Sample records for core-melt source reduction

  1. Core-melt source reduction system

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-04-25

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

  2. Core-melt source reduction system

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

  3. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core

    NASA Astrophysics Data System (ADS)

    Scherstén, Anders; Elliott, Tim; Hawkesworth, Chris; Norman, Marc

    2004-01-01

    Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets 187Os-enrichments in terms of a component of recycled oceanic crust within the source material. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled 186Os-187Os anomalies, put time constraints on inner-core formation. Like osmium, tungsten is a siderophile (`iron-loving') element that preferentially partitioned into the Earth's core during core formation but is also `incompatible' during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted 186Os-187Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core-mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.

  4. Pre-Melting in Iron and Iron Alloys at Earth's Core Conditions: Results from Ab Initio Molecular Dynamics Calculations

    NASA Astrophysics Data System (ADS)

    Vocadlo, L.; Martorell, B.; Brodholt, J. P.; Wood, I. G.

    2014-12-01

    Seismically determined S-wave velocities in the Earth's inner core are observed to be much lower (10-30%) than those generally inferred from mineral physics. This is a remarkably large discrepancy - mineralogical models for the mantle and the outer core match the observed velocities to around 1%. In no other large volume of the Earth does such a difference exist. There have been a number of arguments put forward over the years to account for the difference, but none have been universally accepted and our inability to explain the seismic velocities of the inner core remains an uncomfortable truth. Here, we present results from ab initio molecular dynamics calculations performed at 360 GPa and core temperatures on hcp and fcc iron, and on fcc-Fe alloyed with nickel and hcp-Fe alloyed with silicon. The calculated shear modulus, and therefore seismic velocities, of pure hcp-Fe reduces dramatically just prior to melting, providing an elegant explanation for the observed velocities. Calculations on fcc-Fe show no such strong reduction in VS, with a transformation to an hcp-type structure prior to melting; addition of 6.5 atm% and 13 atm% Ni to fcc-Fe raises the temperature of this transition. When silicon is added to hcp-Fe, the pre-melting behaviour is found to be very similar to that of pure hcp-Fe with a strong nonlinear shear weakening just before melting and a corresponding reduction in VS. Because temperatures range from T/Tm = 1 at the inner-outer core boundary to T/Tm ≈ 0.99 at the centre, this strong nonlinear effect on VS should occur in the inner core, providing a compelling explanation for the low VS observed.

  5. Ranking of sabotage/tampering avoidance technology alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, W.B.; Tabatabai, A.S.; Powers, T.B.

    1986-01-01

    Pacific Northwest Laboratory conducted a study to evaluate alternatives to the design and operation of nuclear power plants, emphasizing a reduction of their vulnerability to sabotage. Estimates of core melt accident frequency during normal operations and from sabotage/tampering events were used to rank the alternatives. Core melt frequency for normal operations was estimated using sensitivity analysis of results of probabilistic risk assessments. Core melt frequency for sabotage/tampering was estimated by developing a model based on probabilistic risk analyses, historic data, engineering judgment, and safeguards analyses of plant locations where core melt events could be initiated. Results indicate the most effectivemore » alternatives focus on large areas of the plant, increase safety system redundancy, and reduce reliance on single locations for mitigation of transients. Less effective options focus on specific areas of the plant, reduce reliance on some plant areas for safe shutdown, and focus on less vulnerable targets.« less

  6. Possible Role of Hydrogen in the Earth Core

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Imai, T.

    2011-12-01

    Possible role of hydrogen in the Earth core has been discussed by Stevenson (1977) and demonstrated experimentally by Fukai (1984), Okuchi (1997) and others. Planetary theory proposes a possibility of hydrogen incorporation in Earth's magma ocean from ambient solar nebula gas (Ikoma & Genda 2005, Genda & Ikoma 2008). More recently, migration of snow line during planet formation was examined (Min et al., 2010; Oka et al, 2011) and it was proposed that the Earth building material originally contained abundant water as ice and hydrous minerals. Therefore, it is very important to investigate the fate of water in the planet building process and clarify the role of hydrogen in the planetary core. Using SPring-8 synchrotron (NaCl capsule, LiAlH4 as hydrogen source), we determined the melting curve of FeH up to 20 GPa under hydrogen saturated conditions (Sakamaki, Takahashi et al, 2009). Observed melting point is below 1300C and has a very small dT/dP slope. By extrapolating the melting curve using Lindeman's law, we proposed that hydrogen could lower the melting temperature of the Earth core by more than 1500K than current estimate. Here we report our new experiments using SPring-8 synchrotron (single crystal diamond capsule, water as hydrogen source). Hydrogen concentration and melting temperature of FeHx that coexists with hydrous mantle minerals were determined at 15-20GPa and 1000-1600C. We show that 1) hydrogen concentration in FeHx at 1000C, coexisting with hydrous-B and ringwoodite is approximately X=0.6. 2) Upon heating, hydrous-B decomposes and hydrogen strongly partitions into FeHx (X=0.8~1.0) than ringwoodite. 3) FeHx that coexists with ringwoodite melts between ~1300C (solidus) and ~1600C (liquidus). Combined our new experiments with those by Sakamaki et al (2009) and Shibazaki et al (2009), partitioning of hydrogen between proto-core and primitive mantle is discussed. We propose that >90% of water in the source material may have entered the Earth core. Given large hydrogen concentration in the Earth core, temperature of the outermost core could be as low as that of lower mantle adiabat. Presence of the light element-rich layer at the top 300km layer of the outer core (Helffrich & Kaneshima, 2010) may be easily understood if there is no temperature gap between the core and the lower mantle.

  7. Nickel and helium evidence for melt above the core-mantle boundary.

    PubMed

    Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis

    2013-01-17

    High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

  8. A Model of the Chicxulub Impact Basin Based on Evaluation of Geophysical Data, Well Logs, and Drill Core Samples

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.

    1996-01-01

    Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.

  9. Divertor tungsten tile melting and its effect on core plasma performance

    NASA Astrophysics Data System (ADS)

    Lipschultz, B.; Coenen, J. W.; Barnard, H. S.; Howard, N. T.; Reinke, M. L.; Whyte, D. G.; Wright, G. M.

    2012-12-01

    For the 2007 and 2008 run campaigns, Alcator C-Mod operated with a full toroidal row of tungsten tiles in the high heat flux region of the outer divertor; tungsten levels in the core plasma were below measurement limits. An accidental creation of a tungsten leading edge in the 2009 campaign led to this study of a melting tungsten source: H-mode operation with strike point in the region of the melting tile was immediately impossible due to some fraction of tungsten droplets reaching the main plasma. Approximately 15 g of tungsten was lost from the tile over ˜100 discharges. Less than 1% of the evaporated tungsten was found re-deposited on surfaces, the rest is assumed to have become dust. The strong discharge variability of the tungsten reaching the core implies that the melt layer topology is always varying. There is no evidence of healing of the surface with repeated melting. Forces on the melted tungsten tend to lead to prominences that extend further into the plasma. A discussion of the implications of melting a divertor tungsten monoblock on the ITER plasma is presented.

  10. Melt in the impact breccias from the Eyreville drill cores, Chesapeake Bay impact structure, USA

    NASA Astrophysics Data System (ADS)

    Bartosova, Katerina; Hecht, Lutz; Koeberl, Christian; Libowitzky, Eugen; Reimold, Wolf Uwe

    2011-03-01

    The center of the 35.3 Ma Chesapeake Bay impact structure (85 km diameter) was drilled during 2005/2006 in an ICDP-0USGS drilling project. The Eyreville drill cores include polymict impact breccias and associated rocks (1397-01551 m depth). Tens of melt particles from these impactites were studied by optical and electron microscopy, electron microprobe, and microRaman spectroscopy, and classified into six groups: m1—clear or brownish melt, m2—brownish melt altered to phyllosilicates, m3—colorless silica melt, m4—melt with pyroxene and plagioclase crystallites, m5—dark brown melt, and m6—melt with globular texture. These melt types have partly overlapping major element abundances, and large compositional variations due to the presence of schlieren, poorly mixed melt phases, partly digested clasts, and variable crystallization and alteration. The different melt types also vary in their abundance with depth in the drill core. Based on the chemical data, mixing calculations were performed to determine possible precursors of these melt particles. The calculations suggest that most melt types formed mainly from the thick sedimentary section of the target sequence (mainly the Potomac Formation), but an additional crystalline basement (schist/gneiss) precursor is likely for the most abundant melt types m2 and m5. Sedimentary rocks with compositions similar to those of the melt particles are present among the Eyreville core samples. Therefore, sedimentary target rocks were the main precursor of the Eyreville melt particles. However, the composition of the melt particles is not only the result of the precursor composition but also the result of changes during melting and solidification, as well as postimpact alteration, which must also be considered. The variability of the melt particle compositions reflects the variety of target rocks and indicates that there was no uniform melt source. Original heterogeneities, resulting from melting of different target rocks, may be preserved in impactites of some large impact structures that formed in volatile-rich targets, because no large melt body exists, in which homogenization would have taken place.

  11. Black Carbon, Dust and Organic Matter at South Cascade Glacier in Washington State, USA: A Comprehensive Characterization of Temporal (1865-2014) and Spatial Variability

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Pittenger, D.; Swick, M.; Skiles, M.; Perez, A.; Sethi, H.; Sevier, E.

    2017-12-01

    Rising temperatures are a widely recognized cause of glacial retreat in Washington, however light absorbing aerosols (LAA, including black carbon (BC), dust and organic matter) can also contribute to increased melt by reducing snow albedo. We present updated results of BC and dust variability at South Cascade (SOCAS) glacier spanning 1865-1994 using a 158 m ice core. Peak BC deposition occurred between 1940-1958, when median BC concentrations were 25 times higher than background levels. Post 1958 BC concentrations decrease, followed by an increase post 1980 associated with melt consolidation and/or trans-Pacific aerosol transport. Dust deposition at SOCAS is dominated by local sources. Albedo reductions from LAA are dominated by dust deposition, except during high BC deposition events from wildfires, and during the 1940-1958 period when BC contributes equally to albedo reductions. Results from a 2014 field campaign that included collection of 3 shallow ice cores, surface snow, and snow albedo measurements allow the 1865-1994 ice core record to be extended toward present, and spatial variability in LAA to be characterized. Snow albedo transects were measured using a spectrometer. BC concentrations were measured using a Single Particle Soot Photometer (SP2). Gravimetric filtration was used to determine the total LAA, and a thermal gravimetric technique was used to partition the LAA between dust and organic matter. The organic matter was partitioned into organic and elemental carbon using a thermal optical method. These methods allow LAA abundances be measured, but to partition the contribution of the LAA to albedo reductions requires characterization of LAA optical properties. This was accomplished using a Hyperspectral Imaging Microscope Spectrometer method that allows particle reflectance to be measured at 138 nm2 pixel resolution. By combining these methods, we provide a comprehensive characterization of spatial and temporal LAA variability at SOCAS.

  12. Ho-doped Soft Glass Optical Fibers for Coherent Wavelength Sources Above 2 Micron

    DTIC Science & Technology

    2010-12-01

    following glasses were prepared in order to fabricate a single-mode Tm-Ho doped optical fibre. Their composition is in mol% and the rare earth oxides ...in this work was 99+%. The onset melting temperature was 750 ˚C and the duration of the process 2 hours. The melt was cast in a brass mould...preheated to 300 ˚C and annealed at Tg – 10 ˚C for 2 h. Glass melting was carried out in a Pt crucible inside a chamber furnace. Core glass was melted

  13. Zircon Hf-O isotopic constraints on the origin of Late Mesozoic felsic volcanic rocks from the Great Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Gong, Mingyue; Tian, Wei; Fu, Bin; Wang, Shuangyue; Dong, Jinlong

    2018-05-01

    The voluminous Late Mesozoic magmatism was related to extensive re-melting of juvenile materials that were added to the Central East Asia continent in Phanerozoic time. The most favoured magma generation mechanism of Late Mesozoic magmas is partial melting of underplated lower crust that had radiogenic Hf-Nd isotopic characteristics, but this mechanism faces difficulties when interpreting other isotopic data. The tectonic environment controlling the generation of the Late Mesozoic felsic magmas is also in dispute. In this study, we obtained new U-Pb ages, and geochemical and isotopic data of representative Jurassic (154.4 ± 1.5 Ma) and Cretaceous (140.2 ± 1.5 Ma) felsic volcanic samples. The Jurassic sample has inherited zircon cores of Permian age, with depleted mantle-like εHf(t) of +7.4 - +8.5, which is in contrast with those of the magmatic zircons (εHf(t) = +2.4 ± 0.7). Whereas the inherited cores and the magmatic zircons have identical mantle-like δ18O composition ranges (4.25-5.29‰ and 4.69-5.54‰, respectively). These Hf-O isotopic characteristics suggest a mixed source of enriched mantle materials rather than ancient crustal components and a depleted mantle source represented by the inherited Permian zircon core. This mechanism is manifested by the eruption of Jurassic alkaline basalts originated from an enriched mantle source. The Cretaceous sample has high εHf(t) of +7.0 - +10.5, suggesting re-melting of a mafic magma derived from a depleted mantle-source. However, the sub-mantle zircon δ18O values (3.70-4.58‰) suggest the depleted mantle-derived mafic source rocks had experienced high temperature hydrothermal alteration at upper crustal level. Therefore, the Cretaceous felsic magma, if not all, could be generated by re-melting of down-dropped supracrustal volcanic rocks that experienced high temperature oxygen isotope alteration. The two processes, enriched mantle-contribution and supracrustal juvenile material re-melting, are new generation mechanisms of the Late Mesozoic magmas from Central East Asia. Rift settings may have controlled these processes throughout crustal and mantle levels.

  14. The Lowest δ7Li Yet Recorded in MORB Glasses: The Connection with Oceanic Core Complex Formation, Refractory Rutile-bearing Eclogitic Mantle Sources and Melt Supply

    NASA Astrophysics Data System (ADS)

    Casey, J. F.; Gao, Y.; Benavidez, R.; Dragoi, C.

    2010-12-01

    The region between 12°N and 16°N along the Mid-Atlantic Ridge is known for its prolific development of oceanic core complexes and for a geochemical anomaly centered at ~14°N. We examine the correlation of the geochemical anomaly with a region characterized by low magma supply. Basalt glasses over the geochemical anomaly are unusual in exhibiting E-MORB to T-MORB HIMU-DMM isotopic gradients. The most enriched MORBs exhibit positive Ta and Nb anomalies and negative Th and Pb anomalies that are similar to some OIB basalts. Some more primitive basalts exhibit positive Ti, Sr and Eu anomalies. The center of the geochemical anomaly is characterized by elevated La/Sm ratios that are strongly correlated with Nb/La, Nb/Nb*, Ta/Ta* and Sr, Nd, Pb isotopic anomalies. In addition, we have recently documented a regional anomaly in δ7Li, with the lowest values ever recorded in MORB glasses near the center of the anomaly. We interpret this data to indicate that the mantle source in the 12-16°N region of the Mid-Atlantic Ridge involves subducted slab components including a refractory rutile-bearing eclogitic source that has suffered significant dehydration and a previously depleted mantle source that has undergone an ancient depletion event that results in little melt supply being contributed to the ridge axis. We examine melt supply implications in the context of core complex development and these unusual mantle source characteristics.

  15. Separating Multiple Episodes of Partial Melting in Polyorogenic Crust: AN Example from the Haiyangsuo Complex, Northern Sulu Belt, Eastern China

    NASA Astrophysics Data System (ADS)

    Feng, P.; Wang, L.; Brown, M.; Wang, S.

    2017-12-01

    Determining the timing, mechanism and source of partial melts in polyorogenic crust is challenging. In the Sulu belt, the tectonic affinity of the Haiyangsuo (HYS) complex is controversial due to its polyphase metamorphic history. Here we use detailed field mapping, petrology, microstructural analysis and zircon geochronology to study thin stromatic leucosomes in host granite gneiss, and crosscutting leucogranite dykes to decipher the melting history. Zircon grains from both granite gneiss and thin leucosomes exhibit core-mantle-rim structures. Zircon cores yield protolith ages of 2.86-2.81 Ga, whereas the mantles and rims yield younger metamorphic/melt crystallization ages of ca. 1.82-1.80 Ga. The mantles are characterized by gray luminescence, flat HREE distribution patterns and relatively low Th/U ratios, indicating crystallization during granulite-facies metamorphism. Whereas rims show bright luminescence, steep HREE distribution patterns and higher Th/U ratios, suggesting they crystallized from melt. The mantles and rims have ɛHf (t) of -18.2 to -11.0. Using 176Lu/177Hf = 0.001, these data project back to the array of ɛHf (t) values for the zircon cores. This demonstrates that the thin leucosomes were derived from the gneiss without any mass input from a mantle source. These features are consistent with an origin of the HYS as part of the eastern margin of the NCC prior to juxtaposition with the Sulu belt. Zircons from the leucogranite dykes also show core-mantle-rim structure. Inherited cores yield concordant 206Pb/238U ages of 776-701 Ma consistent with the dominant age range for protoliths of the UHP metamorphic rocks in the Sulu belt. Zircon mantle and rim domains, which both contain multiphase solid inclusions (Kfs + Pl + Qz and Hem + Pl + Qz in mantles and Kfs + Pl + Qz + Bt in rims), yield melt crystallization ages of 226-217 and 169-156 Ma, respectively. High Sr, low Y and Yb contents, high Sr/Y ratios, and the range of ɛNd (t) values (-18.2- -15.0) and initial 87Sr/86Sr ratios (0.7106 - 0.7146) for the leucogranites are consistent with melting of thickened lower continental crust of the Sulu belt. We interpret the dykes to have been emplaced during post-collisional collapse of the orogenic root of this belt in the Middle-Upper Jurassic.

  16. Drilling into Magma: Experiences at Kīlauea Iki Lava Lake, Hawaii

    NASA Astrophysics Data System (ADS)

    Helz, R. L.

    2017-12-01

    Several historic lava lakes (1959 Kīlauea Iki, 1963 Alae, and 1965 Makaopuhi) were drilled in the 20th century, and molten core recovered from them. Kīlauea Iki lava lake, the most extensively studied, was drilled in 1960-62, 1967, 1965, 1976, 1979, 1981 and 1988. A total of 1400 m feet of core was recovered, about 210 m of which was partially molten. The melt fraction varied from near zero to 40-45% by volume, with higher fractions in glassy ooze from below the crust/melt interface. Most of the 1960-1979 drill holes terminated in pre-existing melt-rich internal differentiates; the later (1981, 1988) drill holes were mostly stopped arbitrarily. When melt was reached and the string backed off to wireline the last interval of core, black glassy ooze immediately moved up the borehole. Repeated re-entry and ooze recovery never exhausted the melt-rich sources. The first deep hole that did not hit melt was KI79-1, which was stopped at 62.2 m after recovering 12 m of molten mush. Here the uncased drill hole backfilled not with black glassy ooze but with olivine-rich, partly crystalline mush. The first redrilled core (recovered between 50.8 and 53.9 m), which moved up over a period of 16 days after termination of the original hole, underwent extensive separation of melt from crystals as it flowed upward. After this interval was pulled, drilling resumed with the bottom of the hole at 52.9 m, and uniform olivine-rich mush was recovered from 52.9-54.25 m. Drilling resumed once more at 52.9 m and a further 3 m of ooze recovered. The bit reached a depth of 55.4 m when the core barrel was full, suggesting that the crystal-rich mush was rising into the core barrel spontaneously during drilling. The three cores recovered in reentering KI79-1 show the effect of unloading the confining pressure on mush layers, with melt moving toward the low-pressure area (the bottom of the hole) relative to crystals. All of the crystal-rich mushes are more melt-rich than the original core, with elevated TiO2, K2O and P2O5 levels at the same bulk MgO content. Grain-to-grain contacts were progressively eroded in the melt-inflated mushes, so that the mushes had no internal cohesion. Although their melt contents never reached 50% by volume, they were extremely mobile, rising into the drill hole in minutes rather than the days required for the initial backfilling of the hole.

  17. Metal-silicate partitioning of U: Implications for the heat budget of the core and evidence for reduced U in the mantle

    NASA Astrophysics Data System (ADS)

    Chidester, Bethany A.; Rahman, Zia; Righter, Kevin; Campbell, Andrew J.

    2017-02-01

    Earth's core might require an internal heat source, such as radioactive decay, to explain the presence of the magnetic field through geologic time. To investigate whether U would be an important heat source in the core, we performed metal-silicate partitioning experiments of U at P-T (up to 67 GPa and 5400 K) conditions more relevant to a magma ocean scenario than has previously been reported. This study finds the partitioning of U to be strongly dependent on ƒO2, temperature, the S content of the metal and the SiO2 content of the silicate during core-mantle differentiation. Differentiation at mean conditions of 42-58 GPa and 3900-4200 K would put 1.4-3.5 ppb U (2-8 wt% S) in the core, amounting to a maximum of 1.4 (+1/-0.7) TW of heat 4.5 billion years ago. This is likely not enough heat to mitigate early widespread mantle melting. It was also found that U likely exists in the 2+ oxidation state in silicate melts in the deep Earth, a state which has not been previously observed in nature.

  18. Rise in central west Greenland surface melt unprecedented over the last three centuries

    NASA Astrophysics Data System (ADS)

    Trusel, Luke; Das, Sarah; Osman, Matthew; Evans, Matthew; Smith, Ben; McConnell, Joe; Noël, Brice; van den Broeke, Michiel

    2017-04-01

    Greenland Ice Sheet surface melting has intensified and expanded over the last several decades and is now a leading component of ice sheet mass loss. Here, we constrain the multi-century temporal evolution of surface melt across central west Greenland by quantifying layers of refrozen melt within well-dated firn and ice cores collected in 2014 and 2015, as well as from a core collected in 2004. We find significant agreement among ice core, satellite, and regional climate model melt datasets over recent decades, confirming the fidelity of the ice core melt stratigraphy as a reliable record of past variability in the magnitude of surface melt. We also find a significant correlation between the melt records derived from our new 100-m GC-2015 core (2436 m.a.s.l.) and the older (2004) 150-m D5 core (2472 m.a.s.l.) located 50 km to the southeast. This agreement demonstrates the robustness of the ice core-derived melt histories and the potential for reconstructing regional melt evolution from a single site, despite local variability in melt percolation and refreeze processes. Our array of upper percolation zone cores reveals that although the overall frequency of melt at these sites has not increased, the intensification of melt over the last three decades is unprecedented within at least the last 365 years. Utilizing the regional climate model RACMO 2.3, we show that this melt intensification is a nonlinear response to warming summer air temperatures, thus underscoring the heightened sensitivity of this sector of Greenland to further climate warming. Finally, we examine spatial correlations between the ice core melt records and modeled melt fields across the ice sheet to assess the broader representation of each ice core record. This analysis reveals wide-ranging significant correlations, including to modeled meltwater runoff. As such, our ice core melt records may furthermore offer unique, observationally-constrained insights into past variability in ice sheet mass loss.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, S; Rowland, M; Campbell, K

    It is difficult to track to the location of a melted core in a GE BWR with Mark I containment during a beyond-design-basis accident. The Cooper Nuclear Station provided a baseline of normal material distributions and shielding configurations for the GE BWR with Mark I containment. Starting with source terms for a design-basis accident, methods and remote observation points were investigated to allow tracking of a melted core during a beyond-design-basis accident. The design of the GE BWR with Mark-I containment highlights an amazing poverty of expectations regarding a common mode failure of all reactor core cooling systems resulting inmore » a beyond-design-basis accident from the simple loss of electric power. This design is shown in Figure 1. The station blackout accident scenario has been consistently identified as the leading contributor to calculated probabilities for core damage. While NRC-approved models and calculations provide guidance for indirect methods to assess core damage during a beyond-design-basis loss-of-coolant accident (LOCA), there appears to be no established method to track the location of the core directly should the LOCA include a degree of fuel melt. We came to the conclusion that - starting with detailed calculations which estimate the release and movement of gaseous and soluble fission products from the fuel - selected dose readings in specific rooms of the reactor building should allow the location of the core to be verified.« less

  20. Chemical, thermal and impact processing of asteroids

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Taylor, G. J.; Newsom, H. E.; Herbert, F.; Zolensky, M.

    1989-01-01

    The geological effects of impacts, heating, melting, core formation, and aqueous alteration on asteroids are reviewed. A review of possible heat sources appears to favor an important role for electrical induction heating. The effects of each geologic process acting individually and in combination with others, are considered; it is concluded that there is much evidence for impacts during alteration, metamorphism and melting. These interactions vastly increased the geologic diversity of the asteroid belt. Subsequent impacts of cool asteroids did not reduce this diversity. Instead new rock types were created by mixing, brecciation and minor melting.

