Core-crust transition in neutron stars: Predictivity of density developments
Ducoin, Camille; Providencia, Constanca; Vidana, Isaac; Margueron, Jerome
2011-04-15
The possibility to draw links between the isospin properties of nuclei and the structure of compact stars is a stimulating perspective. In order to pursue this objective on a sound basis, the correlations from which such links can be deduced have to be carefully checked against model dependence. Using a variety of nuclear effective models and a microscopic approach, we study the relation between the predictions of a given model and those of a Taylor density development of the corresponding equation of state: this establishes to what extent a limited set of phenomenological constraints can determine the core-crust transition properties. From a correlation analysis, we show that (a) the transition density {rho}{sub t} is mainly correlated with the symmetry energy slope L, (b) the proton fraction Y{sub p,t} with the symmetry energy and symmetry energy slope (J,L) defined at saturation density, or, even better, with the same quantities defined at {rho}=0.1 fm{sup -3}, and (c) the transition pressure P{sub t} with the symmetry energy slope and curvature (L,K{sub sym}) defined at {rho}=0.1 fm{sup -3}.
NASA Astrophysics Data System (ADS)
Atta, D.; Mukhopadhyay, S.; Basu, D. N.
2017-03-01
The crustal fraction of moment of inertia in neutron stars is calculated using β-equilibrated nuclear matter obtained from density dependent M3Y effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar: R ≥4.10 + 3.36 M/M_⊙ km.
Surface tension of the core-crust interface of neutron stars with global charge neutrality
NASA Astrophysics Data System (ADS)
Rueda, Jorge A.; Ruffini, Remo; Wu, Yuan-Bin; Xue, She-Sheng
2014-03-01
It has been shown recently that taking into account strong, weak, electromagnetic, and gravitational interactions, and fulfilling the global charge neutrality of the system, a transition layer will happen between the core and crust of neutron stars, at the nuclear saturation density. We use relativistic mean field theory together with the Thomas-Fermi approximation to study the detailed structure of this transition layer and calculate its surface and Coulomb energy. We find that the surface tension is proportional to a power-law function of the baryon number density in the core bulk region. We also analyze the influence of the electron component and the gravitational field on the structure of the transition layer and the value of the surface tension, to compare and contrast with known phenomenological results in nuclear physics. Based on the above results we study the instability against Bohr-Wheeler surface deformations in the case of neutron stars obeying global charge neutrality. Assuming the core-crust transition at nuclear density ρcore≈2.7×1014 g cm-3, we find that the instability sets the upper limit to the crust density, ρcrustcrit≈1.2×1014 g cm-3. This result implies a nonzero lower limit to the maximum electric field of the core-crust transition surface and makes inaccessible a limit of quasilocal charge neutrality in the limit ρcrust=ρcore. The general framework presented here can be also applied to study the stability of sharp phase transitions in hybrid stars as well as in strange stars, both bare and with outer crust. The results of this work open the way to a more general analysis of the stability of these transition surfaces, accounting for other effects such as gravitational binding, centrifugal repulsion, magnetic field induced by rotating electric field, and therefore magnetic dipole-dipole interactions.
Density functional theory of complex transition densities.
Ernzerhof, Matthias
2006-09-28
We present an extension of Hohenberg-Kohn-Sham density functional theory to the domain of complex local potentials and complex electron densities. The approach is applicable to resonance (Siegert) [Phys. Rev. 56, 750 (1939)] states and other scattering and transport problems that can be described by a normalized state of a Hamiltonian containing a complex local potential. Such Hamiltonians are non-Hermitian and their eigenvalues are in general complex, the imaginary part being inversely proportional to the lifetime of the system. The one-to-one correspondence between complex local potentials nu and complex electron densities rho is established provided that the complex variables are sufficiently close to real local potentials and densities of nondegenerate ground states. We show that the exchange-correlation functionals, contributing to the complex energy, are determined through analytic continuation of their ground-state-theory counterparts. This implies that the exchange-correlation effects on the lifetime of a resonance are, under appropriate conditions, already determined by the functionals of the ground-state theory.
Disk Surface Density Transitions as Protoplanet Traps
NASA Astrophysics Data System (ADS)
Masset, F. S.; Morbidelli, A.; Crida, A.; Ferreira, J.
2006-05-01
density profile as the minimum mass solar nebula (MMSN). Shallow surface density transitions require light disks to efficiently trap embryos. In the case of the MMSN, this could happen in the very central parts (r<0.03 AU). We discuss where in a protoplanetary disk one can expect a surface density jump. This effect could constitute a solution to the well-known problem that the buildup of the first protogiant solid core in a disk takes much longer than its type I migration toward the central object.
The transition to the metallic state in low density hydrogen.
McMinis, Jeremy; Morales, Miguel A; Ceperley, David M; Kim, Jeongnim
2015-11-21
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3) a0. We compare our results to previously reported density functional theory, Hedin's GW approximation, and dynamical mean field theory results.
Numerical studies of density transition injection in laser wakefield acceleration
NASA Astrophysics Data System (ADS)
Massimo, F.; Lifschitz, A. F.; Thaury, C.; Malka, V.
2017-08-01
The quality of laser wakefield accelerated electrons beams is strongly determined by the physical mechanism exploited to inject electrons in the wakefield. One of the techniques used to improve the beam quality is the density transition injection, where the electron trapping occurs as the laser pulse passes a sharp density transition created in the plasma. Although this technique has been widely demonstrated experimentally, the literature lacks theoretical and numerical studies on the effects of all the transition parameters. We thus report and discuss the results of a series of particle in cell (PIC) simulations where the density transition height and downramp length are systematically varied, to show how the electron beam parameters and the injection mechanism are affected by the density transition parameters.
A density-independent rigidity transition in biological tissues
NASA Astrophysics Data System (ADS)
Bi, Dapeng; Lopez, J. H.; Schwarz, J. M.; Manning, M. Lisa
2015-12-01
Cell migration is important in many biological processes, including embryonic development, cancer metastasis and wound healing. In these tissues, a cell’s motion is often strongly constrained by its neighbours, leading to glassy dynamics. Although self-propelled particle models exhibit a density-driven glass transition, this does not explain liquid-to-solid transitions in confluent tissues, where there are no gaps between cells and therefore the density is constant. Here we demonstrate the existence of a new type of rigidity transition that occurs in the well-studied vertex model for confluent tissue monolayers at constant density. We find that the onset of rigidity is governed by a model parameter that encodes single-cell properties such as cell-cell adhesion and cortical tension, providing an explanation for liquid-to-solid transitions in confluent tissues and making testable predictions about how these transitions differ from those in particulate matter.
A Density-Independent Flocking Transition in Confluent Tissues
NASA Astrophysics Data System (ADS)
Czajkowski, Michael; Bi, Dapeng; Manning, M. Lisa; Marchetti, M. Cristina
Some of us recently demonstrated a density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. To explore the influence of cell shape on collective states, we have constructed continuum equations that couple a scalar field describing cell-shape anisotropy to cell polarization. The model displays a density independent transition to a polarized state of elongated cells driven by a cellular ``shape-index'' parameter. We map out the phase diagram using linear stability analysis and numerical solution of the nonlinear hydrodynamic equations. The proposed transition constitutes a density-independent flocking transition. We acknowledge support from The Simons Foundation and NSF-DGE-1068780.
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim
2015-11-21
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r{sub s} = 2.27(3) a{sub 0}. We compare our results to previously reported density functional theory, Hedin’s GW approximation, and dynamical mean field theory results.
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim
2015-11-18
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r_{s} = 2.27(3)a_{0}. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.
Classical density functional study of wetting transitions on nanopatterned surfaces
NASA Astrophysics Data System (ADS)
Yatsyshin, P.; Parry, A. O.; Rascón, C.; Kalliadasis, S.
2017-03-01
Even simple fluids on simple substrates can exhibit very rich surface phase behaviour. To illustrate this, we consider fluid adsorption on a planar wall chemically patterned with a deep stripe of a different material. In this system, two phase transitions compete: unbending and pre-wetting. Using microscopic density-functional theory, we show that, for thin stripes, the lines of these two phase transitions may merge, leading to a new two-dimensional-like wetting transition occurring along the walls. The influence of intermolecular forces and interfacial fluctuations on this phase transition and at complete pre-wetting are considered in detail.
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; ...
2015-11-18
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less
Insight into Structural Phase Transitions from Density Functional Theory
NASA Astrophysics Data System (ADS)
Ruzsinszky, Adrienn
2014-03-01
Structural phase transitions caused by high pressure or temperature are very relevant in materials science. The high pressure transitions are essential to understand the interior of planets. Pressure or temperature induced phase transitions can be relevant to understand other phase transitions in strongly correlated systems or molecular crystals.Phase transitions are important also from the aspect of method development. Lower level density functionals, LSDA and GGAs all fail to predict the lattice parameters of different polymorphs and the phase transition parameters at the same time. At this time only nonlocal density functionals like HSE and RPA have been proved to resolve the geometry-energy dilemma to some extent in structural phase transitions. In this talk I will report new results from the MGGA_MS family of meta-GGAs and give an insight why this type of meta-GGAs can give a systematic improvement of the geometry and phase transition parameters together. I will also present results from the RPA and show a possible way to improve beyond RPA.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Chen, Lie-Wen
2014-12-01
Nuclear structure observables usually most effectively probe the properties of nuclear matter at subsaturation densities rather than at saturation density. We demonstrate that the electric dipole polarizibility αD in 208Pb is sensitive to both the magnitude Esym(ρc) and density slope L (ρc) of the symmetry energy at the subsaturation cross density ρc=0.11 fm-3. Using the experimental data of αD in 208Pb from RCNP (Research Center for Nuclear Physics, Osaka University) and the recent accurate constraint of Esym(ρc) from the binding energy difference of heavy isotope pairs, we extract a value of L (ρc)=47.3 ±7.8 MeV. The implication of the present constraint of L (ρc) to the symmetry energy at saturation density, the neutron skin thickness of 208Pb and the core-crust transition density in neutron stars is discussed.
The glass transition in high-density amorphous ice
Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H.; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland
2015-01-01
There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature Tg of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's Tg measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p–T plane for LDA, HDA, and VHDA. PMID:25641986
Lipid Bilayer Phase Transition: Density Measurements and Theory
Nagle, J. F.
1973-01-01
The overall change of density for dipalmitoyl lecithin bilayers agrees with a general order-disorder theory and yields about seven gauche rotations per molecule for the biologically relevant high-temperature phase. The shape of the curve of density against temperature is similar to the result of an exact calculation on a specific model, which gives a 3/2-order phase transition. PMID:4519637
Topological deconfinement transition in QCD at finite isospin density
NASA Astrophysics Data System (ADS)
Kashiwa, Kouji; Ohnishi, Akira
2017-09-01
The confinement-deconfinement transition is discussed from topological viewpoints. The topological change of the system is achieved by introducing the dimensionless imaginary chemical potential (θ). Then, the non-trivial free-energy degeneracy becomes the signal of the deconfinement transition and it can be visualized by using the map of the thermodynamic quantities to the circle S1 along θ. To understand this "topological" deconfinement transition at finite real quark chemical potential (μR), we consider the isospin chemical potential (μiso) in the effective model of QCD. The phase diagram at finite μiso is identical with that at finite μR outside of the pion-condensed phase at least in the large-Nc limit via the well-known orbifold equivalence. In the present effective model, the topological deconfinement transition does not show a significant dependence on μiso and then we can expect that this tendency also appears at small μR. Also, the chiral transition and the topological deconfinement transition seems to be weakly correlated. If we will access lattice QCD data for the temperature dependence of the quark number density at finite μiso with θ = π / 3, our surmise can be judged.
Fluid hydrogen at high density - The plasma phase transition
NASA Technical Reports Server (NTRS)
Saumon, D.; Chabrier, G.
1989-01-01
A new model equation of state is applied, based on realistic interparticle potentials and a self-consistent treatment of the internal levels, to fluid hydrogen at high density. This model shows a strong connection between molecular dissociation and pressure ionization. The possibility of a first-order plasma phase transition is considered, and for which both the evolution in temperature and the critical point is given.
USING STELLAR DENSITIES TO EVALUATE TRANSITING EXOPLANETARY CANDIDATES
Tingley, B.; Deeg, H. J.; Bonomo, A. S.
2011-01-10
One of the persistent complications in searches for transiting exoplanets is the low percentage of the detected candidates that ultimately prove to be planets, which significantly increases the load on the telescopes used for the follow-up observations to confirm or reject candidates. Several attempts have been made at creating techniques that can pare down candidate lists without the need of additional observations. Some of these techniques involve a detailed analysis of light curve characteristics; others estimate the stellar density or some proxy thereof. In this paper, we extend upon this second approach, exploring the use of independently calculated stellar densities to identify the most promising transiting exoplanet candidates. We use a set of CoRoT candidates and the set of known transiting exoplanets to examine the potential of this approach. In particular, we note the possibilities inherent in the high-precision photometry from space missions, which can detect stellar asteroseismic pulsations from which accurate stellar densities can be extracted without additional observations.
Moustakidis, Ch. C.; Lalazissis, G. A.; Niksic, T.; Vretenar, D.; Ring, P.
2010-06-15
The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}
Watching excitons move: the time-dependent transition density matrix
NASA Astrophysics Data System (ADS)
Ullrich, Carsten
2012-02-01
Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.
Density Functional Theory for Phase-Ordering Transitions
Wu, Jianzhong
2016-03-30
Colloids display astonishing structural and dynamic properties that can be dramatically altered by modest changes in the solution condition or an external field. This complex behavior stems from a subtle balance of colloidal forces and intriguing mesoscopic and macroscopic phase transitions that are sensitive to the processing conditions and the dispersing environment. Whereas the knowledge on the microscopic structure and phase behavior of colloidal systems at equilibrium is now well-advanced, quantitative predictions of the dynamic properties and the kinetics of phase-ordering transitions in colloids are not always realized. Many important mesoscopic and off-equilibrium colloidal states remain poorly understood. The proposed research aims to develop a new, unifying approach to describe colloidal dynamics and the kinetics of phase-ordering transitions based on accomplishments from previous work for the equilibrium properties of both uniform and inhomogeneous systems and on novel concepts from the state-of-the-art dynamic density functional theory. In addition to theoretical developments, computational research is designed to address a number of fundamental questions on phase-ordering transitions in colloids, in particular those pertinent to a competition of the dynamic pathways leading to various mesoscopic structures, off-equilibrium states, and crystalline phases. By providing a generic theoretical framework to describe equilibrium, metastable as well as non-ergodic phase transitions concurrent with the colloidal self-assembly processes, accomplishments from this work will have major impacts on both fundamental research and technological applications.
Insights into phase transitions and entanglement from density functional theory
NASA Astrophysics Data System (ADS)
Wei, Bo-Bo
2016-11-01
Density functional theory (DFT) has met great success in solid state physics, quantum chemistry and in computational material sciences. In this work we show that DFT could shed light on phase transitions and entanglement at finite temperatures. Specifically, we show that the equilibrium state of an interacting quantum many-body system which is in thermal equilibrium with a heat bath at a fixed temperature is a universal functional of the first derivatives of the free energy with respect to temperature and other control parameters respectively. This insight from DFT enables us to express the average value of any physical observable and any entanglement measure as a universal functional of the first derivatives of the free energy with respect to temperature and other control parameters. Since phase transitions are marked by the nonanalytic behavior of free energy with respect to control parameters, the physical quantities and entanglement measures may present nonanalytic behavior at critical point inherited from their dependence on the first derivative of free energy. We use two solvable models to demonstrate these ideas. These results give new insights for phase transitions and provide new profound connections between entanglement and phase transitions in interacting quantum many-body physics.
THE LOW DENSITY TRANSITING EXOPLANET WASP-15b
West, R. G.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Wilson, D. M.; Bentley, S. J.; Gillon, M.; Queloz, D.; Triaud, A. H. M. J.; Mayor, M.; Pepe, F.; Hebb, L.; Collier Cameron, A.; Enoch, B.; Horne, K.; Parley, N.; Irwin, J.; Lister, T. A.; Pollacco, D.
2009-06-15
We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P = 3.7520656 {+-} 0.0000028 d, has a mass M {sub p} = 0.542 {+-} 0.050 M {sub J} and radius R {sub p} = 1.428 {+-} 0.077 R {sub J}, and is therefore one of the least dense transiting exoplanets so far discovered ({rho}{sub p} = 0.247 {+-} 0.035 g cm{sup -3}). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T {sub eff} = 6300 {+-} 100 K and [Fe/H] = -0.17 {+-} 0.11.
Uejima, Motoyuki; Sato, Tohru; Yokoyama, Daisuke; Tanaka, Kazuyoshi; Park, Jong-Wook
2014-07-21
A theoretical design principle for enhancement of the quantum yield of light-emitting molecules is desired. For the establishment of the principle, we focused on the S1 states of blue-emitting anthracene derivatives: 2-methyl-9,10-di(2'-naphthyl)anthracene (MADN), 4,9,10-bis(3',5'-diphenylphenyl)anthracene (MAM), 9-(3',5'-diphenylphenyl)-10-(3'',5''-diphenylbiphenyl-4''-yl) anthracene (MAT), and 9,10-bis(3''',5'''-diphenylbiphenyl-4'-yl) anthracene (TAT) [Kim et al., J. Mater. Chem., 2008, 18, 3376]. The vibronic coupling constants and transition dipole moments were calculated and analyzed by using the concepts of vibronic coupling density (VCD) and transition dipole moment density (TDMD), respectively. It is found that the driving force of the internal conversions and vibrational relaxations originate mainly from the anthracenylene group. On the other hand, fluorescence enhancement results from the large torsional distortion of the side groups in the S1 state. The torsional distortion is caused by the diagonal vibronic coupling for the lowest-frequency mode in the Franck-Condon (FC) S1 state, which originates from a small portion of the electron density difference on the side groups. These findings lead to the following design principles for anthracene derivatives with a high quantum yield: (1) reduction in the electron density difference and overlap density between the S0 and S1 states in the anthracenylene group to suppress vibrational relaxation and radiationless transitions, respectively; (2) increase in the overlap density in the side group to enhance the fluorescence.
Electron star birth: a continuous phase transition at nonzero density.
Hartnoll, Sean A; Petrov, Pavel
2011-03-25
We show that charged black holes in anti-de Sitter spacetime can undergo a third-order phase transition at a critical temperature in the presence of charged fermions. In the low temperature phase, a fraction of the charge is carried by a fermion fluid located a finite distance from the black hole. In the zero temperature limit, the black hole is no longer present and all charge is sourced by the fermions. The solutions exhibit the low temperature entropy density scaling s~T(2/z) anticipated from the emergent IR criticality of recently discussed electron stars.
Probability Density Function at the 3D Anderson Transition
NASA Astrophysics Data System (ADS)
Rodriguez, Alberto; Vasquez, Louella J.; Roemer, Rudolf
2009-03-01
The probability density function (PDF) for the wavefunction amplitudes is studied at the metal-insulator transition of the 3D Anderson model, for very large systems up to L^3=240^3. The implications of the multifractal nature of the state upon the PDF are presented in detail. A formal expression between the PDF and the singularity spectrum f(α) is given. The PDF can be easily used to carry out a numerical multifractal analysis and it appears as a valid alternative to the more usual approach based on the scaling law of the general inverse participation rations.
Multiple charge density wave transitions in Gd2Te5
Shin, K.Y.; Ru, N.; Condron, C.L.; Wu, Y.Q.; Kramer, M.J.; Toney, M.F.; Fisher, I.R.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.
2010-02-15
Diffraction measurements performed via transmission electron microscopy and high resolution X-ray scattering reveal two distinct charge density wave transitions in Gd{sub 2}Te{sub 5} at T{sub c1} = 410(3) and T{sub c2} = 532(3) K, associated with the on-axis incommensurate lattice modulation and off-axis commensurate lattice modulation respectively. Analysis of the temperature dependence of the order parameters indicates a non-vanishing coupling between these two distinct CDW states.
Electron Star Birth: A Continuous Phase Transition at Nonzero Density
Hartnoll, Sean A.; Petrov, Pavel
2011-03-25
We show that charged black holes in anti-de Sitter spacetime can undergo a third-order phase transition at a critical temperature in the presence of charged fermions. In the low temperature phase, a fraction of the charge is carried by a fermion fluid located a finite distance from the black hole. In the zero temperature limit, the black hole is no longer present and all charge is sourced by the fermions. The solutions exhibit the low temperature entropy density scaling s{approx}T{sup 2/z} anticipated from the emergent IR criticality of recently discussed electron stars.
KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY
Latham, David W.; Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Rowe, Jason F.; Brown, Timothy M.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Jenkins, Jon M.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Howell, Steve B.; Marcy, Geoffrey W.; Monet, David G.
2010-04-20
We report on the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, M {sub P} = 0.43 M {sub J}, but the radius is 50% larger, R {sub P} = 1.48 R {sub J}. The resulting density, {rho}{sub P} = 0.17 g cm{sup -3}, is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, T {sub eff} = 6000 K. However, it is more massive and considerably larger than the Sun, M {sub *} = 1.35 M {sub sun} and R {sub *} = 1.84 R {sub sun}, and must be near the end of its life on the main sequence.
Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework
NASA Astrophysics Data System (ADS)
Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.
2017-09-01
Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.
Density functional calculation of transition metal adatom adsorption on graphene.
Mao, Yuliang; Yuan, Jianmei; Zhong, Jianxin
2008-03-19
The functionalization of graphene (a single graphite layer) by the addition of transition metal atoms of Mn, Fe and Co to its surface has been investigated computationally using density functional theory. In the calculation, the graphene surface supercell was constructed from a single layer of graphite (0001) surface separated by vertical vacuum layers 2 nm thick. We found that the center of the hexagonal ring formed by carbon from graphene is the most stable site for Mn, Fe, Co to stay after optimization. The calculated spin-polarized band structures of the graphene encapsulating the Mn adatom indicate that the conduction bands are modified and move down due to the coupling between the Mn atom and graphene. For Fe adsorbed on the graphene surface, it is semi-half-metallic, and the spin polarization P is found to be 100%. The system of Co adatom on graphene exhibits metallic electronic structure due to the density of states (DOS) peak at the band center with both majority and minority spins. Local density of states analyses indicate a larger promotion of 4s electrons into the 3d state in Fe and Co, resulting in lower local moments compared to an Mn adatom on the graphite surface.
Pair-density transitions in accretion disk coronae
NASA Technical Reports Server (NTRS)
Kusunose, Masaaki; Mineshige, Shin
1991-01-01
The thermal and e(+)e(-)-pair equilibrium structure of two-temperature disk coronae above a cool (about 10 exp 6 K) disk around a black hole of 10 solar masses are investigated. Soft photons are assumed to be amply supplied from the cool disk. Two-pair thermal equilibrium points are found for a given proton column density: the low state with very small pair density and the high state dominated by pairs. Both states are thermally unstable, while for perturbations in pair density the high state is unstable and the low state is stable. Two possible scenarios are discussed for the fate of a two-temperature corona. When the proton optical depth is relatively small (e.g., less than 1) and the temperature of input soft photons is low (e.g., less than 10 exp 6 K), the corona will undergo a limit cycle between the high state and the low state on a time scale of milliseconds. As a consequence of Compton scattering of the soft photons, the emergent spectrum in the high state is rather flat with a big Wien bump at about 100 keV, whereas it is composed of a power-law component in the low state. Some observational consequences are briefly discussed in connection with the high-low spectral transition in Cyg X-1.
Energy boost in laser wakefield accelerators using sharp density transitions
Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Ta Phuoc, K.; Malka, V.
2016-05-15
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.
The photochemistry of transition metal complexes using density functional theory.
Garino, Claudio; Salassa, Luca
2013-07-28
The use of density functional theory (DFT) and time-dependent DFT (TD-DFT) to study the photochemistry of metal complexes is becoming increasingly important among chemists. Computational methods provide unique information on the electronic nature of excited states and their atomic structure, integrating spectroscopy observations on transient species and excited-state dynamics. In this contribution, we present an overview on photochemically active transition metal complexes investigated by DFT. In particular, we discuss a representative range of systems studied up to now, which include CO- and NO-releasing inorganic and organometallic complexes, haem and haem-like complexes dissociating small diatomic molecules, photoactive anti-cancer Pt and Ru complexes, Ru polypyridyls and diphosphino Pt derivatives.
Charge density wave transition in single-layer titanium diselenide
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; Zhang, Y.; Chou, M. Y.; Mo, S. -K.; Hussain, Z.; Fedorov, A. -V.; Chiang, T. -C.
2015-11-16
A single molecular layer of titanium diselenide (TiSe_{2}) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe_{2} exhibits a charge density wave (CDW) transition at critical temperature T_{C}=232±5 K, which is higher than the bulk T_{C}=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below T_{C} in conjunction with the emergence of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.
Charge density wave transition in single-layer titanium diselenide
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...
2015-11-16
A single molecular layer of titanium diselenide (TiSe2) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe2 exhibits a charge density wave (CDW) transition at critical temperature TC=232±5 K, which is higher than the bulk TC=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below TC in conjunction with the emergence of (2 × 2) ordering.more » The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.« less
NASA Astrophysics Data System (ADS)
Yoo, Seung Hoon; Min, Byung Jun; Cho, Sungho; Kim, Eun Ho; Park, Jeong Hoon; Jung, Won-Gyun; Kim, Geun Beom; Kim, Kum Bae; Kim, Jaehoon; Jeong, Hojin; Lee, Kitae; Park, Sung Yong
2017-01-01
In this paper, the effects of the plasma density on laser-accelerated electron beams for radiation therapy with a sharp density transition are investigated. In the sharp density-transition scheme for electron injection, the crucial issue is finding the optimum density conditions under which electrons injected only during the first period of the laser wake wave are accelerated further. In this paper, we report particle-in-cell simulation results for the effects of both the scale length and the densitytransition ratio on the generation of a quasi-mono-energetic electron bunch. The effects of both the transverse parabolic channel and the plasma length on the electron-beam's quality are investigated. Also, we show the experimental results for the feasibility of a sharp density-transition structure. The dosimetric properties of these very high-energy electron beams are calculated using Monte Carlo simulations.
E→H mode transition density and power in two types of inductively coupled plasma configuration
Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang
2014-07-15
E → H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4 Pa (ν/ω=1) for argon. Then the transition density hardly changes at low pressures (ν/ω≪1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E → H mode transition and control the transition points in real plasma processes.
Two Transiting Low Density Sub-Saturns from K2
NASA Astrophysics Data System (ADS)
Petigura, Erik A.; Howard, Andrew W.; Lopez, Eric D.; Deck, Katherine M.; Fulton, Benjamin J.; Crossfield, Ian J. M.; Ciardi, David R.; Chiang, Eugene; Lee, Eve J.; Isaacson, Howard; Beichman, Charles A.; Hansen, Brad M. S.; Schlieder, Joshua E.; Sinukoff, Evan
2016-02-01
We report the discovery and confirmation of K2-24 b and c, two sub-Saturn planets orbiting a bright (V = 11.3), metal-rich ([Fe/H] = 0.42 ± 0.04 dex) G3 dwarf in the K2 Campaign 2 field. The planets are 5.68 ± 0.56 {R}\\oplus and 7.82 ± 0.72 {R}\\oplus and have orbital periods of 20.8851 ± 0.0003 days and 42.3633 ± 0.0006 days, near the 2:1 mean-motion resonance. We obtained 32 radial velocities with Keck/HIRES and detected the reflex motion due to K2-24 b and c. These planets have masses of 21.0 ± 5.4 {M}\\oplus and 27.0 ± 6.9 {M}\\oplus , respectively. With low densities of 0.63 ± 0.25 g cm-3 and 0.31 ± 0.12 g cm-3, respectively, the planets require thick envelopes of H/He to explain their large sizes and low masses. Interior structure models predict that the planets have fairly massive cores of 17.6+/- 4.3 {M}\\oplus and 16.1+/- 4.2 {M}\\oplus , respectively. They may have formed exterior to their present locations, accreted their H/He envelopes at large orbital distances, and migrated in as a resonant pair. The proximity to resonance, large transit depths, and host star brightness offers rich opportunities for TTV follow-up. Finally, the low surface gravities of the K2-24 planets make them favorable targets for transmission spectroscopy by Hubble Space Telescope, Spitzer, and James Webb Space Telescope.
Planet formation in density perturbed transitional disks: a grid model approach
NASA Astrophysics Data System (ADS)
Chaparro Molano, G.; Agreda, E.; Miguel, Y.; Casas-Miranda, R. A.
2017-07-01
With increasingly sharp sub-millimeter direct imaging of transitional disks captured by ALMA, our understanding of the conditions necessary for debris disks to form planetary systems has drastically improved in recent years. Evidence for particle traps in transitional disks suggests that planet formation could possibly take place within density perturbed regions. For this reason we run a grid of models of planet formation in density perturbed transitional disks, and analyze the impact on giant planet formation.
Experiments on Transitional Subaqueous Density Flows and Resulting Sediment Deposits
NASA Astrophysics Data System (ADS)
Barnaal, Z. D.; Parker, G.
2016-12-01
Much remains unknown regarding the sedimentary deposits of submarine gravity flows. Flows with large concentrations of suspended sediment may transition from a more turbulent to a more coherent flow type. Such transitional flows may be produced when turbulence becomes suppressed due to entrainment of cohesive sediment or from flow deceleration. Argillaceous sandstones and linked turbidite-debrites are types of submarine sediment deposits in a category known as hybrid event beds, and are interpreted to be emplaced by transitional regime flows (Talling, 2007; Davis, 2009; Haughton, 2009; Hodgson, 2009; Sumner, 2009; Baas, 2011; Lee, 2013; and Talling, 2013). Here we report on the physical modelling of such transitional flows. The sediment consists of mixtures of non-cohesive silica flour with a median grain size of 30 microns and kaolin clay with a median size of 4 microns. These sediments were mixed in ratios including 100%, 70%, 60%, 50%, 30% and 0% kaolin. Total volume concentration of the input slurry varied from 0.01 to 0.2, allowing coverage of wide range of transitional flow types. The flow passed over a 4.9-m-long bed with a slope of 7 degrees, and continued another 4.9 m over a horizontal bed before exiting the tank. Measurements of flow velocity profiles, flow concentrations, deposit geometry, and deposit grain-size distributions were conducted. The results of experiments help us to better understand the rheology, and to determine the structure and patterns of deposits including argillaceous sandstones.
NASA Astrophysics Data System (ADS)
Nielaba, P.; Sengupta, S.
1997-03-01
We study the temperature-density phase diagram of a fluid in two dimensions consisting of hard disks which, in addition, possess an internal (Ising) spin degree of freedom. The Ising spin of each disk couples with those of its neighbors via a short-ranged antiferromagnetic (AF) interaction. Recent Monte Carlo simulations have shown that this system undergoes a gas-liquid transition followed by a gas-AF-ordered-square-solid sublimation transition at low temperatures. Using a perturbative density functional approach we obtain, in addition to the observed transitions, a freezing transition at high density to a frustrated triangular solid phase. Interestingly, the calculated phase diagram suggests that at low temperatures, this transition is suppressed so that over a range of parameters, the system refuses to crystallize.
Koga, K; Tanaka, H; Zeng, X C
2000-11-30
Supercooled water and amorphous ice have a rich metastable phase behaviour. In addition to transitions between high- and low-density amorphous solids, and between high- and low-density liquids, a fragile-to-strong liquid transition has recently been proposed, and supported by evidence from the behaviour of deeply supercooled bilayer water confined in hydrophilic slit pores. Here we report evidence from molecular dynamics simulations for another type of first-order phase transition--a liquid-to-bilayer amorphous transition--above the freezing temperature of bulk water at atmospheric pressure. This transition occurs only when water is confined in a hydrophobic slit pore with a width of less than one nanometre. On cooling, the confined water, which has an imperfect random hydrogen-bonded network, transforms into a bilayer amorphous phase with a perfect network (owing to the formation of various hydrogen-bonded polygons) but no long-range order. The transition shares some characteristics with those observed in tetrahedrally coordinated substances such as liquid silicon, liquid carbon and liquid phosphorus.
Metal-insulator transition and local moment formation: A spin-density functional approach
NASA Astrophysics Data System (ADS)
Ghazali, A.; Leroux-Hugon, P.
1980-01-01
A more thorough description of the metal-insulator transition in correlated systems including local moment formation may be achieved through the spin-density functional method when compared to the Hubbard model. We have applied this method to doped semiconductors and found a transition between an insulating phase with local moments and a metallic one without moments.
NASA Technical Reports Server (NTRS)
Ingels, F.; Schoggen, W. O.
1981-01-01
The various methods of high bit transition density encoding are presented, their relative performance is compared in so far as error propagation characteristics, transition properties and system constraints are concerned. A computer simulation of the system using the specific PN code recommended, is included.
Superconducting and charge density wave transition in single crystalline LaPt2Si2
NASA Astrophysics Data System (ADS)
Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.
2017-06-01
We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.
Phase transition in finite density and temperature lattice QCD
NASA Astrophysics Data System (ADS)
Wang, Rui; Chen, Ying; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Meng, Xiang-Fei; Zhang, Jian-Bo
2015-06-01
We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of β and ma at the lattice size 24 × 122 × 6. The calculation was done in the Taylor expansion formalism. We are able to calculate the first and second order derivatives of ≤ft< {\\bar{\\psi} \\psi } \\right> in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and that the magnitude of \\bar{\\psi} \\psi decreases under the influence of finite chemical potential in both channels. Supported by National Natural Science Foundation of China (11335001, 11105153, 11405178), Projects of International Cooperation and Exchanges NSFC (11261130311)
Membrane tension and peripheral protein density mediate membrane shape transitions
NASA Astrophysics Data System (ADS)
Shi, Zheng; Baumgart, Tobias
2015-01-01
Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins.
High-density P300 enhancers control cell state transitions.
Witte, Steven; Bradley, Allan; Enright, Anton J; Muljo, Stefan A
2015-11-06
Transcriptional enhancers are frequently bound by a set of transcription factors that collaborate to activate lineage-specific gene expression. Recently, it was appreciated that a subset of enhancers comprise extended clusters dubbed stretch- or super-enhancers (SEs). These SEs are located near key cell identity genes, and enriched for non-coding genetic variations associated with disease. Previously, SEs have been defined as having the highest density of Med1, Brd4 or H3K27ac by ChIP-seq. The histone acetyltransferase P300 has been used as a marker of enhancers, but little is known about its binding to SEs. We establish that P300 marks a similar SE repertoire in embryonic stem cells as previously reported using Med1 and H3K27ac. We also exemplify a role for SEs in mouse T helper cell fate decision. Similarly, upon activation of macrophages by bacterial endotoxin, we found that many SE-associated genes encode inflammatory proteins that are strongly up-regulated. These SEs arise from small, low-density enhancers in unstimulated macrophages. We also identified expression quantitative trait loci (eQTL) in human monocytes that lie within such SEs. In macrophages and Th17 cells, inflammatory SEs can be perturbed either genetically or pharmacologically thus revealing new avenues to target inflammation. Our findings support the notion that P300-marked SEs can help identify key nodes of transcriptional control during cell fate decisions. The SE landscape changes drastically during cell differentiation and cell activation. As these processes are crucial in immune responses, SEs may be useful in revealing novel targets for treating inflammatory diseases.
Transition densities in the context of the generalized rotation-vibration model
NASA Astrophysics Data System (ADS)
Morales Botero, D. F.; Chamon, L. C.; Carlson, B. V.
2017-10-01
A collective model for the description of heavy-ion nuclear structure, called the generalized rotation-vibration model (GRVM), was proposed in an earlier paper. In the present work, we use this model to study transition densities for the low-lying states of several nuclei. In order to evaluate the accuracy of the model, we test the GRVM transition densities in the description of experimental results corresponding to elastic and inelastic electron-nucleus scattering. We also compare the GRVM densities with those arising from microscopic Dirac-Hartree-Bogoliubov theoretical calculations. The GRVM transition densities can be used in future works to calculate folding-type coupling potentials in coupled-channel data analyses for heavy-ion systems.
Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts
Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A. Yudin, A. V.
2011-03-15
Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.
An analytic model for limiting high density LH transition by the onset of the tertiary instability
NASA Astrophysics Data System (ADS)
Singh, Raghvendra; Jhang, Hogun; Kaang, Helen H.
2016-07-01
We perform an analytic study of the tertiary instability driven by a strong excitation of zonal flows during high density low to high (LH) mode transition. The drift resistive ballooning mode is assumed to be a dominant edge turbulence driver. The analysis reproduces main qualitative features of early computational results [Rogers and Drake, Phys. Rev. Lett. 81, 4396 (1998); Guzdar et al., Phys. Plasmas 14, 020701 (2007)], as well as new characteristics of the maximum edge density due to the onset of the tertiary instability. An analytical scaling indicates that the density scaling of LH transition power may be determined by the onset condition of the tertiary instability when the operating density approaches to the Greenwald density.
An analytic model for limiting high density LH transition by the onset of the tertiary instability
Singh, Raghvendra Jhang, Hogun; Kaang, Helen H.
2016-07-15
We perform an analytic study of the tertiary instability driven by a strong excitation of zonal flows during high density low to high (LH) mode transition. The drift resistive ballooning mode is assumed to be a dominant edge turbulence driver. The analysis reproduces main qualitative features of early computational results [Rogers and Drake, Phys. Rev. Lett. 81, 4396 (1998); Guzdar et al., Phys. Plasmas 14, 020701 (2007)], as well as new characteristics of the maximum edge density due to the onset of the tertiary instability. An analytical scaling indicates that the density scaling of LH transition power may be determined by the onset condition of the tertiary instability when the operating density approaches to the Greenwald density.
Fluid density profile transitions and symmetry breaking in a closed nanoslit.
Berim, Gersh O; Ruckenstein, Eli
2007-03-15
The density profiles in a fluid interacting with the two identical solid walls of a closed long slit were calculated for wide ranges of the number of fluid molecules in the slit and temperature by employing density functional theory in the local density approximation. Two potentials, the van der Waals and the Lennard-Jones, were considered for the fluid-fluid and the fluid-walls interactions. It was shown that the density profile corresponding to the stable state of the fluid considerably changes its shape with increasing average density (rhoav) of the fluid inside the slit, the details of changes being dependent on the selected potential. For the van der Waals potential, a single temperature-dependent critical value rhosb of rhoav was identified, such that for rhoav < rhosb the stable state of the system is described by a symmetric density profile, whereas for rhoav >/= rhosb it is described by an asymmetric one. This transition constitutes a spontaneous symmetry breaking of the fluid density distribution in a closed slit with identical walls. For rhoav >/= rhosb, a metastable state, described by a symmetric density profile, was present in addition to the stable asymmetric one. The shape of the symmetric profile changed suddenly at a value rhoc-h > rhosb of the average density, the density rhoc-h being almost independent of temperature. Because of the shapes of the profiles before and after the transformation, this transition was named cup-hill transformation. At the transition point, the density of the fluid near the walls decreased suddenly from a liquid-like value becoming comparable with the density of a gaseous phase, and the density in the middle of the slit increased suddenly from a gaseous-like value becoming on the order of the density of a liquid phase. For the Lennard-Jones potential, there are two temperature-dependent critical densities, rhosb1 and rhosb2, such that the stable density profile is asymmetric (symmetry breaking occurs) for rhosb1
NASA Astrophysics Data System (ADS)
C, Santosh K.; Zhang, Chenxi; Hong, Suklyun; Wallace, Robert M.; Cho, Kyeongjae
2015-09-01
Transition metal dichalcogenides (TMDs) have been investigated extensively for potential application as device materials in recent years. TMDs are found to be stable in trigonal prismatic (H), octahedral (T), or distorted octahedral (Td) coordination of the transition metal. However, the detailed understanding of stabilities of TMDs in a particular phase is lacking. In this work, the detailed TMD phase stability using first-principles calculations based on density functional theory (DFT) has been investigated to clarify the mechanism of phase stabilities of TMDs, consistent with the experimental observation. Our results indicate that the phase stability of TMDs can be explained considering the relative strength of two competing mechanisms: ligand field stabilization of d-orbitals corresponding to transition metal coordination geometry, and charge density wave (CDW) instability accompanied by a periodic lattice distortion (PLD) causing the phase transition in particular TMDs.
Transition boundary model of magnetization distribution in high density perpendicular recording
NASA Astrophysics Data System (ADS)
Liu, Z. J.; Chen, B. J.; Wang, H. T.
2011-04-01
A model is introduced in this paper to describe the transition boundaries in perpendicular magnetic recording at extremely high density. In contrary to the previous signal generation models, effects of magnetization transition curvature and the track edge fluctuations are adequately included in the new model that is designed to capture the actual transition boundaries, i.e., the variations of magnetization distribution in both down-track and across-track directions. The model is used to predict the readback waveforms based on the detailed information obtained from micromagnetic simulations taking into account the head and media parameters. The model is therefore suitable for magnetic recording at extremely high densities when the impact of the transition curvature and the track edge effect on the recording performance becomes more significant.
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
The design to achieve the required bit transition density for the Space Shuttle high rate multiplexes (HRM) data stream of the Space Laboratory Vehicle is reviewed. It contained a recommended circuit approach, specified the pseudo random (PN) sequence to be used and detailed the properties of the sequence. Calculations showing the probability of failing to meet the required transition density were included. A computer simulation of the data stream and PN cover sequence was provided. All worst case situations were simulated and the bit transition density exceeded that required. The Preliminary Design Review and the critical Design Review are documented. The Cover Sequence Generator (CSG) Encoder/Decoder design was constructed and demonstrated. The demonstrations were successful. All HRM and HRDM units incorporate the CSG encoder or CSG decoder as appropriate.
He,P.; Blaskiewicz, M.; Fischer, W.
2009-01-02
In this report we summarize electron-cloud simulations for the RHIC dipole regions at injection and transition to estimate if scrubbing over practical time scales at injection would reduce the electron cloud density at transition to significantly lower values. The lower electron cloud density at transition will allow for an increase in the ion intensity.
Adam, S; Cho, S; Fuhrer, M S; Das Sarma, S
2008-07-25
Transport in graphene nanoribbons with an energy gap in the spectrum is considered in the presence of random charged impurity centers. At low carrier density, we predict and establish that the system exhibits a density inhomogeneity driven two dimensional metal-insulator transition that is in the percolation universality class. For very narrow graphene nanoribbons (with widths smaller than the disorder induced length scale), we predict that there should be a dimensional crossover to the 1D percolation universality class with observable signatures in the transport gap. In addition, there should be a crossover to the Boltzmann transport regime at high carrier densities. The measured conductivity exponent and the critical density are consistent with this percolation transition scenario.
Low-density to high-density transition in Ce75Al23Si2 metallic glass.
Zeng, Q S; Fang, Y Z; Lou, H B; Gong, Y; Wang, X D; Yang, K; Li, A G; Yan, S; Lathe, C; Wu, F M; Yu, X H; Jiang, J Z
2010-09-22
Using in situ high-pressure x-ray diffraction (XRD), we observed a pressure-induced polyamorphic transition from the low-density amorphous (LDA) state to the high-density amorphous (HDA) state in Ce(75)Al(23)Si(2) metallic glass at about 2 GPa and 300 K. The thermal stabilities of both LDA and HDA metallic glasses were further investigated using in situ high-temperature and high-pressure XRD, which revealed different pressure dependences of the onset crystallization temperature (T(x)) between them with a turning point at about 2 GPa. Compared with Ce(75)Al(25) metallic glass, minor Si doping shifts the onset polyamorphic transition pressure from 1.5 to 2 GPa and obviously stabilizes both LDA and HDA metallic glasses with higher T(x) and changes their slopes dT(x)/dP. The results obtained in this work reveal another polyamorphous metallic glass system by minor alloying (e.g. Si), which could modify the transition pressure and also properties of LDA and HDA metallic glasses. The minor alloying effect reported here is valuable for the development of more polyamorphous metallic glasses, even multicomponent bulk metallic glasses with modified properties, which will trigger more investigations in this field and improve our understanding of polyamorphism and metallic glasses.
Determan, John J; Poole, Katelyn; Scalmani, Giovanni; Frisch, Michael J; Janesko, Benjamin G; Wilson, Angela K
2017-10-10
The utility of several nonhybrid density functional approximations (DFAs) is considered for the prediction of gas phase enthalpies of formation for a large set of 3d transition metal-containing molecules. Nonhybrid DFAs can model thermochemical values for 3d transition metal-containing molecules with accuracy comparable to that of hybrid functionals. The GAM-generalized gradient approximation (GGA); the TPSS, M06-L, and MN15-L meta-GGAs; and the Rung 3.5 PBE+ΠLDA(s) DFAs all give root-mean-square deviations below that of the widely used B3LYP hybrid. Modern nonhybrid DFAs continue to show utility for transition metal thermochemistry.
Nb S3 : A unique quasi-one-dimensional conductor with three charge density wave transitions
NASA Astrophysics Data System (ADS)
Zybtsev, S. G.; Pokrovskii, V. Ya.; Nasretdinova, V. F.; Zaitsev-Zotov, S. V.; Pavlovskiy, V. V.; Odobesco, A. B.; Pai, Woei Wu; Chu, M.-W.; Lin, Y. G.; Zupanič, E.; van Midden, H. J. P.; Šturm, S.; Tchernychova, E.; Prodan, A.; Bennett, J. C.; Mukhamedshin, I. R.; Chernysheva, O. V.; Menushenkov, A. P.; Loginov, V. B.; Loginov, B. A.; Titov, A. N.; Abdel-Hafiez, M.
2017-01-01
We review the features of the charge density wave (CDW) conductor Nb S3 (phase II) and include several additional results from transport, compositional, and structural studies. Particularly, we highlight three central results: (1) In addition to the previously reported CDW transitions at TP 1=360 K and TP 2=150 K , a third CDW transition occurs at a much higher temperature TP 0≈620 -650 K ; evidence for the nonlinear conductivity of this CDW is presented. (2) We show that the CDW associated with the TP 2 transition arises from S vacancies acting as donors. Such a CDW transition has not been observed before. (3) We demonstrate the exceptional coherence of the TP 1 CDW at room temperature. The effects of uniaxial strain on the CDW transition temperature and transport are reported.
Diffusive dynamics during the high-to-low density transition in amorphous ice
Perakis, Fivos; Amann-Winkel, Katrin; Lehmkuhler, Felix; ...
2017-06-26
Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distributionmore » function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. In conclusion, the diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid–liquid transition in the ultraviscous regime.« less
Diffusive dynamics during the high-to-low density transition in amorphous ice.
Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix; Sprung, Michael; Mariedahl, Daniel; Sellberg, Jonas A; Pathak, Harshad; Späh, Alexander; Cavalca, Filippo; Schlesinger, Daniel; Ricci, Alessandro; Jain, Avni; Massani, Bernhard; Aubree, Flora; Benmore, Chris J; Loerting, Thomas; Grübel, Gerhard; Pettersson, Lars G M; Nilsson, Anders
2017-08-01
Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.
Separable Transition Density in the Hybrid Model for Tumor-Immune System Competition
Cattani, Carlo; Ciancio, Armando
2012-01-01
A hybrid model, on the competition tumor cells immune system, is studied under suitable hypotheses. The explicit form for the equations is obtained in the case where the density function of transition is expressed as the product of separable functions. A concrete application is given starting from a modified Lotka-Volterra system of equations. PMID:22291853
Transition from Fowler-Nordheim field emission to space charge limited current density
NASA Astrophysics Data System (ADS)
Feng, Y.; Verboncoeur, J. P.
2006-07-01
The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β >10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response.
Transition from Fowler-Nordheim field emission to space charge limited current density
Feng, Y.; Verboncoeur, J. P.
2006-07-15
The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement {beta}>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response.
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
NASA Astrophysics Data System (ADS)
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
Self-density frequency shift measurements of Raman N 2 Q-branch transitions
NASA Astrophysics Data System (ADS)
Lavorel, B.; Chaux, R.; Saint-Loup, R.; Berger, H.
1987-04-01
We report stimulated Raman investigations of N 2 Q-branch transitions in view to measure the self-density frequency shift. These measurements performed at 295 K over the density range 0.02-0.8 Amagat lead to a mean shift value equal to -5.5×10 -3 cm -1/Amagat. Moreover, our data extrapolated at zero density allowed new refinements of the N 2 molecular constants: v0=2329.91165 (17) cm -1, B1- B0=-0.0173714 (22) cm -1 and D1- D0=(7.6±5.0)×10 -9 cm -1.
Measurements of the low wavenumber wall pressure spectral density during transition on a flat plate
NASA Astrophysics Data System (ADS)
Gedney, C. J.; Leehey, P.
1984-04-01
Experimental measurements of the low-Mach number wall pressure spectra density in the transition region are currently carried out in our laboratory. The six element (B&K Model No. 4144) microphone array used by Farabee and Geib was used as the wavenumber filtering apparatus and flush mounted on an open test section identical to that used by Jameson. A technique of conditional sampling on signals was used to determine the characteristics of the transitional flow. The frequency spectrum of the microphone array output was computed for uniform shading, Chebyshev shading and binomial shading. A detailed update on our progress is enclosed. The preliminary results indicate that there is no significant measurable difference in the low wavenumber wall pressure spectrum density for a transitional boundary layer as compared to a fully turbulent boundary layer.
The dipole moment of the spin density as a local indicator for phase transitions
Schmitz, D.; Schmitz-Antoniak, C.; Warland, A.; Darbandi, M.; Haldar, S.; Bhandary, S.; Eriksson, O.; Sanyal, B.; Wende, H.
2014-01-01
The intra-atomic magnetic dipole moment - frequently called 〈Tz〉 term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe2+ and Fe3+ sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry. PMID:25041757
The dipole moment of the spin density as a local indicator for phase transitions.
Schmitz, D; Schmitz-Antoniak, C; Warland, A; Darbandi, M; Haldar, S; Bhandary, S; Eriksson, O; Sanyal, B; Wende, H
2014-07-21
The intra-atomic magnetic dipole moment - frequently called ⟨Tz⟩ term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe(2+) and Fe(3+) sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry.
Universal dynamics of density correlations at the transition to the many-body localized state
NASA Astrophysics Data System (ADS)
Mierzejewski, M.; Herbrych, J.; Prelovšek, P.
