated Carriers in La2CuO4,YBa2Cu3O7-8 and TI2Ba2Ca...1- x)GdxCu208: Polarizability-Induced Pairing of Polarons (Synthetic Metals). 35. Spectroscopic Studies of Polyaniline in Solution and in Spin-Cast

  6. Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory.

    PubMed

    Vallejo, Felipe A; Hayden, L Michael

    2013-03-11

    We use coupled mode theory, adequately incorporating optical losses, to model ultra-broadband terahertz (THz) waveguide emitters (0.1-20 THz) based on difference frequency generation of femtosecond infrared (IR) optical pulses. We apply the model to a generic, symmetric, five-layer, metal/cladding/core waveguide structure using transfer matrix theory. We provide a design strategy for an efficient ultra-broadband THz emitter and apply it to polymer waveguides with a nonlinear core composed of a poled guest-host electro-optic polymer composite and pumped by a pulsed fiber laser system operating at 1567 nm. The predicted bandwidths are greater than 15 THz and we find a high conversion efficiency of 1.2 × 10(-4) W(-1) by balancing both the modal phase-matching and effective mode attenuation.

  7. Statistical Thermodynamic Approach to Vibrational Solitary Waves in Acetanilide

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Áurea R.; Mesquita, Marcus V.; Luzzi, Roberto

    1998-03-01

    We analyze the behavior of the macroscopic thermodynamic state of polymers, centering on acetanilide. The nonlinear equations of evolution for the populations and the statistically averaged field amplitudes of CO-stretching modes are derived. The existence of excitations of the solitary wave type is evidenced. The infrared spectrum is calculated and compared with the experimental data of Careri et al. [Phys. Rev. Lett. 51, 104 (1983)], resulting in a good agreement. We also consider the situation of a nonthermally highly excited sample, predicting the occurrence of a large increase in the lifetime of the solitary wave excitation.

  8. Research progress on synthesis and characteristic about dendrimers

    NASA Astrophysics Data System (ADS)

    Tang, Zitao

    2017-12-01

    Dendrimers are hyper-branched polymers which have perfectly defined structures. Different from the common polymers, dendrimers are synthesized by a step-by-step iterative style, which starts from a central core and forms branching parts outward. The dendrimers also have different physical and chemical characteristics from common polymers. In this paper, contributions to dendrimer synthesis from different researchers with different scientific background, synthesis of different dendrimers, and applications of them will be reviewed.

  9. Organic materials able to detect analytes

    NASA Technical Reports Server (NTRS)

    Swager, Timothy M. (Inventor); Zhu, Zhengguo (Inventor); Bulovic, Vladimir (Inventor); Rose, Aimee (Inventor); Madigan, Conor Francis (Inventor)

    2012-01-01

    The present invention generally relates to polymers with lasing characteristics that allow the polymers to be useful in detecting analytes. In one aspect, the polymer, upon an interaction with an analyte, may exhibit a change in a lasing characteristic that can be determined in some fashion. For example, interaction of an analyte with the polymer may affect the ability of the polymer to reach an excited state that allows stimulated emission of photons to occur, which may be determined, thereby determining the analyte. In another aspect, the polymer, upon interaction with an analyte, may exhibit a change in stimulated emission that is at least 10 times greater with respect to a change in the spontaneous emission of the polymer upon interaction with the analyte. The polymer may be a conjugated polymer in some cases. In one set of embodiments, the polymer includes one or more hydrocarbon side chains, which may be parallel to the polymer backbone in some instances. In another set of embodiments, the polymer may include one or more pendant aromatic rings. In yet another set of embodiments, the polymer may be substantially encapsulated in a hydrocarbon. In still another set of embodiments, the polymer may be substantially resistant to photobleaching. In certain aspects, the polymer may be useful in the detection of explosive agents, such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT).

  10. Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning.

    PubMed

    Tsai, Ping-Chun; Chen, Jung-Yao; Ercan, Ender; Chueh, Chu-Chen; Tung, Shih-Huang; Chen, Wen-Chang

    2018-04-30

    A one-step core/shell electrospinning technique is exploited to fabricate uniform luminous perovskite-based nanofibers, wherein the perovskite and the polymer are respectively employed in the core and the outer shell. Such a coaxial electrospinning technique enables the in situ formation of perovskite nanocrystals, exempting the needs of presynthesis of perovskite quantum dots or post-treatments. It is demonstrated that not only the luminous electrospun nanofibers can possess color-tunability by simply tuning the perovskite composition, but also the grain size of the formed perovskite nanocrystals is largely affected by the perovskite precursor stoichiometry and the polymer solution concentration. Consequently, the optimized perovskite electrospun nanofiber yields a high photoluminescence quantum yield of 30.9%, significantly surpassing the value of its thin-film counterpart. Moreover, owing to the hydrophobic characteristic of shell polymer, the prepared perovskite nanofiber is endowed with a high resistance to air and water. Its photoluminescence intensity remains constant while stored under ambient environment with a relative humidity of 85% over a month and retains intensity higher than 50% of its initial intensity while immersed in water for 48 h. More intriguingly, a white light-emitting perovskite-based nanofiber is successfully fabricated by pairing the orange light-emitting compositional perovskite with a blue light-emitting conjugated polymer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Theoretical studies of electronically excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  12. Photochemical modification of polymeric materials and the polarization of light in ionomeric guest/host systems

    NASA Astrophysics Data System (ADS)

    Pan, Bo

    Photochemical methods were introduced to develop important extrusion processes, through which polymers can either be functionalized or modified by altering molecular weight characteristics. Therefore, poly(methyl methacrylate) (PMMA) incorporated with a small amount of light-reactive functional groups was synthesized. These functional groups can be activated by UV irradiation in a post extrusion process to produce high molecular weight polymer and/or crosslinked polymer. Environmental stress cracking resistance of these polymers was examined and correlated to damping using dynamic mechanic analysis. To improve industrial reactive extrusion process of preparing maleic anhydride grafted polypropylene (MAR-g-PP), photografting was proposed and studied. Using benzophenone (BP) as the initiator, grafting efficiency was significantly improved compared to peroxide initiated grafting. Moreover, nearly constant conversion of maleic anhydride was observed in photografting. The high efficiency of benzophenone initiated photografting was attributed to the formation of the excited triplet state maleic anhydride. A rate constant of 6.0*109 M-1*sec-1 for the quenching of triplet state BP with MAH was obtained using laser photolysis spectroscopy. In a comparison, the hydrogen abstraction process from polypropylene by the triplet state BP molecules has a rate constant of 4.1*105 M-1*sec-1. In solution grafting with the use of benzene as the solvent, a facile triplet state energy transfer process may also occur leading to the formation of the excited triplet state MAH. Spectroscopic methods involving light were also used for the study of the guest-host interactions in polymer systems. The use of ionomers as the matrix for the oriented guest/host systems, cationic dye systems in particular, was shown to enhance polarization efficiency as well as dye uptake as comparing to conventional polymers, such as poly(vinyl alcohol). It was found that the dye molecules in carboxylated EVOH (EVOH-COONa) have higher degree of orientation than in EVOH, while polymer chain orientation is quite similar in these two polymers. The difference in the dye orientation was attributed to the ion-ion interactions between dye molecules and carboxylate groups of the modified polymer.

  13. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile.

    PubMed

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity.

  14. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile

    PubMed Central

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity. PMID:26485431

  15. A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip.

    PubMed

    Chiu, Shih-Wen; Wu, Hsiang-Chiu; Chou, Ting-I; Chen, Hsin; Tang, Kea-Tiong

    2014-06-01

    This article introduces a power-efficient, miniature electronic nose (e-nose) system. The e-nose system primarily comprises two self-developed chips, a multiple-walled carbon nanotube (MWNT)-polymer based microsensor array, and a low-power signal-processing chip. The microsensor array was fabricated on a silicon wafer by using standard photolithography technology. The microsensor array comprised eight interdigitated electrodes surrounded by SU-8 "walls," which restrained the material-solvent liquid in a defined area of 650 × 760 μm(2). To achieve a reliable sensor-manufacturing process, we used a two-layer deposition method, coating the MWNTs and polymer film as the first and second layers, respectively. The low-power signal-processing chip included array data acquisition circuits and a signal-processing core. The MWNT-polymer microsensor array can directly connect with array data acquisition circuits, which comprise sensor interface circuitry and an analog-to-digital converter; the signal-processing core consists of memory and a microprocessor. The core executes the program, classifying the odor data received from the array data acquisition circuits. The low-power signal-processing chip was designed and fabricated using the Taiwan Semiconductor Manufacturing Company 0.18-μm 1P6M standard complementary metal oxide semiconductor process. The chip consumes only 1.05 mW of power at supply voltages of 1 and 1.8 V for the array data acquisition circuits and the signal-processing core, respectively. The miniature e-nose system, which used a microsensor array, a low-power signal-processing chip, and an embedded k-nearest-neighbor-based pattern recognition algorithm, was developed as a prototype that successfully recognized the complex odors of tincture, sorghum wine, sake, whisky, and vodka.

  16. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    PubMed

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  17. Tandem catalysis: a new approach to polymers.

    PubMed

    Robert, Carine; Thomas, Christophe M

    2013-12-21

    The creation of polymers by tandem catalysis represents an exciting frontier in materials science. Tandem catalysis is one of the strategies used by Nature for building macromolecules. Living organisms generally synthesize macromolecules by in vivo enzyme-catalyzed chain growth polymerization reactions using activated monomers that have been formed within cells during complex metabolic processes. However, these biological processes rely on highly complex biocatalysts, thus limiting their industrial applications. In order to obtain polymers by tandem catalysis, homogeneous and enzyme catalysts have played a leading role in the last two decades. In the following feature article, we will describe selected published efforts to achieve these research goals.

  18. Multi-wavelength laser from dye-doped cholesteric polymer films.

    PubMed

    Huang, Yuhua; Wu, Shin-Tson

    2010-12-20

    A multi-wavelength laser is demonstrated using a dye-doped cholesteric polymer film whose reflection bandwidth is broadened with several oscillations. Due to the abrupt change of the density of state between oscillation peak and valley, each oscillation functions as a photonic band gap for generating a laser wavelength under the excitation of a pumping laser. As a result, a multiple wavelength laser is generated. Results indicate that the dye-doped cholesteric liquid crystal polymer film is a good candidate for fabricating broadband lasers such as white light lasers. Potential applications include experimental testing of laser materials, identification markers, information displays, and inertial confinement laser fusion.

  19. Magnetic Spin Effects in Photoprocesses inside Polymeric Photoconductors

    NASA Astrophysics Data System (ADS)

    Rumyantsev, B. M.; Berendyaev, V. I.; Pebalk, A. V.

    2018-06-01

    Magnetic spin effects are detected and studied in the processes of sensitized current-carrier photogeneration and luminescence inside polymer photoconductor films based on polyimides and composites of polymers with carbazole moieties combined with electron acceptors (chemical sensitization) and dyes (spectral sensitization). The effect an electric field has on the quantum yield of photogeneration and the luminescence of excited charge-transfer complexes (reversible and irreversible effects) at spectral sensitization is studied in the presence of O2.

  20. Use of the fluorescence quantum yield for the determination of the number-average molecular weight of polymers of epicatechin with 4β→8 interflavin bonds

    Treesearch

    D. Cho; W.L. Mattice; L.J. Porter; Richard W. Hemingway

    1989-01-01

    Excitation at 280 nm produces a structureless emission band with a maximum at 321-324 nm for dilute solutions of catechin, epicatechin, and their oligomers in l,4-dioxane or water. The fluorescence quantum yield, Q, has been measured in these two solvents for five dimers, a trimer, a tetramer, a pentamer, a hexamer, and a polymer in which the monomer...

  1. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications.

    PubMed

    Li, Dan; Huang, Jiaxing; Kaner, Richard B

    2009-01-20

    Known for more than 150 years, polyaniline is the oldest and potentially one of the most useful conducting polymers because of its facile synthesis, environmental stability, and simple acid/base doping/dedoping chemistry. Because a nanoform of this polymer could offer new properties or enhanced performance, nanostructured polyaniline has attracted a great deal of interest during the past few years. This Account summarizes our recent research on the syntheses, processing, properties, and applications of polyaniline nanofibers. By monitoring the nucleation behavior of polyaniline, we demonstrate that high-quality nanofibers can be readily produced in bulk quantity using the conventional chemical oxidative polymerization of aniline. The polyaniline nanostructures formed using this simple method have led to a number of exciting discoveries. For example, we can readily prepare aqueous polyaniline colloids by purifying polyaniline nanofibers and controlling the pH. The colloids formed are self-stabilized via electrostatic repulsions without the need for any chemical modification or steric stabilizer, thus providing a simple and environmentally friendly way to process this polymer. An unusual nanoscale photothermal effect called "flash welding", which we discovered with polyaniline nanofibers, has led to the development of new techniques for making asymmetric polymer membranes and patterned nanofiber films and creating polymer-based nanocomposites. We also demonstrate the use of flash-welded polyaniline films for monolithic actuators. Taking advantage of the unique reduction/oxidation chemistry of polyaniline, we can decorate polyaniline nanofibers with metal nanoparticles through in situ reduction of selected metal salts. The resulting polyaniline/metal nanoparticle composites show promise for use in ultrafast nonvolatile memory devices and for chemical catalysis. In addition, the use of polyaniline nanofibers or their composites can significantly enhance the sensitivity, selectivity, and response time of polyaniline-based chemical sensors. By combining straightforward synthesis and composite formation with exceptional solution processability, we have developed a range of new useful functionalities. Further research on nanostructured conjugated polymers holds promise for even more exciting discoveries and intriguing applications.

  2. Nearly Seamless Vacuum-Insulated Boxes

    NASA Technical Reports Server (NTRS)

    Stepanian, Christopher J.; Ou, Danny; Hu, Xiangjun

    2010-01-01

    A design concept, and a fabrication process that would implement the design concept, have been proposed for nearly seamless vacuum-insulated boxes that could be the main structural components of a variety of controlled-temperature containers, including common household refrigerators and insulating containers for shipping foods. In a typical case, a vacuum-insulated box would be shaped like a rectangular parallelepiped conventional refrigerator box having five fully closed sides and a hinged door on the sixth side. Although it is possible to construct the five-closed-side portion of the box as an assembly of five unitary vacuum-insulated panels, it is not desirable to do so because the relatively high thermal conductances of the seams between the panels would contribute significant amounts of heat leakage, relative to the leakage through the panels themselves. In contrast, the proposal would make it possible to reduce heat leakage by constructing the five-closed-side portion of the box plus the stationary portion (if any) of the sixth side as a single, seamless unit; the only remaining seam would be the edge seal around the door. The basic cross-sectional configuration of each side of a vacuum-insulated box according to the proposal would be that of a conventional vacuum-insulated panel: a low-density, porous core material filling a partially evacuated space between face sheets. However, neither the face sheets nor the core would be conventional. The face sheets would be opposite sides of a vacuum bag. The core material would be a flexible polymer-modified silica aerogel of the type described in Silica/Polymer and Silica/Polymer/Fiber Composite Aero - gels (MSC-23736) in this issue of NASA Tech Briefs. As noted in that article, the stiffness of this core material against compression is greater than that of prior aerogels. This is an important advantage because it translates to greater retention of thickness and, hence, of insulation performance when pressure is applied across the thickness, in particular, when the space between the face sheets is evacuated, causing the core material to be squeezed between the face sheets by atmospheric pressure. Fabrication of a typical vacuum-insulated box according to the proposal would begin with fabrication of a cross-shaped polymer-modified aerogel blanket. The dimensions of the cross would be chosen so that (1) the central rectangular portion of the cross would form the core for the back of the box and (2) the arms of the cross could be folded 90 from the back plane to form the cores of the adjacent four sides of the box. Optionally, the blanket could include tabs for joining the folded sides of the blanket along mating edges and tabs that could serve as hinges for the door. Vacuum bags in the form of similar five-sided boxes would be made of a suitable polymeric film, one bag to fit the outer core surface, the other to fit the inner core surface. By use of commercially available film-sealing equipment, these box-shaped bags would be seamed together to form a single vacuum bag encasing the box-shaped core. Also, a one-way valve would be sealed to the bag. Through this valve, the interior of the bag would be evacuated to a pressure between 1 and 10 torr (approximately between 0.13 and 1.3 kPa). The polymer-modified aerogel core material is known to perform well as a thermal insulator in such a partial vacuum.

  3. Integrated Microfluidic Variable Optical Attenuator

    DTIC Science & Technology

    2005-11-28

    Quantum Electron. 5, pp. 1289–1297 (1999). 5. G. Z. Xiao, Z. Zhang, and C. P. Grover, “A variable optical attenuator based on a straight polymer –silica...1998). 18. Y. Huang, G.T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three- dimensional multilayer polymer ...quality without damaging polymer materials under high temperatures, resulting in a core index of 1.561 and cladding index of 1.546. The refractive

  4. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness.

    PubMed

    Chen, Hui; Ma, Xiang; Wu, Shuaifan; Tian, He

    2014-12-15

    Development of self-healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host-guest recognition between a β-cyclodextrin (β-CD) host polymer (poly-β-CD) and an α-bromonaphthalene (α-BrNp) polymer (poly-BrNp) without any additional gelator, which can self-heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room-temperature phosphorescence (RTP) signals based on the fact that the inclusion of β-CD macrocycle with α-BrNp moiety is able to induce RTP emission (CD-RTP). The RTP signal can be adjusted reversibly by competitive complexation of β-CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly-Azo). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Core localization and {sigma}* delocalization in the O 1s core-excited sulfur dioxide molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Andreas; Kivimaeki, Antti; Sorensen, Stacey L.

    Electron-ion-ion coincidence measurements of sulfur dioxide at discrete resonances near the O 1s ionization edge are reported. The spectra are analyzed using a model based upon molecular symmetry and on the geometry of the molecule. We find clear evidence for molecular alignment that can be ascribed to symmetry properties of the ground and core-excited states. Configuration interaction (CI) calculations indicate geometry changes in accord with the measured spectra. For the SO{sub 2} molecule, however, we find that the localized core hole does not produce measurable evidence for valence localization, since the transition dipole moment is not parallel to a breakingmore » {sigma}* O-S bond, in contrast to the case of ozone. The dissociation behavior based upon the CI calculations using symmetry-broken orbitals while fixing a localized core-hole site is found to be nearly equivalent to that using symmetry-adapted orbitals. This implies that the core-localization effect is not strong enough to localize the {sigma}* valence orbital.« less

  6. Synthesis of poly(N-isopropylacrylamide)-co-poly(phenylboronate ester) acrylate and study on their glucose-responsive behavior.

    PubMed

    Yao, Yuan; Shen, Heyun; Zhang, Guanghui; Yang, Jing; Jin, Xu

    2014-10-01

    We introduced thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) into the polymer structure of poly(ethylene glycol)-block-poly(phenylboronate ester) acrylate (MPEG-block-PPBDEMA) by block and random polymerization pathways in order to investigate the effect of polymer architecture on the glucose-responsiveness and enhance their insulin release controllability. By following the structure, the continuous PNIPAM shell of the triblock polymer MPEG-block-PNIPAM-block-PPBDEMA collapsing on the glucose-responsive PPBDEMA core formed the polymeric micelles with a core-shell-corona structure, and MPEG-block-(PNIPAM-rand-PPBDEMA) exhibited core-corona micelles in which the hydrophobic core consisted of PNIPAM and PPBDEMA segments when the environmental temperature was increased above low critical solution temperature (LCST) of PNIPAM. The micellar morphologies can be precisely controlled by temperature change between 15 and 37°C. As a result, the introduction of PNIPAM greatly enhanced the overall stability of insulin encapsulated in the polymeric micelles in the absence of glucose over incubation 80 h at 37°C. Comparing to MPEG-block-PNIPAM-block-PPBDEMA, the nanocarriers from MPEG-block-(PNIPAM-rand-PPBDEMA) showed great insulin release behavior which is zero insulin release without glucose, low release at normal blood glucose concentration (1.0 mg/mL). Therefore, these nanocarriers may be served as promising self-regulated insulin delivery system for diabetes treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Improving the Durability of Methanol Oxidation Reaction Electro-Catalysts Through the Modification of Carbon Architectures

    DTIC Science & Technology

    2014-01-01

    zeolite template was used in conjunction with liquid cyanamide to form a carbon nitride structure with a better 2D mesoporous hexagonal framework, resulting...the core. Both hybrid inorganic–organic polymer networks and 139 zeolitic inorganic–organic polymer electrolyte materials were used to impregnate an

  8. Detection of λ-cyhalothrin by a core-shell spherical SiO2-based surface thin fluorescent molecularly imprinted polymer film.