  1. Thermal evolution and core formation of planetesimals

    NASA Astrophysics Data System (ADS)

    Suwa, Taichi; Nagahara, Hiroko

    2017-04-01

    Planetesimals did not get an adequate thermal energy by accretion to form large scale magma ocean because of smaller radii, masses, gravity and accretion energy, however, there are various evidences for the presence of core in planetesimals: 4-Vesta has a core and non-magmatic iron meteorites were segregated metal in bodies that did not experience silicate melting. It has been pointed out that accretion time of planetesimals controls melting and differentiation, because short lived nuclides are plausible heat source. Other factors such as radiative cooling from the surface and thermal conductivity, would also affect thermal evolution of planetesimals. Furthermore, percolation of Fe-S melt through silicate matrix is controlled by the porosity and grain size of silicates and dihedral angle between the melt and silicates. Therefore, the interior structure of planetesimals should be considered by taking the accretion, growth, and thermal evolution of the interior simultaneously. We make a numerical simulation with a spherical 1D model on the basis of the model by Neuman, which is a non-stationary heat conduction equation. We specifically pay attention to the process at temperatures between eutectic temperature Fe-FeS (1213K) and silicate solidus (1425K) and the surface tension of the melt that governs percolation. The model contains three free parameters, formation time, accretion duration, and final size of the planetesimals. The results show that the interior structure can be divided to four types: Type A is undifferentiated, Type B is differentiated to core and mantle of which core was formed by Fe-S melt percolation, Type C is partially differentiated to FeS core and mantle, where mantle retains residual Fe metal, and Type D is differentiated to core and mantle by metal separation in silicate magma. Type A would correspond to the parent bodies of chondrites, and Type B (and Type C?) core would be the source of non-magmatic iron meteorites. Type D would be parent bodies for 4 Vesta and angrites. The conditions for the four types of planetesimals are throuly investigated as a function of the three parameters, accretion time, accreting duration, and palnetesimal size. We found that the planetesimal interior is strongly controlled by the formation time: planetesimals formed after 3 Ma after CAIs would be undifferentiated (Type A) regardless of the planetary size, whereas most of them formed within 1 Ma are Type D (differentiated bodies with magmatically formed core). Types B and C bodies are preferentially formed between 1 and 3 Ma after CAIs. Longer accretion duration tends to be resulted in formation of Types A, B and C. The present work predicts the planetesimal interior structure if we know the formation age with the isotopic measurements of samples and the size of the body, which would be a very powerful tool for future explorations of small bodies except for very small (< 20 km) bodies.

  2. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.; Vollinger, M. J.

    2004-03-01

    This paper presents major and trace element compositions of lavas from the entire 3098 m stratigraphic section sampled by phase-2 of the Hawaii Scientific Drilling Project. The upper 245 m are lavas from Mauna Loa volcano, and the lower 2853 m are lavas and volcanoclastic rocks from Mauna Kea volcano. These intervals are inferred to represent about 100 ka and 400 ka respectively of the eruptive history of the two volcanoes. The Mauna Loa tholeiites tend to be higher in SiO2 and lower in total iron, TiO2, alkalis, and incompatible elements at a given MgO content than Mauna Kea lavas. The transition from Mauna Loa to Mauna Kea lavas is all the more pronounced because the Mauna Loa tholeiites overlie a thin sequence of postshield Mauna Kea alkalic to transitional tholeiitic lavas. The Mauna Loa tholeiites display well-developed coherent trends with MgO that are indistinguishable in most respects from modern lavas. With depth, however, there is a slight decline in incompatible element abundances, and small shifts to depleted isotopic ratios. These characteristics suggest small changes in melt production and source components over time, superimposed on shallow melt segregation. The Mauna Kea section is subdivided into a thin, upper 107 m sequence of postshield tholeiites, transitional tholeiites and alkali basalts of the Hamakua volcanics, overlying four tholeiitic magma types that are intercalated throughout the rest of the core. These four magma types are recognized on the basis of MgO-normalized SiO2 and Zr/Nb values. Type-1 lavas (high SiO2 and Zr/Nb) are ubiquitous below the postshield lavas and are the dominant magma type on Mauna Kea. They are inter-layered with the other three lava types. Type-2 lavas (low SiO2 but high Zr/Nb) are found only in the upper core, and especially above 850 m. Type-3 lavas (low SiO2 and Zr/Nb) are very similar to tholeiites from Loihi volcano and are present only below 1974 m. There are only 3 discrete samples of type-4 lavas (high SiO2 and low Zr/Nb), which are present in the upper and lower core. The differences between these magma types are inferred to reflect changes in melt production, depth of melt segregation, and differences in plume source components over about 400 ka of Mauna Kea's eruptive history. At the start of this record, eruption rates were high, and two distinct tholeiitic magmas (type-1 and 3) were erupting concurrently. These two magmas require two distinct source components, one similar to that of modern Loihi tholeiites and the other close to that of Kilauea magmas. Subsequently, the Loihi-like source of the type-3 magmas was exhausted, and these lavas are absent from the remainder of the core. For the next 200 ka or so, the eruptive sequence consists of inter-layered type-1 and -2 lavas that are derived from a common Mauna Kea source, the major difference between the two being the depth at which the melts segregated from the source. At around 440 ka (corresponding with the transition in the core from submarine to subaerial lavas) eruption rates began to decline and low-MgO lavas are suddenly much more abundant in the record. Continuing gradual decline in melting and eruption rates was accompanied by a decline in normalized SiO2 content of the type-1 magmas, and the eventual onset of postshield magmatism.

  3. Visualizing Earth's Core-Mantle Interactions using Nanoscale X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Mao, W. L.; Wang, J.; Yang, W.; Hayter, J.; Pianetta, P.; Zhang, L.; Fei, Y.; Mao, H.; Hustoft, J. W.; Kohlstedt, D. L.

    2010-12-01

    Early-stage, core-mantle differentiation and core formation represent a pivotal geological event which defined the major geochemical signatures. However current hypotheses of the potential mechanism for core-mantle separation and interaction need more experimental input which has been awaiting technological breakthroughs. Nanoscale x-ray computed tomography (nanoXCT) within a laser-heated diamond anvil cell has exciting potential as a powerful 3D petrographic probe for non-destructive, nanoscale (<40nm) resolution of multiple minerals and amorphous phases (including melts) which are synthesized under the high pressure-temperature conditions found deep within the Earth and planetary interiors. Results from high pressure-temperature experiments which illustrate the potential for this technique will be presented. By extending measurements of the texture, shape, porosity, tortuosity, dihedral angle, and other characteristics of molten Fe-rich alloys in relation to silicates and oxides, along with the fracture systems of rocks under deformation by high pressure-temperature conditions, potential mechanisms of core formation can be tested. NanoXCT can also be used to investigate grain shape, intergrowth, orientation, and foliation -- as well as mineral chemistry and crystallography at core-mantle boundary conditions -- to understand whether shape-preferred orientation is a primary source of the observed seismic anisotropy in Earth’s D” layer and to determine the textures and shapes of the melt pockets and channels which would form putative partial melt which may exist in ultralow velocity zones.

  4. Partial Melting in the Inner Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.

    2014-12-01

    The inner core boundary (ICB) is often considered to be permeable to flow, because solid iron could melt as it upwells across the ICB. Such a mechanism has been proposed to accompany inner core convective processes (including translation from a freezing to melting hemisphere), and has also been invoked to explain the formation of a dense Fe-rich liquid F-layer above the ICB. However, the conceptions of ICB melting invoked thus far are extremely simplistic, and neglect the many lessons learned from melting in other geological contexts. Owing to some degree of solid solution in relatively incompatible light alloys in solid iron, the onset of melting in the inner core will likely occur as a partial melt, with the liquid being enriched in these light alloys relative to the co-existing solid. Such a partial melt is then subject to upward migration/percolation out of the solid matrix owing to the buoyancy of melt relative to solid. Removal of melt and viscous compaction of the pore space results in an iron-enriched dense solid, whose negative buoyancy will oppose whatever buoyancy forces initially gave rise to upwelling. Either the negative buoyancy will balance these other forces and cause upwelling to cease, or else the solid will become so depleted in light alloys that it is unable to undergo further melting. Thus a proper accounting of partial melting results in a very different melting regime in the inner core, and suppression of upwelling across the ICB. Any fluid that is able to escape into the outer core from inner core partial melting will likely be buoyant because in order to be a melt it should be enriched in incompatiable alloys relative to whatever is freezing at the ICB. Therefore inner core melting is unlikely to contribute to the formation of an F-layer, but instead will tend to de-stabilize it. I will present models that illustrate these processes, and propose that the F-layer is a relic of incomplete mixing of the core during Earth's final stages of formation. Such models imply that the inner core may be somewhat older than models in which it crystallizes from a homogeneous outer core, although without any significant benefits for driving the geodynamo.

  5. Some aspects of core formation in Mercury

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1976-01-01

    Some questions dealing with the nature and history of a large metallic core within Mercury are considered. These include the existence of a core, its size, whether it is fluid or solid, the timescale for core formation, the geological consequences of core formation, and whether such consequences are consistent with the surface geology. Several indirect lines of evidence are discussed which suggest the presence of a large iron-rich core. A core-formation model is examined in which core infall is accompanied by an increase of 17 km in planetary radius, an increase of 700 K in mean internal temperature, and substantial melting of the mantle. It is argued that if the core differentiated from an originally homogeneous planet, that event must have predated the oldest geological units comprising most of the planetary surface. A convective dynamo model for the source of Mercury's magnetic field is shown to conflict with cosmochemical models that do not predict a substantial radiogenic heat source in the core.

  6. Effect of Hydrogen and Carbon on the Melting Temperature of the Core

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Sakamaki, K.; Takahashi, E.; Fukai, Y.; Suzuki, T.; Funakoshi, K.

    2007-12-01

    The temperature of the Earth's outer core has been discussed based on the melting temperature of Fe- O-S alloys (e.g., Boehler, 1996). Although hydrogen and carbon are the possible candidates of the core component, their effects on the melting temperature of iron at high-pressures are unclear. Using a Kawai-type multi-anvil apparatus at SPring-8 synchrotron, we carried out a series of melting experiments on FeH and Fe3C up to 20 and 28 GPa, respectively. In the experiments on FeH, Fe sponge mixed with MgO was packed into a NaCl container with a hydrogen source, LiAlH4 (e.g., Fukai et al., 1989). During heating under high-pressures, hydrogenation of iron was observed by volume change. The phase boundary between ɛ'-phase (low-temperature phase) and γ-phase (high-temperature phase) of iron-hydride was determined using both cooling and heating experiments. Hydrogen concentrations in the γ-FeHx and ɛ'-FeHx were calculated based on the excess volume data from that of pure iron. It is found that γ-FeHx and ɛ'-FeHx synthesized in our experiments at pressures between 10 and 20 GPa are nearly stoichiometric FeH. Melting temperature of the γ-FeH was determined by the abrupt change in the X-ray diffraction patterns (crystalline to amorphous). The melting temperatures were determined to be 1473, 1473, 1493, 1573 and 1593 K at 10, 11.5, 15, 18 and 20 GPa, respectively. In the experiments using Fe3C, the synthesized Fe3C powder was encapsulated in a MgO container. In the diffraction sequences during heating, the peaks of Fe3C disappeared, and the new peaks identified as those of Fe7C3 were observed with halo caused by liquid. Finally, the Fe7C3 peaks disappeared, and only the halo pattern was observed. Based on these observations, the incongruent melting of Fe3C to Fe7C3 and liquid is estimated to occur at 1823 and 1923 K at 19.7 and 27.0 GPa, respectively. The liquidus temperatures of the Fe3C composition are found to be at 2098 and 2198 K at 19.5 and 26.8 GPa, respectively. The melting temperatures of Fe3C determined by our experiments are >700 K lower than that of the previous estimation based on thermodynamic calculation (Wood, 1993). Our experimental results show a possibility that the hydrogen and carbon lower the melting temperature of iron (outer core) dramatically. The melting temperatures of γ-FeH and Fe3C at 20 GPa are already 500 K lower than that of pure iron estimated by Anderson and Isaak (2000). Extrapolating our experimental melting curves for FeH and Fe3C to core pressures using Lindemann's melting law, we obtained the melting temperatures to be ~2600 and ~2900 K at the core-mantle boundary (CMB), respectively. In the presence of both hydrogen and carbon, melting temperature of the Earth's outer core could be >1500 K lower than that of the previous estimates, implying that the temperature gap at CMB could be much smaller than the current estimates.

  7. EVALUATION OF BARRIERS TO THE USE OF RADIATION-CURED AND HOT MELT COATINGS IN COATED AND LAMINATED SUBSTRATE MANUFACTURING

    EPA Science Inventory

    The report gives results of a study to investigate and identify the technical, educational, and economic barriers to the use and implementation of radiation-cured and hot melt coatings in coated and laminated substrate manufacturing. (NOTE: In support of EPA's Source Reduction Re...

  8. Core formation in the early solar system through percolation: 4-D in-situ visualization of melt migration

    NASA Astrophysics Data System (ADS)

    Bromiley, G.; Berg, M.; Le Godec, Y.; Mezouar, N.; Atwood, R. C.; Phillipe, J.

    2015-12-01

    Although core formation was a key stage in the evolution of terrestrial planets, the physical processes which resulted in segregation of iron and silicate remain poorly understood. Formation of a silicate magma oceans provides an obvious mechanism for segregation of core-forming liquids, although recent work has strengthened arguments for a complex, multi-stage model of core formation. Extreme pressure1 and the effects of deformation2 have both been shown to promote percolation of Fe-rich melts in a solid silicate matrix, providing mechanisms for early, low temperature core-formation. However, the efficiency of these processes remains untested and we lack meaningful experimental data on resulting melt segregation velocities. Arguments regarding the efficiency of core formation through percolation of Fe-rich melts in solid silicate are based on simple, empirical models. Here, we review textural evidence from recent experiments which supports early core formation driven by deformation-aided percolation of Fe-rich melts. We then present results of novel in-situ synchrotron studies designed to provide time-resolved 3-D microimaging of percolating melt in model systems under extreme conditions. Under low strain rates characteristic of deformation-aided core formation, segregation of metallic (core-forming) melts by percolation is driven by stress gradients. This is expected to ultimately result in channelization and efficient segregation of melts noted in high-strain, low pressure experiments3. In-situ visualization also demonstrates that percolation of viscous metallic melts is surprisingly rapid. A combination of melt channelization and hydraulic fracture results in rapid, episodic melt migration, even over the limited time scale of experiments. The efficiency of this process depends strongly on the geometry of the melt network and is scaled to grain size in the matrix. We use both in-situ visualization and high-resolution ex-situ analysis to provide accurate constraints on melt migration velocities via this combined mechanism and will propose a model by which results can be scaled to core formation in the early solar system. References[1] Shi et al. Nature GeoSc. 6, 971 (2013).[2] Bruhn et al. Nature 403, 883 (2000).[3] Kohlstedt & Holtzman Ann. Rev. Earth. Planet. Sci. 37, 561 (2009).

  9. A modified carbothermal reduction method for preparation of high-performance nano-scale core/shell Cu 6Sn 5 alloy anodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Wangjun; Wang, Fei; Wang, Jie; Liu, Haijing; Wang, Congxiao; Xia, Yongyao

    Core-shell structured, carbon-coated, nano-scale Cu 6Sn 5 has been prepared by a modified carbothermal reduction method using polymer coated mixed oxides of CuO and SnO 2 as precursors. On heat treatment, the mixture oxides were converted into Cu 6Sn 5 alloy by carbothermal reduction. Simultaneously, the remnants carbon was coated on the surface of the Cu 6Sn 5 particles to form a core-shell structure. Transmission electron microscope (TEM) images demonstrate that the well-coated carbon layer effectively prevents the encapsulated, low melting point alloy from out flowing in a high-temperature treatment process. Core-shell structured, carbon coated Cu 6Sn 5 delivers a reversible capacity of 420 mAh g -1 with capacity retention of 80% after 50 cycles. The improvement in the cycling ability can be attributed to the fact that the carbon-shell prevents aggregation and pulverization of nano-sized tin-based alloy particles during charge/discharge cycling.

  10. Coeval Ar-40/Ar-39 ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites

    NASA Technical Reports Server (NTRS)

    Swisher, Carl C., III; Grajales-Nishimura, Jose M.; Montanari, Alessandro; Margolis, Stanley V.; Claeys, Philippe; Alvarez, Walter; Renne, Paul; Cedillo-Pardo, Esteban; Maurrasse, Florentin J.-M. R.; Curtis, Garniss H.

    1992-01-01

    Ar-40/Ar-39 dating of drill-core samples of a glassy melt rock recovered from beneath a massive impact breccia contained with the 180-kilometer subsurface Chicxulub crater yields well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from Ar-40/Ar-39 ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The Ar-40/Ar-39 ages, in conjunction with geochemical and petrological similarities, strengthen the suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.

  11. The chemical composition of the cores of the terrestrial planets and the moon

    NASA Technical Reports Server (NTRS)

    Kuskov, O. L.; Khitarov, N. I.

    1977-01-01

    Using models of the quasi-chemical theory of solutions, the activity coefficients of silicon are calculated in the melts Fe-Si, Ni-Si, and Fe-Ni-Si. The calculated free energies of solution of liquid nickel and silicon in liquid iron in the interval 0 to 1400 kbar and 1500 to 4000 K, shows that Fe-Ni-Si alloy is stable under the conditions of the outer core of the earth and the cores of the terrestrial planets. The oxidation-reduction conditions are studied, and the fugacity of oxygen in the mantles of the planets and at the core-mantle boundary are calculated. The mechanism of reduction of silicon is analyzed over a broad interval of p and T. The interaction between the matter of the core and mantle is studied, resulting in the extraction of silicon from the mantle and its solution in the material of the core. It is concluded that silicon can enter into the composition of the outer core of the earth and Venus, but probably does not enter into the composition of the cores of Mercury, Mars, and the moon, if in fact the latter possesses one.

  12. A Reevaluation of Impact Melt Production

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Vickery, A. M.; Melosh, H. J.

    1997-06-01

    The production of melt and vapor is an important process in impact cratering events. Because significant melting and vaporization do not occur in impacts at velocities currently achievable in the laboratory, a detailed study of the production of melt and vapor in planetary impact events is carried out with hydrocode simulations. Sandia's two-dimensional axisymmetric hydrocode CSQ was used to estimate the amount of melt and vapor produced for widely varying initial conditions: 10 to 80 km/sec for impact velocity, 0.2 to 10 km for the projectile radius. Runs with different materials demonstrate the material dependency of the final result. These results should apply to any size projectile (for given impact velocity and material), since the results can be dynamically scaled so long as gravity is unimportant in affecting the early-time flow. In contrast with the assumptions of previous analytical models, a clear difference in shape, impact-size dependence, and depth of burial has been found between the melt regions and the isobaric core. In particular, the depth of the isobaric core is not a good representation of the depth of the melt regions, which form deeper in the target. While near-surface effects cause the computed melt region shapes to look like “squashed spheres” the spherical shape is still a good analytical analog. One of the goals of melt production studies is to find proper scaling laws to infer melt production for any impact event of interest. We tested the point source limit scaling law for melt volumes (μ = 0.55-0.6) proposed by M. D. Bjorkman and K. A. Holsapple (1987,Int. J. Impact Eng.5, 155-163). Our results indicate that the point source limit concept does not apply to melt and vapor production. Rather, melt and vapor production follows an energy scaling law (μ = 0.67), in good agreement with previous results of T. J. Ahrens and J. D. O'Keefe [1977, inImpact and Explosion Cratering(D. J. Roddy, R. O. Pepin, and R. B. Merrill, Eds.), pp. 639-656, Pergamon Press, Elmsford, NY]. Finally we tested the accuracy of our melt production calculation against a terrestrial dataset compiled by R. A. F. Grieve and M. J. Cintala (1992,Meteorities27, 526-538). The hydrocode melt volumes are in good agreement with the estimated volumes of that set of terrestrial craters on crystalline basements. At present there is no good model for melt production from impact craters on sedimentary targets.

  13. Formation and evolution of a metasomatized lithospheric root at the motionless Antarctic plate: the case of East Island, Crozet Archipelago (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Meyzen, Christine; Marzoli, Andrea; Bellieni, Giuliano; Levresse, Gilles

    2016-04-01

    Sitting atop the nearly stagnant Antarctic plate (ca. 6.46 mm/yr), the Crozet archipelago midway between Madagascar and Antarctica constitutes a region of unusually shallow (1543-1756 m below sea level) and thickened oceanic crust (10-16.5 km), high geoid height, and deep low-velocity zone, which may reflect the surface expression of a mantle plume. Here, we present new major and trace element data for Quaternary sub-aerial alkali basalts from East Island, the easterly and oldest island (ca. 9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depth and phenocryst accumulation have strongly affected their parental magma compositions. Their trace element patterns show a large negative K anomaly relative to Ta-La, moderate depletions in Rb and Ba with respect to Th-U, and heavy rare earth element (HREE) depletions relative to light REE. These characteristics allow limits to be placed upon the composition and mineralogy of their mantle source. The average trace element spectrum of East Island basalts can be matched by melting of about 2 % of a garnet-phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depth to lithospheric levels. The modelled source composition requires a multistage evolution, where the mantle has been depleted by melt extraction before having been metasomatized by alkali-rich plume melts. The depleted mantle component may be sourced by residual mantle plume remnants stagnated at the melting locus due to a weak lateral flow velocity inside the melting regime, whose accumulation progressively edifies a depleted lithospheric root above the plume core. Low-degree alkali-rich melts are likely derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments where the lateral component velocity of the mantle flow field is extremely slow.

  14. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  15. Melting of Iron to 290 Gigapascals

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Hirose, K.; Ohishi, Y.

    2017-12-01

    The Earth's core is composed mainly of iron. Since liquid core coexists with solid core at the inner core boundary (ICB), the melting point of iron at 330 gigapascals offers a key constraint on core temperatures. However, previous results using a laser-heated diamond-anvil cell (DAC) have been largely inconsistent with each other, likely because of an intrinsic large temperature gradient and its temporal fluctuation. Here we employed an internal-resistance-heated DAC and determined the melting temperature of pure iron up to 290 gigapascals, the highest ever in static compression experiments. A small extrapolation indicates a melting point of 5500 ± 80 kelvin at the ICB, about 500-1000 degrees lower than earlier shock-compression data. It suggests a relatively low temperature for the core-mantle boundary, which avoids global melting of the lowermost mantle in the last more than 1.5 billion years.

  16. The melting curve of iron to 250 gigapascals - A constraint on the temperature at earth's center

    NASA Technical Reports Server (NTRS)

    Williams, Quentin; Jeanloz, Raymond; Bass, Jay; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    The melting curve of iron, the primary constituent of earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 GPa) is 4800 + or - 200 K, whereas at the inner core-outer core boundary (330 GPa), it is 7600 + or - 500 K. A melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at earth's center are inferred. This latter value is the first experimental upper bound on the temperature at earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.

  17. Sr-Nd-Hf-O isotope geochemistry of the Ertaibei pluton, East Junggar, NW China: Implications for development of a crustal-scale granitoid pluton and crustal growth

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Wang, Qiang; Zhang, Chunfu; Wyman, Derek A.; Dan, Wei; Xia, Xiao-Ping; Chen, Hong-Yi; Zhao, Zhen-Hua

    2017-09-01

    To better understand the compositional diversity of plutonic complexes and crustal growth of the Central Asian Orogenic Belt (CAOB), we conducted an integrated study of the Ertaibei pluton, which obtained geochronological, petrological, geochemical, and isotopic (including whole rock Sr-Nd, in situ zircon Hf-O) data. The pluton (ca. 300 Ma) is composed of granodiorites that contain mafic microgranular enclaves (MMEs), dolerite dikes, and granite dikes containing quartz-tourmaline orbicules. The dolerite dikes were possibly generated by melting of an asthenospheric mantle source, with discrete assimilation of lower crustal components in the MASH (melting, assimilation, storage, and homogenization) zone. The MMEs originated from hybridization between mantle and crust-derived magmas, which spanned a range of melting depths (˜25-30 km) in the MASH zone and were episodically tapped. Melting of the basaltic lower crust in the core of the MASH zone generated magmas to form the granodiorites. The granite dikes originated from melting of an arc-derived volcanogenic sedimentary source with a minor underplated basaltic source in the roof of the MASH zone (˜25 km). The compositional diversity reflects both the magma sources and the degree of maturation of the MASH zone. Although having mantle-like radiogenic isotope compositions, the Ertaibei and other postcollisional granitoids show high zircon δ18O values (mostly between +6 and +9‰), indicating a negligible contribution to the CAOB crustal growth during the postcollisional period.

  18. Partial melting of a Pb-Sn mushy layer due to heating from above, and implications for regional melting of Earth's directionally solidified inner core

    NASA Astrophysics Data System (ADS)

    Yu, James; Bergman, Michael I.; Huguet, Ludovic; Alboussiere, Thierry

    2015-09-01

    Superimposed on the radial solidification of Earth's inner core may be hemispherical and/or regional patches of melting at the inner-outer core boundary. Little work has been carried out on partial melting of a dendritic mushy layer due to heating from above. Here we study directional solidification, annealing, and partial melting from above of Pb-rich Sn alloy ingots. We find that partial melting from above results in convection in the mushy layer, with dense, melted Pb sinking and resolidifying at a lower height, yielding a different density profile than for those ingots that are just directionally solidified, irrespective of annealing. Partial melting from above causes a greater density deeper down and a corresponding steeper density decrease nearer the top. There is also a change in microstructure. These observations may be in accordance with inferences of east-west and perhaps smaller-scale variations in seismic properties near the top of the inner core.

  19. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density profiles to guide the melting process. The combination of these data allow us to analyze melt head performance, minimize outer-to-inner fraction contamination and avoid melt head flooding. The WAIS Melt Monitor system allows the collection of real-time, sub-annual microparticle and electrical conductivity data while producing and storing enough sample for traditional Coulter-Counter particle measurements as well long term acid leaching of bioactive metals (e.g., Fe, Co, Cd, Cu, Zn) prior to chemical analysis.

  20. A preliminary study on isotopic evolution of ice by a melting experiment

    NASA Astrophysics Data System (ADS)

    Ham, J. Y.; Lee, J.; Lee, W. S.; Han, Y.; Hur, S. D.