2016-12-01
Within one-dimensional disordered models of interacting fermions, we perform a numerical study of several dynamical density correlations, which can serve as hallmarks of the transition to the many-body localized state. The results confirm that density-wave correlations exhibit quite an abrupt change with increasing disorder, with a nonvanishing long-time value characteristic for the nonergodic phase. In addition, our results reveal a logarithmic variation of correlations in time in a wide time window, which we can bring in connection with the anomalous behavior of the dynamical conductivity near the transition. Our results support the view that the transition to many-body localization can be characterized by universal dynamical exponents.
Characterization of Phase Transition in Heisenberg Fluids from Density Functional Theory
NASA Astrophysics Data System (ADS)
Li, Liang-Sheng; Li, Li; Chen, Xiao-Song
2009-02-01
The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density ρ* = ρσ3 = 0.224 and the reduced temperature T* = kT/in = 1.87 (σ is the diameter of Heisenberg hard sphere and in is the coupling constant).
NASA Astrophysics Data System (ADS)
Carlier, D.; Ménétrier, M.; Grey, C. P.; Delmas, C.; Ceder, G.
2003-05-01
The 6,7Li MAS NMR spectra of lithium ions in paramagnetic host materials are extremely sensitive to number and nature of the paramagnetic cations in the Li local environments and large shifts (Fermi contact shifts) are often observed. The work presented in this paper aims to provide a rational basis for the interpretation of the 6,7Li NMR shifts, as a function of the lithium local environment and electronic configuration of the transition metal ions. We focus on the layered rocksalts often found for LiMO2 compounds and on materials that are isostructural with the K2NiF4 structure. In order to understand the spin-density transfer mechanism from the transition metal ion to the lithium nucleus, which gives rise to the hyperfine shifts observed by NMR, we have performed density functional theory (DFT) calculations in the generalized gradient approximation. For each compound, we calculate the spin densities values on the transition metal, oxygen and lithium ions and map the spin density in the M-O-Li plane. Predictions of the calculations are in good agreement with several experimental results. We show that DFT calculations are a useful tool with which to interpret the observed paramagnetic shifts in layered oxides and to understand the major spin-density transfer processes. This information should help us to predict the magnitudes and signs of the Li hyperfine shifts for different Li local environments and t2g vs eg electrons in other compounds.
Cluster Glass Transition of Ultrasoft-Potential Fluids at High Density
NASA Astrophysics Data System (ADS)
Miyazaki, Ryoji; Kawasaki, Takeshi; Miyazaki, Kunimasa
2016-10-01
Using molecular dynamics simulation, we investigate the slow dynamics of a supercooled binary mixture of soft particles interacting with a generalized Hertzian potential. At low density, it displays typical slow dynamics near its glass transition temperature. At higher densities, particles bond together, forming clusters, and the clusters undergo the glass transition. The number of particles in a cluster increases one by one as the density increases. We demonstrate that there exist multiple cluster-glass phases characterized by a different number of particles per cluster, each of which is separated by distinct minima. Surprisingly, a so-called higher order singularity of the mode-coupling theory signaled by a logarithmic relaxation is observed in the vicinity of the boundaries between monomer and cluster glass phases. The system also exhibits rich and anomalous dynamics in the cluster glass phases, such as the decoupling of the self- and collective dynamics.
Cluster Glass Transition of Ultrasoft-Potential Fluids at High Density.
Miyazaki, Ryoji; Kawasaki, Takeshi; Miyazaki, Kunimasa
2016-10-14
Using molecular dynamics simulation, we investigate the slow dynamics of a supercooled binary mixture of soft particles interacting with a generalized Hertzian potential. At low density, it displays typical slow dynamics near its glass transition temperature. At higher densities, particles bond together, forming clusters, and the clusters undergo the glass transition. The number of particles in a cluster increases one by one as the density increases. We demonstrate that there exist multiple cluster-glass phases characterized by a different number of particles per cluster, each of which is separated by distinct minima. Surprisingly, a so-called higher order singularity of the mode-coupling theory signaled by a logarithmic relaxation is observed in the vicinity of the boundaries between monomer and cluster glass phases. The system also exhibits rich and anomalous dynamics in the cluster glass phases, such as the decoupling of the self- and collective dynamics.
Dual nature of a charge-density-wave transition on In/Cu(001)
NASA Astrophysics Data System (ADS)
Nakagawa, T.; Okuyama, H.; Nishijima, M.; Aruga, T.; Yeom, H. W.; Rotenberg, E.; Krenzer, B.; Kevan, S. D.
2003-06-01
A surface phase transition on In/Cu(001) with In coverage of 0.63 was studied. The structural analysis shows that the reversible phase transition at 405 K between the high-temperature (2×2) and the low-temperature (2(2)×2(2))R45° phases belongs to an order-disorder type. The angle-resolved photoemission experiment shows that the low-temperature phase is stabilized by the partial gap formation at the Fermi surface, indicating that the transition is due to the Peierls-type Fermi-surface nesting. While the above observations point to a strong-coupling charge-density-wave (SCDW) scenario, the temperature-dependent behavior of the gap is in better agreement with the weak-coupling CDW theory. Thus, the results serve the first experimental characterization of the CDW transition driven cooperatively by electronic and lattice entropies.
NASA Astrophysics Data System (ADS)
Chen, Shaohao; Qing, Bo; Li, Jiaming
2007-10-01
Using the multiconfiguration Dirac-Fock method, including the quantum electrodynamics corrections, especially with the Breit interactions, we calculate the electric quadrupole (E2) and magnetic dipole (M1) transition rates for the two transitions D5/2,3/2o2→S3/2o4 of OII . We show systematically that the correlation effects owing to core electron excitations and the Breit interactions are vitally important for the transition rates. We present a benchmark for the intensity ratio between the two transitions in the limit of high electron density in planetary nebulas, i.e., r(∞)=0.345-0.014+0.028 , which is in good agreement with modern astronomical observations.
a Strong-Coupling Theory of Charge-Density Wave Transitions.
NASA Astrophysics Data System (ADS)
Simons, Adrian L.
The work in this thesis is motivated by a desire to understand structural phase transitions in solids. The interest in this work grew out of the earlier work of Chandra M. Varma, Werner Weber, and their coworkers. They made use of the nonorthogonal tight-binding method to develop a theory of the electron-phonon interaction and phonon dispersion suitable to transition metals and transition metal compounds. The thesis is divided into three parts. In Part I, I have calculated the anisotropy of the electron-phonon contribution to the many-body enhancement factor, (lamda), in niobium. This was done by extensively modifying the computational procedures used by Varma, Weber, and coworkers, for calculating the Fermi surface average of the square of the electron-phonon coupling constant, . (lamda) is a closely related quantity which can be calculated from . The results agree with experiment better than any other existing calculations. In Part II, I have used the computational procedures of Varma and Weber for computing phonon dispersion in transition metals to perform a microscopic calculation of the phonon dispersion in Nb-Zr alloys. I have been able to show that the BCC-(omega) phase transition, which occurs in these alloys, is an electronically driven transition resulting from topological features of the Fermi surface. This calculation was the first microscopic calculation of a charge-density wave. In Part III, a microscopic strong-coupling theory of charge-density wave transitions is developed. It is shown that the strong wavevector dependence of the anharmonic electron-phonon interactions and mode-mode coupling result in a strong depression of the transition temperature. The strong-coupling theory thus explains the order of magnitude discrepancy between experiment and the usual weak-coupling theory.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
NASA Astrophysics Data System (ADS)
Uejima, Motoyuki; Sato, Tohru; Tanaka, Kazuyoshi; Kaji, Hironori
2014-02-01
The vibronic coupling constants and transition dipole moments for the Franck-Condon and adiabatic S1 states of anthracene, 9-chloroanthracene, and 9,10-dichloroanthracene were calculated and analyzed by using the concept of vibronic coupling density (VCD). The transition dipole moments are also analyzed on the basis of the transition dipole moment density (TDMD). The VCD analyses indicate that the vibronic couplings in the Franck-Condon S1 state come from the side rings of anthracene, and introduction of chlorine atoms reduces the vibronic couplings in the side regions and the reorganization energy. The TDMD analyses indicate that the chlorination enhances the transition dipole moment and that the contribution of the chlorine atom to the transition dipole moment is the largest. Finally, we derived a design principle for anthracene derivatives with a high quantum yield: the same long acceptors should be introduced into the two central carbon atoms in the anthracene's central ring for the derivative to keep the point group to be D2h.
Thermal transitions in the low-density lipoprotein and lipids of the egg yolk of hens.
Smith, M B; Back, J F
1975-05-22
1. Differential sanning calorimetry and light-scattering have been used to investigate temperature-dependent transitions in low-density lipoprotein and in lipids from hens' egg yolk. Yolks of different fatty acid composition were obtained by varying the dietary lipid and by adding methyl sterculate to the hen's diet. 2. Lipoprotein solutions in 50 percent glycerol/water gave characteristic melting curves between -25 degrees C and 50 degrees C, and on cooling showed increases in light-scattering between 10 degrees C and -20 degrees C. The temperatures at which major changes occurred depended on the proportions of saturated and unsaturated fatty acids. 3. The thermal transitions in the intact lipoprotein in glycerol solution were reversible, but with marked hysteresis. Lipid extracted from the lipoprotein did not show temperature hystersis but the transition heats and melting curves similar to those of the intact lipoprotein. The results support the hypothesis of a "lipid-core" structure for low-density lipoproteins. 4. Scanning calorimetry of egg-yolk lecithins indicated a strong dependence of transition temperature on water content in the rane 3 percent-20 percent water. A rise in the mid-temperature of the liquid-crystalline to gel transition as the water content is lowered on freezing may be the primary event in the irreversible gelation of egg yolk and aggregation of lipoprotein.
Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals.
Janthon, Patanachai; Luo, Sijie Andy; Kozlov, Sergey M; Viñes, Francesc; Limtrakul, Jumras; Truhlar, Donald G; Illas, Francesc
2014-09-09
Systematic evaluation of the accuracy of exchange-correlation functionals is essential to guide scientists in their choice of an optimal method for a given problem when using density functional theory. In this work, accuracy of one Generalized Gradient Approximation (GGA) functional, three meta-GGA functionals, one Nonseparable Gradient Approximation (NGA) functional, one meta-NGA, and three hybrid GGA functionals was evaluated for calculations of the closest interatomic distances, cohesive energies, and bulk moduli of all 3d, 4d, and 5d bulk transition metals that have face centered cubic (fcc), hexagonal closed packed (hcp), or body centered cubic (bcc) structures (a total of 27 cases). Our results show that including the extra elements of kinetic energy density and Hartree-Fock exchange energy density into gradient approximation density functionals does not usually improve them. Nevertheless, the accuracies of the Tao-Perdew-Staroverov-Scuseria (TPSS) and M06-L meta-GGAs and the MN12-L meta-NGA approach the accuracy of the Perdew-Burke-Ernzerhof (PBE) GGA, so usage of these functionals may be advisable for systems containing both solid-state transition metals and molecular species. The N12 NGA functional is also shown to be almost as accurate as PBE for bulk transition metals, and thus it could be a good choice for studies of catalysis given its proven good performance for molecular species.
NASA Astrophysics Data System (ADS)
Ramasesha, S.; Soos, Z. G.
1984-04-01
The low-lying eigenstates ψn of the Pariser-Parr-Pople (PPP) model for polyenes with N≤11 carbons are found exactly as linear combinations of nonorthogonal covalent and ionic valence-bond (VB) diagrams. We extend diagrammatic VB theory to normalize ψn efficiently and to evaluate exactly transition moments, spin densities, and other matrix elements within subspaces of fixed total spin S. Charge orthogonality in the VB basis results in a block-diagonal overlap matrix whose evaluation is rapid for linear combinations of over 105 diagrams. We obtain S=0 and 1 states of all-trans decapentaene (N=Ne =10), S=1/2 states of nonatetraenyl (N=Ne =9), S=0 states of its anion and cation, and spin densities through undecapentaenyl (N=Ne =11), all with standard molecular PPP parameters. Correlation effects on excitation energies, on transition moments, and on spin densities are contrasted with one-electron Hückel results and compared with data on finite polyenes and polyacetylene. Standard PPP parameters successfully describe the 2 1Ag and 1 1Bu excitations of alternating even polyenes, their reduced oscillator strengths, the 1 1A↔1 1B transition of regular odd anions, and the nearly uniform negative and positive spin densities of regular polyene radicals.
The Hagedorn spectrum, nuclear level densities and first order phase transitions
Moretto, Luciano G.; Larsen, A. C.; Guttormsen, M.; Siem, S.
2015-10-15
An exponential mass spectrum, like the Hagedorn spectrum, with slope 1/T{sub H} was interpreted as fixing an upper limiting temperature T{sub H} that the system can achieve. However, thermodynamically, such spectrum indicates a 1{sup st} order phase transition at a fixed temperature T{sub H}. A much lower energy example is the log linear level nuclear density below the neutron binding energy that prevails throughout the nuclear chart. We show that, for non-magic nuclei, such linearity implies a 1{sup st} order phase transition from the pairing superfluid to an ideal gas of quasi particles.
Assessment of density functional theory to calculate the phase transition pressure of ice.
Kambara, Ohki; Takahashi, Kaito; Hayashi, Michitoshi; Kuo, Jer-Lai
2012-08-28
To assess the accuracy of density functional theory (DFT) methods in describing hydrogen bonding in condensed phases, we benchmarked their performance in describing phase transitions among different phases of ice. We performed DFT calculations of ice for phases Ih, II, III, VI and VII using BLYP, PW91, PBE, PBE-D, PBEsol, B3LYP, PBE0, and PBE0-D, and compared the calculated phase transition pressures between Ih-II, Ih-III, II-VI, and VI-VII with the 0 K experimental values of Whalley [J. Chem. Phys., 1984, 81, 4087]. From the geometry optimization of many different candidates, we found that the most stable proton orientation as well as the phase transition pressure does not show much functional dependence for the generalized gradient approximation and hybrid functionals. Although all these methods overestimated the phase transition pressure, the addition of van der Waals (vdW) correction using PBE-D and PBE0-D reduced the transition pressure and improved the agreement for Ih-II. On the other hand, energy ordering between VI and VII reversed and gave an unphysical negative transition pressure. Binding energy profiles of a few conformations of water dimers were calculated to understand the improvement for certain transitions and failures for others with the vdW correction. We conclude that vdW dispersion forces must be considered to accurately describe the hydrogen bond in many different phases of ice, but the simple addition of the R(-6) term with a small basis set tends to over stabilize certain geometries giving unphysical ordering in the high density phases.
NASA Astrophysics Data System (ADS)
Zu, Mengjie; Liu, Jun; Tong, Hua; Xu, Ning
2016-08-01
We find that both continuous and discontinuous hexatic-liquid transitions can happen in the melting of two-dimensional solids of soft-core disks. For three typical model systems, Hertzian, harmonic, and Gaussian-core models, we observe the same scenarios. These systems exhibit reentrant crystallization (melting) with a maximum melting temperature Tm happening at a crossover density ρm. The hexatic-liquid transition at a density smaller than ρm is discontinuous. Liquid and hexatic phases coexist in a density interval, which becomes narrower with increasing temperature and tends to vanish approximately at Tm. Above ρm, the transition is continuous, in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory. For these soft-core systems, the nature of the hexatic-liquid transition depends on density (pressure), with the melting at ρm being a plausible transition point from discontinuous to continuous hexatic-liquid transition.
NASA Astrophysics Data System (ADS)
D'Escamard, Gabriella; De Rosa, Claudio; Auriemma, Finizia
2016-05-01
Crosslink sulfur density in rubber compounds and interactions in polymer blends are two of the composition elements that affect the rubber compound properties and glass transition temperature (Tg), which is a marker of polymer properties related to its applications. Natural rubber (NR), butadiene rubber (BR) and styrene-butadiene rubber (SBR) compounds were investigated using calorimetry (DSC) and dynamic mechanical analysis (DMA). The results indicate that the Di Marzio's and Schneider's Models predict with accuracy the dependence of Tg on crosslink density and composition in miscible blends, respectively, and that the two model may represent the base to study the relevant "in service" properties of real rubber compounds.
Nucleation transition and nucleus density scaling in surfactant-mediated epitaxy
NASA Astrophysics Data System (ADS)
Wang, Daimu; Ding, Zejun; Sun, Xia
2005-09-01
A model of submonolayer epitaxial growth mediated by a monolayer of surfactant is studied, where exchange of adatoms with their underneath surfactant atoms is reversible; i.e., an exchanged adatom can reexchange with the lifted surfactant atom to return to the top of the surfactant layer when the substrate temperature is high enough. A rate equation analysis shows that island nucleation governed by the reexchanging-controlled surface diffusion obeys a scaling law, which connects the nucleation density with the rates of the deposition, surface diffusion, exchange, and reexchange process. Our model system reveals distinct nucleation transitions due to the activated exchange and reexchange, and the nucleation density as a function of temperature exhibits a characteristic N shape with a minimum and a maximum, which define the transition temperatures. The analytical results are confirmed by comparison with kinetic Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Darancet, Pierre; Millis, Andrew J.; Marianetti, Chris A.
2013-03-01
Transition metal dichalcogenides (TMDC) are layered materials displaying a variety of charge-density wave (CDW) instabilities and complex phase diagrams for group IV & V transition metals. Recent progress in mechanical exfoliation and device fabrication now allow for electrical characterization and gating of individual, 3-atom thick layers of TMDCs, providing new probes of the complex many-body interactions arising in these compounds. In this talk, I will present our investigations using density functional and dynamical mean-field theory regarding the electronic structure and electronic correlations arising in distorted monolayers, bilayers, and trilayers of octahedral group V TMDCs. We will examine the importance of doping, crystal fields, and many-body interactions, and their influence on the transport and optical properties of these materials upon distortion. Computational resources provided by New York Center for Computational Sciences at SBU/BNL supported by the U.S. DOE under Contract No. DE-AC02-98CH10886
A bit transition density encoder for the Space Shuttle 2 MHz data channel
NASA Technical Reports Server (NTRS)
Schoggen, W. O.; Ingels, F. M.; Mann, D. R.; Coffey, R. E.; Atherton, J.
1981-01-01
As a result of several unique factors, the 2 MHz data channel which carries science data from the various experiments aboard the Space Shuttle through the Tracking and Data Relay Satellite System (TDRSS) lacks sufficient bit transition density to satisfy the bit synchronizer requirements at the ground station. It is noted that six encoding techniques were examined, and all but one, a PN cover sequence (Reset Bit Scrambler) were dismissed because of incompatibility with system constraints. The rationale behind the particular PN sequence chosen, the way it was truncated, and the new sequence properties are presented. The properties of the raw data stream are analyzed, as are the encoded sequence properties, including transition density. Diagrams of the encoder and decoder are included.
NASA Astrophysics Data System (ADS)
Silvi, Pietro; Calarco, Tommaso; Morigi, Giovanna; Montangero, Simone
2014-03-01
Ions of the same charge inside confining potentials can form crystalline structures which can be controlled by means of the ion density and of the external trap parameters. In particular, a linear chain of trapped ions exhibits a transition to a zigzag equilibrium configuration, which is controlled by the strength of the transverse confinement. Studying this phase transition in the quantum regime is a challenging problem, even when employing numerical methods to simulate microscopically quantum many-body systems. Here we present a compact analytical treatment to map the original long-range problem into a short-range quantum field theory on a lattice. We provide a complete numerical architecture, based on the density matrix renormalization group, to address the effective quantum ϕ4 model. This technique is instrumental in giving a complete characterization of the phase diagram, as well as pinpointing the universality class of the criticality.
Charge density wave depinning transition: a real space renormalization group approach
NASA Astrophysics Data System (ADS)
Caglioti, E.; Celino, M.
1993-01-01
We study analytically and numerically the depinning transition of a pinned charge density wave. We introduce a real space renormalization group approach with the method of decimation, which allows to determine the threshold both in the strong and weak pinning limit. We also perform a numerical renormalization of the system that allows to avoid the difficulties due to the large fluctuations in the weak pinning limit. The analytical results turn out to be in good agreement with the simulations.
Steam Reforming on Transition-metal Carbides from Density-functional Theory
Vojvodic, Aleksandra
2012-05-11
A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.
Density-functional Monte-Carlo simulation of CuZn order-disorder transition
Khan, Suffian N.; Eisenbach, Markus
2016-01-25
We perform a Wang-Landau Monte Carlo simulation of a Cu_{0.5}Zn_{0.5} order-disorder transition using 250 atoms and pairwise atom swaps inside a 5 x 5 x 5 BCC supercell. Each time step uses energies calculated from density functional theory (DFT) via the all-electron Korringa-Kohn- Rostoker method and self-consistent potentials. Here we find CuZn undergoes a transition from a disordered A2 to an ordered B2 structure, as observed in experiment. Our calculated transition temperature is near 870 K, comparing favorably to the known experimental peak at 750 K. We also plot the entropy, temperature, specific-heat, and short-range order as a function of internal energy.
Density-functional Monte-Carlo simulation of CuZn order-disorder transition
Khan, Suffian N.; Eisenbach, Markus
2016-01-25
We perform a Wang-Landau Monte Carlo simulation of a Cu0.5Zn0.5 order-disorder transition using 250 atoms and pairwise atom swaps inside a 5 x 5 x 5 BCC supercell. Each time step uses energies calculated from density functional theory (DFT) via the all-electron Korringa-Kohn- Rostoker method and self-consistent potentials. Here we find CuZn undergoes a transition from a disordered A2 to an ordered B2 structure, as observed in experiment. Our calculated transition temperature is near 870 K, comparing favorably to the known experimental peak at 750 K. We also plot the entropy, temperature, specific-heat, and short-range order as a function ofmore » internal energy.« less
Densities and mass motions in transition-zone plasmas in solar flares observed from Skylab
NASA Technical Reports Server (NTRS)
Cheng, C.-C.
1980-01-01
The electron densities and bulk motions in the transition-zone plasma of a solar flare are investigated by an analysis of EUV emission line spectra taken on Skylab. Spectra of three flares were obtained with the NRL normal incidence grating slit spectrograph in the ranges 1100-1940 and 1940-3940 A. The line ratios of transition-zone Si III lines and the intensity of the forbidden O IV 1401-A lines during flare maximum indicate electron densities on the order of 10 to the 12th/cu cm, decreasing by a factor of 2 to 3 in the flare decay phase. Line broadening of the transition-zone ions such as Si III, O IV, C IV and N V is noted, and the observed asymmetrical N V line profiles are approximated by a bi-Gaussian model of a stationary and a moving plasma component with a bulk velocity of 12 to 70 km/sec. Turbulent velocities of from 45 to 85 km/sec and from 20 to 40 km/sec are also indicated for the moving and stationary components of the transition-zone plasma, respectively.
Densities and mass motions in transition-zone plasmas in solar flares observed from Skylab
NASA Technical Reports Server (NTRS)
Cheng, C.-C.
1980-01-01
The electron densities and bulk motions in the transition-zone plasma of a solar flare are investigated by an analysis of EUV emission line spectra taken on Skylab. Spectra of three flares were obtained with the NRL normal incidence grating slit spectrograph in the ranges 1100-1940 and 1940-3940 A. The line ratios of transition-zone Si III lines and the intensity of the forbidden O IV 1401-A lines during flare maximum indicate electron densities on the order of 10 to the 12th/cu cm, decreasing by a factor of 2 to 3 in the flare decay phase. Line broadening of the transition-zone ions such as Si III, O IV, C IV and N V is noted, and the observed asymmetrical N V line profiles are approximated by a bi-Gaussian model of a stationary and a moving plasma component with a bulk velocity of 12 to 70 km/sec. Turbulent velocities of from 45 to 85 km/sec and from 20 to 40 km/sec are also indicated for the moving and stationary components of the transition-zone plasma, respectively.
Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system
Lu, T. M.; Tracy, L. A.; Laroche, D.; ...
2017-06-01
We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 1010 cm-2, this ratio grows greater than 1, resulting in a ferromagneticmore » ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less
CO adsorption on transition metal clusters: Trends from density functional theory
NASA Astrophysics Data System (ADS)
Zeinalipour-Yazdi, Constantinos D.; Cooksy, Andrew L.; Efstathiou, Angelos M.
2008-05-01
This work reports for the first time the trends for carbon monoxide (CO) chemisorption on transition metal clusters present in supported metal catalysts. In particular, the energetic, structural and infrared adsorption characteristics of linearly (atop) CO adsorbed on transition metal nano-clusters of less than 10 Å in size were explored. Spin-unrestricted density functional theory (DFT) calculations were employed to explore the trends of CO adsorption energy (AM-CO) and C-O vibrational frequency (νCO) for clusters composed of Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au. The effects of the transition metal electronic structure onto the adsorption energy of CO and the vibrational stretching frequency of C-O, and how these chemical parameters can be correlated to the catalytic activity of transition supported metal catalysts that involve the adsorption, surface diffusion, and C-O bond dissociation elementary steps in heterogeneous catalytic surface reactions, are discussed. Our findings show that an increase of the electronic d-shell occupancy and the principal quantum number (n) in transition metals causes an increase in the vibrational stretching frequency of the C-O bond. This trend is inconsistent with the classical Blyholder model for the metal-carbonyl bond.
NASA Astrophysics Data System (ADS)
Lim, S. P.; Sheng, D. N.
2016-07-01
A many-body localized (MBL) state is a new state of matter emerging in a disordered interacting system at high-energy densities through a disorder-driven dynamic phase transition. The nature of the phase transition and the evolution of the MBL phase near the transition are the focus of intense theoretical studies with open issues in the field. We develop an entanglement density matrix renormalization group (En-DMRG) algorithm to accurately target highly excited states for MBL systems. By studying the one-dimensional Heisenberg spin chain in a random field, we demonstrate the accuracy of the method in obtaining energy eigenstates and the corresponding statistical results of quantum states in the MBL phase. Based on large system simulations by En-DMRG for excited states, we demonstrate some interesting features in the entanglement entropy distribution function, which is characterized by two peaks: one at zero and another one at the quantized entropy S =ln2 with an exponential decay tail on the S >ln2 side. Combining En-DMRG with exact diagonalization simulations, we demonstrate that the transition from the MBL phase to the delocalized ergodic phase is driven by rare events where the locally entangled spin pairs develop power-law correlations. The corresponding phase diagram contains an intermediate or crossover regime, which has power-law spin-z correlations resulting from contributions of the rare events. We discuss the physical picture for the numerical observations in this regime, where various distribution functions are distinctly different from results deep in the ergodic and MBL phases for finite-size systems. Our results may provide new insights for understanding the phase transition in such systems.
Autschbach, Jochen; Jorge, Francisco E; Ziegler, Tom
2003-05-05
Time-dependent density functional theory (TD-DFT) has for the first time been applied to the computation of circular dichroism (CD) spectra of transition metal complexes, and a detailed comparison with experimental spectra has been made. Absorption spectra are also reported. Various Co(III) complexes as well as [Rh(en)(3)](3+) are studied in this work. The resulting simulated CD spectra are generally in good agreement with experimental spectra after corrections for systematic errors in a few of the lowest excitation energies are applied. This allows for an interpretation and assignment of the spectra for the whole experimentally accessible energy range (UV/vis). Solvent effects on the excitations are estimated via inclusion of a continuum solvent model. This significantly improves the computed excitation energies for charge-transfer bands for complexes of charge +3, but has only a small effect on those for neutral or singly charged complexes. The energies of the weak d-to-d transitions of the Co complexes are systematically overestimated due to deficiencies of the density functionals. These errors are much smaller for the 4d metal complex. Taking these systematic errors and the effect of a solvent into consideration, TD-DFT computations are demonstrated to be a reliable tool in order to assist with the assignment and interpretation of CD spectra of chiral transition metal complexes.
Metal-insulator transition in disordered systems from the one-body density matrix
NASA Astrophysics Data System (ADS)
Olsen, Thomas; Resta, Raffaele; Souza, Ivo
2017-01-01
The insulating state of matter can be probed by means of a ground state geometrical marker, which is closely related to the modern theory of polarization (based on a Berry phase). In the present work we show that this marker can be applied to determine the metal-insulator transition in disordered systems. In particular, for noninteracting systems the geometrical marker can be obtained from the configurational average of the norm-squared one-body density matrix, which can be calculated within open as well as periodic boundary conditions. This is in sharp contrast to a classification based on the static conductivity, which is only sensible within periodic boundary conditions. We exemplify the method by considering a simple lattice model, known to have a metal-insulator transition as a function of the disorder strength, and demonstrate that the transition point can be obtained accurately from the one-body density matrix. The approach has a general ab initio formulation and could in principle be applied to realistic disordered materials by standard electronic structure methods.
Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains
NASA Astrophysics Data System (ADS)
Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.
2016-09-01
The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.
Telloni, D.; Antonucci, E.; Bruno, R.; D'Amicis, R.; Carbone, V.
2009-11-20
This paper investigates the evolution of the plasma density fluctuations of the fast and slow solar wind from the solar corona into the interplanetary space. The study is performed by comparing the low-frequency spectra and the phase correlation of the proton density oscillations, measured in the inner heliosphere with the Helios 2 in situ instrumentation, with those due to the large-scale density perturbations observed with UVCS/SOHO in the outer corona. We find that the characteristics of density fluctuations of the fast solar wind are maintained in the transition from the outer corona to the inner heliosphere, thus suggesting a coronal imprint for the heliospheric large-scale 1/f {sup 2} noise spectrum. In contrast, a quick dynamical evolution is observed in the slow wind, which, starting from large-scale fluctuations with strong phase correlations in the outer corona, gives rise to a Kolmogorov-like spectrum and an accumulation of density structures at small scales at 0.3 AU. This can be explained in the framework of nearly incompressible turbulence.
Czader, Arkadiusz; Bittner, Eric R
2008-01-21
Excited states of the double-stranded DNA model (A)12.(T)12 were calculated in the framework of the Frenkel exciton theory. The off-diagonal elements of the exciton matrix were calculated using the transition densities and ideal dipole approximation associated with the lowest energy pipi* excitations of the individual nucleobases as obtained from time-dependent density functional theory calculations. The values of the coupling calculated with the transition density cubes (TDC) and ideal dipole approximation (IDA) methods were found to be significantly different for the small interchromophore distances. It was shown that the IDA overestimates the coupling significantly. The effects of structural fluctuations of the DNA chain on the magnitude of dipolar coupling were also found to be very significant. The difference between the maximum and minimum values was as large as 1000 and 300 cm(-1) for the IDA and TDC methods, respectively. To account for these effects, the properties of the excited states were averaged over a large number of conformations obtained from the molecular dynamics simulations. Our calculations using the TDC method indicate that the absorption of the UV light creates exciton states carrying the majority of the oscillator strength that are delocalized over at least six DNA bases. Upon relaxation, the excitation states localize over at least four contiguous bases.
Kang, Joohoon; Seo, Jung-Woo T; Alducin, Diego; Ponce, Arturo; Yacaman, Miguel Jose; Hersam, Mark C
2014-11-13
Two-dimensional transition metal dichalcogenides have emerged as leading successors to graphene due to their diverse properties, which depend sensitively on sample thickness. Although solution-based exfoliation methods hold promise for scalable production of these materials, existing techniques introduce irreversible structural defects and/or lack sufficient control over the sample thickness. In contrast, previous work on carbon nanotubes and graphene has shown that isopycnic density gradient ultracentrifugation can produce structurally and electronically monodisperse nanomaterial populations. However, this approach cannot be directly applied to transition metal dichalcogenides due to their high intrinsic buoyant densities when encapsulated with ionic small molecule surfactants. Here, we overcome this limitation and thus demonstrate thickness sorting of pristine molybdenum disulfide (MoS2) by employing a block copolymer dispersant composed of a central hydrophobic unit flanked by hydrophilic chains that effectively reduces the overall buoyant density in aqueous solution. The resulting solution-processed monolayer MoS2 samples exhibit strong photoluminescence without further chemical treatment.
Charge-Density Wave Driven Phase Transitions in Single-Layer MoS2
NASA Astrophysics Data System (ADS)
Zhuang, Houlong L.; Johannes, Michelle D.; Hennig, Richard G.
2014-03-01
Phase transitions in single-layer MoS2 are frequently observed in experiments. We reveal that charge doping can induce the phase transition of single-layer MoS2 from the 2 H to the 1 T structure. Further, the 1 T structure undergoes a second phase transition due to the occurrence of a charge-density wave (CDW). By comparing the energies of several possible resulting CDW structures, we find that the √{ 3} a × a orthorhombic structure is the most stable one, consistent with experimental observations. Moreover, we discover that the band structure of the √{ 3} a × a structure possesses a Dirac cone, which is split by spin-orbit interactions into a bandgap of 50 meV. We show that the underlying CDW transition mechanism is not electronic, but can be controlled by charge doping nonetheless. Finally, we calculate the interface energy and band offsets of a lateral heterostructure formed by the 2 H and √{ 3} a × a structures.
Observation and modeling of deflagration-to-detonation transition (DDT) in low-density HMX
NASA Astrophysics Data System (ADS)
Tringe, Joseph W.; Vandersall, Kevin S.; Reaugh, John E.; Levie, Harold W.; Henson, Bryan F.; Smilowitz, Laura B.; Parker, Gary R.
2017-01-01
We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (˜1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a more temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder.
Observation and modeling of deflagration-to-detonation (DDT) transition in low-density HMX
NASA Astrophysics Data System (ADS)
Tringe, Joseph; Vandersall, Kevin; Reaugh, Jack; Levie, Harold; Henson, Bryan; Smilowitz, Laura; Parker, Gary
2015-06-01
We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (~ 1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition, both by x-ray contrast and by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Transition-density-fragment interaction approach for exciton-coupled circular dichroism spectra
NASA Astrophysics Data System (ADS)
Fujimoto, Kazuhiro J.
2010-09-01
A transition-density-fragment interaction (TDFI) method for exciton-coupled circular dichroism (ECCD) spectra is proposed. The TDFI method was previously developed for excitation-energy transfer, which led to the successful estimation of the electronic coupling energy between donor and accepter molecules in xanthorhodopsin [K. J. Fujimoto and S. Hayashi, J. Am. Chem. Soc. 131, 14152 (2009)]. In the present study, the TDFI scheme is extended to the ECCD spectral calculation based on the matrix method and is applied to a dimerized retinal (all-trans N-retinylidene-L-alanine Schiff base) chromophore. Compared with the dipole-dipole and transition charge from ESP methods, TDFI has a much improved description of the electronic coupling. In addition, the matrix method combined with TDFI can reduce the computational costs compared with the full quantum-mechanical calculation. These advantages of the present method make it possible to accurately evaluate the CD Cotton effects observed in experiment.
Density-transition based electron injector for laser driven wakefield accelerators
NASA Astrophysics Data System (ADS)
Schmid, K.; Buck, A.; Sears, C. M. S.; Mikhailova, J. M.; Tautz, R.; Herrmann, D.; Geissler, M.; Krausz, F.; Veisz, L.
2010-09-01
We demonstrate a laser wakefield accelerator with a novel electron injection scheme resulting in enhanced stability, reproducibility, and ease of use. In order to inject electrons into the accelerating phase of the plasma wave, a sharp downward density transition is employed. Prior to ionization by the laser pulse this transition is formed by a shock front induced by a knife edge inserted into a supersonic gas jet. With laser pulses of 8 fs duration and with only 65 mJ energy on target, the accelerator produces a monoenergetic electron beam with tunable energy between 15 and 25 MeV and on average 3.3 pC charge per electron bunch. The shock-front injector is a simple and powerful new tool to enhance the reproducibility of laser-driven electron accelerators, is easily adapted to different laser parameters, and should therefore allow scaling to the energy range of several hundred MeV.
Possibility of charge density wave transition in a SrPt2Sb2 superconductor
NASA Astrophysics Data System (ADS)
Ibuka, Soshi; Imai, Motoharu
2016-04-01
The first-order transition at T 0 = 270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T 0, the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T 0. SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory
NASA Astrophysics Data System (ADS)
Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.
2017-07-01
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.
Evans, Robert; Stewart, Maria C; Wilding, Nigel B
2017-07-28
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Kepler’s Low-Mass, Low Density Planets Characterized via Transit Timing
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Ford, Eric B.; Lissauer, Jack; Rowe, Jason; Fabrycky, Daniel
2015-08-01
The Kepler mission has revealed an abundance of planets in a regime of mass and size that is absent from the Solar System. This includes systems of high multiplicity within 1 AU, where low-mass volatile-rich planets have been observed in compact orbital configurations, as have smaller, rocky planets. The existing sample of characterized planets on the mass-radius diagram shows no abrupt transition from rocky planets to those that must be volatile-rich, but characteristic trends are beginning to emerge. More precise characterizations of planets by mass, radius, and incident flux are revealing fundamental properties of a common class of exoplanets.There is a small sample of low mass exoplanets with known masses and radii, whose radii are known from transit depths, and whose masses are determined from radial velocity spectroscopy (RV). In the super-Earth mass range, detectability limits this sample to planets that have short orbital periods, and high incident fluxes.In the absence of mass determinations via RV observations, transit timing variations (TTVs) offer a chance to probe perturbations between planets that pass close to one another or are near resonance, and hence dynamical fits to observed transit times can be used to measure planetary masses and orbital parameters. Such modeling with Kepler data probes planetary masses over orbital periods ranging from ~5-200 days, complementing the sample of RV detections, but also with some overlap.In addition, dynamical fits to observed TTVs can tightly constrain the orbital eccentricity vectors in select cases, which can, alongside the transit light curve, tightly constrain the density and radius of the host star, and hence reduce the uncertainty on planetary radius.TTV studies have revealed a class of low-mass, low-density objects with a substantial mass fraction in the form of a voluminous H-rich atmosphere. We will present new precise planetary mass characterizations from TTVs. We find that super-Earth mass planets
NASA Technical Reports Server (NTRS)
Ingels, F.; Schoggen, W. O.
1981-01-01
Several methods for increasing bit transition densities in a data stream are summarized, discussed in detail, and compared against constraints imposed by the 2 MHz data link of the space shuttle high rate multiplexer unit. These methods include use of alternate pulse code modulation waveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding, and use of bit scramblers. The psuedo-random cover sequence generator was chosen for application to the 2 MHz data link of the space shuttle high rate multiplexer unit. This method is fully analyzed and a design implementation proposed.
Density-functional theory for fluid-solid and solid-solid phase transitions
NASA Astrophysics Data System (ADS)
Bharadwaj, Atul S.; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u (r ) =ɛ "close="1 /n )">σ /r n , where parameter n measures softness of the potential. We find that for 1 /n ≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Density-functional theory for fluid-solid and solid-solid phase transitions.
Bharadwaj, Atul S; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Precise Measurements of the Density and Critical Phenomena Near Phase Transitions in Liquid Helium
NASA Technical Reports Server (NTRS)
Yeh, Nai-Chang
1997-01-01
The first-year progress for the project of precise measurements of the density and critical phenomena of helium near phase transitions is summarized below: (1) completion of a cryogenic sample probe for the proposed measurements, and the rehabilitation of a designated laboratory at Caltech for this project; (2) construction and testing of a superconducting niobium cavity; (3) acquisition of one phase-locked-loop system for high-resolution frequency control and read- out; (4) setting up high-resolution thermometry (HRT) for temperature readout and control; (5) developing new approaches for calibrating the coefficient between the resonant frequency shift (delta f) and the helium density (rho), as well as for measuring the effect of gravity on T(sub lambda) to a much better precision; (6) programming of the interface control of all instruments for automatic data acquisition; and (7) improving data analyses and fitting procedures.
Securing the Extremely Low-Densities of Low-Mass Planets Characterized by Transit Timing Variations
NASA Astrophysics Data System (ADS)
Ford, Eric B.
2015-12-01
Transit timing variations (TTVs) provide an excellent tool to characterize the masses and orbits of dozens of small planets, including many at orbital periods beyond the reach of both Doppler surveys and photoevaporation-induced atmospheric loss. Dynamical modeling of these systems has identified low-mass planets with surprisingly large radii and low densities (e.g., Kepler-79d, Jontof-Hutter et al. 2014; Kepler-51, Masuda 2014; Kepler-87c, Ofir et al. 2014). Additional low-density, low-mass planets will likely become public before ESS III (Jontof-Hutter et al. in prep). Collectively, these results suggest that very low density planets with masses of 2-6 MEarth are not uncommon in compact multiple planet systems. Some astronomers have questioned whether there could be an alternative interpretation of the TTV observations. Indeed, extraordinary claims require extraordinary evidence. While the physics of TTVs is rock solid, the statistical analysis of Kepler observations can be challenging, due to the complex interactions between model parameters and high-dimensional parameter spaces that must be explored. We summarize recent advances in computational statistics that enable robust characterization of planetary systems using TTVs. We present updated analyses of a few particularly interesting systems and discuss the implications for the robustness of extremely low densities for low-mass planets. Such planets pose an interesting challenge for planet formation theory and are motivating detailed theoretical studies (e.g., Lee & Chiang 2015 and associated ESS III abstracts).
NASA Astrophysics Data System (ADS)
Watson, R. E.; Fernando, G. W.; Weinert, M.; Wang, Y. J.; Davenport, J. W.
1991-04-01
The accuracy of the local-density (LDA) or local-spin-density (LSDA) approximations when applied to transition metals is of great concern. Estimates of the cohesive energy compare the total energy of the solid with that of the free atom. This involves chosing the reference state of the free atom which, as a rule, will not be the free atom's ground state in LDA or LSDA. Comparing one reference state versus another, e.g., the dn-1s vs dn-2s2 for a transition metal, corresponds to calculating an s-d promotion energy Δ, which may be compared with experiment. Gunnarsson and Jones (GJ) [Phys. Rev. B 31, 7588 (1985)] found for the 3d row that the calculated Δ displayed systematic errors which they attributed to a difference in error within the LSDA in the treatment of the coupling of the outer-core electrons with the d versus non-d valence electrons. This study has been extended to relativistic calculations for the 3d, 4d, and 5d rows and for other promotions. The situation is more complicated than suggested by GJ, and its implications for cohesive energy estimates will be discussed.
[Validity of PSA density of the transition zone in the diagnosis of prostate cancer].
Anastasi, G; Magno, C; Carmignani, A; Inferrera, A; Petrelli, A; Broccio, G
2000-12-01
One hundred four patients (mean age 70.6 years) with prostatic specific antigen (PSA) values between 4 and 10 ng/ml (average 7.9 ng/ml), and with no suspects for neoplasia by digital rectal examination (DRE) and transrectal ultrasound (TRUS) were studied. In all patients PSA density for the entire prostate (PSAD) and PSA density for the transition zone (PSAT) were calculated. TRUS was performed using a 5 MHz probe. Prostate and transition zone volumes were obtained by ellipsoid formula. Aim of the study was to evaluate the PSAT predictivity for prostate cancer compared to the PSAD. Sixteen out of 104 patients (15.4%) had histologically confirmed prostate cancer, and 88 (84.6%) had benign prostatic hyperplasia. When cut-off for PSAD was 0.15 ng/ml/cc, specificity and sensitivity were respectively 75% and 68% with positive and negative predictive values of 54% and 17%; when cut-off for PSAT was 0.34% ng/ml/cc, sensitivity and specificity were respectively 100% and 68% with positive and negative predictive values of 60% and 18%. Our results, according to the literature data, suggest that PSAT seems to have a higher predictivity for prostate cancer than PSAD, providing an optimization for the employ of prostatic biopsy, especially for those patients with PSA values between 4 and 10 ng/ml.
Glass Transition Temperature and Density Scaling in Cumene at Very High Pressure
NASA Astrophysics Data System (ADS)
Ransom, T. C.; Oliver, W. F.
2017-07-01
We present a new method that allows direct measurements of the glass transition temperature Tg at pressures up to 4.55 GPa in the glass-forming liquid cumene (isopropylbenzene). This new method uses a diamond anvil cell and can measure Tg at pressures of 10 GPa or greater. Measuring Tg at the glass →liquid transition involves monitoring the disappearance of pressure gradients initially present in the glass, but also takes advantage of the large increase in the volume expansion coefficient αp at Tg as the supercooled or superpressed liquid is entered. Accurate Tg(P ) values in cumene allow us to show that density scaling holds along this isochronous line up to pressures much higher than any previous study, corresponding to a density increase of 29%. Our results for cumene over this huge compression range yield ργ/T =C , where C is a constant and where γ =4.77 ±0.02 for this nonassociated glass-forming system. Finally, high-pressure cumene viscosity data from the literature taken at much lower pressures and at several different temperatures, corresponding to a large dynamic range of nearly 13 orders of magnitude, are shown to superimpose on a plot of η vs ργ/T for the same value of γ .
Gazzadi, Gian Carlo; Frabboni, Stefano
2015-01-01
Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.
Sang, Xiahan; Kulovits, Andreas; Wang, Guofeng; Wiezorek, Jörg
2013-02-28
Accurate low-order structure factors (Fg) measured by quantitative convergent beam electron diffraction (QCBED) were used for validation of different density functional theory (DFT) approximations. Twenty-three low-order Fg were measured for the transition metals Cr, Fe, Co, Ni, and Cu, and the transition metal based intermetallic phases γ-TiAl, β-NiAl, and γ1-FePd using a multi-beam off-zone axis QCBED method and then compared with Fg calculated by ab initio DFT using the local density approximation (LDA) and LDA + U, and different generalized gradient approximations (GGA) functionals. Different functionals perform very differently for different materials and crystal structures regarding prediction of low-order Fg. All the GGA functionals tested in the paper except for EV93 achieve good overall agreement with the experimentally determined low-order Fg for BCC Cr and Fe, while EV93 performs the best for FCC Ni and Cu. The LDA and GGA functional fail to predict accurately the low-order Fg for β-NiAl and γ1-FePd. The LDA + U approach, through tuning of U, can achieve excellent matches with the experimentally measured Fg for all the metallic systems investigated in this paper. The use of experimentally accessible low order Fg as an additional set of metrics in approaches of validation of DFT calculations is discussed and has potential to assist in and to stimulate development of improved functionals.
NASA Astrophysics Data System (ADS)
Sang, Xiahan; Kulovits, Andreas; Wang, Guofeng; Wiezorek, Jörg
2013-02-01
Accurate low-order structure factors (Fg) measured by quantitative convergent beam electron diffraction (QCBED) were used for validation of different density functional theory (DFT) approximations. Twenty-three low-order Fg were measured for the transition metals Cr, Fe, Co, Ni, and Cu, and the transition metal based intermetallic phases γ-TiAl, β-NiAl, and γ1-FePd using a multi-beam off-zone axis QCBED method and then compared with Fg calculated by ab initio DFT using the local density approximation (LDA) and LDA + U, and different generalized gradient approximations (GGA) functionals. Different functionals perform very differently for different materials and crystal structures regarding prediction of low-order Fg. All the GGA functionals tested in the paper except for EV93 achieve good overall agreement with the experimentally determined low-order Fg for BCC Cr and Fe, while EV93 performs the best for FCC Ni and Cu. The LDA and GGA functional fail to predict accurately the low-order Fg for β-NiAl and γ1-FePd. The LDA + U approach, through tuning of U, can achieve excellent matches with the experimentally measured Fg for all the metallic systems investigated in this paper. The use of experimentally accessible low order Fg as an additional set of metrics in approaches of validation of DFT calculations is discussed and has potential to assist in and to stimulate development of improved functionals.
Neugebauer, Johannes
2007-04-07
A subsystem formulation of time-dependent density functional theory (TDDFT) within the frozen-density embedding (FDE) framework and its practical implementation are presented, based on the formal TDDFT generalization of the FDE approach by Casida and Wesolowski [Int. J. Quantum Chem. 96, 577 (2004)]. It is shown how couplings between electronic transitions on different subsystems can be seamlessly incorporated into the formalism to overcome some of the shortcomings of the approximate TDDFT-FDE approach in use so far, which was only applicable for local subsystem excitations. In contrast to that, the approach presented here allows to include couplings between excitations on different subsystems, which become very important in aggregates composed of several similar chromophores, e.g., in biological or biomimetic light-harvesting systems. A connection to Forster- and Dexter-type excitation energy coupling expressions is established. A hybrid approach is presented and tested, in which excitation energy couplings are selectively included between different chromophore fragments, but neglected for inactive parts of the environment. It is furthermore demonstrated that the coupled TDDFT-FDE approach can cure the inability of the uncoupled FDE approach to describe induced circular dichroism in dimeric chromophores, a feature known as a "couplet," which is also related to couplings between (nearly) degenerate electronic transitions.
Song, Yun S; Steinrücken, Matthias
2012-03-01
The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.
Janthon, Patanachai; Kozlov, Sergey M; Viñes, Francesc; Limtrakul, Jumras; Illas, Francesc
2013-03-12
The performance of various commonly used density functionals is established by comparing calculated values of atomic structure data, cohesive energies, and bulk moduli of all transition metals to available experimental data. The functionals explored are the Ceperley-Alder (CA), Vosko-Wilk-Nussair (VWN) implementation of the Local Density Approximation (LDA); the Perdew-Wang (PW91) and Perdew-Burke-Ernzerhof (PBE) forms of the Generalized Gradient Approximation (GGA), and the RPBE and PBEsol modifications of PBE, aimed at better describing adsorption energies and bulk solid lattice properties, respectively. The present systematic study shows that PW91 and PBE consistently provide the smallest differences between the calculated and experimental values. Additional calculations of the (111) surface energy of several face centered cubic (fcc) transition metals reveal that LDA produces the most accurate results, while all other functionals significantly underestimate the experimental values. RPBE severely underestimates surface energy, which may be the origin for the reduced surface chemical activity and the better performance of RPBE describing adsorption energies.
Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA
NASA Astrophysics Data System (ADS)
van der Marel, N.; van Dishoeck, E. F.; Bruderer, S.; Pérez, L.; Isella, A.