    PubMed

    Gao, Lin; Han, Wenjuan; Li, Xiuying; Wang, Jixiang; Yan, Yongsheng; Li, Chunxiang; Dai, Jiangdong

    2015-12-01

    A fluorescent core-shell molecularly imprinted polymer based on the surface of SiO2 beads was synthesized and its application in the fluorescence detection of ultra-trace λ-cyhalothrin (LC) was investigated. The shell was prepared by copolymerization of acrylamide with allyl fluorescein in the presence of LC to form recognition sites. The experimental results showed that the thin fluorescent molecularly imprinted polymer (FMIP) film exhibited better selective recognition ability than fluorescent molecularly non-imprinted polymer (FNIP). A new nonlinear relationship between quenching rate and concentration was found in this work. In addition, the nonlinear relationship allowed a lower concentration range of 0-5.0 nM to be described by the Stern-Volmer equation with a correlation coefficient of 0.9929. The experiment results revealed that the SiO2@FMIP was satisfactory as a recognition element for determination of LC in soda water samples. Therefore this study demonstrated the potential of MIP for the recognition and detection of LC in food.

  9. Design of Super-Paramagnetic Core-Shell Nanoparticles for Enhanced Performance of Inverted Polymer Solar Cells.

    PubMed

    Jaramillo, Johny; Boudouris, Bryan W; Barrero, César A; Jaramillo, Franklin

    2015-11-18

    Controlling the nature and transfer of excited states in organic photovoltaic (OPV) devices is of critical concern due to the fact that exciton transport and separation can dictate the final performance of the system. One effective method to accomplish improved charge separation in organic electronic materials is to control the spin state of the photogenerated charge-carrying species. To this end, nanoparticles with unique iron oxide (Fe3O4) cores and zinc oxide (ZnO) shells were synthesized in a controlled manner. Then, the structural and magnetic properties of these core-shell nanoparticles (Fe3O4@ZnO) were tuned to ensure superior performance when they were incorporated into the active layers of OPV devices. Specifically, small loadings of the core-shell nanoparticles were blended with the previously well-characterized OPV active layer of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Upon addition of the core-shell nanoparticles, the performance of the OPV devices was increased up to 25% relative to P3HT-PCBM active layer devices that contained no nanoparticles; this increase was a direct result of an increase in the short-circuit current densities of the devices. Furthermore, it was demonstrated that the increase in photocurrent was not due to enhanced absorption of the active layer due to the presence of the Fe3O4@ZnO core-shell nanoparticles. In fact, this increase in device performance occurred because of the presence of the superparamagnetic Fe3O4 in the core of the nanoparticles as incorporation of ZnO only nanoparticles did not alter the device performance. Importantly, however, the ZnO shell of the nanoparticles mitigated the negative optical effect of Fe3O4, which have been observed previously. This allowed the core-shell nanoparticles to outperform bare Fe3O4 nanoparticles when the single-layer nanoparticles were incorporated into the active layer of OPV devices. As such, the new materials described here present a tangible pathway toward the development of enhanced design schemes for inorganic nanoparticles such that magnetic and energy control pathways can be tailored for flexible electronic applications.

  10. Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM Microcapsules.

    PubMed

    Guo, Jia; Yang, Wuli; Deng, Yonghui; Wang, Changchun; Fu, Shoukuan

    2005-07-01

    We present a new approach for the fabrication of thermoresponsive polymer microcapsules with mobile magnetic cores that undergo a volume phase-transition upon changing the temperature and are collected under an external magnetic field. We have prepared organic/inorganic composite microspheres with a well-defined core-shell structure that are composed of a crosslinked poly(N-isopropylacrylamide) (PNIPAM) shell and silica cores dotted centrally by magnetite nanoparticles. Since the infiltration of template-decomposed products is dependent on the permeability of PNIPAM shells triggered by changes of exterior temperature, the silica layer sandwiched between the magnetic core and the PNIPAM shell was quantitatively removed to generate PNIPAM microcapsules with mobile magnetic cores by treatment with aqueous NaOH solution. For development of the desired multifunctional microcapsules, modification of the unetched silica surface interiors can be realized by treatment with a silane coupling agent containing functional groups that can easily bind to catalysts, enzymes, or labeling molecules. Herein, fluorescein isothiocyanate (FITC), which is a common organic dye, is attached to the insides of the mobile magnetic cores to give PNIPAM microcapsules with FITC-labeled magnetic cores. In this system, it can be expected that an extension of the functionalization of the cavity properties of smart polymer microcapsules is to immobilize other target molecules onto the mobile cores in order to introduce other desired functions in the hollow cage.

  11. Charge transport in organic multi-layer devices under electric and optical fields

    NASA Astrophysics Data System (ADS)

    Park, June Hyoung

    2007-12-01

    Charge transport in small organic molecules and conjugated conducting polymers under electric or optical fields is studied by using field effect transistors and photo-voltaic cells with multiple thin layers. With these devices, current under electric field, photo-current under optical field, and luminescence of optical materials are measured to characterize organic and polymeric materials. For electric transport studies, poly(3,4-ethylenedioxythiophene) doped by polystyrenesulfonic acid is used, which is conductive with conductivity of approximately 25 S/cm. Despite their high conductance, field effect transistors based on the films are successfully built and characterized by monitoring modulations of drain current by gate voltage and IV characteristic curves. Due to very thin insulating layers of poly(vinylphenol), the transistors are relative fast under small gate voltage variation although heavy ions are involved in charge transport. In IV characteristic curves, saturation effects can be observed. Analysis using conventional field effect transistor model indicates high mobility of charge carriers, 10 cm2/V·sec, which is not consistent with the mobility of the conducting polymer. It is proposed that the effect of a small density of ions injected via polymer dielectric upon application of gate voltage and the ion compensation of key hopping sites accounts for the operation of the field effect transistors. For the studies of transport under optical field, photovoltaic cells with 3 different dendrons, which are efficient to harvest photo-excited electrons, are used. These dendrons consist of two electron-donors (tetraphenylporphyrin) and one electron-accepter (naphthalenediimide). Steady-state fluorescence measurements show that inter-molecular interaction is dominant in solid dendron film, although intra-molecular interaction is still present. Intra-molecular interaction is suggested by different fluorescence lifetimes between solutions of donor and dendrons. This intra-molecular interaction has two processes, transport via pi-stackings and transport via linking functional groups in the dendrons. IV characteristic spectra of the photovoltaic cells suggest that the transport route of photo-excited charges depends on wavelength of incident light on the cells. For excitation by the Soret band and the lowest Q band, a photo-excited electron can transport directly to a neighbor dendron. For excitation by high-energy Q bands, a photo-excited electron transports via the electron-accepters.

  12. Crystallochromy of perylene pigments: Influence of an enlarged polyaromatic core region

    NASA Astrophysics Data System (ADS)

    Gisslén, L.; Scholz, R.

    2011-04-01

    As demonstrated in a recent model study of several perylene pigments crystallizing in the monoclinic space group P21/c, the optical properties in the crystalline phase are determined by the interference between neutral molecular excitations and charge transfer states via electron and hole transfer. In the present work, we apply this exciton model to three further perylene compounds crystallizing in the space groups P21/n, P1̲, and P21/c, involving two chromophores with an enlarged polyaromatic core. In all cases, the charge transfer between stack neighbors increases the second moment of the optical response, whereas a larger conjugated core results in a red shift of the neutral excitation energy of each chromophore.

  13. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    NASA Astrophysics Data System (ADS)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  14. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    PubMed

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    NASA Astrophysics Data System (ADS)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  16. Effect of Core-shell Ceria/Poly(Vinylpyrrolidone) (PVP) Nanoparticles Incorporated in Polymer Films and Their Optical Properties (2): Increasing the Refractive Index

    PubMed Central

    Itoh, Toshio; Uchida, Toshio; Izu, Noriya; Shin, Woosuck

    2017-01-01

    We investigated the preparation of well-dispersed core-shell ceria-poly(vinylpyrrolidone) (PVP) nanoparticles with an average particle size of around 20 nm which were used to produce a hybrid film with a polymer coating of dipentaerythritol hexaacrylate (DPHA). We obtained good dispersion of the nanoparticles in a mixed solvent of 48% 1-methoxy-2-propanol (MP), 32% 3-methoxy-3-methyl-1-butanol (MMB), and 20% methyl i-butyl ketone (MIBK). An ink of the polymer coating consisting of 68.7 wt% nanoparticles and 31.3 wt% DPHA with a polymerization initiator was prepared using this solvent mixture. The surface of the hybrid film showed low roughness and the nanoparticles formed a densely packed structure in the DPHA matrix. The resulting coating possessed excellent transparency and a high refractive index of 1.69. PMID:28773070

  17. Technical considerations for implementation of x-ray CT polymer gel dosimetry.

    PubMed

    Hilts, M; Jirasek, A; Duzenli, C

    2005-04-21

    Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.

  18. Single clay sheets inside electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  19. Core Characteristics Deterioration due to Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Kaido, Chikara; Arai, Satoshi

    This paper discusses the effect of plastic deformation at core manufacturing on the characteristics of cores where non-oriented electrical steel sheets are used as core material. Exciting field and iron loss increase proportionally to plastic deformation in the case of rP<10, where rP is a ratio of plastic deformation to that at yield point. In this region, anomalous eddy currents increase because plastic deformations of crystalline grains are distributed and then the flux distribution is induced. In the case of rP>20, the deterioration tend to saturate, and the increases in magnetic field and iron loss are 1000 to 1500A/m and 2 to 4W/kg. They are related to grain size, and high grade with larger grain may have lager field increase and smaller iron loss increase. Anomalous eddy current losses scarcely increase in this region. In actual motors, the plastic deformation affects iron loss increase although exciting current increases a little.

  20. Exciton Dynamics in Alternative Solar Cell Materials: Polymers, Nanocrystals, and Small Molecules

    NASA Astrophysics Data System (ADS)

    Pundsack, Thomas J.

    To keep fossil fuel usage in 2040 even with 2010 usage, 50% of global energy will need to come from alternative sources such as solar cells. While the photovoltaic market is currently dominated by crystalline silicon, there are many low-cost solar cell materials such as conjugated polymers, semiconductor nanocrystals, and organic small molecules which could compete with fossil fuels. To create cost-competitive devices, understanding the excited state dynamics of these materials is necessary. The first section of this thesis looks at aggregation in poly(3-hexylthiophene) (P3HT) which is commonly used in organic photovoltaics. The amount of aggregation in P3HT thin films was controlled by using a mixture of regioregular and regiorandom P3HT. Even with few aggregates present, excited states were found to transfer from amorphous to aggregate domains in <50 fs which could indicate efficient long-range energy transfer. To further study P3HT aggregation, a triblock consisting of two P3HT chains with a coil polymer between them was investigated. By changing solvents, aggregation was induced in a stable and reversible manner allowing for spectroscopic studies of P3HT aggregates in solution. The polarity of the solvent was adjusted, and no change in excited state dynamics was observed implying the excited state has little charge-transfer character. Next, the conduction band density of states for copper zinc tin sulfide nanocrystals (CZTS NCs) was measured using pump-probe spectroscopy and found to be in agreement with theoretical results. The density of states shifted and dilated for smaller NCs indicative of quantum confinement. The excited state lifetime was found to be short (<20 ps) and independent of NC size which could limit the efficiency of CZTS photovoltaic devices. Finally, triplet-triplet annihilation (TTA) was studied in platinum octaethylporphyrin (PtOEP) thin films. By analyzing pump-probe spectra, the product of TTA in PtOEP thin films was assigned to a long-lived metal-centered state. To elucidate the mechanism of TTA, the annihilation dynamics were modeled using second order kinetics as well as Forster and Dexter energy transfer. Dexter energy transfer provided the best fits and the most reasonable fitting parameters.

  1. Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-07-01

    Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.

  2. Development of Lipid-Shell and Polymer Core Nanoparticles with Water-Soluble Salidroside for Anti-Cancer Therapy

    PubMed Central

    Fang, Dai-Long; Chen, Yan; Xu, Bei; Ren, Ke; He, Zhi-Yao; He, Li-Li; Lei, Yi; Fan, Chun-Mei; Song, Xiang-Rong

    2014-01-01

    Salidroside (Sal) is a potent antitumor drug with high water-solubility. The clinic application of Sal in cancer therapy has been significantly restricted by poor oral absorption and low tumor cell uptake. To solve this problem, lipid-shell and polymer-core nanoparticles (Sal-LPNPs) loaded with Sal were developed by a double emulsification method. The processing parameters including the polymer types, organic phase, PVA types and amount were systemically investigated. The obtained optimal Sal-LPNPs, composed of PLGA-PEG-PLGA triblock copolymers and lipids, had high entrapment efficiency (65%), submicron size (150 nm) and negatively charged surface (−23 mV). DSC analysis demonstrated the successful encapsulation of Sal into LPNPs. The core-shell structure of Sal-LPNPs was verified by TEM. Sal released slowly from the LPNPs without apparent burst release. MTT assay revealed that 4T1 and PANC-1 cancer cell lines were sensitive to Sal treatment. Sal-LPNPs had significantly higher antitumor activities than free Sal in 4T1 and PANC-1 cells. The data indicate that LPNPs are a promising Sal vehicle for anti-cancer therapy and worthy of further investigation. PMID:24573250

  3. Development of lipid-shell and polymer core nanoparticles with water-soluble salidroside for anti-cancer therapy.

    PubMed

    Fang, Dai-Long; Chen, Yan; Xu, Bei; Ren, Ke; He, Zhi-Yao; He, Li-Li; Lei, Yi; Fan, Chun-Mei; Song, Xiang-Rong

    2014-02-25

    Salidroside (Sal) is a potent antitumor drug with high water-solubility. The clinic application of Sal in cancer therapy has been significantly restricted by poor oral absorption and low tumor cell uptake. To solve this problem, lipid-shell and polymer-core nanoparticles (Sal-LPNPs) loaded with Sal were developed by a double emulsification method. The processing parameters including the polymer types, organic phase, PVA types and amount were systemically investigated. The obtained optimal Sal-LPNPs, composed of PLGA-PEG-PLGA triblock copolymers and lipids, had high entrapment efficiency (65%), submicron size (150 nm) and negatively charged surface (-23 mV). DSC analysis demonstrated the successful encapsulation of Sal into LPNPs. The core-shell structure of Sal-LPNPs was verified by TEM. Sal released slowly from the LPNPs without apparent burst release. MTT assay revealed that 4T1 and PANC-1 cancer cell lines were sensitive to Sal treatment. Sal-LPNPs had significantly higher antitumor activities than free Sal in 4T1 and PANC-1 cells. The data indicate that LPNPs are a promising Sal vehicle for anti-cancer therapy and worthy of further investigation.

  4. Tidal Excitation of the Core Dynamo of Mars

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Arkani-Hamed, J.; Aldridge, K.

    2007-05-01

    The lack of magnetic anomalies inside the giant impact basins Hellas, Isidis, Utopia and Argyre, inside the northern low lands, over the Tharsis bulge, and over the Tharsis and Olympus mounts suggests that the core field of Mars ceased to exist by about 4 Gyr ago, almost when the giant basins were formed. On the other hand, the giant basins are located on a great circle, implying that the basins were likely produced by fragments of a large asteroid that broke apart as it entered the Roche limit of Mars. This scenario offers a causative relationship for the apparent coincidence of the formation of the giant basins and the cessation of the core dynamo. We suggest that the core dynamo was excited by tidally driven elliptical instability in the Martian core. The breaking of the asteroid and its final impact on Mars eliminated the excitation and thus killed the dynamo. We show that a retrograde asteroid captured in a Keplerian orbit around Mars at a distance of about 50,000-100,000 km could orbit Mars for several hundreds of millions of years before impacting the planet due to the tidal coupling of the asteroid and Mars. Because of relatively very short growth time of the elliptical instability, less than 50,000 years, the asteroid was capable of retaining the elliptical instability and energizing the core dynamo for a geologically long period prior to 4 Ga. Our laboratory observations of a parametric instability of a rotating incompressible fluid, contained in a flexible-walled spherical cavity, confirm the possibility that an early Martian dynamo could have been powered by tidal straining.

  5. An insight into non-emissive excited states in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjian; Willard, Adam P.; Ono, Robert J.; Bielawski, Christopher W.; Rossky, Peter J.; vanden Bout, David A.

    2015-09-01

    Conjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ε). In relatively polar solvents (ε>~ 3), the aggregates exhibit a low fluorescence quantum yield (QY) of 2-5%, similar to bulk films, however, in relatively nonpolar solvents (ε<~ 3) they demonstrate much higher fluorescence QY up to 20-30%. A series of mixed quantum-classical atomistic simulations illustrate that dielectric induced stabilization of nonradiative charge-transfer (CT) type states can lead to similar drastic reduction in fluorescence QY as seen experimentally. Fluorescence lifetime measurement reveals that the CT-type states exist as a competitive channel of the formation of emissive exciton-type states.

  6. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Photosensitivity of nanoporous glasses and polymers doped with Eu(fod)3 molecules

    NASA Astrophysics Data System (ADS)

    Gerasimova, V. I.; Zavorotnyi, Yu S.; Rybaltovskii, A. O.; Lemenovskii, Dmitrii A.; Timofeeva, V. A.

    2006-08-01

    The decay kinetics of photoluminescence (PL) of Eu3+ ions (the 5D0→7Fj transition) excited by UV radiation (in particular, by a laser) is studied in a Vycor nanoporous glass and transparent polymers doped with Eu(fod)3 molecules (where fod stands for 6,6,7,7,8,8,8-heptofluor-2,2-dimethyl-3,5-octadionate) using a solution of supercritical CO2. It is found that the decrease in the PL intensity is caused by the photoinduced transformation of the ligand component of the complex (fod), while the decay rate depends significantly on the type of the matrix. Models of mechanisms of photodissociation of the original complex related to excitation to the singlet absorption band of the ligand (S0→S1 transition) in one case and to the ligand—metal charge transfer band in the other case are proposed.

  7. Shape-memory surfaces for cell mechanobiology

    PubMed Central

    Ebara, Mitsuhiro

    2015-01-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology. PMID:27877747

  8. Silica/Electro-optic Polymer Optical Modulator for MMW Receiving (Preprint)

    DTIC Science & Technology

    2014-05-01

    radiation receiver with the use of a bowtie antenna . Waveguide design optimization is presented for a waveguide with an EO polymer core and silica/solgel...established. The bowtie antenna is simulated and shows a broadband response with a maximum at 5GHz and a 3dB-bandwidth of approximately 12GHz. A fiber...millimeter-wave (MMW) radiation receiver with the use of a bowtie antenna . Waveguide design optimization is presented for a waveguide with an EO polymer

  9. A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.

    PubMed

    Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard

    2017-07-25

    A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).

  10. Influence of the components of Kollicoat SR film on mechanical properties of floating pellets from the point of view of tableting.