    2016-12-01

    Evidences of melted snow at surface were found on some ice cores. Melted layers may generate a significant error when paleo-temperature was retrieved from ice cores using stable water isotopes. To resolve this problem, it is necessary to understand the isotopic changes of ice and its meltwater that is made during the ice and snow melting. Isotopic fractionations between liquid water and snow have been discussed by Taylor et al. (2002) and Lee et al. (2009). The goal of this work is to understand isotopic evolution of ice and its meltwater. Melting experiments in a cold room were designed and conducted with heat source (infrared lamp) to mimic solar radiation. Melting rates were calculated in terms of specific discharge (g/min). To control melting rates, distances between ice surface and heat source were adjusted in various conditions (1 cm, 10 cm and 20 cm). The experiments were conducted by three different melting rates, 1.6 g/min, 3.5 g/min and 5.8 g/min. We used cubic ice that has 3 cm in width, length and height in dimension with 1.5 kg or 2 kg of ice used totally. The total time spent melting the whole ice was 592, 783, and 1180 minutes, respectively. Cold room temperature was range of -1 to 1°C, which removes an effect of air temperature. Meltwater samples were collected and isotopic compositions of oxygen and hydrogen were determined by a cavity ring down spectrometer (Picarro L-1120) installed at the Korea Polar Research Institute. We also analyzed bulk water and bulk ice to make the ice used in the experiments (-8.20 ‰ and -58.73 ‰ for oxygen and hydrogen isotopes, respectively). The isotopic compositions of meltwater increased linearly or to a second degree polynomial. The isotopic variations were larger in the lower melting rates, compared to the higher melting rates (0.65 of lower melting rates vs. 0.35 higher melting rates for oxygen isotope). The slope of linear regression between oxygen and hydrogen ranged 6.2, 7.3 and 6.2, which is less than that of the Global Meteoric Water Line (8) and the sublimation (7.7) suggested by Earman et al. (2006). We believe that isotopic exchange between liquid water and ice plays a crucial role in the variations of isotopes for the ice and its meltwater. We will modify a physically based 1-D model used in the previous studies to better understand the isotopic compositions of ice and its meltwater.

  1. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.; Farmer, Mitchell; Francis, Matthew W.

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Meltmore » Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.« less

  2. On the Composition and Temperature of the Terrestrial Planetary Core

    NASA Astrophysics Data System (ADS)

    Fei, Yingwei

    2013-06-01

    The existence of liquid cores of terrestrial planets such as the Earth, Mar, and Mercury has been supported by various observation. The liquid state of the core provides a unique opportunity for us to estimate the temperature of the core if we know the melting temperature of the core materials at core pressure. Dynamic compression by shock wave, laser-heating in diamond-anvil cell, and resistance-heating in the multi-anvil device can melt core materials over a wide pressure range. There have been significant advances in both dynamic and static experimental techniques and characterization tool. In this tal, I will review some of the recent advances and results relevant to the composition and thermal state of the terrestrial core. I will also present new development to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focused ion beam milling, high-resolution SEM imaging, and quantitative chemical analysi. With precision milling of the laser-heating spo, the melting point and element partitioning between solid and liquid can be precisely determined. It is also possible to re-construct 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures, providing better constraint on the temperature of the cor. The research is supported by NASA and NSF grants.

  3. Approach to numerical safety guidelines based on a core melt criterion. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarm, M.A.; Hall, R.E.

    1982-01-01

    A plausible approach is proposed for translating a single level criterion to a set of numerical guidelines. The criterion for core melt probability is used to set numerical guidelines for various core melt sequences, systems and component unavailabilities. These guidelines can be used as a means for making decisions regarding the necessity for replacing a component or improving part of a safety system. This approach is applied to estimate a set of numerical guidelines for various sequences of core melts that are analyzed in Reactor Safety Study for the Peach Bottom Nuclear Power Plant.

  4. Geochemical Evidence Against Pyroxenites in the Sources of Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Humayun, M.; Yang, S.; Clague, D. A.

    2017-12-01

    Hawaiian lavas exhibit high Fe/Mn ratios, and other elemental and isotopic characteristics, that have been argued to be evidence for chemical interactions at the core-mantle boundary. Alternatively, the enrichment in silica relative to 3 GPa melts of garnet peridotite, and the high Fe/Mn, has been argued to represent the contributions of garnet pyroxenite melts generated beneath a thick lithosphere. Here, we present a set of new elemental ratios designed to effectively discriminate partial melts of peridotite from pyroxenite in mantle sources. A set of 200 Hawaiian volcanic glasses from 7 volcanoes were analyzed by LA-ICP-MS for the abundances of 63 elements, with an emphasis on obtaining precise Ge/Si ratios. From experimental partitioning, silica-rich partial melts of MORB-like garnet pyroxenite are expected to have low Ge/Si ratios relative to their sources due to the retention of Ge in the residue by both garnet and pyroxene. In contrast, partial melts of peridotite are expected to have high Ge/Si ratios relative to mantle peridotites due to the incompatibility of Ge in olivine. We observed that Ge abundances in subaerial Hawaiian volcanoes are correlated with indicators of volcanic degassing, including S, Re and As. Subaerial and submarine lavas exhibit a correlation between Ge/Si ratio and S content that indicates that all Hawaiian lavas share the same pre-eruptive Ge/Si ratio. Submarine glasses with the least evidence of degassing exhibit a constant Ge/Si ratio over the range of SiO2 (44-52 %) observed in Hawaiian volcanics. Surprisingly, MORB glasses exhibit more variation in Ge/Si ratio than the pre-eruptive Ge/Si of Hawaiian glasses, implying the presence of 0-12% recycled crust in the MORB source. The constant Ge/Si ratio of Hawaiian glasses implies that pyroxenite melting did not enrich Hawaiian lavas in silica. Processes that could yield Si-rich melts without changing the Ge/Si ratio may involve melt-lithosphere interaction or bridgmanite/ferropericlase fractionation in the deep mantle.

  5. Bernard J. Wood Receives 2013 Harry H. Hess Medal: Citation

    NASA Astrophysics Data System (ADS)

    Hofmann, Albrecht W.

    2014-01-01

    As Harry Hess recognized over 50 years ago, mantle melting is the fundamental motor for planetary evolution and differentiation. Melting generates the major divisions of crust mantle and core. The distribution of chemical elements between solids, melts, and gaseous phases is fundamental to understanding these differentiation processes. Bernie Wood, together with Jon Blundy, has combined experimental petrology and physicochemical theory to revolutionize the understanding of the distribution of trace elements between melts and solids in the Earth. Knowledge of these distribution laws allows the reconstruction of the source compositions of the melts (deep in Earth's interior) from their abundances in volcanic rocks. Bernie's theoretical treatment relates the elastic strain of the lattice caused by the substitution of a trace element in a crystal to the ionic radius and charge of this element. This theory, and its experimental calibrations, brought order to a literature of badly scattered, rather chaotic experimental data that allowed no satisfactory quantitative modeling of melting processes in the mantle.

  6. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Jeon, Jungmin; Jiang, Shan; Nouranian, Sasan

    2018-05-01

    Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated. [Figure not available: see fulltext.

  7. Transient experiments with thermite melts for a core catcher concept based on water addition from below

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tromm, W.; Alsmeyer, H.

    1995-09-01

    A core catcher concept is proposed to be integrated into a new pressurized water reactor. The core catcher achieves coolability by spreading and fragmentation of the ex-vessel core melt based on a process of water inlet from the bottom through the melt. By highly effective heat removal that uses evaporating water in direct contact with the fragmented melt, the corium melt would solidify in a short time period, and long-term cooling could be maintained by continuous water evaporation from the flooded porous or fragmented corium bed. The key process for obtaining coolability is the coupling of the three effects: (a)more » water ingression from below and its evaporation, (b) break up and fragmentation of the corium layer, and (c) heat transfer and solidification of the let. These mechanisms are investigated in transient medium-scale experiments with thermite melts. The experimental setup represents a section of the proposed core catcher design. A thermite melt is located on the core catcher plate with a passive water supply from the bottom. After generation of the melt, the upper sacrificial layer is eroded until water penetrates into the melt for the bottom through plugs in the supporting plate. Fragmentation and fast solidification of the melt are observed, and long-term heat removal is guaranteed by the coolant water flooding the porous melt. Water inflow is sufficient to safely remove the decay heat in a comparable corium layer. The open porosity is created by the vapor streaming through the melt during the solidification process. Fracture of the solid by thermomechanical stresses is not observed. The experiments in their current stage show the principal feasibility of the proposed cooling concept and are used to prepare large-scale experiments to be performed in the modified BETA facility with sustained heating of the melt.« less

  8. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements

    NASA Astrophysics Data System (ADS)

    Steenstra, E. S.; Seegers, A. X.; Eising, J.; Tomassen, B. G. J.; Webers, F. P. F.; Berndt, J.; Klemme, S.; Matveev, S.; van Westrenen, W.

    2018-06-01

    Sulfur concentrations at sulfide saturation (SCSS) were determined for a range of low- to high-Ti lunar melt compositions (synthetic equivalents of Apollo 14 black and yellow glass, Apollo 15 green glass, Apollo 17 orange glass and a late-stage lunar magma ocean melt, containing between 0.2 and 25 wt.% TiO2) as a function of pressure (1-2.5 GPa) and temperature (1683-1883 K). For the same experiments, sulfide-silicate partition coefficients were derived for elements V, Cr, Mn, Co, Cu, Zn, Ga, Ge, As, Se, Mo, Sn, Sb, Te, W and Pb. The SCSS is a strong function of silicate melt composition, most notably FeO content. An increase in temperature increases the SCSS and an increase in pressure decreases the SCSS, both in agreement with previous work on terrestrial, lunar and martian compositions. Previously reported SCSS values for high-FeO melts were combined with the experimental data reported here to obtain a new predictive equation to calculate the SCSS for high-FeO lunar melt compositions. Calculated SCSS values, combined with previously estimated S contents of lunar low-Ti basalts and primitive pyroclastic glasses, suggest their source regions were not sulfide saturated. Even when correcting for the currently inferred maximum extent of S degassing during or after eruption, sample S abundances are still > 700 ppm lower than the calculated SCSS values for these compositions. To achieve sulfide saturation in the source regions of low-Ti basalts and lunar pyroclastic glasses, the extent of degassing of S in lunar magma would have to be orders of magnitude higher than currently thought, inconsistent with S isotopic and core-to-rim S diffusion profile data. The only lunar samples that could have experienced sulfide saturation are some of the more evolved A17 high-Ti basalts, if sulfides are Ni- and/or Cu rich. Sulfide saturation in the source regions of lunar melts is also inconsistent with the sulfide-silicate partitioning systematics of Ni, Co and Cu. Segregation of significant quantities of (non)-stoichiometric sulfides during fractional crystallization would result in far larger depletions of Ni, Co and Cu than observed, whereas trends in their abundances are more likely explained by olivine fractionation. The sulfide exhaustion of the lunar magma source regions agrees with previously proposed low S abundances in the lunar core and mantle, and by extension with relatively minor degassing of S during the Moon-forming event. Our results support the hypothesis that refractory chalcophile and highly siderophile element systematics of low-Ti basalts and pyroclastic glasses reflect the geochemical characteristics of their source regions, instead of indicating the presence of residual sulfides in the lunar interior.

  9. Chemical layering in the upper mantle of Mars: Evidence from olivine-hosted melt inclusions in Tissint

    NASA Astrophysics Data System (ADS)

    Basu Sarbadhikari, A.; Babu, E. V. S. S. K.; Vijaya Kumar, T.

    2017-02-01

    Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine-hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine-phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76-70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66-55). REE-plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole-rock. Model calculations indicate two-stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in 10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole-rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE-rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.

  10. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  11. Rapid, dynamic segregation of core forming melts: Results from in-situ High Pressure- High Temperature X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Yu, T.; Wang, Y.

    2011-12-01

    The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.

  12. A carbon-rich region in Miller Range 091004 and implications for ureilite petrogenesis

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Corder, Christopher A.; Cartigny, Pierre; Steele, Andrew M.; Assayag, Nelly; Rumble, Douglas; Taylor, Lawrence A.

    2017-02-01

    Ureilite meteorites are partially melted asteroidal-peridotite residues, or more rarely, cumulates that can contain greater than three weight percent carbon. Here we describe an exceptional C-rich lithology, composed of 34 modal % large (up to 0.8 mm long) crystalline graphite grains, in the Antarctic ureilite meteorite Miller Range (MIL) 091004. This C-rich lithology is embedded within a silicate region composed dominantly of granular olivine with lesser quantities of low-Ca pyroxene, and minor FeNi metal, high-Ca pyroxene, spinel, schreibersite and troilite. Petrological evidence indicates that the graphite was added after formation of the silicate region and melt depletion. Associated with graphite is localized reduction of host olivine (Fo88-89) to nearly pure forsterite (Fo99), which is associated with FeNi metal grains containing up to 11 wt.% Si. The main silicate region is typical of ureilite composition, with highly siderophile element (HSE) abundances ∼0.3 × chondrite, 187Os/188Os of 0.1260-0.1262 and Δ17O of -0.81 ± 0.16‰. Mineral trace-element analyses reveal that the rare earth elements (REE) and the HSE are controlled by pyroxene and FeNi metal phases in the meteorite, respectively. Modeling of bulk-rock REE and HSE abundances indicates that the main silicate region experienced ∼6% silicate and >50% sulfide melt extraction, which is at the lower end of partial melt removal estimated for ureilites. Miller Range 091004 demonstrates heterogeneous distribution of carbon at centimeter scales and a limited range in Mg/(Mg + Fe) compositions of silicate grain cores, despite significant quantities of carbon. These observations demonstrate that silicate rim reduction was a rapid disequilibrium process, and came after silicate and sulfide melt removal in MIL 091004. The petrography and mineral chemistry of MIL 091004 is permissive of the graphite representing late-stage C-rich melt that pervaded silicates, or carbon that acted as a lubricant during anatexis and impact disruption in the parent body. Positive correlation of Pt/Os ratios with olivine core compositions, but a wide range of oxygen isotope compositions, indicates that ureilites formed from a compositionally heterogeneous parent body that experienced variable sulfide and metal melt-loss that is most pronounced in relatively oxidized ureilites with Δ17O between -1.5 and ∼0‰.

  13. The Interior of the Moon, Core Formation, and the Lunar Hotspot: What Samples Tell Us

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    1999-01-01

    Remotely-gathered Lunar Prospector data have demonstrated the existence of a lunar "hotspot" on the near side of the Moon. This hotspot contains relatively high abundances of KREEPy incompatible trace elements (i.e., Th). It is generally accepted that primordial KREEP or urKREEP represents the residual liquid after the crystallization of a lunar magma ocean (LMO). The crystalline products from the LMO formed the source regions for the mare basalts. Lunar volcanic glasses cannot be genetically related to the crystalline mare basalts, and experimental petrology indicates they are derived from greater (> 400 km) depths than the mare basalts. Questions to be addressed include: (1) What was the extent of LMO melting? (2) What is the composition of the core? (3) Are there distinct geochemical reservoirs in the Moon? (4) Is there evidence of garnet in the lunar interior? (5) What caused the formation of the lunar hotspot? The scale of the LMO has been suggested to be whole Moon melting or only the outer about 400 km. If whole Moon melting is invoked, then differentiation of the Moon into a flotation plagioclase-rich crust, a mafic mineral cumulate mantle, and a Fe-rich core is more easily facilitated. However, as pointed out, if the material that formed the Moon came primarily from the already-differentiated Earth mantle, there may not be enough Fe to form a metallic Fe core on the Moon. Authors have suggested that the lunar core is made up of dense, ilmenite-rich, late-stage cumulates from the LMO. This can be tested by examining the Zr/Hf ratios of mare basalts and, where possible, the volcanic glasses. Partition coefficients for Zr and Hf in ilmenite are 0.29-0.32 and 0.4-0.43, respectively, with Zr being less compatible. Therefore, extraction of an "ilmenite" core would have a profound effect on the Zr/Hf ratio of urKREEP as ilmenite is a late-stage fractionating LMO phase. Assuming either a "primitive mantle" or chondritic starting material with a Zr/Hf ratio of 36-37, ilmenite extraction will increase this ratio in the residual liquid. Conversely, derivation of a melt from a source rich in ilmenite will produce a melt of lower Zr/ Hf ratio. Hughes and Schmitt defined a mean Zr/Hf for KREEP of 41.0 +/- 0.4, about 39 for Apollo 15 basalts, and 30-32 for Apollo 11, 12, and 17 basalts, with the decreases in Zr/Hf broadly correlating with La/Yb. However, literature data for Apollo 15 KREEP basalts and the KREEP-rich Apollo 14 mare basalts exhibit little variation in Zr/Hf from 36, indicating the KREEP component did not result from a major fractionation of ilmenite and suggesting that the lunar core is probably metallic in overall composition. With volcanic glasses being unrelated to the mare basalts and derived from greater depths, compositional comparisons allow their source regions to be compared. Highly siderophile elements Au and Ir are more abundant in the glasses relative to the basalts. As these elements are generally incompatible in silicate minerals, crystal fractionation experienced by the basalts will tend to increase the Au and It abundances. Therefore, the glasses may be derived from a source enriched in highly siderophile elements such as the platinum-group elements (PGEs) represented by Ir, relative to the source of the basalts. This observation can be accommodated with the basalts being derived from the LMO cumulates and the glasses derived from a source that represents "primitive Moon" that did not melt and, therefore, did not have its budget of PGEs and Au reduced through core formation. This can be tested by analyzing mare basalts and glasses for the PGEs. Although analytically challenging, the first PGE patterns in lunar samples were demonstrated that the source regions for the different Apollo 12 basalts could not be differentiated on the basis of PGE budgets, although the profiles are typical of silicate melts. Analysis of other trace-element data indicate that the high-field-strength elements can be used to differentiate between high- and low-Ti basalts. Also, the volcanic glasses were derived from a source with a higher Zr/Y ratio relative to the basalts, consistent with retention of garnet in the residue. If the glasses were derived from > 400 km, garnet could be stable. It is concluded that the volcanic glasses were derived from a source that contained garnet, but escaped the melting that formed the LMO. The mare basalts were derived from the LMO cumulate pile. Basaltic samples from Apollo 14 exhibit a range in ITE. They also exhibit a range of ages from 4.33 Ga to 3.96 Ga with the older basalts being KREEP-poor and the younger being KREEP-rich. Prospector mapping has identified relatively high Th abundances in this area, suggesting a large KREEP component is present at or near the surface. LMO "layer cake models" have residual urKREEP sandwiched between the mafic cumulate mantle and the plagioclase flotation cumulate crust. However, late-stage cumulates and the residual liquid will be more dense that the early mafic cumulates resulting in gravitational instabilities and overturn of the cumulate pile. This could transport urKREEP to the base of the LMO cumulate pile, but above the glass source region. The effect of Earth on the symmetry of the Moon has displaced the low-density crust, producing a thicker crust on the farside. This has produced an offset of the center of mass for the Moon toward Earth. It is suggested that the gravitational forces of the Earth pooled the urKREEP beneath at the base of the LMO on the lunar nearside. Heating through radioactive decay produced thermal instabilities, resulting in a plume of hot, KREEPy material rising adiabatically beneath the Apollo 14 site. The oldest Apollo basalts contain no evidence of a KREEPy component, suggesting diapiric rise of the KREEPy plume had not occurred at this time. Additional information contained in original.

  14. REVIEWS OF TOPICAL PROBLEMS: Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Brazhkin, Vadim V.; Lyapin, A. G.

    2000-05-01

    Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors' new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth's core reveals that the Earth's outer core is a very viscous melt with viscosity values ranging from 102 Pa s to 1011 Pa s depending on the depth. The Earth's inner core is presumably an ultraviscous (>1011 Pa s) glass-like liquid — in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study.

  15. Laurentide Ice-Sheet Meltwater Sources to the Gulf of Mexico During the Last Deglaciation: Assessing Data Reconstructions Using Water Isotope Enabled Simulations

    NASA Astrophysics Data System (ADS)

    Vetter, L.; LeGrande, A. N.; Ullman, D. J.; Carlson, A. E.

    2017-12-01

    Sediment cores from the Gulf of Mexico show evidence of meltwater derived from the Laurentide Ice Sheet during the last deglaciation. Recent studies using geochemical measurements of individual foraminifera suggest changes in the oxygen isotopic composition of the meltwater as deglaciation proceeded. Here we use the water isotope enabled climate model simulations (NASA GISS ModelE-R) to investigate potential sources of meltwater within the ice sheet. We find that initial melting of the ice sheet from the southern margin contributed an oxygen isotope value reflecting a low-elevation, local precipitation source. As deglacial melting proceeded, meltwater delivered to the Gulf of Mexico had a more negative oxygen isotopic value, which the climate model simulates as being sourced from the high-elevation, high-latitude interior of the ice sheet. This study demonstrates the utility of combining stable isotope analyses with climate model simulations to investigate past changes in the hydrologic cycle.

  16. Density Affects the Nature of the Hexatic-Liquid Transition in Two-Dimensional Melting of Soft-Core Systems

    NASA Astrophysics Data System (ADS)

    Zu, Mengjie; Liu, Jun; Tong, Hua; Xu, Ning

    2016-08-01

    We find that both continuous and discontinuous hexatic-liquid transitions can happen in the melting of two-dimensional solids of soft-core disks. For three typical model systems, Hertzian, harmonic, and Gaussian-core models, we observe the same scenarios. These systems exhibit reentrant crystallization (melting) with a maximum melting temperature Tm happening at a crossover density ρm. The hexatic-liquid transition at a density smaller than ρm is discontinuous. Liquid and hexatic phases coexist in a density interval, which becomes narrower with increasing temperature and tends to vanish approximately at Tm. Above ρm, the transition is continuous, in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory. For these soft-core systems, the nature of the hexatic-liquid transition depends on density (pressure), with the melting at ρm being a plausible transition point from discontinuous to continuous hexatic-liquid transition.

  17. South-to-north pyroxenite-peridotite source variation correlated with an OIB-type to arc-type enrichment of magmas from the Payenia backarc of the Andean Southern Volcanic Zone (SVZ)

    NASA Astrophysics Data System (ADS)

    Brandt, Frederik Ejvang; Holm, Paul Martin; Søager, Nina

    2017-01-01

    New high-precision minor element analysis of the most magnesian olivine cores (Fo85-88) in fifteen high-MgO (Mg#66-74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite-pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios ( 1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.

  18. A Model for the Thermal and Chemical Evolution of the Moon's Interior: Implications for the Onset of Mare Volcanism

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.; Parmentier, E. M.

    1995-01-01

    Crystallization of the lunar magma ocean creates a chemically stratified Moon consisting of an anorthositic crust and magma ocean cumulates overlying the primitive lunar interior. Within the magma ocean cumulates the last liquids to crystallize form dense, ilmenite-rich cumulates that contain high concentrations of incompatible radioactive elements. The underlying olivine-orthopyroxene cumulates are also stratified with later crystallized, denser, more Fe-rich compositions at the top. This paper explores the chemical and thermal consequences of an internal evolution model accounting for the possible role of these sources of chemical buoyancy. Rayleigh-Taylor instability causes the dense ilmenite-rich cumulate layer and underlying Fe-rich cumulates to sink toward the center of the Moon, forming a dense lunar core. After this overturn, radioactive heating within the ilmenite-rich cumulate core heats the overlying mantle, causing it to melt. In this model, the source region for high-TiO2 mare basalts is a convectively mixed layer above the core-mantle boundary which would contain small and variable amounts of admixed ilmenite and KREEP. This deep high-pressure melting, as required for mare basalts, occurs after a reasonable time interval to explain the onset of mare basalt volcanism if the content of radioactive elements in the core and the chemical density gradients above the core are sufficiently high but within a range of values that might have been present in the Moon. Regardless of details implied by particular model parameters, gravitational overturn driven by the high density of magma ocean Fe-rich cumulates should concentrate high-TiO2 mare basalt sources, and probably a significant fraction of radioactive heating, toward the center of the Moon. This will have important implications for both the thermal evolution of the Moon and for mare basalt genesis.

  19. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Yonezawa, Susumu

    2013-08-15

    Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary formore » reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.« less

  20. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.

    PubMed

    Murakami, Motohiko; Bass, Jay D

    2011-10-18

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10-30% seismic velocity reduction observed in thin layers less than 20-40 km thick, just above the Earth's core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO(3) glass at pressures close to those of the CMB. The result suggests that MgSiO(3) melt is likely to become denser than crystalline MgSiO(3) above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time.

  1. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean

    PubMed Central

    Murakami, Motohiko; Bass, Jay D.

    2011-01-01

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10–30% seismic velocity reduction observed in thin layers less than 20–40 km thick, just above the Earth’s core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO3 glass at pressures close to those of the CMB. The result suggests that MgSiO3 melt is likely to become denser than crystalline MgSiO3 above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time. PMID:21969547

  2. Static Magnetic Fields in Semiconductor Floating-Zone Growth

    NASA Technical Reports Server (NTRS)

    Croll, Arne; Benz, K. W.

    1999-01-01

    Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ - crystals, fields up to O.STesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) SI-FZ crystals, fields of 0.2 - 0.5 Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, are possible with axial static fields in excess of 1 Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.