2015-07-01
Context. Transitional disks with large dust cavities are important laboratories in which to study planet formation and disk evolution. Cold gas may still be present inside these cavities, but quantying this gas is challenging. The gas content is important for constraining the origin of the dust cavity. Aims: We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of 12CO 6-5 and 690 GHz (Band 9) continuum of five well-studied transitional disks. In addition, we analyze previously published Band 7 observations of a disk in the 12CO 3-2 line and 345 GHz continuum. The observations are used to set constraints on the gas and dust surface density profiles, in particular, the drop δgas of the gas density inside the dust cavity. Methods: The physical-chemical modeling code DALI was used to simultaneously analyze the gas and dust images. We modeled SR21, HD 135344B, LkCa15, SR24S, and RX J1615-3255 (Band 9) and J1604-2130 (Band 7). The spectral energy distribution and continuum visibility curve constrain the dust surface density. Then we used the same model to calculate the 12CO emission, which we compared with the observations through spectra and intensity cuts. The amount of gas inside the cavity was quantified by varying the δgas parameter. Results: Model fits to the dust and gas indicate that gas is still present inside the dust cavity for all disks, but at a reduced level. The gas surface density drops inside the cavity by at least a factor 10, while the dust density drops by at least a factor 1000. Disk masses are comparable with previous estimates from the literature, cavity radii are found to be smaller than in the data obtained with the 345 GHz SubMillimeter Array. Conclusions: The derived gas surface density profiles suggest that the cavity was cleared by one or more companions in all cases, which trapped the millimeter-sized dust at the edge of the cavity. Appendix is available in electronic form at http://www.aanda.org
Andrews, Lester
2004-02-20
Metal hydrides are of considerable importance in chemical synthesis as intermediates in catalytic hydrogenation reactions. Transition metal atoms react with dihydrogen to produce metal dihydrides or dihydrogen complexes and these may be trapped in solid matrix samples for infrared spectroscopic study. The MH(2) or M(H(2)) molecules so formed react further to form higher MH(4), (H(2))MH(2), or M(H(2))(2), and MH(6), (H(2))(2)MH(2), or M(H(2))(3) hydrides or complexes depending on the metal. In this critical review these transition metal and dihydrogen reaction products are surveyed for Groups 3 though 12 and the contrasting behaviour in Groups 6 and 10 is discussed. Minimum energy structures and vibrational frequencies predicted by Density Functional Theory agree with the experimental results, strongly supporting the identification of novel binary transition metal hydride species, which the matrix-isolation method is well-suited to investigate. 104 references are cited.
Electron density and electrostatic potential of KMnF3: a phase-transition study.
Ivanov, Yury; Nimura, Tatsuya; Tanaka, Kiyoaki
2004-08-01
Three accurate X-ray diffraction experiments (Mo Kalpha, T = 190, 240 and 298 K) were carried out to track the temperature dependence of the electron density in the cubic perovskite potassium manganese trifluoride, KMnF3, from room temperature to just above that of the phase transition to the tetragonal structure (186 K), and to correlate the parameters of the critical points with the phase-transition mechanism. The data obtained were approximated by the Hansen-Coppens multipole model expanded up to hexadecupoles; the anharmonicity of the atomic displacements up to the fourth level was considered. Topological analysis shows only two types of chemical bond at room temperature, Mn-F and K-F. However, at low temperature the K-F bonds blocking the rotation of the MnF6 octahedra are weakened and new Mn-K bonds are formed to keep the crystal structure from disintegrating. The Mn-K bonds become stronger as the temperature approaches 186 K. This rearrangement of chemical bonds can be regarded as a precursor effect, which starts 50-60 degrees above the phase-transition temperature. The effective one-particle potential of the F atom has a single minimum at 298 K and four well separated minima (with a shift of 0.2 A from the equilibrium position towards the structural holes) at 190 K. Parameters of the critical points of the electron density indicate closed-shell type interactions between K-F and Mn-K pairs, whereas the Mn-F bond can be considered as an intermediate type. The topology of the electrostatic potentials is discussed as well.
Fanarraga, M.L.
2009-02-01
Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes.
Interactions between copper and transition metal dichalcogenides: A density functional theory study
NASA Astrophysics Data System (ADS)
Helfrecht, Benjamin A.; Guzman, David M.; Onofrio, Nicolas; Strachan, Alejandro H.
2017-08-01
We characterized the interface between fcc Cu and various single-layer transition metal dichalcogenides (TMDs) using density functional theory calculations. We found that monolayer Mo, W, Nb, Ti, and V disulfides, diselenides, and ditellurides are stable on Cu(111) with binding energies higher than those of h -BN and graphene. An analysis of the electronic structure of the interfaces indicates partial covalent bonding and a complex redistribution of electronic density, consisting of electron accumulation in the gap region, depletion near the Cu and TMD surfaces, and charge density oscillations within both materials. The resulting net electric dipoles significantly alter the electron work function of the Cu surface. Interestingly, capping Cu(111) surfaces with group-IV and -V TMDs leads to an increase in the work function of up to 1 eV, while group-VI TMDs can decrease the work function by up to 1 eV. Finally, the complex charge distributions at the Cu/TMD interfaces include opposing dipoles and explain the fact that net dipoles associated with Cu/TMD interfaces are comparable to or smaller than those of Cu/graphene and Cu/h -BN, even though the Cu/TMD binding energies are significantly higher.
Koperwas, K. Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M.
2015-07-14
In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition.
NASA Astrophysics Data System (ADS)
Yang, Zhihui; Chen, Yihe; Yan, Bibo; Wang, Man; Wan, Yongquan; Liu, Hao; She, Lei; Li, Jiaomei
2017-04-01
The ion-number-density-dependent frequency offsets and broadening of the ground state hyperfine transition spectra of trapped 199Hg+ ions were measured as a function of the end-cap voltage of the quadrupole linear ion trap. The number density of trapped 199Hg+ ions in the quadrupole linear trap was controlled by the end-cap voltage. The fractional frequency stability of 199Hg+ hyperfine transition to the 1 mV end-cap voltage variation was preliminary estimated to be less than 1 ×10-16. The causes of the ion-number-density-dependent frequency shift and spectrum broadening were analyzed theoretically and explained.
Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio
2014-01-01
Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially
HATS-8b: A Low-density Transiting Super-Neptune
NASA Astrophysics Data System (ADS)
Bayliss, D.; Hartman, J. D.; Bakos, G. Á.; Penev, K.; Zhou, G.; Brahm, R.; Rabus, M.; Jordán, A.; Mancini, L.; de Val-Borro, M.; Bhatti, W.; Espinoza, N.; Csubry, Z.; Howard, A. W.; Fulton, B. J.; Buchhave, L. A.; Henning, T.; Schmidt, B.; Ciceri, S.; Noyes, R. W.; Isaacson, H.; Marcy, G. W.; Suc, V.; Lázár, J.; Papp, I.; Sári, P.
2015-08-01
HATS-8b is a low density transiting super-Neptune discovered as part of the HATSouth project. The planet orbits its solar-like G-dwarf host (V = 14.03+/- 0.10, {T}{eff} = 5679+/- 50 K) with a period of 3.5839 days. HATS-8b is the third lowest-mass transiting exoplanet to be discovered from a wide-field ground-based search, and with a mass of 0.138+/- 0.019 {M}{{J}} it is approximately halfway between the masses of Neptune and Saturn. However, HATS-8b has a radius of {0.873}-0.075+0.123 {R}{{J}}, resulting in a bulk density of just 0.259+/- 0.091 {{g}} {{cm}}-3. The metallicity of the host star is super-solar ([{Fe}/{{H}}] = 0.210+/- 0.080), providing evidence against the idea that low-density exoplanets form from metal-poor environments. The low density and large radius of HATS-8b results in an atmospheric scale height of almost 1000 km, and in addition to this there is an excellent reference star of nearly equal magnitude at just 19″ separation in the sky. These factors make HATS-8b an exciting target for future atmospheric characterization studies, particularly for long-slit transmission spectroscopy. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey site is operated in conjunction with MPIA, and the station at Siding Spring Observatory is operated jointly with ANU. This paper includes data gathered with the 6.5 m Magellan Telescopes located in LCO, Chile. The work is based in part on observations made with the MPG 2.2 m Telescope and the ESO 3.6 m Telescope at the ESO Observatory in La Silla. This paper uses observations obtained using the facilities of the Las Cumbres Observatory Global Telescope.
New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials
NASA Astrophysics Data System (ADS)
Kocher, Gabriel; Provatas, Nikolas
2015-04-01
A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.
Phase transition in two-dimensional dipolar fluids at low densities
NASA Astrophysics Data System (ADS)
Tavares, J. M.; Weis, J. J.; Telo da Gama, M. M.
2006-04-01
Monte Carlo computer simulations of a quasi two-dimensional (2D) dipolar fluid at low and intermediate densities indicate that the structure of the fluid is well described by an ideal mixture of self-assembling clusters. A detailed analysis of the topology of the clusters, of their internal energy and of their size (or mass) distributions is used to obtain approximations to their partition functions. Within the scope of these approximations, the results of this work suggest that the 2D dipolar fluid undergoes a phase transition from a dilute phase characterized by a number of disconnected clusters to a condensed phase characterized by a network or spanning (macroscopic) cluster that includes most of the particles in the system.
Thickness dependence of the charge-density-wave transition temperature in VSe{sub 2}
Yang, Jiyong; Liu, Yan; Du, Haifeng; Ning, Wei; Zheng, Guolin; Jin, Chiming; Han, Yuyan; Wang, Ning; Tian, Mingliang Zhang, Yuheng; Wang, Weike; Yang, Zhaorong
2014-08-11
A set of three-dimensional charge-density-wave (3D CDW) VSe{sub 2} nano-flakes with different thicknesses were obtained by the scotch tape-based micro-mechanical exfoliation method. Resistivity measurements showed that the 3D CDW transition temperature T{sub p} decreases systematically from 105 K in bulk to 81.8 K in the 11.6 nm thick flake. The Hall resistivity ρ{sub xy} of all the flakes showed a linear dependent behavior against the magnetic field with a residual electron concentration of the order of ∼10{sup 21} cm{sup −3} at 5 K. The electron concentration n increases slightly as the thickness d decreases, possibly due to the CDW gap is reduced with the decrease of the thickness.
Optical study of the multiple charge-density-wave transitions in ErTe3
NASA Astrophysics Data System (ADS)
Hu, B. F.; Cheng, B.; Yuan, R. H.; Dong, T.; Fang, A. F.; Guo, W. T.; Chen, Z. G.; Zheng, P.; Shi, Y. G.; Wang, N. L.
2011-10-01
We present an optical spectroscopy study on singe crystalline ErTe3, a rare-earth-element tritelluride, which experiences two successive charge-density wave (CDW) transitions at Tc1=267 K and Tc2=150 K. Two corresponding gap features, centered at 2770 cm-1 (˜343 meV) and 890 cm-1 (˜110 meV), respectively, are clearly seen in ordered state. A pronounced Drude component, which exists at all measurement temperatures, demonstrates the partial gap character of both CDW orders. About half of the unmodulated Fermi surface (FS) remains in the CDW state at the lowest measurement temperature. The study also indicates that fluctuation effect may be still prominent in this two-dimensional material.
On the problem of density diagnostics for the EUV spectrum of the solar transition zone
NASA Technical Reports Server (NTRS)
Doschek, G. A.; Feldman, U.
1977-01-01
Spectral-line ratios that may be used to determine the electron temperature and density in the solar transition zone and corona are identified. The problem of interpreting the intensity ratios of C III lines observed in Skylab EUV limb spectra is considered. It is shown that the intensity distribution with height above the solar limb of the 1176-A C III lines is different from that of the 1909-A C III lines in the Skylab spectra, suggesting that model atmospheres must be folded into the C III calculations for proper interpretation of the data. Possible reasons for the differences in the intensity distributions and widths of the 1176-A and 1909-A lines are discussed along with an application to the analogous lines of Si III.
NASA Astrophysics Data System (ADS)
Hu, Ching-Han; Chong, Delano P.
1996-11-01
Our recent procedure of the unrestricted generalized transition state (uGTS) model for density functional calculations of core-electron binding energies has been applied to seven carbonyl and nitrosyl inorganic complexes: Fe(CO) 5, Ni(CO) 4, Mn(CO) 4NO, Co(CO) 3NO, Fe(CO) 2(NO) 2, Mn(NO) 3CO and Cr(NO) 4. The exchange-correlation potential is based on a combined functional of Becke's exchange (B88) and Perdew's correlation (P86). The cc-pVTZ basis set was used for the calculation of neutral molecules, while for the partial cation created in the uGTS approach we scaled the cc-pVTZ basis set using a procedure based on Clementi and Raimondi's rules for atomic screening. The average absolute deviation of the calculated core-electron binding energy from experiment is 0.28 eV.
Weinberger, Christopher R.; Tucker, Garritt J.; Foiles, Stephen M.
2013-02-01
It is well known that screw dislocation motion dominates the plastic deformation in body-centered-cubic metals at low temperatures. The nature of the nonplanar structure of screw dislocations gives rise to high lattice friction, which results in strong temperature and strain rate dependence of plastic flow. Thus the nature of the Peierls potential, which is responsible for the high lattice resistance, is an important physical property of the material. However, current empirical potentials give a complicated picture of the Peierls potential. Here, we investigate the nature of the Peierls potential using density functional theory in the bcc transition metals. The results show that the shape of the Peierls potential is sinusoidal for every material investigated. Furthermore, we show that the magnitude of the potential scales strongly with the energy per unit length of the screw dislocation in the material.
Bone-Density Testing Interval and Transition to Osteoporosis in Older Women
Gourlay, Margaret L.; Fine, Jason P.; Preisser, John S.; May, Ryan C.; Li, Chenxi; Lui, Li-Yung; Ransohoff, David F.; Cauley, Jane A.; Ensrud, Kristine E.
2012-01-01
BACKGROUND Although bone mineral density (BMD) testing to screen for osteoporosis (BMD T score, −2.50 or lower) is recommended for women 65 years of age or older, there are few data to guide decisions about the interval between BMD tests. METHODS We studied 4957 women, 67 years of age or older, with normal BMD (T score at the femoral neck and total hip, −1.00 or higher) or osteopenia (T score, −1.01 to −2.49) and with no history of hip or clinical vertebral fracture or of treatment for osteoporosis, followed prospectively for up to 15 years. The BMD testing interval was defined as the estimated time for 10% of women to make the transition to osteoporosis before having a hip or clinical vertebral fracture, with adjustment for estrogen use and clinical risk factors. Transitions from normal BMD and from three subgroups of osteopenia (mild, moderate, and advanced) were analyzed with the use of parametric cumulative incidence models. Incident hip and clinical vertebral fractures and initiation of treatment with bisphosphonates, calcitonin, or raloxifene were treated as competing risks. RESULTS The estimated BMD testing interval was 16.8 years (95% confidence interval [CI], 11.5 to 24.6) for women with normal BMD, 17.3 years (95% CI, 13.9 to 21.5) for women with mild osteopenia, 4.7 years (95% CI, 4.2 to 5.2) for women with moderate osteopenia, and 1.1 years (95% CI, 1.0 to 1.3) for women with advanced osteopenia. CONCLUSIONS Our data indicate that osteoporosis would develop in less than 10% of older, post-menopausal women during rescreening intervals of approximately 15 years for women with normal bone density or mild osteopenia, 5 years for women with moderate osteopenia, and 1 year for women with advanced osteopenia. (Funded by the National Institutes of Health.) PMID:22256806
Collins, Patricia A.; Agarwal, Ajay
2015-01-01
Public transit ridership offers valuable opportunities for modest amounts of daily physical activity (PA). Transit is a more feasible option for most Canadian commuters who live too far from work to walk or cycle, yet public transit usage in midsized Canadian cities has historically remained low due to inefficient transit service. The objectives of this longitudinal study were threefold: to assess whether the introduction of express transit service in the low-density city of Kingston, Ontario, has translated to greater transit use among a targeted employee group; to document the characteristics of those employees that have shifted to transit; and to examine the PA levels of employees using transit compared to other commute modes. An online survey was administered in October 2013 and October 2014 to all non-student employees at Queen's University. 1356 employees completed the survey in 2013, and 1123 in 2014; 656 of these employees completed the survey both years, constituting our longitudinal sample. Year-round transit ridership increased from 5.5% in 2013 to 8.5% in 2014 (p < 0.001). Employees who shifted to transit had fewer household-level opportunities to drive to work and more positive attitudes toward transit. Transit commuters accrued an average of 80 minutes/week of commute-related PA, and 50 minutes/week more total PA than those that commuted entirely passively. Kingston Transit's express service has stimulated an increase in transit ridership among one of their target employers, Queen's University. The findings from this study suggest that shifting to transit from entirely passive commuting can generate higher overall PA levels. PMID:26844163
Collins, Patricia A; Agarwal, Ajay
2015-01-01
Public transit ridership offers valuable opportunities for modest amounts of daily physical activity (PA). Transit is a more feasible option for most Canadian commuters who live too far from work to walk or cycle, yet public transit usage in midsized Canadian cities has historically remained low due to inefficient transit service. The objectives of this longitudinal study were threefold: to assess whether the introduction of express transit service in the low-density city of Kingston, Ontario, has translated to greater transit use among a targeted employee group; to document the characteristics of those employees that have shifted to transit; and to examine the PA levels of employees using transit compared to other commute modes. An online survey was administered in October 2013 and October 2014 to all non-student employees at Queen's University. 1356 employees completed the survey in 2013, and 1123 in 2014; 656 of these employees completed the survey both years, constituting our longitudinal sample. Year-round transit ridership increased from 5.5% in 2013 to 8.5% in 2014 (p < 0.001). Employees who shifted to transit had fewer household-level opportunities to drive to work and more positive attitudes toward transit. Transit commuters accrued an average of 80 minutes/week of commute-related PA, and 50 minutes/week more total PA than those that commuted entirely passively. Kingston Transit's express service has stimulated an increase in transit ridership among one of their target employers, Queen's University. The findings from this study suggest that shifting to transit from entirely passive commuting can generate higher overall PA levels.
Energy Density is Not a Consistent Correlate of Adiposity in Women During the Menopausal Transition.
Lafrenière, Jacynthe; Prud'homme, Denis; Brochu, Martin; Rabasa-Lhoret, Rémi; Lavoie, Jean-Marc; Doucet, Éric
2017-03-01
The association between the energy density (ED) of foods and adiposity has been reported previously. However, whether the contribution of ED to adiposity remains significant when controlled for energy intake (EI) and physical activity energy expenditure (PAEE) remains to be clearly established. We aimed to investigate the independent contribution of ED to variations in body composition in women during the menopausal transition. Sixty-seven women from the MONET cohort study were analyzed. Seven-day food records were used to assess EI and ED. Body composition (body fat mass (FM) and trunk-fat mass (TFM)) was measured with dual-energy X-ray absorptiometry; PAEE was assessed with accelerometers. This secondary analysis of data included measurements obtained at years 1 and 5 of the study. Mean ED was correlated with FM (r = 0.22; P = 0.04) and TFM (r = 0.22; P = 0.04) at year 1, but not at year 5. The multiple regression analysis showed that EI and ED contributed to 14% of the variance in FM and TFM at year 1. These results suggest that ED is a modest but inconsistent determinant of adiposity in healthy women at the time of the menopause transition.
Investigation of mean flow and turbulence for a variable-density jet near transition
NASA Astrophysics Data System (ADS)
Solovitz, Stephen; Mastin, Larry; Viggiano, Bianca; Dib, Tamara; Ali, Nasim; Cal, Raul; Volcanic Plume Research Team Collaboration
2016-11-01
Plumes can vary widely in size and speed in geophysical systems, with Reynolds numbers (Re) extending from thousands to billions. Concurrently, their densities also have significant deviations, resulting in Richardson numbers (Ri) from negligible levels to near one. To investigate a range of these flow conditions more closely, a laboratory-scale experiment considered helium jets exhausting into air. The tests considered Re from 1500 to 10000 and Ri magnitudes near 0.001, which encompasses a series of jet conditions near the exit, including laminar, transitioning, and turbulent flow. Using particle image velocimetry (PIV), instantaneous velocity fields were acquired, and these were used to determine the mean velocity, entrainment, and turbulent statistics. The laminar jet showed very little development or entrainment, with only minor fluctuations. Turbulent jets had rapid flow development, nearing fully-developed conditions earlier than similar non-buoyant jets. For the transitioning jet, the entrainment and turbulent stresses were significantly larger than even the fully turbulent jet, with axial normal stresses more than doubled. Examining the instantaneous flow fields, these increases coincided with large, non-axisymmetric eddies in the shear layer. Supported by NSF Grant #: EAR-1346580.
Multiple charge density wave transitions in the antiferromagnets R NiC2 (R =Gd ,Tb)
NASA Astrophysics Data System (ADS)
Shimomura, S.; Hayashi, C.; Hanasaki, N.; Ohnuma, K.; Kobayashi, Y.; Nakao, H.; Mizumaki, M.; Onodera, H.
2016-04-01
X-ray scattering and electrical resistivity measurements were performed on GdNiC2 and TbNiC2. We found a set of satellite peaks characterized by q1=(0.5 ,η ,0 ) below T1, at which the resistivity shows a sharp inflection, suggesting the charge density wave (CDW) formation. The value of η decreases with decreasing temperature below T1, and then a transition to a commensurate phase with q1 C=(0.5 ,0.5 ,0 ) takes place. The diffuse scattering observed above T1 indicates the presence of soft phonon modes associated with CDW instabilities at q1 and q2=(0.5 ,0.5 ,0.5 ) . The long-range order given by q2 is developed in addition to that given by q1 C in TbNiC2, while the short-range correlation with q2 persists even at 6 K in GdNiC2. The amplitude of the q1 C lattice modulation is anomalously reduced below an antiferromagnetic transition temperature TN in GdNiC2. In contrast, the q2 order vanishes below TN in TbNiC2. We demonstrate that R NiC2 (R = rare earth) compounds exhibit similarities with respect to their CDW phenomena, and discuss the effects of magnetic transitions on CDWs. We offer a possible displacement pattern of the modulated structure characterized by q1 C and q2 in terms of frustration.
Densities and Eccentricities of 139 Kepler Planets from Transit Time Variations
NASA Astrophysics Data System (ADS)
Hadden, Sam; Lithwick, Yoram
2014-05-01
We extract densities and eccentricities of 139 sub-Jovian planets by analyzing transit time variations (TTVs) obtained by the Kepler mission through Quarter 12. We partially circumvent the degeneracies that plague TTV inversion with the help of an analytical formula for the TTV. From the observed TTV phases, we find that most of these planets have eccentricities of the order of a few percent. More precisely, the rms eccentricity is 0.018^{+0.005}_{-0.004}, and planets smaller than 2.5 R ⊕ are around twice as eccentric as those bigger than 2.5 R ⊕. We also find a best-fit density-radius relationship ρ ≈ 3 g cm-3 × (R/3 R ⊕)-2.3 for the 56 planets that likely have small eccentricity and hence small statistical correction to their masses. Many planets larger than 2.5 R ⊕ are less dense than water, implying that their radii are largely set by a massive hydrogen atmosphere.
Superfluid density in He II near the lambda transition: First principles theory
NASA Astrophysics Data System (ADS)
Jackson, H. W.
2015-03-01
A first principles theory of the λ transition in liquid 4He was introduced in a recent paper [H. W. Jackson, J. Low Temp. Phys. 155, 1 (2009)]. In that theory critical fluctuations consisting of isothermal fourth sound waves are treated with quantum statistical mechanics methods in deriving formulas for constant volume conditions for specific heat, correlation length, equal time pair correlation function, and isothermal compressibility. To leading order terms in (Tλ-T) the theory yields exact results α‧=0 and ν‧=2/3 for critical exponents at constant volume. A follow-up study in the present paper demonstrates by a least squares fit that a logarithmic function accurately describes the specific heat at svp when (Tλ-T) is between 10-9 K and 10-5 K. This logarithmic divergent behavior conflicts with previous analyses of experimental data and predictions of renormalization group theory that constant pressure specific heat is finite at Tλ, but Is thermodynamically consistent with logarithmic asymptotic behavior of specific heat at constant volume predicted in the new theory. The first principles theory is extended in this paper to derive formulas for superfluid density and for a relation between superfluid density and correlation length in He II near Tλ. Numerical results based on these formulas are in good agreement with experimental data produced by second sound measurements.
Densities and eccentricities of 139 Kepler planets from transit time variations
Hadden, Sam; Lithwick, Yoram
2014-05-20
We extract densities and eccentricities of 139 sub-Jovian planets by analyzing transit time variations (TTVs) obtained by the Kepler mission through Quarter 12. We partially circumvent the degeneracies that plague TTV inversion with the help of an analytical formula for the TTV. From the observed TTV phases, we find that most of these planets have eccentricities of the order of a few percent. More precisely, the rms eccentricity is 0.018{sub −0.004}{sup +0.005}, and planets smaller than 2.5 R {sub ⊕} are around twice as eccentric as those bigger than 2.5 R {sub ⊕}. We also find a best-fit density-radius relationship ρ ≈ 3 g cm{sup –3} × (R/3 R {sub ⊕}){sup –2.3} for the 56 planets that likely have small eccentricity and hence small statistical correction to their masses. Many planets larger than 2.5 R {sub ⊕} are less dense than water, implying that their radii are largely set by a massive hydrogen atmosphere.
Performance of Density Functional Theory for Second Row (4d) Transition Metal Thermochemistry.
Laury, Marie L; Wilson, Angela K
2013-09-10
The performances of 22 density functionals, including generalized gradient approximation (GGA), hybrid GGAs, hybrid-meta GGAs, and range-separated and double hybrid functionals, in combination with the correlation consistent basis sets and effective core potentials, have been gauged for the prediction of gas phase enthalpies of formation for the TM-4d set, which contains 30 second row transition metal-containing molecules. The enthalpies of formation determined by the 22 density functionals were compared to those generated via the relativistic pseudopotential correlation consistent Composite Approach (rp-ccCA), which has a goal of reproducing energies akin to those from CCSD(T,FC1)-DK/aug-cc-pCV∞Z-DK calculations. B3LYP/cc-pVTZ-PP optimized geometries were used in this study, though structures determined by other functionals also were examined. Of the functionals employed, the double hybrid functionals, B2GP-PLYP and mPW2-PLYP, yielded the best overall results with mean absolute deviations (MADs) from experimental enthalpies of formation of 4.25 and 5.19 kcal mol(-1), respectively. The GGA functionals BP86 and PBEPBE resulted in deviations from experiment of nearly 100 kcal mol(-1) for molecules such as molybdenum carbonyls. The ωB97X-D functional, which includes the separation of exchange energy into long-range and short-range contributions and includes a dispersion correction, resulted in an MAD of 6.52 kcal mol(-1).
The influence of topological phase transition on the superfluid density of overdoped copper oxides.
Shaginyan, V R; Stephanovich, V A; Msezane, A Z; Japaridze, G S; Popov, K G
2017-08-23
We show that a quantum phase transition, generating flat bands and altering Fermi surface topology, is a primary reason for the exotic behavior of the overdoped high-temperature superconductors represented by La2-xSrxCuO4, whose superconductivity features differ from what is predicted by the classical Bardeen-Cooper-Schrieffer theory. This observation can open avenues for chemical preparation of high-Tc materials. We demonstrate that (1) at temperature T = 0, the superfluid density ns turns out to be considerably smaller than the total electron density; (2) the critical temperature Tc is controlled by ns rather than by doping, and is a linear function of the ns; (3) at T > Tc the resistivity ρ(T) varies linearly with temperature, ρ(T) ∝ αT, where α diminishes with Tc → 0, whereas in the normal (non superconducting) region induced by overdoping, Tc = 0, and ρ(T) ∝ T(2). Our results are in good agreement with recent experimental observations.
NASA Astrophysics Data System (ADS)
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W.; Poole, Peter H.
2016-12-01
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W; Poole, Peter H
2016-12-14
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
NASA Astrophysics Data System (ADS)
Kota, V. K. B.; Majumdar, D.
1995-12-01
In statistical spectroscopy, it was shown by French et al. (Ann. Phys., N.Y. 181, 235 (1988)) that the bivariate strength densities take a convolution form with the non interacting particle (NIP) strength density being convoluted with a spreading bivariate Gaussian due to interactions. Leaving aside the question of determining the parameters of the spreading bivariate Gaussian, one needs good methods for constructing the NIP bivariate strength densities I {O/ h }( E,E') ( h is a one-body hamiltonian and O is a transition operator) in large shell model spaces. A formalism for constructing I {O/ h } is developed for one-body transition operators by using spherical orbits and spherical configurations. For rapid construction and also for applying the statistical theory in large shell model spaces I {O/ h } is decomposed into partial densities defined by unitary orbit configurations (unitary orbit is a set of spherical orbits). Trace propagation formulas for the bivariate moments M rs with r+s ≤2 of the partial NIP strength densities, which will determine the Gaussian representation, are derived. In a large space numerical example with Gamow-Teller β - transition operator, the superposition of unitary orbit partial bivariate Gaussian densities is shown to give a good representation of the exact NIP strength densities. Trace propagation formulas for M rs with r+<—4 are also derived in m-particle scalar spaces which are useful for many purposes.
NASA Astrophysics Data System (ADS)
Gorelik, M. L.; Shlomo, S.; Tulupov, B. A.; Urin, M. H.
2016-11-01
The particle-hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in 208Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron-nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.
High-density amorphous ice: Molecular dynamics simulations of the glass transition at 0.3 GPa.
Seidl, M; Loerting, T; Zifferer, G
2009-09-21
Based on several force fields (COMPASS, modified TIP3P and SPC/E) high-density amorphous ice is simulated by use of isothermal-isobaric molecular dynamics at a pressure of p approximately 0.3 GPa in the temperature range from 70 to 300 K. Starting at low temperature a large number of heating/cooling cycles are performed and several characteristic properties (density, total energy, and mobility) are traced as functions of temperature. While the first cycles are showing irreversible structural relaxation effects data points from further cycles are reproducible and give clear evidence for the existence of a glass-to-liquid transition. Although, the observed transition temperatures T(g) are dependent on the actual force field used and slightly dependent on the method adopted the results indicate that high-density amorphous ices may indeed be low-temperature structural proxies of ultraviscous high-density liquids.
Löw, Florian; Amann-Winkel, Katrin; Loerting, Thomas; Fujara, Franz; Geil, Burkhard
2013-06-21
The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.
Unconventional Charge-Density-Wave Transition in Monolayer 1T-TiSe2.
Sugawara, Katsuaki; Nakata, Yuki; Shimizu, Ryota; Han, Patrick; Hitosugi, Taro; Sato, Takafumi; Takahashi, Takashi
2016-01-26
Reducing the dimension in materials sometimes leads to unexpected discovery of exotic and/or pronounced physical properties such as quantum Hall effect in graphene and high-temperature superconductivity in iron-chalcogenide atomically thin films. Transition-metal dichalcogenides (TMDs) provide a fertile ground for studying the interplay between dimensionality and electronic properties, since they exhibit a variety of electronic phases like semiconducting, superconducting, and charge-density-wave (CDW) states. Among TMDs, bulk 1T-TiSe2 has been a target of intensive studies due to its unusual CDW properties with the periodic lattice distortions characterized by the three-dimensional (3D) commensurate wave vector. Clarifying the ground states of its two-dimensional (2D) counterpart is of great importance not only to pin down the origin of CDW, but also to find unconventional physical properties characteristic of atomic-layer materials. Here, we show the first experimental evidence for the realization of 2D CDW phase without Fermi-surface nesting in monolayer 1T-TiSe2. Our angle-resolved photoemission spectroscopy (ARPES) signifies an electron pocket at the Brillouin-zone corner above the CDW-transition temperature (TCDW ∼ 200 K), while, below TCDW, an additional electron pocket and replica bands appear at the Brillouin-zone center and corner, respectively, due to the back-folding of bands by the 2 × 2 superstructure potential. Similarity in the spectral signatures to bulk 1T-TiSe2 implies a common driving force of CDW, i.e., exciton condensation, whereas the larger energy gap below TCDW in monolayer 1T-TiSe2 suggests enhancement of electron-hole coupling upon reducing dimensionality. The present result lays the foundation for the electronic-structure engineering based with atomic-layer TMDs.
Gravitational Effects on Flow Instability and Transition in Low Density Jets
NASA Technical Reports Server (NTRS)
Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.
2000-01-01
Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the
Gravitational Effects on Flow Instability and Transition in Low Density Jets
NASA Technical Reports Server (NTRS)
Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.
2000-01-01
Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the
Linking high-pressure structure and density of albite liquid near the glass transition
NASA Astrophysics Data System (ADS)
Gaudio, Sarah J.; Lesher, Charles E.; Maekawa, Hideki; Sen, Sabyasachi
2015-05-01
The pressure-induced densification of NaAlSi3O8 liquid is determined following annealing immediately above the glass transition and upon quenching from superliquidus temperatures. High-field 27Al magic-angle-spinning NMR spectroscopy is used to investigate the corresponding changes in Al coordination environment that accompany the densification. We show that samples synthesized by quenching from superliquidus temperatures record lower fictive pressures (Pf) than annealed samples at the same nominal load and have lower recovered densities and average Al coordination number. Accounting for differences in Pf brings melt-quench and annealed samples into excellent agreement. The proportion of [5]Al increases from ∼3% to 29% and [6]Al from 0% to 8% between 1.8 and 7.2 GPa. The production of high-coordinated Al ([5]Al + [6]Al) with pressure is most dramatic above 3 GPa. Changes in network topology and structural disorder as revealed by the high-field 27Al NMR spectra provide new insights into the structural mechanisms of densification of the albite liquid. We posit that it is an overall weakening of the network structure on compression that is largely responsible for the anomalous pressure dependence of the transport properties observed for this liquid below ∼5 GPa.
Density functional theory study of CO2 capture with transition metal oxides and hydroxides
NASA Astrophysics Data System (ADS)
Zhang, Bo; Duan, Yuhua; Johnson, Karl
2012-02-01
We have used density functional theory (DFT) employing several different exchange-correlation functionals (PW91, PBE, PBEsol, TPSS, and revTPSS) coupled with lattice dynamics calculations to compute the thermodynamics of CO2 absorption/desorption reactions for selected transition metal oxides, (TMO), and hydroxides, TM(OH)2, where TM = Mn, Ni, Zn, and Cd. The van't Hoff plots, which describe the reaction equilibrium as a function of the partial pressures of CO2 and H2O as well as temperature, were computed from DFT total energies, complemented by the free energy contribution of solids and gases from lattice dynamics and statistical mechanics, respectively. We find that the PBEsol functional calculations are generally in better agreement with experimental phase equilibrium data compared with the other functionals we tested. In contrast, the formation enthalpies of the compounds are better computed with the TPSS and revTPSS functionals. The PBEsol functional gives better equilibrium properties due to a partial cancellation of errors in the enthalpies of formation. We have identified all CO2 capture reactions that lie on the Gibbs free energy convex hull as a function of temperature and the partial pressures of CO2 and H2O for all TMO and TM(OH)2 systems studied here.
Quantum critical properties of a metallic spin-density-wave transition
NASA Astrophysics Data System (ADS)
Gerlach, Max H.; Schattner, Yoni; Berg, Erez; Trebst, Simon
2017-01-01
We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z =2 , consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.
Phase transitions to dipolar clusters and charge density waves in high Tc superconductors
NASA Astrophysics Data System (ADS)
Saarela, M.; Kusmartsev, F. V.
2017-02-01
We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.
Seo, Dong-Kyun
2007-11-14
We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.
Liu, Kai; Cheng, Chun; Cheng, Zhenting; Wang, Kevin; Ramesh, Ramamoorthy; Wu, Junqiao
2012-12-12
Various mechanisms are currently exploited to transduce a wide range of stimulating sources into mechanical motion. At the microscale, simultaneously high amplitude, high work output, and high speed in actuation are hindered by limitations of these actuation mechanisms. Here we demonstrate a set of microactuators fabricated by a simple microfabrication process, showing simultaneously high performance by these metrics, operated on the structural phase transition in vanadium dioxide responding to diverse stimuli of heat, electric current, and light. In both ambient and aqueous conditions, the actuators bend with exceedingly high displacement-to-length ratios up to 1 in the sub-100 μm length scale, work densities over 0.63 J/cm(3), and at frequencies up to 6 kHz. The functionalities of actuation can be further enriched with integrated designs of planar as well as three-dimensional geometries. Combining the superior performance, high durability, diversity in responsive stimuli, versatile working environments, and microscale manufacturability, these actuators offer potential applications in microelectromechanical systems, microfluidics, robotics, drug delivery, and artificial muscles.
Freeze-out temperature and density in heavy-ion collisions at liquid-gas phase transition
Shlomo, Shalom
2010-08-04
The study of properties of hot nuclei and the search for liquid-gas phase transition in nuclei have been the subjects of many investigations in recent decades. We present a short and limited review of the theoretical and experimental status of determining the temperature and density of the disassembling nucleus from ratios of the yields of emitted fragments.
NASA Astrophysics Data System (ADS)
Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro
2017-06-01
The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.
Circulation, density distribution and neap-spring transitions in the Columbia River Estuary
NASA Astrophysics Data System (ADS)
Jay, David A.; Dungan Smith, J.
This paper has two purposes. The first is to use tidal-monthly variations in the density and velocity fields and the salt and water transports as key to understanding the circulation of the Columbia River Estuary and other river estuaries. The Columbia River Estuary is a good natural laboratory in this regard, because the flushing time of the system (a few days) is short relative to the tidal month during all seasons. This allows the occurrence of distinct transitions from a strongly to a weakly stratified water column (and back) during the tidal month. Furthermore, because atmospheric processes are secondary to riverflow and tidal influence in determining the circulation, most of the energy in circulatory phenomena is confined to distinct tidal, tidal-monthly and seasonal frequency bands. Observations of salt transport and neap-spring transitions reported herein should provide important constraints on future theoretical studies of estuarine circulation. The second purpose is to describe the circulation and density field of the Columbia River Estuary as background for understanding the geologic and biological investigations discussed in other papers in this volume. Previous investigations have focused on seasonal variations in riverflow as governing the turbidity maximum and biological productivity. Studies reported in this volume show that tidal monthly variations in circulatory processes are of comparable importance. With regard to the velocity field, the influence of stratification causes the tidal flow to show the largest vertical variations in phase and amplitude in the lower estuary. The vertical distribution of the mean current is controlled by the ebb-flood asymmetry in the time-dependent flow, vertical mixing processes, the baroclinic pressure gradient, and interaction of the flow with topography. Net upstream bottom flow is weak or absent during periods of weak stratification; it is substantially only when the system is highly stratified. Net upstream
The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry
NASA Astrophysics Data System (ADS)
Furche, Filipp; Perdew, John P.
2006-01-01
We investigate the performance of contemporary semilocal and hybrid density functionals for bond energetics, structures, dipole moments, and harmonic frequencies of 3d transition-metal (TM) compounds by comparison with gas-phase experiments. Special attention is given to the nonempirical metageneralized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], which has been implemented in TURBOMOLE for the present work. Trends and error patterns for classes of homologous compounds are analyzed, including dimers, monohydrides, mononitrides, monoxides, monofluorides, polyatomic oxides and halogenides, carbonyls, and complexes with organic π ligands such as benzene and cyclopentadienyl. Weakly bound systems such as Ca2, Mn2, and Zn2 are discussed. We propose a reference set of reaction energies for benchmark purposes. Our all-electron results with quadruple zeta valence basis sets validate semilocal density-functional theory as the workhorse of computational TM chemistry. Typical errors in bond energies are substantially larger than in (organic) main group chemistry, however. The Becke-Perdew'86 [Phys. Rev. A 38, 3098 (1988); Phys. Rev. B 33, 8822 (1986)] GGA and the TPSS meta-GGA have the best price/performance ratio, while the TPSS hybrid functional achieves a slightly lower mean absolute error in bond energies. The popular Becke three-parameter hybrid B3LYP underbinds significantly and tends to overestimate bond distances; we give a possible explanation for this. We further show that hybrid mixing does not reduce the width of the error distribution on our reference set. The error of a functional for the s-d transfer energy of a TM atom does not predict its error for TM bond energies and bond lengths. For semilocal functionals, self-interaction error in one- and three-electron bonds appears to be a major source of error in TM reaction energies. Nevertheless, TPSS predicts the correct ground
Phonon density of states of Fe2O3 across high-pressure structural and electronic transitions
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Tse, John S.; Alp, Esen E.; Zhao, Jiyong; Lerche, Michael; Sturhahn, Wolfgang; Xiao, Yuming; Chow, Paul
2011-08-01
High-pressure phonon density of states (PDOS) of Fe2O3 across structural and electronic transitions has been investigated by nuclear resonant inelastic x-ray scattering (NRIXS) and first-principles calculations together with synchrotron Mössbauer, x-ray diffraction, and x-ray emission spectroscopies. Drastic changes in elastic, thermodynamic, and vibrational properties of Fe2O3 occur across the Rh2O3(II)-type structural transition at 40-50 GPa, whereas the Mott insulator-metal transition occurring after the structural transition only causes nominal changes in the properties of the Fe2O3. The observed anomalous mode-softening behavior of the elastic constants is associated with the structural transition at 40-50 GPa, leading to substantial changes in the Debye-like part of the PDOS in the terahertz acoustic phonons. Our experimental and theoretical studies provide new insights into the effects of the structural and electronic transitions in the transition-metal oxide (TMO) compounds.
ERIC Educational Resources Information Center
Agnew, Jeanne L.; Choike, James R.
1987-01-01
Mathematical observations are made about some continuous curves, called transitions, encountered in well-known experiences. The transition parabola, the transition spiral, and the sidestep maneuver are presented. (MNS)
NASA Astrophysics Data System (ADS)
Misra, D.; Kundu, T. K.
2016-09-01
Density functional theory with appropriate functional has been employed to investigate the metal to insulator transition in oxygen deficient LaNiO3-x (x = 0.0, 0.25, 0.5, 1.0) compounds. While the metallic nature of LaNiO3 is characterized by the low temperature Fermi liquid behavior of resistivity and a finite density of states at the Fermi level, the density of states and the transport properties clearly identify LaNiO2.75 as a semiconductor, and LaNiO2.5 as an insulator, which is followed by another insulator to semiconductor transition with further increase of x to ‘1’ in LaNiO2. This oxygen vacancy controlled metal to insulator transition is explained on the basis of non-adiabatic polaronic transport. From the covalency metric calculation of the chemical bonding and the Bader charge transfer analysis, this metal to insulator transition is attributed to the enhanced covalent part in the chemical bonding and reduced charge transfer from Ni to O atoms in LaNiO3-x compounds.
DNA conformational transitions inferred from re-evaluation of m|Fo| - D|Fc| electron-density maps.
Sunami, Tomoko; Chatake, Toshiyuki; Kono, Hidetoshi
2017-07-01
Conformational flexibility of DNA plays important roles in biological processes such as transcriptional regulation and DNA packaging etc. To understand the mechanisms of these processes, it is important to analyse when, where and how DNA shows conformational variations. Recent analyses have indicated that conventional refinement methods do not always provide accurate models of crystallographic heterogeneities and that some information on polymorphism has been overlooked in previous crystallographic studies. In the present study, the m|Fo| - D|Fc| electron-density maps of double-helical DNA crystal structures were calculated at a resolution equal to or better than 1.5 Å and potential conformational transitions were found in 27% of DNA phosphates. Detailed analyses of the m|Fo| - D|Fc| peaks indicated that some of these unassigned densities correspond to ZI ↔ ZII or A/B → BI conformational transitions. A relationship was also found between ZI/ZII transitions and metal coordination in Z-DNA from the detected peaks. The present study highlights that frequent transitions of phosphate backbones occur even in crystals and that some of these transitions are affected by the local molecular environment.
Thermodynamics of the Ce γ-α transition: Density-functional study
NASA Astrophysics Data System (ADS)
Wang, Y.; Hector, L. G., Jr.; Zhang, H.; Shang, S. L.; Chen, L. Q.; Liu, Z. K.
2008-09-01
We investigate the Cerium γ-α isostructural phase transition by explicitly incorporating finite temperature mixing of the Ce nonmagnetic and magnetic states. Unique to our approach is the calculation of vibrational properties from phonon theory. The critical behavior of the transition is shown to be controlled by the configurational mixing entropy between the magnetic and nonmagnetic states. Our theoretical framework leads to accurate predictions of the critical point and equation of state associated with the Ce γ-α phase transition.
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Van Laerhoven, Christa; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi
2016-03-01
We infer dynamical masses in eight multiplanet systems using transit times measured from Kepler's complete data set, including short-cadence data where available. Of the 18 dynamical masses that we infer, 10 pass multiple tests for robustness. These are in systems Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Kepler-105 c has a radius of 1.3 R⊕ and a density consistent with an Earth-like composition. Strong transit timing variation (TTV) signals were detected from additional planets, but their inferred masses were sensitive to outliers or consistent solutions could not be found with independently measured transit times, including planets orbiting Kepler-49 (KOI-248), Kepler-57 (KOI-1270), Kepler-105 (KOI-115), and Kepler-177 (KOI-523). Nonetheless, strong upper limits on the mass of Kepler-177 c imply an extremely low density of ˜0.1 g cm-3. In most cases, individual orbital eccentricities were poorly constrained owing to degeneracies in TTV inversion. For five planet pairs in our sample, strong secular interactions imply a moderate to high likelihood of apsidal alignment over a wide range of possible eccentricities. We also find solutions for the three planets known to orbit Kepler-60 in a Laplace-like resonance chain. However, nonlibrating solutions also match the transit timing data. For six systems, we calculate more precise stellar parameters than previously known, enabling useful constraints on planetary densities where we have secure mass measurements. Placing these exoplanets on the mass-radius diagram, we find that a wide range of densities is observed among sub-Neptune-mass planets and that the range in observed densities is anticorrelated with incident flux.
NASA Technical Reports Server (NTRS)
Richards, P. G.; Torr, D. G.; Buonsanto, M. J.; Miller, K. L.
1989-01-01
The ionospheric electron density and temperature variations is simulated during the equinox transition study in September 1984 and the results are compared with measurements made at Millstone Hill. The agreement between the modeled and measured electron density and temperature for the quiet day (18 September) is very good but there are large differences on the day of the storm (19 September). On the storm day, the measured electron density decreases by a factor of 1.7 over the previous day, while the model density actually increases slightly. The model failure is attributed to an inadequate increase in the ratio of atomic oxygen to molecular neutral densities in the MSIS neutral atmosphere model, for this particular storm. A factor of 3 to 5 increase in the molecular to atomic oxygen density ratio at 300 km is needed to explain the observed decrease in electron density. The effect of vibrationally excited N sub 2 on the electron density were studied and found to be small.
NASA Technical Reports Server (NTRS)
Richards, P. G.; Torr, D. G.; Buonsanto, M. J.; Miller, K. L.
1989-01-01
The ionospheric electron density and temperature variations is simulated during the equinox transition study in September 1984 and the results are compared with measurements made at Millstone Hill. The agreement between the modeled and measured electron density and temperature for the quiet day (18 September) is very good but there are large differences on the day of the storm (19 September). On the storm day, the measured electron density decreases by a factor of 1.7 over the previous day, while the model density actually increases slightly. The model failure is attributed to an inadequate increase in the ratio of atomic oxygen to molecular neutral densities in the MSIS neutral atmosphere model, for this particular storm. A factor of 3 to 5 increase in the molecular to atomic oxygen density ratio at 300 km is needed to explain the observed decrease in electron density. The effect of vibrationally excited N sub 2 on the electron density were studied and found to be small.
NASA Astrophysics Data System (ADS)
Li, Yonghui; Ullrich, Carsten
2013-03-01
The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651
ERIC Educational Resources Information Center
Nathanson, Jeanne H., Ed.
1993-01-01
This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…
Dynamic density field measurements of an explosively driven α → ϵ phase transition in iron
Hull, L. M.; Gray, G. T.; Warthen, B. J.
2014-07-28
We provide a unique set of observations of the behavior of the α→ϵ phase transition under a complex axially symmetric loading path created by sweeping a detonation wave along the end surface of a cylindrical sample. The primary data sets are the measured mass density distributions acquired at 5 independent times during the sweep of the detonation along the surface. Shocked regions and boundaries are measured, as well as regions and boundaries of elevated density (presumed to be the ϵ−phase iron). The formation and dynamics of these regions were captured and are available for comparisons to material descriptions. We also applied 16 Photon Doppler Velocimetry probes to capture the free surface velocity along a discrete set of radially distributed points in order to compare and correlate the density measurements with previous shock wave studies. The velocimetry data are in nearly exact agreement with previous shock wave studies of the α→ϵ phase transition, the density distributions, while generally in agreement with expectations evolved from the shock wave studies, show that the epsilon phase is generated in regions of high shear stress but at hydrostatic stresses below the typically quoted 13 GPa value. The density field measurements are particularly useful for observing the effects of the forward and reverse transformation kinetics, as well as the reverse transformation hysteresis.
NASA Astrophysics Data System (ADS)
Blunt, N. S.; Booth, George H.; Alavi, Ali
2017-06-01
We present developments in the calculation of reduced density matrices (RDMs) in the full configuration interaction quantum Monte Carlo (FCIQMC) method. An efficient scheme is described to allow storage of RDMs across distributed memory, thereby allowing their calculation and storage in large basis sets. We demonstrate the calculation of RDMs for general states by using the recently introduced excited-state FCIQMC approach [N. S. Blunt et al., J. Chem. Phys. 143, 134117 (2015)] and further introduce calculation of transition density matrices in the method. These approaches are combined to calculate excited-state dipole and transition dipole moments for heteronuclear diatomic molecules, including LiH, BH, and MgO, and initiator error is investigated in these quantities.
Density and Vs contrasts across mantle transition zone discontinuities beneath the Central Pacific
NASA Astrophysics Data System (ADS)
Yu, C.; Day, E. A.; De Hoop, M. V.; Campillo, M.; Goes, S. D. B.; Blythe, R. A.; van der Hilst, R. D.
2016-12-01
Mantle transition zone (MTZ) discontinuities at depths around 410 km and 660 km (hereinafter referred to as 410 and 660) play an important role in modulating mantle flow. Most MTZ studies focus on lateral variations in depth to the 410 and 660 (or the thickness of the MTZ) due to regional variations in temperature. Other variables, such as contrasts in mass density (Δρ), seismic (shear or compressional) wavespeed (Δβ or Δα), and impedance (ΔZ) across the interfaces, which are crucial for our understanding of mantle composition and dynamics, are not well constrained. In this study, we apply the amplitude versus offset (AVO) analysis, as is known in exploration seismology, to infer Δρ, Δβ and ΔZ across the 410 and 660 from the amplitudes of the underside reflections S410S and S660S (normalized by the amplitude of SS). A challenge for AVO analysis of MTZ discontinuities is that at distances less than 110° other seismic phases, such as multiples of S and Sdiff, strongly interfere with S410S and S660S. To be able to exploit short-distance signal, we suppress the multiples with a method based on curvelet transform. Both synthetic tests and field examples demonstrate the effectiveness of our method in which precursors are enhanced and interfering phases attenuated. We then convert the amplitude ratios of S410S/SS and S660S/SS into reflection coefficients at 410 and 660 by making corrections for geometrical spreading, intrinsic attenuation, mantle heterogeneity, and small-scale discontinuity topography. Δρ and Δβ are inferred by modeling the reflection coefficients as a function of distances. In the Central Pacific, our estimates (and 1σ uncertainties) of Δρ410, Δβ410, and ΔZ410 are 2.3±1.1%, 6.5±2.8%, and 8.8±1.8%, respectively. For the 660, we observe strong, apparent move-out of S660S, which is caused by polarity change in the reflection coefficients. Our best fits for Δρ660 and Δβ660 are 4.7±0.4% and 5.2±1.8%, respectively, and ΔZ660 is
Scanning tunnelling microscopy of charge-density waves in transition metal chalcogenides
NASA Astrophysics Data System (ADS)
Coleman, R. V.; Giambattista, B.; Hansma, P. K.; Johnson, A.; McNairy, W. W.; Slough, C. G.