    PubMed

    Lunio, R; Sawicki, W

    2008-10-01

    The influence of pellet core ingredients on pellet behaviour, e.g. during compression, is well known. In this study the influence of components of a Kollicoat SR polymer film on mechanical properties was investigated. The aim of this study was to evaluate the influence of polymer film components on the mechanical properties of the pellet as a whole, from the point of view of tableting. Tablets should disintegrate into undeformed pellets floating in this environment for 5-6 h, releasing the model drug--verapamil hydrochloride--if possible in a controlled way. The usefulness of texture analysis and work of compression measurement was also evaluated. Kollicoat SR in the form of a 30D aqueous dispersion was chosen as the main component of the polymer film. Polyvinyl pyrrolidone K-30 as a pore former, and propylene glycol, triethyl citrate and dibutyl sebacate plasticisers were selected as typical additives. The influence of different thickness of polymer film on behaviour during stress was also evaluated. After coating the cores with a 20 microm Kollicoat SR dispersion film, an increase in mechanical strength, in comparison to the pellet core, was observed (2.74 to 3.34 mJ). Addition of porophor increased the work of compression by 50% to 5.1 mJ. The investigation of the influence of plasticiser on film properties proved that the kind of plasticiser used in the polymer film had no effect on the mechanical properties of the film or pellets. Only in the case of the film with triethyl citrate was no distinct of the pellet core found. Pellets coated both with films with triethyl citrate and with dibutyl sebacate, in contrast to pellets with a film coating with propylene glycol, showed a significant decrease of the dissolution rate of verapamil hydrochloride (20, 10 and 40% at 6 hours, respectively). It is possible to compress pellets with a 50 microm polymer film without affecting the dissolution rate, as was confirmed during release studies. When using Kollicoat SR the most appropriate plasticizer seems to be triethyl citrate, and in this case a change of behavior during compression analysis by texture analyzer was observed. But so relationship was found between the type of plasticizer and the work needed to obtain a given deformation.

  11. Development of massive multilevel molecular dynamics simulation program, Platypus (PLATform for dYnamic Protein Unified Simulation), for the elucidation of protein functions.

    PubMed

    Takano, Yu; Nakata, Kazuto; Yonezawa, Yasushige; Nakamura, Haruki

    2016-05-05

    A massively parallel program for quantum mechanical-molecular mechanical (QM/MM) molecular dynamics simulation, called Platypus (PLATform for dYnamic Protein Unified Simulation), was developed to elucidate protein functions. The speedup and the parallelization ratio of Platypus in the QM and QM/MM calculations were assessed for a bacteriochlorophyll dimer in the photosynthetic reaction center (DIMER) on the K computer, a massively parallel computer achieving 10 PetaFLOPs with 705,024 cores. Platypus exhibited the increase in speedup up to 20,000 core processors at the HF/cc-pVDZ and B3LYP/cc-pVDZ, and up to 10,000 core processors by the CASCI(16,16)/6-31G** calculations. We also performed excited QM/MM-MD simulations on the chromophore of Sirius (SIRIUS) in water. Sirius is a pH-insensitive and photo-stable ultramarine fluorescent protein. Platypus accelerated on-the-fly excited-state QM/MM-MD simulations for SIRIUS in water, using over 4000 core processors. In addition, it also succeeded in 50-ps (200,000-step) on-the-fly excited-state QM/MM-MD simulations for the SIRIUS in water. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  12. Two-Photon Antenna-Core Oxygen Probe with Enhanced Performance

    PubMed Central

    2015-01-01

    Recent development of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen enabled first noninvasive high-resolution measurements of tissue oxygenation in vivo in 3D, providing valuable physiological information. The so far developed two-photon-enhanced phosphorescent probes comprise antenna-core constructs, in which two-photon absorbing chromophores (antenna) capture and channel excitation energy to a phosphorescent core (metalloporphyrin) via intramolecular excitation energy transfer (EET). These probes allowed demonstration of the methods’ potential; however, they suffer from a number of limitations, such as partial loss of emissivity to competing triplet state deactivation pathways (e.g., electron transfer) and suboptimal sensitivity to oxygen, thereby limiting spatial and temporal resolution of the method. Here we present a new probe, PtTCHP-C307, designed to overcome these limitations. The key improvements include significant increase in the phosphorescence quantum yield, higher efficiency of the antenna-core energy transfer, minimized quenching of the phosphorescence by electron transfer and increased signal dynamic range. For the same excitation flux, the new probe is able to produce up to 6-fold higher signal output than previously reported molecules. Performance of PtTCHP-C307 was demonstrated in vivo in pO2 measurements through the intact mouse skull into the bone marrow, where all blood cells are made from hematopoietic stem cells. PMID:24848643

  13. Synthesis and characterization of Na(Gd0.5Lu0.5)F4: Nd3+,a core-shell free multifunctional contrast agent.

    PubMed

    Mimun, L Christopher; Ajithkumar, G; Rightsell, Chris; Langloss, Brian W; Therien, Michael J; Sardar, Dhiraj K

    2017-02-25

    Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm 2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 shows the characteristic emission bands of Gd 3+ and Nd 3+ with the strongest emission peak at 1064 nm due to Nd 3+ . Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.

  14. High Reynolds Number Micro-Bubble and Polymer Drag Reduction Experiments

    DTIC Science & Technology

    2008-01-01

    systems . Researchers have known for more than fifty years that the presence of high molecular weight polymers in the near-wall region of a turbulent...drag reduction (ALDR) (see Winkel, 2006). We present here a brief review of BDR and ALDR research . A seminal study of BDR was conducted 35 years ago when...SR830 DSP LIA, Stanford Research Systems ) and a signal generator. (8904A multifunction synthesizer, HP) were used to excite and balance the bridge as

  15. Measurement of the complex permittivity of low loss polymer powders in the millimeter-wave range.

    PubMed

    Kapilevich, Boris; Litvak, Boris; Wainstein, Vladimir; Moshe, Danny

    2007-01-01

    An improved measurement method of complex permittivity of low loss polymer powders is suggested. The measurements are done in the mm-wave range using a quasi optical resonator. The 2-D corrugated mode exciter is employed to improve suppression of undesirable higher modes. The model used for reconstructing complex permittivity takes into account ohm losses of metal mesh coupling that provide better accuracy of the reconstructing procedure. An example illustrating this method is reported.

  16. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules.

    PubMed

    Cellesi, F; Weber, W; Fussenegger, M; Hubbell, J A; Tirelli, N

    2004-12-20

    Fully synthetic polymers were used for the preparation of hydrogel beads and capsules, in a processing scheme that, originally designed for calcium alginate, was adapted to a "tandem" process, that is the combination a physical gelation with a chemical cross-linking. The polymers feature a Tetronic backbone (tetra armed Pluronics), which exhibits a reverse thermal gelation in water solutions within a physiological range of temperatures and pHs. The polymers bear terminal reactive groups that allow for a mild, but effective chemical cross-linking. Given an appropriate temperature jump, the thermal gelation provides a hardening kinetics similar to that of alginate. With slower kinetics, the chemical cross-linking then develops an irreversible and elastic gel structure, and determines its transport properties. In the present article this process has been optimized for the production of monodisperse, high elastic, hydrogel microbeads, and liquid-core microcapsules. We also show the feasibility of the use of liquid-core microcapsules in cell encapsulation. In preliminary experiments, CHO cells have been successfully encapsulated preserving their viability during the process and after incubation. The advantages of this process are mainly in the use of synthetic polymers, which provide great flexibility in the molecular design. This, in principle, allows for a precise tailoring of mechanical and transport properties and of bioactivity of the hydrogels, and also for a precise control in material purification.

  17. Report on cascade energy relaxation from PVP to Tb3+:Bi2SiO5 nanophosphor through salicylic acid in composite polymeric film

    NASA Astrophysics Data System (ADS)

    Kumari, Pushpa; Dwivedi, Y.

    2018-05-01

    The present article reports structural and spectroscopic properties of Tb:Bi2SiO5 nanophosphors dispersed in Polyvinylpyrrolidone polymer film, in presence of Salicylic acid (SA) molecule, which acts as a sensitizer. Detailed structural and spectroscopic characterizations were carried out using X-ray diffraction patterns, Scanning Electron Microscope, Fourier Transform Infrared and Excitation and photoluminescence techniques. The mean crystallite size of Tb3+:Bi2SiO5 nanophosphor and Tb3+:Bi2SiO5 in Polyvinylpyrrolidone polymer composite was estimated ∼22 nm and ∼28 nm, respectively. We have report atleast two times enhancement in Tb3+ ions emission intensity due to the efficient energy transfer from salicylic acid molecule to Tb ions. In addition to energy transfer from salicylic acid, the Polyvinylpyrrolidone polymeric host was also reported to serve as a sensitizer for SA molecule and Tb3+ ions through a cascade energy relaxation process while exciting with 248 nm photons. On 248 nm photon excitation, atleast five improvements in Tb3+ ion emission intensity are reported. Presence of SA molecule facilitates precise colour tuning as obvious from the CIE coordinates.

  18. Strategic modulation of the photonic properties of conjugated organometallic Pt-Ir polymers exhibiting hybrid CT-excited states.

    PubMed

    Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D

    2015-04-01

    Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Decomposing the permeability spectra of nanocrystalline finemet core

    NASA Astrophysics Data System (ADS)

    Varga, Lajos K.; Kovac, Jozef

    2018-04-01

    In this paper we present a theoretical and experimental investigation on the magnetization contributions to permeability spectra of normal annealed Finemet core with round type hysteresis curve. Real and imaginary parts of the permeability were determined as a function of exciting magnetic field (HAC) between 40 Hz -110 MHz using an Agilent 4294A type Precision Impedance Analyzer. The amplitude of the exciting field was below and around the coercive field of the sample. The spectra were decomposed using the Levenberg-Marquardt algorithm running under Origin 9 software in four contributions: i) eddy current; ii) Debye relaxation of magnetization rotation, iii) Debye relaxation of damped domain wall motion and iv) resonant type DW motion. For small exciting amplitudes the first two components dominate. The last two contributions connected to the DW appear for relative large HAC only, around the coercive force. All the contributions will be discussed in detail accentuating the role of eddy current that is not negligible even for the smallest applied exciting field.

  20. Improved efficiency of selective photoionization of palladium isotopes via autoionizing Rydberg states

    NASA Astrophysics Data System (ADS)

    Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi

    2017-01-01

    Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.

  1. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  2. Gravitational waves, pulsations, and more : high-speed photometry of low-mass, He-core white dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.

    2013-08-01

    This dissertation is an observational exploration of the exciting physics that can be enabled by high-speed photometric monitoring of extremely low-mass (< 0.25 Msun) white dwarf stars, which are found in some of the most compact binaries known. It includes the cleanest indirect detection of gravitational waves at visible wavelengths, the discovery of pulsations in He-core WDs, the strongest evidence for excited p-mode pulsations in a WD, the discovery of the first tidally distorted WDs and their use to constrain the low-end of the WD mass-radius relationship, and the strongest cases of Doppler beaming observed in a binary system. It is the result of the more than 220 nights spent at McDonald Observatory doing high-speed photometry with the Argos instrument on the 2.1 m Otto Struve telescope, which has led to a number of additional exciting results, including the discovery of an intermediate timescale in the evolution of cooling DA WDs and the discovery of the most massive pulsating WD, which should have an ONe-core and should be highly crystallized.

  3. Nonadiabatic Molecular Dynamics and Orthogonality Constrained Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Shushkov, Philip Georgiev

    The exact quantum dynamics of realistic, multidimensional systems remains a formidable computational challenge. In many chemical processes, however, quantum effects such as tunneling, zero-point energy quantization, and nonadiabatic transitions play an important role. Therefore, approximate approaches that improve on the classical mechanical framework are of special practical interest. We propose a novel ring polymer surface hopping method for the calculation of chemical rate constants. The method blends two approaches, namely ring polymer molecular dynamics that accounts for tunneling and zero-point energy quantization, and surface hopping that incorporates nonadiabatic transitions. We test the method against exact quantum mechanical calculations for a one-dimensional, two-state model system. The method reproduces quite accurately the tunneling contribution to the rate and the distribution of reactants between the electronic states for this model system. Semiclassical instanton theory, an approach related to ring polymer molecular dynamics, accounts for tunneling by the use of periodic classical trajectories on the inverted potential energy surface. We study a model of electron transfer in solution, a chemical process where nonadiabatic events are prominent. By representing the tunneling electron with a ring polymer, we derive Marcus theory of electron transfer from semiclassical instanton theory after a careful analysis of the tunneling mode. We demonstrate that semiclassical instanton theory can recover the limit of Fermi's Golden Rule rate in a low-temperature, deep-tunneling regime. Mixed quantum-classical dynamics treats a few important degrees of freedom quantum mechanically, while classical mechanics describes affordably the rest of the system. But the interface of quantum and classical description is a challenging theoretical problem, especially for low-energy chemical processes. We therefore focus on the semiclassical limit of the coupled nuclear-electronic dynamics. We show that the time-dependent Schrodinger equation for the electrons employed in the widely used fewest switches surface hopping method is applicable only in the limit of nearly identical classical trajectories on the different potential energy surfaces. We propose a short-time decoupling algorithm that restricts the use of the Schrodinger equation only to the interaction regions. We test the short-time approximation on three model systems against exact quantum-mechanical calculations. The approximation improves the performance of the surface hopping approach. Nonadiabatic molecular dynamics simulations require the efficient and accurate computation of ground and excited state potential energy surfaces. Unlike the ground state calculations where standard methods exist, the computation of excited state properties is a challenging task. We employ time-independent density functional theory, in which the excited state energy is represented as a functional of the total density. We suggest an adiabatic-like approximation that simplifies the excited state exchange-correlation functional. We also derive a set of minimal conditions to impose exactly the orthogonality of the excited state Kohn-Sham determinant to the ground state determinant. This leads to an efficient, variational algorithm for the self-consistent optimization of the excited state energy. Finally, we assess the quality of the excitation energies obtained by the new method on a set of 28 organic molecules. The new approach provides results of similar accuracy to time-dependent density functional theory.

  4. Polymer therapeutics: concepts and applications.

    PubMed

    Haag, Rainer; Kratz, Felix

    2006-02-13

    Polymer therapeutics encompass polymer-protein conjugates, drug-polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer-protein conjugates with improved stability and pharmacokinetic properties have been developed, for example, by anchoring enzymes or biologically relevant proteins to polyethylene glycol components (PEGylation). Several polymer-protein conjugates have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conjugates of doxorubicin, camptothecin, paclitaxel, and platinum(II) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. These include polyanionic polymers for the inhibition of virus attachment, polycationic complexes with DNA or RNA (polyplexes), and dendritic core-shell architectures for the encapsulation of drugs. In this Review an overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.

  5. Atomic Processes for XUV Lasers: Alkali Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Dimiduk, David Paul

    The development of extreme ultraviolet (XUV) lasers is dependent upon knowledge of processes in highly excited atoms. Described here are spectroscopy experiments which have identified and characterized certain autoionizing energy levels in core-excited alkali atoms and ions. Such levels, termed quasi-metastable, have desirable characteristics as upper levels for efficient, powerful XUV lasers. Quasi -metastable levels are among the most intense emission lines in the XUV spectra of core-excited alkalis. Laser experiments utilizing these levels have proved to be useful in characterizing other core-excited levels. Three experiments to study quasi-metastable levels are reported. The first experiment is vacuum ultraviolet (VUV) absorption spectroscopy on the Cs 109 nm transitions using high-resolution laser techniques. This experiment confirms the identification of transitions to a quasi-metastable level, estimates transition oscillator strengths, and estimates the hyperfine splitting of the quasi-metastable level. The second experiment, XUV emission spectroscopy of Ca II and Sr II in a microwave-heated plasma, identifies transitions from quasi-metastable levels in these ions, and provides confirming evidence of their radiative, rather than autoionizing, character. In the third experiment, core-excited Ca II ions are produced by inner-shell photoionization of Ca with soft x-rays from a laser-produced plasma. This preliminary experiment demonstrated a method of creating large numbers of these highly-excited ions for future spectroscopic experiments. Experimental and theoretical evidence suggests the CA II 3{ rm p}^5 3d4s ^4 {rm F}^circ_{3/2 } quasi-metastable level may be directly pumped via a dipole ionization process from the Ca I ground state. The direct process is permitted by J conservation, and occurs due to configuration mixing in the final state and possibly the initial state as well. The experiments identifying and characterizing quasi-metastable levels are compared to calculations using the Hartree-Fock code RCN/RCG. Calculated parameters include energy levels, wavefunctions, and transition rates. Based on an extension of this code, earlier unexplained experiments showing strong two-electron radiative transitions from quasi-metastable levels are now understood.

  6. Ferroelectric self-assembled molecular materials showing both rectifying and switchable conductivity

    PubMed Central

    Gorbunov, Andrey V.; Garcia Iglesias, Miguel; Guilleme, Julia; Cornelissen, Tim D.; Roelofs, W. S. Christian; Torres, Tomas; González-Rodríguez, David; Meijer, E. W.; Kemerink, Martijn

    2017-01-01

    Advanced molecular materials that combine two or more physical properties are typically constructed by combining different molecules, each being responsible for one of the properties required. Ideally, single molecules could take care of this combined functionality, provided they are self-assembled correctly and endowed with different functional subunits whose strong electronic coupling may lead to the emergence of unprecedented and exciting properties. We present a class of disc-like semiconducting organic molecules that are functionalized with strong dipolar side groups. Supramolecular organization of these materials provides long-range polar order that supports collective ferroelectric behavior of the side groups as well as charge transport through the stacked semiconducting cores. The ferroelectric polarization in these supramolecular polymers is found to couple to the charge transport and leads to a bulk conductivity that is both switchable and rectifying. An intuitive model is developed and found to quantitatively reproduce the experimental observations. In a larger perspective, these results highlight the possibility of modulating material properties using the large electric fields associated with ferroelectric polarization. PMID:28975150

  7. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi

    2017-12-01

    We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.

  8. Athermal Photonic Devices and Circuits on a Silicon Platform

    NASA Astrophysics Data System (ADS)

    Raghunathan, Vivek

    In recent years, silicon based optical interconnects has been pursued as an effective solution that can offer cost, energy, distance and bandwidth density improvements over copper. Monolithic integration of optics and electronics has been enabled by silicon photonic devices that can be fabricated using CMOS technology. However, high levels of device integration result in significant local and global temperature fluctuations that prove problematic for silicon based photonic devices. In particular, high temperature dependence of Si refractive index (thermo-optic (TO) coefficient) shifts the filter response of resonant devices that limit wavelength resolution in various applications. Active thermal compensation using heaters and thermo-electric coolers are the legacy solution for low density integration. However, the required electrical power, device foot print and number of input/output (I/O) lines limit the integration density. We present a passive approach to an athermal design that involves compensation of positive TO effects from a silicon core by negative TO effects of the polymer cladding. In addition, the design rule involves engineering the waveguide core geometry depending on the resonance wavelength under consideration to ensure desired amount of light in the polymer. We develop exact design requirements for a TO peak stability of 0 pm/K and present prototype performance of 0.5 pm/K. We explore the material design space through initiated chemical vapor deposition (iCVD) of 2 polymer cladding choices. We study the effect of cross-linking on the optical properties of a polymer and establish the superior performance of the co-polymer cladding compared to the homo-polymer. Integration of polymer clad devices in an electronic-photonic architecture requires the possibility of multi-layer stacking capability. We use a low temperature, high density plasma chemical vapor deposition of SiO2/SiN x to hermetically seal the athermal. Further, we employ visible light for post-fabrication trimming of athermal rings by sandwiching a thin photosensitive layer of As2S3 in between amorphous Si core and polymer top cladding. System design of an add-drop filter requires an optimum combination of channel counts performance and power handling capacity for maximum aggregate bandwidth. We establish the superior performance of athermal add-drop filter compared to a standard filter treating bandwidth as the figure-of-merit. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  9. Defined polymer shells on nanoparticles via a continuous aerosol-based process

    NASA Astrophysics Data System (ADS)

    Sigmund, Stephanie; Akgün, Ertan; Meyer, Jörg; Hubbuch, Jürgen; Wörner, Michael; Kasper, Gerhard

    2014-08-01

    A continuous aerosol-based process is described for the encapsulation of nanoparticles with a thin polymer shell. The process is essentially based on directed binary collisions between gas-borne core particles and liquid monomer droplets carrying opposite electrical charges, followed by photo-initiated polymerization. Once the two streams are mixed together, the process runs to completion on a time scale of about 2 min or less, required for coagulation and polymerization. Gold, silica, and sodium chloride nanoparticles were successfully coated by this technique with PHDDA [poly(hexanediol diacrylate)] and/or crosslinked PMMA [poly(methyl methacrylate)]. It was found that all core materials as well as agglomerates were wettable at room temperature and that the spreading kinetics of the monomer were fast enough to cover the core particles uniformly within the time scale provided for coagulation. The shell thickness depends on the volume ratio between core particles and monomer droplets. This was demonstrated for a combination of monodisperse silica spheres ( d = 241 nm) and polydisperse methyl methacrylate droplets, resulting in a theoretical shell thickness of 18 nm. There was very good agreement between measurements by TEM and electrical mobility spectroscopy. The results revealed that about 90 % or more of the core-shell structures were formed from 1:1 collisions between a core particle and a single monomer droplet.