  3. The melting curve of Ni to 125 GPa: implications for Earth's Fe rich core alloy

    NASA Astrophysics Data System (ADS)

    Lord, O. T.; Wood, I. G.; Dobson, D. P.; Vocadlo, L.; Thomson, A. R.; Wann, E.; Wang, W.; Edgington, A.; Morard, G.; Mezouar, N.; Walter, M. J.

    2014-12-01

    The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments and two melting criteria: the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and simultaneous plateaux in temperature vs. laser power functions [1]. Our melting curve (Fig. 1) is in good agreement with most theoretical studies [e.g. 2] and the available shock wave data (Fig. 2). It is, however, dramatically steeper than the previous off-line LH-DAC studies in which the determination of melting was based on the visual observation of motion aided by the laser speckle method [e.g. 3]. We estimate the melting point of Ni at the inner-core boundary (ICB; 330 GPa) to be 5800±700 K (2σ), ~2500 K higher than the estimate based on the laser speckle method [3] and within error of Fe (6230±500 K) as determined in a similar in situ LH-DAC study [4]. We find that laser speckle based melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as melt convection. Our new melting curve suggests that the reduction in ICB temperature due to the alloying of Ni with Fe is likely to be significantly smaller than would be expected had the earlier experimental Ni melting studies been correct. We have applied our methodology to a range of other transition metals (Mo, Ti, V, Cu). In the case of Mo, Ti and V the melting curves are in good agreement with the shock compression and theoretical melting studies but hotter and steeper than those based on the laser speckle method, as with Ni. Cu is an exception in which all studies agree, including those employing the laser speckle method. These results go a long way toward resolving the the long-standing controversy over the phase diagrams of the transition metals as determined from static LH-DAC studies on the one hand, and theoretical and dynamic compression studies on the other. [1] Lord et al. (2014) Phys Earth Planet Inter [2] Pozzo M, Alfè D (2013) Phys Rev B, 88:024111 [3] Errandonea et al. (2001) Phys Rev B, 63:132104 [4] Anzellini et al. (2013) Science, 340:464-466

  4. Fe-FeO and Fe-Fe3C melting relations at Earth's core-mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core

    NASA Astrophysics Data System (ADS)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Cervera, S.; Clark, A.; Lord, O. T.; Siebert, J.; Svitlyk, V.; Garbarino, G.; Mezouar, M.

    2017-09-01

    Eutectic melting temperatures in the Fe-FeO and Fe-Fe3C systems have been determined up to 150 GPa. Melting criteria include observation of a diffuse scattering signal by in situ X-Ray diffraction, and textural characterisation of recovered samples. In addition, compositions of eutectic liquids have been established by combining in situ Rietveld analyses with ex situ chemical analyses. Gathering these new results together with previous reports on Fe-S and Fe-Si systems allow us to discuss the specific effect of each light element (Si, S, O, C) on the melting properties of the outer core. Crystallization temperatures of Si-rich core compositional models are too high to be compatible with the absence of extensive mantle melting at the core-mantle boundary (CMB) and significant amounts of volatile elements such as S and/or C (>5 at%, corresponding to >2 wt%), or a large amount of O (>15 at% corresponding to ∼5 wt%) are required to reduce the crystallisation temperature of the core material below that of a peridotitic lower mantle.

  5. Shock Compression and Melting of an Fe-Ni-Si Alloy: Implications for the Temperature Profile of the Earth's Core and the Heat Flux Across the Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin

    2018-02-01

    Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.

  6. Syn-extensional plutonism and peak metamorphism in the albion-raft river-grouse creek metamorphic core complex

    USGS Publications Warehouse

    Strickland, A.; Miller, E.L.; Wooden, J.L.; Kozdon, R.; Valley, J.W.

    2011-01-01

    The Cassia plutonic complex (CPC) is a group of variably deformed, Oligocene granitic plutons exposed in the lower plate of the Albion-Raft River- Grouse Creek (ARG) metamorphic core complex of Idaho and Utah. The plutons range from granodiorite to garnet-bearing, leucogranite, and during intrusion, sillimanite- grade peak metamorphism and ductile attenuation occurred in the country rocks and normal-sense, amphibolite-grade deformation took place along the Middle Mountain shear zone. U-Pb zircon geochronology from three variably deformed plutons exposed in the lower plate of the ARG metamorphic core complex revealed that each zircon is comprised of inherited cores (dominantly late Archean) and Oligocene igneous overgrowths. Within each pluton, a spread of concordant ages from the Oligocene zircon overgrowths is interpreted as zircon recycling within a long-lived magmatic system. The plutons of the CPC have very low negative whole rock ??Nd values of -26 to -35, and initial Sr values of 0.714 to 0.718, consistent with an ancient, crustal source. Oxygen isotope ratios of the Oligocene zircon overgrowths from the CPC have an average ??18O value of 5.40 ?? 0.63 permil (2SD, n = 65) with a slight trend towards higher ??18O values through time. The ??18O values of the inherited cores of the zircons are more variable at 5.93 ?? 1.51 permil (2SD, n = 29). Therefore, we interpret the plutons of the CPC as derived, at least in part, from melting Archean crust based on the isotope geochemistry. In situ partial melting of the exposed Archean basement that was intruded by the Oligocene plutons of the CPC is excluded as the source for the CPC based on field relationships, age and geochemistry. Correlations between Ti and Hf concentrations in zircons from the CPC suggest that the magmatic system may have become hotter (higher Ti concentration in zircon) and less evolved (lower Hf in zircon concentration) through time. Therefore, the CPC represents prolonged or episodic magmatism system (32-25 Ma), and the intrusions were each accompanied by sillimanite-grade deformation and extension. The Oligocene magmatism and peak metamorphism preserved in the ARG metamorphic core complex are likely related to regional trends in mantle-derived magmatism that led to protracted heating, melting and mobilization of the deeper crust.

  7. Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan; Hu, Michael Y.; Toellner, Thomas S.; Murphy, Caitlin A.; Prakapenka, Vitali B.

    2016-08-01

    The melting points of fcc- and hcp-structured Fe0.9Ni0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mössbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time-integrated synchrotron Mössbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe0.9Ni0.1 fall within the wide region bounded by previous studies. We are able to derive the γ-ɛ-l triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5GPa, 3345 ± 120K and 116 ± 5GPa, 3260 ± 120K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe0.9Ni0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe0.9Ni0.1 using our (quasi) triple points as anchors. The extrapolated Fe0.9Ni0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core-mantle boundary to be 4000 ± 200K. We discuss a potential melting point depression caused by light elements and the implications of the presented core-mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.

  8. Temperature of Earth's core constrained from melting of Fe and Fe 0.9Ni 0.1 at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong

    The melting points of fcc- and hcp-structured Fe 0.9Ni 0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mossbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time integrated synchrotron Mfissbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe 0.9Ni 0.1 fall within the wide region bounded by previous studies. We are ablemore » to derive the gamma-is an element of-1 triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5 GPa, 3345 ± 120 K and 116 ± 5 GPa, 3260 ± 120 K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe 0.9Ni 0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe 0.9Ni 0.1 using our (quasi) triple points as anchors. The extrapolated Fe 0.9Ni 0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200 K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core -mantle boundary to be 4000 ± 200 K. We discuss a potential melting point depression caused by light elements and the implications of the presented core -mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.« less

  9. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft, suggest that Vesta resembles H chondrites in bulk chemical composition, possibly with about 25% of a CM-chondrite like composition added in. For this model, the core is 15% by mass (or 8 volume %) of the asteroid. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. Melting in the Fe-Ni-S system begins at a cotectic temperature of 940 deg. C. Only about 40% of the total metal phase, or 3-4 volume % of Vesta, melts prior to the onset of silicate melting. Liquid iron in solid silicate initially forms isolated pockets of melt; connected melt channels, which are necessary if the metal is to segregate from the silicate, are only possible when the metal phase exceeds about 5 volume %. Thus, metal segregation to form a core does not occur prior to the onset of silicate melting.

  10. Preparation and evaluation of metoprolol tartrate sustained-release pellets using hot melt extrusion combined with hot melt coating.

    PubMed

    Yang, Yan; Shen, Lian; Li, Juan; Shan, Wei-Guang

    2017-06-01

    The objective of this study was to prepare and evaluate metoprolol tartrate sustained-release pellets. Cores were prepared by hot melt extrusion and coated pellets were prepared by hot melt coating. Cores were found to exist in a single-phase state and drug in amorphous form. Plasticizers had a significant effect on torque and drug content, while release modifiers and coating level significantly affected the drug-release behavior. The mechanisms of drug release from cores and coated pellets were Fickian diffusion and diffusion-erosion. The coated pellets exhibited sustained-release properties in vitro and in vivo.

  11. Experimental constraints on the sulfur content in the Earth's core

    NASA Astrophysics Data System (ADS)

    Fei, Y.; Huang, H.; Leng, C.; Hu, X.; Wang, Q.

    2015-12-01

    Any core formation models would lead to the incorporation of sulfur (S) into the Earth's core, based on the cosmochemical/geochemical constraints, sulfur's chemical affinity for iron (Fe), and low eutectic melting temperature in the Fe-FeS system. Preferential partitioning of S into the melt also provides petrologic constraint on the density difference between the liquid outer and solid inner cores. Therefore, the center issue is to constrain the amount of sulfur in the core. Geochemical constraints usually place 2-4 wt.% S in the core after accounting for its volatility, whereas more S is allowed in models based on mineral physics data. Here we re-examine the constraints on the S content in the core by both petrologic and mineral physics data. We have measured S partitioning between solid and liquid iron in the multi-anvil apparatus and the laser-heated diamond anvil cell, evaluating the effect of pressure on melting temperature and partition coefficient. In addition, we have conducted shockwave experiments on Fe-11.8wt%S using a two-stage light gas gun up to 211 GPa. The new shockwave experiments yield Hugoniot densities and the longitudinal sound velocities. The measurements provide the longitudinal sound velocity before melting and the bulk sound velocity of liquid. The measured sound velocities clearly show melting of the Fe-FeS mix with 11.8wt%S at a pressure between 111 and 129 GPa. The sound velocities at pressures above 129GPa represent the bulk sound velocities of Fe-11.8wt%S liquid. The combined data set including density, sound velocity, melting temperature, and S partitioning places a tight constraint on the required sulfur partition coefficient to produce the density and velocity jumps and the bulk sulfur content in the core.

  12. Emergency deployable core catcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewell, M.P.

    An emergency melt down core catcher apparatus for a nuclear reactor having a retrofitable eutectic solute holding vessel connected to a core containment vessel with particle transferring fluid and particles or granules of solid eutectic solute materials contained therein and transferable by automatically operated valve means to transport and position the solid eutectic solute material in a position below the core to catch and react with any partial or complete melt down of the fuel core.

  13. Observations of brine plumes below melting Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  14. Evolution of the Moon's Mantle and Crust as Reflected in Trace-Element Microbeam Studies of Lunar Magmatism

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Floss, C.

    Ion microprobe trace-element studies of lunar cumulates [ferroan anorthosites (FAN), highlands Mg suite (HMS), and highlands alkali suite (HAS)] and volcanic glasses have provided an additional perspective in reconstructing lunar magmatism and early differentiation. Calculated melt compositions for the FANs indicate that a simple lunar magma ocean (LMO) model does not account for differences between FANs with highly magnesian mafic minerals and “typical” ferroan anorthosites. The HMS and HAS appear to have crystallized from magmas that had incompatible trace-element concentrations equal to or greater than KREEP. Partial melting of distinct, hybridized sources is consistent with these calculated melt compositions. However, the high-Mg silicates with relatively low Ni content that are observed in the HMS are suggestive of other possible processes (reduction, metal removal). The compositions of the picritic glasses indicate that they were produced by melting of hybrid cumulate sources produced by mixing of early and late LMO cumulates. The wide compositional range of near-primitive mare basalts indicates small degrees of localized melting preserved the signature of distinct mantle reservoirs. The relationship between ilmenite anomalies and 182W in the mare basalts suggests that the LMO crystallized over a short period of time.

  15. Release of PCBs from Silvretta glacier (Switzerland) investigated in lake sediments and meltwater.

    PubMed

    Pavlova, P A; Zennegg, M; Anselmetti, F S; Schmid, P; Bogdal, C; Steinlin, C; Jäggi, M; Schwikowski, M

    2016-06-01

    This study is part of our investigations about the release of persistent organic pollutants from melting Alpine glaciers and the relevance of the glaciers as secondary sources of legacy pollutants. Here, we studied the melt-related release of polychlorinated biphenyls (PCBs) in proglacial lakes and glacier streams of the catchment of the Silvretta glacier, located in the Swiss Alps. To explore a spatial and temporal distribution of chemicals in glacier melt, we combined two approaches: (1) analysing a sediment record as an archive of past remobilization and (2) passive water sampling to capture the current release of PCBs during melt period. In addition, we determined PCBs in a non-glacier-fed stream as a reference for the background pollutant level in the area. The PCBs in the sediment core from the Silvretta lake generally complied with trends of PCB emissions into the environment. Elevated concentrations during the most recent ten years, comparable in level with times of the highest atmospheric input, were attributed to accelerated melting of the glacier. This interpretation is supported by the detected PCB fractionation pattern towards heavier, less volatile congeners, and by increased activity concentrations of the radioactive tracer (137)Cs in this part of the sediment core. In contrast, PCB concentrations were not elevated in the stream water, since no significant difference between pollutant concentrations in the glacier-fed and the non-glacier-fed streams was detected. In stream water, no current decrease of the PCBs with distance from the glacier was observed. Thus, according to our data, an influence of PCBs release due to accelerated glacier melt was only detected in the proglacial lake, but not in the other compartments of the Silvretta catchment.

  16. A volatile-rich Earth's core inferred from melting temperature of core materials

    NASA Astrophysics Data System (ADS)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. McDonough, W. F. Treatise in Geochemistry 2, 547-568 (2003). 7. Anzellini, S., et al Science 340, 464-6 (2013). 8. Morard, G. et al. Phys. Chem. Miner. 38, 767-776 (2011). 9. Badro, J., et al Proc. Natl. Acad. Sci. U. S. A. 111, 7542-5 (2014).

  17. Pre-melting Behaviour in fcc Metals

    NASA Astrophysics Data System (ADS)

    Pamato, M. G.; Wood, I. G.; Dobson, D. P.; Hunt, S.; Vocadlo, L.

    2016-12-01

    Although the Earth's core is accepted to be made of an iron-nickel alloy with a few percent of light elements, its exact structure and composition are still unknown. Seismological and mineralogical models in the Earth's inner core do not agree, with mineralogical models derived from ab initiocalculations predicting shear-wave velocities up to 30% greater than seismically observed values. Recent computer simulations revealed that such difference may be explained by a dramatic, non-linear, softening of the elastic constants of Fe prior to melting. Up to date, computer calculations are the only result on pre-melting of direct applicability to the Earth's core and it is essential to systematically investigate such phenomena at inner core pressures and temperatures. Measuring the pressure dependence of pre-melting effects at such conditions and to the required precision is however extremely challenging. Also, pre-melting effects have been observed or suggested to occur in other materials, particularly noble metals, which exhibit large departures from linearity (modulus defects) at elevated temperatures. The aim of this study is to investigate to what extent pre-melting behaviour occurs in the physical properties of other metals at more experimentally tractable conditions. In particular, we report measurements of density and thermal expansion coefficients of both pure and alloyed gold (Au) up to their melting points. Au is an ideal test material since it crystallises in a simple monatomic face-centred structure and has a relatively low melting temperature. Precise measurements of unit cell lattice parameters were performed using a PANalytical X'Pert Pro powder diffractometer, equipped with an incident beam monochromator (giving very high resolution diffraction patterns) and with environmental stages covering the range from 40 K to 1373 K, with a readily achievable temperature resolution of 1K. We will discuss the circumstances under which pre-melting occurs, its mechanism(s), the effect of impurities and defects in the solid, and the consequences of pre-melting in the Earth's core.

  18. Recent Rise in West Greenland Surface Melt and Firn Density Driven by North Atlantic SSTs and Blocking Events

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Graeter, K.; Hawley, R. L.; Marshall, H. P.; Ferris, D. G.; Lewis, G.; Birkel, S. D.; Meehan, T.; McCarthy, F.

    2017-12-01

    The Greenland Ice Sheet (GrIS) has been losing mass since at least the early 2000s, mostly due to enhanced surface melt. Approximately 40% of the surface melt currently generated on the GrIS percolates into the snow/firn and refreezes, where it has no immediate impact on GrIS mass balance or sea-level rise. However, in situ observations of surface melt are sparse, and thus it remains unclear how melt water percolation and refreezing are modifying the GrIS percolation zone under recent warming. In addition, understanding the climatic drivers behind the recent increase in melt is critical for accurately predicting future GrIS surface melt rates and contributions to sea-level rise. Here we show that there have been significant increases in melt refreeze and firn density over the past 30-50 years along a 250 km-long region of the Western Greenland percolation zone (2137 - 2218 m elevation). We collected seven shallow firn cores as part of the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS), analyzed each for melt layer stratigraphy and density, and developed timescales for each based on annual layer counting of seasonal chemical oscillations (e.g. δ18O, dust, and biogenic sulfur). The cores indicate that refrozen melt layers have increased 2- to 9-fold since 1970, with statistically significant (p < 0.05) linear trends at the five southernmost core sites. Comparisons of two GreenTrACS cores to co-located PARCA cores collected in 1998 reveal significant (p < 0.05) increases in density averaged over the top 10 m of firn ranging from 32-42 kg/m3. Recent density increases closely correspond with the locations of refrozen melt water. We use output from the MARv3.7 Regional Climate Model to assess climatic forcing of surface melt at GreenTrACS sites, and find significant summer-to-summer correlations between melt generation and the frequency of blocking high pressure centers over Greenland (represented by the Greenland Blocking Index; GBI), and with North Atlantic sea surface temperatures (represented by the Atlantic Multidecadal Oscillation; AMO). Thus, future surface melt rates in Western Greenland depend on the complex evolution of the GBI and AMO under anthropogenic forcing, both of which remain poorly constrained in 21st century model projections.

  19. Nuclear reactor melt-retention structure to mitigate direct containment heating

    DOEpatents

    Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  20. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  1. Melting-induced stratification above the Earth's inner core due to convective translation.

    PubMed

    Alboussière, Thierry; Deguen, Renaud; Melzani, Mickaël

    2010-08-05

    In addition to its global North-South anisotropy, there are two other enigmatic seismological observations related to the Earth's inner core: asymmetry between its eastern and western hemispheres and the presence of a layer of reduced seismic velocity at the base of the outer core. This 250-km-thick layer has been interpreted as a stably stratified region of reduced composition in light elements. Here we show that this layer can be generated by simultaneous crystallization and melting at the surface of the inner core, and that a translational mode of thermal convection in the inner core can produce enough melting and crystallization on each hemisphere respectively for the dense layer to develop. The dynamical model we propose introduces a clear asymmetry between a melting and a crystallizing hemisphere which forms a basis for also explaining the East-West asymmetry. The present translation rate is found to be typically 100 million years for the inner core to be entirely renewed, which is one to two orders of magnitude faster than the growth rate of the inner core's radius. The resulting strong asymmetry of buoyancy flux caused by light elements is anticipated to have an impact on the dynamics of the outer core and on the geodynamo.

  2. Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core

    NASA Astrophysics Data System (ADS)

    Arveson, S. M.; Lee, K. K. M.

    2017-12-01

    The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.

  3. The behaviour of tungsten during mantle melting revisited with implications for planetary differentiation time scales

    NASA Astrophysics Data System (ADS)

    Babechuk, Michael G.; Kamber, Balz S.; Greig, Alan; Canil, Dante; Kodolányi, János

    2010-02-01

    Tungsten is a moderately siderophile high-field-strength element that is hydrophile and widely regarded as highly incompatible during mantle melting. In an effort to extend empirical knowledge regarding the behaviour of W during the latter process, we report new high-precision trace element data (W, Th, U, Ba, La, Sm) that represent both terrestrial and planetary reservoirs: MORB (11), abyssal peridotites (8), eucrite basalts (3), and carbonaceous chondrites (8). A full trace element suite is also reported for Cordilleran Permian ophiolite peridotites (12) to better constrain the behaviour of W in the upper mantle. In addition, we report our long-term averages for a number of USGS (BIR-1, BHVO-1, BHVO-2, PCC-1, DTS-1) and GSJ (JA-3, JP-1) standard reference materials, some of which we conclude to be heterogeneous and contaminated with respect to W. The most significant finding of this study is that many of the highly depleted upper mantle peridotites contain far higher W concentrations than expected. In the absence of convincing indications for alteration, re-enrichment or contamination, we propose that the W excess was caused by retention in an Os-Ir alloy phase, whose stability is dependent on fO 2 of the mantle source region. This explanation could help to account for the particularly low W content of N-MORB and implies that the lithophile behaviour of W in basaltic rocks is not an accurate representation of the behaviour in the melt source. These findings then become relevant to the interpretation of W-isotopic data for achondrites, where the fractionation of Hf from W during melting is used to infer the Hf/W of the parent body mantle. This is exemplified by the differentiation chronology of the eucrite parent body (EPB), which has been modeled with a melt source with high Hf/W. By contrast, we explore the alternative scenario with a low mantle Hf/W on the EPB. Using available eucrite literature data, a maximum core segregation age of 1.2 ± 1.2 Myr after the closure of CAIs is calculated with a more prolonged time between core formation and mantle fractionation of ca. 2 Myr. This timeline is consistent with most recent published chronologies of the EPB differentiation based on the 53Mn- 53Cr and 26Al- 26Mg systems.

  4. Morphology of melt-rich channels formed during reaction infiltration experiments on partially molten mantle rocks

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is planar and no channels develop. However, if the melt migration velocity exceeds ˜5 μm/s the reaction layer locally protrudes into the partially molten rock forming finger-like melt-rich channels. The morphology and spacing of the channels depends on the initial melt fraction. With 20 vol% melt, multiple and voluminous channels with an elliptical core formed of pure melt develop. At lower melt contents, fewer and thinner channels develop. Our experiments demonstrate that melt-rock reactions can lead to melt channelization in mantle lithologies. The morphology of the channels seems to depend on the initial permeability perturbations present in the starting material. The observed lithological transformations are in broad agreement with natural observations. However, the resulting channels lack the tabular anastomozing shapes which are likely caused by shear deformation in nature. Therefore, both reaction-driven as well as stress-driven melt segregation have to interact in nature to form the observed dunite channels. Szymczak, P., and A. J. C. Ladd (2014), Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix, J. Fluid Mech., 738, 591-630. Pec, M., B. K. Holtzman, M. Zimmerman, and D. L. Kohlstedt (2015), Reaction infiltration instabilities in experiments on partially molten mantle rocks, Geology, 43(7), 575-578, doi:10.1130/G36611.1.

  5. Pseudotachylitic breccia from the Dhala impact structure, north-central India: Texture, mineralogy and geochemical characterization

    NASA Astrophysics Data System (ADS)

    Pati, J. K.; Reimold, W. U.; Greshake, A.; Schmitt, R. T.; Koeberl, C.; Pati, P.; Prakash, K.

    2015-05-01

    Pseudotachylitic breccia (PTB) occurs in a drill core from the crater floor of the 11 km diameter, Proterozoic Dhala impact structure, India. PTBs were intersected in late Archean granitoids between 348.15 m and 502.55 m depth in the MCB-10 drill core from the center of the Dhala structure. The breccias comprise both cataclastic-matrix as well as melt breccias. The presence of microlites and vesicles in the groundmass and a widely observed flow fabric in the PTB support the presence of melt in the groundmass of some samples. Clasts in PTB are derived from the Archean granitoid basement. PTB matrix, the matrix of impact melt breccia also occurring between 256.50 m and 502.55 m depth, and the target granitoids vary in terms of silica, total alkali, magnesium and iron oxide contents. Chondrite-normalized REE patterns of PTB and target granitoids are similar, but the elemental abundances in the PTB are lower. The restricted size of PTB as veins and pods of up to 2.5 cm width, their occurrence at varied depths over a core length of 150 m, the clast population, and the chemical relationships between PTB and their host rocks all suggest the derivation of these breccias locally from the fractured basement granitoids involving in-situ melting. We favor that this took place due to rapid decompression during the collapse and modification stage of impact cratering, with, locally, additional energy input from frictional heating. Locally, amphibolite and dioritic mylonite occur in the host granitoids and their admixture could have contributed to the comparatively more mafic composition of PTB. Alteration of these crater floor rocks could have involved preferential reduction of silica and alkali element abundances, possibly due to impact-induced hydrothermal activity at crater floor level. This process, too, could have resulted in more mafic compositions.

  6. NiO and Fe/Mn in Fo-rich olivines from OIB, MORB, and mantle peridotites

    NASA Astrophysics Data System (ADS)

    Li, H.; Baker, M.; Hofmann, A. E.; Clague, D.; Stolper, E.