1988-11-01
We have used scanning tunnelling microscopes (STMs) operating at liquid helium and liquid nitrogen temperatures to image the charge-density waves (CDWs) in transition metal chalcogenides. The layer structure dichalcogenides TaSe2, TaS2, NbSe2, VSe2, TiSe2 and TiS2 have been studied including representative polytype phases such as 1T, 2H and 4Hb. Experimental results are presented for the complete range of CDW amplitudes and structures observed in these materials. In most cases both the CDW and the surface atomic structure have been simultaneously imaged. Results on the trichalcogenide NbSe3 are also included.The formation of the CDW along with the associated periodic lattice distortion gaps the Fermi surface (FS) and modifies the local density-of-states (LDOS) detected by the tunnelling process. The tunnelling microscopes have been operated mostly in the constant current mode which maps the LDOS at the position of the tunnelling tip. The relative amplitudes and profiles of the CDW superlattice and the atomic lattice have been measured and confirm on an atomic scale the CDW structures predicted by X-ray, electron and neutron diffraction. The absolute STM deflections are larger than expected for the CDW induced modifications of the LDOS above the surface and possible enhancement mechanisms are reviewed.In the 2H trigonal prismatic coordination phases the CDWs involve a relatively small charge transfer and the atomic structure dominates the STM images. In the 1T octahedral coordination phases the charge transfer is large and the CDW structure dominates the STM image with an anomalously large enhancement of the STM profile. Systematic comparison of the STM profiles with band structure and FS information is included.In the case of the 4Hb mixed coordination phases at the lowest temperatures two nearly independent CDWs form in alternate sandwiches. STM studies on 4Hb crystals with both octahedral and trigonal prismatic surface sandwiches have been carried out. The STM
Luo, Sijie; Truhlar, Donald G
2012-11-13
The ability of density functional theory to predict the relative energies of different spin states, especially for systems containing transition metal atoms, is of great importance for many applications. Here, in order to sort out the key factors determining accuracy, we compare the predictions of 60 density functional approximations of 10 different types [local spin density approximation, generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, range-separated hybrid GGA, range-separated hybrid GGA plus molecular mechanics, meta-GGA, meta-NGA, global-hybrid meta-GGA, and range-separated hybrid meta-GGA] for their ability to represent the spin-flip transitions of all 4d transition metal atoms of groups 3-10 (Y through Pd) and their singly positive cations. We consider all 16 excitation energies connecting the ground states (of the neutral atoms and the cations) to their first excited states of different multiplicities, and we also consider all eight ionization potentials. We also test the Hartree-Fock method. All density functional and Hartree-Fock calculations are converged to a stable solution, in which the spatial symmetry is allowed to be completely broken to achieve the lowest possible energy solution. By analyzing the fractional subshell occupancies and spin contaminations, we are able to sort out the effects of s orbital vs d orbital bias and high-spin vs low-spin bias. A reliable functional should have little or no bias of either type rather than succeeding for a limited subset of cases by cancellation of errors. We find that the widely used correlations of spin splittings to percentage of Hartree-Fock exchange are not borne out by the data, and the correlation functionals also play a significant role. We eventually conclude that SOGGA11-X, B1LYP, B3V5LYP, and MPW3LYP are the most consistently reliable functionals for balanced treatments of 4d transition metal atoms and their cations.
Charge-density wave transition of 1T-VSe2 studied by angle-resolved photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Terashima, K.; Sato, T.; Komatsu, H.; Takahashi, T.; Maeda, N.; Hayashi, K.
2003-10-01
High-resolution angle-resolved photoemission spectroscopy (ARPES) has been performed on a layered transition-metal dichalcogenide (TMDC) 1T-VSe2 to study the (4×4) charge-density wave (CDW) mechanism. We observed a partial Fermi-surface (FS) nesting on the electronlike FS centered at the M (L) point. The spectral weight near EF is considerably suppressed below the transition temperature (Tc=110 K) around the nested portion, while a negligible spectral change is observed even across Tc in other portions of FS. This suggests that the CDW transition in 1T-VSe2 is caused by the three-dimensional FS nesting. Implications are discussed in relation to the physical properties of 1T-VSe2 as well as the ARPES results of other TMDC’s.
First-order density-wave-like transitions in surface-doped Na2IrO3
NASA Astrophysics Data System (ADS)
Mehlawat, Kavita; Singh, Yogesh
2016-07-01
We demonstrate that the surface of the honeycomb lattice iridate Na2IrO3 is extremely tunable by plasma etching. We have succeeded in turning the surface of Na2IrO3 metallic by argon plasma etching which leads to the removal of Na from the surface. The surface structure does not change in this process as revealed by grazing incidence small-angle x-ray scattering. The sheet resistance Rs can be reduced by several orders of magnitude by varying the etching duration. Temperature-dependent Rs(T ) for the metallic samples shows signatures of spin- or charge-density-wave transitions with abrupt changes in Rs. Thermal hysteresis between cooling and warming measurements across the transition indicates a first-order transition. For the most metallic sample Rs(T ) data at low temperatures follow a T2 behavior suggesting normal Fermi-liquid behavior.
Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H
2015-11-01
A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid.
Mansart, Barbara; Cottet, Mathieu J G; Penfold, Thomas J; Dugdale, Stephen B; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-04-10
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time.
Hirano, Y. E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; Kiyama, S.; Koguchi, H.; Fujiwara, Y.; Sakakita, H.
2015-11-15
A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.
Buoyancy Effects on Flow Transition in Low-Density Inertial Gas Jets
NASA Technical Reports Server (NTRS)
Pasumarthi, Kasyap S.; Agrawal, Ajay K.
2005-01-01
Effects of buoyancy on transition from laminar to turbulent flow are presented for momentum-dominated helium jet injected into ambient air. The buoyancy was varied in a 2.2-sec drop tower facility without affecting the remaining operating parameters. The jet flow in Earth gravity and microgravity was visualized using the rainbow schlieren deflectometry apparatus. Results show significant changes in the flow structure and transition behavior in the absence of buoyancy.
A closely packed system of low-mass, low-density planets transiting Kepler-11.
Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B; Borucki, William J; Fressin, Francois; Marcy, Geoffrey W; Orosz, Jerome A; Rowe, Jason F; Torres, Guillermo; Welsh, William F; Batalha, Natalie M; Bryson, Stephen T; Buchhave, Lars A; Caldwell, Douglas A; Carter, Joshua A; Charbonneau, David; Christiansen, Jessie L; Cochran, William D; Desert, Jean-Michel; Dunham, Edward W; Fanelli, Michael N; Fortney, Jonathan J; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Koch, David G; Latham, David W; Lopez, Eric; McCauliff, Sean; Miller, Neil; Morehead, Robert C; Quintana, Elisa V; Ragozzine, Darin; Sasselov, Dimitar; Short, Donald R; Steffen, Jason H
2011-02-03
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Truhlar, Donald G.
2006-11-01
We present a new local density functional, called M06-L, for main-group and transition element thermochemistry, thermochemical kinetics, and noncovalent interactions. The functional is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit and to have good performance for both main-group chemistry and transition metal chemistry. The M06-L functional and 14 other functionals have been comparatively assessed against 22 energetic databases. Among the tested functionals, which include the popular B3LYP, BLYP, and BP86 functionals as well as our previous M05 functional, the M06-L functional gives the best overall performance for a combination of main-group thermochemistry, thermochemical kinetics, and organometallic, inorganometallic, biological, and noncovalent interactions. It also does very well for predicting geometries and vibrational frequencies. Because of the computational advantages of local functionals, the present functional should be very useful for many applications in chemistry, especially for simulations on moderate-sized and large systems and when long time scales must be addressed.
Sandusky, H W; Granholm, R H; Bohl, D G; Vandersall, K S; Hare, D E; Garcia, F
2006-06-20
The potential for deflagration-to-detonation transition (DDT) in LX-04 (85/15 HMX/Viton) is being evaluated as a function of loading density, temperature, and confinement. In the high confinement arrangement, a matrix of tests is nearly completed with the LX-04 loaded at {approx} 51, 70, 90, and {approx} 99% of theoretical maximum density (TMD); and temperatures of ambient, 160 C, and 190 C at each loading density. A more limited set of tests with {approx}99 %TMD loadings at medium confinement were conducted at temperatures of ambient and 186 C. LX-04 does not undergo DDT at near TMD loadings in both medium and high confinement, although the latter still results in significant fragmentation. Most porous beds in high confinement undergo DDT, with the minimum run distance to detonation (l) for a 70 %TMD loading at ambient temperature. LX-04 does not transit to detonation for a pour density (51.3 %TMD) loading at 160 C, but does at 190 C with a longer l than at ambient. The limited ambient temperature measurements for l in high confinement are similar to previous data for 91/9 HMX/wax, which has nearly the same %volume of HMX as LX-04.
ERIC Educational Resources Information Center
Field, David; And Others
1992-01-01
Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)
NASA Astrophysics Data System (ADS)
Voss, Clifford I.; Souza, William R.
1987-10-01
Variable density flow and solute transport simulation of aquifer systems containing narrow transition zones between freshwater and saltwater requires particular attention to certain aspects of the numerical method and its application to be successful. Typically, only cases involving wide transition zones have been simulated with variable density transport models, possibly because of inaccuracies in the modeling approaches used. The major components of a successful approach are threefold. First, functionally consistent approximation of terms involved in fluid velocity calculations is necessary. In the case of Galerkin finite element methodology, a significant modification is required to the standard approach in order to achieve consistency. Second, the simulator must be verified in a particular series of tests. The usual tests using Henry's problem for verification of density-dependent transport simulators are inadequate to check for consistency of the velocity approximations and for the accuracy of simulating flow driven by bouyancy forces. Third, adequately fine spatial discretization is required when applying the simulator for spatial stability of the numerical transport solution and to allow accurate representation of narrow transition zones and the effects of low transverse dispersivity. The effectiveness of this approach is demonstrated through simulation of the flow of fresh and saline groundwater in the layered basalt aquifer of southern Oahu, Hawaii. The transition zone in this regional flow system is narrow except near the discharge area where it is broadly dispersed. Simulation of this common situation with an inconsistent approximation gives grossly incorrect results, while simulation with a consistent model provides a robust tool for analysis of system hydrology.
Guha, Madhumita; England, Cheryl; Herscovitz, Haya; Gursky, Olga
2007-05-22
Very-low-density lipoproteins (VLDL) are metabolic precursors of low-density lipoproteins (LDL) and a risk factor for atherosclerosis. Human VLDL are heterogeneous complexes containing a triacylglycerol-rich apolar lipid core and polar surface composed of phospholipids, a nonexchangeable apolipoprotein B, and exchangeable apolipoproteins E and Cs. We report the first stability study of VLDL. Circular dichroism and turbidity data reveal an irreversible heat-induced VLDL transition that involves formation of larger particles and repacking of apolar lipids but no global protein unfolding. Heating rate effect on the melting temperature indicates a kinetically controlled reaction with high activation energy, Ea. Arrhenius analysis of the turbidity data reveals two kinetic phases with Ea = 53 +/- 7 kcal/mol that correspond to distinct morphological transitions observed by electron microscopy. One transition involves VLDL fusion, partial rupture, and dissociation of small spherical particles (d = 7-15 nm), and another involves complete lipoprotein disintegration and lipid coalescence into droplets accompanied by dissociation of apolipoprotein B. The small particles, which are unique to VLDL denaturation, are comparable in size and density to high-density lipoproteins (HDL); they have an apolar lipid core and polar surface composed of exchangeable apolipoproteins (E and possibly Cs) and phospholipids. We conclude that, similar to HDL and LDL, VLDL are stabilized by kinetic barriers that prevent particle fusion and rupture and decelerate spontaneous interconversion among lipoprotein classes and subclasses. In addition to fusion, VLDL disruption involves transient formation of HDL-like particles that may mimic protein exchange among VLDL and HDL pools in plasma.
The Electron Density in Explosive Transition Region Events Observed by IRIS
NASA Astrophysics Data System (ADS)
Doschek, G. A.; Warren, H. P.; Young, P. R.
2016-11-01
We discuss the intensity ratio of the O iv line at 1401.16 Å to the Si iv line at 1402.77 Å in Interface Region Imaging Spectrograph (IRIS) spectra. This intensity ratio is important if it can be used to measure high electron densities that cannot be measured using line intensity ratios of two different O iv lines from the multiplet within the IRIS wavelength range. Our discussion is in terms of considerably earlier observations made from the Skylab manned space station and other spectrometers on orbiting spacecraft. The earlier data on the O iv and Si iv ratio and other intersystem line ratios not available to IRIS are complementary to IRIS data. In this paper, we adopt a simple interpretation based on electron density. We adopt a set of assumptions and calculate the electron density as a function of velocity in the Si iv line profiles of two explosive events. At zero velocity the densities are about 2-3 × 1011 cm-3, and near 200 km s-1 outflow speed the densities are about 1012 cm-3. The densities increase with outflow speed up to about 150 km s-1 after which they level off. Because of the difference in the temperature of formation of the two lines and other possible effects such as non-ionization equilibrium, these density measurements do not have the precision that would be available if there were some additional lines near the formation temperature of O iv.
Su, Wenjuan; Zhao, Kongshuang; Wei, Jingjing; Ngai, To
2014-11-21
Dielectric relaxation behaviors of three types of thermally sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels with different cross-linking density distributions were investigated in a frequency range from 40 Hz to 110 MHz at temperatures from 15 °C to 55 °C. After eliminating the electrode polarization at low frequency, two remarkable relaxations were observed, one in the kHz frequency range and the other in the MHz range. The low-frequency relaxation is attributed to the counterion polarization in the whole measuring temperature range, while the relaxation at high-frequency is probably dominated by different polarization mechanisms depending on below or above the volume phase transition temperature (VPTT): it is considered as micro-Brownian motion of side groups of PNIPAM when T < VPTT and interfacial polarization when T > VPTT. The temperature dependence of the dielectric parameters for both the relaxations presents an abrupt change around 32.5 °C, indicating the occurrence of phase transition. Based on the analysis and discussion about the micro-Brownian motion of the side groups, a possible microstructure for the microgels before and after the collapse of PNIPAM was suggested. A dielectric model to describe the collapsing microgel suspension was proposed, from which the electrical and structural parameters of the suspension were calculated. The information on the internal structure and hydration dynamic behavior of microgels was obtained by using the thermodynamic parameters which were calculated based on the Eyring equation. Our results reveal that the spatial distribution of the cross-linking density distribution has almost no effect on the volume phase transition temperature, but markedly affects the swelling capacity of PNIPAM microgels at low temperatures.
NASA Astrophysics Data System (ADS)
Singh, Ram Chandra; Ram, Jokhan
2011-11-01
The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.
NASA Astrophysics Data System (ADS)
Verma, Ashok K.; Modak, P.; Sharma, Surinder M.; Svane, A.; Christensen, N. E.; Sikka, S. K.
2013-07-01
First-principles calculations have been performed for americium (Am) metal using the generalized gradient approximation + orbital-dependent onsite Coulomb repulsion via Hubbard interaction (GGA+U) and hybrid density functional theory (HYB-DFT) methods to investigate various ground state properties and pressure-induced structural transitions. Both methods yield equilibrium volume and bulk modulus in good agreement with the experimental results. The GGA+spin orbit coupling+U method reproduced all structural transitions under pressure correctly, but the HYB-DFT method failed to reproduce the observed Am-I to Am-II transition. Good agreement was found between calculated and experimental equations of states for all phases, but the first three phases need larger U (α) parameters (where α represents the fraction of Hartree-Fock exchange energy replacing the DFT exchange energy) than the fourth phase in order to match the experimental data. Thus, neither the GGA+U nor the HYB-DFT methods are able to describe the energetics of Am metal properly in the entire pressure range from 0 GPa to 50 GPa with a single choice of their respective U and α parameters. Low binding-energy peaks in the experimental photoemission spectrum at ambient pressure relate, for some parameter choices, well to peak positions in the calculated density of states function of Am-I.
An introduction to inhomogeneous liquids, density functional theory, and the wetting transition
NASA Astrophysics Data System (ADS)
Hughes, Adam P.; Thiele, Uwe; Archer, Andrew J.
2014-12-01
Classical density functional theory (DFT) is a statistical mechanical theory for calculating the density profiles of the molecules in a liquid. It is widely used, for example, to study the density distribution of the molecules near a confining wall, the interfacial tension, wetting behavior, and many other properties of nonuniform liquids. DFT can, however, be somewhat daunting to students entering the field because of the many connections to other areas of liquid-state science that are required and used to develop the theories. Here, we give an introduction to some of the key ideas, based on a lattice-gas (Ising) model fluid. This approach builds on knowledge covered in most undergraduate statistical mechanics and thermodynamics courses, so students can quickly get to the stage of calculating density profiles, etc., for themselves. We derive a simple DFT for the lattice gas and present some typical results that can readily be calculated using the theory.
Density changes of bismuth and alkaline metals at the transition to the liquid state
NASA Astrophysics Data System (ADS)
Stankus, S. V.; Abdullaev, R. N.; Khairulin, R. A.
2016-11-01
Relative density changes δρ f of sodium, potassium, rubidium, and bismuth on melting-crystallization were studied using monochromatic gamma-ray attenuation technique. The measurement error of density changes was 0.1-0.12 %. A comparison of the obtained results with the known literature data was carried out, and the values of δρ f recommended as reference data were determined.
Kawano, Hiroyuki; Bivard, Andrew; Lin, Longting; Spratt, Neil J; Miteff, Ferdinand; Parsons, Mark W; Levi, Christopher R
2016-03-01
Collateral circulation is recognized to influence the life expectancy of the ischemic penumbra in acute ischemic stroke. The best method to quantify collateral status on acute imaging is uncertain. We aimed to determine the relationship between visual collateral status, quantitative collateral assessments, baseline computed tomographic perfusion measures, and tissue outcomes on follow-up imaging. Sixty-six consecutive patients with acute ischemic stroke clinically eligible for recanalization therapy and with M1 or M2 middle cerebral artery occlusion were evaluated. We compared the visual collateral scoring with measures of contrast peak time delay and contrast peak density. We also compared these measures for their ability to predict perfusion lesion and infarct core volumes, final infarct, and infarct growth. Shorter contrast peak time delay (P=0.041) and higher contrast peak density (P=0.002) were associated with good collateral status. Shorter contrast peak time delay correlated with higher contrast peak density (β=-4.413; P=0.037). In logistic regression analysis after adjustment for age, sex, onset-computed tomographic time, and occlusion site, higher contrast peak density was independently associated with good collateral status (P=0.009). Multiple regression analysis showed that higher contrast peak density was an independent predictor of smaller perfusion lesion volume (P=0.029), smaller ischemic core volume (P=0.044), smaller follow-up infarct volume (P=0.005), and smaller infarct growth volume (P=0.010). Visual collateral status, contrast peak density, and contrast peak time delay were inter-related, and good collateral status was strongly associated with contrast peak density. Contrast peak density in collateral vessel may be an important factor in tissue fate in acute ischemic stroke. © 2016 American Heart Association, Inc.
H I-to-H{sub 2} transitions and H I column densities in galaxy star-forming regions
Sternberg, Amiel; Le Petit, Franck; Roueff, Evelyne; Le Bourlot, Jacques
2014-07-20
We present new analytic theory and radiative transfer computations for the atomic-to-molecular (H I-to-H{sub 2}) transitions and the buildup of atomic hydrogen (H I) gas columns in optically thick interstellar clouds irradiated by far-UV (FUV) photodissociating radiation fields. We derive analytic expressions for the total H I column densities for (one-dimensional (1D)) planar slabs, for beamed or isotropic radiation fields, from the weak- to strong-field limits, for gradual or sharp atomic-to-molecular transitions, and for arbitrary metallicity. Our expressions may be used to evaluate the H I column densities as functions of the radiation field intensity and the H{sub 2}-dust-limited dissociation flux, the hydrogen gas density, and the metallicity-dependent H{sub 2} formation rate coefficient and FUV dust grain absorption cross section. We make the distinction between 'H I-dust' and 'H{sub 2}-dust' opacity, and we present computations for the 'universal H{sub 2}-dust-limited effective dissociation bandwidth'. We validate our analytic formulae with Meudon PDR code computations for the H I-to-H{sub 2} density profiles and total H I column densities. We show that our general 1D formulae predict H I columns and H{sub 2} mass fractions that are essentially identical to those found in more complicated (and approximate) spherical (shell-core) models. We apply our theory to compute H{sub 2} mass fractions and star-formation thresholds for individual clouds in self-regulated galaxy disks, for a wide range of metallicities. Our formulae for the H I columns and H{sub 2} mass fractions may be incorporated into hydrodynamics simulations for galaxy evolution.
Schlieren Measurements of Buoyancy Effects on Flow Transition in Low-Density Gas Jets
NASA Technical Reports Server (NTRS)
Pasumarthi, Kasyap S.; Agrawal, Ajay K.
2005-01-01
The transition from laminar to turbulent flow in helium jets discharged into air was studied using Rainbow Schlieren Deflectometry technique. In particular, the effects of buoyancy on jet oscillations and flow transition length were considered. Experiments to simulate microgravity were conducted in the 2.2s drop tower at NASA Glenn Research Center. The jet Reynolds numbers varied from 800 to1200 and the jet Richardson numbers ranged between 0.01 and 0.004. Schlieren images revealed substantial variations in the flow structure during the drop. Fast Fourier Transform (FFT) analysis of the data obtained in Earth gravity experiments revealed the existence of a discrete oscillating frequency in the transition region, which matched the frequency in the upstream laminar regime. In microgravity, the transition occurred farther downstream indicating laminarization of the jet in the absence of buoyancy. The amplitude of jet oscillations was reduced by up to an order of magnitude in microgravity. Results suggest that jet oscillations were buoyancy induced and that the brief microgravity period may not be sufficient for the oscillations to completely subside.
S.L. Stout
1991-01-01
Transition stands, those containing species associated with both the northern hardwood and oak-hickory forest types, are important to forest diversity in northwestern Pennsylvania. These stands have high value for a variety of forest uses, including timber production, wildlife habitat, and aesthetics. Diameter distributions are characteristically stratified by species...
Schlieren Measurements of Buoyancy Effects on Flow Transition in Low-Density Gas Jets
NASA Technical Reports Server (NTRS)
Pasumarthi, Kasyap S.; Agrawal, Ajay K.
2005-01-01
The transition from laminar to turbulent flow in helium jets discharged into air was studied using Rainbow Schlieren Deflectometry technique. In particular, the effects of buoyancy on jet oscillations and flow transition length were considered. Experiments to simulate microgravity were conducted in the 2.2s drop tower at NASA Glenn Research Center. The jet Reynolds numbers varied from 800 to1200 and the jet Richardson numbers ranged between 0.01 and 0.004. Schlieren images revealed substantial variations in the flow structure during the drop. Fast Fourier Transform (FFT) analysis of the data obtained in Earth gravity experiments revealed the existence of a discrete oscillating frequency in the transition region, which matched the frequency in the upstream laminar regime. In microgravity, the transition occurred farther downstream indicating laminarization of the jet in the absence of buoyancy. The amplitude of jet oscillations was reduced by up to an order of magnitude in microgravity. Results suggest that jet oscillations were buoyancy induced and that the brief microgravity period may not be sufficient for the oscillations to completely subside.
Sandusky, H W; Granholm, R H; Bohl, D G; Hare, D E; Vandersall, K S; Garcia, F
2005-06-01
The potential for deflagration-to-detonation transition (DDT) in LX-04 (85/15 HMX/Viton) is being evaluated as a function of loading density, temperature, and confinement. In the high confinement arrangement, a matrix of tests will be performed with the LX-04 loaded at {approx}50, 70, 90, and {approx}99 %TMD; and temperatures of ambient, 160 C, and 190 C, at each loading density. A more limited set of tests at medium confinement will be conducted. As expected, LX-04 does not undergo DDT at near TMD loadings in both medium and high confinement, although the later still results in significant fragmentation. In high confinement at pour density (50.3 %TMD), LX-04 does not transit to detonation at 160 C, but does at ambient and 190 C with the shortest run distance to detonation (l) at ambient temperature. With a 70% TMD loading at ambient temperature, l was even less. The limited ambient temperature measurements for l in high confinement are similar to previous data for 91/9 HMX/wax, which has nearly the same %volume of HMX as LX-04.
Measurement of sodium density and the Na 514-nm transition probability in a high-pressure sodium arc
NASA Astrophysics Data System (ADS)
Benson, T. P.; Bhattacharya, A. K.
1990-09-01
Spatially resolved arc temperatures and sodium density measurements are presented for two high-pressure sodium arcs. Absolute intensities of the optically thick 818/819-nm lines were used to determine the arc temperature while the radial profile of the optically thin 514-nm line was Abel inverted to determine the Na atomic density. Agreement with an independent measurement of the Na density obtained by controlling pressure of sodium in the lamp with a tin bath consistently required a value for the Na 514-nm transition probability 2-3 times smaller than the literature value (A=0.011×108 s-1 ) of Wiese, Smith, and Miles [Atomic Transition Probabilities, NSRDS-NBS 4 (NBS, Washington, DC, 1971), Vol. II], obtained from quantum mechanical calculations. The results of three separate experiments indicate that the value should be modified to A=0.0040×108 s-1 with a standard deviation of ±21%. A more detailed error analysis including systematic error would indicate an accuracy to within ±33%.
NASA Astrophysics Data System (ADS)
van Swol, Frank; Henderson, J. R.
1991-03-01
This paper reports on studies of wetting phase behavior and interfacial structure of square-well fluid adsorbed at square-well walls. Choosing a particular wetting isotherm at bulk liquid-vapor coexistence, we present our final and complete comparison between molecular-dynamics (MD) simulation and weighted-density-approximation (WDA) density-functional theory. The properties of wall-liquid, wall-vapor, and liquid-vapor interfaces are measured and used to determine contact angles and to locate the positions and order of interfacial phase transitions (wetting and drying). Due to the presence of a suitable collective mode, it was possible to directly observe the collective dynamics of the fluctuation-induced first-order drying transition in MD simulation. A practical implementation of contact-angle measurement by generalized WDA density-functional theory is detailed, enabling one to input the bulk equation of state as a boundary condition. An attempt is made to gauge the generality of our results by comparison with simulation data from other systems and with alternative versions of WDA theory.
Singh, Swapnil; Singh, Harshita; Karthick, T; Tandon, Poonam; Prasad, Veena
2018-01-05
Temperature-dependent Fourier transform infrared spectroscopy (FTIR) combined with density functional theory (DFT) is employed to study the mechanism of phase transitions of V-shaped bent-core liquid crystal. Since it has a large number of flexible bonds, one-dimensional potential energy scan (PES) was performed on the flexible bonds and predicted the most stable conformer I. A detailed analysis of vibrational normal modes of conformer I have been done on the basis of potential energy distribution. The good agreement between the calculated spectrum of conformer I and observed FTIR spectrum at room temperature validates our theoretical structure model. Furthermore, the prominent changes observed in the stretching vibrational bands of CH3/CH2, CO, ring CC, ring CO, ring CH in-plane bending, and ring CH out-of-plane bending at Iso→nematic phase transition (at 155°C) have been illustrated. However, the minor changes in the spectral features observed for the other phase transitions might be due to the shape or bulkiness of molecules. Combined FTIR and PES study beautifully explained the dynamics of the molecules, molecular realignment, H-bonding, and conformational changes at the phase transitions. Copyright © 2017 Elsevier B.V. All rights reserved.
Exact versus Taylor-expanded energy density in the study of the neutron star crust-core transition
NASA Astrophysics Data System (ADS)
Routray, T. R.; Viñas, X.; Basu, D. N.; Pattnaik, S. P.; Centelles, M.; Robledo, L. B.; Behera, B.
2016-10-01
The importance of the fourth and higher order terms in the Taylor series expansion of energy of isospin asymmetric nuclear matter in studies of the neutron star crust-core phase transition is investigated using the finite-range simple effective interaction. Analytic expressions for the evaluation of the second and fourth order derivative terms in the Taylor series expansion for any general finite-range interaction of Yukawa, exponential or Gaussian form have been obtained. The effect of the nuclear matter incompressibility, symmetry energy and slope parameters on the predictions for the crust-core transition density is examined. The crustal moment of inertia is calculated and the prediction for the radius of the Vela pulsar is analyzed using different equations of state.
NASA Astrophysics Data System (ADS)
Guigou, M.; Sedlmayr, N.; Aguiar-Hualde, J. M.; Bena, C.
2016-08-01
We investigate the spin texture of Andreev bound states and Majorana states in long SN junctions. We show that measuring the spin-polarized density of states (SPDOS) allows one to identify the topological transition. In particular, we find that its total component parallel to the wire is non-zero in the topological phase for the lowest-energy state, while vanishing in the trivial one. Also, the component parallel to the Zeeman field is symmetric between positive and negative energies in the topological phase and asymmetric in the trivial phase. Moreover, the SPDOS exhibits a moderate accumulation close to the SN boundary which changes sign when crossing the topological transition. We propose that these signatures may allow one to unambiguously test the formation of a topological phase via spin-resolved transport and STM measurements.
Wang, Ying; Feng, Chenglian; Liu, Yuedan; Zhao, Yujie; Li, Huixian; Zhao, Tianhui; Guo, Wenjing
2017-02-01
Transition metals in the fourth period of the periodic table of the elements are widely widespread in aquatic environments. They could often occur at certain concentrations to cause adverse effects on aquatic life and human health. Generally, parametric models are mostly used to construct species sensitivity distributions (SSDs), which result in comparison for water quality criteria (WQC) of elements in the same period or group of the periodic table might be inaccurate and the results could be biased. To address this inadequacy, the non-parametric kernel density estimation (NPKDE) with its optimal bandwidths and testing methods were developed for establishing SSDs. The NPKDE was better fit, more robustness and better predicted than conventional normal and logistic parametric density estimations for constructing SSDs and deriving acute HC5 and WQC for transition metals in the fourth period of the periodic table. The decreasing sequence of HC5 values for the transition metals in the fourth period was Ti > Mn > V > Ni > Zn > Cu > Fe > Co > Cr(VI), which were not proportional to atomic number in the periodic table, and for different metals the relatively sensitive species were also different. The results indicated that except for physical and chemical properties there are other factors affecting toxicity mechanisms of transition metals. The proposed method enriched the methodological foundation for WQC. Meanwhile, it also provided a relatively innovative, accurate approach for the WQC derivation and risk assessment of the same group and period metals in aquatic environments to support protection of aquatic organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanda, Vikas; Kant, Niti
2014-04-15
Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.
Fluid-solid transition in simple systems using density functional theory
Bharadwaj, Atul S.; Singh, Yashwant
2015-09-28
A free energy functional for a crystal which contains both the symmetry-conserved and symmetry-broken parts of the direct pair correlation function has been used to investigate the fluid-solid transition in systems interacting via purely repulsive Weeks-Chandler-Anderson Lennard–Jones potential and the full Lennard–Jones potential. The results found for freezing parameters for the fluid-face centred cubic crystal transition are in very good agreement with simulation results. It is shown that although the contribution made by the symmetry broken part to the grand thermodynamic potential at the freezing point is small compared to that of the symmetry conserving part, its role is crucial in stabilizing the crystalline structure and on values of the freezing parameters.
Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming
NASA Astrophysics Data System (ADS)
Cohen, A. P.; Dorosz, S.; Schofield, A. B.; Schilling, T.; Sloutskin, E.
2016-03-01
A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t =1 ). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t =1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids.
Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming.
Cohen, A P; Dorosz, S; Schofield, A B; Schilling, T; Sloutskin, E
2016-03-04
A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t=1). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t=1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids.
Fluid-solid transition in simple systems using density functional theory.
Bharadwaj, Atul S; Singh, Yashwant
2015-09-28
A free energy functional for a crystal which contains both the symmetry-conserved and symmetry-broken parts of the direct pair correlation function has been used to investigate the fluid-solid transition in systems interacting via purely repulsive Weeks-Chandler-Anderson Lennard-Jones potential and the full Lennard-Jones potential. The results found for freezing parameters for the fluid-face centred cubic crystal transition are in very good agreement with simulation results. It is shown that although the contribution made by the symmetry broken part to the grand thermodynamic potential at the freezing point is small compared to that of the symmetry conserving part, its role is crucial in stabilizing the crystalline structure and on values of the freezing parameters.
Driving a first order quantum phase transition by coupling a quantum dot to a 1D charge density wave
NASA Astrophysics Data System (ADS)
Weiss, Y.; Goldstein, M.; Berkovits, R.
2007-02-01
The ground state properties of a one-dimensional system with particle-hole symmetry, consisting of a gate controlled dot coupled to an interacting reservoir, are explored using the numerical DMRG method. It has previously been shown that the system's thermodynamic properties as a function of the gate voltage in the Luttinger liquid phase are qualitatively similar to the behaviour of a non-interacting wire with an effective (renormalized) dot-lead coupling. Here we examine the thermodynamic properties of the wire in the charge density wave phase, and show that these properties behave quite differently. The number of electrons in the system remains constant as a function of the gate voltage, while the total energy becomes linear. Moreover, by tuning the gate voltage on the dot in the charge density wave phase it is possible to drive the wire through a first order quantum phase transition in which the population of each site in the wire is inverted.
Nandi, Prithwish Kumar; Valsakumar, M C; Chandra, Sharat; Sahu, H K; Sundar, C S
2010-09-01
We calculate properties like equilibrium lattice parameter, bulk modulus and monovacancy formation energy for nickel (Ni), iron (Fe) and chromium (Cr) using Kohn-Sham density functional theory (DFT). We compare the relative performance of local density approximation (LDA) and generalized gradient approximation (GGA) for predicting such physical properties for these metals. We also make a relative study between two different flavors of GGA exchange correlation functional, namely PW91 and PBE. These calculations show that there is a discrepancy between DFT calculations and experimental data. In order to understand this discrepancy in the calculation of vacancy formation energy, we introduce a correction for the surface intrinsic error corresponding to an exchange correlation functional using the scheme implemented by Mattsson et al (2006 Phys. Rev. B 73 195123) and compare the effectiveness of the correction scheme for Al and the 3d transition metals.
Yi, M.
2010-06-02
Through a systematic high-resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe{sub 2}As{sub 2}, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave transition, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5{mu}{sub B} can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.
ERIC Educational Resources Information Center
Thompson, Sandy, Ed.; And Others
1990-01-01
This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition…
NASA Astrophysics Data System (ADS)
Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch.
2016-10-01
Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.
Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch
2016-10-07
Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.
NASA Astrophysics Data System (ADS)
Mishra, Snigdharaj Kumar
Manganese oxides with perovskite structure exhibit many interesting properties. Recently colossal magnetoresistance (CMR) was observed in these oxides. They show extremely large change in electrical resistance in response to applied magnetic fields. This property has lots of technological relevance for the development of magnetic memory and switching devices. These oxides also show transitions from antiferromagnet to ferromagnet coupled with charge-order to charge-nonorder transition. In this dissertation we examine the electronic origin of these phenomena of lanthanum manganites by studying a model electronic Hamiltonian, which includes double-exchange, super-exchange, and Hubbard terms, using a combination of Hartree-Fock approximation and an exact diagonalization scheme. The existence of "canted" spin order is investigated at zero temperature. We find that the double-exchange mechanism does not always lead to a canted magnetic state, even for small carrier concentration. The canting may be suppressed in these compounds for the typical electronic parameters. We study the charge ordering and magnetic transitions in the perovskites by solving the Hamiltonian both at zero and finite temperature. At zero temperature as we increase the strength of the extended-Hubbard repulsion (Usb1), a first-order transition from a charge-non-ordered metallic ferromagnet (FN) to a charge-ordered, insulating antiferromagnet (AFO) is obtained. The AFO-FN transition is also obtained by increasing the temperature T. The melting of charge ordering as a function of temperature, doping concentration and magnetic field is also examined. Different phases are obtained as a function of temperature and doping concentration. These are in qualitative agreement with experimental data. We study the electronic structures of pyrochlores by the density-functional LMTO method and show that the double-exchange mechanism is relevant for these compounds as well.
Density Induced Phase Transitions in the Schwinger Model: A Study with Matrix Product States
NASA Astrophysics Data System (ADS)
Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan
2017-02-01
We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.
A summary of transition probabilities for atomic absorption lines formed in low-density clouds
NASA Technical Reports Server (NTRS)
Morton, D. C.; Smith, W. H.
1973-01-01
A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.
Squeezed states of electrons and transitions of the density of states
NASA Technical Reports Server (NTRS)
Lee, Seung Joo; Um, Chung IN
1993-01-01
Electron systems which have low dimensional properties have been constructed by squeezing the motion in zero, one, or two-directions. An isolated quantum dot is modeled by a potential box with delta-profiled, penetrable potential walls embedded in a large outer box with infinitely high potential walls which represent the world function with respect to vacuum. We show the smooth crossover of the density of states from the three-dimensional to the quasi-zero dimensional electron gas.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.
NASA Astrophysics Data System (ADS)
Burmistrov, I. S.; Gornyi, I. V.; Mirlin, A. D.
2016-05-01
We develop a theory of the local density of states (LDOS) of disordered superconductors, employing the nonlinear sigma-model formalism and the renormalization-group framework. The theory takes into account the interplay of disorder and interaction couplings in all channels, treating the systems with short-range and Coulomb interactions on equal footing. We explore two-dimensional systems that would be Anderson insulators in the absence of interaction and two- or three-dimensional systems that undergo an Anderson transition in the absence of interaction. We evaluate both the average tunneling density of states and its mesoscopic fluctuations which are related to the LDOS multifractality in normal disordered systems. The obtained average LDOS shows a pronounced depletion around the Fermi energy, both in the metallic phase (i.e., above the superconducting critical temperature Tc) and in the insulating phase near the superconductor-insulator transition (SIT). The fluctuations of the LDOS are found to be particularly strong for the case of short-range interactions, especially, in the regime when Tc is enhanced by Anderson localization. On the other hand, the long-range Coulomb repulsion reduces the mesoscopic LDOS fluctuations. However, also in a model with Coulomb interaction, the fluctuations become strong when the systems approach the SIT.
A density spike on astrophysical scales from an N-field waterfall transition
NASA Astrophysics Data System (ADS)
Halpern, Illan F.; Hertzberg, Mark P.; Joss, Matthew A.; Sfakianakis, Evangelos I.
2015-09-01
Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO (N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1 / N and the field's correlation function Δ (x). We show that for large N, the two-point function is < δt (x) δt (0) > ∝Δ2 (| x |) / N and the three-point function is < δt (x) δt (y) δt (0) > ∝ Δ (| x - y |) Δ (| x |) Δ (| y |) /N2. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.
C-N coupling on transition metal surfaces: A density functional theory study
NASA Astrophysics Data System (ADS)
Gómez-Díaz, Jaime; Vargas-Fuentes, Crisa; López, Núria
2011-09-01
We have investigated the formation of C-N bonds from individual atoms and single hydrogenated moieties on a series of transition metals. These reactions play a role in HCN formation at high oxygen coverage, also known as Andrussow oxidation, and they are fundamental to understand the ability of other materials to form part of alloys where Pt is the major component. Dehydrogenations take place quite easily under these high oxygen conditions and thus, the C+N, HC+N, and N+CH recombinations to form HCN or its isomer CNH might represent the rate-limiting steps for the reaction. For all the metals in the present study we have found that the activation energy for the reactions between HxC and NHy (x,y = 0,1) involved in C-N formation follow a linear relationship with the adsorption energy of the N atom. This is due to the common nature of all these transition states, where N-containing fragments get activated from three-fold hollow sites to bridge positions. The slopes of the linear dependence, though, depend on the valence of the N fragment, i.e., smaller slopes are found for NH moieties with respect to N ones.
C-N coupling on transition metal surfaces: a density functional theory study.
Gómez-Díaz, Jaime; Vargas-Fuentes, Crisa; López, Núria
2011-09-28
We have investigated the formation of C-N bonds from individual atoms and single hydrogenated moieties on a series of transition metals. These reactions play a role in HCN formation at high oxygen coverage, also known as Andrussow oxidation, and they are fundamental to understand the ability of other materials to form part of alloys where Pt is the major component. Dehydrogenations take place quite easily under these high oxygen conditions and thus, the C+N, HC+N, and N+CH recombinations to form HCN or its isomer CNH might represent the rate-limiting steps for the reaction. For all the metals in the present study we have found that the activation energy for the reactions between H(x)C and NH(y) (x,y = 0,1) involved in C-N formation follow a linear relationship with the adsorption energy of the N atom. This is due to the common nature of all these transition states, where N-containing fragments get activated from three-fold hollow sites to bridge positions. The slopes of the linear dependence, though, depend on the valence of the N fragment, i.e., smaller slopes are found for NH moieties with respect to N ones. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Baranov, N. V.; Maksimov, V. I.; Mesot, J.; Pleschov, V. G.; Podlesnyak, A.; Pomjakushin, V.; Selezneva, N. V.
2007-01-01
Measurements of the electrical resistivity have been performed on MxTiSe2 compounds intercalated with 3d metals (M = Cr, Mn, Fe, Ni) up to x = 0.5. The charge density wave (CDW) transition which is observed in pure TiSe2 below ~200 K disappears for intercalation x>0.1, while a further increase of the intercalant content (x>=0.25, M = Cr, Mn or Fe) leads to the appearance of pronounced anomalies in the temperature dependences of the resistivity in the same temperature range where the CDW transition takes place in the pure TiSe2 compound. These anomalies in highly intercalated MxTiSe2 are associated with the reappearance of a superstructure formation and associated CDW state. For Mn0.33TiSe2, the structural phase transition was evidenced from both powder neutron diffraction measurements and specific heat data. The observed results are discussed in terms of the degree of deformation of Se-Ti-Se sandwiches, which we believe play a key role in the disappearance and reappearance of the CDW state in MxTiSe2 as a function of increasing M concentration. The change in the electronic structure due to the intercalation seems not to strongly influence the presence of the CDW.
Pressure-induced changes in the electron density distribution in α-Ge near the α-β transition
Li, Rui; Liu, Jing; Bai, Ligang; Shen, Guoyin; Tse, John S.
2015-08-17
Electron density distributions in α-Ge have been determined under high pressure using maximum entropy method with structure factors obtained from single crystal synchrotron x-ray diffraction in a diamond anvil cell. The results show that the sp{sup 3} bonding is enhanced with increasing pressure up to 7.7(1) GPa. At higher pressures but below the α-β transition pressure of 11.0(1) GPa, the sp{sup 3}-like electron distribution progressively weakens with a concomitant increase of d-orbitals hybridization. The participation of d-orbitals in the electronic structure is supported by Ge Kβ{sub 2} (4p-1s) x-ray emission spectroscopy measurements showing the reduction of 4s character in the valence band at pressures far below the α-β transition. The gradual increase of d-orbitals in the valence level in the stability field of α-Ge is directly related to the eventual structural transition.
Yi, Jinqiao; Zhang, Ling; Xie, Bing; Jiang, Shenglin
2015-09-28
Anti-ferroelectric (AFE) composite ceramics of (Pb{sub 0.858}Ba{sub 0.1}La{sub 0.02}Y{sub 0.008})(Zr{sub 0.65}Sn{sub 0.3}Ti{sub 0.05})O{sub 3}-(Pb{sub 0.97}La{sub 0.02})(Zr{sub 0.9}Sn{sub 0.05} Ti{sub 0.05})O{sub 3} (PBLYZST-PLZST) were fabricated by the conventional solid-state sintering process (CS), the glass-aided sintering (GAS), and the spark plasma sintering (SPS), respectively. The influence of the temperature induced phase transition on the phase structure, hysteresis loops, and energy storage properties of the composite ceramics were investigated in detail. The measured results of X-ray diffraction demonstrate that the composite ceramics exhibit the perovskite phases and small amounts of non-functional pyrochlore phases. Compared with the CS process, the GAS and SPS processes are proven more helpful to suppress the diffusion behaviors between the PBLYZST and PLZST phases according to the field emission scanning electron microscopy, thereby being able to improve the contribution of PBLYZST phase to the temperature stability of the orthogonal AFE phase. When the ambient temperature rises from 25 °C to 125 °C, CS and GAS samples have undergone a phase transition from orthorhombic AFE phase to tetragonal AFE phase, which results in a sharp decline in the energy storage density. However, the phase transition temperature of SPS samples is higher than 125 °C, and the energy storage density only slightly decreases due to the disorder of material microstructure caused by the high temperature. As a result, the SPS composite ceramics obtain a recoverable high energy storage density of 6.46 J/cm{sup 3} and the excellent temperature stability of the energy storage density of 1.16 × 10{sup −2} J/°C·cm{sup 3}, which is 1.29 × 10{sup −2} J/°C·cm{sup 3} lower than that of CS samples and about 0.43 times as that of GAS samples.
NASA Astrophysics Data System (ADS)
Huang, Lung-I.; Yang, Yanfei; Elmquist, Randolph; Newell, David; Liang, Chi-Te
2014-03-01
We present magneto-transport measurements on ungated, low-carrier-density epitaxial graphene Hall devices at low temperatures T. At T = 4.25 K the carrier density and mobility of one device are 1.38x1011 cm-2 and 6500 cm2V-1s-1, respectively. At low magnetic fields B, this device shows insulating behavior in the sense that the measured resistivity ρxx increases with decreasing T. A highly developed quantum Hall (QH) resistivity plateau ρxy ~h/2e2 corresponding to a Landau-level filling factor ν = 2 in monolayer graphene can be observed at magnetic fields B >= 1.5 T. Between the low-field insulator regime and the ν = 2 QH state we observe a T-independent point in ρxx which corresponds to the insulator-quantum Hall (I-QH) transition. This transition, like those in semiconductor-based two-dimensional (2D) systems, can be also observed by increasing the driving current I at fixed ambient temperature. However, the measured ρxx at the I-QH transition is close to h/4e2 , rather than h/2e2 as expected by conventional I-QH theory. Furthermore, ρxx is substantially higher than ρxy at the crossing point. By using the zero-field resistivity and weak localization effect as two independent thermometers to determine effective Dirac fermion temperature (TDF) at various I, we find that TDF ~ I 0 . 5, consistent with those obtained in various 2D systems. NIST and National Taiwan University.
NASA Astrophysics Data System (ADS)
Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.
2010-01-01
We analyze the one-dimensional Kondo necklace model, at zero temperature, with an anisotropy parameter η in the interaction of the conduction chain, by means of the density matrix renormalization group. We calculate the energy gap and estimate the quantum critical points that separate a Kondo singlet state from an antiferromagnetic state, assuming a Kosterlitz-Thouless tendency. We also observe the correlation functions and the structure factors that support our critical points. The resulting phase diagram is presented and compared to that reported previously using Lanczos calculations. It is shown that the quantum critical points vary very slowly with η , but when η approaches zero, they drop abruptly.
Quantum dynamical phase transition in the soliton nucleation model of density wave transport
NASA Astrophysics Data System (ADS)
Miller, J. H., Jr.
2011-01-01
In the sine-Gordon model of a pinned density wave (DW), the electrostatic energy generated by charged solitons (S) and antisolitons (Š) leads to a Coulomb blockade threshold field ET for quantum S-Š pair creation. This field can be far smaller than the classical depinning field, since the quantum instability occurs as soon as the formerly lowest energy potential well rises to become a metastable well, or "false vacuum." The analogy to time-correlated single electron tunnelling, as well as broader implications of the proposed tunnelling process, are briefly discussed.
Babu, Jeetu S; Mondal, Chandana; Sengupta, Surajit; Karmakar, Smarajit
2016-01-28
The conditions which determine whether a material behaves in a brittle or ductile fashion on mechanical loading are still elusive and comprise a topic of active research among materials physicists and engineers. In this study, we present the results of in silico mechanical deformation experiments from two very different model solids in two and three dimensions. The first consists of particles interacting with isotropic potentials and the other has strongly direction dependent interactions. We show that in both cases, the excess vibrational density of states is one of the fundamental quantities which characterizes the ductility of the material. Our results can be checked using careful experiments on colloidal solids.
Comparison of transition densities in the DDHMS model of pre-equilibrium emission
Brito, L.; Carlson, B. V.
2014-11-11
The DDHMS (double differential hybrid Monte Carlo simulation) model treats nucleon-induced pre-equilibrium reactions as a series of particle-particle and particle-hole interactions in the space of energy and angle. This work compares spectra obtained within the model using diferent approximations to the density of accessible states. The calculations are performed with the EMPIRE reaction model code, a modular system containing several nuclear reaction models that permits a fairly complete descritpion of the reaction, from elastic scattering and absorption through the pre-equilbrium stage to the final decay by statistical emission.
Quasi-monoenergetic electron beams production in a sharp density transition
Fourmaux, S.; Lassonde, P.; Lebrun, G.; Kieffer, J. C.; Ta Phuoc, K.; Corde, S.; Malka, V.; Rousse, A.
2012-09-10
Using a laser plasma accelerator, experiments with a 80 TW and 30 fs laser pulse demonstrated quasi-monoenergetic electron spectra with maximum energy over 0.4 GeV. This is achieved using a supersonic He gas jet and a sharp density ramp generated by a high intensity laser crossing pre-pulse focused 3 ns before the main laser pulse. By adjusting this crossing pre-pulse position inside the gas jet, among the laser shots with electron injection, more than 40% can produce quasi-monoenergetic spectra. This could become a relatively straight forward technique to control laser wakefield electron beams parameters.