  10. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  11. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  12. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Probst, Laurent; Desobry, Stéphane

    2016-05-01

    To enhance physicochemical properties of alginate aqueous-core capsules, conventional strategies were focused in literature on designing composite and coated capsules. In the present study, own effect of liquid-core composition on mechanical and release properties was investigated. Capsules were prepared by dripping a CaCl2 solution into an alginate gelling solution. Viscosity of CaCl2 solution was adjusted by adding cationic, anionic and non-ionic naturally derived polymers, respectively chitosan, xanthan gum and guar gum. In parallel, uniform alginate hydrogels were prepared by different methods (pouring, in situ forming and mixing). Mechanical stability of capsules and plane hydrogels were respectively evaluated by compression experiments and small amplitude oscillatory shear rheology and then correlated. Capsules permeability was evaluated by monitoring diffusion of encapsulated cochineal dye, riboflavin and BSA. The core-shell interactions were investigated by ATR-FTIR. Results showed that inner polymer had an impact on membrane stability and could act as an internal coating or provide mechanical reinforcement. Mechanical properties of alginate capsules were in a good agreement with rheological behavior of plane hydrogels. Release behavior of the entrapped molecules changed considerably. This study demonstrated the importance of aqueous-core composition, and gave new insights for possible adjusting of microcapsules physicochemical properties by modulating core-shell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Honeycomb Films with Core-Shell Dispersed Phases Prepared by the Combination of Breath Figures and Phase Separation Process of Ternary Blends.

    PubMed

    Del Campo, A; de León, A S; Rodríguez-Hernández, J; Muñoz-Bonilla, A

    2017-03-21

    Herein, we propose a strategy to fabricate core-shell microstructures ordered in hexagonal arrays by combining the breath figures approach and phase separation of immiscible ternary blends. This simple strategy to fabricate these structures involves only the solvent casting of a ternary polymer blend under moist atmosphere, which provides a facile and low-cost fabrication method to obtain the porous structures with a core-shell morphology. For this purpose, blends consisting of polystyrene (PS) as a major component and PS 40 -b-P(PEGMA300) 48 amphiphilic copolymer and polydimethylsiloxane (PDMS) as minor components were dissolved in tetrahydrofuran and cast onto glass wafers under humid conditions, 70% of relative humidity. The resulting porous morphologies were characterized by optical and confocal Raman microscopy. In particular, confocal Raman results demonstrated the formation of core-shell morphologies into the ordered pores, in which the PS forms the continuous matrix, whereas the other two phases are located into the cavities (PDMS is the core while the amphiphilic copolymer is the shell). Besides, by controlling the weight ratio of the polymer blends, the structural parameters of the porous structure such as pore diameter and the size of the core can be effectively tuned.

  14. Magnetic nanofibers with core (Fe 3O 4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Sung, Yun Kyung; Ahn, Byung Wook; Kang, Tae Jin

    2012-03-01

    One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers.

  15. Extending fullwave core ICRF simulation to SOL and antenna regions using FEM solver

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wright, J. C.

    2016-10-01

    A full wave simulation approach to solve a driven RF waves problem including hot core, SOL plasmas and possibly antenna is presented. This approach allows for exploiting advantages of two different way of representing wave field, namely treating spatially dispersive hot conductivity in a spectral solver and handling complicated geometry in SOL/antenna region using an unstructured mesh. Here, we compute a mode set in each region with the RF electric field excitation on the connecting boundary between core and edge regions. A mode corresponding to antenna excitation is also computed. By requiring the continuity of tangential RF electric and magnetic fields, the solution is obtained as unique superposition of these modes. In this work, TORIC core spectral solver is modified to allow for mode excitation, and the edge region of diverted Alcator C-Mod plasma is modeled using COMSOL FEM package. The reconstructed RF field is similar in the core region to TORIC stand-alone simulation. However, it contains higher poloidal modes near the edge and captures a wave bounced and propagating in the poloidal direction near the vacuum-plasma boundary. These features could play an important role when the single power pass absorption is modest. This new capability will enable antenna coupling calculations with a realistic load plasma, including collisional damping in realistic SOL plasma and other loss mechanisms such as RF sheath rectification. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  16. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.

    PubMed

    Zeng, Like; Jiang, Linan; Teng, Weibing; Cappello, Joseph; Zohar, Yitshak; Wu, Xiaoyi

    2014-07-01

    Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.

    PubMed

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2008-08-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP comprises three distinct functional components: (i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; (ii) a hydrophilic polymeric shell with antibiofouling properties to enhance NP stability and systemic circulation half-life; and (iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up.

  18. Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform

    PubMed Central

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2014-01-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP is comprised of three distinct functional components: i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; ii) a hydrophilic polymeric shell with anti-biofouling properties to enhance NP stability and systemic circulation half-life; and iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up PMID:19206374

  19. Microwave absorption properties of gold nanoparticle doped polymers

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Ouattara, L.; Ingrosso, C.; Curri, M. L.; Krozer, V.; Boisen, A.; Jakobsen, M. H.; Johansen, T. K.

    2011-03-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5 GHz to 20 GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

  20. Synthesis of SiCN@TiO2 core-shell ceramic microspheres via PDCs method

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Wei, Ning; Li, Jing; Zhang, Haiyuan; Chu, Peng

    2018-02-01

    A facile and effective polymer-derived ceramics (PDCs) emulsification-crosslinking-pyrolysis method was developed to fabricate SiCN@TiO2 core-shell ceramic microspheres with polyvinylsilazane (PVSZ) and tetrabutyl titanate (TBT) as precursors. The TBT: PVSZ mass ratios, emulsifier concentrations and the pyrolysis temperature were examined as control parameters to tune the size and morphology of microspheres. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the synthesized SiCN@TiO2 microspheres to be comprised of SiCN core coated with TiO2 crystals, with an average size of 0.88 μm when pyrolyzed at 1400 °C. The analysis of Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) ensured that SiCN@TiO2 core-shell ceramic microspheres composed of rutile TiO2, β-SiC and Si3N4 crystalline phases, The thermal properties were characterized by thermogravimetric analysis (TGA). The obtained SiCN@TiO2 core-shell ceramic microspheres were the promising candidate of the infrared opacifier in silica aerogels and this technique can be extended to other preceramic polymers.

  1. Microporous polymeric 3D scaffolds templated by the layer-by-layer self-assembly.

    PubMed

    Paulraj, Thomas; Feoktistova, Natalia; Velk, Natalia; Uhlig, Katja; Duschl, Claus; Volodkin, Dmitry

    2014-08-01

    Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dry-film polymer waveguide for silicon photonics chip packaging.

    PubMed

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  3. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm-2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm-2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

  4. Singlet and triplet energy transfer in a benzil-doped, light emitting, solid-state conjugated polymer

    NASA Astrophysics Data System (ADS)

    Rothe, C.; Pålsson, L. O.; Monkman, A. P.

    2002-12-01

    The luminescence emitted from pure and benzil-doped thin films of the conjugated polymer polyfluorene [PF2/6] are compared. The prompt fluorescence from the first singlet-excited state of the polymer is quenched by 90% in the presence of 10% per weight benzil. In addition to the prompt fluorescence, time-resolved spectroscopy at low temperature also allows the detection of phosphorescence and delayed fluorescence from the host polymer. Again the delayed fluorescence is strongly quenched but the phosphorescence is enhanced in doped samples. An explanation of the results is given in terms of singlet energy transfer from the host to benzil and triplet energy transfer from the dopant back to PF2/6. We have applied this to enable better understanding of the photophysics in PF2/6 doped with a platinum porphyrin complex.

  5. A three-limb amorphous magnetic circuit for three-phase 200 kVA distribution transformers

    NASA Astrophysics Data System (ADS)

    Kolano, R.; Wójcik, N.; Gawior, W.

    1996-07-01

    This paper describes the construction and method of preparation of a three-limb amorphous magnetic circuit. The circuit consists of three single cores: two smaller cores of the same size, surrounded by a third larger one with appropriate window dimensions. The no-load loss and exciting power of the single cores have been investigated as a function of the magnetic induction and stresses applied to the third core.

  6. Power losses of soft magnetic composite materials under two-dimensional excitation

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Zhong, J. J.; Ramsden, V. S.; Guo, Y. G.

    1999-04-01

    Soft magnetic composite materials produced by powder metallurgy techniques can be very useful for construction of low cost small motors. However, the rotational core losses and the corresponding B-H relationships of soft magnetic composite materials with two-dimensional rotating fluxes have neither been supplied by the manufacturers nor reported in the literature. This article reports the core loss measurement of a soft magnetic composite material, SOMALOY™ 500, Höganäs AB, Sweden, under two-dimensional excitations. The principle of measurement, testing system, and power loss calculation are presented. The results are analyzed and discussed.

  7. Reactions in trifluoroacetic acid (CF 3COOH) induced by low energy electron attachment

    NASA Astrophysics Data System (ADS)

    Langer, Judith; Stano, Michal; Gohlke, Sascha; Foltin, Victor; Matejcik, Stefan; Illenberger, Eugen

    2006-02-01

    Dissociative electron attachment to trifluoroacetic acid (CF 3COOH) is characterized by an intense low energy shape resonance located near 1 eV and a comparatively weaker core excited resonance located near 7 eV. The shape resonance decomposes into the fragment ions CF 3COO -, CF 2COO -, and CF2-. The underlying reactions include simple bond cleavage but also more complex sequences involving multiple bond cleavages, rearrangement in the precursor ion and formation of new molecules (HF, CO 2). The core excited resonance additionally decomposes into F -, CF3- and probably metastable CO2-.

  8. Eddy-Current Monitoring Of Composite Layups

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1993-01-01

    Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.

  9. Carbon nano fibers reinforced composites origami inspired mechanical metamaterials with passive and active properties

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; D'Hondt, Clement; Naguib, Hani E.

    2017-10-01

    Core panels used for compression or impact damping are designed to dissipate energy and to reduce the transferred force and energy. They are designed to have high strain and deformation with low density. The geometrical configuration of such cores plays a significant role in redistributing the applied forces to dampen the compression and impact energy. Origami structures are renowned for affording large macroscopic deformation which can be employed for force redistribution and energy damping. The material selection for the fabrication of origami structures affects the core capacity to withstand compression and impact loads. Polymers are characterized by their high compression and impact resistance; the drawback of polymers is the low stiffness and elastic moduli compared with metallic materials. This work is focused on the study of the effect of Carbon Nano Fibers (CNF) on the global mechanical properties of the origami panel cores made of polymeric blends. The base matrix materials used were Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU) blends, and the percentages of the PLA/TPU were 100/0, 20/80, 65/35, 50/50, 20/80, and 0/100 as a percentage of weight. The weight percentages of CNF added to the polymeric blends were 1%, 3%, and 5%. This paper deals with the fabrication process of the polymeric reinforced blends and the origami cores, in order to predict the best fabrication conditions. The dynamic scanning calorimetry and the dynamic mechanical analyzer were used to test the reinforced blended base material for thermomechanical and viscoelastic properties. The origami core samples were fabricated using per-molded geometrical features and then tested for compression and impact properties. The results of the study were compared with previous published results which showed that there is considerable enhancement in the mechanical properties of the origami cores compared with the pure blended polymeric origami cores. The active properties of the origami unit cell made of composite polymers containing a low percentage of CNF were also investigated in this study, in which the shape memory effect test conducted on the origami unit cell.

  10. Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin

    2018-05-01

    The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.

  11. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation

    NASA Astrophysics Data System (ADS)

    Gao, Jiefeng; Song, Xin; Huang, Xuewu; Wang, Ling; Li, Bei; Xue, Huaiguo

    2018-05-01

    Non-solvent assisted electrospinning was proposed for fabricating Polymethylmethacrylate (PMMA) microspheres and fibers with a hollow core and porous shell, which could be used for oil adsorption and oil/water separation. Propanediol was chosen as the non-solvent because of its high surface tension and viscosity as well as large phase separation tendency with polymer, which was beneficial to the formation of both the hollow core and porous shell during the electrospinning. With the increase of the polymer solution concentration, the microsphere gradually evolved to the bead-on-string geometry and finally to a continuous fiber form, indicating the transition from electro-spraying to electrospinning. The hollow core and dense surface pores enhanced the hydrophobicity, oleophilicity, permeability, and specific surface area of the fibers, and hence imparted the fibrous mat a high oil adsorption capacity. When the porous hollow microspheres were electro-sprayed onto the stainless steel mesh followed by the PDMS modification, the modified mesh became super-hydrophobic and super-oleophilic with the contact angle of 153° and sliding angle of 4°. The as-prepared mesh showed rapid oil/water separation with high efficiency and excellent recycling performance. The flux for separation of oil/water mixture could reach as high as 11,000 L m-2 h-1. This facile non-solvent assisted electrospinning method provides a new avenue for preparation of multifunctional porous materials which possess potential applications in large-scale oil/water separation.

  12. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in POLY(3-HEXYLTHIOPHENE)-BLOCK-OLIGO(ANTHRACENE-9,10-DIYL)

    NASA Astrophysics Data System (ADS)

    Strain, Jacob; Rathnayake, Hemali; Liu, Jinjun

    2017-06-01

    Semiconducting polymer nanostructures featuring bulk heterojunction (BHJ) architecture are promising light harvesters in photovoltaic (PV) devices because they allow control of individual domain sizes, internal structure and ordering, as well as well-defined contact between the electron donor and acceptor. Power conversion efficiency (PCE) of PV devices strongly depends on photoinduced dynamics. Understanding and optimizing photoinduced charge transfer processes in BHJ's hence help improve the performance of PV devices and increase their PCE in particular. We have investigated the photoinduced dynamics of a block polymer containing moieties of poly-3-hexylthiophene (P3HT) and polyanthracene (PANT) in solution and in solid state with femtosecond transient absorption (TA) spectroscopy. The dynamics of the polymer PANT alone are also studied as a control. The TA spectra of PANT includes a strong excited state absorption centered at 610 (nm) along with a stimulated emission signal stretching past the detection limit into the UV region which is absent in the monomer's spectra in the detection window. The block polymer's TA spectra strongly resembles that of P3HT but a noticeable positive pull on P3HT's stimulated emission signal residing at 575-620 (nm) is indicative of the excited state absorption of PANT in the adjacent spectral region. The doubling of the lifetime exciton delocalization on the block polymer versus P3HT alone have alluded that the lifetime of P3HT is extended by the covalent addition of PANT. The current spectroscopic investigation represents an interesting example of photoinduced processes in systems with complex energy level structure. Studies of dependence of change generation and separation on composition, dimension, and morphology of the heterojunctions are in process.

  13. Excitation energy shift and size difference of low-energy levels in p -shell Λ hypernuclei

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2018-02-01

    Structures of low-lying 0 s -orbit Λ states in p -shell Λ hypernuclei (ZAΛ) are investigated by applying microscopic cluster models for nuclear structure and a single-channel folding potential model for a Λ particle. For A >10 systems, the size reduction of core nuclei is small, and the core polarization effect is regarded as a higher-order perturbation in the Λ binding. The present calculation qualitatively describes the systematic trend of experimental data for excitation energy change from Z-1A to ZAΛ, in A >10 systems. The energy change shows a clear correlation with the nuclear size difference between the ground and excited states. In Li7Λ and Be9Λ, the significant shrinkage of cluster structures occurs consistently with the prediction of other calculations.

  14. The measurement of molecular fragments from DNA components using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Akamatsu, K.; Yokoya, A.

    2003-03-01

    Photon-stimulated desorption of positive ions from thin film DNA components, 2-deoxy- D-ribose, thymine and guanine, were investigated in the oxygen K-edge excitation region. H +, CH 2+, C 2H 2+, CHO +, C 3H 3+ and C 2HO + were desorbed mainly from the 2-deoxy- D-ribose thin film following oxygen K-edge excitation. The ion yields were obtained as a function of the photon energy. Each spectrum showed a prominent peak structure coinciding with the O 1 s→ σ∗(C-O) excitation energy. These results indicate that the observed ions are produced not only by direct photodecomposition but also by the impact of secondary electrons that the core excitation generates. On the other hand, H + has been observed by irradiation of thymine and guanine thin films, while only insignificant amounts of the other ions were observed. It is shown that the core excitation more drastically degraded the 2-deoxy- D-ribose molecule into small fragments than is the case with the nucleobases. The sugar moiety in DNA is likely to be one of the nor fragile molecular sites, conducive to a single-strand DNA break.

  15. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    PubMed

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.

  16. Magnetic and Electrical Characteristics of Cobalt-Based Amorphous Materials and Comparison to a Permalloy Type Polycrystalline Material

    NASA Technical Reports Server (NTRS)

    Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.

    2005-01-01

    Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.

  17. “Skin-Core-Skin” Structure of Polymer Crystallization Investigated by Multiscale Simulation

    PubMed Central

    Ruan, Chunlei

    2018-01-01

    “Skin-core-skin” structure is a typical crystal morphology in injection products. Previous numerical works have rarely focused on crystal evolution; rather, they have mostly been based on the prediction of temperature distribution or crystallization kinetics. The aim of this work was to achieve the “skin-core-skin” structure and investigate the role of external flow and temperature fields on crystal morphology. Therefore, the multiscale algorithm was extended to the simulation of polymer crystallization in a pipe flow. The multiscale algorithm contains two parts: a collocated finite volume method at the macroscopic level and a morphological Monte Carlo method at the microscopic level. The SIMPLE (semi-implicit method for pressure linked equations) algorithm was used to calculate the polymeric model at the macroscopic level, while the Monte Carlo method with stochastic birth-growth process of spherulites and shish-kebabs was used at the microscopic level. Results show that our algorithm is valid to predict “skin-core-skin” structure, and the initial melt temperature and the maximum velocity of melt at the inlet mainly affects the morphology of shish-kebabs. PMID:29659516

  18. Microcapsules with three orthogonal reactive sites

    PubMed Central

    Mason, Brian P.; Hira, Steven M.; Strouse, Geoffrey F.; McQuade, D. Tyler

    2009-01-01

    Polymeric microcapsules containing reactive sites on the shell surface and two orthogonally reactive polymers encapsulated within the interior are selectively labeled. The capsules provide three spatially separate and differentially reactive sites. Confocal fluorescence microscopy is used to characterize the distribution of labels. Polymers encapsulated are distributed homogeneously within the core and do not interact with the shell even when oppositely charged. PMID:19254010

  19. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported protocol is of general validity and can be straightforwardly extended to other biological preparations.