    2006-12-01

    Olivines from mantle peridotites have a narrow range of NiO (0.36±0.03 [1σ] wt%), but NiO of olivines in basalts suggest NiO in mantle olivines is actually more variable: e.g., Hawaiian phenocrysts (Fo>90) have NiO >0.55%, and olivines from continental flood basalts can have >0.5% NiO. At the other end of the spectrum, some basaltic suites (e.g., Iceland, MORBs) have Fo>90 olivines with NiO >0.2%. Partial melting calculations on peridotites show it is difficult to generate liquids that crystallize Fo>90 olivines with >0.4% NiO without resorting to complex processes. Hypotheses to explain the variability of NiO in mantle-derived olivines include (1) reaction of peridotite with silica-rich melts of eclogite results in decreasing modal abundance of olivine and increasing NiO in olivine [1,2]; (2) magmas with NiO-rich olivines come from sources enriched in NiO due to a core-derived component [3]. [4] proposed that high Fe/Mn of Hawaiian vs. Icelandic and MORB lavas reflect a core-derived component in their sources. Possible core incorporation is poorly constrained but FeO and NiO are expected to increase by such processes, leading to correlations between NiO and Fe/Mn in mantle rocks with significant core-derived components. We present high-precision analyses of Fo-rich olivines from OIBs, MORBs, komatiites, and mantle peridotites, focusing on NiO contents and Fe/Mn ratios. Our goal is to test hypotheses to explain elevated NiO of Fo-rich olivines in basalts. Olivines are Fo85.1-93.4; more were analyzed, but we focused on this range to avoid complications due to decreasing NiO in olivine with crystallization. Errors (1σ) are 0.01 wt% in NiO and 1.5 in Fe/Mn (wt). Our data show several features: (1) NiO contents and Fe/Mn ratios of Fo>88 olivines are positively correlated, with the low end of the trend (NiO ~0.23%, Fe/Mn ~61) defined by MORB and Iceland and the high end of the trend (NiO ~0.55%, Fe/Mn ~80) by Reunion and Hawaii. Between these end points, there is a regular trend from MORB/Iceland, to Baffin Isl, to mantle peridotites/Juan Fernandez, to Reunion/Hawaii. This array can't be explained by simple crystallization (all have similar Fo) or by variable degrees of partial melting of a single source. The NiO-Fe/Mn correlation can be modeled by quantitative addition of 1-2% oxidized core to depleted mantle and thus is consistent with the core-addition hypothesis. However, more complex core-mantle interactions/fractionations would still be required to explain trace siderophile and chalcophile elements and isotopes. Moreover, other hypotheses to explain the observed trend (including addition of silicic melts to peridotite) cannot be ruled out. (2) The Hawaiian data, although clearly defining with Reunion the upper end of the overall NiO-Fe/Mn array, are more complex. For example, a single Mauna Kea sample has ~Fo90 phenocrysts with NiO from 0.30 to 0.54%, all with Fe/Mn=72-80, and North Arch and Loihi olivines have relatively low NiO at Fe/Mn ratios comparable to other Hawaiian olivines. Although Loihi and North Arch lavas are low in SiO2, in detail the NiO of Hawaiian olivines are not well predicted by SiO2 contents of the host lavas. (3) The Gorgona Isl komatiites fall off the overall trend, extending to NiO >0.5 wt% at Fe/Mn ~62, perhaps reflecting different sources, processes, or anomalous degrees of melting. [1] Kelemen et al (1998) EPSL 164, 387-406 [2] Sobolev et al (2005) Nature 434, 590-597 [3] Ryabchikov (2003) Doklady Earth Sci. 389A, 437-439 [4] Humayun et al (2004) Science 306, 91-94

  7. Source Contaminant Control for the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Howard, David

    2015-01-01

    The Logistics Reduction and Repurposing project includes the heat melt compactor (HMC), a device that compacts waste containing plastic into a tile that will minimize volume, and may be used as materials for radiation shielding. During the process, a small purge gas stream is directed through the HMC chamber to transport out gasses and humidity released from the process. NASA Marshall Space Flight Center is tasked with developing and delivering a contamination control system to clean the purge gas prior to exhausting it back into the cabin for crew inhalation.

  8. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Chichester; S. J. Thompson

    2013-09-01

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium inmore » the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for using cerium, which is rather easy to analyze using passive nondestructive analysis gamma-ray spectrometry, as a surrogate for plutonium in the final analysis of TMI-2 melted fuel debris. The generation of this report is motivated by the need to perform nuclear material accountancy measurements on the melted fuel debris that will be excavated from the damaged nuclear reactors at the Fukushima Daiichi nuclear power plant in Japan, which were destroyed by the Tohoku earthquake and tsunami on March 11, 2011. Lessons may be taken from prior U.S. work related to the study of the TMI-2 core debris to support the development of new assay methods for use at Fukushima Daiichi. While significant differences exist between the two reactor systems (pressurized water reactor (TMI-2) versus boiling water reactor (FD), fresh water post-accident cooing (TMI-2) versus salt water (FD), maintained containment (TMI-2) versus loss of containment (FD)) there remain sufficient similarities to motivate these comparisons.« less

  9. The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body

    NASA Astrophysics Data System (ADS)

    Steenstra, E. S.; Sitabi, A. B.; Lin, Y. H.; Rai, N.; Knibbe, J. S.; Berndt, J.; Matveev, S.; van Westrenen, W.

    2017-09-01

    We present 275 new metal-silicate partition coefficients for P, S, V, Cr, Mn, Co, Ni, Ge, Mo, and W obtained at moderate P (1.5 GPa) and high T (1683-1883 K). We investigate the effect of silicate melt composition using four end member silicate melt compositions. We identify possible silicate melt dependencies of the metal-silicate partitioning of lower valence elements Ni, Ge and V, elements that are usually assumed to remain unaffected by changes in silicate melt composition. Results for the other elements are consistent with the dependence of their metal-silicate partition coefficients on the individual major oxide components of the silicate melt composition suggested by recently reported parameterizations and theoretical considerations. Using multiple linear regression, we parameterize compiled metal-silicate partitioning results including our new data and report revised expressions that predict their metal-silicate partitioning behavior as a function of P-T-X-fO2. We apply these results to constrain the conditions that prevailed during core formation in the angrite parent body (APB). Our results suggest the siderophile element depletions in angrite meteorites are consistent with a CV bulk composition and constrain APB core formation to have occurred at mildly reducing conditions of 1.4 ± 0.5 log units below the iron-wüstite buffer (ΔIW), corresponding to a APB core mass of 18 ± 11%. The core mass range is constrained to 21 ± 8 mass% if light elements (S and/or C) are assumed to reside in the APB core. Incorporation of light elements in the APB core does not yield significantly different redox states for APB core-mantle differentiation. The inferred redox state is in excellent agreement with independent fO2 estimates recorded by pyroxene and olivine in angrites.

  10. Chemical evolution of Himalayan leucogranites based on an O, U-Pb and Hf study of zircon

    NASA Astrophysics Data System (ADS)

    Hopkinson, Thomas N.; Warren, Clare J.; Harris, Nigel B. W.; Hammond, Samantha J.; Parrish, Randall R.

    2015-04-01

    Crustal melting is a characteristic process at convergent plate margins, where crustal rocks are heated and deformed. Miocene leucogranite sheets and plutons are found intruded into the high-grade metasedimentary core (the Greater Himalayan Sequence, GHS) across the Himalayan orogen. Previously-published Himalayan whole-rock data suggest that these leucogranites formed from a purely meta-sedimentary source, isotopically similar to those into which they now intrude. Bulk rock analyses carry inherent uncertainties, however: they may hide contributions from different contributing sources, and post-crystallization processes such as fluid interaction may significantly alter the original chemistry. In contrast, zircon is more able to retain precise information of the contributing sources of the melt from which it crystallises whilst its resistant nature is impervious to post-magmatic processes. This multi-isotope study of Oligocene-Miocene leucogranite zircons from the Bhutan Himalaya, seeks to differentiate between various geochemical processes that contribute to granite formation. Hf and O isotopes are used to detect discrete changes in melt source while U-Pb isotopes provide the timing of zircon crystallisation. Our data show that zircon rims of Himalayan age yield Hf-O signatures that lie within the previously reported whole-rock GHS field, confirming the absence of a discernible mantle contribution to the leucogranite source. Importantly, we document a decrease in the minimum ɛHf values during Himalayan orogenesis through time, correlating to a change in Hf model age from 1.4 Ga to 2.4 Ga. Nd model ages for the older Lesser Himalayan metasediments (LHS) that underthrust the GHS are significantly older than those for the GHS (2.4-2.9 Ga compared with 1.4-2.2 Ga), and as such even minor contributions of LHS material incorporated into a melt would significantly increase the resulting Hf model age. Hence our leucogranite data suggest either a change of source within the GHS over time, or an increasing contribution from older Lesser Himalayan (LHS) material in the melt. This is the first time that an evolutionary trend in the chemistry of Himalayan crustal melts has been recognized. Thus these new data show that, at least in the Himalaya, accessory phase geochemistry can provide more detailed insight into tectonic processes than bulk rock geochemistry.

  11. Top-down freezing in a Fe-FeS core and Ganymede's present-day magnetic field

    NASA Astrophysics Data System (ADS)

    Rückriemen, Tina; Breuer, Doris; Spohn, Tilman

    2018-06-01

    Ganymede's core most likely possesses an active dynamo today, which produces a magnetic field at the surface of ∼ 719 nT. Thermochemical convection triggered by cooling of the core is a feasible power source for the dynamo. Experiments of different research groups indicate low pressure gradients of the melting temperatures for Fe-FeS core alloys at pressures prevailing in Ganymede's core ( < 10 GPa). This may entail that the core crystallizes from the top instead of from the bottom as is expected for Earth's core. Depending on the core sulfur concentration being more iron- or more sulfur-rich than the eutectic concentration either snowing iron crystals or a solid FeS layer can form at the top of the core. We investigate whether these two core crystallization scenarios are capable of explaining Ganymede's present magnetic activity. To do so, we set up a parametrized one-dimensional thermal evolution model. We explore a wide range of parameters by running a large set of Monte Carlo simulations. Both freezing scenarios can explain Ganymede's present-day magnetic field. Dynamos of iron snow models are rather young ( < 1 Gyr), whereas dynamos below the FeS layer can be both young and much older ( ∼ 3.8 Gyr). Successful models preferably contain less radiogenic heat sources in the mantle than the chondritic abundance and show a correlation between the reference viscosity in the mantle and the initial core sulfur concentration.

  12. X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered MgSiO3 melt in Earth's mantle

    PubMed Central

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik

    2008-01-01

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle. PMID:18535140

  13. Melting relations in the iron-sulfur system at ultra-high pressures - Implications for the thermal state of the earth

    NASA Technical Reports Server (NTRS)

    Williams, Quentin; Jeanloz, Raymond

    1990-01-01

    The melting temperatures of FeS-troilite and of a 10-wt-pct sulfur iron alloy have been measured to pressures of 120 and 90 GPa, respectively. The results document that FeS melts at a temperature of 4100 (+ or - 300) K at the pressure of the core-mantle boundary. Eutecticlike behavior persists in the iron-sulfur system to the highest pressures of measurements, in marked contrast to the solid-solutionlike behavior observed at high pressures in the iron-iron oxide system. Iron with 10-wt-pct sulfur melts at a similar temperature as FeS at core-mantle boundary conditions. If the sole alloying elements of iron within the core are sulfur and oxygen and the outer core is entirely liquid, the minimum temperature at the top of the outer core is 4900 (+ or - 400) K. Calculations of mantle geotherms dictate that there must be a temperature increase of between 1000 and 2000 K across thermal boundary layers within the mantle. If D-double-prime is compositionally stratified, it could accommodate the bulk of this temperature jump.

  14. The effect of changing wind forcing on Antarctic ice shelf melting in high-resolution, global sea ice-ocean simulations with the Accelerated Climate Model for Energy (ACME)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Price, Stephen; Petersen, Mark; Wolfe, Jonathan

    2017-04-01

    The capability for simulating sub-ice shelf circulation and submarine melting and freezing has recently been added to the U.S. Department of Energy's Accelerated Climate Model for Energy (ACME). With this new capability, we use an eddy permitting ocean model to conduct two sets of simulations in the spirit of Spence et al. (GRL, 41, 2014), who demonstrate increased warm water upwelling along the Antarctic coast in response to poleward shifting and strengthening of Southern Ocean westerly winds. These characteristics, symptomatic of a positive Southern Annular Mode (SAM), are projected to continue into the 21st century under anthropogenic climate change (Fyfe et al., J. Clim., 20, 2007). In our first simulation, we force the climate model using the standard CORE interannual forcing dataset (Large and Yeager; Clim. Dyn., 33, 2009). In our second simulation, we force our climate model using an altered version of CORE interannual forcing, based on the latter half of the full time series, which we take as a proxy for a future climate state biased towards a positive SAM. We compare ocean model states and sub-ice shelf melt rates with observations, exploring sources of model biases as well as the effects of the two forcing scenarios.

  15. The Ewing Impact Structure: Progress Report

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Nunes, A. A.; Leung, I. S.; Burckle, L.; Hagstrum, J. T.

    2003-12-01

    We have previously reported on the discovery of the Ewing impact structure. It is 150 km in diameter and is located in the equatorial Pacific between the Clarion and Clipperton fracture zones. We have now mapped the distribution of microtektites and other types of impact spherules. The microtektite bearing cores form a half circle to the south with a straight edge that passes through the center of the crater. This pattern of tektite distribution matches the pattern that has been modeled for deep-water impacts. The impact melt bodies that are the source of the magnetic anomalies associated with the crater also lie in the southern half of the crater. Thus, the overall pattern of microtektite and impact melt distribution is consistent with an impactor on an inclined trajectory that arrived from the north and sprayed ejecta to the south. We have found an impact melt bomb that is part of the distal ejecta blanket. The impact melt bomb is about 10 cm by 6 cm in size. It contains unmelted marine sediment in the center that is surrounded by impact melt glass. So far, attempts to date glassy spherules and impact melt glass have been unsuccessful. Thus, our best estimate of the age of the impact is derived from diatom biostratigraphy, which gives an age of 7 to 11 Ma. In this time period, there are three major climatic excursions that might be related to the Ewing impact event. In most of the region, the 5000-meter water depth precludes using the more numerous foraminiferal zones and oxygen isotope stratigraphy to more precisely date the ejecta layer. Detailed studies of the mineralogy of the ejecta layer in core PLDS-111P have failed to find any quartz at all, shocked or unshocked. However, this core received its ejecta from the southern half of the crater, where the pre-impact basement was composed of normal oceanic crust. To the north, a minor fracture zone cuts the crater. This fracture zone is a potential location of plagiogranites, which are quartz normative. The fracture zone also contains local topographic highs that are shallow enough to retain foraminifera. By concentrating our efforts on carbonate rich cores that sample the ejecta from the northern half of the crater on or near the fracture zone, we hope to determine a more accurate biostratigraphic age for the Ewing impact event. We will also examine the mineralogy of these samples to see if quartz or opaque minerals are present. Both quartz and some opaques can show characteristic shock deformation features.

  16. Sr isotope zoning in plagioclase from andesites at Cabo De Gata, Spain: Evidence for shallow and deep contamination

    NASA Astrophysics Data System (ADS)

    Waight, Tod E.; Tørnqvist, Jakob B.

    2018-05-01

    Plagioclase crystals in andesites from the Cabo De Gata region show generally radiogenic Sr isotope compositions and consistent core to rim increases in 87Sr/86Sr that are indicative of open system processes in the lithosphere and crustal contamination during crystallization. High-grade metamorphic rocks of the Alpujárride and Nevado-Filábride complexes represent the most likely crustal contaminants. The plagioclases are characterized by subtly zoned and resorbed calcic cores (An73-86). These cores also have radiogenic 87Sr/86Sr (0.7127-0.7129), although typically less radiogenic than plagioclase rims, groundmass plagioclase and whole rock compositions (up to 87Sr/86Sr = 0.7135). These cores are interpreted to represent early crystallization of plagioclase from hydrous melts emplaced into the lower crust. The parental melts to these andesites must therefore have already inherited their radiogenic Sr isotope compositions prior to entering the lower crust and before the onset of crystallization of plagioclase, which is inconsistent with previous models suggesting that the generally radiogenic nature of Sr in these volcanics reflects large amounts of crustal contamination. Instead, the isotope systematics are consistent with models invoked significant addition of a subducted sediment component to the mantle source. The high-An% plagioclase cores are characterized by resorption textures, which are consistent with dissolution during rapid decompression and/or devolatisation during magma migration from the lower crust into upper crustal magma chambers.

  17. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation

    USGS Publications Warehouse

    Praetorius, Summer; Mix, Alan; Jensen, Britta; Froese, Duane; Milne, Glenn A.; Wolhowe, Matthew; Addison, Jason A.; Prahl, Fred

    2016-01-01

    Observations of enhanced volcanic frequency during the last deglaciation have led to the hypothesis that ice unloading in glaciated volcanic terrains can promote volcanism through decompression melting in the shallow mantle or a reduction in crustal magma storage time. However, a direct link between regional climate change, isostatic adjustment, and the initiation of volcanism remains to be demonstrated due to the difficulty of obtaining high-resolution well-dated records that capture short-term climate and volcanic variability traced to a particular source region. Here we present an exceptionally resolved record of 19 tephra layers paired with foraminiferal oxygen isotopes and alkenone paleotemperatures from marine sediment cores along the Southeast Alaska margin spanning the last deglacial transition. Major element compositions of the tephras indicate a predominant source from the nearby Mt. Edgecumbe Volcanic Field (MEVF). We constrain the timing of this regional eruptive sequence to 14.6–13.1 ka. The sudden increase in volcanic activity from the MEVF coincides with the onset of Bølling–Allerød interstadial warmth, the disappearance of ice-rafted detritus, and rapid vertical land motion associated with modeled regional isostatic rebound in response to glacier retreat. These data support the hypothesis that regional deglaciation can rapidly trigger volcanic activity. Rapid sea surface temperature fluctuations and an increase in local salinity (i.e., δ18Osw) variability are associated with the interval of intense volcanic activity, consistent with a two-way interaction between climate and volcanism in which rapid volcanic response to ice unloading may in turn enhance short-term melting of the glaciers, plausibly via albedo effects on glacier ablation zones.

  18. Origins of ultralow velocity zones through slab-derived metallic melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiachao; Li, Jie; Hrubiak, Rostislav

    2016-05-03

    Understanding the ultralow velocity zones (ULVZs) places constraints on the chemical composition and thermal structure of deep Earth and provides critical information on the dynamics of large-scale mantle convection, but their origin has remained enigmatic for decades. Recent studies suggest that metallic iron and carbon are produced in subducted slabs when they sink beyond a depth of 250 km. Here we show that the eutectic melting curve of the iron-carbon system crosses the current geotherm near Earth’s core-mantle boundary, suggesting that dense metallic melt may form in the lowermost mantle. If concentrated into isolated patches, such melt could produce themore » seismically observed density and velocity features of ULVZs. Depending on the wetting behavior of the metallic melt, the resultant ULVZs may be short-lived domains that are replenished or regenerated through subduction, or long-lasting regions containing both metallic and silicate melts. Slab-derived metallic melt may produce another type of ULVZ that escapes core sequestration by reacting with the mantle to form iron-rich post-bridgmanite or ferropericlase. The hypotheses connect peculiar features near Earth’s core-mantle boundary to subduction of the oceanic lithosphere through the deep carbon cycle.« less

  19. Early Petrologic Processes on the Ureilite Parent Body

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Grove, T. L.

    2003-01-01

    We present a petrographic and petrologic analysis of 21 olivine-pigeonite ureilites, along with new experimental results on melt compositions predicted to be in equilibrium with ureilite compositions. We conclude that these ureilites are the residues of a partial melting/smelting event. Textural evidence preserved in olivine and pigeonite record the extent of primary smelting. In pigeonite cores, we observe fine trains of iron metal inclusions that formed by the reduction of olivine to pigeonite and metal during primary smelting. Olivine cores lack metal inclusions but the outer grain boundaries are variably reduced by a late-stage reduction event. The modal proportion of pigeonite and percentage of olivine affected by late stage reduction are inversely related and provide an estimation of the degree of primary smelting during ureilite petrogenesis. In our sample suite, this correlation holds for 16 of the 21 samples examined. Olivine-pigeonite-liquid phase equilibrium constraints are used to obtain temperature estimates for the ureilite samples examined. Inferred smelting temperatures range from approximately 1150 C to just over 1300 C and span the range of estimates published for ureilites containing two or more pyroxenes. Temperature is also positively correlated with modal percent pigeonite. Smelting temperature is inversely correlated with smelting depth--the hottest olivine-pigeonite ureilites coming from the shallowest depth in the ureilite parent body. The highest temperature samples also have oxygen isotopic signatures that fall toward the refractory inclusion-rich end of the carbonaceous chondrite-anhydrous mineral (CCAM) slope 1 mixing line. These temperature-depth variations in the ureilite parent body could have been created by a heterogeneous distribution of heat producing elements, which would indicate that isotopic heterogeneities existed in the material from which the ureilite parent body was assembled.

  20. Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii

    NASA Astrophysics Data System (ADS)

    Stolper, Edward; Sherman, Sarah; Garcia, Michael; Baker, Michael; Seaman, Caroline

    2004-07-01

    The Hawaii Scientific Drilling Project recovered ˜3 km of basalt by coring into the flank of Mauna Kea volcano at Hilo, Hawaii. Rocks recovered from deeper than ˜1 km were deposited below sea level and contain considerable fresh glass. We report electron microprobe analyses of 531 glasses from the submarine section of the core, providing a high-resolution record of petrogenesis over ca. 200 Kyr of shield building of a Hawaiian volcano. Nearly all the submarine glasses are tholeiitic. SiO2 contents span a significant range but are bimodally distributed, leading to the identification of low-SiO2 and high-SiO2 magma series that encompass most samples. The two groups are also generally distinguishable using other major and minor elements and certain isotopic and incompatible trace element ratios. On the basis of distributions of high- and low-SiO2 glasses, the submarine section of the core is divided into four zones. In zone 1 (1079-˜1950 mbsl), most samples are degassed high-SiO2 hyaloclastites and massive lavas, but there are narrow intervals of low-SiO2 hyaloclastites. Zone 2 (˜1950-2233 mbsl), a zone of degassed pillows and hyaloclastites, displays a continuous decrease in silica content from bottom to top. In zone 3 (2233-2481 mbsl), nearly all samples are undegassed low-SiO2 pillows. In zone 4 (2481-3098 mbsl), samples are mostly high-SiO2 undegassed pillows and degassed hyaloclastites. This zone also contains most of the intrusive units in the core, all of which are undegassed and most of which are low-SiO2. Phase equilibrium data suggest that parental magmas of the low-SiO2 suite could be produced by partial melting of fertile peridotite at 30-40 kbar. Although the high-SiO2 parents could have equilibrated with harzburgite at 15-20 kbar, they could have been produced neither simply by higher degrees of melting of the sources of the low-SiO2 parents nor by mixing of known dacitic melts of pyroxenite/eclogite with the low-SiO2 parents. Our hypothesis for the relationship between these magma types is that as the low-SiO2 magmas ascended from their sources, they interacted chemically and thermally with overlying peridotites, resulting in dissolution of orthopyroxene and clinopyroxene and precipitation of olivine, thereby generating high-SiO2 magmas. There are glasses with CaO, Al2O3, and SiO2 contents slightly elevated relative to most low-SiO2 samples; we suggest that these differences reflect involvement of pyroxene-rich lithologies in the petrogenesis of the CaO-Al2O3-enriched glasses. There is also a small group of low-SiO2 glasses distinguished by elevated K2O and CaO contents; the sources of these samples may have been enriched in slab-derived fluid/melts. Low-SiO2 glasses from the top of zone 3 (2233-2280 mbsl) are more alkaline, more fractionated, and incompatible-element-enriched relative to other glasses from zone 3. This excursion at the top of zone 3, which is abruptly overlain by more silica-rich tholeiitic magmas, is reminiscent of the end of Mauna Kea shield building higher in the core.

  1. Megablocks and melt pockets in the Chesapeake Bay impact structure constrained by magnetic field measurements and properties of the Eyreville and Cape Charles cores

    USGS Publications Warehouse

    Shah, A.K.; Daniels, D.L.; Kontny, A.; Brozena, J.

    2009-01-01

    We use magnetic susceptibility and remanent magnetization measurements of the Eyreville and Cape Charles cores in combination with new and previously collected magnetic field data in order to constrain structural features within the inner basin of the Chesapeake Bay impact structure. The Eyreville core shows the first evidence of several-hundred-meter-thick basement-derived megablocks that have been transported possibly kilometers from their pre-impact location. The magnetic anomaly map of the structure exhibits numerous short-wavelength (<2 km) variations that indicate the presence of magnetic sources within the crater fill. With core magnetic properties and seismic reflection and refraction results as constraints, forward models of the magnetic field show that these sources may represent basementderived megablocks that are a few hundred meters thick or melt bodies that are a few dozen meters thick. Larger-scale magnetic field properties suggest that these bodies overlie deeper, pre-impact basement contacts between materials with different magnetic properties such as gneiss and schist or gneiss and granite. The distribution of the short-wavelength magnetic anomalies in combination with observations of small-scale (1-2 mGal) gravity field variations suggest that basement-derived megablocks are preferentially distributed on the eastern side of the inner crater, not far from the Eyreville core, at depths of around 1-2 km. A scenario where additional basement-derived blocks between 2 and 3 km depth are distributed throughout the inner basin-and are composed of more magnetic materials, such as granite and schist, toward the east over a large-scale magnetic anomaly high and less magnetic materials, such as gneiss, toward the west where the magnetic anomaly is lower-provides a good model fi t to the observed magnetic anomalies in a manner that is consistent with both gravity and seismic-refraction data. ?? 2009 The Geological Society of America.

  2. A 400-Year Ice Core Melt Layer Record of Summertime Warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike

    2018-04-01

    Warming in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two ice cores collected from Mt. Hunter in Denali National Park in the central Alaska Range. The ice core record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the ice core drill site and find that the increase in melt production represents a summer warming rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this warming.