HAT-P-26b: A Low-density Neptune-mass Planet Transiting a K Star
NASA Astrophysics Data System (ADS)
Hartman, J. D.; Bakos, G. Á.; Kipping, D. M.; Torres, G.; Kovács, G.; Noyes, R. W.; Latham, D. W.; Howard, A. W.; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Isaacson, H.; Quinn, S. N.; Buchhave, L. A.; Béky, B.; Sasselov, D. D.; Stefanik, R. P.; Esquerdo, G. A.; Everett, M.; Perumpilly, G.; Lázár, J.; Papp, I.; Sári, P.
2011-02-01
We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V = 11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 ± 0.000015 days, transit epoch Tc = 2455304.65122 ± 0.00035 (BJD; Barycentric Julian dates throughout the paper are calculated from Coordinated Universal Time (UTC)), and transit duration 0.1023 ± 0.0010 days. The host star has a mass of 0.82 ± 0.03 M sun, radius of 0.79+0.10 -0.04 R sun, effective temperature 5079 ± 88 K, and metallicity [Fe/H] = -0.04 ± 0.08. The planetary companion has a mass of 0.059 ± 0.007 M J, and radius of 0.565+0.072 -0.032 R J yielding a mean density of 0.40 ± 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 M ⊕ heavy element core that comprises gsim50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NASA (N018Hr and N167Hr).
NASA Astrophysics Data System (ADS)
Iwai, Shiho; Mukuda, Hidekazu; Shimizu, Sunao; Kitaoka, Yoshio; Ishida, Shigeyuki; Iyo, Akira; Eisaki, Hiroshi; Uchida, Shin-ichi
A 63Cu-NMR study of trilayered cuprate Bi2Sr2Ca2Cu3O10+δ (Bi2223) with Tc = 110 K has revealed that a hole density p(IP) (p(OP)) at the inner (IP) (outer (OP)) plane is significantly smaller (larger) than an optimal hole density p = 0.16, at which Tc exhibits a maximum. It differs significantly from the result on optimally doped Hg1223 with Tc = 133 K, in which p(IP) and p(OP) are both rather close to p = 0.16. Based on the accumulated results on multilayered cuprates(n = 3-5), we suggest that this large imbalance between p(IP) and p(OP) is one of the important factors for the suppression of the bulk Tc. We suggest experimentally thatTc might be enhanced up to around 160 K in cuprates if every layer in the multilayered structure(n = 3-5) could be optimally doped with p = 0.16.
Transition from order to chaos, and density limit, in magnetized plasmas.
Carati, A; Zuin, M; Maiocchi, A; Marino, M; Martines, E; Galgani, L
2012-09-01
It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so-called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.
Luo, Sijie; Averkiev, Boris; Yang, Ke R; Xu, Xuefei; Truhlar, Donald G
2014-01-14
The 3d-series transition metals (also called the fourth-period transition metals), Sc to Zn, are very important in industry and biology, but they provide unique challenges to computing the electronic structure of their compounds. In order to successfully describe the compounds by theory, one must be able to describe their components, in particular the constituent atoms and cations. In order to understand the ingredients required for successful computations with density functional theory, it is useful to examine the performance of various exchange-correlation functionals; we do this here for 4s(N)3d(N') transition-metal atoms and their cations. We analyze the results using three ways to compute the energy of the open-shell states: the direct variational method, the weighted-averaged broken symmetry (WABS) method, and a new broken-symmetry method called the reinterpreted broken symmetry (RBS) method. We find the RBS method to be comparable in accuracy with the WABS method. By examining the overall accuracy in treating 18 multiplicity-changing excitations and 10 ionization potentials with the RBS method, 10 functionals are found to have a mean-unsigned error of <5 kcal/mol, with ωB97X-D topping the list. For local density functionals, which are more practical for extended systems, the M06-L functional is the most accurate. And by combining the results with our previous studies of p-block and 4d-series elements as well as databases for alkyl bond dissociation, main-group atomization energies, and π-π noncovalent interactions, we find five functionals, namely, PW6B95, MPW1B95, M08-SO, SOGGA11-X, and MPWB1K, to be highly recommended. We also studied the performance of PW86 and C09 exchange functionals, which have drawn wide interest in recent studies due to their claimed ability to reproduce Hartree-Fock exchange at long distance. By combining them with four correlation functionals, we find the performance of the resulting functionals disappointing both for 3d
Low-order Description and Conditional Averaging in a Transitional Variable-Density Jet
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; Dib, Tamara; Ali, Naseem; Mastin, Larry; Solovitz, Stephen; Cal, Raul Bayoan
2016-11-01
A vertically oriented jet is investigated using particle image velocimetry to identify characteristics of the flow that contribute to the distribution of turbulent kinetic energy and development of Reynolds shear stresses. Experiments with three different gases air, argon and helium as the jet and a range of exit velocities were performed to allow for variety of the Reynolds and Richardson numbers. Five cases are examined in total. Proper orthogonal decomposition is applied to assess the energy distribution of all cases with respect to the number of modes. Reconstruction of the Reynolds shear stresses using 50% of the total turbulent kinetic energy is performed. Quadrant analysis with respect to the Reynolds shear stress is also performed for insight into the entrainment of the jet. Reynolds shear stresses are dominant in Q1 - advancing ejections and Q3 - impeding entrainment and exhibit negligible contributions from the remaining two quadrants. POD is able to identify most dominant structures and transition effects within the basis. Via quadrant analysis, advancing ejection and impeding entrainment further describe the streamwise development of each jet. National Science Foundation.
NASA Astrophysics Data System (ADS)
Storm, M.; Myatt, J.; Stoeckl, C.
2006-10-01
A diagnostic has been developed to measure the emission of optical transition radiation (OTR) produced by relativistic electrons emerging at the rear side of laser-illuminated targets. The device will be deployed in the newly completed multiterawatt (MTW) experimental facility at the University of Rochester's Laboratory for Laser Energetics. The MTW laser is capable of producing 10-J, 600-fs pulses of 1053-nm-wavelength radiation, which are focused using an f/2 off-axis parabolic mirror to intensities in excess of 10^19 Wcm-2. A 20x microscope objective with a resolution of better than 1 μm will image the OTR signal onto a CCD camera. A postprocessor to the particle-in-cell code LSP will be used to generate a simulated OTR signal from the calculated fast-electron distributions at the rear side of the target for comparison with experimental data. This talk will present the characteristics and capabilities of the OTR device along with the most recently acquired data. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.
Particle transport analysis of the density build-up after the L-H transition in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Willensdorfer, M.; Fable, E.; Wolfrum, E.; Aho-Mantila, L.; Aumayr, F.; Fischer, R.; Reimold, F.; Ryter, F.; the ASDEX Upgrade Team
2013-09-01
Predictive-iterative modelling has been performed to investigate the role of convective and diffusive particle transport in the edge during the density build-up after the L-H transition. For the time-dependent modelling, the 1.5D radial transport code ASTRA has been used. The convective velocity, diffusion coefficient and the particle source profiles have been parameterized. Their parameters were varied until the best match of the modelling to the density measurements was found. The extensive parameter scans show that the density build-up can be reproduced by assuming only a diffusive edge transport barrier (ETB) with reduced diffusion coefficient at the edge with respect to the core values. Moreover, the replacement of the diffusive ETB by a strong inwards directed convective velocity at the edge (edge pinch) did not succeed in describing the data. This indicates that a diffusive ETB is required to explain the density build-up. However, the addition of an edge pinch to the diffusive ETB barrier slightly enhances the agreement between modelling and experiment. The best agreement was found with an edge diffusion coefficient of 0.031 m2 s-1 and an edge convective velocity of -0.5 m s-1. Because of the large uncertainties in the source, it is not possible to pin down the exact value for the additional edge pinch. An upper limit for a possible edge convective velocity of -5 m s-1 was estimated. These findings could also be confirmed by analysing H-mode phases of a collisionality scan, in which the normalized collisionality \
Averkiev, Boris B; Zhao, Yan; Truhlar, Donald G
2010-06-01
The structures of Pd(PH₃)₂ and Pt(PH₃)₂ complexes with ethene and conjugated CnH_{n+2} systems (n=4, 6, 8, and 10) were studied. Their binding energies were calculated using both wave function theory (WFT) and density functional theory (DFT). Previously it was reported that the binding energy of the alkene to the transition metal does not depend strongly on the size of the conjugated C_{n}H_{n+2} ligand, but that DFT methods systematically underestimate the binding energy more and more significantly as the size of the conjugated system is increased. Our results show that recently developed density functionals predict the binding energy for these systems much more accurately. New benchmark calculations carried out by the coupled cluster method based on Brueckner orbitals with double excitations and a quasiperturbative treatment of connected triple excitations (BCCD(T)) with a very large basis set agree even better with the DFT predictions than do the previous best estimates. The mean unsigned error in absolute and relative binding energies of the alkene ligands to Pd(PH₃)₂ is 2.5 kcal/mol for the ωB97 and M06 density functionals and 2.9 kcal/mol for the M06-L functional. Adding molecular mechanical damped dispersion yields even smaller mean unsigned errors: 1.3 kcal/mol for the M06-D functional, 1.5 kcal/mol for M06- L-D, and 1.8 kcal/mol for B97-D and ωB97X-D. The new functionals also lead to improved accuracy for the analogous Pt complexes. These results show that recently developed density functionals may be very useful for studying catalytic systems involving Pd d¹º centers and alkenes.
NASA Astrophysics Data System (ADS)
Schwerdtfeger, Christine A.; Mazziotti, David A.
2009-06-01
Quantum phase transitions in N-particle systems can be identified and characterized by the movement of the two-particle reduced density matrix (2-RDM) along the boundary of its N-representable convex set as a function of the Hamiltonian parameter controlling the phase transition [G. Gidofalvi and D. A. Mazziotti, Phys. Rev. A 74, 012501 (2006)]. For the one-dimensional transverse Ising model quantum phase transitions as well as their finite-lattice analogs are computed and characterized by the 2-RDM movement with respect to the transverse magnetic field strength g. The definition of a 2-RDM "speed" quantifies the movement of the 2-RDM per unit of g, which reaches its maximum at the critical point of the phase transition. For the infinite lattice the convex set of 2-RDMs and the 2-RDM speed are computed from the exact solution of the 2-RDM in the thermodynamic limit of infinite N [P. Pfeuty, Ann. Phys. 57, 79 (1970)]. For the finite lattices we compute the 2-RDM convex set and its speed by the variational 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)] in which approximate ground-state 2-RDMs are calculated without N-particle wave functions by using constraints, known as N-representability conditions, to restrict the 2-RDMs to represent quantum system of N fermions. Advantages of the method include: (i) rigorous lower bounds on the ground-state energies, (ii) polynomial scaling of the calculation with N, and (iii) independence of the N-representability conditions from a reference wave function, which enables the modeling of multiple quantum phases. Comparing the 2-RDM convex sets for the finite- and infinite-site lattices reveals that the variational 2-RDM method accurately captures the shape of the convex set and the signature of the phase transition in the 2-RDM movement. From the 2-RDM all one- and two-particle expectation values (or order parameters) of the quantum Ising model can also be computed including the pair correlation function, which
Schwerdtfeger, Christine A; Mazziotti, David A
2009-06-14
Quantum phase transitions in N-particle systems can be identified and characterized by the movement of the two-particle reduced density matrix (2-RDM) along the boundary of its N-representable convex set as a function of the Hamiltonian parameter controlling the phase transition [G. Gidofalvi and D. A. Mazziotti, Phys. Rev. A 74, 012501 (2006)]. For the one-dimensional transverse Ising model quantum phase transitions as well as their finite-lattice analogs are computed and characterized by the 2-RDM movement with respect to the transverse magnetic field strength g. The definition of a 2-RDM "speed" quantifies the movement of the 2-RDM per unit of g, which reaches its maximum at the critical point of the phase transition. For the infinite lattice the convex set of 2-RDMs and the 2-RDM speed are computed from the exact solution of the 2-RDM in the thermodynamic limit of infinite N [P. Pfeuty, Ann. Phys. 57, 79 (1970)]. For the finite lattices we compute the 2-RDM convex set and its speed by the variational 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)] in which approximate ground-state 2-RDMs are calculated without N-particle wave functions by using constraints, known as N-representability conditions, to restrict the 2-RDMs to represent quantum system of N fermions. Advantages of the method include: (i) rigorous lower bounds on the ground-state energies, (ii) polynomial scaling of the calculation with N, and (iii) independence of the N-representability conditions from a reference wave function, which enables the modeling of multiple quantum phases. Comparing the 2-RDM convex sets for the finite- and infinite-site lattices reveals that the variational 2-RDM method accurately captures the shape of the convex set and the signature of the phase transition in the 2-RDM movement. From the 2-RDM all one- and two-particle expectation values (or order parameters) of the quantum Ising model can also be computed including the pair correlation function, which
NASA Astrophysics Data System (ADS)
Das, Tanmoy
2016-07-01
We study directional dependent band gap evolutions and metal-insulator transitions (MITs) in model quantum wire systems within the spin-orbit density wave (SODW) model. The evolution of MIT is studied as a function of varying anisotropy between the intra-wire hopping ({{t}\\parallel} ) and inter-wire hopping ({{t}\\bot} ) with Rashba spin-orbit coupling. We find that as long as the anisotropy ratio (β ={{t}\\bot}/{{t}\\parallel} ) remains below 0.5, and the Fermi surface nesting is tuned to {{\\mathbf{Q}}1}=≤ft(π,0\\right) , an exotic SODW induced MIT easily develops, with its critical interaction strength increasing with increasing anisotropy. As β \\to 1 (2D system), the nesting vector switches to {{\\mathbf{Q}}2}=≤ft(π,π \\right) , making this state again suitable for an isotropic MIT. Finally, we discuss various physical consequences and possible applications of the directional dependent MIT.
Barath, H; Kim, M; Karpus, J F; Cooper, S L; Abbamonte, P; Fradkin, E; Morosan, E; Cava, R J
2008-03-14
Temperature- and x-dependent Raman scattering studies of the charge-density-wave (CDW) amplitude modes in Cu(x)TiSe(2) show that the amplitude mode frequency omega(0) exhibits identical power-law scaling with the reduced temperature T/T(CDW) and the reduced Cu content x/x(c), i.e., omega(0) approximately (1-p)(0.15) for p=T/T(CDW) or x/x(c), suggesting that mode softening is independent of the control parameter used to approach the CDW transition. We provide evidence that x-dependent mode softening in Cu(x)TiSe(2) is associated with the reduction of the electron-phonon coupling constant, and that x-dependent "quantum" (T approximately 0) mode softening suggests the presence of a quantum critical point within the superconductor phase of Cu(x)TiSe(2).
Liu, Bin; Greeley, Jeffrey P.
2013-05-07
We describe an accelerated density functional theory (DFT)-based computational strategy to determine trends in the decomposition of glycerol via elementary dehydrogenation, C–C, and C–O bond scission reactions on close-packed transition metal surfaces. Beginning with periodic DFT calculations on Pt(111), the thermochemistry of glycerol dehydrogenation on Pd(111), Rh(111), Cu(111) and Ni(111) is determined using a parameter-free, bond order-based scaling relationship. By combining the results with Brønsted–Evans–Polanyi (BEP) relationships to estimate elementary reaction barriers, free energy diagrams are developed on the respective metal surfaces, and trends concerning the relative selectivity and activity for C–C and C–O bond scission in glycerol on the various metals are obtained. The results are consistent with available theoretical and experimental literature and demonstrate that scaling relationships are capable of providing powerful insights into the catalytic chemistry of complex biomolecules.
Quantifying pore size and density for membranes in the Knudsen and transitional-flow regimes
NASA Astrophysics Data System (ADS)
Castellano, Richard; Purri, Matthew; Hernandez, Erick; Shan, Jerry; Bui, Ngoc; Chen, Chiati; Meshot, Eric; Fornasiero, Francesco
2016-11-01
Membranes with well-controlled nanoscale pores have interest for applications as diverse as chemical separations, water purification, and "green" power generation. For instance, membranes incorporating carbon nanotubes (CNTs) as through-pores have been shown to pass fluids orders-of-magnitude faster than predicted by theory. However, the efficient characterization of the pore size and density of membranes is an important area of focus, particularly for membranes fabricated from bulk nanotubes. Here, we report on a new technique to identify the pore size (d) and number of open pores (N) in membranes. A nanoporous membrane is characterized with a combination of pressure-driven gas flow, and electrical-conductance measurements in aqueous solution. For the conductance measurements, the electrical current passing through the membrane scales as d2 N . For pressurized gas flow, the scaling with molecular weight (M) and gas viscosity (μ) identifies the flow as either Poiseuille or Knudsen, scaling as either d4N/ μ or d3 N /M 1 / 2 , respectively. With this combination of measurements, the pore size and number of pores in the membrane can be calculated. We validate this technique using track-etched polycarbonate membranes and CNT membranes with known pores, and show that it can be used to count open pores and identify defects in CNT membranes. We would like to acknowledge DTRA for their funding and support of our research.
Gómez, Carlos M; Rodríguez-Martínez, Elena I; Fernández, Alberto; Maestú, Fernando; Poza, Jesús; Gómez, Carlos
2017-01-01
The aim of this study was to define the pattern of reduction in absolute power spectral density (PSD) of magnetoencephalography (MEG) signals throughout development. Specifically, we wanted to explore whether the human skull's high permeability for electromagnetic fields would allow us to question whether the pattern of absolute PSD reduction observed in the human electroencephalogram is due to an increase in the skull's resistive properties with age. Furthermore, the topography of the MEG signals during maturation was explored, providing additional insights about the areas and brain rhythms related to late maturation in the human brain. To attain these goals, spontaneous MEG activity was recorded from 148 sensors in a sample of 59 subjects divided into three age groups: children/adolescents (7-14 years), young adults (17-20 years) and adults (21-26 years). Statistical testing was carried out by means of an analysis of variance (ANOVA), with "age group" as between-subject factor and "sensor group" as within-subject factor. Additionally, correlations of absolute PSD with age were computed to assess the influence of age on the spectral content of MEG signals. Results showed a broadband PSD decrease in frontal areas, which suggests the late maturation of this region, but also a mild increase in high frequency PSD with age in posterior areas. These findings suggest that the intensity of the neural sources during spontaneous brain activity decreases with age, which may be related to synaptic pruning.
Herron, Jeffrey A.; Scaranto, Jessica; Ferrin, Peter A.; Li, Sha; Mavrikakis, Manos
2014-12-05
We present a first-principles, self-consistent periodic density functional theory (PW91-GGA) study of formic acid (HCOOH) decomposition on model (111) and (100) facets of eight fcc metals (Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh) and (0001) facets of four hcp (Co, Os, Ru, and Re) metals. The calculated binding energies of key formic acid decomposition intermediates including formate (HCOO), carboxyl (COOH), carbon monoxide (CO), water (H2O), carbon dioxide (CO2), hydroxyl (OH), carbon (C), oxygen (O), and hydrogen (H; H2) are presented. Using these energetics, we develop thermochemical potential energy diagrams for both the carboxyl-mediated and the formate-mediated dehydrogenation mechanisms on each surface. We evaluate the relative stability of COOH, HCOO, and other isomeric intermediates (i.e., CO + OH, CO2 + H, CO + O + H) on these surfaces. These results provide insights into formic acid decomposition selectivity (dehydrogenation versus dehydration), and in conjunction with calculated vibrational frequency modes, the results can assist with the experimental search for the elusive carboxyl (COOH) surface intermediate. Results are compared against experimental reports in the literature.
A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS
Fortney, Jonathan J.; Nettelmann, Nadine; Mordasini, Christoph; Kempton, Eliza M.-R.; Greene, Thomas P.; Zahnle, Kevin
2013-09-20
We perform modeling investigations to aid in understanding the atmospheres and composition of small planets of ∼2-4 Earth radii, which are now known to be common in our Galaxy. GJ 1214b is a well-studied example whose atmospheric transmission spectrum has been observed by many investigators. Here we take a step back from GJ 1214b to investigate the role that planetary mass, composition, and temperature play in impacting the transmission spectra of these low-mass low-density (LMLD) planets. Under the assumption that these planets accrete modest hydrogen-dominated atmospheres and planetesimals, we use population synthesis models to show that predicted metal enrichments of the H/He envelope are high, with metal mass fraction Z{sub env} values commonly 0.6-0.9, or ∼100-400+ times solar. The high mean molecular weight of such atmospheres (μ ≈ 5-12) would naturally help to flatten the transmission spectrum of most LMLD planets. The high metal abundance would also provide significant condensible material for cloud formation. It is known that the H/He abundance in Uranus and Neptune decreases with depth, and we show that atmospheric evaporation of LMLD planets could expose atmospheric layers with gradually higher Z{sub env}. However, values of Z{sub env} close to solar composition can also arise, so diversity should be expected. Photochemically produced hazes, potentially due to methane photolysis, are another possibility for obscuring transmission spectra. Such hazes may not form above T{sub eq} of ∼800-1100 K, which is testable if such warm, otherwise low mean molecular weight atmospheres are stable against atmospheric evaporation. We find that available transmission data are consistent with relatively high mean molecular weight atmospheres for GJ 1214b and 'warm Neptune' GJ 436b. We examine future prospects for characterizing GJ 1214b with Hubble and the James Webb Space Telescope.
NASA Astrophysics Data System (ADS)
Truhlik, Vladimir; Triskova, Ludmila; Benson, Robert; Bilitza, Dieter; Chu, Philip; Richards, Phil G.; Wang, Yongli
The upper transition height (Ht) (the altitude of the transition from heavy atomic ions to light ions or in the simplest form the transition from O+ to H+) is an important parameter, representing the boundary between the ionosphere and the plasmasphere. Ht is very sensitive to various geophysical parameters, like solar and magnetic activity and strongly depends on latitude and local time. There were numerous studies of this parameter in past decades. In spite of these efforts, no model satisfactorily represents this parameter so far. Moreover, surprising evidence of very low transition heights during the last prolonged solar minimum, of a level never obtained before, have been reported. We investigate the upper transition height on the global scale. We made progress in processing large data sets of Ht deduced from the Alouette/ISIS topside sounder and from the Formosat-3/COSMIC vertical electron-density profiles Ne(h) using the theoretical Global Plasma Ionosphere Density (GPID) model (Webb and Essex, 2004) and a revised non-linear function describing the scale height vs. altitude (Titheridge, 1976) to fit the vertical density profiles to the observed profiles and to determine the upper transition height. Since both methods require the plasma temperatures and their gradients as input, these are calculated using the IRI2012 model. Both methods are verified using a large amount of electron and ion density profiles simulated by the FLIP theoretical model and their accuracy is discussed. We compare the results from Alouette/ISIS and Formosat-3/COSMIC and present a global distribution of the calculated Ht and its dependence on geophysical parameters. Finally we compare it with Ht calculated using the IRI ion composition model. Titheridge, J.E., 1976. Ion Transition Heights from Topside Electron-Density Profiles. Planetary and Space Science 24 (3), 229-245. Webb, P.A., Essex, E.A., 2004. A dynamic global model of the plasmasphere. Journal of Atmospheric and Solar
Cao, Ye; Liu, Xia -Ji; He, Lianyi; Long, Gui -Lu; Hu, Hui
2015-02-09
We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT) transition of a two-dimensional Rashba spin-orbit-coupled atomic Fermi gas with both in-plane and out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF, gapless FF, gapless topological FF, and gapped topological FF states. Due to the FF paring, we show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane Zeeman field is applied along the x direction, the tensor component along the y direction n_{s},yy is generally larger than n_{s},xx in most parameter space. At zero temperature, there is always a discontinuity jump in n_{s},xx as the system evolves from a gapped FF into a gapless FF state. With increasing temperature, such a jump is gradually washed out. The critical BKT temperature has been calculated as functions of the spin-orbit-coupling strength, interatomic interaction strength, and in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have a significant critical BKT temperature, typically at the order of 0.1T_{F}, where T_{F} is the Fermi degenerate temperature. Furthermore, their observation is within the reach of current experimental techniques in cold-atom laboratories.
Cao, Ye; Liu, Xia -Ji; He, Lianyi; ...
2015-02-09
We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT) transition of a two-dimensional Rashba spin-orbit-coupled atomic Fermi gas with both in-plane and out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF, gapless FF, gapless topological FF, and gapped topological FF states. Due to the FF paring, we show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane Zeeman field is applied along the x direction, the tensor component along the y direction ns,yy is generally larger thanmore » ns,xx in most parameter space. At zero temperature, there is always a discontinuity jump in ns,xx as the system evolves from a gapped FF into a gapless FF state. With increasing temperature, such a jump is gradually washed out. The critical BKT temperature has been calculated as functions of the spin-orbit-coupling strength, interatomic interaction strength, and in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have a significant critical BKT temperature, typically at the order of 0.1TF, where TF is the Fermi degenerate temperature. Furthermore, their observation is within the reach of current experimental techniques in cold-atom laboratories.« less
NASA Astrophysics Data System (ADS)
Murakami, Motoyoshi
2007-05-01
Controlling the microstructure of amorphous rare earth-transition metal films via the sputtering process was found to be an effective way of controlling their magnetic properties for applications as magneto-optical storage media. This paper describes how the relationship between a TbFeCo film's magnetic properties and its microcolumnar structure depends on the sputtering conditions. An enhancement of electric resistance value was observed for the devices with a constriction columnar width in the 5-20nm range. The measured electrical resistance was over 1.0×10-5Ωm in this case. It is believed that the change of electrical resistance on the thin film is due to fluctuations in the density on the arranged microstructure or constriction of current induced by scattering because the film structure contains impurities. These same impurities are believed to be associated with the restriction of the trapped domain wall's mobility. Furthermore, we observed a significant resistance change subsequent to the application of lower Xe pressure sputtering. This paper also serves as a feasibility study for high-density magneto-optical recording on these media materials.
Stránský, Pavel; Macek, Michal; Cejnar, Pavel
2014-06-15
Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.
NASA Astrophysics Data System (ADS)
Rêgo, Celso R. C.; Tereshchuk, Polina; Oliveira, Luiz N.; Da Silva, Juarez L. F.
2017-06-01
Transition-metal nanoparticles adsorbed on graphene are of great interest due to the unique catalytic and magnetic properties resulting from nanoparticles-graphene interactions. Comparison between the physical properties of such systems and those of the same nanoparticles in the gas phase is especially important. Here we report a systematic density functional investigation of the structural, energetic, and magnetic properties of small Nin, Pdn, and Ptn clusters, comprising from n =1 to 6 atoms, in the gas phase and adsorbed on a graphene monolayer. Our results show that the Ni adatom binds to the graphene hollow site, with -1.47 -meV adsorption energy, while Pd and Pt prefer the bridge sites, with -1.14 - and -1.62 -meV adsorption energies, respectively. This difference is determined by a competition between quantum and classical forces. Ni2 and Pt2 dimers bind perpendicularly on hollow and bridge sites, respectively, while Pd2 lies parallel to the graphene sheet, with each adatom on a bridge site. For larger TMn (TM = Ni , Pd , Pt ; n =3 -6 ) clusters, either two or three atoms bind to bridge graphene sites. In almost all cases the adsorbed clusters retain their gas-phase structures. The exceptions are Ni5 and Pt4, which acquire more compact structures with effective coordination number 12 and 19 % larger than in the gas phase, respectively. As the number of atoms grows, the cluster binds more weakly to the graphene, while its binding energy mounts up. Van der Waals corrections to the plain density functional theory (DFT) total energy raise the adsorption energy, but leave the cluster structure unchanged, in the gas phase or upon adsorption. Bader charge analysis shows that adsorption causes minor charge redistribution: the TM atoms bound to C atoms become positively charged, while the remaining metal atoms acquire negative charge. We have derived an approximate analytical expression for the local densities of states for the d orbitals of Ni , Pd , and Pt adatoms
NASA Astrophysics Data System (ADS)
Wegner, Th; Küllig, C.; Meichsner, J.
2017-02-01
In this series of two papers, the E-H transition in a planar inductively coupled radio frequency discharge (13.56 MHz) in pure oxygen is studied using comprehensive plasma diagnostic methods. The electron density serves as the main plasma parameter to distinguish between the operation modes. The (effective) electron temperature, which is calculated from the electron energy distribution function and the difference between the floating and plasma potential, halves during the E-H transition. Furthermore, the pressure dependency of the RF sheath extension in the E-mode implies a collisional RF sheath for the considered total gas pressures. The gas temperature increases with the electron density during the E-H transition and doubles in the H-mode compared to the E-mode, whereas the molecular ground state density halves at the given total gas pressure. Moreover, the singlet molecular metastable density reaches 2% in the E-mode and 4% in the H-mode of the molecular ground state density. These measured plasma parameters can be used as input parameters for global rate equation calculations to analyze several elementary processes. Here, the ionization rate for the molecular oxygen ions is exemplarily determined and reveals, together with the optical excitation rate patterns, a change in electronegativity during the mode transition.
Goodpaster, Jason D; Barnes, Taylor A; Manby, Frederick R; Miller, Thomas F
2012-12-14
Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexa-aquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.
HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography
NASA Astrophysics Data System (ADS)
Zhou, G.; Bakos, G. Á.; Hartman, J. D.; Latham, D. W.; Torres, G.; Bhatti, W.; Penev, K.; Buchhave, L.; Kovács, G.; Bieryla, A.; Quinn, S.; Isaacson, H.; Fulton, B. J.; Falco, E.; Csubry, Z.; Everett, M.; Szklenar, T.; Esquerdo, G.; Berlind, P.; Calkins, M. L.; Béky, B.; Knox, R. P.; Hinz, P.; Horch, E. P.; Hirsch, L.; Howell, S. B.; Noyes, R. W.; Marcy, G.; de Val-Borro, M.; Lázár, J.; Papp, I.; Sári, P.
2017-05-01
We report the discovery of HAT-P-67b, which is a hot-Saturn transiting a rapidly rotating F-subgiant. HAT-P-67b has a radius of {R}{{p}}={2.085}-0.071+0.096 {R}{{J}}, and orbites a {M}* ={1.642}-0.072+0.155 {M}⊙ , {R}* ={2.546}-0.084+0.099 {R}⊙ host star in a ˜4.81 day period orbit. We place an upper limit on the mass of the planet via radial velocity measurements to be {M}{{p}}< 0.59 {M}{{J}}, and a lower limit of > 0.056 {M}{{J}} by limitations on Roche lobe overflow. Despite being a subgiant, the host star still exhibits relatively rapid rotation, with a projected rotational velocity of v\\sin {I}\\star =35.8+/- 1.1 {km} {{{s}}}-1, which makes it difficult to precisely determine the mass of the planet using radial velocities. We validated HAT-P-67b via two Doppler tomographic detections of the planetary transit, which eliminate potential eclipsing binary blend scenarios. The Doppler tomographic observations also confirm that HAT-P-67b has an orbit that is aligned to within 12°, in projection, with the spin of its host star. HAT-P-67b receives strong UV irradiation and is among one of the lowest density planets known, which makes it a good candidate for future UV transit observations in the search for an extended hydrogen exosphere. Based on observations obtained with the Hungarian-made Automated Telescope Network. Based in part on observations made with the Keck-I telescope at Mauna Kea Observatory, HI (Keck time awarded through NASA programs N029Hr, N108Hr, N154Hr, and N130Hr; and NOAO programs A289Hr and A284Hr). Based in part on observations obtained with the Tillinghast Reflector 1.5 m telescope and the 1.2 m telescope, both of which are operated by the Smithsonian Astrophysical Observatory at the Fred Lawrence Whipple Observatory in Arizona. This work makes use of the Smithsonian Institution High Performance Cluster (SI/HPC). Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark
NASA Astrophysics Data System (ADS)
Mayoral, E.; Klapp, J.; Gama Goicochea, A.
2017-01-01
Nonequilibrium coarse-grained, dissipative particle dynamics simulations of complex fluids, made up of polymer brushes tethered to planar surfaces immersed in a solvent yield nonmonotonic behavior of the friction coefficient as a function of the polymer grating density on the substrates, Γ , while the viscosity shows a monotonically increasing dependence on Γ . This effect is shown to be independent of the degree of polymerization, N , and the size of the system. It arises from the composition and the structure of the first particle layer adjacent to each surface that results from the confinement of the fluid. Whenever such layers are made up of as close a proportion of polymer beads to solvent particles as there are in the fluid, the friction coefficient shows a minimum, while for disparate proportions the friction coefficient grows. At the mushroom-to-brush transition (MBT) the viscosity scales with an exponent that depends on the characteristic exponent of the MBT (6/5) and the solvent quality exponent (ν =0.5 , for θsolvent), but it is independent of the polymerization degree (N ). On the other hand, the friction coefficient at the MBT scales as μ ˜N6 /5 , while the grafting density at the MBT scales as Γ ˜N-6 /5 when friction is minimal, in agreement with previous scaling theories. We argue these aspects are the result of cooperative phenomena that have important implications for the understanding of biological brushes and the design of microfluidics devices, among other applications of current academic and industrial interest.
Mayoral, E; Klapp, J; Gama Goicochea, A
2017-01-01
Nonequilibrium coarse-grained, dissipative particle dynamics simulations of complex fluids, made up of polymer brushes tethered to planar surfaces immersed in a solvent yield nonmonotonic behavior of the friction coefficient as a function of the polymer grating density on the substrates, Γ, while the viscosity shows a monotonically increasing dependence on Γ. This effect is shown to be independent of the degree of polymerization, N, and the size of the system. It arises from the composition and the structure of the first particle layer adjacent to each surface that results from the confinement of the fluid. Whenever such layers are made up of as close a proportion of polymer beads to solvent particles as there are in the fluid, the friction coefficient shows a minimum, while for disparate proportions the friction coefficient grows. At the mushroom-to-brush transition (MBT) the viscosity scales with an exponent that depends on the characteristic exponent of the MBT (6/5) and the solvent quality exponent (ν=0.5, for θsolvent), but it is independent of the polymerization degree (N). On the other hand, the friction coefficient at the MBT scales as μ∼N^{6/5}, while the grafting density at the MBT scales as Γ∼N^{-6/5} when friction is minimal, in agreement with previous scaling theories. We argue these aspects are the result of cooperative phenomena that have important implications for the understanding of biological brushes and the design of microfluidics devices, among other applications of current academic and industrial interest.
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Armiento, Rickard; Hao, Feng
2011-03-01
The transition metal oxides (TMO) are a class of compounds that are difficult to treat in density functional theory (DFT) with simple local and semi-local functionals. Especially for CuO, they failed to give the correct equilibrium monoclinic structure. The major source of the deficiency is attributed to the imperfect cancellation of the electronic self-interaction (SI) in the approximated exchange energy. Previous studies show that a large part of the SI error is connected to the confinement error that can be modeled by harmonic-oscillator (HO) systems. We discuss recent advances towards a simple methodology to quantify the confinement errors in real TMO systems. Our results show that these confinement errors may account for the deficiencies of DFT functionals in obtaining the correct equilibrium structure of the TMO. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Escudero, Daniel E-mail: thiel@kofo.mpg.de; Thiel, Walter E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.
Escudero, Daniel; Thiel, Walter
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF6 complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO4(-), Cr(CO)6, [Fe(CN)6](4-), four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.
Carles, R.; Benzo, P.; Pécassou, B.; Bonafos, C.
2016-01-01
Surface enhanced Raman scattering (SERS) is generally and widely used to enhance the vibrational fingerprint of molecules located at the vicinity of noble metal nanoparticles. In this work, SERS is originally used to enhance the own vibrational density of states (VDOS) of nude and isolated gold nanoparticles. This offers the opportunity of analyzing finite size effects on the lattice dynamics which remains unattainable with conventional techniques based on neutron or x-ray inelastic scattering. By reducing the size down to few nanometers, the role of surface atoms versus volume atoms become dominant, and the “text-book” 3D-2D transition on the dynamical behavior is experimentally emphasized. “Anomalies” that have been predicted by a large panel of simulations at the atomic scale, are really observed, like the enhancement of the VDOS at low frequencies or the occurrence of localized modes at frequencies beyond the cut-off in bulk. Consequences on the thermodynamic properties at the nanoscale, like the reduction of the Debye temperature or the excess of the specific heat, have been evaluated. Finally the high sensitivity of reminiscent bulk-like phonons on the arrangements at the atomic scale is used to access the morphology and internal disorder of the nanoparticles. PMID:27982080
High-density lipoprotein contribute to G0-G1/S transition in Swiss NIH/3T3 fibroblasts
Angius, Fabrizio; Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Banni, Sebastiano; Collu, Maria; Accossu, Simonetta; Madeddu, Clelia; Serpe, Roberto; Batetta, Barbara
2015-01-01
High density lipoproteins (HDLs) play a crucial role in removing excess cholesterol from peripheral tissues. Although their concentration is lower during conditions of high cell growth rate (cancer and infections), their involvement during cell proliferation is not known. To this aim, we investigated the replicative cycles in synchronised Swiss 3T3 fibroblasts in different experimental conditions: i) contact-inhibited fibroblasts re-entering cell cycle after dilution; ii) scratch-wound assay; iii) serum-deprived cells induced to re-enter G1 by FCS, HDL or PDGF. Analyses were performed during each cell cycle up to quiescence. Cholesterol synthesis increased remarkably during the replicative cycles, decreasing only after cells reached confluence. In contrast, cholesteryl ester (CE) synthesis and content were high at 24 h after dilution and then decreased steeply in the successive cycles. Flow cytometry analysis of DiO-HDL, as well as radiolabeled HDL pulse, demonstrated a significant uptake of CE-HDL in 24 h. DiI-HDL uptake, lipid droplets (LDs) and SR-BI immunostaining and expression followed the same trend. Addition of HDL or PDGF partially restore the proliferation rate and significantly increase SR-BI and pAKT expression in serum-deprived cells. In conclusion, cell transition from G0 to G1/S requires CE-HDL uptake, leading to CE-HDL/SR-BI pathway activation and CEs increase into LDs. PMID:26640042
Carles, R; Benzo, P; Pécassou, B; Bonafos, C
2016-12-16
Surface enhanced Raman scattering (SERS) is generally and widely used to enhance the vibrational fingerprint of molecules located at the vicinity of noble metal nanoparticles. In this work, SERS is originally used to enhance the own vibrational density of states (VDOS) of nude and isolated gold nanoparticles. This offers the opportunity of analyzing finite size effects on the lattice dynamics which remains unattainable with conventional techniques based on neutron or x-ray inelastic scattering. By reducing the size down to few nanometers, the role of surface atoms versus volume atoms become dominant, and the "text-book" 3D-2D transition on the dynamical behavior is experimentally emphasized. "Anomalies" that have been predicted by a large panel of simulations at the atomic scale, are really observed, like the enhancement of the VDOS at low frequencies or the occurrence of localized modes at frequencies beyond the cut-off in bulk. Consequences on the thermodynamic properties at the nanoscale, like the reduction of the Debye temperature or the excess of the specific heat, have been evaluated. Finally the high sensitivity of reminiscent bulk-like phonons on the arrangements at the atomic scale is used to access the morphology and internal disorder of the nanoparticles.
Ejiri, Shinji; Yamada, Norikazu
2013-04-26
Towards the feasibility study of the electroweak baryogenesis in realistic technicolor scenario, we investigate the phase structure of (2+N(f))-flavor QCD, where the mass of two flavors is fixed to a small value and the others are heavy. For the baryogenesis, an appearance of a first-order phase transition at finite temperature is a necessary condition. Using a set of configurations of two-flavor lattice QCD and applying the reweighting method, the effective potential defined by the probability distribution function of the plaquette is calculated in the presence of additional many heavy flavors. Through the shape of the effective potential, we determine the critical mass of heavy flavors separating the first-order and crossover regions and find it to become larger with N(f). We moreover study the critical line at finite density and the first-order region is found to become wider as increasing the chemical potential. Possible applications to real (2+1)-flavor QCD are discussed.
NASA Astrophysics Data System (ADS)
Kolesnik, Alexander D.
2017-01-01
We consider the Markov random flight \\varvec{X}(t), t>0, in the three-dimensional Euclidean space R3 with constant finite speed c>0 and the uniform choice of the initial and each new direction at random time instants that form a homogeneous Poisson flow of rate λ >0. Series representations for the conditional characteristic functions of \\varvec{X}(t) corresponding to two and three changes of direction, are obtained. Based on these results, an asymptotic formula, as t→ 0, for the unconditional characteristic function of \\varvec{X}(t) is derived. By inverting it, we obtain an asymptotic relation for the transition density of the process. We show that the error in this formula has the order o(t^3) and, therefore, it gives a good approximation on small time intervals whose lengths depend on λ . An asymptotic formula, as t→ 0, for the probability of being in a three-dimensional ball of radius r
NASA Astrophysics Data System (ADS)
Carles, R.; Benzo, P.; Pécassou, B.; Bonafos, C.
2016-12-01
Surface enhanced Raman scattering (SERS) is generally and widely used to enhance the vibrational fingerprint of molecules located at the vicinity of noble metal nanoparticles. In this work, SERS is originally used to enhance the own vibrational density of states (VDOS) of nude and isolated gold nanoparticles. This offers the opportunity of analyzing finite size effects on the lattice dynamics which remains unattainable with conventional techniques based on neutron or x-ray inelastic scattering. By reducing the size down to few nanometers, the role of surface atoms versus volume atoms become dominant, and the “text-book” 3D-2D transition on the dynamical behavior is experimentally emphasized. “Anomalies” that have been predicted by a large panel of simulations at the atomic scale, are really observed, like the enhancement of the VDOS at low frequencies or the occurrence of localized modes at frequencies beyond the cut-off in bulk. Consequences on the thermodynamic properties at the nanoscale, like the reduction of the Debye temperature or the excess of the specific heat, have been evaluated. Finally the high sensitivity of reminiscent bulk-like phonons on the arrangements at the atomic scale is used to access the morphology and internal disorder of the nanoparticles.
NASA Astrophysics Data System (ADS)
Bagchi, Sabyasachi; Mandal, Debasish; Ghosh, Deepanwita; Das, Abhijit K.
2012-05-01
The structure, bonding, and energetics of the complexes obtained from the interaction between the most stable tautomeric forms of free DNA and RNA bases and Zn2+, Cd2+ and Hg2+ cations have been studied using density functional B3LYP method. The 6-311+G (2df, 2p) basis set along with LANL2DZ pseudopotentials for the cations are used in the calculations. The tautomerization paths of the nucleobases are investigated and transition states between the tautomeric forms of the free bases are located. The relative stability of the complexes and the tautomers of the free nucleobases are discussed referring to MIA and relative energy values. For uracil, thymine and adenine, interaction of the metal cations with the most stable tautomers form the least stable molecular complexes. For cytosine and guanine, the stability of the metalated complexes differs significantly. The enthalpy (ΔH), entropy (TΔS) and free energy (ΔG) of the complexes at 298 K have also been calculated.
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Bauschlicher, Charles W.; Langhoff, Stephen R. (Technical Monitor)
1994-01-01
Density functional theory (DFT) is found to give a better description of the geometries and vibrational frequencies of FeL and FeL(sup +) systems than second order Moller Plesset perturbation theory (MP2). Namely, the DFT correctly predicts the shift in the CO vibrational frequency between free CO and the Sigma(sup -) state of FeCO and yields a good result for the Fe-C distance in the quartet states of FeCH4(+) 4 These are properties where the MP2 results are unsatisfactory. Thus DFT appears to be an excellent approach for optimizing the geometries and computing the zero-point energies of systems containing first transition row atoms. Because the DFT approach is biased in favor of the 3d(exp 7) occupation, whereas the more traditional approaches are biased in favor of the 3d(exp 6) occupation, differences are found in the relative ordering of states. It is shown that if the dissociation is computed to the most appropriate atomic asymptote and corrected to the ground state asymptote using the experimental separations, the DFT results are in good agreement with high levels of theory. The energetics at the DFT level are much superior to the MP2 and in most cases in good agreement with high levels of theory.
NASA Astrophysics Data System (ADS)
Kolincio, Kamil; Pérez, Olivier; Hébert, Sylvie; Fertey, Pierre; Pautrat, Alain
2016-06-01
Detailed structural and magnetotransport properties of monophosphate tungsten bronze Kx(PO2)4(WO3)8 single crystals are reported. Both galvanomagnetic and thermal properties are shown to be consistent with a charge density wave electronic transition due to hidden nesting of the quasi-1D portion of the Fermi surface. We also observe the enhancement of electronic anisotropy due to reconstruction of the Fermi surface at the Peierls transition. The resistivity presents a thermal hysteresis suggesting a first-order nature characteristic of a strong-coupling scenario. However, other measurements such as the change of carrier density demonstrate a second-order Peierls scenario with weak-coupling features. We suggest that the structural transition driven by the residual strain in the K-P-O environment is responsible for the resistivity hysteresis and modifies the Fermi surface which then helps the rise to the second-order Peierls instability.
NASA Astrophysics Data System (ADS)
Mohanta, S. K.; Mishra, S. N.; Srivastava, S. K.
2014-04-01
We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti-Co), 4d (Nb-Ru) and 5d (Ta-Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446-e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc-V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d-d hybridization strength between the impurity and host atoms.
Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F; Dixon, David A
2016-08-09
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n (M = Ti, Zr, Hf, n = 1-4) and (MO3)n (M = Cr, Mo, W, n = 1-3) clusters have been benchmarked with 55 exchange-correlation density functional theory (DFT) functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors, and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.
NASA Astrophysics Data System (ADS)
Franzese, G.; Malescio, G.; Skibinsky, A.; Buldyrev, S. V.; Stanley, H. E.
2002-11-01
We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas-low-density-liquid (LDL) critical point, and the other in a gas-high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.
Incommensurate spin-density wave and magnetic lock-in transition in CaFe{sub 4}As{sub 3}.
Manuel, P.; Chapon, L. C.; Todorov, I. S.; Chung, D. Y.; Castellan, J.-P.; Rosenkranz, S.; Osborn, R.; Toledano, P.; Kanatzidis, M. G.; Materials Science Division; Rutherford Appleton Lab.; Univ. of Picardie; Northwestern Univ.
2010-05-01
The magnetic structure for the recently synthesized iron-arsenide compound CaFe4As3 has been studied by neutron-powder diffraction. Long-range magnetic order is detected below 85 K, with an incommensurate modulation described by the propagation vector k=(0,?,0), ??0.39. Below ?25 K, our measurements detect a first-order phase transition where ? locks into the commensurate value 3/8. A model of the magnetic structure is proposed for both temperature regimes, based on Rietveld refinements of the powder data and symmetry considerations. The structures correspond to longitudinal spin-density waves with magnetic moments directed along the b axis. A Landau analysis captures the change in thermodynamic quantities observed at the two magnetic transitions, in particular, the drop in resistivity at the lock-in transition.
NASA Astrophysics Data System (ADS)
Jug, Giancarlo; Ziegler, Klaus
1997-10-01
We present a calculation for the second moment of the local density of states in a model of a two-dimensional quantum dot array near the quantum Hall transition. The quantum dot array model is a realistic adaptation of the lattice model for the quantum Hall transition in the two-dimensional electron gas in an external magnetic field proposed by Ludwig, Fisher, Shankar, and Grinstein. We make use of a Dirac fermion representation for the Green's functions in the presence of fluctuations for the quantum dot energy levels. A saddle-point approximation yields nonperturbative results for the first and second moments of the local density of states, showing interesting fluctuation behavior near the quantum Hall transition. To our knowledge we discuss here one of the first analytic characterizations of chaotic behavior for a two-dimensional mesoscopic structure. The connection with possible experimental investigations of the local density of states in the quantum dot array structures (by means of NMR Knight-shift or single-electron-tunneling techniques) and our work is also established.
NASA Astrophysics Data System (ADS)
Dong, Shunle; Chen, Zhuo; Wang, Yan
2010-03-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors of Chemical Physics. A large part of this article (text as well as measured data) has been published previously in Canadian Journal of Physics (Neutron-scattering studies of the phase transitions in high-pressure ices during annealing, by Y. Wang, A.I. Kolesnikov, S.L. Dong, and J.C. Li, Can. J. Phys., 81 (2003) 401-407, doi: 10.1139/p03-045).
NASA Astrophysics Data System (ADS)
Buchhave, Lars A.
2015-08-01
The majority of exoplanets discovered by the Kepler Mission have sizes that range between 1-4 Earth radii, populating a regime of planets with no Solar System analogues. This regime is critical for understanding the frequency of potentially habitable worlds and to help inform planet formation theories, because it contains the transition from lower-density planets with extended H/He envelopes to higher-density rocky planets with compact atmospheres. HARPS-N is an ultra-stable high-resolution spectrograph optimized for the measurement of precise radial velocities, yielding precise planetary masses and thus densities of small transiting exoplanets. In this talk, I will review the progress to populate the mass-radius parameter space with precisely measured densities of small planets. I will in particular focus on the latest HARPS-N results and their implication for our understanding of these super-Earth and small Neptune type planets.Additionally, I will discuss our progress to measure the masses of longer period sub-Neptune sized planets. In Buchhave el al. 2014, we found suggestive observational evidence that the transition from rocky to gaseous planets might depend on the orbital period, such that larger planets further away from their host star could be massive planets without a large gaseous envelope. To test this hypothesis, we have used HARPS-N to observe longer period planet candidates to determine whether they are in fact massive rocky planets or if they have extended H/He envelopes and thus lower bulk densities.HARPS-N at the Telescopio Nazionale Galileo, La Palma is an international collaboration and was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, and the Italian National Astrophysical Institute, University of St. Andrews, Queens University Belfast, and University of Edinburgh.
Masuda, Kento
2014-03-01
We present an analysis of the transit timing variations (TTVs) in the multi-transiting planetary system around Kepler-51 (KOI-620). This system consists of two confirmed transiting planets, Kepler-51b (P {sub b} = 45.2 days) and Kepler-51c (P {sub c} = 85.3 days), and one transiting planet candidate KOI-620.02 (P {sub 02} = 130.2 days), which lie close to a 1: 2: 3 resonance chain. Our analysis shows that their TTVs are consistently explained by the three-planet model, and constrains their masses as M{sub b}=2.1{sub −0.8}{sup +1.5} M{sub ⊕} (Kepler-51b), M {sub c} = 4.0 ± 0.4 M {sub ⊕} (Kepler-51c), and M {sub 02} = 7.6 ± 1.1 M {sub ⊕} (KOI-620.02), thus confirming KOI-620.02 as a planet in this system. The masses inferred from the TTVs are rather small compared to the planetary radii based on the stellar density and planet-to-star radius ratios determined from the transit light curves. Combining these estimates, we find that all three planets in this system have densities among the lowest determined, ρ {sub p} ≲ 0.05 g cm{sup –3}. With this feature, the Kepler-51 system serves as another example of low-density compact multi-transiting planetary systems. We also identify a curious feature in the archived Kepler light curve during the double transit of Kepler-51b and KOI-620.02, which could be explained by their overlapping on the stellar disk (a planet-planet eclipse). If this is really the case, the sky-plane inclination of KOI-620.02's orbit relative to that of Kepler-51b is given by ΔΩ=−25.3{sub −6.8}{sup +6.2} deg, implying significant misalignment of their orbital planes. This interpretation, however, seems unlikely because such an event that is consistent with all of the observations is found to be exceedingly rare.