  20. Photophysics of single-walled carbon nanotubes: similarity with π-conjugated polymer

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbo

    2006-03-01

    Coulomb electron-electron (e-e) interactions among the π-electrons have a strong effect on the energy spectra of semiconducting single-walled carbon nanotubes (S-SWCNTs), because of their quasi-one-dimensionality. The primary photoexcitations in S-SWCNTs as a consequence of e-e interactions are excitons, as opposed to free electrons and holes. There already exists a vast literature on excitons in π-conjugated polymers, the other class of carbon-based quasi-one-dimensional semiconductors. In order to seek guidance from this knowledge base, we have performed theoretical calculations of the excited state electronic structures, linear absorptions and excited state absorptions for ten different S-SWCNTs with a wide range in diameters, within the same correlated π-electron model that has previously been applied to π-conjugated polymers. We found remarkable similarities in the excitonic energy spectra and nonlinear optical properties of S-SWCNTs on the one hand, and π-conjugated polymers on the other. The ``essential states'' model of third-order optical nonlinearity, previously developed for π-conjugated polymers, applies also to S-SWCNTs (with minor modifications for chiral S-SWCNTs which lack center of inversion). Our theory is able to explain semiquantitatively the results of nonlinear spectroscopic measurements on both S-SWCNTs and π-conjugated polymers. For wide S-SWCNTs with diameters ranging from 0.8--1.0 nm, we calculate exciton binding energies of 0.3--0.4 eV, in strong agreement with the values predicted from the experiments. We also remark on the occurrence of dark excitons below the optical excitons in the S-SWCNTs, and the consequence thereof on the photoluminescence of these materials. H. Zhao, et al., cond-mat/0506097; J. W. Kennedy, et al., cond-mat/0505071. S. N. Dixit, D. Guo, and S. Mazumdar, Phys. Rev. B 43, R6781 (1991) H. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004).

  1. Research on fission fragment excitation of gases and nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Davie, R. N.; Davis, J. F.; Fuller, J. L.; Paternoster, R. R.; Shipman, G. R.; Sterritt, D. E.; Helmick, H. H.

    1974-01-01

    Experimental investigations of fission fragment excited gases are reported along with a theoretical analysis of population inversions in fission fragment excited helium. Other studies reported include: nuclear augmentation of gas lasers, direct nuclear pumping of a helium-xenon laser, measurements of a repetitively pulsed high-power CO2 laser, thermodynamic properties of UF6 and UF6/He mixtures, and nuclear waste disposal utilizing a gaseous core reactor.

  2. Investigation of the i 13 / 2 neutron orbital in the Sn 132 region: New excited levels in Sb 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korgul, A.; Ba̧czyk, P.; Urban, W.

    2015-02-01

    Excited states in Sb-135, populated in spontaneous fission of Cm-248, are studied by means of prompt gamma spectroscopy, using the EUROGAM2 detector array. New excited states containing the neutron i(13/2) orbital in their wave functions are proposed. A more accurate value of the i(13/2) neutron single-particle energy in the Sn-132 core potential is determined

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suhara, Tadahiro; Kanada-En'yo, Yoshiko

    Structures of excited states in {sup 14}C are investigated with a method of {beta}-{gamma} constraint antisymmetrized molecular dynamics in combination with the generator coordinate method. Various excited states with the developed 3{alpha}-cluster core structures are suggested in positive- and negative-parity states. In the positive-parity states, triaxial deformed and linear-chain structures are found to construct excited bands. Interestingly, {sup 10}Be+{alpha} correlation is found in the cluster states above the {sup 10}Be+{alpha} threshold energy.

  4. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity

    NASA Astrophysics Data System (ADS)

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A. S.; Carlos, Luis D.; Trifonov, Alexander A.; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells. Electronic supplementary information (ESI) available: TEM images and size distribution histograms, IR and emission spectra, diffraction pattern and HRTEM coupled EDX analysis. See DOI: 10.1039/c0nr00709a

  5. Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Ji, Lanting; He, Guobing; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming

    2017-11-01

    Formation of laterally continuous ultrathin gold films on polymer substrates is a technological challenge. In this work, the vacuum thermal evaporation method is adopted to form continuous Au films in the thickness range of 7-17 nm on polymers of Poly(methyl-methacrylate-glycidly-methacrylate) and SU-8 film surface without using the adhesion or metallic seeding layers. Absorption spectrum, scanning electron microscope and atomic force microscope images are used to characterize the Au film thickness, roughness and optical loss. The result shows that molecular-scale structure, surface energy and electronegativity have impacts on the Au film morphology on polymers. Wet chemical etching is used to fabricate 7-nm thick Au stripes embedded in polymer claddings. These long-range surface plasmon polariton waveguides demonstrate the favorable morphological configurations and cross-sectional states. Through the end-fire excitation method, propagation losses of 6-μm wide Au stripes are compared to theoretical values and analyzed from practical film status. The smooth, patternable gold films on polymer provide potential applications to plasmonic waveguides, biosensing, metamaterials and optical antennas.

  6. Combinatorial Methods for Exploring Complex Materials

    NASA Astrophysics Data System (ADS)

    Amis, Eric J.

    2004-03-01

    Combinatorial and high-throughput methods have changed the paradigm of pharmaceutical synthesis and have begun to have a similar impact on materials science research. Already there are examples of combinatorial methods used for inorganic materials, catalysts, and polymer synthesis. For many investigations the primary goal has been discovery of new material compositions that optimize properties such as phosphorescence or catalytic activity. In the midst of the excitement generated to "make things", another opportunity arises for materials science to "understand things" by using the efficiency of combinatorial methods. We have shown that combinatorial methods hold potential for rapid and systematic generation of experimental data over the multi-parameter space typical of investigations in polymer physics. We have applied the combinatorial approach to studies of polymer thin films, biomaterials, polymer blends, filled polymers, and semicrystalline polymers. By combining library fabrication, high-throughput measurements, informatics, and modeling we can demonstrate validation of the methodology, new observations, and developments toward predictive models. This talk will present some of our latest work with applications to coating stability, multi-component formulations, and nanostructure assembly.

  7. Sensitization of ultra-long-range excited-state electron transfer by energy transfer in a polymerized film

    PubMed Central

    Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.

    2012-01-01

    Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698

  8. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  9. Spectral and time-resolved properties of photoinduced hydroxyquinolines doped thin polymer films

    NASA Astrophysics Data System (ADS)

    Mehata, Mohan Singh

    2018-01-01

    Quinoline and its derivatives have a wide range of biological and pharmacological activities. Quinoline ring is used to design functional materials (quinoline derivatives) for OLEDs and field-induce electrooptics. It possesses antibacterial, antifungal, antimalarial, cardiotonic, anthelmintic, anti-inflammatory, anticonvulsant and analgesic activity. Here, we have examined photoexcitation dynamics of 6-hydroxyquinoline (6-HQ) doped in polymer films of polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA) and cellulose acetate (CA) at atmospheric conditions. The absorption maximum of 6-HQ in polymer films was observed at 333 ± 1 nm, whereas fluorescence (FL) maximum fell in the range of 365-371 nm. In PVA film, in addition to the typical FL, a band maximum at 432 nm appeared as a result of an excited-state intermolecular proton transfer (ESIPT) reaction facilitated in the hydrogen-bonded complex formed in the ground state between 6-HQ:PVA. The multi-exponential decay behavior of 6-HQ in all the three polymer films indicates a nanoscale heterogeneity of the polymer environments.

  10. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Jolley, Scott T. (Inventor); Buhrow, Jerry W. (Inventor); Li, Wenyan (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  11. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K.

    PubMed

    Giera, Wojciech; Szewczyk, Sebastian; McConnell, Michael D; Redding, Kevin E; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2018-04-04

    Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.

  12. Rydberg atoms in hollow-core photonic crystal fibres.

    PubMed

    Epple, G; Kleinbach, K S; Euser, T G; Joly, N Y; Pfau, T; Russell, P St J; Löw, R

    2014-06-19

    The exceptionally large polarizability of highly excited Rydberg atoms-six orders of magnitude higher than ground-state atoms--makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. However, if they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturized devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n=40. Besides small energy-level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.

  13. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    DOE PAGES

    Sun, Jing; Jiang, Xi; Lund, Reidar; ...

    2016-03-28

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less

  14. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jing; Jiang, Xi; Lund, Reidar

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less

  15. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    PubMed

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  16. Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sharma, Himani; Jain, Shubham; Raj, Pulugurtha Markondeya; Murali, K. P.; Tummala, Rao

    2015-10-01

    Metal-polymer composites were investigated for their microwave properties in the frequency range of 30-1000 MHz to assess their application as inductor cores and electromagnetic isolation shield structures. NiFe and Fe nanoparticles were dispersed in epoxy as nanocomposites, in different volume fractions. The permittivity, permeability, and loss tangents of the composites were measured with an impedance analyzer and correlated with the magnetic properties of the particle such as saturation magnetization and field anisotropy. Fe-epoxy showed lower magnetic permeability but improved frequency stability, compared to the NiFe-epoxy composites of the same volume loading. This is attributed to the differences in nanoparticle's structure such as effective metal core size and particle-porosity distribution in the polymer matrix. The dielectric properties of the nanocomposites were also characterized from 30 MHz to 1000 MHz. The instabilities in the dielectric constant and loss tangent were related to the interfacial polarization relaxation of the particles and the dielectric relaxation of the surface oxides.

  17. Hierarchical Tubular Structures Composed of Co3 O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage.

    PubMed

    Chen, Yu Ming; Yu, Le; Lou, Xiong Wen David

    2016-05-10

    Hierarchical tubular structures composed of Co3 O4 hollow nanoparticles and carbon nanotubes (CNTs) have been synthesized by an efficient multi-step route. Starting from polymer-cobalt acetate (Co(Ac)2 ) composite nanofibers, uniform polymer-Co(Ac)2 @zeolitic imidazolate framework-67 (ZIF-67) core-shell nanofibers are first synthesized via partial phase transformation with 2-methylimidazole in ethanol. After the selective dissolution of polymer-Co(Ac)2 cores, the resulting ZIF-67 tubular structures can be converted into hierarchical CNTs/Co-carbon hybrids by annealing in Ar/H2 atmosphere. Finally, the hierarchical CNT/Co3 O4 microtubes are obtained by a subsequent thermal treatment in air. Impressively, the as-prepared nanocomposite delivers a high reversible capacity of 1281 mAh g(-1) at 0.1 A g(-1) with exceptional rate capability and long cycle life over 200 cycles as an anode material for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun

    2016-01-01

    A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. Electronic supplementary information (ESI) available: Polymer synthesis, characterization, preparation of drug-loaded nanovesicles, intracellular drug release and cytotoxicity assays, TEM and DLS measurements. See DOI: 10.1039/c5nr06744h

  19. Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions.

    PubMed

    Poulsen, Allan K; Arleth, Lise; Almdal, Kristoffer; Scharff-Poulsen, Anne Marie

    2007-02-01

    Droplet microemulsions are widely used as templates for controlled synthesis of nanometer sized polymer gel beads for use as, e.g., nanobiosensors. Here we examine water-in-oil microemulsions typically used for preparation of sensors. The cores of the microemulsion droplets are constituted by an aqueous component consisting of water, reagent monomer mixture, buffer salts, and the relevant dyes and/or enzymes. The cores are encapsulated by a mixture of the surfactants Brij30 and AOT and the resulting microemulsion droplets are suspended in a continuous hexane phase. The size of the final polymer particles may be of great importance for the applications of the sensors. Our initial working hypothesis was that the size of the droplet cores and therefore the size of the synthesized polymer gel beads could be controlled by the surfactant-to-water ratio of the template microemulsion. In the present work we have tested this hypothesis and investigated how the monomers and the ratio between the two surfactants affect the size of the microemulsion droplets and the microemulsion domain. We find that the monomers in water have a profound effect on the microemulsion domain as well as on the size of the microemulsion droplets. The relation between microemulsion composition and droplet size is in this case more complicated than assumed in standard descriptions of microemulsions [R. Strey, Colloid Polym. Sci. 272 (1994) 1005-1019; I. Danielsson, B. Lindman, Colloids Surf. 3 (1981) 391-392; Y. Chevalier, T. Zemb, Rep. Progr. Phys. 53 (1990) 279-371].

  20. Excited hydrogen bonds in the molecular mechanism of muscle contraction.

    PubMed

    Bespalova, S V; Tolpygo, K B

    1991-11-21

    The mechanism of muscle contraction is considered. The hydrolysis of an ATP molecule is assumed to produce the excitation of hydrogen bonds A--H...B between electronegative atoms A and B, which are contained in the myosin head and actin filament. This excitation energy epsilon f depends on the interatomic distance AB = R and generates the tractive force f = -delta epsilon f/delta R, that makes atoms AB approach each other. The swing of the myosin head results in macroscopic mutual displacement of actin and myosin polymers. The motion of the actin filament under the action of this force is studied. The conditions under which a considerable portion of the excitation energy converts into the potential tension energy of the actin filament are analysed, and the probability of higher muscle efficiency existence is discussed.

  1. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  2. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  3. Losses analysis of soft magnetic ring core under sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) excitations

    NASA Astrophysics Data System (ADS)

    Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong

    2018-05-01

    Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.

  4. Ultrafast dynamics in multifunctional Ru(II)-loaded polymers for solar energy conversion.

    PubMed

    Morseth, Zachary A; Wang, Li; Puodziukynaite, Egle; Leem, Gyu; Gilligan, Alexander T; Meyer, Thomas J; Schanze, Kirk S; Reynolds, John R; Papanikolas, John M

    2015-03-17

    The use of sunlight to make chemical fuels (i.e., solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on time scales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span 9 orders of magnitude to follow the excited-state evolution within polymer-based molecular assemblies. We complement experimental observations with molecular dynamics simulations to develop a microscopic view of these dynamics. This Account provides an overview of our work on polymers decorated with pendant Ru(II) chromophores, both in solution and on surfaces. We have examined site-to-site energy transport among the Ru(II) complexes, and in systems incorporating π-conjugated polymers, we have observed ultrafast formation of a long-lived charge-separated state. When attached to TiO2, these assemblies exhibit multifunctional behavior in which photon absorption is followed by energy transport to the surface and electron injection to produce an oxidized metal complex. The oxidizing equivalent is then transferred to the conjugated polymer, giving rise to a long-lived charge-separated state.

  5. Sm 3+-doped polymer optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  6. Polymer-Free Optode Nanosensors for Dynamic, Reversible, and Ratiometric Sodium Imaging in the Physiological Range

    PubMed Central

    Ruckh, Timothy T.; Mehta, Ankeeta A.; Dubach, J. Matthew; Clark, Heather A.

    2013-01-01

    This work introduces a polymer-free optode nanosensor for ratiometric sodium imaging. Transmembrane ion dynamics are often captured by electrophysiology and calcium imaging, but sodium dyes suffer from short excitation wavelengths and poor selectivity. Optodes, optical sensors composed of a polymer matrix with embedded sensing chemistry, have been translated into nanosensors that selectively image ion concentrations. Polymer-free nanosensors were fabricated by emulsification and were stable by diameter and sensitivity for at least one week. Ratiometric fluorescent measurements demonstrated that the nanosensors are selective for sodium over potassium by ~1.4 orders of magnitude, have a dynamic range centered at 20 mM, and are fully reversible. The ratiometric signal changes by 70% between 10 and 100 mM sodium, showing that they are sensitive to changes in sodium concentration. These nanosensors will provide a new tool for sensitive and quantitative ion imaging. PMID:24284431

  7. Piezoelectric nanoparticle-polymer composite foams.

    PubMed

    McCall, William R; Kim, Kanguk; Heath, Cory; La Pierre, Gina; Sirbuly, Donald J

    2014-11-26

    Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.

  8. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.

    PubMed

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-02-17

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.

  9. Current Advances in Polymer-Based Nanotheranostics for Cancer Treatment and Diagnosis

    PubMed Central

    2015-01-01

    Nanotheranostics is a relatively new, fast-growing field that combines the advantages of treatment and diagnosis via a single nanoscale carrier. The ability to bundle both therapeutic and diagnostic capabilities into one package offers exciting prospects for the development of novel nanomedicine. Nanotheranostics can deliver treatment while simultaneously monitoring therapy response in real-time, thereby decreasing the potential of over- or under-dosing patients. Polymer-based nanomaterials, in particular, have been used extensively as carriers for both therapeutic and bioimaging agents and thus hold great promise for the construction of multifunctional theranostic formulations. Herein, we review recent advances in polymer-based systems for nanotheranostics, with a particular focus on their applications in cancer research. We summarize the use of polymer nanomaterials for drug delivery, gene delivery, and photodynamic therapy, combined with imaging agents for magnetic resonance imaging, radionuclide imaging, and fluorescence imaging. PMID:25014486

  10. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review.

    PubMed

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin

    2015-06-02

    Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Kang, Zhitao; Bansihev, Alexandr A.; Breidenich, Jennifer; Scripka, David A.; Christensen, James M.; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.; Zhou, Min

    2016-01-01

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  12. Fluorescence turn-on responses of anionic and cationic conjugated polymers toward proteins: effect of electrostatic and hydrophobic interactions.

    PubMed

    Pu, Kan-Yi; Liu, Bin

    2010-03-11

    Cationic and anionic poly(fluorenyleneethynylene-alt-benzothiadiazole)s (PFEBTs) are designed and synthesized via Sonagashira coupling reaction to show light-up signatures toward proteins. Due to the charge transfer character of the excited states, the fluorescence of PFEBTs is very weak in aqueous solution, while their yellow fluorescence can be enhanced by polymer aggregation. PFEBTs show fluorescence turn-on rather than fluorescence quenching upon complexation with proteins. Both electrostatic and hydrophobic interactions between PFEBTs and proteins are found to improve the polymer fluorescence, the extent of which is dependent on the nature of the polymer and the protein. Changes in solution pH adjust the net charges of proteins, providing an effective way to manipulate electrostatic interactions and in turn the increment in the polymer fluorescence. In addition, the effect of protein digestion on the fluorescence of polymer/protein complexes is probed. The results indicate that electrostatic interaction induced polymer fluorescence increase cannot be substantially reduced through cleaving protein into peptide fragments. In contrast, hydrophobic interactions, mainly determined by the hydrophobicity of proteins, can be minimized by digestion, imparting a light-off signature for the polymer/protein complexes. This study thus not only highlights the opportunities of exerting nonspecific interactions for protein sensing but also reveals significant implications for biosensor design.

  13. Excited cosmic strings with superconducting currents

    NASA Astrophysics Data System (ADS)

    Hartmann, Betti; Michel, Florent; Peter, Patrick

    2017-12-01

    We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.

  14. A polymer optoelectronic interface restores light sensitivity in blind rat retinas

    NASA Astrophysics Data System (ADS)

    Ghezzi, Diego; Antognazza, Maria Rosa; Maccarone, Rita; Bellani, Sebastiano; Lanzarini, Erica; Martino, Nicola; Mete, Maurizio; Pertile, Grazia; Bisti, Silvia; Lanzani, Guglielmo; Benfenati, Fabio

    2013-05-01

    Interfacing organic electronics with biological substrates offers new possibilities for biotechnology by taking advantage of the beneficial properties exhibited by organic conducting polymers. These polymers have been used for cellular interfaces in several applications, including cellular scaffolds, neural probes, biosensors and actuators for drug release. Recently, an organic photovoltaic blend has been used for neuronal stimulation via a photo-excitation process. Here, we document the use of a single-component organic film of poly(3-hexylthiophene) (P3HT) to trigger neuronal firing upon illumination. Moreover, we demonstrate that this bio-organic interface restores light sensitivity in explants of rat retinas with light-induced photoreceptor degeneration. These findings suggest that all-organic devices may play an important future role in subretinal prosthetic implants.