  3. In situ TEM and analytical STEM studies of ZnO nanotubes with Sn cores and Sn nanodrops

    NASA Astrophysics Data System (ADS)

    Ortega, Y.; Jäger, W.; Piqueras, J.; Häussler, D.; Fernández, P.

    2013-10-01

    ZnO nanorods with Sn core regions grown by a thermal evaporation-deposition method from a mixture of SnO2 and ZnS powders as precursors, are used to study the behaviour of liquid metal in the nanotubes' core regions and the formation of liquid metal nanodrops at the tube ends by in situ TEM experiments. The compositions of the core materials and of the nanodrops were assessed by employing HAADF-STEM imaging and spatially resolved EDXS measurements. By applying variable thermal load through changing the electron-beam flux of the electron microscope, melting of the metallic core can be induced and the behaviour of the liquid metal of the nanorods can be monitored locally. Within the nanorod core, melting and reversible thermal expansion and contraction of Sn core material is reproducibly observed. For nanotubes with core material near-tip regions, a nanodrop emerges from the tip upon melting the core material, followed by reabsorption of the melt into the core and re-solidification upon decreasing the heat load, being reminiscent of a ‘soldering nanorod’. The radius of the liquid nanodrop can reach a few tens of nanometres, containing a total volume of 10-20 up to 10-18 l of liquid Sn. In situ TEM confirms that the radius of the nanodrop can be controlled via the thermal load: it increases with increasing temperature and decreases with decreasing temperature. In addition, some phenomena related to structure modifications during extended electron-beam exposure are also described.

  4. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    PubMed Central

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30–50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles. PMID:25597747

  5. Stability and melting of Fe3C at high pressure and temperature: Implication for the carbon in the Earth's core

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ohtani, E.; Sakai, T.; Hirao, N.; Ohishi, Y.

    2012-12-01

    The Earth's core is regarded as an Fe-Ni alloy but its density is lower than that of pure Fe at the core conditions. Therefore, the Earth's core is supposed to contain light elements and carbon is one of the candidates of the light elements to explain the density deficit of the Earth's core. Nakajima et al. (2009) reported the melting temperature of Fe3C up to around 30 GPa based on textual observations, the chemical analysis of the quenched run products and in situ X-ray diffraction experiments using a Kawai-type multi anvil apparatus. Lord et al. (2009) reported melting temperatures of Fe3C up to 70 GPa, which was determined by the temperature plateau during increasing laser power using a laser-heated diamond anvil cell. They also suggested Fe+Fe7C3 is a stable subsolidus phase. There are obvious discrepancies between the melting curve and the stable subsolidus phase reported by Nakajima et al. (2009) and those reported by Lord et al. (2009). In this study, the melting temperatures of Fe3C and a subsolidus phase relation were determined based on in situ X-ray diffraction experiments. This study aims to reveal the stability field of Fe3C and the melting temperature of Fe3C and to discuss the behaviors of carbon in the Earth's core. We have performed experiments using a laser-heated diamond anvil cell combined with in situ X-ray diffraction experiment at BL10XU beamline, SPring-8 synchrotron facility. An NaCl powder and a rhenium or tungsten foil were used for the insulator and gasket, respectively. Melting of the sample was determined by disappearance of the X-ray diffraction peaks. We determined the melting relation of Fe3C up to 145 GPa by in situ X-ray diffraction experiments. Present results are close to Nakajima et al. (2009) up to 30 GPa but become close to that reported by Lord et al. (2009) at higher pressure conditions. The solidus temperature extrapolated to the ICB pressure, 330 GPa, is 5400 K. We also confirmed that Fe3C is stable as a subsolidus phase at least up to 237 GPa and 4100 K. This strongly suggests that Fe3C is a potential candidate of the Earth's inner core although we need further studies at the inner core conditions.

  6. Probing the melt zone of Kilauea Iki lava lake, Kilauea volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardee, H.C.; Dunn, J.C.; Hills, R.G.

    1981-12-01

    New drilling techniques were recently used to drill and core the melt zone of Kilauea Iki lava lake to a depth of 93 m. A partial melt zone was found to exist at depths between 58 m and 89 m consisting of 40 volume percent melt. Downhole seismic shots detonated in and below the melt zone resulted in the first in situ measurements of seismic velocity directly through well characterized partial melt zone. Periodic seismic sources were used to effectively penetrate the highly fractured hydrothermal zone of the lava lake crust. Low velocity P-wave layers (< or =2.0 km/s) weremore » found at the surface, at 40 m depth, and at 90 m depth. Thermal convective experiments in the melt zone resulted in the first controlled in situ measurements of the interaction of water with a basaltic melt zone. Transient energy rates of 900 kW (980 kW/m/sup 2/) and steady rates of 85 kW (93 kW/m/sup 2/) were observed. The full water recovery (100%), high downhole steam temperatures (670 C), and high energy transfer rates (93 to 980 kW/m/sup 2/) observed in these thermal experiments are consistent with a closed cavity model where the injected water/steam directly contacted basaltic melt or near melt. In addition to understanding lava lakes, these seismic and thermal experiments have applications for the location of magma bodies in the crust and for the efficient extraction of energy from these bodies.« less

  7. Melting relations in the Fe-S-Si system at high pressure and temperature: implications for the planetary core

    NASA Astrophysics Data System (ADS)

    Sakairi, Takanori; Ohtani, Eiji; Kamada, Seiji; Sakai, Takeshi; Sakamaki, Tatsuya; Hirao, Naohisa

    2017-12-01

    The phase and melting relations in the Fe-S-Si system were determined up to 60 GPa by using a double-sided laser-heated diamond anvil cell combined with X-ray diffraction. On the basis of the X-ray diffraction patterns, we confirmed that hcp/fcc Fe-Si alloys and Fe3S are stable phases under subsolidus conditions in the Fe-S-Si system. Both solidus and liquidus temperatures are significantly lower than the melting temperature of pure Fe and both increase with pressure. The slopes of the Fe-S-Si liquidus and solidus curves determined here are smaller than the adiabatic temperature gradients of the liquid cores of Mercury and Mars. Thus, crystallization of their cores started at the core-mantle boundary region.

  8. Drilling Magma for Science, Volcano Monitoring, and Energy

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known location and properties of magma to calibrate geophysics (Brown et al, this session) and understand signals of "unrest". How can we not make such observations when there is so much to learn, so much at stake in correctly monitoring volcanoes, and such a need for clean, renewable energy?

  9. Diogenites: Cumulates from Asteroid 4 Vesta: Insights from Orthopyroxene and Spinel Chemistry

    NASA Technical Reports Server (NTRS)

    Papike, James J.; Bowman, L. E.; Spilde, M. N.; Fowler, G. W.; Shearer, C. K.

    1996-01-01

    Cumulate rocks are important planetary lithologies, but they can be difficult to interpret. Important clues to the nature of their parental melts may still be present in the interiors of cumulus phases. However, in some cases, even the cores of the cumulus grains may have been modified by postcrystallization reactions with trapped melt and other cumulus phases. We have previously studied the major-, minor-, and trace-element chemistry of orthopyroxene from a suite of diogenites and concluded that their chemical attributes can best be explained by crystallization from parental melts that were derived from a depleted mantle source that had already experienced eucrite removal. However, we and others have had difficulty explaining the great range in concentration of minor elements (Al, Ti) and trace elements (REE, Y, Zr) if all diogenites were derived from a single magmatic system. Therefore, we have investigated the chemistry of diogenitic spinels to see if they still held clues to the diogenite parental melt compositions. Although spinel is low in abundance in diogenites (<5 vol%) it still may hold clues to the maomatic and metamorphic history of these rocks.

  10. Experimental Phase Relations of Hydrous, Primitive Melts: Implications for variably depleted mantle melting in arcs and the generation of primitive high-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Weaver, S.; Wallace, P. J.; Johnston, A.

    2010-12-01

    There has been considerable experimental and theoretical work on how the introduction of H2O-rich fluids into the mantle wedge affects partial melting in arcs and chemical evolution of mantle melts as they migrate through the mantle. Studies aimed at describing these processes have become largely quantitative, with an emphasis on creating models that suitably predict the production and evolution of melts and describe the thermal state of arcs worldwide. A complete experimental data set that explores the P-T conditions of melt generation and subsequent melt extraction is crucial to the development, calibration, and testing of these models. This work adds to that data set by constraining the P-T-H2O conditions of primary melt extraction from two end-member subduction zones, a continental arc (Mexico) and an intraoceanic arc (Aleutians). We present our data in context with primitive melts found worldwide and with other experimental studies of melts produced from fertile and variably depleted mantle sources. Additionally, we compare our experimental results to melt compositions predicted by empirical and thermodynamic models. We used a piston-cylinder apparatus and employed an inverse approach in our experiments, constraining the permissible mantle residues with which our melts could be in equilibrium. We confirmed our inverse approach with forced saturation experiments at the P-T-H2O conditions of melt-mantle equilibration. Our experimental results show that a primitive, basaltic andesite melt (JR-28) from monogenetic cinder cone Volcan Jorullo (Central Mexico) last equilibrated with a harzburgite mantle residue at 1.2-1.4 GPa and 1150-1175°C with H2O contents in the range of 5.5-7 wt% H2O prior to ascent and eruption. Phase relations of a tholeiitic high-MgO basaltic melt (ID-16) from the Central Aleutians (Okmok) show the conditions of last equilibration with a fertile lherzolite mantle residue at shallower (1.2 GPa) but hotter (1275°C) conditions with approximately 2 wt% H2O. Given the estimated crustal thicknesses of these two regions, our data suggest that both samples equilibrate with mantle minerals just below the Moho. Recent viscosity dependent thermal models that account for slab geometry suggest that JR-28 melts last equilibrate with harzburgite in a cooler region of the mantle wedge. In contrast, ID-16 equilibrated with a fertile source near the hotter core of the mantle wedge. Our results support the hypothesis that lherzolite melting (wet or dry) produces essentially basaltic melts, whereas more Si-rich primitive melts require shallow hydrous melting of harzburgite or reequilibration of basaltic melts with harzburgite in the uppermost part of the wedge.

  11. An interconnected network of core-forming melts produced by shear deformation

    PubMed

    Bruhn; Groebner; Kohlstedt

    2000-02-24

    The formation mechanism of terrestrial planetary cores is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal--mainly iron with some nickel--could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a 'magma ocean'. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (non-hydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  12. Geochemical Comparison of Four Cores from the Manson Impact Structure

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.

    1996-01-01

    Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately 35% shale and siltstone (Proterozoic "Red Clastics"), 23% granite, 40% hornblende-biotite gneiss, and a small component (less than 2%) of mafic-dike rocks.

  13. The structure of melting mushy zones, with implications for Earth's inner core (Invited)

    NASA Astrophysics Data System (ADS)

    Bergman, M. I.; Huguet, L.; Alboussiere, T.

    2013-12-01

    Seismologists have inferred hemispherical differences in the isotropic wavespeed, the elastic anisotropy, the attenuation, and the attenuation anisotropy of Earth's inner core. One hypothesis for these hemispherical differences involves an east-west translation of the inner core, with enhanced solidification on one side and melting on the other. Another hypothesis is that long term mantle control over outer core convection can lead to hemispherical variations in solidification that could even result in melting in some regions of the inner core boundary. It has also been hypothesized that the inner core is growing dendritically, resulting in an inner core that has the structure of a mushy zone (albeit one with a high solid fraction). It would therefore be helpful to understand how the structure of a melting mushy zone might look in comparison with one that is solidifying, in an effort to help interpret the seismic inferences. We have carried out experiments on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone. The experiments run in a centrifuge, in order to reach a more realistic ratio of convective velocity to phase change rate, expected to be very large at the boundary of the inner core. Hypergravity thus increases the experimental solid fraction of the mush. So far the maximum gravity we have achieved is 200 g. A Peltier cell provides cooling at one end of the cell, and after the mushy zone has grown we turn on a heater at the other end. Probes monitor the temperature along the height of the cell. As ammonium chloride in the mushy zone melts it produces more dense fluid, which results in convection in the mushy zone, a greater ammonium chloride concentration deeper in the mushy zone, and hence enhanced solidification there. This thus changes the solid fraction profile from that during solidification, which may be observable in the lab experiments using ultrasonic transducers and post-mortem under a microscope. The melting may also change the propagation of chimney convection. It remains unclear whether these changes will be observable seismically.

  14. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  15. Effect of Inverter Power Source Characteristics on Welding Stability and Heat Affected Zone Dimensions

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Mamadaliev, R. A.

    2018-01-01

    The paper presents results the research in the effect of power sources dynamic characteristics on stability of melting and electrode metal transfer to the weld pool shielded metal arc welding. It is proved that when applying inverter-type welding power sources, heat and mass transfer characteristics change, arc gap short-circuit time and drop generation time are reduced. This leads to reduction of weld pool heat content and contraction of the heat-affected zone by 36% in comparison the same parameters obtained using a diode rectifier.

  16. Effect of Ni on Fe FeS phase relations at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Fei, Yingwei

    2008-04-01

    A series of melting experiments in the Fe-rich portion of the Fe-Ni-S system have been conducted at 19-23 GPa and 800-1100 °C. The solubility of S in the Fe-Ni solid alloy and the eutectic melting in the Fe-Ni-S system were determined as a function of Ni content. The maximum S solubility in the Fe-Ni alloy is 2.7 wt.% at 20 GPa and the eutectic temperature. The eutectic melting temperature in the Fe-Ni(5wt.%)-S system is ~ 1000 °C lower than the melting point of pure Fe at 20 GPa. We also found that Ni can substitute Fe in the Fe 3S structure to form (Fe,Ni) 3S solid solutions up to at least a Fe/Ni atomic ratio of 0.5. Similar to melting behavior in the Fe-FeS system, the eutectic melting relations in the Fe-Ni-S system could produce inner and outer cores with the right light element balance to account for the density difference between the solid inner core and the liquid outer core.

  17. From Mush to Eruption in 1000 Years: Rapid Assembly of the Super-Sized Oruanui Magma Body

    NASA Astrophysics Data System (ADS)

    Allan, A. S.; Morgan, D. J.; Wilson, C. J.; Millet, M.

    2012-12-01

    The mush model is useful in explaining how large volumes of evolved silicic melt can be generated in and extracted from a crystal-rich source to form crystal-poor rhyolite magma bodies at shallow crustal levels. It is unclear, however, how processes of melt extraction and/or formation of the melt-dominant magma body might be reflected in the crystal record, and what physical and temporal constraints can be applied. Textural observations and in situ geochemical fingerprints in crystals from pumices of the ~25.4 ka Oruanui eruption (Taupo, New Zealand), offer new perspectives on the processes, physical conditions and timing of the melt extraction and accumulation. Almost all orthopyroxene (opx) and plagioclase (plag) cores have textures showing a period of disequilibrium (partial dissolution and/or resorption) followed by stable conditions (infilling of raddled cores; euhedral rim overgrowths). Trace element contents in amphibole (amph), which was stable and actively crystallizing in all but the most evolved parcels of Oruanui magma, complement textural evidence showing that Mn and Zn liberated by opx dissolution were preferentially sequestered in amph. Concentrations of these opx-loving elements show a prominent inflection when plotted against indices of melt evolution (e.g. Eu/Eu* in amph) marking a return to opx stability and subsequent crystallization. Plagioclase, the most abundant crystal phase, records a more complex history with significant inheritance, but textural and chemical evidence suggests that at least some of Oruanui plag crystals experienced the same departure from and return to stability as the opx. Amphibole trace element data are linked to in situ estimates of P-T-fO2 and melt H2O determined via the Ridolfi et al. (2010: Contrib Mineral Petrol 160, 45) thermobarometer. Textural and geochemical evidence combined with P-T-H2O model values indicate that three major Oruanui crystal phases (opx, amph, plag) record a significant decompression event (from ~250 to ~150 MPa) with associated cooling (from ~900 to 820°C) coupled with the destabilization of opx. We interpret this event to reflect the extraction of rhyolitic melt plus crystals from a mush-like reservoir to form the Oruanui melt-dominant body. This body grew within model pressures of 90-150 MPa (~4-6 km depth) held at 760-800°C, with a generally homogeneous melt composition, as reflected in the consistent rim compositions of the three mineral phases. Fe-Mg diffusion modelling of core-rim boundaries in opx implies that accumulation of the ~530 km3 melt dominant body began only ca. 1000 years before eruption. The traditionally envisaged quasi-static drivers of the mush model (crystal settling, gas sparging, etc.) are difficult to reconcile with the rapidity of this timeframe, and a more dynamic, external influence (e.g. from extensional tectonics) is implied.

  18. Silica and Pyroxene in IVA Irons; Possible Formation of the IVA Magma by Impact Melting and Reduction of L-LL-Chondrite Materials Followed by Crystallization and Cooling

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Matsunami, Yoshiyuki; Rubin, Alan E.

    2006-01-01

    Group IVA is a large magmatic group of iron meteorites. The mean DELTA O-17 (= delta O-17 - 0.52(raised dot) delta O-18) of the silicates is approx. plus or minus 1.2%o, similar to the highest values in L chondrites and the lowest values in LL chondrites; delta O-18 values are also in the L/LL range. This strongly suggests that IVA irons formed by melting L-LL parental material, but the mean Ni content of IVA irons (83 mg/g) is much lower than that of a presumed L-LL parent (approx. 170 mg/g) and the low-Ca pyroxene present in two IVA meteorites is Fs13, much lower than the Fs20-29 values in L and LL chondrites. Thus, formation from L-LL precursors requires extensive addition of metallic Fe, probably produced by reduction of FeS and FeO. Group IVA also has S/Ni, Ga/Ni, and Ge/Ni ratios that are much lower than those in L-LL chondrites or any chondrite group that preserves nebular compositions, implying loss of these volatile elements during asteroidal processing. We suggest that these reduction and loss processes occurred near the surface of the asteroid during impact heating, and resulted partly from reduction by C, and partly from the thermal dissociation of FeS and FeO with loss of O and S. The hot (approx. 1770 K) low-viscosity melt quickly moved through channels in the porous asteroid to form a core. Two members of the IVA group, Sao Joao Nepomuceno (hereafter, SJN) and Steinbach, contain moderate amounts of orthopyroxene and silica, and minor amounts of low-Ca clinopyroxene. Even though SJN formed after approx. 26% crystallization and Steinbach formed after approx. 77% Crystallization of the IVA core, both could have originated within several tens of meters of the core-mantle interface if 99% of the crystallization occurred from the center outwards. Two other members of the group (Gibeon and Bishop Canyon) contain tabular tridymite, which we infer to have initially formed as veins deposited from a cooling SiO-rich vapor. The silicates were clearly introduced into IVA irons after the initial magma crystallized. Because the y-iron crystals in SJN are typically about 5 cm across, an order of magnitude smaller than in IVA irons that do not contain massive silicates, we infer that the metal was in the gamma-iron field when the silicates were injected. The SJN and Steinbach silicate compositions are near the low-Ca-pyroxene/silica eutectic compositions. We suggest that a tectonic event produced a eutectic-like liquid and injected it together with unmelted pyroxene grains into fissures in the solid metal core. Published estimates of IVA metallographic cooling rates range from 20 to 3000 K/Ma, leading to a hypothesized breakup of the core during a major impact followed by scrambling of the core and mantle debris [Haack, H., Scott, E.R.D., Love, S.G., Brearley, A. 1996. Thermal histories of IVA stony-iron and iron meteorites: evidence for asteroid fragmentation and reaccretion. Geochim. Cosmochim. Acta 60, 3103-3113]. This scrambling model is physically implausible and cannot explain the strong correlation of estimated cooling rates with metal composition. Previous workers concluded that the low-Ca clinopyroxene in SJN and Steinbach formed from protopyroxene by quenching at a cooling rate of 10(sup 12) K/Ma, and suggested that this also supported an impact-scrambling model. This implausible spike in cooling rate by a factor of 10(sup 10) can be avoided if the low-Ca clinopyroxene were formed by a late shock event that converted orthopyroxene to clinopyroxene followed by minimal growth in the clinopyroxene field, probably because melt was also produced. We suggest that metallographic cooling-rate estimates (e.g., based on island taenite) giving similar values throughout the metal compositional range are more plausible, and that the IVA parent asteroid can be modeled by monotonic cooling followed by a high-temperature impact event that introduced silicates into the metal and a low-temperature impact event that partially converted thopyroxene into low-Ca clinopyroxene.

  19. Geochemistry and petrogenesis of a peralkaline granite complex from the Midian Mountains, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Harris, N. B. W.; Marriner, G. F.

    1980-10-01

    A zoned intrusion with a biotite granodiorite core and arfvedsonite granite rim represents the source magma for an albitised granite plug near its eastern margin and radioactive siliceous veins along its western margin. A study of selected REE and trace elements of samples from this complex reveals that the albitised granite plug has at least a tenfold enrichment in Zr, Hf, Nb, Ta, Y, Th, U and Sr, and a greatly enhanced heavy/light REE ratio compared with the peralkaline granite. The siliceous veins have even stronger enrichment of these trace elements, but a heavy/light REE ratio and negative eu anomaly similar to the peralkaline granite. It is suggested that the veins were formed from acidic volatile activity and the plug from a combination of highly fractionated magma and co-existing alkaline volatile phase. The granodiorite core intrudes the peralkaline granite and has similar trace element geochemistry. The peralkaline granite is probably derived from the partial melting of the lower crust in the presence of halide-rich volatiles, and the granodiorite from further partial melting under volatile-free conditions.

  20. Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator

    NASA Technical Reports Server (NTRS)

    Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung

    2005-01-01

    A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.

  1. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng; Liu, Xinjuan

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the bandmore » gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.« less

  2. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    NASA Technical Reports Server (NTRS)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  3. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.

    PubMed

    Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S

    2013-03-01

    Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Near-Melting Condition of the Inner Core Boundary Revealed from Antipodal Seismic Waves

    NASA Astrophysics Data System (ADS)

    Cormier, V. F.; Attanayake, J.; de Silva, S. M. S.; Miller, M. S.; Thomas, C.

    2014-12-01

    First-principles calculations1 have suggested that the inner core's low shear velocity (3.5 km/sec) is a consequence of its temperature being very close to its melting temperature throughout its volume. Near the inner core's freezing or melting boundary, the shear modulus could possibly approach zero. A test of this is made from observations of the amplitude of PKIIKP waves at antipodal (>175o) ranges. These underside reflections are very sensitive to the S velocity beneath the inner core boundary due to energy subtracted from PKIIKP by converted S energy. This sensitivity is exploited by modeling PKIIKP waveforms observed by a transportable array in Morocco, which recorded many high-quality antipodal waveforms from Tonga. Differences in the in the sampling of the upper inner core between PKIIKP arriving from the short (<180o) and long (>180o) distances make it feasible to investigate lateral differences in the elastic and anelastic states of uppermost inner core from the amplitude and frequency content of the waveforms. In computational experiments, we show that a zero or small shear modulus in the uppermost inner core is the most effective way of matching large amplitude PKIIKP's observed from antipodal paths from Tonga to Morocco. The correlation of this bright spot in the PKIIKP reflection with a thin zone of low P velocity identified from multi-pathed PKIKP waves sampling a portion of the equatorial eastern hemisphere2suggests that at least this region of the inner core is near its melting temperature. Waveform modeling of PKIKP and PKIIKP from the combined effects of viscoelasticity and forward scattering is performed to determine whether this region of low shear modulus is consistent with freezing or melting. 1Martorell, B., L. Vocadlo, J.P. Brodholt, and I.G.Wood, (2013) Science, 342 (6157), doi: 10.1126/science.1243651. 2Stroujkova, A., and V.F. Cormier (2004), J. Geophys. Res., 109(B10), doi:10.1029/2004JB002976.

  5. The elastic properties of hcp-Fe alloys under the conditions of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Li, Yunguo; Vočadlo, Lidunka; Brodholt, John P.

    2018-07-01

    Geophysical and cosmochemical constraints suggest the inner-core is mainly composed of iron with a few percent of light elements. However, despite extensive studies over many years, no single alloying light-element has been found that is able to simultaneously match the observed inner-core density and both seismic velocities. This has motivated a number of suggestions of other mechanism to lower velocities, such as anelasticity or premelting. However, an unexplored possibility is that a combination of two or more light-elements might produce the desired reduction in velocities and densities of the inner core. In order to test this, we use ab initio molecular dynamics calculations to map the elastic property space of hcp-Fe alloyed with S, Si and C at 360 GPa up to the melting temperature. Based on a mixing solid solution model together with direct simulations on the ternaries, we found a number of compositions which are able to match the observed properties of the inner core. This is the first time that the density, VP, Vs and the Poisson's ratio of the inner core have been matched directly with an hcp-Fe alloy.

  6. Post-impact alteration of the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Crossey, L. J.; Mccarville, P.

    1993-01-01

    Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.

  7. State of the metal core in nanosecond exploding wires and related phenomena

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Sasorov, P. V.; Struve, K. W.; McDaniel, D. H.

    2004-08-01

    Experiments show that an expanding metal wire core that results from a nanosecond electrical explosion in vacuum consists primarily of three different states: solid, microdrop, and gas-plasma. The state of the wire core depends both on the amount of energy deposited before the voltage breakdown and on the heating conditions. For small amounts of deposited energy (on the order of solid-stage enthalpy), the wire core remains in a solid state or is partially disintegrated. For a high level of deposited energy (more than vaporization energy) the wire core is in a gas-plasma state. For an intermediate level of deposited energy (more than melting but less than vaporization), the wire disintegrates into hot liquid microdrops or clusters of submicron size. For a wire core in the cluster state, interferometry demonstrates weak (or even absent) phaseshift. Light emission shows a "firework effect"—the long late-time radiation related to the emission by the expanding cylinder of hot microparticles. For the wire core in a gas-plasma state, interferometry demonstrates a large phaseshift and a fast reduction in light emission due to adiabatic cooling of the expanding wire core. The simulation of this firework effect agrees well with experimental data, assuming submicron size and a temperature approaching boiling for the expanded microparticles cylinder.