Alipour, Mojtaba
2013-04-04
Double-hybrid density functional approximations are increasingly popular for electronic structure calculations within density functional theory. However, despite much progress in numerous interesting efforts in this respect, further extension of this approach to the chemistry and physics of transition-metal compounds poses major challenges that remain to be addressed. In the present article, without the use of any empirical fitting to experimental or high-level ab initio data, we propose a new parameter-free double-hybrid density functional, called mPWPW91DH, for the electric response properties of transition-metal-containing molecules. It is based on a mixing of modified Perdew-Wang (mPW) and Perdew-Wang91 (PW91) generalized gradient approximations for exchange and correlation, respectively, along with Hartree-Fock (HF) exchange and a perturbative correlation term obtained from the Kohn-Sham orbitals and eigenvalues. The performance of this functional was tested on a number of representative test sets of static dipole polarizabilities and dipole moments of molecules containing transition metals and main-group elements. From our analysis, mPWPW91DH seems to represent a significant improvement in comparison to functionals on the different rungs of Jacob's ladder. Moreover, scrutinizing the role of exchange and correlation and their contributions in the functionals shows evidence of the superiority of this new functional with respect to other parameter-free and parametrized double-hybrid functionals. The results of the present study are encouraging in terms of further improvements in double-hybrid approximations for investigating the response properties of more complex transition-metal systems.
NASA Astrophysics Data System (ADS)
Parisi, Filippo; Sciascia, Luciana; Princivalle, Francesco; Merli, Marcello
2012-02-01
In order to characterize the pressure-induced decomposition of ringwoodite (γ-Mg2SiO4), the topological analysis of the electron density ρ( r), based upon the theory of atoms in molecules (AIM) developed by Bader in the framework of the catastrophe theory, has been performed. Calculations have been carried out by means of the ab initio CRYSTAL09 code at the HF/DFT level, using Hamiltonians based on the Becke- LYP scheme containing hybrid Hartree-Fock/density functional exchange-correlation terms. The equation of state at 0 K has been constructed for the three phases involved in the post-spinel phase transition (ringwoodite → Mg-perovskite + periclase) occurring at the transition zone-lower mantel boundary. The topological results show that the decomposition of the ringwoodite at high pressures is caused by a conflict catastrophe. Furthermore, topological evidences of the central role played by the oxygen atoms to facilitate the pressure-induced ringwoodite decomposition and the subsequent phase transition have been noticed.
Ghosh, Satinath; Ghosh, Swapan K
2011-01-14
Density functional theory (DFT) with square gradient approximation for the free energy functional and a model density profile are used to obtain an analytical expression for the size-dependent free energy of formation of a liquid drop from the vapor through the process of homogeneous nucleation, without invoking the approximations used in classical nucleation theory (CNT). The density of the liquid drop in this work is not the same as the bulk liquid density but it corresponds to minimum free energy of formation of the liquid drop. The theory is applied to study the nucleation phenomena from supersaturated vapor of Lennard-Jones fluid. The barrier height predicted by this theory is significantly lower than the same in CNT which is rather high. The density at the center of the small liquid drop as obtained through optimization is less than the bulk density which is in agreement with other earlier works. Also proposed is a sharp interface limit of the proposed DFT of nucleation, which is as simple as CNT but with a modified barrier height and this modified classical nucleation theory, as we call it, is shown to lead to improved results.
NASA Astrophysics Data System (ADS)
Yu, Haoyu; He, Xiao; Truhlar, Donald G.; Donald G. Truhlar Team
The accuracy of Kohn-Sham density functional theory depends on the exchange-correlation functional. Local functionals depending on only the density (ρ) , density gradient (grad), and possibly kinetic energy density (τ) have been popular because of their low cost and simplicity, but the most successful functionals for chemistry have involved nonlocal Hartree-Fock exchange (hybrid functionals). We have designed a new meta gradient approximation called MN15-L and a new hybrid meta gradient approximation called MN15 and tested them systematically for 17 absolute atomic energies, 51 noncovalent interaction energies, 56 data on transition metal atoms and molecules, and for 298 other atomic and molecular energetic data, including main-group and transition metal bond energies, ionization potentials, proton affinities, reaction barrier heights, hydrocarbon thermochemistry, excitation energies, and isomerization energies. When compared with 84 previous density MN15 and MN15-L give respectively the smallest and second smallest mean unsigned errors (MUEs, in kcal/mol) on all 422 data with errors for the 4 subsets above being: MN15: 6, 0.26, 4.4, 1.6; MN15-L: 7, 0.45, 4.3, 2.0. Third best: M06: 4, 0.35, 7.7, 2.2. Best previous local functional: M06-L: 7, 0.42, 6.0, 3.5. Other popular functionals: B3LYP: 18, 0.82, 8.2, 4.3; HSE06: 33, 0.58, 8.8, 3.6; TPSS: 18, 0.89, 7.25, 5.0; PBE, 47, 0.88, 9.1, 6.0. MN15-L also performs well for solid-state cohesive energies. This research is supported by the U.S. Department of Energy and inorganic catalyst design center from university of Minnesota.
Topological phase transitions of (BixSb1-x)2Se3 alloys by density functional theory
NASA Astrophysics Data System (ADS)
Abdalla, L. B.; Padilha José, E.; Schmidt, T. M.; Miwa, R. H.; Fazzio, A.
2015-06-01
We have performed an ab initio total energy investigation of the topological phase transition, and the electronic properties of topologically protected surface states of (BixSb1-x)2Se3 alloys. In order to provide an accurate alloy concentration for the phase transition, we have considered the special quasirandom structures to describe the alloy system. The trivial → topological transition concentration was obtained by (i) the calculation of the band gap closing as a function of Bi concentration (x), and (ii) the calculation of the Z2 topological invariant number. We show that there is a topological phase transition, for x around 0.4, verified for both procedures (i) and (ii). We also show that in the concentration range 0.4 < x < 0.7, the alloy does not present any other band at the Fermi level besides the Dirac cone, where the Dirac point is far from the bulk states. This indicates that a possible suppression of the scattering process due to bulk states will occur.
NASA Astrophysics Data System (ADS)
Merli, Marcello; Sciascia, Luciana
2013-06-01
In this work, the Bader's topological analysis of the electron density, coupled with Thom's catastrophe theory, was used to characterize the pressure-induced transformations in α-quartz. In particular, ab initio calculations of the α-quartz structures in the range 0-105 Gpa have been performed at the HF/DFT exchange-correlation terms level, using Hamiltonians based on a WC1LYP hybrid scheme. The electron densities calculated throughout the ab initio wave functions have been analysed by means of the Bader's theory, seeking for some catastrophic mechanism in the sense of Thom's theory. The analysis mainly showed that there is a typical fold catastrophe feature involving an O-O interaction at the quartz-coesite transition pressure, while the amorphization of α-quartz is coincident with an average distribution of the gradient field of the electron density around the oxygen atom which is typically observed in the free atoms. This approach is addressed to depict a phase transition from a novel viewpoint, particularly useful in predicting the stability of a compound at extreme conditions, especially in the absence of experimental data.
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Lu, P. C.; Wu, J. J.; Liu, J.; Wang, X. C.; Zhao, J. Y.; Bi, W.; Alp, E. E.; Park, C. Y.; Popov, D.; Jin, C. Q.; Sun, J.; Lin, J. F.
2016-07-01
To help our understanding of the structural and superconducting transitions in ferropnictides, partial phonon density of states (PDOS) of iron in a single-crystal SrF e2A s2 pnictide have been investigated from both out-of-plane and in-plane polarizations with respect to the basal plane of the crystal structure using nuclear resonant inelastic x-ray scattering in a high-pressure diamond anvil cell at ambient temperature. The partial PDOS of iron in the pnictide crystal changes dramatically at approximately 8 GPa, which can be associated with the tetragonal (T) to collapsed tetragonal (CT) isostructural transition as evidenced in high-pressure x-ray diffraction measurements and theoretical calculations. Across the T-CT phase transition, analysis of the PDOS spectra shows a rapid stiffening of the optical phonon modes and a dramatic increase of the Lamb-Mössbauer factor (fLM) and mean force constant which can be associated with the rapid decrease of the c axis and the anomalous expansion of the a axis. Theoretically calculated Fe partial PDOS and lattice parameters of SrF e2A s2 further reveal the strong correlation between the lattice parameters and phonons. Our results show that the T-CT transition can induce significant changes in the vibrational, elastic, and thermodynamic properties of SrF e2A s2 single crystal at high pressure.
Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan
2015-11-09
Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a power- ful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with con- ventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We con- sider seven low- and high-spin model complexes involving chromium, manganese and iron transition metal centers. Our results are in good agreement with experiment.
NASA Astrophysics Data System (ADS)
Stojchevska, L.; Borovšak, M.; Foury-Leylekian, P.; Pouget, J.-P.; Mertelj, T.; Mihailovic, D.
2017-07-01
All-optical femtosecond relaxation dynamics in a single crystal of monophosphate tungsten bronze (PO2)4(WO3)2m with alternate stacking m =6 of WO3 layers was studied through the three consequent charge-density-wave (CDW) transitions. Several transient coherent collective modes associated with the different CDW transitions were observed and analyzed in the framework of the time-dependent Ginzburg-Landau theory. Remarkably, the interference of the modes leads to an apparent rectification effect in the transient reflectivity response. A saturation of the coherent-mode amplitudes with increasing pump fluence well below the CDWs destruction threshold fluence indicates a decoupling of the electronic and lattice parts of the order parameter on the femtosecond timescale.
Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan
2015-12-08
Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.
NASA Astrophysics Data System (ADS)
Urban, Daniel F.; Elsässer, Christian
2017-09-01
A density functional theory study of atomic defects and dopants in ternary Z-phase transition-metal nitrides Cr M N with M =V , Nb, or Ta is presented. Various defect formation energies of native point defects and of substitutional atoms of other metal elements which are abundant in the steel as well are evaluated. The dependence thereof on the thermodynamic environment, i.e., the chemical conditions of a growing Z-phase precipitate, is studied, and different growth scenarios are compared. The results obtained may help to relate results of experimental atomic-scale analysis by atom probe tomography or transmission electron microscopy to the theoretical modeling of the formation process of the Z phase from binary transition-metal nitrides.
Kajiwara, Kazuhito; Yabe, Kazuyoshi; Hashitani, Takusei
2003-01-01
A volume change method for measuring crystal densities is described. It allows the densities of unstable hydrated crystals at room temperature to be determined, by measurements of volume changes during the solidification of aqueous solutions. NaCl x 2H2O, KCl, MgSO4 x 12H2O and K2HPO4 x 6H2O were measured by the method and their densities (SE) are 1.61+/-0.02, 1.99+/-0.05, 1.45+/-0.01 and 1.75+/-0.02 g ml(-1) respectively. Data of NaCl x 2H2O and KCl are in good agreement with the previously reported values.
HAT-P-18b AND HAT-P-19b: TWO LOW-DENSITY SATURN-MASS PLANETS TRANSITING METAL-RICH K STARS
Hartman, J. D.; Bakos, G. A.; Torres, G.; Noyes, R. W.; Latham, D. W.; Buchhave, L. A.; Fueresz, G.; Perumpilly, G.; Beky, B.; Stefanik, R. P.; Sasselov, D. D.; Esquerdo, G. A.; Everett, M.; Csubry, Z.; Sato, B.; Kovacs, G.; Fischer, D. A.; Howard, A. W.; Marcy, G. W.; Johnson, J. A.
2011-01-01
We report the discovery of two new transiting extrasolar planets. HAT-P-18b orbits the V = 12.759 K2 dwarf star GSC 2594-00646, with a period P = 5.508023 {+-} 0.000006 days, transit epoch T{sub c} = 2454715.02174 {+-} 0.00020 (BJD), and transit duration 0.1131 {+-} 0.0009 days. The host star has a mass of 0.77 {+-} 0.03 M{sub sun}, radius of 0.75 {+-} 0.04 R{sub sun}, effective temperature 4803 {+-} 80 K, and metallicity [Fe/H] = +0.10 {+-} 0.08. The planetary companion has a mass of 0.197 {+-} 0.013 M{sub J} and radius of 0.995 {+-} 0.052 R{sub J}, yielding a mean density of 0.25 {+-} 0.04 g cm{sup -3}. HAT-P-19b orbits the V = 12.901 K1 dwarf star GSC 2283-00589, with a period P = 4.008778 {+-} 0.000006 days, transit epoch T{sub c} = 2455091.53417 {+-} 0.00034 (BJD), and transit duration 0.1182 {+-} 0.0014 days. The host star has a mass of 0.84 {+-} 0.04 M{sub sun}, radius of 0.82 {+-} 0.05 R{sub sun}, effective temperature 4990 {+-} 130 K, and metallicity [Fe/H] = +0.23 {+-} 0.08. The planetary companion has a mass of 0.292 {+-} 0.018 M{sub J} and radius of 1.132 {+-} 0.072 R{sub J}, yielding a mean density of 0.25 {+-} 0.04 g cm{sup -3}. The radial velocity residuals for HAT-P-19 exhibit a linear trend in time, which indicates the presence of a third body in the system. Comparing these observations with theoretical models, we find that HAT-P-18b and HAT-P-19b are each consistent with a hydrogen-helium-dominated gas giant planet with negligible core mass. HAT-P-18b and HAT-P-19b join HAT-P-12b and WASP-21b in an emerging group of low-density Saturn-mass planets, with negligible inferred core masses. However, unlike HAT-P-12b and WASP-21b, both HAT-P-18b and HAT-P-19b orbit stars with super-solar metallicity. This calls into question the heretofore suggestive correlation between the inferred core mass and host star metallicity for Saturn-mass planets.
Rapid and controllable a-Si:H-to-nc-Si:H transition induced by a high-density plasma route
NASA Astrophysics Data System (ADS)
Zhou, H. P.; Xu, M.; Xu, S.; Xu, L. X.; Ji, H.; Xiao, S. Q.; Feng, Y. Y.
2017-09-01
The low-temperature rapid solid phase crystallization route of amorphous silicon is fundamentally and technologically significant. Micrometer thick hydrogenated amorphous silicon (a-Si:H) films were exposed to a low-frequency inductively coupled hydrogen plasma under a low substrate temperature of 300 °C. The plasma treated a-Si:H was completely crystallized within half an hour. The evolution of microstructures, optical and electric properties with respect to plasma exposure duration deterministically demonstrates that the present low-temperature rapid crystallization process enables the controllable phase transition from amorphous to nanocrystalline (nc) silicon. The crystallization mechanism is discussed in terms of the unique characteristics of low-frequency inductively coupled plasma (LFICP) and the LFICP-grown precursor a-Si:H film itself. The crucial role of hydrogen atoms in the phase transition is also discussed.
NASA Astrophysics Data System (ADS)
Khasanov, R.; Shengelaya, A.; Maisuradze, A.; di Castro, D.; Escamilla, R.; Keller, H.
2008-02-01
The results of the muon-spin rotation experiments on BCS superconductors NbB2+x ( x=0.2 and 0.34) are reported. Both samples, studied in the present work, exhibit rather broad transitions to the superconducting state, suggesting a distribution of the volume fractions with different transition temperatures (Tc's) . By taking these distributions into account, the dependence of the inverse squared zero-temperature magnetic penetration depth (λ0-2) on Tc was reconstructed for temperatures in the range 1.5K≲Tc≲8.0K . λ0-2 was found to obey the power law dependence λ0-2∝Tc3.1(1) which appears to be common for some families of BCS superconductors as, e.g., Al doped MgB2 and high-temperature cuprate superconductors as underdoped YBa2Cu3O7-δ .
Spin density wave (SDW) transition in Ru doped BaFeAs2 investigated by AC steady state calorimetry
NASA Astrophysics Data System (ADS)
Vinod, K.; Sharma, Shilpam; Sundar, C. S.; Bharathi, A.
2015-06-01
Heat capacity measurements were done on sub-micron sized BaFe2-xRuxAs2 single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe2-xRuxAs2 during cooling and warming cycles, indicating first order nature of the SDW transition.
Vinod, K. Sharma, Shilpam; Sundar, C. S.; Bharathi, A.
2015-06-24
Heat capacity measurements were done on sub-micron sized BaFe{sub 2−x}Ru{sub x}As{sub 2} single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe{sub 2−x}Ru{sub x}As{sub 2} during cooling and warming cycles, indicating first order nature of the SDW transition.
Krykunov, Mykhaylo; Seth, Mike; Ziegler, Tom
2014-05-14
We have applied the relaxed and self-consistent extension of constricted variational density functional theory (RSCF-CV-DFT) for the calculation of the lowest charge transfer transitions in the molecular complex X-TCNE between X = benzene and TCNE = tetracyanoethylene. Use was made of functionals with a fixed fraction (α) of Hartree-Fock exchange ranging from α = 0 to α = 0.5 as well as functionals with a long range correction (LC) that introduces Hartree-Fock exchange for longer inter-electronic distances. A detailed comparison and analysis is given for each functional between the performance of RSCF-CV-DFT and adiabatic time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation. It is shown that in this particular case, all functionals afford the same reasonable agreement with experiment for RSCF-CV-DFT whereas only the LC-functionals afford a fair agreement with experiment using TDDFT. We have in addition calculated the CT transition energy for X-TCNE with X = toluene, o-xylene, and naphthalene employing the same functionals as for X = benzene. It is shown that the calculated charge transfer excitation energies are in as good agreement with experiment as those obtained from highly optimized LC-functionals using adiabatic TDDFT. We finally discuss the relation between the optimization of length separation parameters and orbital relaxation in the RSCF-CV-DFT scheme.
Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton
2003-01-01
Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....
NASA Astrophysics Data System (ADS)
Vasil'ev, Peter P.; Olle, Vojtech; Penty, Richard V.; White, Ian H.
2013-11-01
We have experimentally investigated the formation of off-diagonal long-range order and non-equilibrium BEC-like condensation in GaAs/AlGaAs heterostructures during superradiant (SR) emission at room temperature. The conclusive evidence of the establishment of phase coherence over a macroscopic range during the superradiant quantum phase transition is reported. The first-order spatial correlation function of the e-h system is determined by evaluating interference patterns of SR emission using Young's double slit.
2D-3D transition for cationic and anionic gold clusters: a kinetic energy density functional study.
Ferrighi, Lara; Hammer, Bjørk; Madsen, Georg K H
2009-08-05
We present a density functional theory study of the energetics of isolated Au(n)+ (n = 5-10) and Au(n)- (n = 8-13) gold clusters. We compare our results to both theoretical and experimental values from the literature and find the use of meta-generalized gradient approximation (MGGA) functionals, in particular the M06-L functional, to be of importance in order to match experiment. The M06-L values suggest crossovers between 2D and 3D structures at n = 8 and 12 for cationic and anionic clusters, respectively. We suggest that the MGGA's stronger tendency toward 3D structures arises from their smaller gradient enhancement. Moreover, we show how MGGAs, in contrast to generalize gradient approximations with smaller gradient enhancements, avoid overestimating the bond energies by combining the information contained in the reduced gradient and the kinetic energy. This allows MGGAs to treat differently the exchange enhancement in the decaying density and bonding regions.
NASA Astrophysics Data System (ADS)
Deleuil, M.; Bonomo, A. S.; Ferraz-Mello, S.; Erikson, A.; Bouchy, F.; Havel, M.; Aigrain, S.; Almenara, J.-M.; Alonso, R.; Auvergne, M.; Baglin, A.; Barge, P.; Bordé, P.; Bruntt, H.; Cabrera, J.; Carpano, S.; Cavarroc, C.; Csizmadia, Sz.; Damiani, C.; Deeg, H. J.; Dvorak, R.; Fridlund, M.; Hébrard, G.; Gandolfi, D.; Gillon, M.; Guenther, E.; Guillot, T.; Hatzes, A.; Jorda, L.; Léger, A.; Lammer, H.; Mazeh, T.; Moutou, C.; Ollivier, M.; Ofir, A.; Parviainen, H.; Queloz, D.; Rauer, H.; Rodríguez, A.; Rouan, D.; Santerne, A.; Schneider, J.; Tal-Or, L.; Tingley, B.; Weingrill, J.; Wuchterl, G.
2012-02-01
We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 ± 0.23 MJup and a radius of 0.84 ± 0.04 RJup. With a mean density of 8.87 ± 1.10 g cm-3, it is among the most compact planets known so far. Evolutionary models for the planet suggest a mass of heavy elements of the order of 800 M⊕ if embedded in a central core, requiring a revision either of the planet formation models or both planet evolution and structure models. We note however that smaller amounts of heavy elements are expected by more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56.The star's projected rotational velocity is vsini = 4.5 ± 1.0 km s-1, corresponding to a spin period of 11.5 ± 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving toward a triple synchronous state with equality of the orbital, planetary and stellar spin periods. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain.
Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong
2016-06-01
Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm(-3)), highly conductive (39 S cm(-1)), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm(-3) at 2 mV s(-1) in a three-electrode cell and 300 F cm(-3) at 175.7 mA cm(-3) (568 mF cm(-2) at 0.5 mA cm(-2)) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm(-3) with a maximum power density of 1600 mW cm(-3), outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.
Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong
2016-01-01
Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm−3), highly conductive (39 S cm−1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm−3 at 2 mV s−1 in a three-electrode cell and 300 F cm−3 at 175.7 mA cm−3 (568 mF cm−2 at 0.5 mA cm−2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm−3 with a maximum power density of 1600 mW cm−3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices. PMID:27248510
NASA Astrophysics Data System (ADS)
Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong
2016-06-01
Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm‑3), highly conductive (39 S cm‑1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm‑3 at 2 mV s‑1 in a three-electrode cell and 300 F cm‑3 at 175.7 mA cm‑3 (568 mF cm‑2 at 0.5 mA cm‑2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm‑3 with a maximum power density of 1600 mW cm‑3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.
NASA Astrophysics Data System (ADS)
Kabita, Kh; Maibam, Jameson; Indrajit Sharma, B.; Brojen Singh, R. K.; Thapa, R. K.
2016-01-01
We report first principles phase transition, elastic properties and electronic structure for cadmium telluride (CdTe) under induced pressure in the light of density functional theory using the local density approximation (LDA), generalised gradient approximation (GGA) and modified Becke-Johnson (mBJ) potential. The structural phase transition of CdTe from a zinc blende (ZB) to a rock salt (RS) structure within the LDA calculation is 2.2 GPa while that within GGA is found to be at 4 GPa pressure with a volume collapse of 20.9%. The elastic constants and parameters (Zener anisotropy factor, Shear modulus, Poisson’s ratio, Young’s modulus, Kleinmann parameter and Debye’s temperature) of CdTe at different pressures of both the phases have been calculated. The band diagram of the CdTe ZB structure shows a direct band gap of 1.46 eV as predicted by mBJ calculation which gives better results in close agreement with experimental results as compared to LDA and GGA. An increase in the band gap of the CdTe ZB phase is predicted under induced pressure while the metallic nature is retained in the CdTe RS phase.
Rabelo, E; Rezende, R L; Bertics, S J; Grummer, R R
2003-03-01
Forty cows and twenty heifers were used to study the effects of dietary energy density during late gestation and early lactation on lactation performance and ruminal parameters. A 2 x 2 factorial arrangement of treatments was used. During prepartum (-28 d to calving), animals were fed a low energy density diet [DL; 1.58 Mcal of net energy for lactation (NE(L))/kg, 40% neutral detergent fiber (NDF) and 38% nonfiber carbohydrate (NFC)] or a high energy diet (DH; 1.70 Mcal NE(L)/kg, 32% NDF and 44% NFC). After calving, half of the cows from each prepartum treatment group were assigned to a low energy density diet (L; 1.57 Mcal NE(L)/kg, 30% NDF and 41% NFC) or a high energy density diet (H; 1.63 Mcal NE(L)/kg, 25% NDF and 47% NFC) until d 20 postpartum. After d 20, all cows were fed H until d 70. Animals fed DH had 19.8% greater dry matter intake (DMI; % of body weight) and 21.5% greater energy intake than animals fed DL prepartum and the response was greater for cows compared to heifers. Animals fed DH had lower ruminal pH compared to animals fed DL, but no major changes in volatile fatty acid concentrations were observed. Effects of dietary energy density during prepartum on postpartum production responses were dependent on parity. Primiparous cows fed DL had higher 3.5% fat-corrected milk yield and milk fat production and percentage during the first 10 wk of lactation than those fed DH. Prepartum diet did not affect lactation performance of multiparous cows. Cows fed H had higher DMI and energy intake for the first 20 d of lactation compared to cows fed L. Diets did not affect DMI after the third wk of lactation. Milk production increased faster for cows fed H compared to cows fed L. Animals fed DL-L sequence of treatments tended to have the lowest energy intake during the first 10 wk of lactation. Prepartum treatments did not affect ruminal fermentation characteristics postpartum. Cows fed H had lower ruminal pH and higher propionate concentrations than cows fed L
NASA Astrophysics Data System (ADS)
Zobač, Vladimír; Lewis, James P.; Abad, Enrique; Mendieta-Moreno, Jesús I.; Hapala, Prokop; Jelínek, Pavel; Ortega, José
2015-05-01
The computational simulation of photo-induced processes in large molecular systems is a very challenging problem. Firstly, to properly simulate photo-induced reactions the potential energy surfaces corresponding to excited states must be appropriately accessed; secondly, understanding the mechanisms of these processes requires the exploration of complex configurational spaces and the localization of conical intersections; finally, photo-induced reactions are probability events, that require the simulation of hundreds of trajectories to obtain the statistical information for the analysis of the reaction profiles. Here, we present a detailed description of our implementation of a molecular dynamics with electronic transitions algorithm within the local-orbital density functional theory code FIREBALL, suitable for the computational study of these problems. As an example of the application of this approach, we also report results on the [2 + 2] cycloaddition of ethylene with maleic anhydride and on the [2 + 2] photo-induced polymerization reaction of two C60 molecules. We identify different deactivation channels of the initial electron excitation, depending on the time of the electronic transition from LUMO to HOMO, and the character of the HOMO after the transition.
Zobač, Vladimír; Lewis, James P; Abad, Enrique; Mendieta-Moreno, Jesús I; Hapala, Prokop; Jelínek, Pavel; Ortega, José
2015-05-08
The computational simulation of photo-induced processes in large molecular systems is a very challenging problem. Firstly, to properly simulate photo-induced reactions the potential energy surfaces corresponding to excited states must be appropriately accessed; secondly, understanding the mechanisms of these processes requires the exploration of complex configurational spaces and the localization of conical intersections; finally, photo-induced reactions are probability events, that require the simulation of hundreds of trajectories to obtain the statistical information for the analysis of the reaction profiles. Here, we present a detailed description of our implementation of a molecular dynamics with electronic transitions algorithm within the local-orbital density functional theory code FIREBALL, suitable for the computational study of these problems. As an example of the application of this approach, we also report results on the [2 + 2] cycloaddition of ethylene with maleic anhydride and on the [2 + 2] photo-induced polymerization reaction of two C60 molecules. We identify different deactivation channels of the initial electron excitation, depending on the time of the electronic transition from LUMO to HOMO, and the character of the HOMO after the transition.
Greenberg, Benjamin L; Robinson, Zachary L; Reich, K V; Gorynski, Claudia; Voigt, Bryan N; Francis, Lorraine F; Shklovskii, B I; Aydil, Eray S; Kortshagen, Uwe R
2017-08-09
Networks of ligand-free semiconductor nanocrystals (NCs) offer a valuable combination of high carrier mobility and optoelectronic properties tunable via quantum confinement. In principle, maximizing carrier mobility entails crossing the insulator-metal transition (IMT), where carriers become delocalized. A recent theoretical study predicted that this transition occurs at nρ(3) ≈ 0.3, where n is the carrier density and ρ is the interparticle contact radius. In this work, we satisfy this criterion in networks of plasma-synthesized ZnO NCs by using intense pulsed light (IPL) annealing to tune n and ρ independently. IPL applied to as-deposited NCs increases ρ by inducing sintering, and IPL applied after the NCs are coated with Al2O3 by atomic layer deposition increases n by removing electron-trapping surface hydroxyls. This procedure does not substantially alter NC size or composition and is potentially applicable to a wide variety of nanomaterials. As we increase nρ(3) to at least twice the predicted critical value, we observe conductivity scaling consistent with arrival at the critical region of a continuous quantum phase transition. This allows us to determine the critical behavior of the dielectric constant and electron localization length at the IMT. However, our samples remain on the insulating side of the critical region, which suggests that the critical value of nρ(3) may in fact be significantly higher than 0.3.
Ochoa, Francisco Sánchez; Huang, Zhiwei; Tang, Xingfu; Cocoletzi, Gregorio Hernández; Springborg, Michael
2016-03-14
A crystalline material formed by parallel chains of silver atoms inside one-dimensional tunnels of hollandite manganese dioxide, Ag-αMnO2, is investigated through first-principles total energy calculations. Two different magnetic phases have been identified; one structure containing linear Ag chains with an antiferromagnetic ordering in the direction perpendicular to the MnO2 tunnels for T = 0 K (I4/m) and another configuration with zigzag Ag chains in a non-magnetic regime for higher temperatures (P21/c). According to phonon dispersions, both structures are stable. On the other hand, the structure with linear Ag chains in the non-magnetic state is unstable. A critical temperature of Tc≃ 125 K for the magnetostructural phase transition between the two stable structures I4/m and P21/c is predicted.
Oña, Ofelia B.; Ferraro, Marta B.; Facelli, Julio C.
2010-01-01
The characterization and prediction of the structures of metal silicon clusters is important for nanotechnology research because these clusters can be used as building blocks for nano devices, integrated circuits and solar cells. Several authors have postulated that there is a transition between exo to endo absorption of Cu in Sin clusters and showed that for n larger than 9 it is possible to find endohedral clusters. Unfortunately, no global searchers have confirmed this observation, which is based on local optimizations of plausible structures. Here we use parallel Genetic Algorithms (GA), as implemented in our MGAC software, directly coupled with DFT energy calculations to show that the global search of CuSin cluster structures does not find endohedral clusters for n < 8 but finds them for n ≥ 10. PMID:21785526
Ramanantoanina, Harry; Sahnoun, Mohammed; Barbiero, Andrea; Ferbinteanu, Marilena; Cimpoesu, Fanica
2015-07-28
Ligand field density functional theory (LFDFT) is a methodology consisting of non-standard handling of DFT calculations and post-computation analysis, emulating the ligand field parameters in a non-empirical way. Recently, the procedure was extended for two-open-shell systems, with relevance for inter-shell transitions in lanthanides, of utmost importance in understanding the optical and magnetic properties of rare-earth materials. Here, we expand the model to the calculation of intensities of f → d transitions, enabling the simulation of spectral profiles. We focus on Eu(2+)-based systems: this lanthanide ion undergoes many dipole-allowed transitions from the initial 4f(7)((8)S7/2) state to the final 4f(6)5d(1) ones, considering the free ion and doped materials. The relativistic calculations showed a good agreement with experimental data for a gaseous Eu(2+) ion, producing reliable Slater-Condon and spin-orbit coupling parameters. The Eu(2+) ion-doped fluorite-type lattices, CaF2:Eu(2+) and SrCl2:Eu(2+), in sites with octahedral symmetry, are studied in detail. The related Slater-Condon and spin-orbit coupling parameters from the doped materials are compared to those for the free ion, revealing small changes for the 4f shell side and relatively important shifts for those associated with the 5d shell. The ligand field scheme, in Wybourne parameterization, shows a good agreement with the phenomenological interpretation of the experiment. The non-empirical computed parameters are used to calculate the energy and intensity of the 4f(7)-4f(6)5d(1) transitions, rendering a realistic convoluted spectrum.
HAT-P-12b: A LOW-DENSITY SUB-SATURN MASS PLANET TRANSITING A METAL-POOR K DWARF
Hartman, J. D.; Bakos, G. A.; Torres, G.; Noyes, R. W.; Pal, A.; Latham, D. W.; Sipocz, B.; Esquerdo, G. A.; Sasselov, D. D.; Kovacs, Gabor; Stefanik, R. P.; Fernandez, J. M.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Butler, R. P.; Lazar, J.; Papp, I.
2009-11-20
We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V approx 12.8 K4 dwarf GSC 03033 - 00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch T{sub c} = 2454419.19556 +- 0.00020 (BJD), and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 M{sub sun}, radius of 0.70{sup +0.02}{sub -0.01} R{sub sun}, effective temperature 4650 +- 60 K, and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 M{sub J} and radius of 0.959{sup +0.029}{sub -0.021} R{sub J} yielding a mean density of 0.295 +- 0.025 g cm{sup -3}. Comparing these observations with recent theoretical models, we find that HAT-P-12b is consistent with a approx1-4.5 Gyr, mildly irradiated, H/He-dominated planet with a core mass M{sub C} approx< 10 M {sub +}. HAT-P-12b is thus the least massive H/He-dominated gas giant planet found to date. This record was previously held by Saturn.
Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F.; Dixon, David A.
2016-08-09
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.
HAT-P-18b and HAT-P-19b: Two Low-density Saturn-mass Planets Transiting Metal-rich K Stars
NASA Astrophysics Data System (ADS)
Hartman, J. D.; Bakos, G. Á.; Sato, B.; Torres, G.; Noyes, R. W.; Latham, D. W.; Kovács, G.; Fischer, D. A.; Howard, A. W.; Johnson, J. A.; Marcy, G. W.; Buchhave, L. A.; Füresz, G.; Perumpilly, G.; Béky, B.; Stefanik, R. P.; Sasselov, D. D.; Esquerdo, G. A.; Everett, M.; Csubry, Z.; Lázár, J.; Papp, I.; Sári, P.
2011-01-01
We report the discovery of two new transiting extrasolar planets. HAT-P-18b orbits the V = 12.759 K2 dwarf star GSC 2594-00646, with a period P = 5.508023 ± 0.000006 days, transit epoch Tc = 2454715.02174 ± 0.00020 (BJD), and transit duration 0.1131 ± 0.0009 days. The host star has a mass of 0.77 ± 0.03 M sun, radius of 0.75 ± 0.04 R sun, effective temperature 4803 ± 80 K, and metallicity [Fe/H] = +0.10 ± 0.08. The planetary companion has a mass of 0.197 ± 0.013 M J and radius of 0.995 ± 0.052 R J, yielding a mean density of 0.25 ± 0.04 g cm-3. HAT-P-19b orbits the V = 12.901 K1 dwarf star GSC 2283-00589, with a period P = 4.008778 ± 0.000006 days, transit epoch Tc = 2455091.53417 ± 0.00034 (BJD), and transit duration 0.1182 ± 0.0014 days. The host star has a mass of 0.84 ± 0.04 M sun, radius of 0.82 ± 0.05 R sun, effective temperature 4990 ± 130 K, and metallicity [Fe/H] = +0.23 ± 0.08. The planetary companion has a mass of 0.292 ± 0.018 M J and radius of 1.132 ± 0.072 R J, yielding a mean density of 0.25 ± 0.04 g cm-3. The radial velocity residuals for HAT-P-19 exhibit a linear trend in time, which indicates the presence of a third body in the system. Comparing these observations with theoretical models, we find that HAT-P-18b and HAT-P-19b are each consistent with a hydrogen-helium-dominated gas giant planet with negligible core mass. HAT-P-18b and HAT-P-19b join HAT-P-12b and WASP-21b in an emerging group of low-density Saturn-mass planets, with negligible inferred core masses. However, unlike HAT-P-12b and WASP-21b, both HAT-P-18b and HAT-P-19b orbit stars with super-solar metallicity. This calls into question the heretofore suggestive correlation between the inferred core mass and host star metallicity for Saturn-mass planets. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO (A146Hr, A201Hr
NASA Astrophysics Data System (ADS)
Magrakvelidze, Maia; Dixit, Gopal; Madjet, Mohamed; Chakraborty, Himadri
2014-05-01
We calculate the phases of photoionization and radiative recombination dipole matrix elements of valence and subvalent levels of atomic Kr. The group delays along these transition channels are determined in the well-known Wigner-Smith approach, involving the energy derivative of the phases. A framework of time-dependent local density approximation is employed that utilizes the Leeuwen and Baerends exchange-correlation functional to produce accurate asymptotic behavior of ground and continuum wavefunctions. Effects of dynamical correlations are found to significantly influence the phase and delay properties over most part of the spectra, particularly, in the vicinity of various Feshbach and shape resonances, as well as near the Cooper minima. Analysis of the TDLDA-derived complex induced potential reveals important insights. This work was supported by the National Science Foundation.
Chen, Hsing-Yu; Jang, Soonmin; Jinn, Tzyy-Rong; Chang, Jia-Yaw; Lu, Hsiu-Feng; Li, Feng-Yin
2012-04-24
Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants. Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the Cα-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH α-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The Cα-Cβ bond of the alkoxyl alanine peptide radical is more labile than the peptide bond. the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO2. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO2 are crucial in this O-base oxidation reaction.
2012-01-01
Background Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants. Results Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the Cα-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH α-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The Cα-Cβ bond of the alkoxyl alanine peptide radical is more labile than the peptide bond. Conclusion the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO2. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO2 are crucial in this O-base oxidation reaction. PMID:22524792
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
NASA Astrophysics Data System (ADS)
Shirayama, Masaki; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Tamakoshi, Masato; Kato, Masato; Fujiseki, Takemasa; Murata, Daisuke; Hara, Shota; Murakami, Takurou N.; Fujimoto, Shohei; Chikamatsu, Masayuki; Fujiwara, Hiroyuki
2016-01-01
Light-induced photocarrier generation is an essential process in all solar cells, including organic-inorganic hybrid (CH3NH3PbI3 ) solar cells, which exhibit a high short-circuit current density (Jsc ) of approximately 20 mA /cm2 . Although the high Jsc observed in the hybrid solar cells relies on strong electron-photon interaction, the optical transitions in the perovskite material remain unclear. Here, we report artifact-free CH3NH3PbI3 optical constants extracted from ultrasmooth perovskite layers without air exposure and assign all of the optical transitions in the visible and ultraviolet region unambiguously, based on density-functional theory (DFT) analysis that assumes a simple pseudocubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultrasmooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (α =3.8 ×104 cm-1 at 2.0 eV) are comparable to those of CuInGaSe2 and CdTe, and high α values reported in earlier studies are overestimated seriously by the extensive surface roughness of CH3NH3PbI3 layers. The polarization-dependent DFT calculations show that CH3NH3 + interacts strongly with the PbI3 - cage, modifying the CH3NH3PbI3 dielectric function in the visible region rather significantly. In particular, the transition matrix element of CH3NH3PbI3 varies, depending on the position of CH3NH3 + within the Pb—I network. When the effect of CH3NH3 + on the optical transition is eliminated in the DFT calculation, the CH3NH3PbI3 dielectric function deduced from DFT shows an excellent agreement with the experimental result. As a result, distinct optical transitions observed at E0(Eg)=1.61 eV , E1=2.53 eV , and E2=3.24 eV in CH3NH3PbI3 are attributed to the direct semiconductor-type transitions at the R , M , and X points in the pseudocubic Brillouin zone, respectively. We further perform the quantum efficiency (QE) analysis for a standard hybrid-perovskite solar cell incorporating a mesoporous TiO2
Ramanantoanina, Harry; Urland, Werner; Cimpoesu, Fanica; Daul, Claude
2013-09-07
Herein we present a Ligand Field Density Functional Theory (LFDFT) based methodology for the analysis of the 4f(n)→ 4f(n-1)5d(1) transitions in rare earth compounds and apply it for the characterization of the 4f(2)→ 4f(1)5d(1) transitions in the quantum cutter Cs2KYF6:Pr(3+) with the elpasolite structure type. The methodological advances are relevant for the analysis and prospection of materials acting as phosphors in light-emitting diodes. The positions of the zero-phonon energy corresponding to the states of the electron configurations 4f(2) and 4f(1)5d(1) are calculated, where the praseodymium ion may occupy either the Cs(+)-, K(+)- or the Y(3+)-site, and are compared with available experimental data. The theoretical results show that the occupation of the three undistorted sites allows a quantum-cutting process. However size effects due to the difference between the ionic radii of Pr(3+) and K(+) as well as Cs(+) lead to the distortion of the K(+)- and the Cs(+)-site, which finally exclude these sites for quantum-cutting. A detailed discussion about the origin of this distortion is also described.
Singh, Priya; Sarkar, Subir K.; Bandyopadhyay, Pradipta
2014-07-07
We present the results of a high-statistics equilibrium study of the folding/unfolding transition for the 20-residue mini-protein Trp-cage (TC5b) in water. The ECEPP/3 force field is used and the interaction with water is treated by a solvent-accessible surface area method. A Wang-Landau type simulation is used to calculate the density of states and the conditional probabilities for the various values of the radius of gyration and the number of native contacts at fixed values of energy—along with a systematic check on their convergence. All thermodynamic quantities of interest are calculated from this information. The folding-unfolding transition corresponds to a peak in the temperature dependence of the computed specific heat. This is corroborated further by the structural signatures of folding in the distributions for radius of gyration and the number of native contacts as a function of temperature. The potentials of mean force are also calculated for these variables, both separately and jointly. A local free energy minimum, in addition to the global minimum, is found in a temperature range substantially below the folding temperature. The free energy at this second minimum is approximately 5 k{sub B}T higher than the value at the global minimum.
Shil, Suranjan; Bhattacharya, Debojit; Sarkar, Sonali; Misra, Anirban
2013-06-13
We have computed and investigated the performance of Minnesota density functionals especially the M05, M06, and M08 suite of complementary density functionals for the prediction of the heat of formations (HOFs) and the ionization potentials (IPs) of various benchmark complexes containing nine different first row transition metals. The eight functionals of M0X family, namely, the M05, M05-2X, M06-L, M06, M06-2X, M06-HF, M08-SO, and M08-HX are taken for the computation of the above-mentioned physical properties of such metal complexes along with popular Los Alamos National Laboratory 2 double-ζ (LANL2DZ) basis set. Total 54 benchmark systems are taken for HOF calculation, whereas the 47 systems among these benchmark complexes are chosen for the calculation of IPs because of lack of experimental results on rest of the seven systems. The computed values of HOFs and IPs are compared with the experimental results obtained from the literature. The deviation of these computed values from the actual experimental results is calculated for each eight different M0X functionals to judge their performances in evaluating these properties. Finally, a clear relationship between the exchange correlation energy of eight M0X functionals and their efficiency are made to predict the different physical properties.
Phung, Quan Manh; Wouters, Sebastian; Pierloot, Kristine
2016-09-13
The complete active space second order perturbation theory (CASPT2) can be extended to larger active spaces by using the density matrix renormalization group (DMRG) as solver. Two variants are commonly used: the costly DMRG-CASPT2 with exact 4-particle reduced density matrix (4-RDM) and the cheaper DMRG-cu(4)-CASPT2 in which the 4-cumulant is discarded. To assess the accuracy and limitations of the latter variant DMRG-cu(4)-CASPT2 we study the spin state energetics of iron porphyrin Fe(P) and its model compound FeL2, a model for the active center of NiFe hydrogenase, and manganese-oxo porphyrin MnO(P)(+); a series of excited states of chromium hexacarbonyl Cr(CO)6; and the interconversion of two Cu2O2(2+) isomers. Our results clearly show that PT2 on top of DMRG is essential in order to obtain quantitative results for transition metal complexes. Good results were obtained with DMRG-cu(4)-CASPT2 as compared to full CASPT2 and DMRG-CASPT2 in calculations with small- and medium-sized active spaces. In calculations with large-sized active spaces (∼30 active orbitals), the performance of DMRG-cu(4)-CASPT2 is less impressive due to the errors originating from both the finite number of renormalized states m and the 4-RDM approximation.
Basu, Banasri; Bandyopadhyay, Pratul; Majumdar, Priyadarshi
2011-03-15
We have studied quantum phase transition induced by a quench in different one-dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one-dimensional spin chains. At the critical region, the entanglement entropy of a block of L spins with the rest of the system is also estimated which is found to increase logarithmically with L. The dependence on the quench time puts a constraint on the block size L. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.
NASA Astrophysics Data System (ADS)
Cankurtaran, M.; Saunders, G. A.; Wang, Q.; Ford, P. J.; Alberts, H. L.
1992-12-01
A comprehensive experimental study has been made of the elastic and nonlinear acoustic behavior of a dilute Cr alloy as it undergoes a commensurate (C)-incommensurate (I) spin-density-wave transition. Simultaneous measurements of the temperature dependence of ultrasonic wave velocity and attenuation of longitudinal and shear 10-MHz ultrasonic waves propagated along both the [100] and the [110] direction of Cr-0.3 at. % Ru alloy single crystal have been made in the temperature range 200-300 K. The temperature dependence of ultrasonic attenuation for each mode is characterized by a spikelike peak centered at TCI (=238.6 K) (on cooling) and at TIC (=255.6 K) (on warming). The velocities of both longitudinal and shear ultrasonic waves exhibit a large and steep increase at TCI on cooling and a similar drop at TIC on warming with a pronounced hysteresis between TIC and TCI. These observations show that the transition between the commensurate and incommensurate phases is first order. Measurements of the effects of hydrostatic pressure (up to 0.15 GPa) on the velocities of ultrasonic waves, which were made at several fixed temperatures between 248 and 297 K, show similar features: a steep increase at PCI (increasing pressure) and a similar drop at PIC (decreasing pressure) with a well-defined hysteresis. Both TCI and TIC increase strongly and approximately linearly with pressure, the mean values of dTCI/dP and dTIC/dP being (333+/-3) K/GPa and (277+/-5) K/GPa, respectively. The pressure and temperature dependencies of the anomalies in the ultrasonic wave velocity have been used to locate both the C-I and I-C boundaries on the magnetic P-T phase diagram. There is a triple point (at about 315 K and 0.22 GPa) where the paramagnetic, commensurate, and incommensurate spin-density-wave phases coexist. Results for the complete sets of the elastic stiffness tensor components and their hydrostatic pressure derivatives have been used to evaluate the acoustic-mode Gr
Yepes, Diana; Seidel, Robert; Winter, Bernd; Blumberger, Jochen; Jaque, Pablo
2014-06-19
Photoelectron spectroscopy measurements and density functional calculations are combined to determine the lowest electron binding energies of first-row transition-metal aqua ions, titanium through copper, with 3d(1) through 3d(9) electronic configurations, in their most common oxidation states. Vertical ionization energies are found to oscillate considerably between 6.76 and 9.65 eV for the dications and between 7.05 and 10.28 eV for the respective trivalent cations. The metal cations are modeled as [M(H2O)n](q+) clusters (q = 2, 3, and 4; n = 6 and 18) surrounded by continuum solvent. The performance of 10 exchange-correlation functionals, two GGAs, three MGGAs, two HGGAs and three HMGGAs, combined with the MDF10(ECP)/6-31+G(d,p) basis set is assessed for 11 M-O bond distances, 10 vertical ionization energies, 6 adiabatic ionization energies, and the associated reorganization free energies. We find that for divalent cations the HGGA and HMGGA functionals in combination with the 18 water model show the best agreement with experimental vertical ionization energies and geometries; for trivalent ions, the MGGA functionals perform best. The corresponding reorganization free energies (λo) of the oxidized ions are significantly underestimated with all DFT functionals and cluster models. This indicates that the structural reorganization of the solvation shell upon ionization is not adequately accounted for by the simple solvation models used, emphasizing the importance of extended sampling of thermally accessible solvation structures for an accurate computation of this quantity. The photoelectron spectroscopy measurements reported herein provide a comprehensive set of transition-metal redox energetic quantities for future electronic structure benchmarks.
Vojvodic, A; Ruberto, C; Lundqvist, B I
2010-09-22
This study explores atomic and molecular adsorption on a number of early transition-metal carbides (TMCs) in NaCl structure by means of density-functional theory calculations. The investigated substrates are the TM-terminated TMC(111) surfaces, of interest because of the presence of different types of surface resonances (SRs) on them and because of their technological importance in growth processes. Also, TM compounds have shown potential in catalysis applications. Trend studies are conducted with respect to both period and group in the periodic table, choosing the substrates ScC, TiC, VC, ZrC, NbC, δ-MoC, TaC, and WC (in NaCl structure) and the adsorbates H, B, C, N, O, F, NH, NH(2), and NH(3). Trends in adsorption strength are explained in terms of surface electronic factors, by correlating the calculated adsorption-energy values with the calculated surface electronic structures. The results are rationalized by use of a concerted-coupling model (CCM), which has previously been applied successfully to the description of adsorption on TiC(111) and TiN(111) surfaces (Ruberto et al 2007 Solid State Commun. 141 48). First, the clean TMC(111) surfaces are characterized by calculating surface energies, surface relaxations, Bader charges, and surface-localized densities of states (DOSs). Detailed comparisons between surface and bulk DOSs reveal the existence of transition-metal localized SRs (TMSRs) in the pseudogap and of several C-localized SRs (CSRs) in the upper valence band on all considered TMC(111) surfaces. The spatial extent and the dangling bond nature of these SRs are supported by real-space analyses of the calculated Kohn-Sham wavefunctions. Then, atomic and molecular adsorption energies, geometries, and charge transfers are presented. An analysis of the adsorbate-induced changes in surface DOSs reveals a presence of both adsorbate-TMSR and adsorbate-CSRs interactions, of varying strengths depending on the surface and the adsorbate. These variations are
NASA Astrophysics Data System (ADS)
Liu, Wei; Ruiz-López, Victor G.; Zhang, Guo-Xu; Ren, Xinguo; Scheffler, Matthias; Tkatchenko, Alexandre
2012-02-01
The adsorption of benzene on metal surfaces is an important benchmark system for more complex hybrid inorganic/organic interfaces. Here, the recently developed DFT+vdW\\surfcirc method (density-functional theory including screened van der Waals (vdW) interactions) [1] is used to study the structure and energetics of benzene on transition-metal surfaces (Cu, Ag, Au, Pd, Pt, Rh, and Ir). Benzene adsorbs in a planar configuration at coinage metal surfaces, with almost zero distortion and a flat potential-energy surface. In contrast, benzene is strongly bound to the (111) surface of Pd, Pt, Rh, and Ir, and located at the bridge-30^o site. The vdW interactions significantly enhance the binding energy by more than 0.75 eV for all metals. The screening of the vdW energy plays a critical role in coinage metals, shortening the equilibrium distance by 0.2 å, and lowering the binding energy by 0.25 eV. The validity of our results is confirmed by comparison with calculations using the random-phase approximation including renormalized single excitations (EX+cRPA+rSE scheme [2]), and the experimental data from temperature-programmed desorption and calorimetry measurements. [1] V. G. Ruiz-L'opez et al., submitted. [2] X. Ren et al., Phys. Rev. Lett. 106, 153003 (2011).