  15. A polymer optoelectronic interface restores light sensitivity in blind rat retinas

    PubMed Central

    Ghezzi, Diego; Antognazza, Maria Rosa; Maccarone, Rita; Bellani, Sebastiano; Lanzarini, Erica; Martino, Nicola; Mete, Maurizio; Pertile, Grazia; Bisti, Silvia; Lanzani, Guglielmo; Benfenati, Fabio

    2013-01-01

    Interfacing organic electronics with biological substrates offers new possibilities for biotechnology due to the beneficial properties exhibited by organic conducting polymers. These polymers have been used for cellular interfaces in several fashions, including cellular scaffolds, neural probes, biosensors and actuators for drug release. Recently, an organic photovoltaic blend has been exploited for neuronal stimulation via a photo-excitation process. Here, we document the use of a single-component organic film of poly(3-hexylthiophene) (P3HT) to trigger neuronal firing upon illumination. Moreover, we demonstrate that this bio-organic interface restored light sensitivity in explants of rat retinas with light-induced photoreceptor degeneration. These findings suggest that all-organic devices may play an important future role in sub-retinal prosthetic implants. PMID:27158258

  16. Polymer photonic crystal slab waveguides

    NASA Astrophysics Data System (ADS)

    Liguda, C.; Böttger, G.; Kuligk, A.; Blum, R.; Eich, M.; Roth, H.; Kunert, J.; Morgenroth, W.; Elsner, H.; Meyer, H. G.

    2001-04-01

    We present details of the fabrication, calculations, and transmission measurements for finite two-dimensional (2D) polymer photonic crystal (PC) slab waveguides, which were fabricated from a benzocyclobutene polymer on a low refractive index substrate from Teflon. A square air hole lattice (500 nm lattice constant, 300 nm hole diameter) was realized by electron beam lithography and reactive ion etching. Polarization and wavelength dependent transmission results show TE-like and TM-like stop gaps at 1.3 μm excitation wavelengths and are in good agreement with the calculated data obtained by 2D and three-dimensional finite difference time domain methods. Transmission was suppressed by 15 dB in the center of the TE-like stop gap for a PC length of ten lattice constants.

  17. A solid-state NMR method to determine domain sizes in multi-component polymer formulations

    NASA Astrophysics Data System (ADS)

    Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon

    2015-12-01

    Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).

  18. Influence of the Surfactant Structure on Photoluminescent π-Conjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding.

    PubMed

    Urbano, Laura; Clifton, Luke; Ku, Hoi Ki; Kendall-Troughton, Hannah; Vandera, Kalliopi-Kelli A; Matarese, Bruno F E; Abelha, Thais; Li, Peixun; Desai, Tejal; Dreiss, Cécile A; Barker, Robert D; Green, Mark A; Dailey, Lea Ann; Harvey, Richard D

    2018-05-17

    π-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer. Hydrophobic interaction chromatography, contact angle, quartz crystal microbalance, and neutron reflectivity studies were used to assess the affinity of the surfactant to the conjugated polymer surface and indicated that all surfactants were displaced by the addition of a model serum protein. In summary, CPN preparation methods which rely on surface coating of a conjugated polymer core with amphiphilic surfactants may produce systems with good yields and colloidal stability in vitro, but may be susceptible to significant surface alterations in physiological fluids.

  19. Experimental evidence of exciton-plasmon coupling in densely packed dye doped core-shell nanoparticles obtained via microfluidic technique

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Iazzolino, A.; Salmon, J.-B.; Leng, J.; Ravaine, S.; Grigorenko, A. N.; Strangi, G.

    2014-09-01

    The interplay between plasmons and excitons in bulk metamaterials are investigated by performing spectroscopic studies, including variable angle pump-probe ellipsometry. Gain functionalized gold nanoparticles have been densely packed through a microfluidic chip, representing a scalable process towards bulk metamaterials based on self-assembly approach. Chromophores placed at the hearth of plasmonic subunits ensure exciton-plasmon coupling to convey excitation energy to the quasi-static electric field of the plasmon states. The overall complex polarizability of the system, probed by variable angle spectroscopic ellipsometry, shows a significant modification under optical excitation, as demonstrated by the behavior of the ellipsometric angles Ψ and Δ as a function of suitable excitation fields. The plasmon resonances observed in densely packed gain functionalized core-shell gold nanoparticles represent a promising step to enable a wide range of electromagnetic properties and fascinating applications of plasmonic bulk systems for advanced optical materials.

  20. Resonant inelastic x-ray scattering and UV-VUV luminescence at the Be 1s edge in BeO.

    PubMed

    Kikas, A; Käämbre, T; Kooser, K; Kuusik, I; Kisand, V; Nõmmiste, E; Kirm, M; Feldbach, E; Ivanov, V; Pustovarov, V; Martinson, I

    2010-09-22

    We carried out a combined study of UV-VUV luminescence and resonant x-ray emission from BeO single crystals with incident photon energies in the vicinity of the Be 1s absorption edge. The x-ray emission spectra show that at the Be 1s photoabsorption edge the lattice relaxation processes in the excitation site take place already on the timescale of the radiative decay of the core excitation. Comparison of the x-ray emission and the luminescence spectra indicates that the maximum energy loss of the process of lattice relaxation during the decay of inner-shell holes is similar to the loss that occurs in the self-trapping process of valence excitons. The possible decay channels of core excitations have been discussed and the mechanism for the creation of 5.2 eV luminescence at the photoabsorption resonances has been suggested.

  1. Multiplexed displacement fiber sensor using thin core fiber exciter.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  2. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

    PubMed

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-11-01

    This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Dissociation dynamics of simple chlorine containing molecules upon resonant Cl K-σ{sup *} excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohinc, R., E-mail: rok.bohinc@ijs.si; Bučar, K.; Kavčič, M.

    2014-04-28

    A theoretical analysis of dissociation dynamics of chlorine K-σ{sup *} core-excited molecules is performed. The potential energy surfaces of HCl, Cl{sub 2}, CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, and CF{sub 3}Cl are calculated along the normal vibrational modes of the ground electronic state yielding the widths of the corresponding Franck-Condon distributions. An insight into the potential energy surface of 1st σ{sup *} resonances shows that the initial dissociation dynamics of chloro(fluoro)methanes mainly involves the distancing of the carbon and the core-excited chlorine atom and is practically independent of other atoms in themore » molecule, which is in agreement with the recent experimental findings. The carbon atom pulls out the remaining three atoms shortly after piercing the three-atom plane resulting in a high vibrationally excited state of the fragment if the reconnection time is smaller than the lifetime of the L shell.« less

  4. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  5. Modern developments in shear flow control with swirl

    NASA Technical Reports Server (NTRS)

    Farokhi, Saeed; Taghavi, R.

    1990-01-01

    Passive and active control of swirling turbulent jets is experimentally investigated. Initial swirl distribution is shown to dominate the free jet evolution in the passive mode. Vortex breakdown, a manifestation of high intensity swirl, was achieved at below critical swirl number (S = 0.48) by reducing the vortex core diameter. The response of a swirling turbulent jet to single frequency, plane wave acoustic excitation was shown to depend strongly on the swirl number, excitation Strouhal number, amplitude of the excitation wave, and core turbulence in a low speed cold jet. A 10 percent reduction of the mean centerline velocity at x/D = 9.0 (and a corresponding increase in the shear layer momentum thickness) was achieved by large amplitude internal plane wave acoustic excitation. Helical instability waves of negative azimuthal wave numbers exhibit larger amplification rates than the plane waves in swirling free jets, according to hydrodynamic stability theory. Consequently, an active swirling shear layer control is proposed to include the generation of helical instability waves of arbitrary helicity and the promotion of modal interaction, through multifrequency forcing.

  6. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

    NASA Astrophysics Data System (ADS)

    Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.

    2017-03-01

    The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.

  7. Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yusong; Rawson, Jeff; Roget, Sean A.

    While the influence of proquinoidal character upon the linear absorption spectrum of low optical bandgap π-conjugated polymers and molecules is well understood, its impact upon excited-state relaxation pathways and dynamics remains obscure. We report the syntheses, electronic structural properties, and excited-state dynamics of a series of model highly conjugated near-infrared (NIR)-absorbing chromophores based on a (porphinato)metal(II)-proquinoidal spacer-(porphinato)metal(II) (PM-Sp-PM) structural motif. A combination of excited-state dynamical studies and time-dependent density functional theory calculations: (i) points to the cardinal role that excited-state configuration interaction (CI) plays in determining the magnitudes of S 1 → S 0 radiative (k r), S 1 → T 1 intersystem crossing (k ISC), and S 1 → S 0 internal conversion (k IC) rate constants in these PM-Sp-PM chromophores, and (ii) suggests that a primary determinant of CI magnitude derives from the energetic alignment of the PM and Sp fragment LUMOs (ΔE L). These insights not only enable steering of excited-state relaxation dynamics of high oscillator strength NIR absorbers to realize either substantial fluorescence or long-lived triplets (τmore » $$_ {T_1}$$ > μs) generated at unit quantum yield (Φ ISC = 100%), but also crafting of those having counter-intuitive properties: for example, while (porphinato)platinum compounds are well known to generate non-emissive triplet states (Φ ISC = 100%) upon optical excitation at ambient temperature, diminishing the extent of excited-state CI in these systems realizes long-wavelength absorbing heavy-metal fluorophores. In conclusion, this work highlights approaches to: (i) modulate low-lying singlet excited-state lifetime over the picosecond-to-nanosecond time domain, (ii) achieve NIR fluorescence with quantum yields up to 25%, (iii) tune the magnitude of S 1–T 1 ISC rate constant from 10 9 to 10 12 s -1 and (iv) realize T 1-state lifetimes that range from ~0.1 to several μs, for these model PM-Sp-PM chromophores, and renders new insights to evolve bespoke photophysical properties for low optical bandgap π-conjugated polymers and molecules based on proquinoidal conjugation motifs.« less

  8. Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation

    DOE PAGES

    Bai, Yusong; Rawson, Jeff; Roget, Sean A.; ...

    2017-06-07

    While the influence of proquinoidal character upon the linear absorption spectrum of low optical bandgap π-conjugated polymers and molecules is well understood, its impact upon excited-state relaxation pathways and dynamics remains obscure. We report the syntheses, electronic structural properties, and excited-state dynamics of a series of model highly conjugated near-infrared (NIR)-absorbing chromophores based on a (porphinato)metal(II)-proquinoidal spacer-(porphinato)metal(II) (PM-Sp-PM) structural motif. A combination of excited-state dynamical studies and time-dependent density functional theory calculations: (i) points to the cardinal role that excited-state configuration interaction (CI) plays in determining the magnitudes of S 1 → S 0 radiative (k r), S 1 → T 1 intersystem crossing (k ISC), and S 1 → S 0 internal conversion (k IC) rate constants in these PM-Sp-PM chromophores, and (ii) suggests that a primary determinant of CI magnitude derives from the energetic alignment of the PM and Sp fragment LUMOs (ΔE L). These insights not only enable steering of excited-state relaxation dynamics of high oscillator strength NIR absorbers to realize either substantial fluorescence or long-lived triplets (τmore » $$_ {T_1}$$ > μs) generated at unit quantum yield (Φ ISC = 100%), but also crafting of those having counter-intuitive properties: for example, while (porphinato)platinum compounds are well known to generate non-emissive triplet states (Φ ISC = 100%) upon optical excitation at ambient temperature, diminishing the extent of excited-state CI in these systems realizes long-wavelength absorbing heavy-metal fluorophores. In conclusion, this work highlights approaches to: (i) modulate low-lying singlet excited-state lifetime over the picosecond-to-nanosecond time domain, (ii) achieve NIR fluorescence with quantum yields up to 25%, (iii) tune the magnitude of S 1–T 1 ISC rate constant from 10 9 to 10 12 s -1 and (iv) realize T 1-state lifetimes that range from ~0.1 to several μs, for these model PM-Sp-PM chromophores, and renders new insights to evolve bespoke photophysical properties for low optical bandgap π-conjugated polymers and molecules based on proquinoidal conjugation motifs.« less

  9. The Correlation Entropy as a Measure of the Complexity of High-Lying Single-Particle Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoyanov, Chavdar; Zelevinsky, Vladimir; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1321

    Highly-excited single-particle states in nuclei are coupled with the excitations of a more complex character, first of all with collective phonon-like modes of the core. In the framework of the quasiparticle-phonon model we consider the structure of resulting complex configurations using the 1k17/2 orbital in 209Pb as an example. The eigenstates of the model carry significant degree of complexity that can be quantified with the aid of correlational invariant entropy. With artificially enhanced particle-core coupling, the system undergoes the doubling phase transition with the quasiparticle strength concentrated in two repelling peaks.

  10. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  11. New information on medium-spin structure of {sup 133}Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, W.; Faculty of Physics, University of Warsaw, ul. Hoza 69, PL-00-681 Warsaw; Zlomaniec, A.

    2009-03-15

    Excited states in the nucleus {sup 133}Sb, populated in the fission of {sup 235}U induced by thermal neutrons were studied using the Lohengrin fission-fragment separator. A new 4191.8 keV level in {sup 133}Sb, populated in the decay of the 16.6 {mu}s isomer, was observed. The level is interpreted as the 11/2{sup +} member of the {pi}g{sub 7/2} x core configuration, predicted by the shell model at 4095 keV. Levels corresponding to octupole excitation of the {sup 132}Sn core, identified previously in prompt-{gamma} measurement, were now observed in the isomeric decay.

  12. β decay of Si 38 , 40 ( T z = + 5 , + 6 ) to low-lying core excited states in odd-odd P 38 , 40 isotopes

    DOE PAGES

    Tripathi, Vandana; Lubna, R. S.; Abromeit, B.; ...

    2017-02-08

    Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less

  13. β decay of Si 38 , 40 ( T z = + 5 , + 6 ) to low-lying core excited states in odd-odd P 38 , 40 isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Vandana; Lubna, R. S.; Abromeit, B.

    Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less

  14. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core

    PubMed Central

    Rifat, Ahmmed A.; Mahdiraji, G. Amouzad; Chow, Desmond M.; Shee, Yu Gang; Ahmed, Rajib; Adikan, Faisal Rafiq Mahamd

    2015-01-01

    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1) with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint. PMID:25996510

  15. ON THE CHALLENGING VARIABILITY OF LS IV-14{sup 0}116: PULSATIONAL INSTABILITIES EXCITED BY THE {epsilon}-MECHANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller Bertolami, M. M.; Corsico, A. H.; Althaus, L. G., E-mail: mmiller@fcaglp.unlp.edu.ar

    2011-11-01

    We investigate the pulsation driving mechanism responsible for the long-period photometric variations observed in LS IV-14{sup 0}116, a subdwarf B star showing a He-enriched atmospheric composition. To this end, we perform detailed nonadiabatic pulsation computations over fully evolutionary post-He-core-flash stellar structure models, appropriate for hot subdwarf stars at evolutionary phases previous to the He-core burning stage. We found that the variability of LS IV-14{sup 0}116 can be attributed to non-radial g-mode pulsations excited by the {epsilon}-mechanism acting in the He-burning shells that appear before the star settles in the He-core burning stage. Even more interestingly, our results show that LSmore » IV-14{sup 0}116 could be the first known pulsating star in which the {epsilon}-mechanism of mode excitation is operating. Last but not the least, we find that the period range of destabilized modes is sensitive to the exact location of the burning shell, something that might help in distinguishing between the different evolutionary scenarios proposed for the formation of this star.« less

  16. Responsive polymer-based colloids for drug delivery and bioconversion

    NASA Astrophysics Data System (ADS)

    Kudina, Olena

    Responsive polymer-based colloids (RPBC) are the colloidal structures containing responsive polymeric component which is able to adapt its physico-chemical properties to the environment by undergoing chemical and/or conformational changes. The goal of the dissertation is to develop and characterize several groups of RPBC with different morphological complexity and explore their potential in drug delivery and bioconversion. The role of RPBC morphology for these specific applications is discussed in details. Three groups of RPBC were fabricated: i. polymeric micelles; ii. mixed polymeric micelles; iii. hybrid polymer-inorganic particles. All fabricated RPBCs contain polymeric component in their structure. The dissertation investigates how the changes of the responsive polymeric component properties are reflected in morphologies of RPBC. The first group of RPBC, polymeric micelles, was formed by the self-assembly of amphiphilic invertible polymers (AIPs) synthesized in our group. AIPs self-assemble into invertible micellar assemblies (IMAs) in solvents of different polarity. In this work, IMAs ability to invert the structure as a response to the change in solvent polarity was demonstrated using 1H NMR spectroscopy and SANS. It was shown that the IMAs incorporate hydrophobic cargo either in the core or in the shell, depending on the chemical structure of cargo molecules. Following in vitro study demonstrates that loaded with drug (curcumin) IMAs are cytotoxic to osteosarcoma cells. Mixed polymeric micelles represent another, more complex, RPBC morphologies studied in the dissertation. Mixed micelles were fabricated from AIPs and amphiphilic oligomers synthesized from pyromellitic dianhydride, polyethylene glycol methyl ethers, and alkanols/cholesterol. The combination of selected AIP and oligomers based on cholesterol results in mixed micelles with an increased drug-loading capacity (from 10% w/w loaded curcumin in single component IMAs to 26%w/w in mixed micelles). Even more complex colloids are hybrid polymer-inorganic particles, the third RPBC group studied in dissertation. Material was designed as core--shell particles with superparamagnetic core engulfed by grafted polymer brushes. These particles were loaded with enzymes (cellulases), thus, are turned into enzymogels for cellulose bioconversion. The study demonstrates that such RPBCs can be used multiple times during hydrolysis and provide an about four-fold increase in glucose production in comparison to free enzymes.

  17. Regulated release of a novel non-viral gene delivery vector from electrospun coaxial fiber mesh scaffolds

    NASA Astrophysics Data System (ADS)

    Saraf, Anita

    The development of novel strategies for tissue engineering entails the evolution of biopolymers into multifunctional constructs that can support the proliferation of cells and stimulate their differentiation into functional tissues. With that in mind, biocompatible polymers were fabricated into a novel gene delivery agent as well as three dimensional scaffolds that act as reservoirs and controlled release constructs. To fabricate a novel gene delivery agent a commercially available cationic polymer, poly(ethylenimine), PEI, was chemically conjugated to a ubiquitous glycosaminoglycan, hyaluronic acid (HA). The novel polymer, PEI-HA, had significantly reduced toxicity and improved transfection efficiency with multipotent human mesenchymal stem cells. This transfection efficiency could further be modulated by changing the concentration of sodium chloride and temperature used to assemble PEI-HA/DNA complexes. To facilitate the regulated delivery of these complexes in the context of tissue engineering, an emerging technology for scaffold fabrication, coaxial electrospinning was adapted to include PEI-HA and plasmid DNA within the scaffold fibers. Initially, a factorial design was employed to assess the influence of processing parameters in the absence of gene delivery vectors and plasmids. The study elucidated the role of sheath polymer concentration and core polymer concentration and molecular weight and the presence of sodium chloride on fiber diameters and morphologies. Subsequently, PEI-HA and plasmid DNA were entrapped within the sheath and core compartments of these fibers and the influence of processing parameters was assessed in the context of fiber diameter, release kinetics and transfection efficiency over a period of 60 days. The release of PEI-HA was found to be dependent upon the loading dose of the vector and plasmid. However, the transfection efficiency correlated to the core polymer properties, concentration and molecular weight. The processing parameters could modulate cell transfection for up to 21 days and continue to transfect cells for up to 60 days. Thus, scaffolds with tunable release kinetics and transfection efficiencies can be fabricated using coaxial electrospinning, which can further be used for tissue engineering and gene delivery applications.

  18. Silicone-containing aqueous polymer dispersions with hybrid particle structure.

    PubMed

    Kozakiewicz, Janusz; Ofat, Izabela; Trzaskowska, Joanna

    2015-09-01

    In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented. Copyright © 2015. Published by Elsevier B.V.