  8. Nitrogen partitioning during core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Speelmanns, I. M.; Schmidt, M. W.; Liebske, C.

    2016-12-01

    This study investiagtes nitrogen partitioing between metal and silicate melts as relevant for core segregation during the accretion of planetesimals into the Earth. On present day Earth, N belongs to the most important elements, as it is one of the key constituents of our atmosphere and forms the basis of life. However, the geochemistry of N, i.e. its distribution and isotopic fractionation between Earth's deep reservoirs is not well constrained. In order to determine the partitioning behaviour of N, a centrifuging piston cylinder was used to euqilibrate and then gravitationally separate metal-silicate melt pairs at 1250 °C, 1 GPa over the range of oxygen fugacities thought to have prevailied druing core segreagtion (IW-4 to IW). Complete segregation of the two melts was reached within 3 hours at 1000 g, the interface showing a nice meniscus The applied double capsule technique, using an outer metallic and inner non-metallic (mostly graphite) capsule, minimizes volatile loss over the course of the experiment compared to single non-metallic capsules. The two quenched melts were cut apart, cleaned at the outside and N concentrations of the melts were analysed on bulk samples by an elemental analyser. Nevertheless, the low amount of sample material and the N yield in the high pressure experiments required the developement of new analytical routines. Despite these experimental and analytical difficulties, we were able to determine a DNmetal/silicateof 13±0.25 at IW-1, N partitioning into the core froming metal. The few availible literature data [1],[2] suggest that N changes its compatibility favoring the silicate melt or magma ocean at around IW-2.5. In order to asses how much N may effectively be contained in the core and the silicate Earth, experiments characterizing N behaviour over the entire range of core formation condtitions are well under way. [1] Kadik et al., (2011) Geochemistry International 49.5: 429-438. [2] Roskosz et al., (2013) GCA 121: 15-28.

  9. Melt segregation from partially molten source regions - The importance of melt density and source region size

    NASA Technical Reports Server (NTRS)

    Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.

    1981-01-01

    An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.

  10. Eruption Depths, Magma Storage and Magma Degassing at Sumisu Caldera, Izu-Bonin Arc: Evidence from Glasses and Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.

    2015-12-01

    Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (<65 ka), extremely thick (few m to >250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.

  11. Sedimentological and geochemical investigations to understand source of sediments and processes of recent past in Schirmacher Oasis, East Antarctica

    NASA Astrophysics Data System (ADS)

    Choudhary, Shabnam; Tiwari, Anoop Kumar; Nayak, G. N.; Bejugam, Purnima

    2018-03-01

    Three sediment cores collected from GL-1, V-1(Vetehiya) and L-6 lakes of Schirmacher Oasis, East Antarctica were studied for sediment components (sand, silt, clay, total organic carbon, total nitrogen, TOC/TN ratio and biogenic silica), major elements (Aluminium, Iron and Manganese) and trace metals (Chromium, Zinc, Lead, Cobalt, Cadmium and Nickel). High sand content in all the three cores revealed the release of coarser sediments through mechanical weathering in fluvio-glacial environment. Relatively, high biogenic silica along with high total organic carbon associated with high clay in some sections indicated high primary productivity due to the warming and exposure of the lakes to the ice-melt water influx. TOC/TN ratio for all the cores was found to be < 10 which indicated that the major source of organic matter was autochthonous. Metals were found to be strongly associated with clay and organic carbon in core V-1, with sand and clay in core L-6 while, with silt and organic matter in core GL-1 indicating their role in regulating the distribution of metals. Cadmium in lake GL-1 was found to be associated with total organic carbon and showed largely biogenic origin, while, Cd and Pb in lakes L-6 and V-1 were found to be of anthropogenic origin. All the other metals showed signatures of lithogenic origin.

  12. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  13. Final case for a stainless steel diagnostic first wall on ITER

    NASA Astrophysics Data System (ADS)

    Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.

    2015-08-01

    In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.

  14. Structure of a mushy layer under hypergravity with implications for Earth's inner core

    NASA Astrophysics Data System (ADS)

    Huguet, Ludovic; Alboussière, Thierry; Bergman, Michael I.; Deguen, Renaud; Labrosse, Stéphane; Lesœur, Germain

    2016-03-01

    Crystallization experiments in the dendritic regime have been carried out in hypergravity conditions (from 1 to 1300 g) from an ammonium chloride solution (NH4Cl and H2O). A commercial centrifuge was equipped with a slip ring so that electric power (needed for a Peltier device and a heating element), temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. Ultrasound measurements (2-6 MHz) were used to detect the position of the front of the mushy zone and to determine attenuation in the mush. Temperature measurements were used to control a Peltier element extracting heat from the bottom of the setup and to monitor the evolution of crystallization in the mush and in the liquid. A significant increase of solid fraction and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core. This has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity and attenuation of the inner core are strongly affected by melting.

  15. Structure of a mushy layer at the inner core boundary

    NASA Astrophysics Data System (ADS)

    Deguen, R.; Huguet, L.; Bergman, M. I.; Labrosse, S.; Alboussiere, T.

    2015-12-01

    We present experimental results on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone, under hyper-gravity. A commercial centrifuge has been equipped with a slip-ring so that electric power, temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. A Peltier element provides cooling at the bottom of the cell. Probes monitor the temperature along the height of the cell. Ultrasound measurements (2 to 6 MHz) is used to detect the position of the front of the mushy zone and to determine attenuation in the mush. A significant increase of solid fraction (or decrease of mushy layer thickness) and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core, which has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity and attenuation of the inner core are strongly affected by melting.

  16. Surface Melt and Firn Density Evolution in the Western Greenland Percolation Zone Over the Past 50 Years

    NASA Astrophysics Data System (ADS)

    Graeter, K.; Osterberg, E. C.; Hawley, R. L.; Thundercloud, Z. R.; Marshall, H. P.; Ferris, D. G.; Lewis, G.

    2016-12-01

    Predictions of the Greenland Ice Sheet's (GIS) contribution to sea-level rise in a warming climate depend on our ability to model the surface mass balance (SMB) processes occurring across the ice sheet. These processes are poorly constrained in the percolation zone, the region of the ice sheet where surface melt refreezes in the firn, thus preventing that melt from directly contributing to GIS mass loss. In this way, the percolation zone serves as a buffer to higher temperatures increasing mass loss. However, it is unknown how the percolation zone is evolving in a changing climate and to what extent the region will continue to serve as a buffer to future runoff. We collected seven shallow ( 22-30 m) firn cores from the Western Greenland percolation zone in May-June 2016 as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project. Here we present data on melt layer stratigraphy, density, and annual accumulation for each core to determine: (1) the temporal and spatial accumulation and melt refreeze patterns in the percolation zone of W. Greenland over the past 40 - 55 years, and (2) the impacts of changing melt and refreeze patterns on the near-surface density profile of the percolation zone. Three of the GreenTrACS firn cores re-occupy firn core sites collected in the 1970's-1990's, allowing us to more accurately quantify the evolution of the percolation zone surface melt and firn density during the most recent decades of summertime warming. This work is the basis for broader investigations into how changes in W. Greenland summertime climate are impacting the SMB of the Greenland Ice Sheet.

  17. Applications of liquid state physics to the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1980-01-01

    New results derived for application to the earth's outer core using the modern theory of liquids and the hard-sphere model of liquid structure are presented. An expression derived in terms of the incompressibility and pressure is valid for a high-pressure liquid near its melting point, provided that the pressure is derived from a strongly repulsive pair potential; a relation derived between the melting point and density leads to a melting curve law of essentially the same form as Lindemann's law. Finally, it is shown that the 'core paradox' of Higgins and Kennedy (1971) can occur only if the Gruneisen parameter is smaller than 2/3, and this constant is larger than this value in any liquid for which the pair potential is strongly repulsive.

  18. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  19. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet.

    PubMed

    Keegan, Kaitlin M; Albert, Mary R; McConnell, Joseph R; Baker, Ian

    2014-06-03

    In July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012. We use these data to project the frequency of widespread melt into the year 2100. Since Arctic temperatures and the frequency of forest fires are both expected to rise with climate change, our results suggest that widespread melt events on the Greenland Ice Sheet may begin to occur almost annually by the end of century. These events are likely to alter the surface mass balance of the ice sheet, leaving the surface susceptible to further melting.

  20. Crystallization of a compositionally stratified basal magma ocean

    NASA Astrophysics Data System (ADS)

    Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas

    2018-03-01

    Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.

  1. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Regan, Heather C.; Holland, Paul R.; Meredith, Michael P.; Pike, Jennifer

    2018-03-01

    During the second half of the twentieth century, the Antarctic Peninsula was subjected to a rapid increase in air temperatures. This was accompanied by a reduction in sea ice extent, increased precipitation and a dramatic retreat of glaciers associated with an increase in heat flux from deep ocean water masses. Isotopic tracers have been used previously to investigate the relative importance of the different freshwater sources to the adjacent Bellingshausen Sea (BS), but the data coverage is strongly biased toward summer. Here we use a regional model to investigate the ocean's response to the observed changes in its different freshwater inputs (sea ice melt/freeze, precipitation, evaporation, iceberg/glacier melt, and ice shelf melt). The model successfully recreates BS water masses and performs well against available freshwater data. By tracing the sources and pathways of the individual components of the freshwater budget, we find that sea ice dominates seasonal changes in the total freshwater content and flux, but all sources make a comparable contribution to the annual-mean. Interannual variability is dominated by sea ice and precipitation. Decadal trends in the salinity and stratification of the ocean are investigated, and a 20-year surface freshening from 1992 to 2011 is found to be predominantly driven by decreasing autumn sea ice growth. These findings will help to elucidate the role of freshwater in driving circulation and water column structure changes in this climatically-sensitive region.

  2. The melting curve of Ni to 1 Mbar

    NASA Astrophysics Data System (ADS)

    Lord, Oliver T.; Wood, Ian G.; Dobson, David P.; Vočadlo, Lidunka; Wang, Weiwei; Thomson, Andrew R.; Wann, Elizabeth T. H.; Morard, Guillaume; Mezouar, Mohamed; Walter, Michael J.

    2014-12-01

    The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments in which two melting criteria were used: firstly, the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and secondly, plateaux in temperature vs. laser power functions in both in situ and off-line experiments. Our new melting curve, defined by a Simon-Glatzel fit to the data where TM (K) = [ (PM/18.78 ± 10.20 + 1) ]1/2.42 ± 0.66 × 1726, is in good agreement with the majority of the theoretical studies on Ni melting and matches closely the available shock wave melting data. It is however dramatically steeper than the previous off-line LH-DAC studies in which determination of melting was based on the visual observation of motion aided by the laser speckle method. We estimate the melting point (TM) of Ni at the inner-core boundary (ICB) pressure of 330 GPa to be TM = 5800 ± 700 K (2 σ), within error of the value for Fe of TM = 6230 ± 500 K determined in a recent in situ LH-DAC study by similar methods to those employed here. This similarity suggests that the alloying of 5-10 wt.% Ni with the Fe-rich core alloy is unlikely to have any significant effect on the temperature of the ICB, though this is dependent on the details of the topology of the Fe-Ni binary phase diagram at core pressures. Our melting temperature for Ni at 330 GPa is ∼2500 K higher than that found in previous experimental studies employing the laser speckle method. We find that those earlier melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as convective motion of a melt. This finding has significant implications for our understanding of the high-pressure melting behaviour of a number of other transition metals.

  3. Geological and paleontological results from the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) Project

    NASA Astrophysics Data System (ADS)

    Scherer, R. P.; Powell, R. D.; Coenen, J. J.; Hodson, T. O.; Puttkammer, R.; Tulaczyk, S. M.

    2015-12-01

    The WISSARD project recovered sediment cores and other geological materials from beneath the Whillans Ice Stream in West Antarctica during two drilling seasons; Subglacial Lake Whillans (SLW) in 2013 and 100km downstream at the ice stream grounding-zone (WGZ) in 2015. SLW is characterized by 2 m of freshwater with a high suspended-sediment load, whereas WGZ has a 10 m column of clear, fully marine water with an active community of marine organisms. Three coring devices were deployed as part of WISSARD, including (1) a multicorer, which recovers 3 unaltered sediment-water interface cores, up to 0.5m, (2) a piston corer, also deployed as a gravity corer, with a 3m core barrel, and (3) a percussion coring system with a 5m core barrel. Sediments recovered from SLW are muddy diamicton with minimal stratification. The sediments are characteristic of active till, not water-column deposition. The till is weak and effective stresses very low, thus till flux from deformation must also be low. Water through flow is sufficient to carry suspended clays and silts, but not transfer large volumes of sediment in the current glaciological regime. Microfossils and geochemical tracers (e.g., biomarkers, 10Be and 14C) in SLW sediments indicate Pleistocene input from open water conditions, plus input and mixing of components derived from older Cenozoic strata. Diatoms and other sedimentary characteristics of SLW are entirely consistent with material previously recovered from upstream sites on the Whillans Ice Stream (UpB), but show evidence of further cumulative subglacial shear strain, suggesting downstream translation as deforming till. Sedimentary components from WGZ indicate significant input from sources other than from the Whillans Ice Stream. Sediment cores include distinct stratigraphic variability, with differing geochemical and sedimentary components indicative of input from changing source beds. Components indicate a mixture of Quaternary and older components. The lower ca. 10m of ice at WGZ contained abundant sedimentary debris, and active melting and rainout of basal debris was observed. We attribute much of the stratigraphy of the upper sedimentary layers at WGZ, which include soft mud and rock clasts, to ongoing basal melting. This may represent recent grounding line retreat.

  4. Presumption of large-scale heterogeneity at the top of the outer core basal layer

    NASA Astrophysics Data System (ADS)

    Souriau, Annie

    2015-04-01

    A layer of reduced P-velocity gradient with thickness of about 100-200 km has been identified at the base of the liquid core from seismological methods. It has been interpreted as a dense layer resulting from partial re-melting of the inner core, which is depleted in light elements with respect to the liquid core during freezing. In an attempt to specify where freezing and re-melting occur, the structure of this basal layer is investigated with the seismological core phase PKPbc which has its turning point in the lower third of the outer core. The large PKPbc data set of the EHB catalog distributed by the International Seismological Centre is analyzed. In order to compensate for the uneven distribution of the data and to minimize the influence of mantle heterogeneities, the travel time anomalies are binned inside equal area and equal azimuth sectors sampling the base of the liquid core at different depths. Most of the observed variations in the binned travel time residuals are not significant according to their confidence level. The only features which could be significant are a large patch with a velocity increase of about 0.5% located at the top of the basal layer beneath the eastern hemisphere, and the complementary velocity decrease beneath the western hemisphere and the South pole. This observation suggests that some freezing or re-melting processes occur at the top of the basal layer with a hemispherical dissymmetry. If confirmed, it may give strong constraints on the fate of the light elements during the freezing and re-melting process and on their interaction with the basal layer and the overlying liquid core.

  5. Investigation of magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures

    NASA Astrophysics Data System (ADS)

    Das, Kalipada

    2017-10-01

    In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).

  6. Chemostratigraphy of Subduction Initiation: Boninite and Forearc Basalt from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Shervais, John; Haugen, Emily; Godard, Marguerite; Ryan, Jeffrey G.; Prytulak, Julie; Li, Hongyan; Chapman, Timothy; Nelson, Wendy R.; Heaton, Daniel E.; Kirchenbaur, Maria; Shimizu, Kenji; Li, Yibing; Whattam, Scott A.; Almeev, Renat; Sakuyama, Tetsuya; Reagan, Mark K.; Pearce, Julian A.

    2017-04-01

    The Izu-Bonin forearc has been the focus of several recent IODP (International Ocean Discovery Program) expeditions studying the geophysical, petrologic, and chemical response to subduction initiation and its potential relationship to ophiolite genesis. IODP Expedition 352 cored four holes in the Izu-Bonin forearc near Chichi Jima in order to document the petrologic and chemical evolution of nascent subduction zones. Holes U1440 and U1441, drilled closest to the trench, sampled forearc basalt (FAB). U1439 and U1442, drilled stratigraphically up-section and farther from the trench, sampled boninite, high-Mg andesite, and basalt. FAB are characterized by MORB-like compositions, with relatively constant Ti, Zr, and Ti/Zr. In general, more primitive FAB are found in the lower part of the section. In detail, FAB have lower Na, Ti, P, and Zr, lower Ti/V ratios, and are LREE-depleted relative to MORB. Best fit models for the least evolved FAB and a depleted MORB mantle (DMM) source require extraction of 1% melt in the garnet lherzolite field and 19% melt extraction in the spinel lherzolite field (relative to 8-10% melt of DMM to produce MORB). Three types of boninite were found: high silica boninite (HSB), low silica boninite (LSB), and basaltic boninite (BB), as well as high Mg andesites (HMA). HSB, the youngest unit in both U1439 and U1442, is underlain by LSB-BB-HMA lavas, which often occur in mixed magma zones with evolved boninite and basalt. Boninites are distinguished by co-variations in SiO2-MgO and TiO2-MgO, and by Ti/Zr ratios, which increase from HSB through LSB to BB. HSB, LSB and BB define parallel trends in TiO2-MgO space: a low Ti trend represented by LSB and BB, and a lower Ti trend represented by HSB. All of the boninite suite rocks are slightly LREE-rich relative to MORB. LSB and BB have flat REE patterns relative to primitive mantle, whereas HSB are slightly LREE-rich. These trends require distinct source compositions in HSB relative to LSB/BB. The decrease in Ti/Zr from BB to HSB suggests a slab melt component. Melting models (non-modal, fractional) for boninites require additional partial melting of a residual source more depleted than DMM, and mixing with less depleted melts. The data require a heterogeneous source during subduction initiation, tapping progressively more refractory mantle through time, and showing progressive enrichment in slab components.

  7. MELT Bibliography. Materials Correlated with the Core Curriculum Competencies of the Mainstream English Language Training Project, Office of Refugee Resettlement.

    ERIC Educational Resources Information Center

    Brod, Shirley, Comp.; Sample, Barbara J.

    This bibliography is intended to assist teachers and administrators involved in competency-based, English as a second language (ESL) instruction. The materials included in the bibliography have been correlated with the core curriculum competencies of the Mainstream English Language Training (MELT) Project. The guide is divided into three parts.…

  8. Anionic Pt in Silicate Melts at Low Oxygen Fugacity: Speciation, Partitioning and Implications for Core Formation Processes on Asteroids

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Malouta, A.; Lee, C.-T.

    2017-01-01

    Most siderophile element concentrations in planetary mantles can be explained by metal/ silicate equilibration at high temperature and pressure during core formation. Highly siderophile elements (HSE = Au, Re, and the Pt-group elements), however, usually have higher mantle abundances than predicted by partitioning models, suggesting that their concentrations have been set by late accretion of material that did not equilibrate with the core. The partitioning of HSE at the low oxygen fugacities relevant for core formation is however poorly constrained due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variables like temperature, pressure, and oxygen fugacity. To better understand the relative roles of metal/silicate partitioning and late accretion, we performed a self-consistent set of experiments that parameterizes the influence of oxygen fugacity, temperature and melt composition on the partitioning of Pt, one of the HSE, between metal and silicate melts. The major outcome of this project is the fact that Pt dissolves in an anionic form in silicate melts, causing a dependence of partitioning on oxygen fugacity opposite to that reported in previous studies.

  9. Geochemical Constraints on Core-Mantle Interaction from Fe/Mn Ratios

    NASA Astrophysics Data System (ADS)

    Humayun, M.; Qin, L.

    2003-12-01

    The greater density of liquid iron alloy, and its immiscibility with silicate, maintains the physical separation of the core from the mantle. There are no a priori reasons, however, why the Earth's mantle should be chemically isolated from the core. Osmium isotopic variations in mantle plumes have been interpreted in terms of interaction between outer core and the source regions of deep mantle plumes. If chemical transport occurs across the core-mantle boundary its mechanism remains to be established. The Os isotope evidence has also been interpreted as the signatures of subducted Mn-sediments, which are known to have relatively high Pt/Os. In the mantle, Fe occurs mainly as the divalent ferrous ion, and Mn occurs solely as a divalent ion, and both behave in a geochemically coherent manner because of similarity in ionic charge and radius. Thus, the Fe/Mn ratio is a planetary constant insensitive to processes of mantle differentiation by partial melting. Two processes may perturb the ambient mantle Fe/Mn of 60: a) the subduction of Mn-sediments should decrease the Fe/Mn ratio in plume sources, while b) chemical transport from the outer core may increase the Fe/Mn ratio. The differentiation of the liquid outer core to form the solid inner core may increase abundances of the light element constituents (FeS, FeO, etc.) to the point of exsolution from the core at the CMB. The exact rate of this process is determined by the rate of inner core growth. Two end-member models include 1) inner core formation mainly prior to 3.5 Ga with heat release dominated by radioactive sources, or 2) inner core formation occurring mainly in the last 1.5 Ga with heat release dominated by latent heat. This latter model would imply large fluxes of Fe into the sources of modern mantle plumes. Existing Fe/Mn data for Gorgona and Hawaiian samples place limits on both these processes. We describe a new procedure for the precise determination of the Fe/Mn ratio in magmatic rocks by ICP-MS. This high-resolution study of the Fe/Mn of mantle-derived samples offers a new set of chemical constraints on the rates of inner core differentiation and the viability of Os isotope interpretations.

  10. Ice Core Records of West Greenland Melt and Climate Forcing

    NASA Astrophysics Data System (ADS)

    Graeter, K. A.; Osterberg, E. C.; Ferris, D. G.; Hawley, R. L.; Marshall, H. P.; Lewis, G.; Meehan, T.; McCarthy, F.; Overly, T.; Birkel, S. D.

    2018-04-01

    Remote sensing observations and climate models indicate that the Greenland Ice Sheet (GrIS) has been losing mass since the late 1990s, mostly due to enhanced surface melting from rising summer temperatures. However, in situ observational records of GrIS melt rates over recent decades are rare. Here we develop a record of frozen meltwater in the west GrIS percolation zone preserved in seven firn cores. Quantifying ice layer distribution as a melt feature percentage (MFP), we find significant increases in MFP in the southernmost five cores over the past 50 years to unprecedented modern levels (since 1550 CE). Annual to decadal changes in summer temperatures and MFP are closely tied to changes in Greenland summer blocking activity and North Atlantic sea surface temperatures since 1870. However, summer warming of 1.2°C since 1870-1900, in addition to warming attributable to recent sea surface temperature and blocking variability, is a critical driver of high modern MFP levels.

  11. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.

    2011-06-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in Greenland, during the 2010 field season.

  12. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.

    2011-11-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the field during the 2010 season as part of the NEEM deep ice core drilling project in North Greenland.

  13. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project

    USGS Publications Warehouse

    Lassiter, J.C.; DePaolo, D.J.; Tatsumoto, M.

    1996-01-01

    We have examined the Sr, Nd, and Pb isotopic compositions of Mauna Kea lavas recovered by the first drilling phase of the Hawaii Scientific Drilling Project. These lavas, which range in age from ???200 to 400 ka, provide a detailed record of chemical and isotopic changes in basalt composition during the shied/postshield transition and extend our record of Mauna Kea volcanism to a late-shield period roughly equivalent to the last ???100 ka of Mauna Loa activity. Stratigraphic variations in isotopic composition reveal a gradual shift over time toward a more depleted source composition (e.g., higher 143Nd/144Nd, lower 87Sr/86Sr, and lower 3He/4He). This gradual evolution is in sharp contrast with the abrupt appearance of alkalic lavas at ???240 ka recorded by the upper 50 m of Mauna Kea lavas from the core. Intercalated tholeiitic and alkalic lavas from the uppermost Mauna Kea section are isotopically indistinguishable. Combined with major element evidence (e.g., decreasing SiO2 and increasing FeO) that the depth of melt segregation increased during the transition from tholeiitic to alkalic volcanism, the isotopic similarity of tholeiitic and alkalic lavas argues against significant lithosphere involvement during melt generation. Instead, the depleted isotopic signatures found in late shield-stage lavas are best explained by increasing the proportion of melt generated from a depleted upper mantle component entrained and heated by the rising central plume. Direct comparison of Mauna Kea and Mauna Loa lavas erupted at equivalent stages in these volcanoes' life cycles reveals persistent chemical and isotopic differences independent of the temporal evolution of each volcano. The oldest lavas recovered from the drillcore are similar to modern Kilauea lavas, but are distinct from Mauna Loa lavas. Mauna Kea lavas have higher 143Nd/144Nd and 206Pb/204Pb and lower 87Sr/86Sr. Higher concentrations of incompatible trace elements in primary magmas, lower SiO2, and higher FeO also indicate that Mauna Kea lavas formed through smaller degrees of partial melting at greater depth than Mauna Loa lavas. These chemical and isotopic differences are consistently found between volcanoes along the western "Loa" and eastern "Kea" trends and reflect large-scale variations in source composition and melting environment. We propose a simple model of a radially zoned plume centered beneath the Loa trend. Loa trend lavas generated from the hot plume axis reflect high degrees of partial melting from a source containing a mixture of enriched plume-source material and entrained lower mantle. Kea trend lavas, in contrast, are generated from the cooler, peripheral portions of the plume, record lower degrees of partial melting, and tap a source containing a greater proportion of depleted upper mantle.