Audouard, A.; Goze, F.; Ulmet, J.; Brossard, L.; Askenazy, S. , Laboratoire de Physique des Solides , Complexe Scientifique de Rangueil, 31077 Toulouse ); Fabre, J. )
1994-11-01
The transverse magnetoresistance of the Bechgaard salt (TMTSF)[sub 2]NO[sub 3] has been measured up to 37 T at ambient pressure in the temperature range from 2 to 77 K. When the magnetic field is parallel to the lowest conductivity direction [ital c][sup *] and for temperatures higher than [similar to]12 K, the data can be accounted for by a power law, the exponent of which decreases as the anion ordering takes place. At lower temperatures, the magnetic field increases the spin-density-wave (SDW) transition temperature, in overall agreement with theoretical predictions for the imperfect-nesting case. Two oscillation series, both linked to the SDW state, have been observed in the 2--10 K range. Their temperature-independent frequencies, measured from 2 to 8 K, are at (63[plus minus]2) and (248[plus minus]5) T, respectively. These oscillations have been studied (at 4.2 K) as a function of the field direction. They were found to deviate from the two-dimensional model since, in particular, their behavior differs according to whether the field is tilted on one side of the [ital c][sup *] direction or on the other. The oscillation data are discussed on the basis of recent calculations of Yakovenko.
NASA Astrophysics Data System (ADS)
Shikama, Taiichi; Ogane, Shuhei; Ishii, Hidekazu; Iida, Yohei; Hasuo, Masahiro
2014-08-01
The helium 23S metastable atom densities are experimentally evaluated by self-absorption spectroscopy of the HeI 23S-23P transition spectra in two kinds of cylindrical glow discharge plasmas, which have different radii and are operated under different pressures of 300 and 20 Pa. The spectra are measured by using an interference spectroscopy system with a wavelength resolution of about 60 pm, and the relative intensities of the fine structure transitions are analyzed. It is found that the method is in principle applicable to plasmas with the pressure up to about the atmospheric pressure and electron density on the order of up to 1022 m-3. For a plasma with an absorption length of 10 mm and a spatially uniform temperature of 300 K, the method is sensitive to the metastable atom density roughly from 1016 to 1019 m-3.
Joshi, K.B.; Paliwal, U.; Galav, K.L.; Trivedi, D.K.; Bredow, T.
2013-08-15
Stability of B1 and B2 phases of Mg{sub x}Cd{sub 1−x}O is studied by calculating the formation energy within the framework of density functional theory applying the crystalline-orbital program package. Structural and electronic properties of the two polymorphs are reported for x=0.25, 0.50 and 0.75. The equilibrium lattice constants and bulk moduli are computed. Enthalpy calculations show pressure induced B1→B2 phase transitions at 92 GPa, 138 GPa and 212 GPa, respectively, for Mg{sub 0.25}Cd{sub 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O compositions. Formation energy of ternary oxides in the B1 phase is negative with respect to mixing of B2-MgO with B1-CdO. Mixing B1-MgO with B2-CdO also leads to negative formation energy in Cd rich B1 phase ternary oxides (0≤x≤0.5). Band structure calculations predict direct band gaps in the B1 phase and indirect band gaps in the B2 phase ternary oxides. Mulliken population analysis is performed for the two polymorphs to study the charge transfer. - Graphical abstract: Diagram reveals trends in formation energy while mixing B2-MgO with B1-CdO to form B1-Mg{sub x}Cd{sub 1−x}O. Formation energies obtained from mixing isostructural and nonisostructural components are also shown. Display Omitted - Highlights: • Lattice constants and bulk moduli are computed for Mg{sub 0.25}Cd{sub 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O compositions. • Enthalpy calculations signify pressure induced B1→B2 phase transitions at 92 GPa, 138 GPa and 212 GPa, respectively, in Mg{sub 0.25}Cd{sub 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O. • Band structure calculations predict direct band gaps in the B1 phase ternary oxides. • In the B2 phase ternary oxides band structure calculations show valence band maximum along the Γ–X direction and the conduction band minimum at the Γ point of symmetry.
Ikeda, Atsushi; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi
2007-08-02
We systematically evaluated the binding energies of d10, d8, and d6 transition-metal complexes with various pi-conjugate systems such as Pt(PH3)2{C2H4-n(CH=CH2)n}, Pd(PH3)2{C2H4-n(CH=CH2)n}, [PtCl3{C2H4-n-(CH=CH2)n}]-, [PdCl3{C2H4-n(CH=CH2)n}]-, and [PtCl5{C2H4-n(CH=CH2)n}]- (n = 0-4) using the MP2 to MP4, CCSD(T), and density functional theory (DFT) methods. The MP4(SDQ) and CCSD(T) methods present a reliable binding energy, whereas the DFT method significantly underestimates the binding energy when the size of the pi-conjugate system is large. The underestimation occurs independently of the coordinate bonding nature; the pi-back-donation is stronger than the sigma-donation in the Pt(0) complexes, as expected, they are comparable in the Pt(II) complexes, and only the sigma-donation participates in the coordinate bond of the Pt(IV) complexes. The DFT method provides moderately stronger charge-transfer (CT) interaction than the MP4(SDQ) method, suggesting that the underestimation of the binding energy by the DFT method does not arise from the insufficient description of the CT interaction. From theoretical investigation of several model systems, it is concluded that the underestimation arises from the insufficient description of electron correlation effects.
NASA Astrophysics Data System (ADS)
Tian, Dong; Zeng, Chunhua; Wang, Hua; Cheng, Xianming; Zheng, Yane; Xiang, Chao; Wei, Yonggang; Li, Kongzhai; Zhu, Xing
2017-09-01
Methane activation and oxygen vacancy formation over transition metal Fe adsorption on CeO2 (110) are studied by using the method of density functional theory (DFT) + U method. A set of model configurations are generated by placing Fe at five surface sites, viz., O-top site, O-bridge site, Ce-bridge site, Ce-top and double oxygen-bridge sites. The study shows that the energetically most favorable configuration is Fe adsorption at the double oxygen-bridge site. Based on the calculated surface, subsurface and the second oxygen vacancies formation energy with (or without) Fe adsorption, it shows that the Fe adsorption is in favor of the surface, subsurface and second oxygen vacancies formation. For the surface and subsurface oxygen vacancy on the Fe/CeO2 (110) surface, the main factor responsible for lowering of Evac is that the adsorption induces structural distortions, whereas, for the second oxygen vacancy, half can be attributed to the large structural relaxation, half can be attributed to the electronic effects. After calculating and discussing about the CH4 activation on CeO2 (110) and Fe/CeO2 (110) surface with (or without) the surface or subsurface oxygen vacancies at the possible adsorption sites, the results show that when the CH4 adsorbed on the Fe/CeO2 (110) with the surface oxygen vacancy at the Ce1 and Ce2 sites, the CH4 decomposed into the CH(ads) and H(ads), its belongs to the chemical absorption, whereas, when the CH4 adsorbed on the other possible sites, the mentioned phenomenon is not occurred, its belongs to the physical absorption. This study reveals the correlation between surface reducibility and catalytic activity for methane oxidation on cerium-based materials, which might be beneficial in developing improved catalysts for methane combustion.
Freire, Rafael L H; Kiejna, Adam; Da Silva, Juarez L F
2016-10-26
We report the results of extensive computational investigation of the adsorption properties of water and ethanol on several Cu-, Pt-, and Au-based substrates, including the close-packed unreconstructed Cu(111), Pt(111), and Au(111) surfaces, defected metal substrates with on-surface low-coordinated sites generated by the intermixing of Pt-Cu and Pt-Au in the topmost surface layers and strained on-surface and sub-surface Pt-layers at Cu(111) and Au(111) substrates. The calculations are based on the density functional theory (DFT) within the van der Waals (vdW) correction. For all the substrates, we found that water and ethanol bind via the anionic O atom to the cationic one-fold coordinated on-top metal sites, which enhances the adsorbate-substrate Coulomb interactions. For water, both DFT and DFT + vdW calculations predict a flat geometry. For ethanol, the DFT and DFT + vdW results are in contrast, namely, DFT yields a perpendicular orientation of the C-C bond with respect to the surface, while we obtained a parallel orientation of the C-C bond using DFT + vdW, which maximizes the adsorption energies. Despite expected deviations due to the nature of the weak adsorbate-substrate interactions, we found that the adsorption energy of water and ethanol shows a linear dependence as a function of the position of the center of gravity of the occupied d-band, and hence, the magnitude of the adsorption energy increases as the d-band center position shifts towards the Fermi energy. Thus, it indicates hybridization between the O p- and metal d-states, which determines the magnitude of the adsorption energy of water and ethanol on clean, low-coordinated, and strained noble and transition-metal substrates.
Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D
2016-07-21
Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid.
NASA Astrophysics Data System (ADS)
Liu, Yan-Hui; Tian, Fu-Bo; Ma, Yan-Ming; He, Zhi; Cui, Tian; Liu, Bing-Bing; Zou, Guang-Tian
2008-07-01
Crystal structures and optical properties of the δ-O2 phase and the ∈-O8 phase have been investigated by using the ab initio pseudopotential plane-wave method. It is found that the phase transition is of the first order with a discontinuous volumetric change from the antiferromagnetic δ-O2 phase to the nonmagnetic ∈-O8 phase, consistent with the experimental findings. The energy band calculations show that the direct band gap changes into an indirect band gap after the phase transition. The apparent change in the optical properties can be used for identifying the phase transition from δ-O2 to ∈-O8.
NASA Astrophysics Data System (ADS)
Heydari Gharahcheshmeh, M.; Galstyan, E.; Xu, A.; Kukunuru, J.; Katta, R.; Zhang, Y.; Majkic, G.; Li, X.-F.; Selvamanickam, V.
2017-01-01
The superconducting transition width (∆T c) characteristics of REBa2Cu3O7-δ (REBCO and RE = Gd, Y) superconductor tapes with Zr content of 25 mol% with high lift factor (ratio of critical current density (J c) at 30 K, 3 T (B||c) to the J c at 77 K, 0 T) has been determined. In this work, heavily doped (Gd, Y)Ba2Cu3O7-δ superconductor tapes with 25 mol% Zr addition were fabricated by metal organic chemical vapor deposition using a reel-to reel process. The optimal chemical composition range of (Gd, Y)Ba2Cu3O7-δ superconductor tapes with Zr content of 25 mol% to achieve critical current densities above 3.5 MA cm-2 at 77 K in zero applied magnetic field has been determined. A superconducting transition width (∆T c) as narrow as 0.4 K and an onset critical transition temperature (T c-onset) as high as 92 K were obtained in the 25 mol% Zr-added (Gd, Y)BaCuO superconductor tapes. Based on the mapped compositional phase diagram of the ∆Tc and lift factor, ∆T c in the range of 0.7-0.9 K is observed in 25 mol% Zr-added (Gd, Y)BaCuO superconductor tapes with a high lift factor.
Zhou, Y
2006-08-21
The Euler similarity criteria for laboratory experiments and time-dependent mixing transition are important concepts introduced recently for application to prediction and analysis of astrophysical phenomena. However Euler scaling by itself provides no information on the distinctive spectral range of high Reynolds number turbulent flows found in astrophysics situations. On the other hand, time-dependent mixing transition gives no indication on whether a flow that just passed the mixing transition is sufficient to capture all of the significant dynamics of the complete astrophysical spectral range. In this paper, a new approach, based on additional insight gained from review of Navier-Stokes turbulence theory, is developed. It allows for revelations about the distinctive spectral scale dynamics associated with high Reynolds number astrophysical flows. From this perspective, we caution that the energy containing range of the turbulent flow measured in a laboratory setting must not be unintentionally contaminated in such a way that the interactive influences of this spectral scale range in the corresponding astrophysical situation cannot be faithfully represented. In this paper we introduce the concept of a minimum state as the lowest Reynolds number turbulent flow that a time-dependent mixing transition must achieve to fulfill this objective. Later in the paper we show that the Reynolds number of the minimum state may be determined as 1.6 x 10{sup 5}. Our efforts here can be viewed as a unification and extension of the concepts of both similarity scaling and transient mixing transition concepts. At the last the implications of our approach in planning future intensive laser experiments or massively parallel numerical simulations are discussed. A systematic procedure is outlined so that as the capabilities of the laser interaction experiments and supporting results from detailed numerical simulations performed in recently advanced supercomputing facilities increase
He, Xiao; Ryu, Shinsei; Hirata, So
2014-01-14
Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree-Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the "dimerized" low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.
He, Xiao; Ryu, Shinsei; Hirata, So
2014-01-14
Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.
Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony; Ramírez-Solís, Alejandro
2014-12-09
We present a comparative study of the spatial distribution of the spin density of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wave function theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell and the delocalization of the 3d hole over the chlorine atoms. More generally, this problem is representative of the difficulties encountered when studying open-shell metal-containing molecular systems. Here, it is shown that qualitatively different results for the spin density distribution are obtained from the various quantum-mechanical approaches. At the DFT level, the spin density distribution is found to be very dependent on the functional employed. At the QMC level, Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function. Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively) are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 10(18) determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin distribution is proposed.
Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G
2017-02-14
We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.
López Arvizu, Gregorio; Calaminici, Patrizia
2007-05-21
Density functional calculations have been performed for small nickel clusters, Ni(n), Ni(n) (+), and Ni(n)(-) (n
NASA Astrophysics Data System (ADS)
Guenther, E. W.; Díaz, R. F.; Gazzano, J.-C.; Mazeh, T.; Rouan, D.; Gibson, N.; Csizmadia, Sz.; Aigrain, S.; Alonso, R.; Almenara, J. M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Bruntt, H.; Cabrera, J.; Carone, L.; Carpano, S.; Cavarroc, C.; Deeg, H. J.; Deleuil, M.; Dreizler, S.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gillon, M.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jehin, E.; Jorda, L.; Lammer, H.; Léger, A.; Moutou, C.; Nortmann, L.; Ollivier, M.; Ofir, A.; Pasternacki, Th.; Pätzold, M.; Parviainen, H.; Queloz, D.; Rauer, H.; Samuel, B.; Santerne, A.; Schneider, J.; Tal-Or, L.; Tingley, B.; Weingrill, J.; Wuchterl, G.
2012-01-01
Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is generally assumed that they are inflated owing to their proximity to the host-star. To determine the causes of this inflation, it is necessary to obtain a statistically significant sample of planets with precisely measured masses and radii. Aims: The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. Methods: After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. Results: We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M∗ = 1.21 ± 0.05 M⊙ and radius R∗ = 1.65 ± 0.04 R⊙. The planet has a mass of MP = 1.11 ± 0.06 MJup and radius of RP = 1.29 ± 0.03 RJup. The resulting bulk density is only ρ = 0.71 ± 0.06 g cm-3, which is much lower than that for Jupiter. Conclusions: The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a ≈30% larger radius. The CoRoT space mission, launched on
NASA Technical Reports Server (NTRS)
Cummings, J.
1976-01-01
Data obtained from wind tunnel tests of an .006-scale space shuttle orbiter model in the 18 in. Variable Density Wind Tunnel are presented. The tests, denoted as OH14, were performed to determine transition heating rates using thin skin thermocouples located at various locations on the space shuttle orbiter. The model was tested at M = 8.0 for a range of Reynolds numbers per foot varying from 1.0 to 10.0 million with angles-of-attack from 20 to 35 degrees incremented by 5 degrees.
NASA Astrophysics Data System (ADS)
Kumar, Avinash; Eckel, Stephen; Jendrzejewski, Fred; Campbell, Gretchen
We study the decay of a persistent, quantized current state in a toroidal geometry. Our experiment involves trapping neutral 23Na atoms in an all optical ``target trap'' shaped potential. This potential consists of a disc surrounded by an annular potential. A current in a superfluid can be sustained only below a critical current. This critical current can be tuned by introducing a density perturbation which depletes the local density. The decay time of a persistent current state can also be controlled by enhancing fluctuations of the system thermally. We study the decay at four different temperatures between 30 nK and 190 nK. For each temperature we record the decay at four different perturbation strengths. We find that increasing the magnitude of the density depletion or the temperature leads to a faster decay, and have seen the decay constant change by over two orders of magnitude. We also studied the size of hysteresis loop between different current states as a function of temperature, allowing us to extract a critical velocity. We find that the discrepancies between the experimentally extracted critical velocity and theoretically calculated critical velocity (using local-density approximation) decreases as the temperature is decreased. Now at University of Heidelberg.
Wu Bo Zinkevich, Matvei Aldinger, Fritz Wen Dingzhong Chen Lu
2007-11-15
Ab initio energetic calculations based on the density functional theory (DFT) and projector augmented wave (PAW) pseudo-potentials method were performanced to determine the crystal structural parameters and phase transition data of the polymorphic rare-earth sesquioxides Ln{sub 2}O{sub 3} (where Ln=La-Lu, Y, and Sc) with A-type (hexagonal) and B-type (monoclinic) configurations at ground state. The calculated results agree well with the limited experimental data and the critically assessed results. A set of systematic and self-consistent crystal structural parameters, energies and pressures of the phase transition were established for the whole series of the A- and B-type rare-earth sesquioxides Ln{sub 2}O{sub 3}. With the increase of the atomic number, the ionic radii of rare-earth elements Ln and the volumes of the sesquioxides Ln{sub 2}O{sub 3} reflect the so-called 'lanthanide contraction'. With the increase of the Ln{sup 3+}-cation radius, the bulk modulus of Ln{sub 2}O{sub 3} decreases and the polymorphic structures show a degenerative tendency. - Graphical abstract: This graph shows the calculated transition pressure with respect to the transition of the Ln{sub 2}O{sub 3} from its B- to A-type together with the available experimental data superimposed. The transition pressure was obtained by calculating the common tangent slope of the two fitted E-V curves based on the empirical third-order Birch-Murnaghan equation of state.
Jiang, Jiang; DeAngelis, Donald L.; Zhang, B.; Cohen, J.E.
2014-01-01
Taylor's power law describes an empirical relationship between the mean and variance of population densities in field data, in which the variance varies as a power, b, of the mean. Most studies report values of b varying between 1 and 2. However, Cohen (2014a) showed recently that smooth changes in environmental conditions in a model can lead to an abrupt, infinite change in b. To understand what factors can influence the occurrence of an abrupt change in b, we used both mathematical analysis and Monte Carlo samples from a model in which populations of the same species settled on patches, and each population followed independently a stochastic linear birth-and-death process. We investigated how the power relationship responds to a smooth change of population growth rate, under different sampling strategies, initial population density, and population age. We showed analytically that, if the initial populations differ only in density, and samples are taken from all patches after the same time period following a major invasion event, Taylor's law holds with exponent b=1, regardless of the population growth rate. If samples are taken at different times from patches that have the same initial population densities, we calculate an abrupt shift of b, as predicted by Cohen (2014a). The loss of linearity between log variance and log mean is a leading indicator of the abrupt shift. If both initial population densities and population ages vary among patches, estimates of b lie between 1 and 2, as in most empirical studies. But the value of b declines to ~1 as the system approaches a critical point. Our results can inform empirical studies that might be designed to demonstrate an abrupt shift in Taylor's law.
NASA Astrophysics Data System (ADS)
Carmona, A.; Thi, W. F.; Kamp, I.; Baruteau, C.; Matter, A.; van den Ancker, M.; Pinte, C.; Kóspál, A.; Audard, M.; Liebhart, A.; Sicilia-Aguilar, A.; Pinilla, P.; Regály, Zs.; Güdel, M.; Henning, Th.; Cieza, L. A.; Baldovin-Saavedra, C.; Meeus, G.; Eiroa, C.
2017-02-01
Context. Quantifying the gas surface density inside the dust cavities and gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the inner disk of HD 139614, an accreting 9 Myr Herbig Ae star with a (pre-)transition disk exhibiting a dust gap from 2.3 ± 0.1 to 5.3 ± 0.3 AU. Methods: We observed HD 139614 with ESO/VLT CRIRES and obtained high-resolution (R 90 000) spectra of CO ro-vibrational emission at 4.7 μm. We derived constraints on the disk's structure by modeling the CO isotopolog line-profiles, the spectroastrometric signal, and the rotational diagrams using grids of flat Keplerian disk models. Results: We detected υ = 1 → 0 12CO, 2→1 12CO, 1→0 13CO, 1→0 C18O, and 1→0 C17O ro-vibrational lines. Lines are consistent with disk emission and thermal excitation. 12CO υ = 1 → 0 lines have an average width of 14 km s-1, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km s-1 narrower than 12CO υ = 1 → 0, and are dominated by emission at R ≥ 6 AU. The 12CO υ = 1 → 0 composite line-profile indicates that if there is a gap devoid of gas it must have a width narrower than 2 AU. We find that a drop in the gas surface density (δgas) at R < 5-6 AU is required to be able to simultaneously reproduce the line-profiles and rotational diagrams of the three CO isotopologs. Models without a gas density drop generate 13CO and C18O emission lines that are too broad and warm. The value of δgas can range from 10-2 to 10-4 depending on the gas-to-dust ratio of the outer disk. We find that the gas surface density profile at 1 < R < 6 AU is flat or increases with radius. We derive a gas column density at 1 < R < 6 AU of NH = 3 × 1019-1021 cm-2 (7 × 10-5-2.4 × 10-3 g cm-2) assuming NCO = 10-4NH. We find a 5σ upper limit on the CO column density NCO at R ≤ 1 AU of 5 × 1015 cm-2 (NH ≤ 5 × 1019 cm-2). Conclusions
Zhang, Wei-Bing; Li, Jie; Tang, Bi-Yu
2013-06-28
The structural, electronic, magnetic, and elastic properties of hexagonal nickel sulfide (NiS) have been investigated comparatively by Density Functional theory (DFT) and DFT plus correction for on-site Coulomb interaction (DFT+U), in which two different exchange correlation functionals local density approximations (LDA) and general gradient approximations (GGA) in the form of Perdew-Burke-Ernzerhof (PBE) are used. Our results indicate LDA and PBE methods predict hexagonal NiS to be a paramagnetic metal whereas LDA(PBE)+U calculations with reasonable on-site Coulomb interaction energy give the antiferromagnetic insulating state of low temperature hexagonal NiS successfully. Meanwhile, compared with LDA(PBE) results, LDA(PBE)+U methods give larger lattice parameters, crystal volume, and shear constant c44, consistent with the experimental picture during high-low temperature phase transition of hexagonal NiS, in which an increase of the shear constant c44 and lattice parameters were found in the low-temperature antiferromagnetic phase. The present DFT and DFT+U calculations provide a reasonable description for the properties of high temperature and low temperature hexagonal NiS respectively, which indicates that electronic correlation is responsible for this high-low temperature phase transition.
Wave-vector-dependent electron-phonon coupling and the charge-density-wave transition in TbT e3
NASA Astrophysics Data System (ADS)
Maschek, M.; Rosenkranz, S.; Heid, R.; Said, A. H.; Giraldo-Gallo, P.; Fisher, I. R.; Weber, F.
2015-06-01
We present a high-energy-resolution inelastic x-ray scattering investigation of the soft phonon mode in the charge-density-wave (CDW) system TbT e3 . We analyze our data based on lattice dynamical calculations using density-functional-perturbation theory and find clear evidence that strongly momentum-dependent electron-phonon coupling defines the periodicity of the CDW superstructure: Our experiment reveals strong phonon softening and increased phonon linewidths over a large part in reciprocal space adjacent to the CDW ordering vector qCDW=(0 ,0 ,0.3 ) . Further, qCDW is clearly offset from the wave vector of (weak) Fermi surface nesting qFS=(0 ,0 ,0.25 ) , and our detailed analysis indicates that electron-phonon coupling is responsible for this shift. Hence, we can add TbT e3 , which was previously considered as a canonical CDW compound following the Peierls scenario, to the list of distinct charge-density-wave materials characterized by momentum-dependent electron-phonon coupling.
NASA Technical Reports Server (NTRS)
DeSoto, G. E.; Frey, H. V.
2005-01-01
Understanding the fundamental age relationships of the different parts of the Mars Crustal Dichotomy is essential to fully understanding the events that shaped the early history and formation of the surface of Mars. A dominant question is what are the true relative ages of the Northern Lowlands and the Southern Highlands? Using MOLA data from the Mars Global Surveyor and Viking visual images, a dataset of both buried and visible crater diameters was created over a nine million sq km study area of a section of the dichotomy boundary stretching from Arabia Terra to Utopia Planitia. Cumulative frequency plots on a log-log scale were used to determine the relative ages for the Highlands, the Lowlands, and the Transition Zone, separately for the visible, the buried and the combined total (visible+ buried) populations. We find the overall Highland crater population in this area is slightly older than the Lowlands, consistent with previous global studies, but the Lowlands and Transition Zone are also very old and formed at roughly the same time. It appears that the formation of the Lowlands in this region formed contemporaneously with a large-scale resurfacing event in the Highlands, perhaps caused by the process responsible for the Lowland formation.
Hermes, Matthew R.; Hirata, So
2015-09-14
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree–Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree–Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard–Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga–Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.
Hermes, Matthew R; Hirata, So
2015-09-14
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.
NASA Astrophysics Data System (ADS)
Hermes, Matthew R.; Hirata, So
2015-09-01
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.
NASA Astrophysics Data System (ADS)
Li, Hong; Draxl, Claudia; Wurster, Stefan; Pippan, Reinhard; Romaner, Lorenz
2017-03-01
We address the impact of tantalum alloying on dislocation properties of tungsten. To that aim, we calculate elastic constants, atomic-row displacement energy, dislocation core energy, and Peierls stress for different degrees of alloying within the framework of density-functional theory. We show that the elastic shear constants decrease monotonously with Ta content. Conversely, atomic-row displacement energy and, consequently, core energy and Peierls stress show a nonmonotonous behavior. These quantities peak at 25 at% Ta, indicating a tendency for embrittlement of W at such alloying concentrations. Our findings are in agreement with the experimental literature.
Sorkin, Anastassia; Iron, Mark A.; Truhlar, Donald G.
2008-02-01
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The ground and lower excited states of Fe2, Fe2 -, and FeO+ were studied using a number of density functional theory (DFT) methods. Specific attention was paid to the relative state energies, the internuclear distances (re), and the harmonic vibrational frequencies (öe). A number of factors influencing the calculated values of these properties were examined. These include basis sets, the nature of the density functional chosen, the percentage of Hartree- Fock exchange in the density functional, and constraints on orbital symmetry. A number of different types of generalized gradient approximation (GGA) density functionals (straight GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA) were examined, and it was found that the best results were obtained with hybrid GGA or hybrid meta-GGA functionals that contain nonzero fractions of HF exchange; specifically, the best overall results were obtained with B3LYP, M05, and M06, closely followed by B1LYP. One significant observation was the effect of enforcing symmetry on the orbitals. When a degenerate orbital (ð or ä) is partially occupied in the 4¼ excited state of FeO+, reducing the enforced symmetry (from C6v to C4v to C2v) results in a lower energy since these degenerate orbitals are split in the lower symmetries. The results obtained were compared to higher level ab initio results from the literature and to recent PBE+U plane wave results by Kulik et al. (Phys. Rev. Lett. 2006, 97, 103001). It was found that some of the improvements that were afforded by the semiempirical +U correction can also be accomplished by improving the form of the DFT functional and, in one case, by not enforcing high symmetry on the orbitals.
NASA Astrophysics Data System (ADS)
Burel, Maxym; Martin, Sylvain; Bonnefoy, Olivier
2017-06-01
We present the results of an experimental study on the jamming/flowing transition. A suspension of neutrally buoyant large particles flows in an horizontal rectangular duct, where an artificial restriction triggers jamming. We show that the avalanche distribution size is exponential, that is memoryless. We further demonstrate that the avalanche size diverges when the restriction size approaches a critical value and that this divergence is well described by a power law. The parameters (critical opening size and divergence velocity) are compared to literature values and show a strong similarity with others systems. Another result of this paper is the study of the influence of the particle morphology. We show that, for a moderate restriction size, the dead-zone formed right upstream of the restriction is larger for angular particles but, paradoxically, that the avalanche size is larger for polyhedra compared to spheres by at least one order of magnitude.
Jones, J W; Lue, L; Saiani, A; Tiddy, G J T
2012-04-28
Dialkyl lecithin dispersions in water exhibit two phase transitions upon cooling from the lamellar phase (L(α)). At the main transition (T(M)) the L(α) phase changes to a ripple (gel) phase (P(β')) which then transforms to a second gel phase (L(β')) at the "pretransition" (T(P)). We have made accurate density measurements through the various phases for two lecithins having unequal chains: 1-myristoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (MSPC) and 1-stearoyl-2-myristoyl-sn-glycero-3-phosphatidylcholine (SMPC). The measurements were carried out over five heat/cool cycles from 5 to 55 °C, followed by cooling back to 5 °C. The samples were then held at 50 °C for 24 hours, followed by a further three cool/heat cycles. For SMPC we observe an increase in density of the gel phases over the first 5 cycles, followed by much smaller changes after incubation at 50 °C. The lamellar phase also shows an increase in density, albeit much smaller. This parallels the behaviour of 1,2-di-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-di-myristoyl-sn-glycero-3-phosphatidylcholine (DMPC) reported earlier (Jones et al., Liquid Crystals 32, 1465 (2005)). For MSPC we observe a decrease in density within the gel phases while T(P) almost disappears after the first cycle. The lamellar phase shows little evidence of any change with each cycle. Within the lamellar phases there is a marked reduction in density on approaching T(M), which is attributed to the formation of transitory gel phase domains. Additional measurements by DSC and X-ray diffraction show that the changes in densities are not accompanied by large changes in transition enthalpies or phase structures. NMR data indicate that the pretransitional event within the L(α) phase is accompanied by ordering of the alkyl chains. The results indicate that the exact nature of the lipid alkyl chains could play a key role in the formation of gel phase patches within membrane bilayers. Their detailed chemical
Peng, Bo; Yu, Yang-Xin
2008-12-04
A new density functional theory (DFT) for an inhomogeneous 12-6 Lennard-Jones fluid is proposed based on the modified fundamental measure theory for repulsive interaction and a weighted density functional for attractive interaction. The Helmholtz free energy functional for the attractive part is constructed using the modified Benedict-Webb-Rubin equation of state with a mean-field weight function. Comparisons of the theoretical results with molecular simulation data suggest that the new DFT yields accurate bulk surface tension, density distributions, adsorption-desorption isotherms, pore pressures, and capillary phase transitions for the Lennard-Jones fluid confined in slitlike pores with different widths and solid-fluid interactions. The new DFT reproduces well the vapor-liquid critical temperatures of the confined Lennard-Jones fluid, whereas the mean-field theory always overestimates the critical temperatures. Because the new DFT is computationally as simple and efficient as the mean-field theory, it will provide a good reference for further development of a statistical-thermodynamic theory of complex fluid under both homogeneous and inhomogeneous conditions when disperse force has to be considered.
Li, Zhendong; Liu, Wenjian
2016-06-14
Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.
Liu, Bin; Cheng, Lei; Curtiss, Larry A.; Greeley, Jeffrey P.
2014-04-01
The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdWDF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the erpendicular distance and the orientation of the aromatic ringwith respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van derWaals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted–Evans–Polanyi relationship developed solely fromPW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.
NASA Astrophysics Data System (ADS)
Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey
2014-04-01
The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.
Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey
2014-04-01
The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of funcfionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brensted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfulyl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.
NASA Astrophysics Data System (ADS)
Dong, X. L.; Lu, W.; Yang, J.; Yi, W.; Li, Z. C.; Zhang, C.; Ren, Z. A.; Che, G. C.; Sun, L. L.; Zhou, F.; Zhou, X. J.; Zhao, Z. X.
2010-12-01
We have measured magnetic susceptibility of iron pnictide superconductors SmFeAsO0.85 and PrFe0.925Co0.075AsO under hydrostatic pressure up to 1.15 GPa. The superconducting transition temperature (TC) deceases linearly and the Meissner signal size also decreases with increasing pressure for SmFeAsO0.85 . In contrast, the TC of PrFe0.925Co0.075AsO initially increases with pressure then saturates above ˜0.8GPa . Meanwhile its Meissner signal exhibits the similar pressure dependence. Our results indicate that the pressure dependences of TC and superfluid density in both systems are positively correlated which suggests that these quaternary iron-based superconductors are not conventional BCS ones.
Polarized Infrared Response of Subband Transitions in High Density 2DEG in GdTiO3/SrTiO3 Interfaces
NASA Astrophysics Data System (ADS)
Flaherty, Bill; Ouellette, Daniel; Moetakef, Pouya; Jackson, Clayton; Stemmer, Susanne; Allen, S. James; Exede Muri Team
2014-03-01
The 2-D electron gas at the interface between GdTiO3 and SrTiO3 layers has an electron density comparable to 3.4 x 1014 cm-2 per interface with potential applications for tunable plasmonic devices. Experiments are currently underway to measure the infrared response of this electron gas, with infrared electric fields perpendicular to the interface as well as parallel. The former may provide insight into the electric subband states. Using angle-resolved Fourier transform infrared spectroscopy with s- and p-polarized beams, we can compare the in- and out-of-plane response of the 2DEG. Normalizing it against the response of the bare substrate will allow us to extract the 2DEG contribution. These results will be compared to those predicted by Park and Millis, Phys. Rev. B87, 205145 (2013). Results to date display in-plane but little out-of-plane response. We will look at various GTO/STO interfaces, such as single interfaces and superlattices of alternating layers. Supported by ONR EXEDE MURI, ONR N00014-12-0976.
Gilson, Ronan; Durrant, Marcus C
2009-12-14
The deprotonation energies of the water ligands in a set of 40 d-block metal complexes have been calculated using density functional theory with polarized continuum model solvent corrections. The complexes include 13 aqua ions [M(OH(2))(n)](2+/3+) and a variety of aqua complexes with organic co-ligands, whose experimental pK(a) values have been reported in the literature. For comparison, the deprotonation energies of a set of 60 organic and inorganic molecules with experimental pK(a) values ranging from -25 (HSbF(6)) to +52 (C(2)H(6)) have also been calculated. Three different classes of acids are identified as giving different slopes in plots of pK(a) versus deprotonation energies; namely non-hydroxy acids, hydroxy acids, and the metal complexes. The correlation coefficients for the straight lines obtained for these three classes are 0.96, 0.97 and 0.92 respectively. Better correlations are found for sub-sets of the complexes, such as the 31 first row complexes (correlation coefficient 0.95).For several of the complexes, comparison of the calculated and observed pK(a) values, together with changes in the geometry upon optimization, offer new insights into the possible solution structures. It is concluded that DFT calculations incorporating solvent corrections can be used to give reasonable estimates of pK(a) values for the aqua ligands in a range of complex types.
Caricato, Marco; Trucks, Gary W; Frisch, Michael J; Wiberg, Kenneth B
2010-02-09
This work reports a comparison among wave function and DFT single reference methods for vertical electronic transition energy calculations toward singlet states, valence and Rydberg in nature. A series of 11 small organic molecules are used as test cases, where accurate experimental data in gas phase are available. We compared CIS, RPA, CIS(D), EOM-CCSD, and 28 multipurpose density functionals of the type LSDA, GGA, M-GGA, H-GGA, HM-GGA and with separated short and long-range exchange. The list of functionals is obviously not complete, but it spans more than 20 years of DFT development and includes functionals which are commonly used in the computation of a variety of molecular properties. Large differences in the results were found between the various functionals. The aim of this work is therefore to shed some light on the performance of the plethora of functionals available and compare them with some traditional wave function based methods on a molecular property of large interest as the transition energy.
Alecu, I M; Zheng, Jingjing; Papajak, Ewa; Yu, Tao; Truhlar, Donald G
2012-12-20
Multistructural canonical variational transition-state theory with small-curvature multidimensional tunneling (MS-CVT/SCT) is employed to calculate thermal rate constants for hydrogen-atom abstraction from carbon-1 of n-butanol by the hydroperoxyl radical over the temperature range 250-2000 K. The M08-SO hybrid meta-GGA density functional was validated against CCSD(T)-F12a explicitly correlated wave function calculations with the jul-cc-pVTZ basis set. It was then used to compute the properties of all stationary points and the energies and Hessians of a few nonstationary points along the reaction path, which were then used to generate a potential energy surface by the multiconfiguration Shepard interpolation (MCSI) method. The internal rotations in the transition state for this reaction (like those in the reactant alcohol) are strongly coupled to each other and generate multiple stable conformations, which make important contributions to the partition functions. It is shown that neglecting to account for the multiple-structure effects and torsional potential anharmonicity effects that arise from the torsional modes would lead to order-of-magnitude errors in the calculated rate constants at temperatures of interest in combustion.
Greendale, Gail A; Tseng, Chi-Hong; Han, Weijuan; Huang, Mei-Hua; Leung, Katherine; Crawford, Sybil; Gold, Ellen B; Waetjen, L Elaine; Karlamangla, Arun S
2015-03-01
This study aims to examine cross-sectional and longitudinal relations between dietary intake of isoflavones and bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN) in black, white, Chinese, and Japanese women during the menopausal transition. We tested whether tertiles of isoflavone intake were associated with baseline BMD when all women were premenopausal or early perimenopausal. To analyze whether isoflavone intake was associated with longitudinal BMD, we fitted piecewise linear models to repeated measurements of baseline-normalized LS or FN BMD as functions of time before or after the final menstrual period (FMP) date. Multiply adjusted mean FN BMD values of premenopausal Japanese women were monotonically positively related to isoflavone consumption (P for trend = 0.0003). Otherwise, no statistically significant baseline associations were observed. During the period of 1 year before the FMP through 5 years after the FMP, all participants lost LS and FN BMD. Loss was unrelated to isoflavone intake, except for Japanese women during the period of 1 year before the FMP to 2 years after the FMP: higher tertiles of isoflavone intake were associated with greater annual LS BMD loss rates (P for trend = 0.01) and FN loss rates (P for trend = 0.04). In Japanese women, higher isoflavone intake is associated with higher peak FN BMD but also with greater rates of LS and FN BMD loss during the menopausal transition. Results for the other racial/ethnic groups did not support a relation between dietary intake of isoflavones and either peak BMD or BMD loss during the menopausal transition.
Zein, Samir; Neese, Frank
2008-08-28
The paper presents a method comparison for the prediction of zero-field splitting (ZFS) parameters in a series of Mn (II) coordination complexes. The test set consists of Mn (II) complexes that are experimentally well-characterized by X-ray diffraction and high-field electron paramagnetic resonance. Their ZFS parameters have been calculated using density functional theory (DFT) as well as complete active space self-consistent field (CASSCF) methods. It is shown that the recently introduced coupled-perturbed spin-orbit coupling (CP-SOC) approach [ Neese, F. J. Chem. Phys. 2007, 127, 164112 ] together with hybrid-DFT functionals leads to a slope of the correlation line (plot of experimental vs calculated D values) that is essentially unity provided that the direct spin-spin interaction is properly included in the treatment. This is different from our previous DFT study on the same series of complexes where a severe overestimation of the D parameter has been found [ Zein, S. ; Duboc, C. ; Lubitz, W. ; Neese, F. Inorg. Chem. 2008, 47, 134 ]. CASSCF methods have been used to evaluate the ZFS in an "ab initio ligand-field" type treatment. The study demonstrates that a substantial part of the relevant physics is lost in such a treatment since only excitations within the manganese d-manifold are accounted for. Thus, a severe underestimation of the D parameter has been found. Because the CASSCF calculations in combination with quasidegenerate perturbation theory treats the SOC to all orders, we have nevertheless verified that second-order perturbation theory is an adequate approximation in the case of the high-spin d (5) configuration.
Gifts from Exoplanetary Transits
NASA Astrophysics Data System (ADS)
Narita, Norio
2009-08-01
The discovery of transiting extrasolar planets has enabled us to do a number of interesting studies. Transit photometry reveals the radius and the orbital inclination of transiting planets, which allows us to learn the true mass and density of the respective planets by the combined information from radial velocity (RV) measurements. In addition, follow-up observations of transiting planets, looking at such things as secondary eclipses, transit timing variations, transmission spectroscopy, and the Rossiter-McLaughlin effect, provide us information about their dayside temperatures, unseen bodies in systems, planetary atmospheres, and the obliquity of planetary orbits. Such observational information, which will provide us a greater understanding of extrasolar planets, is available only for transiting planets. Here, I briefly summarize what we can learn from transiting planets and introduce previous studies.
Ray, Kallol; Debeer George, Serena; Solomon, Edward I; Wieghardt, Karl; Neese, Frank
2007-01-01
The electronic structures of [M(L(Bu))(2)](-) (L(Bu)=3,5-di-tert-butyl-1,2-benzenedithiol; M=Ni, Pd, Pt, Cu, Co, Au) complexes and their electrochemically generated oxidized and reduced forms have been investigated by using sulfur K-edge as well as metal K- and L-edge X-ray absorption spectroscopy. The electronic structure content of the sulfur K-edge spectra was determined through detailed comparison of experimental and theoretically calculated spectra. The calculations were based on a new simplified scheme based on quasi-relativistic time-dependent density functional theory (TD-DFT) and proved to be successful in the interpretation of the experimental data. It is shown that dithiolene ligands act as noninnocent ligands that are readily oxidized to the dithiosemiquinonate(-) forms. The extent of electron transfer strongly depends on the effective nuclear charge of the central metal, which in turn is influenced by its formal oxidation state, its position in the periodic table, and scalar relativistic effects for the heavier metals. Thus, the complexes [M(L(Bu))(2)](-) (M=Ni, Pd, Pt) and [Au(L(Bu))(2)] are best described as delocalized class III mixed-valence ligand radicals bound to low-spin d(8) central metal ions while [M(L(Bu))(2)](-) (M=Cu, Au) and [M(L(Bu))(2)](2-) (M=Ni, Pd, Pt) contain completely reduced dithiolato(2-) ligands. The case of [Co(L(Bu))(2)](-) remains ambiguous. On the methodological side, the calculation led to the new result that the transition dipole moment integral is noticeably different for S(1s)-->valence-pi versus S(1s)-->valence-sigma transitions, which is explained on the basis of the differences in radial distortion that accompany chemical bond formation. This is of importance in determining experimental covalencies for complexes with highly covalent metal-sulfur bonds from ligand K-edge absorption spectroscopy.
NASA Astrophysics Data System (ADS)
Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.
2008-01-01
The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.
ERIC Educational Resources Information Center
Statfeld, Jenna L.
2011-01-01
Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…
Water's second glass transition.
Amann-Winkel, Katrin; Gainaru, Catalin; Handle, Philip H; Seidl, Markus; Nelson, Helge; Böhmer, Roland; Loerting, Thomas
2013-10-29
The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water's calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This "double Tg scenario" is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate-dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20-25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known ("superstrong"), and also high-density liquid is classified as a strong liquid.
Li, Can; Zhang, Jie; Wu, Hao; Li, Lili; Yang, Caiting; Song, Shushu; Peng, Peike; Shao, Miaomiao; Zhang, Mingming; Zhao, Junjie; Zhao, Ran; Wu, Weicheng; Ruan, Yuanyuan; Wang, Lan; Gu, Jianxin
2017-01-01
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a pattern recognition receptor that plays a critical role in vascular diseases and host immune response. Recently, our research discovered that LOX-1 could facilitate the uptake of dying cells and cross-presentation of cellular antigen via binding with heat shock proteins, which have a close relationship with gastric neoplasia. Therefore, we speculated that LOX-1 may serve as an oncogene in gastric cancer (GC) development and progression. In this study, through immunohistochemistry staining assay and cancer-related databases, we found that LOX-1 expression was up-regulated in GC tissues and correlated with a poor prognosis in GC patients. The expression of LOX-1 was an independent prognostic factor for OS in GC patients, and the incorporation of LOX-1 with TNM stage is more accurate for predicting prognosis. Additionally, in vitro study by transwell assay and western blot analysis confirmed that LOX-1 could promote the migration and invasion of GC cells by driving epithelial-mesenchymal transition and PI3K/Akt/GSK3β activation. Taken together, we first explored the expression profiles, clinical significance and biological function of LOX-1 in GC, and these data suggest that LOX-1 may represent a promising prognostic biomarker for GC and offer a novel molecular target for GC therapies. PMID:28345638
John F. Caratti
2006-01-01
The FIREMON Density (DE) method is used to assess changes in plant species density and height for a macroplot. This method uses multiple quadrats and belt transects (transects having a width) to sample within plot variation and quantify statistically valid changes in plant species density and height over time. Herbaceous plant species are sampled with quadrats while...
NASA Astrophysics Data System (ADS)
Cameron, Andrew Collier
An extrasolar planet will transit the visible hemisphere of its host star if its orbital plane lies sufficiently close to the observer's line of sight. The resulting periodic dips in stellar flux reveal key system parameters, including the density of the host star and, if radial-velocity observations are available, the surface gravitational acceleration of the planet. In this chapter I present the essential methodology for modelling the time-dependent flux variation during a transit, and its use in determining the posterior probability distribution for the physical parameters of the system. Large-scale searches for transiting systems are an efficient way of discovering planets whose bulk densities, and hence compositions, can be accessed if their masses can also be determined. I present algorithms for detrending large ensembles of light curves, for searching for transit-like signals among them. I also discuss methods for identifying diluted stellar eclipsing binaries mimicking planetary transit signals, and validation of transit candidates too faint for radial-velocity follow-up. I review the use of time-resolved spectrophotometry and high-resolution spectroscopy during transits to identify the molecular constituents of exoplanetary atmospheres.
ERIC Educational Resources Information Center
Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A.
2006-01-01
Metal rods of high purity for many elements are now commercially available and may be used to construct a display of relative densities. We have constructed a display with nine metal rods (Mg, Al, Ti, V, Fe, Cu, Ag, Pb, and W) of equal mass whose densities vary from 1.74 to 19.3 g cm[superscript -3]. The relative densities of the metals may be…
ERIC Educational Resources Information Center
Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A.
2006-01-01
Metal rods of high purity for many elements are now commercially available and may be used to construct a display of relative densities. We have constructed a display with nine metal rods (Mg, Al, Ti, V, Fe, Cu, Ag, Pb, and W) of equal mass whose densities vary from 1.74 to 19.3 g cm[superscript -3]. The relative densities of the metals may be…
Tian, Dawei; Hu, Hailong; Wu, Changli
2016-01-01
Objective Brain-specific angiogenesis inhibitor 1 (BAI1) was initially described in 1997, and there have since been a number of studies on its expression in different types of cancer. The aim of the present study was to investigate the expression levels of BAI1 in bladder transitional cell carcinoma (BTCC) at different stages and the mechanism by which it inhibits tumor endothelial cell proliferation. Methods Normal bladder mucosa biopsy specimens were obtained as the control group, and human BTCC biopsy specimens were used as the study group. Immunohistochemical assays were used to detect the expression levels of BAI1, vascular endothelial growth factor (VEGF) and mutant p53, in addition to microvessel density (MVD) in the tissues. Western blotting was used to analyze the differential expression of BAI1 in the two samples. Results Statistical analysis was performed, which indicated that BAI1 expression levels in the normal bladder mucosa group were significantly higher than those in the BTCC group and were associated with clinical staging. BAI1 levels in the T1 stage BTCC tissues were higher than those in the T2–4 stage BTCC tissues (P<0.05). BAI1 expression levels were negatively correlated with those of VEGF (r=−0.661, P<0.001), mutant p53 (r=−0.406, P=0.002) and with the MVD (r=−0.675, P<0.001). Conclusions BAI1 may be involved in the negative regulation of BTCC microvascular proliferation, and its expression may be associated with a reduction in p53 mutations.
Gibbs, G V; Downs, R T; Cox, D F; Rosso, K M; Ross, N L; Kirfel, A; Lippmann, T; Morgenroth, W; Crawford, T D
2008-09-18
Bond critical point (bcp) and local energy density properties for the electron density (ED) distributions, calculated with first-principle quantum mechanical methods for divalent transition metal Mn-, Co-, and Fe-containing silicates and oxides are compared with experimental model ED properties for tephroite, Mn 2SiO 4, fayalite, Fe 2SiO 4, and Co 2SiO 4 olivine, each determined with high-energy synchrotron single-crystal X-ray diffraction data. Trends between the experimental bond lengths, R(M-O), (M = Mn, Fe, Co), and the calculated bcp properties are comparable with those observed for non-transition M-O bonded interactions. The bcp properties, local total energy density, H( r c), and bond length trends determined for the Mn-O, Co-O, and Fe-O interactions are also comparable. A comparison is also made with model experimental bcp properties determined for several Mn-O, Fe-O, and Co-O bonded interactions for selected organometallic complexes and several oxides. Despite the complexities of the structures of the organometallic complexes, the agreement between the calculated and model experimental bcp properties is fair to good in several cases. The G( r c)/rho( r c) versus R(M-O) trends established for non-transition metal M-O bonded interactions hold for the transition metal M-O bonded interactions with G( r c)/rho( r c) increasing in value as H( r c) becomes progressively more negative in value, indicating an increasing shared character of the interaction as G( r c)/rho( r c) increases in value. As observed for the non-transition metal M-O bonded interactions, the Laplacian, nabla (2)rho( r c), increases in value as rho( r c) increases and as H( r c) decreases and becomes progressive more negative in value. The Mn-O, Fe-O, and Co-O bonded interactions are indicated to be of intermediate character with a substantial component of closed-shell character compared with Fe-S and Ni-S bonded interactions, which show greater shared character based on the | V( r c)|/ G( r c
Fouad, Nadya A; Bynner, John
2008-01-01
Individuals make choices in, and adjust to, a world of work that is often a moving target. Because work is so central to human functioning, and transitions in and out of work can have major mental health repercussions, the authors argue that applied psychologists in health services need to understand those transitions. This article focuses on the different types of transition throughout a person's working life and the resources needed at different stages to ensure the success of these transitions. The authors start by examining the roles of capability and adaptability in supporting and facilitating adjustment to work transitions and their relation to identity development. They then examine the role of social and institutional contexts in shaping work transitions and their outcomes. The authors focus on voluntary versus involuntary transitions and then broaden the lens in discussing the policy implications of research on work transitions.