  19. High performance shape memory polymer networks based on rigid nanoparticle cores

    PubMed Central

    Song, Jie

    2010-01-01

    Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285

  20. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics.

    PubMed

    Mandal, Samir; Chaudhuri, Keya

    2016-02-26

    Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.

  1. Non-exponential kinetics of unfolding under a constant force.

    PubMed

    Bell, Samuel; Terentjev, Eugene M

    2016-11-14

    We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.

  2. Non-exponential kinetics of unfolding under a constant force

    NASA Astrophysics Data System (ADS)

    Bell, Samuel; Terentjev, Eugene M.

    2016-11-01

    We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.

  3. Superficially Porous Particles with 1000 Å Pores for Large Biomolecule High Performance Liquid Chromatography and Polymer Size Exclusion Chromatography

    PubMed Central

    Wagner, Brian M.; Schuster, Stephanie A.; Boyes, Barry E.; Shields, Taylor J.; Miles, William L.; Haynes, Mark J.; Moran, Robert E.; Kirkland, Joseph J.; Schure, Mark R.

    2017-01-01

    To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core®, core shell or porous shell) particles with very large (1000 Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. PMID:28213987

  4. Superficially porous particles with 1000Å pores for large biomolecule high performance liquid chromatography and polymer size exclusion chromatography.

    PubMed

    Wagner, Brian M; Schuster, Stephanie A; Boyes, Barry E; Shields, Taylor J; Miles, William L; Haynes, Mark J; Moran, Robert E; Kirkland, Joseph J; Schure, Mark R

    2017-03-17

    To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core ® , core shell or porous shell) particles with very large (1000Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polymeric PLC-type thermo-optic optical attenuator fabricated by UV imprint technique

    NASA Astrophysics Data System (ADS)

    Kim, Jin Tae; Choi, Choon-Gi

    2006-01-01

    A planar lightwave circuit-type polymer thermo-optic optical attenuator was fabricated via a UV imprint technique. In order to reduce the step for filling of cores and minimize the detrimental residual slab waveguide, convex ridge-type micro cores for guidance of light were defined with an accuracy of ±0.5 μm on the under-clad by a single step of imprinting. The voltage-controlled polymer optical attenuator showed 30-dB attenuation with 80-mW electrical input power at a wavelength of 1.55 μm. The rise and fall times are less than 5 ms. It displays about 0.2- and 1-dB polarization dependence at 0- and 10-dB attenuations, respectively.

  6. Single Molecular Detection via Micro-Scale Polymeric Opto-Electro-Mechanical Systems

    DTIC Science & Technology

    2005-06-01

    lenses, multilayer chips with micromirror sidewalls for TIR excitation and polymer-based microactuators for sample handling. 15. NUMBER OF PAGES...Axis Gimaled Micromirror ..............................................................18 3.1.1.3.2 Concept of the Backside Island...Gimbaled 2-D Micromirror .............................................................................................................65 4.2.2

  7. Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells

    PubMed Central

    Vella, Eleonora; Li, Hao; Grégoire, Pascal; Tuladhar, Sachetan M.; Vezie, Michelle S.; Few, Sheridan; Bazán, Claudia M.; Nelson, Jenny; Silva-Acuña, Carlos; Bittner, Eric R.

    2016-01-01

    All-organic-based photovoltaic solar cells have attracted considerable attention because of their low-cost processing and short energy payback time. In such systems the primary dissociation of an optical excitation into a pair of photocarriers has been recently shown to be extremely rapid and efficient, but the physical reason for this remains unclear. Here, two-dimensional photocurrent excitation spectroscopy, a novel non-linear optical spectroscopy, is used to probe the ultrafast coherent decay of photoexcitations into charge-producing states in a polymer:fullerene based solar cell. The two-dimensional photocurrent spectra are interpreted by introducing a theoretical model for the description of the coupling of the electronic states of the system to an external environment and to the applied laser fields. The experimental data show no cross-peaks in the twodimensional photocurrent spectra, as predicted by the model for coherence times between the exciton and the photocurrent producing states of 20 fs or less. PMID:27412119

  8. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    PubMed

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  9. Review paper: progress in the field of conducting polymers for tissue engineering applications.

    PubMed

    Bendrea, Anca-Dana; Cianga, Luminita; Cianga, Ioan

    2011-07-01

    This review focuses on one of the most exciting applications area of conjugated conducting polymers, which is tissue engineering. Strategies used for the biocompatibility improvement of this class of polymers (including biomolecules' entrapment or covalent grafting) and also the integrated novel technologies for smart scaffolds generation such as micropatterning, electrospinning, self-assembling are emphasized. These processing alternatives afford the electroconducting polymers nanostructures, the most appropriate forms of the materials that closely mimic the critical features of the natural extracellular matrix. Due to their capability to electronically control a range of physical and chemical properties, conducting polymers such as polyaniline, polypyrrole, and polythiophene and/or their derivatives and composites provide compatible substrates which promote cell growth, adhesion, and proliferation at the polymer-tissue interface through electrical stimulation. The activities of different types of cells on these materials are also presented in detail. Specific cell responses depend on polymers surface characteristics like roughness, surface free energy, topography, chemistry, charge, and other properties as electrical conductivity or mechanical actuation, which depend on the employed synthesis conditions. The biological functions of cells can be dramatically enhanced by biomaterials with controlled organizations at the nanometer scale and in the case of conducting polymers, by the electrical stimulation. The advantages of using biocompatible nanostructures of conducting polymers (nanofibers, nanotubes, nanoparticles, and nanofilaments) in tissue engineering are also highlighted.

  10. Simple Organics and Biomonomers Identified in HCN Polymers: An Overview

    PubMed Central

    Ruiz-Bermejo, Marta; Zorzano, María-Paz; Osuna-Esteban, Susana

    2013-01-01

    Hydrogen cyanide (HCN) is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system. PMID:25369814

  11. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system havemore » been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.« less

  12. Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph

    2015-04-01

    Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.

  13. New method for determining free core nutation parameters, considering geophysical effects

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2017-08-01

    Context. In addition to the torques exerted by the Moon, Sun, and planets, changes of precession-nutation are known to be caused also by geophysical excitations. Recently studies suggest that geomagnetic jerks (GMJ) might be associated with sudden changes of phase and amplitude of free core nutation. We showed that using atmospheric and oceanic excitations with those by GMJ improves substantially the agreement with observed celestial pole offsets. Aims: Traditionally, the period Tf and quality factor Qf of the free core nutation (FCN) are derived from VLBI-based celestial pole offsets (CPO). Either direct analysis of the observed CPO, or indirect method using resonant effects of nutation terms with frequencies close to FCN, are used. The latter method is usually preferred, since it yields more accurate results. Our aim is to combine both approaches to better derive FCN parameters. Methods: We numerically integrated the part of CPO that is due to geophysical excitations for different combinations of Tf, Qf, using Brzeziński's broadband Liouville equations (Brzeziński 1994, Manuscripta geodaetica, 19, 157), and compared the results with the observed values of CPO. The values yielding the best fit were then estimated. The observed CPO, however, must be corrected for the change of nutation that is caused by the Tf, Qf values different from those used to calculate IAU 2000 model of nutation. To this end, we have used the Mathews-Herring-Buffet transfer function and applied it to the five most affected terms of nutation (with periods 365.26, 182.62, 121.75, 27.55 and 13.66 days). Results: The results, based on the CPO data in the interval 1986.0—2016.0 and excitations with three different models, are presented. We demonstrate that better results are obtained if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans. Our preferred values are Tf = 430.28 ± 0.04 mean solar days and Qf = 19 500 ± 200.

  14. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.

    PubMed

    Pandey, Gaind P; Klankowski, Steven A; Li, Yonghui; Sun, Xiuzhi Susan; Wu, Judy; Rojeski, Ronald A; Li, Jun

    2015-09-23

    This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and ∼1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes.

  15. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    NASA Astrophysics Data System (ADS)

    Sangeetha, P.; Jeganathan, K.; Ramakrishnan, V.

    2013-06-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high) and A1 (LO) phonon mode of InN core at 490 and 590 cm-1 respectively and E2 (high) phonon mode of GaN shell at 573 cm-1. The free carrier concentration of InN core is found to be low in the order ˜ 1016 cm-3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ˜15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ˜0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high) phonon mode of GaN shell at 573 cm-1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  16. Femtosecond excitation tuning and site energy memory of population transfer in poly(p-phenylenevinylene): Gated luminescence experiments and simulation

    NASA Astrophysics Data System (ADS)

    Sperling, J.; Milota, F.; Tortschanoff, A.; Warmuth, Ch.; Mollay, B.; Bässler, H.; Kauffmann, H. F.

    2002-12-01

    We present a comprehensive experimental and computational study on fs-relaxational dynamics of optical excitations in the conjugated polymer poly(p-phenylenevinylene) (PPV) under selective excitation tuning conditions into the long-wavelength, low-vibrational S1ν=0-density-of-states (DOS). The dependence of single-wavelength luminescence kinetics and time-windowed spectral transients on distinct, initial excitation boundaries at 1.4 K and at room temperature was measured applying the luminescence up-conversion technique. The typical energy-dispersive intra-DOS energy transfer was simulated by a combination of static Monte Carlo method with a dynamical algorithm for solving the energy-space transport Master-Equation in population-space. For various, selective excitations that give rise to specific S1-population distributions in distinct spatial and energetic subspaces inside the DOS, simulations confirm the experimental results and show that the subsequent, energy-dissipative, multilevel relaxation is hierarchically constrained, and reveals a pronounced site-energy memory effect with a migration-threshold, characteristic of the (dressed) excitation dynamics in the disordered PPV many-body system.

  17. Recent advances in conjugated polymers for light emitting devices.

    PubMed

    Alsalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  18. Recent Advances in Conjugated Polymers for Light Emitting Devices

    PubMed Central

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  19. Eddy current probe and method for flaw detection in metals

    DOEpatents

    Watjen, J.P.

    1987-06-23

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner. 9 figs.

  20. Eddy current probe and method for flaw detection in metals

    DOEpatents

    Watjen, John P.

    1987-06-23

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner.

  1. Structure Optimization of 21,23-Core-Modified Porphyrins Absorbing Long-Wavelength Light as Potential Photosensitizers Against Breast Cancer Cells

    DTIC Science & Technology

    2006-04-01

    recording singlet oxygen emission spectra. A diode -pumped solid-state laser (Millenia X, Spectra-Physics) at 532 nm was the excitation source. The sample...biological properties in vitro Youngjae You,a,* Scott L. Gibsonb and Michael R. Dettya aInstitute for Lasers , Photonics, and Biophotonics, Department...relative to the exciting laser beam. An additional long-pass filter (850LP) was used to attenuate the excitation laser and the fluorescence from the

  2. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S [Oak Ridge, TN

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  3. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  4. Charge radius of the 13N* proton halo nucleus with Halo Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Mosavi Khansari, M.; Khalili, H.; Sadeghi, H.

    2018-02-01

    We evaluated the charge radius of the first excited state of 13N with halo Effective Field Theory (hEFT) at the low energies. The halo effective field theory without pion is used to examine the halo nucleus bound state with a large S-wave scattering length. We built Lagrangian from the effective core and the valence proton of the fields and obtained the charge form factor at Leading-Order (LO). The charge radius at leading order for the first excited state of the proton halo nucleus, 13N, has been estimated as rc = 2.52 fm. This result is without any finite-size contributions included from the core and the proton. If we consider the contributions of the charge radius of the proton and the core, the result will be [rC]13N* = 5.85 fm.

  5. EPR spin probe and spin label studies of some low molecular and polymer micelles

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.

    1998-12-01

    The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.

  6. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less

  7. Calculations of the excitation energies of all-trans and 11,12s-dicis retinals using localized molecular orbitals obtained by the elongation method

    NASA Astrophysics Data System (ADS)

    Kurihara, Youji; Aoki, Yuriko; Imamura, Akira

    1997-09-01

    In the present article, the excitation energies of the all-trans and the 11,12s-dicis retinals were calculated by using the elongation method. The geometries of these molecules were optimized with the 4-31G basis set by using the GAUSSIAN 92 program. The wave functions for the calculation of the excitation energies were obtained with CNDO/S approximation by the elongation method, which enables us to analyze electronic structures of aperiodic polymers in terms of the exciton-type local excitation and the charge transfer-type excitation. The excitation energies were calculated by using the single excitation configuration interaction (SECI) on the basis of localized molecular orbitals (LMOs). The LMOs were obtained in the process of the elongation method. The configuration interaction (CI) matrices were diagonalized by Davidson's method. The calculated results were in good agreement with the experimental data for absorption spectra. In order to consider the isomerization path from 11,12s-dicis to all-trans retinals, the barriers to the rotations about C11-C12 double and C12-C13 single bonds were evaluated.

  8. Phenylethynyl Silsesquioxanes: Monomer Synthesis, Characterization,Thermolysis and Thermal Properties

    DTIC Science & Technology

    2016-12-14

    thermal, mechanical and surface properties of many polymeric systems. A useful analogy is that a POSS is nano-sized particle of silica solubilzed...with organic modifiers (RSiO1.5)n; the organic periphery determines how well the POSS can interact with any host polymer , while the siliceous core adds...various materials affects polymer properties. Herein is reported a synthesis strategy to produce POSS-containing, thermosetting phenylethynyls to yield

  9. Aqueous film coating to reduce recrystallization of guaifenesin from hot-melt extruded acrylic matrices.

    PubMed

    Bruce, Caroline D; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W

    2010-02-01

    This study investigated the effect of aqueous film coating on the recrystallization of guaifenesin from acrylic, hot-melt extruded matrix tablets. After hot-melt extrusion, matrix tablets were film-coated with either hypromellose or ethylcellulose. The effects of the coating polymer, curing and storage conditions, polymer weight gain, and core guaifenesin concentration on guaifenesin recrystallization were investigated. The presence of either film coating on the guaifenesin-containing tablets was found to prolong the onset time of drug crystallization. The coating polymer was the most important factor determining the delay in the onset of crystallization, with the more hydrophilic polymer, hypromellose, having a higher solubilization potential for the guaifenesin and delaying crystallization for longer period (3 or 6 months in tablets stored at 40 degrees C or 25 degrees C, respectively) than the more hydrophobic ethylcellulose, which displayed a lower solubilization potential for guaifenesin (crystal growth on tablets cured for 2 hours at 60 degrees C occurred within 3 weeks, whereas uncoated tablets displayed surface crystal growth after 30 minutes). Crystal morphology was also affected by the film coating. Elevated temperatures during both curing and storage, incomplete film coalescence, and high core drug concentrations all contributed to an earlier onset of crystal growth.

  10. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.

    PubMed

    Hadinoto, Kunn; Sundaresan, Ajitha; Cheow, Wean Sin

    2013-11-01

    Lipid-polymer hybrid nanoparticles (LPNs) are core-shell nanoparticle structures comprising polymer cores and lipid/lipid-PEG shells, which exhibit complementary characteristics of both polymeric nanoparticles and liposomes, particularly in terms of their physical stability and biocompatibility. Significantly, the LPNs have recently been demonstrated to exhibit superior in vivo cellular delivery efficacy compared to that obtained from polymeric nanoparticles and liposomes. Since their inception, the LPNs have advanced significantly in terms of their preparation strategy and scope of applications. Their preparation strategy has undergone a shift from the conceptually simple two-step method, involving preformed polymeric nanoparticles and lipid vesicles, to the more principally complex, yet easier to perform, one-step method, relying on simultaneous self-assembly of the lipid and polymer, which has resulted in better products and higher production throughput. The scope of LPNs' applications has also been extended beyond single drug delivery for anticancer therapy, to include combinatorial and active targeted drug deliveries, and deliveries of genetic materials, vaccines, and diagnostic imaging agents. This review details the current state of development for the LPNs preparation and applications from which we identify future research works needed to bring the LPNs closer to its clinical realization. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Significantly improved dielectric performances of nanocomposites via loading two-dimensional core-shell structure Bi2Te3@SiO2 nanosheets

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Wang, Xiucai; Yu, Xinmei; Fan, Yun; Duan, Zhikui; Jiang, Yewen; Yang, Faquan; Zhou, Yuexia

    2018-07-01

    Polymer/semiconductor-insulator nanocomposites can display high dielectric constants with a relatively low dissipation factor under low electric fields, and thus seem to promising for high energy density capacitors. Here, a novel nanocomposite films is developed by loading two-dimensional (2D) core-shell structure Bi2Te3@SiO2 nanosheets in the poly (vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) polymer matrix. The 2D Bi2Te3 nanosheets were prepared through simple microwave-assisted method. The experimental results suggesting that the SiO2 shell layer between the fillers and polymer matrix could effectively improve the dielectric constant, dielectric loss, AC conductivity, and breakdown strength of composites films. The composite films load with 10 vol.% 2D Bi2Te3@SiO2 nanosheets exhibits a high dielectric constant of 70.3 at 1 kHz and relatively low dielectric loss of 0.058 at 1 kHz. The finite element simulation of electric field and electric current density distribution revealed that the SiO2 shell layer between the fillers and polymer matrix could effectively improve the energy loss, local electric field strength, and breakdown strength of composite films. Therefore, this work will provide a promising route to achieve high-performance capacitors.

  12. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    PubMed

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  13. Jigsaw model of the origin of life

    NASA Astrophysics Data System (ADS)

    McGowan, John F.

    2002-02-01

    It is suggested that life originated in a three-step process referred to as the jigsaw model. RNA, proteins, or similar organic molecules polymerized in a dehydrated carbon-rich environment, on surfaces in a carbon-rich environment, or in another environment where polymerization occurs. These polymers subsequently entered an aqueous environment where they folded into compact structures. It is argued that the folding of randomly generated polymers such as RNA or proteins in water tends to partition the folded polymer into domains with hydrophobic cores and matching shapes to minimize energy. In the aqueous environment hydrolysis or other reactions fragmented the compact structures into two or more matching molecules, occasionally producing simple living systems, also knows as autocatalytic sets of molecules. It is argued that the hydrolysis of folded polymers such as RNA or proteins is not random. The hydrophobic cores of the domains are rarely bisected due to the energy requirements in water. Hydrolysis preferentially fragments the folded polymers into pieces with complementary structures and chemical affinities. Thus the probability of producing a system of matched, interacting molecules in prebiotic chemistry is much higher than usually estimated. Environments where this process may occur are identified. For example, the jigsaw model suggests life may have originated at a seep or carbonaceous fluids beneath the ocean. The polymerization occurred beneath the sea floor. The folding and fragmentation occurred in the ocean. The implications of this hypothesis for seeking life or prebiotic chemistry in the Solar System are explored.

  14. Preparation and in-vivo pharmacokinetic study of a novel extended release compression coated tablets of fenoterol hydrobromide.

    PubMed

    Elshafeey, Ahmed H; Sami, Elshaimaa I

    2008-01-01

    The aim of this study was to formulate extended release compression coated core tablets of fenoterol hydrobromide, a selective beta(2) adrenergic receptor agonist, in an attempt to prevent nocturnal asthma. Two hydrophilic polymers viz Kollidon SR, Polyox WSR 303 and a hydrophobic one (Precirol ATO5) were employed. Compression coated tablets were formulated by preparing a core tablet containing 7.5 mg drug and various amounts of polymer and Emcompress then compressed coated with the same polymeric materials. For comparison purpose different matrix tablets were also prepared employing the same polymers. In-vitro release studies were carried out at different pH (1.2 and 6.8). Pharmacokinetics of extended release tablets as well as commercially available immediate release tablets (Berotec) were studied after oral administration to beagle dogs using a new developed LC-MS/MS method with a lower limit of quantification of 1 ng/ml. Fenoterol release from compression coated tablets was significantly lower than matrix tablets. The mechanism of release was changed with the nature and content of polymer. The release pattern of drug from F16 containing 40 mg Kollidon SR divided in the core tablet (15 mg) and the rest in the compressed coat (25 mg) showed a typical zero order release kinetic that could extend drug release >10 h and reasonable time for 75% to be released (t(75)) (8.92 h). When compared to immediate release Berotec tablet the MRT was significantly extended from 7.03 +/- 0.76 to 10.93 +/- 1.25 h (P < 0.001) and HVD(t 50%Cmax) was also significantly extended from 2.71 +/- 0.68 to 6.81 +/- 0.67 h with expected prevention of nocturnal asthma.

  15. Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after IV administration.

    PubMed

    Wakaskar, Rajesh R; Bathena, Sai Praneeth R; Tallapaka, Shailendra B; Ambardekar, Vishakha V; Gautam, Nagsen; Thakare, Rhishikesh; Simet, Samantha M; Curran, Stephen M; Singh, Rakesh K; Dong, Yuxiang; Vetro, Joseph A

    2015-03-01

    Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors. Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo. X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.9 wt% and did not aggregate in PBS or 90% (v/v) human serum at 37°C for at least 24 h. In contrast, X-F127 PM decreased the unbound fraction of CA4 in whole blood (fu) and increased the mean plasma residence time and subsequent potency of CA4 against the vascular function and growth of primary murine 4T1 breast tumors over CA4 in F127 PM and water-soluble CA4P after IV administration. Given that decreasing the fu is an indication of decreased drug release, peripherally cross-linking the shell of core-shell polymer micelles may be a simple approach to decrease premature release of physically loaded hydrophobic drug in the blood and increase subsequent potency in solid tumors.

  16. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    PubMed

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  17. PS-b-PMMA/PLA blends for nanoporous templates with hierarchical and tunable pore size

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Hoa; Vayer, Marylène; Sinturel, Christophe

    2018-01-01

    Blends of poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) and poly(lactide) (PLA) were deposited in the form of thin films on the surface of modified silicon wafers and exposed to tetrahydrofuran (THF) vapor annealing. It was shown that in specific experimental conditions, a core-shell morphology consisting in cylinders with a PMMA shell and a PLA core, within a continuous matrix of PS, was formed. In this case, PLA naturally segregated in the core of the PMMA cylinders, minimizing the PS/PLA interaction, which constitutes the most incompatible pair (the interaction strength between the various components was confirmed in thin films of the corresponding polymer blends). Compared to other block copolymer/homopolymer blends described in the literature, this system exhibits unexpected high increase of the characteristic lengths of the system (center-to-center distance and diameter). This was attributed to a partial solubilization of the PLA in the PMMA corona (the two polymers are highly compatible), inducing an enhanced level of PS and PLA stretching caused by the strong repulsion between these two polymers. The selective extraction of the PLA yielded to porous domains with small dimensions (6 ± 2.5 nm), reaching the performances that are currently attained in highly incompatible block polymers with low molecular weight. Further PMMA removal revealed a second porosity level, with higher pores diameter and center-to-center distance compared to the neat PS-b-PMMA system. This work highlights how PS-b-PMMA, that currently represents one of the industrial standards nanoporous template precursors, can be modified in an easy and costless approach using PLA homopolymer addition.

  18. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  19. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers.

    PubMed

    Wang, Jun; Bonnesen, Peter V; Rangel, E; Vallejo, E; Sanchez-Castillo, Ariadna; James Cleaves Ii, H; Baddorf, Arthur P; Sumpter, Bobby G; Pan, Minghu; Maksymovych, Petro; Fuentes-Cabrera, Miguel

    2016-01-04

    Self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N(9)-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two or more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. These characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Further, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.

  20. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  1. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role inmore » photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.« less

  2. Polymer dots enable deep in vivo multiphoton fluorescence imaging of cerebrovascular architecture

    NASA Astrophysics Data System (ADS)

    Hassan, Ahmed M.; Wu, Xu; Jarrett, Jeremy W.; Xu, Shihan; Miller, David R.; Yu, Jiangbo; Perillo, Evan P.; Liu, Yen-Liang; Chiu, Daniel T.; Yeh, Hsin-Chih; Dunn, Andrew K.

    2018-02-01

    Deep in vivo imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of in vivo imaging, their use for deep multiphoton imaging has never before been demonstrated. Here we characterize the multiphoton properties of three pdot variants (CNPPV, PFBT, and PFPV) and demonstrate deep imaging of cortical microvasculature in C57 mice. Specifically, we measure the two- versus three-photon power dependence of these pdots and observe a clear three-photon excitation signature at wavelengths longer than 1300 nm, and a transition from two-photon to three-photon excitation within a 1060 - 1300 nm excitation range. Furthermore, we show that pdots enable in vivo two-photon imaging of cerebrovascular architecture in mice up to 850 μm beneath the pial surface using 800 nm excitation. In contrast with traditional multiphoton probes, we also demonstrate that the broad multiphoton absorption spectrum of pdots permits imaging at longer wavelengths (λex = 1,060 and 1225 nm). These wavelengths approach an ideal biological imaging wavelength near 1,300 nm and confer compatibility with a high-power ytterbium-fiber laser and a high pulse energy optical parametric amplifier, resulting in substantial improvements in signal-to-background ratio (>3.5-fold) and greater cortical imaging depths of 900 μm and 1300 μm. Ultimately, pdots are a versatile tool for MPM due to their extraordinary brightness and broad absorption, which will undoubtedly unlock the ability to interrogate deep structures in vivo.

  3. NMR (Nuclear Magnetic Resonance) and macromolecular migration in a melt or in concentrated solutions

    NASA Technical Reports Server (NTRS)

    Addad, J. P. C.

    1983-01-01

    The purpose of this paper is to analyze the migration process of long polymer molecules in a melt or in concentrated solutions as it may be observed from the dynamics of the transverse magnetization of nuclear spins linked to these chains. The low frequency viscoelastic relaxation of polymer systems is known to be mainly controlled by the mechanism of dissociation of topological constraints excited on chains and which are called entanglements. This mechanism exhibits a strong dependence upon the chain molecular weight. These topological constraints also govern the diffusion process of polymer chains. So, the accurate description of the diffusion motion of a chain may be a convenient way to characterize disentanglement processes necessarily involved in any model proposed to explain viscoelastic effects.

  4. Improved Rotary Transformer For Shaft-Position Indicator

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1991-01-01

    Improved rotary transformer for Inductosyn (or equivalent) shaft-position-indicating circuit has pair of ferrite cores instead of the solid-iron cores. Designed with view toward decreasing excitation power (to maximum allowable 2 W) supplied to shaft-position-indicating circuit to increase its output signal and make tracking system less vulnerable to electromagnetic interference.

  5. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.

    PubMed

    Jin, Xin; Sun, Pei; Tong, Gangsheng; Zhu, Xinyuan

    2018-02-03

    As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Investigating polarized fluorescence emission of Napthalene Diimide polymer films via Stokes Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ulrich, Steven; Sutch, Thabita; Schweizer, Matthias; Szulczewski, Greg; Barbosa Neto, Newton; Araujo, Paulo; Szulczewski's Group. Collaboration; Nanolab@UA Collaboration

    Structural studies of materials, especially polymers, has been an area of growing interest in the past decades. This is due to the wide variety of physical, optical and chemical properties which can be tuned to obtain desired outcomes. Such polymers include P(NDI2OD-T2) an organic n-type, donor-acceptor polymer. Techniques to measure the structure, chemical and optical properties of these materials include XRD, time resolved spectroscopy and other timely and expensive methods. This work seeks to implement Stokes parameter analysis to create a new spectroscopic method, which can be implemented at a fraction of the cost and with relative ease. This technique, when used to probe P(NDI2OD-T2), has been able to discern information about polymer aggregate formation, energy transfer and out of plane stacking on the basis of solvent choice and sample thickness. Additionally, this technique gives information regarding the polarized emission from excited sources, which could provide insight for increased device performance. College of Arts and Sciences and Center for Information Technology, University of Alabama. CNPq Brazil Grant number 401453/2014-6.

  7. Rise and Fall: Poly(phenyl vinyl ketone) Photopolymerization and Photodegradation under Visible and UV Radiation.

    PubMed

    Reeves, Jennifer A; Allegrezza, Michael L; Konkolewicz, Dominik

    2017-07-01

    Vinyl ketone polymers, including phenyl vinyl ketone (PVK), are an important class of polymers due to their ability to degrade upon irradiation with ultraviolet light which makes them useful for a variety of applications. However, traditional radical methods for synthesizing PVK polymers give rise to poor control or are unable to produce block copolymers. This work uses reversible addition-fragmentation chain transfer polymerization (RAFT) and photochemistry to polymerize PVK. When visible blue radiation of 440 ± 10 nm is used as the light source for the photopolymerization, rapid polymerization and well-defined polymers are created. This RAFT method uses PVK as both monomer and radical initiator, exciting the PVK mono-mer by 440 ± 10 nm irradiation to avoid the use of an additional radical initiator. Once the poly-mer is synthesized, it is stable against degradation by blue light (440 ± 10 nm), but upon exposure to ultraviolet (UV) radiation (310 ± 20 nm) significant decrease in molecular weight is observed. The degradation is observed for all poly(PVK) materials synthesized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and fluorescent properties of poly(arylpyrazoline)'s for organic-electronics

    NASA Astrophysics Data System (ADS)

    Vandana, T.; Ramkumar, V.; Kannan, P.

    2016-08-01

    The present work focuses on the synthesis and characterization of poly(arylchalcone)'s (PCH I-IV) by reacting acetone with various dialdehydes for the first time at below ambient temperature followed by cyclization with phenylhydrazinehydrochloride to yield luminescent poly(arylpyrazoline)'s (PPY I-IV). The synthesized polymers were characterized by standard techniques such as, GPC, SEM, TGA, FT-IR, 1H NMR, UV-Vis absorption and fluorescence spectroscopy, and electrochemical studies by cyclic voltammetry analyses. The Pyrazoline group hooked with different aryl donors such as benzene, thiophene, carbazole, triphenylamine, thus results a series of blue and green emitting materials. The obtained optical bandgap energy of the polymers (PPY I-IV) were 2.53, 3.41, 3.07, 3.10 eV respectively, suggest that all the polymers belongs to semiconducting category. The solvent effect of polymers was thoroughly studied and explained by Lippert-Mataga equation. The polymers I & IV display large degree of intra-molecular charge transfer in excited state evidenced from solvatochromic shift on the emission spectra. The obtained results demonstrate that they are promising materials for organic electronics applications.

  9. Linking 1D Transition-Metal Coordination Polymers and Different Inorganic Boron Oxides To Construct a Series of 3D Inorganic-Organic Hybrid Borates.

    PubMed

    Zhi, Shao-Chen; Wang, Yue-Lin; Sun, Li; Cheng, Jian-Wen; Yang, Guo-Yu

    2018-02-05

    Three inorganic-organic hybrid borates, M(1,4-dab)[B 5 O 7 (OH) 3 ] [M = Zn (1), Cd (2), 1,4-dab = 1,4-diaminobutane)] and Co(1,3-dap)[B 4 O 7 ] (3, 1,3-dap = 1,3-diaminopropane), which integrated characteristics of 1D coordination polymers and 1D/3D inorganic boron oxides have been obtained under solvothermal conditions. Compounds 1 and 2 are isostructural and crystallize in a centrosymmetric space group P2 1 /c; the 3D achiral structures of 1 and 2 consist of the nonhelical Zn/Cd-1,4-dap coordination polymers and 1D B-O chains. Compound 3 crystallizes in a chiral space group P4 3 2 1 2; the helical Co-1,3-dap coordination polymer chains are entrained within a 3D B-O network and finally form the chiral framework. Compounds 1-3 represent good examples of using coordination polymers to construct mixed-motif inorganic-organic hybrid borates. Compounds 1 and 2 display blue luminescence when excited with UV light.

  10. Magnetic moments, E3 transitions and the structure of high-spin core excited states in 211Rn

    NASA Astrophysics Data System (ADS)

    Poletti, A. R.; Dracoulis, G. D.; Byrne, A. P.; Stuchbery, A. E.; Poletti, S. J.; Gerl, J.; Lewis, P. M.

    1985-05-01

    The results of g-factor measurements of high-spin states in 211Rn are: Ex = 8856 + Δ' keV (Jπ = 63/2-), g = 0.626(7); 6101 + Δ' KeV (49/2+), 0.766(8); 5347 + Δ' KeV (43/2-), 0.74(2); 3927 + Δ KeV (35/2+), 1.017(12); 1578 + Δ KeV (17/2-), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously.

  11. Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Martin; Marian, Christel M.; Waletzke, Mirko; Grimme, Stefan

    2009-01-01

    We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-β-carotenes (n =3, 5, 7, 9) and β-carotene (n =11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The B1u+ state constitutes the S1 state in the vertical absorption spectrum of mini-3-β-carotene but switches order with the 2 A1g- state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the B1u+ and B1u- states is observed whereas the 3 A1g- state is found to remain energetically above the optically bright B1u+ state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-β-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are presented. For β-carotene, where these transition energies are known from experiment, excellent agreement with our calculations is observed.

  12. Parallel multireference configuration interaction calculations on mini-beta-carotenes and beta-carotene.

    PubMed

    Kleinschmidt, Martin; Marian, Christel M; Waletzke, Mirko; Grimme, Stefan

    2009-01-28

    We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-beta-carotenes (n=3, 5, 7, 9) and beta-carotene (n=11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The (1)B(u) (+) state constitutes the S(1) state in the vertical absorption spectrum of mini-3-beta-carotene but switches order with the 2 (1)A(g) (-) state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the (1)B(u) (+) and (1)B(u) (-) states is observed whereas the 3 (1)A(g) (-) state is found to remain energetically above the optically bright (1)B(u) (+) state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-beta-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are presented. For beta-carotene, where these transition energies are known from experiment, excellent agreement with our calculations is observed.

  13. Probing photocurrent generation mechanisms in hybrid IR-senstive quantum dot/conjugated polymer solar cells

    NASA Astrophysics Data System (ADS)

    Strein, Elisabeth

    The work in this dissertation aims to improve the ability of hybrid polymer/quantum dot solar cells to harvest and utilize sunlight by contributing mechanistic insights into photocurrent generation. The mechanisms of charge transfer and energy transfer are explored spectroscopically in chapter three and both are found to contribute to photocurrent. Chapter four looks at excitation energy in excess of the bandgap and finds a rise in polaron yield which correlates with excess photon energy. Chapter two discusses details of the experimental techniques used to access the data discussed in the chapters that follow.

  14. One-pot synthesis of biocompatible Te@phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process.

    PubMed

    Qian, Haisheng; Zhu, Enbo; Zheng, Shunji; Li, Zhengquan; Hu, Yong; Guo, Changfa; Yang, Xingyun; Li, Liangchao; Tong, Guoxiu; Guo, Huichen

    2010-12-10

    One-pot hydrothermal process has been developed to synthesize uniform Te@phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te@phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  15. The rheology and processing of “edge sheared” colloidal polymer opals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Hon Sum; Mackley, Malcolm, E-mail: mrm5@cam.ac.uk; Butler, Simon

    This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colors can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colors by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature, and the material was found to be highly viscoelastic at all tested temperatures.more » A Cambridge multipass rheometer was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective polyethylene terephthalate sheets. Axial extension, simple shear, and a novel “edge shearing” geometry were all evaluated, and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing, and mechanisms relating to ordering within complex viscoelastic fluids.« less

  16. Biodistribution of newly synthesized PHEA-based polymer-coated SPION in Sprague Dawley rats as magnetic resonance contrast agent

    PubMed Central

    Park, Junsung; Cho, Wonkyung; Park, Hee Jun; Cha, Kwang-Ho; Ha, Dae-Chul; Choi, Youn-Woong; Lee, Ha-Young; Cho, Sun-Hang; Hwang, Sung-Joo

    2013-01-01

    Objectives The purpose of this study was to observe the pharmacokinetic behavior of newly synthesized biocompatible polymers based on polyhydroxyethylaspartamide (PHEA) to be used to coat an iron oxide core to make superparamagnetic iron oxide nanoparticles (SPION). Materials and methods The isotopes [14C] and [59Fe] were used to label the polymer backbone (CLS) and iron oxide core (FLS), respectively. In addition, unradiolabeled cold superparamagnetic iron oxide nanoparticles (SPION/ULS) were synthesized to characterize particle size by dynamic light scattering, morphology by transmission electron microscopy, and in vivo magnetic resonance imaging (MRI). CLS and FLS were used separately to investigate the behavior of both the synthesized polymer and [Fe] in Sprague Dawley (SD) rats, respectively. Because radioactivity of the isotopes was different by β for CLS and γ for FLS, synthesis of the samples had to be separately prepared. Results The mean particle size of the ULS was 66.1 nm, and the biodistribution of CLS concentrations in various organs, in rank order of magnitude, was liver > kidney > small intestine > other. The biodistribution of FLS concentrations was liver > spleen > lung > other. These rank orders show that synthesized SPION mainly accumulates in the liver. The differences in the distribution were caused by the SPION metabolism. Radiolabeled polymer was metabolized by the kidney and excreted mainly in the urine; [59Fe] was recycled for erythrocyte production in the spleen and excreted mainly in the feces. The MR image of the liver after intravenous injection demonstrated that [Fe] effectively accumulated in the liver and exhibited high-contrast enhancement on T2-weighted images. Conclusion This newly synthesized, polymer-coated SPION appears to be a promising candidate for use as a liver-targeted, biocompatible iron oxide MR imaging agent. PMID:24204138

  17. Multi-quasiparticle excitations in 145Tb

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Zhou, X. H.; Zhang, Y. H.; Hayakawa, T.; Oshima, M.; Toh, Y.; Shizuma, T.; Katakura, J.; Hatsukawa, Y.; Matsuda, M.; Kusakari, H.; Sugawara, M.; Furuno, K.; Komatsubara, T.

    2004-04-01

    High-spin states in 145Tb have been investigated by means of in-beam ggr-ray spectroscopy techniques with the 118Sn(32S, 1p4n) reaction. Excitation functions, X-ggr-t and ggr-ggr-t coincidences and ggr-ray anisotropies were measured. A level scheme of 145Tb was established up to Exap 7 MeV. The level structure shows characteristics of a spherical nucleus. Based on the systematics of level structure in the odd-A N = 80 isotones, the level structure below 2 MeV excitation is interpreted by coupling an h11/2 proton to the excitations in the even-even 144Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations.

  18. Three-dimensional organization of block copolymers on "DNA-minimal" scaffolds.

    PubMed

    McLaughlin, Christopher K; Hamblin, Graham D; Hänni, Kevin D; Conway, Justin W; Nayak, Manoj K; Carneiro, Karina M M; Bazzi, Hassan S; Sleiman, Hanadi F

    2012-03-07

    Here, we introduce a 3D-DNA construction method that assembles a minimum number of DNA strands in quantitative yield, to give a scaffold with a large number of single-stranded arms. This DNA frame is used as a core structure to organize other functional materials in 3D as the shell. We use the ring-opening metathesis polymerization (ROMP) to generate block copolymers that are covalently attached to DNA strands. Site-specific hybridization of these DNA-polymer chains on the single-stranded arms of the 3D-DNA scaffold gives efficient access to DNA-block copolymer cages. These biohybrid cages possess polymer chains that are programmably positioned in three dimensions on a DNA core and display increased nuclease resistance as compared to unfunctionalized DNA cages. © 2012 American Chemical Society

  19. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density.

    PubMed

    Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei

    2017-11-22

    Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (<0.05 at 1 kHz). Both high electric displacement and high electric breakdown strength were achieved in the films with 10 wt % core-shell fillers loaded. The maximum energy storage density of 7.018 J/cm 3 was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.

  20. Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.

    2017-03-01

    Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.

Top