NASA Astrophysics Data System (ADS)
Britt, D. T.; Yeomans, D.; Housen, K.; Consolmagno, G.
2005-01-01
This data set contains a tabulation of asteroid masses, diameters, and bulk densities compiled by D. T. Britt and published in Table 1 of Britt, et al. (2002) [BRITTETAL2002] in the 'Asteroids III' volume.
2012-06-05
It appeared that New Yorkers were not going to be able to see the transit of the planet Venus across the Sun, but just before the transit was over the sun broke through the clouds and Yvette Lee Kang was able to catch a glimpse of the transit on Tuesday, June 5, 2012 in New York. A transit of Venus occurs when the planet passes directly between the sun and earth. This alignment is rare, coming in pairs that are eight years apart but separated by over a century. The next Venus transit will be in December 2117. Photo Credit: (NASA/Bill Ingalls)
2012-06-05
It appeared that New Yorkers were not going to be able to see the transit of the planet Venus across the Sun, but just before the transit was over the sun broke through the clouds and Liz Heller and Andriel Mesznik were able to catch a glimpse of the transit on Tuesday, June 5, 2012 in New York. A transit of Venus occurs when the planet passes directly between the sun and earth. This alignment is rare, coming in pairs that are eight years apart but separated by over a century. The next Venus transit will be in December 2117. Photo Credit: (NASA/Bill Ingalls)
Young, Bruce Kai Fong
1988-09-01
The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub ..cap alpha..//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub ..gamma..//He/sub ..beta../'' and ''He/sub delta//He/sub ..beta../'' helium-like resonance line intensity
ERIC Educational Resources Information Center
Naylor, Mary; Keating, Stacen A.
2008-01-01
Transitional care encompasses a broad range of services and environments designed to promote the safe and timely passage of patients between levels of health care and across care settings. High-quality transitional care is especially important for older adults with multiple chronic conditions and complex therapeutic regimens, as well as for their…
ERIC Educational Resources Information Center
Naylor, Mary; Keating, Stacen A.
2008-01-01
Transitional care encompasses a broad range of services and environments designed to promote the safe and timely passage of patients between levels of health care and across care settings. High-quality transitional care is especially important for older adults with multiple chronic conditions and complex therapeutic regimens, as well as for their…
Transition and laminar instability
NASA Technical Reports Server (NTRS)
Mack, L. M.
1977-01-01
The linear stability theory was applied to the problem of boundary layer transition in incompressible flow. The theory was put into a form suitable for three-dimensional boundary layers; both the temporal and spatial theories were examined; and a generalized Gaster relation for three-dimensional boundary layers was derived. Numerical examples include the stability characteristics of Falkner-Skan boundary layers, the accuracy of the two-dimensional Gaster relation for these boundary layers, and the magnitude and direction of the group velocity for oblique waves in the Blasius boundary layer. Available experiments which bear on the validity of stability theory and its relation to transition are reviewed and the stability theory is applied to transition prediction. The amplitude method is described in which the wide band disturbance amplitude in the boundary layer is estimated from stability theory and an interaction relation for the initial amplitude density of the most unstable frequency.
ERIC Educational Resources Information Center
Baird, Matthew David
2012-01-01
I study three separate questions in this dissertation. In Chapter 1, I develop and estimate a structural dynamic model of occupation and job choice to test hypotheses of the importance of wages and non-wages and learning in occupational transitions, and find that wages are approximately 3 times as important as non-wage benefits in decisions and…
Tong, Glenna So Ming; Law, Yuen-Chi; Kui, Steven C F; Zhu, Nianyong; Leung, King Hong; Phillips, David Lee; Che, Chi-Ming
2010-06-11
The complexes [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)R}](+) (n = 1: R = alkyl and aryl (Ar); n = 1-3: R = phenyl (Ph) or Ph-N(CH(3))(2)-4; n = 1 and 2, R = Ph-NH(2)-4; tBu(3)tpy = 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine) and [Pt(Cl(3)tpy)(C[triple bond]CR)](+) (R = tert-butyl (tBu), Ph, 9,9'-dibutylfluorene, 9,9'-dibutyl-7-dimethyl-amine-fluorene; Cl(3)tpy = 4,4',4''-trichloro-2,2':6',2''-terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu(3)tpy)(C[triple bond]CR)](+) (R = n-butyl, Ph, and C(6)H(4)-OCH(3)-4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C[triple bond]C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations on [Pt(H(3)tpy)(C[triple bond]CR)](+) (R = n-propyl (nPr), 2-pyridyl (Py)), [Pt(H(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)Ph}](+) (n = 1-3), and [Pt(H(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+)/+H(+) (n = 1-3; H(3)tpy = nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar ("cop") with and perpendicular ("per") to the H(3)tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, lambda(1) and lambda(2), of [Pt(Y(3)tpy)(C[triple bond]CR)](+) (Y = tBu or Cl, R = aryl) are attributed to (1)[pi(C[triple bond]CR)-->pi*(Y(3)tpy)] in the "cop" conformation and mixed (1)[d(pi)(Pt)-->pi*(Y(3)tpy)]/(1)[pi(C[triple bond]CR)-->pi*(Y(3)tpy)] transitions in the "per" conformation. The lowest energy absorption peak lambda(1) for [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C
Density limits investigation and high density operation in EAST tokamak
NASA Astrophysics Data System (ADS)
Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Liu, Haiqing; Jie, Yinxian; Wang, Shouxin; Li, Jiahong; Duan, Yanming; Li, Miaohui; Li, Yongchun; Zhang, Ling; Ye, Yang; Yang, Qingquan; Zhang, Tao; Cheng, Yingjie; Xu, Jichan; Wang, Liang; Xu, Liqing; Zhao, Hailin; Wang, Fudi; Lin, Shiyao; Wu, Bin; Lyu, Bo; Xu, Guosheng; Gao, Xiang; Shi, Tonghui; He, Kaiyang; Lan, Heng; Chu, Nan; Cao, Bin; Sun, Zhen; Zuo, Guizhong; Ren, Jun; Zhuang, Huidong; Li, Changzheng; Yuan, Xiaolin; Yu, Yaowei; Wang, Houyin; Chen, Yue; Wu, Jinhua; EAST Team
2016-05-01
Increasing the density in a tokamak is limited by the so-called density limit, which is generally performed as an appearance of disruption causing loss of plasma confinement, or a degradation of high confinement mode which could further lead to a H → L transition. The L-mode and H-mode density limit has been investigated in EAST tokamak. Experimental results suggest that density limits could be triggered by either edge cooling or excessive central radiation. The L-mode density limit disruption is generally triggered by edge cooling, which leads to the current profile shrinkage and then destabilizes a 2/1 tearing mode, ultimately resulting in a disruption. The L-mode density limit scaling agrees well with the Greenwald limit in EAST. The observed H-mode density limit in EAST is an operational-space limit with a value of 0.8∼ 0.9{{n}\\text{GW}} . High density H-mode heated by neutral beam injection (NBI) and lower hybrid current drive (LHCD) are analyzed, respectively. The constancy of the edge density gradients in H-mode indicates a critical limit caused perhaps by e.g. ballooning induced transport. The maximum density is accessed at the H → L transition which is generally caused by the excessive core radiation due to high Z impurities (Fe, Cu). Operating at a high density (>2.8× {{10}19} {{\\text{m}}-3} ) is favorable for suppressing the beam shine through NBI. High density H-mode up to 5.3× {{10}19}{{\\text{m}}-3}~≤ft(∼ 0.8{{n}\\text{GW}}\\right) could be sustained by 2 MW 4.6 GHz LHCD alone, and its current drive efficiency is studied. Statistics show that good control of impurities and recycling facilitate high density operation. With careful control of these factors, high density up to 0.93{{n}\\text{GW}} stable H-mode operation was carried out heated by 1.7 MW LHCD and 1.9 MW ion cyclotron resonance heating with supersonic molecular beam injection fueling.
2014-09-11
This image, taken by NASA Mars Reconnaissance Orbiter, shows the transition between the Murray Formation, in which layers are poorly expressed and difficult to trace from orbit, and the hematite ridge, which is made up of continuous layers.
Phase Transitions in Brownian Pumps
NASA Astrophysics Data System (ADS)
Dierl, Marcel; Dieterich, Wolfgang; Einax, Mario; Maass, Philipp
2014-04-01
We study stochastic particle transport between two reservoirs along a channel, where the particles are pumped against a bias by a traveling wave potential. It is shown that phase transitions of period-averaged densities or currents occur inside the channel when exclusion interactions between the particles are taken into account. These transitions reflect those known for the asymmetric simple exclusion process. We argue that their occurrence is a generic feature of Brownian motors operating in open systems.
Phase transitions in nuclear matter
Glendenning, N.K.
1984-11-01
The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.
Chen, Yung-Han; Maity, Amarendra N; Frey, Perry A; Ke, Shyue-Chu
2013-01-16
An "open"-state crystal structure of lysine 5,6-aminomutase suggests that transition to a hypothetical "closed"-state is required to bring the cofactors adenosylcobalamin (AdoCbl) and pyridoxal-5'-phosphate (PLP) and the substrate into proximity for the radical-mediated 1,2-amino group migration. This process is achieved by transaldimination of the PLP-Lys144β internal aldimine with the PLP-substrate external aldimine. A closed-state crystal structure is not available. UV-vis and electron paramagnetic resonance studies show that homologues of substrate D-lysine, 2,5-DAPn, 2,4-DAB, and 2,3-DAPr bind to PLP as an external aldimine and elicit the AdoCbl Co-C bond homolysis and the accumulations of cob(II)alamin and analogue-based radicals, demonstrating the existence of a closed state. (2)H- and (31)P-electron nuclear double resonance studies, supported by computations, show that the position for hydrogen atom abstraction from 2,5-DAPn and 2,4-DAB by the 5'-deoxyadenosyl radical occurs at the carbon adjacent to the imine, resulting in overstabilized radicals by spin delocalization through the imine into the pyridine ring of PLP. These radicals block the active site, inhibit the enzyme, and poise the enzyme into two distinct conformations: for even-numbered analogues, the cob(II)alamin remains proximal to and spin-coupled with the analogue-based radical in the closed state while odd-numbered analogues could trigger the transition to the open state of the enzyme. We provide here direct spectroscopic evidence that strongly support the existence of a closed state and its analogue-dependent transition to the open state, which is one step that was proposed to complete the catalytic turnover of the substrate lysine.
Echoes of the Glass Transition in Athermal Soft Spheres
NASA Astrophysics Data System (ADS)
Morse, Peter K.; Corwin, Eric I.
2017-09-01
Recent theoretical advances have led to the creation of a unified phase diagram for the thermal glass and athermal jamming transitions. This diagram makes clear that, while related, the mode-coupling—or dynamic—glass transition is distinct from the jamming transition, occurring at a finite temperature and significantly lower density than the jamming transition. Nonetheless, we demonstrate a prejamming transition in athermal frictionless spheres which occurs at the same density as the mode-coupling transition and is marked by percolating clusters of locally rigid particles. At this density in both the thermal and athermal systems, individual motions of an extensive number of particles become constrained, such that only collective motion is possible. This transition, which is well below jamming, exactly matches the definition of collective behavior at the dynamical transition of glasses. Thus, we reveal that the genesis of rigidity in both thermal and athermal systems is governed by the same underlying topological transition in their shared configuration space.
Bowen fluorescence in the solar transition region
NASA Technical Reports Server (NTRS)
Raymond, J. C.
1978-01-01
In Bowen fluorescence, a 304-A photon of He II is converted into two optical photons and an EUV photon of O III. The fluorescent contribution to the intensity of the O III 374-A line is a measure of the column density of O III in the solar transition region. Division of the column density into the emission measure derived from other lines of O III allows determination of the electron density. The accuracy of this technique is roughly a factor of 2, which is comparable to the accuracy of the density diagnostics for the solar transition region.
Dynamics of a Quantum Phase Transition
Zurek, Wojciech H.; Dorner, Uwe; Zoller, Peter
2005-09-02
We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.
NASA Astrophysics Data System (ADS)
Alcock-Zeilinger, J.; Weigert, H.
2017-05-01
In this paper, we give a generic algorithm of the transition operators between Hermitian Young projection operators corresponding to equivalent irreducible representations of 𝖲𝖴 (N ) , using the compact expressions of Hermitian Young projection operators derived in the work of Alcock-Zeilinger and Weigert [eprint arXiv:1610.10088 [math-ph
2006-06-09
Podesta for the Heads of Executive Departments and Agencies, “Presidential Transition Guidance,” Nov. 13, 2000. 89 U.S. General Services Administration...2000, presidential election, White House Chief of Staff John Podesta issued a November 13, 2000, memorandum to executive branch agencies stating that
ERIC Educational Resources Information Center
Cassidy, Joan
1998-01-01
Describes two sixth-grade lessons on the work of M. C. Escher: (1) the first lesson instructs students on tessellations, or tiles that interlock in a repeated pattern; (2) the second lesson explores Escher's drawings of transitions from two- to three-dimensional space. (DSK)
2012-06-05
Leslie Lowes from the NASA Jet Propulsion Laboratory in Pasadena, Calif., views the June 5, 2012, Venus transit through a solar telescope. Lowes participated in an education workshop at the INFINITY at NASA Stennis Space Center visitor center and joined others to view the rare celestial event when Venus traverses the face of the sun.
2012-06-05
Guests at the INFINITY at NASA Stennis Space Center visitor center use special solar sunglasses to catch a lifetime view of the Venus transit June 5, 2012. The rare celestial event in which the planet Venus traverses the face of the sun will not be visible from Earth again until 2117.
ERIC Educational Resources Information Center
Kofoed, Jette
2008-01-01
This analysis concentrates on the case of a child, Jenny. The paper suggests that the concept of liminality may hold the key to an understanding of muted subject positions like the one assumed by Jenny in a school class. Liminality is proposed as a way of conceptualizing transitions where the subject in question transgresses established rules and…
ERIC Educational Resources Information Center
Cassidy, Joan
1998-01-01
Describes two sixth-grade lessons on the work of M. C. Escher: (1) the first lesson instructs students on tessellations, or tiles that interlock in a repeated pattern; (2) the second lesson explores Escher's drawings of transitions from two- to three-dimensional space. (DSK)
Isoconversion Analysis of the Glass Transition
NASA Astrophysics Data System (ADS)
Badrinarayanan, Prashanth; Zheng, Wei; Simon, Sindee
2007-03-01
At temperatures below their glass transition temperatures (Tgs), glass forming materials deviate from equilibrium density and form a glass. The kinetic nature of the glass transition process is manifested in the cooling rate dependence of the glass transition temperature and by structural relaxation below Tg. Various facets of the glass transition kinetics have been well described by phenomenological models of the glass transition, such as the TNM and KAHR model. An important yet frequently questioned assumption in these models is that the apparent activation energy, which describes the temperature dependence of the relaxation time, does not vary during the glass transition process. Some recent reports suggest that the activation energy varies significantly during the glass transition process. In this work we apply an isoconversion analysis to data in the glass transition region which was obtained on cooling from capillary dilatometry and differential scanning calorimetry (DSC) in order to determine whether the apparent activation energy increases as the glassy state is approached.
Analysis of Nuclear Quantum Phase Transitions
Li, Z. P.; Meng, J.; Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.
2009-08-26
A microscopic analysis, based on nuclear energy density functionals, is presented for shape phase transitions in Nd isotopes. Low-lying excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian, with parameters determined by constrained relativistic mean-field calculations for triaxial shapes. The results reproduce available data, and show that there is an abrupt change of structure at N = 90, that corresponds to a first-order quantum phase transition between spherical and axially deformed shapes.
ERIC Educational Resources Information Center
Gallick, Barb; Lee, Lisa
2010-01-01
Adults often find themselves transitioning from one activity to another in a short time span. Most of the time, they do not feel they have a lot of control over their schedules, but wish that they could carve out extended time to relax and focus on one project. Picture a group of children in the block area who have spent 15 or 20 minutes building…
Belanzoni, P; Sgamellotti, A; Re, N; Floriani, C
2000-03-20
Density functional calculations were performed on a series of M(OH3)-substituted (M = Ti,V) cyclopolyenes as simple models is metal carbides. We studied the oligomerization of the metal acetylide complexes [MLn]2 (mu-C2) as a possible precursor of these [(OH)3MC]n (n = 4,6) hypothetical species. Special emphasis was placed on the comparison of the main properties of these metal substituted cyclopolyenes with those of the corresponding cyclopolyenes in an attempt to study the effects of the metal substituents on the organic C4 and C6 cyclic moieties. Whereas for the titanium species, the pi system of the polyene moiety is slightly perturbed, the electronic structures and molecular geometries found for the vanadium species suggest a metalla radialene nature for these compounds, with the endocyclic conjugation of carbon-carbon double bonds replaced by an exocyclic arrangement of carbon-metal double bonds.
Density: An Extended Investigation.
ERIC Educational Resources Information Center
Rieck, William
1996-01-01
Presents a complete set of laboratory experiences on density. Includes establishing a density table, identifying an unknown, determining the density of irregular solids, and expanding the density table. Activities can be augmented with discussions about other applications. (DDR)
A bone density scan measures the density of bone in a person. The lower the density of a bone the ... and whether any preventative treatment is needed. A bone density scan has the advantage of being painless and ...
Spin Polarization in High Density Quark Matter
NASA Astrophysics Data System (ADS)
Bohr, Henrik; Panda, Prafulla K.; Providência, Constança; da Providência, João
2013-04-01
We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, to which it is related through a Fierz transformation. Flavor SU(2) and flavor SU(3) quark matter are considered. A second-order phase transition is predicted at densities about 5 times the normal nuclear matter density. It is also found that in flavor SU(3) quark matter, a first-order transition from the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP.
Bernstein, P. Harnois, C.; Mc Loughlin, C.; Noudem, J.; Thimont, Y.; Ferro, G.; Osorio, M. R.; Veira, J. A.; Vidal, D.; Vidal, F.
2014-02-07
The influence of surface defects, in particular of a-axis grains, on the transition to the normal state induced by high current densities in YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films and in a commercial 2G-coated conductor is investigated. For that purpose, the surface of the samples is observed by scanning electron microscopy and isothermal current-voltage curves are measured at different temperatures with pulsed currents up to the quenching value I*. The results show that the ratio of I* to the critical current is large if a-axis grains are not visible at the surface of the YBCO films, while it is much lower if the surface includes a-axis grains as this is the case for the coated conductor. The connection between the transition onset and the vortex dynamics, as well as the role of the a-axis grains in this process are discussed. The relation between the I* values obtained from thermal calculations and those resulting from vortex dynamics considerations is also discussed, as well as the possible consequences suggested by this work for the different applications of the coated conductors.
Gohr, Sebastian; Hrobárik, Peter; Repiský, Michal; Komorovský, Stanislav; Ruud, Kenneth; Kaupp, Martin
2015-12-24
The four-component matrix Dirac-Kohn-Sham (mDKS) implementation of EPR g- and hyperfine A-tensor calculations within a restricted kinetic balance framework in the ReSpect code has been extended to hybrid functionals. The methodology is validated for an extended set of small 4d(1) and 5d(1) [MEXn](q) systems, and for a series of larger Ir(II) and Pt(III) d(7) complexes (S = 1/2) with particularly large g-tensor anisotropies. Different density functionals (PBE, BP86, B3LYP-xHF, PBE0-xHF) with variable exact-exchange admixture x (ranging from 0% to 50%) have been evaluated, and the influence of structure and basis set has been examined. Notably, hybrid functionals with an exact-exchange admixture of about 40% provide the best agreement with experiment and clearly outperform the generalized-gradient approximation (GGA) functionals, in particular for the hyperfine couplings. Comparison with computations at the one-component second-order perturbational level within the Douglas-Kroll-Hess framework (1c-DKH), and a scaling of the speed of light at the four-component mDKS level, provide insight into the importance of higher-order relativistic effects for both properties. In the more extreme cases of some iridium(II) and platinum(III) complexes, the widely used leading-order perturbational treatment of SO effects in EPR calculations fails to reproduce not only the magnitude but also the sign of certain g-shift components (with the contribution of higher-order SO effects amounting to several hundreds of ppt in 5d complexes). The four-component hybrid mDKS calculations perform very well, giving overall good agreement with the experimental data.
2012-06-05
A "transit of Venus" occurs when the planet Venus passes directly between the sun and the Earth. During the event, Venus will be seen from Earth as a small black sphere moving across the face of the sun. Such an event won’t occur again until the year 2117. The Goddard Visitor Center hosted a watch party that included near real-time images from NASA’s Solar Dynamics Observatory mission, coverage of the event from several locations via NASA TV, in-person presentations by NASA experts, hands-on activities for children of all ages. Heavy cloud cover did not allow viewing opportunities of the transit via solar telescopes. Credit: NASA/Goddard Space Flight Center/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Negative refraction using Raman transitions and chirality
Sikes, D. E.; Yavuz, D. D.
2011-11-15
We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.
Fluctuating hydrodynamics and glass transition theory
NASA Astrophysics Data System (ADS)
Rostiashvili, V. G.
1988-02-01
Kawasaki's mode-coupling theory is used for deriving and solving non-linear equations of the fluctuating hydrodynamics for a simple fluid. The ergodicity-nonergodicity transition (glass transition) associated with the existence of a zero-frequency pole in the Laplace spectrum of the density correlation function has been discussed. The behaviour of the dynamical viscosity and dynamical moduli in the vicinity of transition has been studied in detail. The physical sense of the glass transition criterion has been considered, and it is compared to the percolation threshold for the overlapping spheres problem.
NASA Technical Reports Server (NTRS)
2006-01-01
22 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a transition from one of the many layered troughs in the north polar region of Mars to the relatively homogeneous-looking upper surface of the polar cap. The difference in brightness across this scene is a function of several factors, one of which is the amount of dust versus that of ice in any given location. The bright material that dominates the scene is largely water ice.
Location near: 83.2oN, 297.8oW Image width: 3 km (1.9 mi) Illumination from: lower right Season: Northern Summer
LATTICE QCD AT FINITE DENSITY.
SCHMIDT, C.
2006-07-23
I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.
Density-density correlations on a gelatin films surface
NASA Astrophysics Data System (ADS)
Novikov, D. V.; Krasovskii, A. N.
2012-08-01
The spatial correlations on the surface of films obtained from aqueous solutions of gelatin during cooling from 320 to 293 K have been studied using electron microscopy. It has been shown that the total density fluctuation correlation function on the scale R > 4 nm can be represented in the form h( R) ˜ R - n exp(- R/ζ), where the correlation radius ζ coincides with the hydrodynamic radius of a macromolecule. Unfolding of macromolecules in the coil → helix transformation leads to a decrease in the density and the fractal dimension of the physical network of pinnings of macromolecules and to variation in the index n of the power term in the function h( R) from n = 1 to 2, due to the transition from a continual type of disorder to a cellular type in a solid.
NASA Astrophysics Data System (ADS)
vanden-Eijnden, E.
The dynamical behavior of many systems arising in physics, chemistry, biology, etc. is dominated by rare but important transition events between long lived states. For over 70 years, transition state theory (TST) has provided the main theoretical framework for the description of these events [17,33,34]. Yet, while TST and evolutions thereof based on the reactive flux formalism [1, 5] (see also [30,31]) give an accurate estimate of the transition rate of a reaction, at least in principle, the theory tells very little in terms of the mechanism of this reaction. Recent advances, such as transition path sampling (TPS) of Bolhuis, Chandler, Dellago, and Geissler [3, 7] or the action method of Elber [15, 16], may seem to go beyond TST in that respect: these techniques allow indeed to sample the ensemble of reactive trajectories, i.e. the trajectories by which the reaction occurs. And yet, the reactive trajectories may again be rather uninformative about the mechanism of the reaction. This may sound paradoxical at first: what more than actual reactive trajectories could one need to understand a reaction? The problem, however, is that the reactive trajectories by themselves give only a very indirect information about the statistical properties of these trajectories. This is similar to why statistical mechanics is not simply a footnote in books about classical mechanics. What is the probability density that a trajectory be at a given location in state-space conditional on it being reactive? What is the probability current of these reactive trajectories? What is their rate of appearance? These are the questions of interest and they are not easy to answer directly from the ensemble of reactive trajectories. The right framework to tackle these questions also goes beyond standard equilibrium statistical mechanics because of the nontrivial bias that the very definition of the reactive trajectories imply - they must be involved in a reaction. The aim of this chapter is to
Martensitic phase transition involving dislocations
NASA Astrophysics Data System (ADS)
Le, K. C.; Günther, C.
2015-06-01
A model of solid-solid phase transition involving dislocations in crystals is proposed within the nonlinear continuum dislocation theory (CDT). The co-existence of phases having piecewise constant plastic slip in laminates is possible for the two-well free energy density. The jumps of the plastic slip across the phase interfaces determine the surface dislocation densities at those incoherent boundaries. The number of phase interfaces should be determined by comparing the energy of dislocation arrays and the relaxed energy minimized among uniform plastic slips.
Density: A Discovery Approach.
ERIC Educational Resources Information Center
Rieck, William
1994-01-01
Describes an activity that allows students to discover the concept of density and that density is a determining physical property of a pure substance. Makes suggestions to further enhance students' understanding of density. (ZWH)
Single-charge-exchange reactions and the neutron density at the surface of the nucleus
NASA Astrophysics Data System (ADS)
Loc, Bui Minh; Auerbach, Naftali; Khoa, Dao T.
2017-07-01
In this paper, we study the charge-exchange reaction to the isobaric analog state using two types of transition densities. One transition density is equal to the difference of the total neutron density minus the total proton density and the other one is the density of the excess neutrons only. We show that for projectiles that do not probe the interior of the nucleus but mostly the surface of this nucleus, distinct differences in the cross section arise when two types of transition densities are employed. We demonstrate this by considering the (3He,t ) reaction.
Origin of cosmological density fluctuations
Carr, B.J.
1984-11-01
The density fluctuations required to explain the large-scale cosmological structure may have arisen spontaneously as a result of a phase transition in the early Universe. There are several ways in which such fluctuations may have ben produced, and they could have a variety of spectra, so one should not necessarily expect all features of the large-scale structure to derive from a simple power law spectrum. Some features may even result from astrophysical amplification mechanisms rather than gravitational instability. 128 references.
A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope
Lee, Byeongchan; Lee, Geun Woo
2016-01-01
Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements. PMID:27762334
A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope.
Lee, Byeongchan; Lee, Geun Woo
2016-10-20
Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements.
A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope
NASA Astrophysics Data System (ADS)
Lee, Byeongchan; Lee, Geun Woo
2016-10-01
Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements.
Interplay between micelle formation and waterlike phase transitions
NASA Astrophysics Data System (ADS)
Heinzelmann, G.; Figueiredo, W.; Girardi, M.
2010-02-01
A lattice model for amphiphilic aggregation in the presence of a structured waterlike solvent is studied through Monte Carlo simulations. We investigate the interplay between the micelle formation and the solvent phase transition in two different regions of temperature-density phase diagram of pure water. A second order phase transition between the gaseous (G) and high density liquid (HDL) phases that occurs at very high temperatures, and a first order phase transition between the low density liquid (LDL) and (HDL) phases that takes place at lower temperatures. In both cases, we find the aggregate size distribution curve and the critical micellar concentration as a function of the solvent density across the transitions. We show that micelle formation drives the LDL-HDL first order phase transition to lower solvent densities, while the transition G-HDL is driven to higher densities, which can be explained by the markedly different degrees of micellization in both cases. The diffusion coefficient of surfactants was also calculated in the LDL and HDL phases, changing abruptly its behavior due to the restructuring of waterlike solvent when we cross the first order LDL-HDL phase transition. To understand such behavior, we calculate the solvent density and the number of hydrogen bonds per water molecule close to micelles. The curves of the interfacial solvent density and the number of hydrogen bonds per water molecule in the first hydration signal a local phase change of the interfacial water, clarifying the diffusion mechanism of free surfactants in the solvent.
Kepler-79's low density planets
Jontof-Hutter, Daniel; Lissauer, Jack J.; Rowe, Jason F.; Fabrycky, Daniel C.
2014-04-10
Kepler-79 (KOI-152) has four planetary candidates ranging in size from 3.5 to 7 times the size of the Earth, in a compact configuration with orbital periods near a 1:2:4:6 chain of commensurability, from 13.5 to 81.1 days. All four planets exhibit transit timing variations with periods that are consistent with the distance of each planet to resonance with its neighbors. We perform a dynamical analysis of the system based on transit timing measurements over 1282 days of Kepler photometry. Stellar parameters are obtained using a combination of spectral classification and the stellar density constraints provided by light curve analysis and orbital eccentricity solutions from our dynamical study. Our models provide tight bounds on the masses of all four transiting bodies, demonstrating that they are planets and that they orbit the same star. All four of Kepler-79's transiting planets have low densities given their sizes, which is consistent with other studies of compact multiplanet transiting systems. The largest of the four, Kepler-79 d (KOI-152.01), has the lowest bulk density yet determined among sub-Saturn mass planets.
Updating the axion cold dark matter energy density
Bae, Kyu Jung; Huh, Ji-Haeng; Kim, Jihn E E-mail: jhhuh@phya.snu.ac.kr
2008-09-15
We improve the estimate of the axion cold dark matter energy density by considering the new values of current quark masses, the quantum chromodynamics phase transition effect and a possible anharmonic effect.
Density functional theory for carbon dioxide crystal
Chang, Yiwen; Mi, Jianguo Zhong, Chongli
2014-05-28
We present a density functional approach to describe the solid−liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
Quantum phase transitions with dynamical flavors
NASA Astrophysics Data System (ADS)
Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.
2016-07-01
We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.
Transitions: A Personal Perspective.
ERIC Educational Resources Information Center
Wood, Ann Stace
1995-01-01
Distinguishes between unchosen transitions (children maturing and leaving, parents aging, companies downsizing) and chosen ones (moving, divorce, marriage, career changes). Describes the steps one goes through: uneasiness, renewed energy, complaining, exploration, partial transition, and the completed transition. (JOW)
Topological Lifshitz transitions
NASA Astrophysics Data System (ADS)
Volovik, G. E.
2017-01-01
Different types of Lifshitz transitions are governed by topology in momentum space. They involve the topological transitions with the change of topology of Fermi surfaces, Weyl and Dirac points, nodal lines, and also the transitions between the fully gapped states.
... Centers Workspaces Workspaces Who Knows What? Survey Item Bank Search for: Transition to Adulthood Link-checked, June ... reading… Back to top IDEA’s Definition of Transition Services Any discussion of transition services must begin with ...
Kepler-7b: A Transiting Planet With Unusually Low Density
2010-04-20
not much hotter than the Sun, Teff = 6000 K. However, it is more massive and considerably larger than the Sun, M = 1.35M and R = 1.84R, and must be...and surface gravity of Teff = 5944 K and log g = 4.27 (cgs) to Kepler-7, corresponding to a late-F or early-G dwarf. Stellar gravities in this part of...period is fairly long,P = 4.886 days, and the host star is not much hotter than the Sun, Teff = 6000 K. However, it is more massive and considerably
Density induced transition in a school of fish
NASA Astrophysics Data System (ADS)
Cambuí, Dorílson Silva; Rosas, Alexandre
2012-08-01
Collective behaviour has been studied in various fields of science. As an example, we may consider the patterns observed in living systems, whose aggregates form organized groups such as flocks of birds, herds of mammals and schools of fish. These aggregates may be formed as a consequence of an external stimulus or due to the local interaction among nearby specimens. As an example of the latter case one may think about a school of fish, where each individual bases its behaviour on its perception of the position and velocity of its nearest neighbours. As a result of these interactions, global collective behaviour may emerge, originating and maintaining the cohesion of the aggregate. In this work, we model the collective movement of a school of fish using an agent-based model which follows biologically motivated behavioural rules previously proposed. The distributions of nearest neighbour distance and relative orientations between neighbouring fishes are measured and the results are found to be in good agreement with previous experimental measurements.
Palenik, Mark C.; Dunlap, Brett I.
2015-07-28
Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.
Characteristic length of glass transition
NASA Astrophysics Data System (ADS)
Donth, E.
1996-03-01
The characteristic length of the glass transition (ξ _α ) is based on the concept of cooperatively rearranging regions (CRR's) by Adam & Gibbs (1965): ξ _α is the diameter of one CRR. In the theoretical part of the talk a formula is derived how this length can be calculated from calorimetric data of the transformation interval. The approach is based on fluctuations in natural functional subsystems. The corresponding thermodynamics is represented e.g. in a book of the author (E. Donth, Relaxation and Thermodynamics in Polymers. Glass Transition, Akademie-Verlag, Berlin 1992). A typical value for this length is 3 nanometers. In the experimental part several examples are reported to enlarge the experimental evidence for such a length: Squeezing the glass transition in the amorphous layers of partially crystallized PET (C. Schick, Rostock), glass transition of small-molecule glass formers in a series of nanoscaled pores of porous glasses (F. Kremer, Leipzig), comparison with a concentration fluctuation model in homogeneous polymer mixtures (E.W. Fischer, Mainz), and, from our laboratory, backscaling to ξ _α across the main transition from the entanglement spacing in several amorphous polymers such as PVAC, PS, NR, and some polymer networks. Rouse backscaling was possible in the α β splitting region of several poly(n alkyl methacrylates) resulting in small characteristic lengths of order 1 nanometer near the onset of α cooperativity. In a speculative outlook a dynamic density pattern is presented, having a cellular structure with higher density and lower mobility of the cell walls. It will be explained, with the aid of different thermal expansion of wall and clusters, how the clusters within the cells maintain a certain mobility far below the glass temperature.
Intersystem transitions of interstellar carbon monoxide toward zeta Ophiuchi
NASA Technical Reports Server (NTRS)
Federman, S. R.; Cardelli, Jason A.; Sheffer, Yaron; Lambert, David L.; Morton, D. C.
1994-01-01
Absorption from seven intersystem (triplet-singlet) transitions of interstellar (12)CO were detected in ultraviolet spectra of zeta Oph. The observed equivalent widths are approximately consistent with the transitions' predicted f-values and the (12) CO column density derived from the weakest of the observed A-X bands. These unsaturated intersystem transitions provide the opportunity to measure the (12)CO column density for heavily reddened (dense) sight lines. Laboratory measurements of oscillator strengths more precise than available ones will be needed to derive accurate column densities.
Holographic phase transitions at finite chemical potential
NASA Astrophysics Data System (ADS)
Mateos, David; Matsuura, Shunji; Myers, Robert C.; Thomson, Rowan M.
2007-11-01
Recently, holographic techniques have been used to study the thermal properties of Script N = 2 super-Yang-Mills theory, with gauge group SU(Nc) and coupled to Nf << Nc flavours of fundamental matter, at large Nc and large 't Hooft coupling. Here we consider the phase diagram as a function of temperature and baryon chemical potential μb. For fixed μb < NcMq there is a line of first order thermal phase transitions separating a region with vanishing baryon density and one with nonzero density. For fixed μb>Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].
Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction
NASA Astrophysics Data System (ADS)
Madhuri, K.; Basu, D. N.; Routray, T. R.; Pattnaik, S. P.
2017-07-01
The mass, radius and crustal fraction of moment of inertia in neutron stars are calculated using β-equilibrated nuclear matter obtained from the Skyrme effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions using the KDE0v1 set. The neutron star masses obtained by solving the Tolman-Oppenheimer-Volkoff equations using neutron star matter obtained from this set are able to describe highly massive compact stars ˜ 2M_{⊙}. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar, R≥ 3.69 + 3.44M/M_{⊙}. Present calculations suggest that the crustal fraction of the total moment of inertia can be ˜ 6.3% due to crustal entrainment caused by the Bragg reflection of unbound neutrons by lattice ions.
ERIC Educational Resources Information Center
Shaw, Mike
2003-01-01
Integrates story telling into a science activity on the density of liquids in order to increase student interest. Shows the relationship between mass and volume ratio and how they determine density. Includes teacher notes. (YDS)
Dynamics of stimulated L → H transitions
Miki, K.; Diamond, P. H.; Xiao, W. W.; Hahn, S.-H.; Gürcan, Ö. D.; Tynan, G. R.
2013-08-15
We report on model studies of stimulated L → H transitions [K. Miki et al., Phys. Rev. Lett. 110, 195002 (2013)]. These studies use a reduced mesoscale model. Model studies reveal that L → H transition can be triggered by particle injection into a subcritical state (i.e., P
density and temperature gradients. The change of edge mean flow shear is critical to turbulence collapse and the subsequent stimulated transition. For low ambient heating, strong injection is predicted to trigger a transient turbulence collapse. Repetitive injection at a period less than the lifetime of the collapsed state can thus maintain the turbulence collapse and so sustain a driven H-mode-like state. The total number of particles required to induce a transition by either injection or gas puffing is estimated. Results indicate that the total number of injected particles required is much smaller than that required for a transition by gas puffing. We thus show that internal injection is more efficient than gas puffing of comparable strength. We also observe that zonal flows do not play a critical role in stimulated transitions. For spontaneous transitions, the spike of the Reynolds work of turbulence on the zonal flow precedes the spike in the mean electric field shear. In contrast, we show that the two are coincident for stimulated transitions, suggesting that there is no causal link between zonal and mean flows for stimulated transitions.
Single fiber lignin distributions based on the density gradient column method
Brian Boyer; Alan W. Rudie
2007-01-01
The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...
Information geometric density estimation
NASA Astrophysics Data System (ADS)
Sun, Ke; Marchand-Maillet, Stéphane
2015-01-01
We investigate kernel density estimation where the kernel function varies from point to point. Density estimation in the input space means to find a set of coordinates on a statistical manifold. This novel perspective helps to combine efforts from information geometry and machine learning to spawn a family of density estimators. We present example models with simulations. We discuss the principle and theory of such density estimation.
Transition physics and scaling overview
Carlstrom, T.N.
1995-12-01
This paper presents an overview of recent experimental progress towards understanding H-mode transition physics and scaling. Terminology and techniques for studying H-mode are reviewed and discussed. The model of shear E x B flow stabilization of edge fluctuations at the L-H transition is gaining wide acceptance and is further supported by observations of edge rotation on a number of new devices. Observations of poloidal asymmetries of edge fluctuations and dephasing of density and potential fluctuations after the transition pose interesting challenges for understanding H-mode physics. Dedicated scans to determine the scaling of the power threshold have now been performed on many machines. A dear B{sub t} dependence is universally observed but dependence on the line averaged density is complicated. Other dependencies are also reported. Studies of the effect of neutrals and error fields on the power threshold are under investigation. The ITER threshold database has matured and offers guidance to the power threshold scaling issues relevant to next-step devices.
ERIC Educational Resources Information Center
Hawkes, Stephen J.
2004-01-01
Students are aware of the theoretical or abstract concept of density, but fail to understand its practical implication in that the thickness concentrated in a solid object is what constitutes density. A study of the density concept reveals its very practical and qualitative nature, and the students must look beyond theoretical equations to…
ERIC Educational Resources Information Center
Design and Environment, 1972
1972-01-01
Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…
ERIC Educational Resources Information Center
Kellems, Ryan, Comp.; Morningstar, Mary E., Comp.
2009-01-01
The Tips for Transition contains 134 Transition Tips submitted from all over the country by practitioners. The purpose of the Tips was to identify grassroots transition practices being used by practitioners. Tips are categorized into the following domains: (1) Transition Planning; (2) Student Involvement; (3) Family Involvement; (4) Curriculum and…
Chiral symmetry and density waves in quark matter
Nakano, E.; Tatsumi, T.
2005-06-01
A density wave in quark matter is discussed at finite temperature, which occurs along with the chiral condensation, and is described by a dual standing wave in scalar and pseudoscalar condensates on the chiral circle. The mechanism is quite similar to that for the spin density wave suggested by Overhauser and entirely reflects many-body effects. It is found within a mean-field approximation for the Nambu-Jona-Lasinio model that the chiral-condensed phase with the density wave develops at a high-density region just outside the usual chiral-transition line in phase diagram. A magnetic property of the density wave is also elucidated.
The Density and Molecular Column Density Structure of Three Molecular Cloud Cores
NASA Astrophysics Data System (ADS)
Mundy, Lee George
Multi-transition studies using CS, C('34)S, and H(,2)CO are presented for the dense cores in the molecular clouds M17, S140, and NGC 2024. The typical peak density derived for these cores is -10('6) cm('-3), much larger than the average density in molecular clouds, but the gas density is not strongly correlated with the line intensities within the core itself. A map of line intensity appears to be a map of molecular column density whereas the gas density is evident in the ratios of intensities of different lines. Although the data do not have the spatial resolution to directly "see" clumps in the core, statistical equilibrium modeling of the data does provide evidence for an inhomogeneous distribution of the dense gas within the telescope beam. Many aspects of the data can best be explained by a model in which the gas with density > 10('5) cm('-3) is distributed in numerous small (< 1 are minmute) clumps. In the context of this model, the molecular column density structure of the core is caused by a decrease in the number density of clumps with increasing radial distance from the center of the core. The large number of observed transitions in the three molecules also allows us to evaluate the effectiveness of the individual molecules as density probes. We find that the gas densities derived from CS, C('34)S, and H(,2)CO are in reasonable agreement and present guidelines for future use of these molecules as density probes.
Transiting Exoplanet Survey Satellite (TESS)
NASA Technical Reports Server (NTRS)
Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.
2012-01-01
The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.
Oxides having high energy densities
Ceder, Gerbrand; Kang, Kisuk
2013-09-10
Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.
Ignitability of materials in transitional heating regimes
Mark A. Dietenberger
2004-01-01
Piloted ignition behavior of materials, particularly wood products, during transitions between heating regimes is measured and modeled in a cone calorimetry (ISO 5660) heating environment. These include (1) effect of material thickness, density, moisture content, and paint coating variations on thermal response characteristics, (2) effect of fire retardant treatment...
NASA Astrophysics Data System (ADS)
Yong, Jie; Il'in, K.; Siegel, M.; Lemberger, Thomas
2013-03-01
We report temperature dependent superfluid densities λ -2(T) in ultrathin NbN films near thickness-tuned superconductor-insulator transition (SIT). Superfluid densities in these films are measured by two-coil mutual inductance apparatus. For thick films, dirty limit BCS theory fits experimental data well and this verifies the correctness of this technique. As films get thinner and closer to SIT, sharp downturns near transition temperatures (Tc), signature of Berezinsky-Kosterlitz-Thouless transition, are observed. This downturn occurs much earlier than what 2-D XY theory predicts. This might due to smaller vortex core energy than expected in 2-D XY model. The superconducting gap, deduced from fitting low temperature λ -2(T), is linear with Tc for most films but remain finite across SIT. This is consistent with the scenario that superconductivity is destroyed by phase fluctuations. Zero temperature sheet superfluid density also shows correlation with Tc, further proving the importance of fluctuations near SIT.
Stiffness transition in anisotropic fiber nets
NASA Astrophysics Data System (ADS)
Åström, J. A.; Sunil Kumar, P. B.; Karttunen, Mikko
2012-08-01
We demonstrate the existence of a percolationlike stiffness transition in fiber networks with a bidisperse orientation distribution and with fiber densities clearly above the geometrical and the ordinary stiffness transition. The fibers are oriented parallel and perpendicular to a strain direction and they have a large fiber aspect ratio. The stiffness K of the fiber nets can be described by a scaling relation, K∝ταg[(ɛ-ɛc)/τ-β], where τ is the fraction of fibers parallel to strain. g is a scaling function that is roughly described by a power law g(x)∝xγ for stiffness above the transition and by a constant below the transition. The transition point is characterized by qualitative changes in the distribution of the elastic deformation energy of the fibers, the deformation mode of the fibers, the effective Poisson ratio of the nets, the distribution of elastic energy on fibers and cross links, and the ratio of elastic and viscous dissipation energy. This transition opens the possibility of extreme stiffness variations with minimal mesh manipulations in the vicinity of the transition (i.e., a stiffness gate). It is possible that this transition affects the mechanical behavior of the cytoskeleton in cells.
Partners in Transition: Preparing Transition Specialists.
ERIC Educational Resources Information Center
Sample, Pat; And Others
Colorado rural special educators are experiencing tremendous challenges in providing mandated transition services to students with special needs. The School of Education and the Department of Occupational Therapy at Colorado State University have developed a program to create rural transition specialists through preservice and inservice training…
The OCD phase transition and supernova core collapse
Gentile, N.A.; Mathews, G.J.; Wilson, J.R.
1993-10-01
We examine the implications for stellar core collapse of a phase transition occurring at densities of a few times nuclear matter density. We use an equation of state that describes a phase transition between bulk nuclear matter and a phase consisting of unbound quarks and gluons. We analyze the effect on the prompt shock, the production of strange matter, and the effect on the neutrino signal and the delayed mechanism.
Entanglement transitions in random definite particle states
Vijayaraghavan, Vikram S.; Bhosale, Udaysinh T.; Lakshminarayan, Arul
2011-09-15
Entanglements within qubits are studied for the subspace of definite particle states or definite number of up spins. A transition from an algebraic decay of entanglement within two qubits with the total number N of qubits to an exponential one when the number of particles is increased from two to three is studied in detail. In particular the probability that the concurrence is nonzero is calculated using statistical methods and is shown to agree with numerical simulations. Further entanglement within a block of m qubits is studied using the log-negativity measure, which indicates that a transition from algebraic to exponential decay occurs when the number of particles exceeds m. Several algebraic exponents for the decay of the log negativity are analytically calculated. The transition is shown to be possibly connected to the changes in the density of states of the reduced density matrix, which has a divergence at the zero eigenvalue when the entanglement decays algebraically.
Generalized acoustic energy density.
Xu, Buye; Sommerfeldt, Scott D; Leishman, Timothy W
2011-09-01
The properties of acoustic kinetic energy density and total energy density of sound fields in lightly damped enclosures have been explored thoroughly in the literature. Their increased spatial uniformity makes them more favorable measurement quantities for various applications than acoustic potential energy density (or squared pressure), which is most often used. In this paper, a generalized acoustic energy density (GED), will be introduced. It is defined by introducing weighting factors into the formulation of total acoustic energy density. With an additional degree of freedom, the GED can conform to the traditional acoustic energy density quantities, or it can be optimized for different applications. The properties of the GED will be explored in this paper for individual room modes, a diffuse sound field, and a sound field below the Schroeder frequency. © 2011 Acoustical Society of America
Partition Density Functional Theory
NASA Astrophysics Data System (ADS)
Wasserman, Adam
2012-02-01
Partition Density Functional Theory (PDFT) is a formally exact method for obtaining molecular properties from self-consistent calculations on isolated fragments [1,2]. For a given choice of fragmentation, PDFT outputs the (in principle exact) molecular energy and density, as well as fragment densities that sum to the correct molecular density. I describe our progress understanding the behavior of the fragment energies as a function of fragment occupations, derivative discontinuities, practical implementation, and applications of PDFT to small molecules. I also discuss implications for ground-state Density Functional Theory, such as the promise of PDFT to circumvent the delocalization error of approximate density functionals. [4pt] [1] M.H. Cohen and A. Wasserman, J. Phys. Chem. A, 111, 2229(2007).[0pt] [2] P. Elliott, K. Burke, M.H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010).
Bakosi, Jozsef; Ristorcelli, Raymond J
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Gas turbine combustor transition
Coslow, B.J.; Whidden, G.L.
1999-05-25
A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.
Gas turbine combustor transition
Coslow, Billy Joe; Whidden, Graydon Lane
1999-01-01
A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.
Density fluctuations of polymers in disordered media
Deutsch, Joshua M.; Olvera de la Cruz, Monica
2011-03-02
We study self-avoiding random walks in an environment where sites are excluded randomly, in two and three dimensions. For a single polymer chain, we study the statistics of the time averaged monomer density and show that these are well described by multifractal statistics. This is true even far from the percolation transition of the disordered medium. We investigate solutions of chains in a disordered environment and show that the statistics cease to be multifractal beyond the screening length of the solution.
Energy density fluctuations in early universe
Guardo, G. L.; Ruggieri, M.; Greco, V.
2014-05-09
The primordial nucleosinthesys of the element can be influenced by the transitions of phase that take place after the Big Bang, such as the QCD transition. In order to study the effect of this phase transition, in this work we compute the time evolution of thermodynamical quantities of the early universe, focusing on temperature and energy density fluctuations, by solving the relevant equations of motion using as input the lattice QCD equation of state to describe the strongly interacting matter in the early universe plasma. We also study the effect of a primordial strong magnetic field by means of a phenomenological equation of state. Our results show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during the crossover.
Modeling thermospheric neutral density
NASA Astrophysics Data System (ADS)
Qian, Liying
Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the
Why Density Dependent Propulsion?
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2011-01-01
In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.
Visualization of electronic density
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...
2015-04-22
An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Visualization of electronic density
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan
2015-04-22
An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Carr, M.H.; Chuang, F.C.
1997-01-01
Drainage densities on Mars range from zero over large areas of volcanic plains to 0.3-0.5 km-1 locally on some volcanoes. These values refer to geologic units, not to drainage basins, as is normal for terrestrial drainage densities. The highest values are close to the lowest terrestrial values derived by similar techniques. Drainage densities were determined for every geologic unit portrayed on the 1:15,000,000 geologic map of Mars. Except for volcanoes the geologic unit with the highest drainage density is the dissected Noachian plains with a drainage density of 0.0074 km-1. The average drainage density for Noachian units is 0.0032 km-1, for Hesperian units is 0.00047 km-1, and for Amazonian units is 0.00007 km-1, excluding the volcanoes. These values are 2-3 orders of magnitude lower than typical terrestrial densities as determined by similar techniques from Landsat images. The low drainage densities, despite a cumulative record that spans billions of years, indicate that compared with the Earth, the channel-forming processes have been very inefficient or have operated only rarely or that the surface is extremely permeable. The high drainage density on volcanoes is attributed to a local cause, such as hydrothermal activity, rather than to a global cause such as climate change. Copyright. Published in 1997 by the American Geophysical Union.