  14. Source Identification and Location Techniques

    NASA Technical Reports Server (NTRS)

    Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert

    2001-01-01

    Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A flight test is planned to determine if the hardware tested statically will achieve similar reductions in flight.

  15. The Reduction of Lunar Regolith by Carbothermal Processing Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2010-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans Currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen.

  16. The Reduction of Lunar Regolith by Carbothermal Processing Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu, S. A.; Hegde, U.

    2010-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen.

  17. Stability of the body-centred-cubic phase of iron in the Earth's inner core.

    PubMed

    Belonoshko, Anatoly B; Ahuja, Rajeev; Johansson, Börje

    2003-08-28

    Iron is thought to be the main constituent of the Earth's core, and considerable efforts have therefore been made to understand its properties at high pressure and temperature. While these efforts have expanded our knowledge of the iron phase diagram, there remain some significant inconsistencies, the most notable being the difference between the 'low' and 'high' melting curves. Here we report the results of molecular dynamics simulations of iron based on embedded atom models fitted to the results of two implementations of density functional theory. We tested two model approximations and found that both point to the stability of the body-centred-cubic (b.c.c.) iron phase at high temperature and pressure. Our calculated melting curve is in agreement with the 'high' melting curve, but our calculated phase boundary between the hexagonal close packed (h.c.p.) and b.c.c. iron phases is in good agreement with the 'low' melting curve. We suggest that the h.c.p.-b.c.c. transition was previously misinterpreted as a melting transition, similar to the case of xenon, and that the b.c.c. phase of iron is the stable phase in the Earth's inner core.

  18. Sprayed skin turbine component

    DOEpatents

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  19. A New Fast, Reliable Technique for the Sampling of Dissolved Inorganic Carbon in Sea Ice

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Wang, F.; Rysgaard, S.; Barber, D. G.

    2015-12-01

    For a long time, sea ice was considered to act as a lid over seawater preventing CO2 exchange between the atmosphere and ocean. Recent observations suggest that sea ice can be an active source or a sink for CO2, although its magnitude is not very clear. The direct measurements on CO2 flux based on the chamber method and eddy covariance often do not agree with each other. It is therefore important to measure the dissolved inorganic carbon (DIC) stock in sea ice precisely in order to better understand the CO2 flux through sea ice. The challenges in sea ice DIC sampling is how to melt the ice core without being exposed to the air gaining or losing CO2. A common practice is to seal the ice core in a self-prepared gas-tight plastic bag and suck the air out of the bag gently using a syringe (together with a needle) through a valve mounted on one side of the bag. However, this method is time consuming (takes up to several minutes to suck the air out) and very often there is large headspace found in the bag after the ice melts due to the imperfect bag-preparation, which might affect the DIC concentration in melt ice-water. We developed a new technique by using a commercially available plastic bag with a vacuum sealer to seal the ice core. In comparison to syringe-based method, this technique is fast and easy to operate; it takes less than 10 seconds to vacuum and seal the bag all in one button with no headspace left in the bag. Experimental tests with replicate ice cores sealed by those two methods showed that there is no difference in the DIC concentration measured after these two methods, suggesting that there is no loss of DIC during the course of vacuum sealing. In addition, a time series experiment on DIC in melt ice-water stored in the new bag shows that when the samples were not poisoned, the DIC concentration remains unchanged for at least 3 days in the bag; while poisoned by HgCl2, there is no change in DIC for at least 21 days, indicating that this new bag is impermeable to CO2. Therefore, this new technique offers a convenient yet reliable method for DIC sampling of sea ice.

  20. Chicxulub Impact Melts: Geochemical Signatures of Target Lithology Mixing and Post-Impact Hydrothermal Fluid Processes

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Zurcher, Lukas; Horz, Freidrich; Mertzmann, Stanley A.

    2004-01-01

    Impact melts within complex impact craters are generally homogeneous, unless they differentiated, contain immiscible melt components, or were hydrothermally altered while cooling. The details of these processes, however, and their chemical consequences, are poorly understood. The best opportunity to unravel them may lie with the Chicxulub impact structure, because it is the world s most pristine (albeit buried) large impact crater. The Chicxulub Scientific Drilling Project recovered approx. 100 meters of impactites in a continuous core from the Yaxcopoil-1 (YAX-1) borehole. This dramatically increased the amount of melt available for analyses, which was previously limited to two small samples N17 and N19) recovered from the Yucatan-6 (Y-6) borehole and one sample (N10) recovered from the Chicxulub-1 (C-1) borehole. In this study, we describe the chemical compositions of six melt samples over an approx. 40 m section of the core and compare them to previous melt samples from the Y-6 and C-1 boreholes.

  1. Low-Degree Partial Melting Experiments of CR and H Chondrite Compositions: Implications for Asteroidal Magmatism Recorded in GRA 06128 and GRA 06129 T

    NASA Technical Reports Server (NTRS)

    Usui, T.; Jones, John H.; Mittlefehldt, D. W.

    2010-01-01

    Studies of differentiated meteorites have revealed a diversity of differentiation processes on their parental asteroids; these differentiation mechanisms range from whole-scale melting to partial melting without the core formation [e.g., 1]. Recently discovered paired achondrites GRA 06128 and GRA 06129 (hereafter referred to as GRA) represent unique asteroidal magmatic processes. These meteorites are characterized by high abundances of sodic plagioclase and alkali-rich whole-rock compositions, implying that they could originate from a low-degree partial melt from a volatile-rich oxidized asteroid [e.g., 2, 3, 4]. These conditions are consistent with the high abundances of highly siderophile elements, suggesting that their parent asteroid did not segregate a metallic core [2]. In this study, we test the hypothesis that low-degree partial melts of chondritic precursors under oxidizing conditions can explain the whole-rock and mineral chemistry of GRA based on melting experiments of synthesized CR- and H-chondrite compositions.

  2. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard

    2018-03-01

    In the central Erzgebirge within the Bohemian Massif, lenses of high pressure and ultrahigh pressure felsic granulites occur within meta-sedimentary and meta-igneous amphibolite-facies felsic rocks. In the felsic granulite, melt rich parts and restite form alternating layers, and were identified by petrology and bulk rock geochemistry. Mineral assemblages representing the peak P-T conditions were best preserved in melanocratic restite layers. In contrast, in the melt rich leucocratic layers, garnet and related HP minerals as kyanite are almost completely resorbed. Both layers display differences in accessory minerals: melanosomes have frequent and large monazite and Fe-Ti-minerals but lack xenotime and apatite; leucosomes have abundant apatite and xenotime while monazite is rare. Here we present a detailed petrographic study of zircon grains (abundance, size, morphology, inclusions) in granulite-facies and amphibolite-facies felsic gneisses, along with their oxygen and hafnium isotope compositions. Our data complement earlier Usbnd Pb ages and trace element data (REE, Y, Hf, U) on zircons from the same rocks (Tichomirowa et al., 2005). Our results show that the degree of melting determines the behaviour of zircon in different layers of the granulites and associated amphibolite-facies rocks. In restite layers of the granulite lenses, small, inherited, and resorbed zircon grains are preserved and new zircon formation is very limited. In contrast, new zircons abundantly grew in the melt rich leucocratic layers. In these layers, the new zircons (Usbnd Pb age, trace elements, Hf, O isotopes) best preserve the information on peak metamorphic conditions due to intense corrosion of other metamorphic minerals. The new zircons often contain inherited cores. Compared to cores, the new zircons and rims show similar or slightly lower Hf isotope values, slightly higher Hf model ages, and decreased oxygen isotope ratios. The isotope compositions (Hf, O) of new zircons indicate partial Hf isotope homogenization in the melt, and melt infiltration from an external source. New zircon was most likely formed by a peritectic reaction with melt above the wet solidus (peritectic zircon). Conversely, the amphibolite-facies host gneisses lack indications of significant melt production. Pre-metamorphic zircons experienced mainly solid-state recrystallization and variable Pb loss with only minor new zircon formation. However, subtle changes in cathodoluminescence pattern, in the Hf and O isotopes, and in the Lu/Hf, Yb/Hf ratios of zircons suggest that small volumes of melt were locally present. In difference to granulites, melt was internally produced. The detection of low degree melts (inferred from zircon geochemistry) is extremely important for the rheology because these amphibolite-facies rocks could act as large scale ductile shear zones. The new zircon data support a different P-T path for closely spaced amphibolite- and granulite-facies rocks.

  3. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    PubMed

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  4. Non-Plasmonic SERS with Silicon: Is It Really Safe? New Insights into the Optothermal Properties of Core/Shell Microbeads.

    PubMed

    Bontempi, Nicolò; Vassalini, Irene; Danesi, Stefano; Ferroni, Matteo; Donarelli, Maurizio; Colombi, Paolo; Alessandri, Ivano

    2018-05-03

    Silicon is one of the most interesting candidates for plasmon-free surface-enhaced Raman scattering (SERS), because of its high-refractive index and thermal stability. However, here we demonstrate that the alleged thermal stability of silicon nanoshells irradiated by conventional Raman laser cannot be taken for granted. We investigated the opto-thermal behavior of SiO 2 /Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (λ = 532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that, in the case of strong opto-thermal coupling, the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.

  5. Molybdenum Isotopic Composition of the Archean Mantle As Inferred from Studies of Komatiites

    NASA Astrophysics Data System (ADS)

    Greber, N. D.; Puchtel, I. S.; Nagler, T. F.; Mezger, K.

    2014-12-01

    Molybdenum isotopic composition has been shown to be a powerful tool in studies of planetary processes, e.g. estimating core formation temperatures [1,2]. However, Mo isotope compositions of terrestrial reservoirs are not well constrained. In order to better constrain the Mo isotopic composition of the early Earth's mantle, komatiites from four locations were analyzed for their Mo concentrations and isotopic compositions. Komatiites are particularly appropriate for this type of study because they formed by high degrees of partial melting of the mantle leading to a complete base metal sulfide removal from the residual mantle and the production of sulfur-undersaturated melts and thus a quantitative removal of Mo from the source into the melt. All samples, except for two strongly altered specimens specifically chosen to study the effects of secondary alteration, are very fresh having preserved most of their primary mineralogy. The Mo concentrations in komatiites range from 10 to 120 ng/g. Fresh komatiites have lighter δ98Mo (NIST SRM 3134 = 0.25‰, [3]) than altered samples. The estimated primary Mo isotope compositions of the studied komatiite melts range from 0.02 ± 0.16‰ to 0.19 ± 0.14‰ and are therefore indistinguishable within analytical uncertainty (2SD) from published values for chondritic meteorites (0.09 ± 0.04 ‰; 2SD; [2]) and lighter than the proposed average for Earth's continental crust (0.3 to 0.4‰ [4]). All data combined, although overlapping in errors, show a consistent trend of lighter δ98Mo and lower Mo concentrations in more melt-depleted mantle sources, indicating incompatible behaviour of Mo and preferential mobilization of heavy Mo isotopes during mantle melting. [1] Hin et al. (2013) EPSL, 379 [2] Burkhardt et al. (2014) EPSL, 391 [3] Nägler, et al. (2014) GGR, 38. [4] Voegelin et al. (2014) Lithos, 190-191.

  6. Melting and Crystallization at Core Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.

    2015-12-01

    Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams & Garnero (1996) Science 273, 1528. [2] Andrault et al. (2011), EPSL 304, 251. [3] Nomura et al. (2014) Science 343, 522. [4] Andrault et al. (2014) Science 344, 892. [5] Boukaré et al (2015) J.Geophys. Res, in press.

  7. a Steady Thermal State for the Earth's Interior

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Monteux, J.; Le Bars, M.; Samuel, H.

    2015-12-01

    Large amounts of heat are permanently lost at the surface yielding the classic view of the Earth continuously cooling down. Contrary to this conventional depiction, we propose that the temperature profile in the deep Earth has remained almost constant for the last ~3 billion years (Ga) or more. The core-mantle boundary (CMB) temperature reached the mantle solidus of 4100 (+/-300) K after complete crystallization of the magma ocean not more than 1 Ga after the Moon-forming impact. The CMB remains at a similar temperature today; seismological evidences of ultra-low velocity zones suggest partial melting in the D"-layer and, therefore, a current temperature at, or just below, the mantle solidus. Such a steady thermal state of the CMB temperature excludes thermal buoyancy and compositional convection from being the predominant mechanisms to power the geodynamo over geological time. An alternative mechanism to produce motion in the outer core is mechanical forcing by tidal distortion and planetary precession. The conversion of gravitational and rotational energies of the Earth-Moon-Sun system to core motions could have supplied the lowermost mantle with a variable intensity heat source through geological time, due to the regime of core instabilities and/or changes in the astronomical forces. This variable heat source could explain the dramatic volcanic events that occurred in the Earth's history.

  8. Zircon U-Pb ages and Hf-O isotopic composition of migmatites from the Zanjan-Takab complex, NW Iran: Constraints on partial melting of metasediments

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Stern, Robert J.; Ghorbani, Ghasem; Bakhshizad, Farzaneh

    2016-01-01

    We study migmatites and other metamorphic rocks in the Zanjan-Takab region of NW Iran and use these results to report the first evidence of Oligocene core complex formation in Iran. Four samples of migmatites associated with paragneisses, including leucosomes and associated para-amphibolite melanosomes were selected for U-Pb dating and Hf-O isotopic analysis. Zircon cores - interpreted as originally detrital zircons - have variable ages that peak at ca. 100-110 Ma, but their sedimentation age - indicated by the youngest 206Pb/238U ages - is ca. 35-40 Ma. New zircons associated with incipient melting occur as overgrowths around zircon cores and/or as newly grown grains. Morphologies and internal structures suggest that rim growth and formation of new zircons were associated with partial melting. All four samples contain zircons with rims that yield 206Pb/238U ages of 28-25 Ma, indicating that partial melting occurred in Late Oligocene time. δ18O values for zircon rims vary between 8.2 and 12.3‰, significantly higher than expected for mantle inputs (δ18O 6‰) and consistent with equilibrium with surface materials. Zircon rims yield εHf(t) between 2.2 and 12.4 and two-stage Hf model ages of 448-562 Ma, indicating that the region is underlain by Cadomian-Caledonian crust. According to the Hf-O isotopic values, the main mechanism forming zircon rims was dissolution of pre-existing detrital zircons with reprecipitation of new zircon shortly thereafter. Oligocene ages indicate that partial melting accompanied core complex formation in the Zanjan-Takab region. Extension, melting, and core complex formation in south-central Iran are Eocene in age, but younger ages of Oligocene-Miocene in NW Iran and Turkey indicate that extension was distributed throughout the region during Cenozoic time.

  9. Combustion and Engine-Core Noise

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  10. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared

    2016-12-01

    This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from <1 to ∼1, indicating a transition from non-ideal mixing as OH- in the melt (ϒSiO2 <1) to ideal mixing as molecular H2O (ϒSiO2 ∼1). At pressures >2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at 3 GPa being more silica-poor than melts at 2 GPa. Thus, variable bulk H2O and pressure of melt generation results in the partial melts from this study varying in composition from phonotephrite to basaltic andesite at 2 GPa and foidite/phonotephrite to basalt at 3 GPa, forming a spectrum of arc magmas. Modeling suggests that the trace element patterns of sediment-melt are unaffected by the process of hybridization within the hotter core of the mantle-wedge. K2O/H2O and H2O/Ce ratios of the sediment-melts are unaffected, within error, by the process of hybridization of the mantle-wedge. This implies that thermometers based on K2O/H2O and H2O/Ce ratios of arc lavas may be used to estimate slab-top temperatures when (a) sediment-melt from the slab reaches the hotter core of the mantle-wedge by focused flow (b) sediment-melt freezes in the overlying mantle at the slab-mantle interface and the hybridized package rises as a mélange diapir and partially melts at the hotter core of the mantle-wedge. Based on the results from this study and previous studies, both channelized and porous flow of sediment-melt/fluid through the sub-arc mantle can explain geochemical signatures of arc lavas under specific geodynamic scenarios of fluid/melt fluxing, hybridization, and subsequent mantle melting.

  11. Devon island ice cap: core stratigraphy and paleoclimate.

    PubMed

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  12. Partitioning of Moderately Siderophile Elements Among Olivine, Silicate Melt, and Sulfide Melt: Constraints on Core Formation in the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Gaetani, Glenn A.; Grove, Timothy L.

    1997-01-01

    This study investigates the effects of Variations in the fugacities of oxygen and sulfur on the partitioning of first series transition metals (V, Cr, Mn, Fe, Co, Ni. and Cu) and W among coexisting sulfide melt, silicate melt, and olivine. Experiments were performed at 1 atm pressure, 1350 C, with the fugacities of oxygen and sulfur controlled by mixing CO2, CO, and SO2 gases. Starting compositions consisted of a CaO-MgO-Al2O3-SiO2-FeO-Na2O analog for a barred olivine chondrule from an ordinary chondrite and a synthetic komatiite. The f(sub O2)/f(sub S2), conditions ranged from log of f(sub O2) = -7.9 to - 10.6, with log of f(sub S2) values ranging from - 1.0 to -2.5. Our experimental results demonstrate that the f(sub O2)/f(sub S2) dependencies of sulfide melt/silicate melt partition coefficients for the first series transition metals arc proportional to their valence states. The f(sub O2)/f(sub S2) dependencies for the partitioning of Fe, Co, Ni, and Cu are weaker than predicted on the basis of their valence states. Variations in conditions have no significant effect on olivine/melt partitioning other than those resulting from f(sub O2)-induced changes in the valence state of a given element. The strong f(sub O2)/f(sub S2) dependence for the olivine/silicate melt partitioning of V is attributable to a change of valence state, from 4+ to 3+, with decreasing f(sub O2). Our experimentally determined partition coefficients are used to develop models for the segregation of sulfide and metal from the silicate portion of the early Earth and the Shergottite parent body (Mars). We find that the influence of S is not sufficient to explain the overabundance of siderophile and chalcophile elements that remained in the mantle of the Earth following core formation. Important constraints on core formation in Mars are provided by our experimental determination of the partitioning of Cu between silicate and sulfide melts. When combined with existing estimates for siderophile element abundances in the Martian mantle and a mass balance constraint from Fe, the experiments allow a determination of the mass of the Martian core (approx. 17 to 22 wt% of the planet) and its S content (approx.0.4 wt%). These modeling results indicate that Mars is depleted in S, and that its core is solid.

  13. Boundary pressure of inter-connection of Fe-Ni-S melt in olivine based on in-situ X-ray tomography: Implication to core formation in asteroids

    NASA Astrophysics Data System (ADS)

    Terasaki, H.; Urakawa, S.; Uesugi, K.; Nakatsuka, A.; Funakoshi, K.; Ohtani, E.

    2011-12-01

    Interconnectivity of Fe-alloy melt in crystalline silicates is important property for the core formation mechanism in planetary interior. In previous studies, the interconnectivity of Fe-alloy melt has been studied based on textural observation of recovered samples from high pressure and temperature. However, there is no observation under high pressure and temperature. We have developed 80-ton uni-axial press for X-ray computed micro-tomography (X-CT) and performed X-CT measurement under high pressure (Urakawa et al. 2010). Here we report X-CT measurement of Fe-Ni-S melt in crystalline olivine and interconnectivity of the melt up to 3.5 GPa and 1273 K. X-CT measurements were carried out at BL20B2 beamline, SPring-8 synchrotron facility. The sample was powder mixture of Fe-Ni-S and olivine, which was enclosed in graphite capsule. Heating was performed using a cylindrical graphite furnace. Pressure was generated using opposed toroidal-shape WC anvil. The uni-axial press was set on the rotational stage and X-ray radiography image of the sample was collected using CCD camera from 0°to 180°with 0.3° step. 3-D image of the sample was obtained by reconstructing the 2-D radiography image. The 3-D CT image shows that the size of the Fe-Ni-S melt increased significantly compared to that before melting below 2.5 GPa, suggesting that the melt was interconnected in olivine crystals. On the other hand, 3-D texture of the sample at 3.5 GPa did not show difference from that before melting. Therefore, the boundary of inter-connection of Fe-Ni-S melt is likely to locate between 2.5 and 3.5 GPa. This result is important application for the core formation mechanism especially in small bodies, such as differentiated asteroids.

  14. Interpretation of the results of the CORA-33 dry core BWR test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, L.J.; Hagen, S.

    All BWR degraded core experiments performed prior to CORA-33 were conducted under ``wet`` core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ``dry`` core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ``dry`` core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions ofmore » a ``dry`` BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ``dry`` core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed.« less

  15. Density Determination of Metallic Melts from Diffuse X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.

  16. Constraints on the Parental Melts of Enriched Shergottites from Image Analysis and High Pressure Experiments

    NASA Technical Reports Server (NTRS)

    Collinet, M.; Medard, E.; Devouard, B.; Peslier, A.

    2012-01-01

    Martian basalts can be classified in at least two geochemically different families: enriched and depleted shergottites. Enriched shergottites are characterized by higher incompatible element concentrations and initial Sr-87/Sr-86 and lower initial Nd-143/Nd-144 and Hf-176/Hf-177 than depleted shergottites [e.g. 1, 2]. It is now generally admitted that shergottites result from the melting of at least two distinct mantle reservoirs [e.g. 2, 3]. Some of the olivine-phyric shergottites (either depleted or enriched), the most magnesian Martian basalts, could represent primitive melts, which are of considerable interest to constrain mantle sources. Two depleted olivine-phyric shergottites, Yamato (Y) 980459 and Northwest Africa (NWA) 5789, are in equilibrium with their most magnesian olivine (Fig. 1) and their bulk rock compositions are inferred to represent primitive melts [4, 5]. Larkman Nunatak (LAR) 06319 [3, 6, 7] and NWA 1068 [8], the most magnesian enriched basalts, have bulk Mg# that are too high to be in equilibrium with their olivine megacryst cores. Parental melt compositions have been estimated by subtracting the most magnesian olivine from the bulk rock composition, assuming that olivine megacrysts have partially accumulated [3, 9]. However, because this technique does not account for the actual petrography of these meteorites, we used image analysis to study these rocks history, reconstruct their parent magma and understand the nature of olivine megacrysts.

  17. Lid heater for glass melter

    DOEpatents

    Phillips, Terrance D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

  18. Lid heater for glass melter

    DOEpatents

    Phillips, T.D.

    1993-12-14

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures.

  19. Variations of algal communities cause darkening of a Greenland glacier.

    PubMed

    Lutz, Stefanie; Anesio, Alexandre M; Jorge Villar, Susana E; Benning, Liane G

    2014-08-01

    We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history

    NASA Astrophysics Data System (ADS)

    Andrault, Denis; Bolfan-Casanova, Nathalie; Nigro, Giacomo Lo; Bouhifd, Mohamed A.; Garbarino, Gaston; Mezouar, Mohamed

    2011-04-01

    We investigated the melting properties of a synthetic chondritic primitive mantle up to core-mantle boundary (CMB) pressures, using laser-heated diamond anvil cell. Melting criteria are essentially based on the use of X-rays provided by synchrotron radiation. We report a solidus melting curve lower than previously determined using optical methods. The liquidus curve is found between 300 and 600 K higher than the solidus over the entire lower mantle. At CMB pressures (135 GPa), the chondritic mantle solidus and liquidus reach 4150 (± 150) K and 4725 (± 150) K, respectively. We discuss that the lower mantle is unlikely to melt in the D″-layer, except if the highest estimate of the temperature profile at the base of the mantle, which is associated with a very hot core, is confirmed. Therefore, recent suggestions of partial melting in the lowermost mantle based on seismic observations of ultra-low velocity zones indicate either (1) a outer core exceeding 4150 K at the CMB or (2) the presence of chemical heterogeneities with high concentration of fusible elements. Our observations of a high liquidus temperature as well as a large gap between solidus and liquidus temperatures have important implications for the properties of the magma ocean during accretion. Not only complete melting of the lower mantle would require excessively high temperatures, but also, below liquidus temperatures partial melting should take place over a much larger depth interval than previously thought. In addition, magma adiabats suggest very high surface temperatures in case of a magma ocean that would extend to more than 40 GPa, as suggested by siderophile metal-silicate partitioning data. Such high surface temperature regime, where thermal blanketing is inefficient, points out to a transient character of the magma ocean, with a very fast cooling rate.

  1. Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming

    USGS Publications Warehouse

    DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.

    1998-01-01

    Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the early 1960s during peak weapons testing fallout for this isotope was 360 TU. One meltwater sample from the rock glacier was analyzed for 35S with a measured concentration of 5.4??1.0 millibecquerel per liter (mBeq/l). Modern precipitation in the Rocky Mountains contains 35S from 10 to 40 mBeq/L. The ??18O results in meltwater from the Galena Creek rock glacier (-17.40??0.1 to -17.98??0.1 per mil) are similar to results for modern precipitation in the Rocky Mountains. Comparison of these isotopic concentrations from the two glaciers suggest that the meltwater at the Galena Creek site is composed mostly of melted snow and rain that percolates through the rock debris that covers the glacier. Additionally, this water from the rock debris is much younger (less than two years) than the reported age of about 2000 years for the subsurface ice at the mid-glacier coring site. Thus the meltwater from the Galena Creek rock glacier is composed primarily of melted surface snow and rain water rather than melted glacier ice, supporting previous estimates of slow ablation rates beneath the surface debris of the rock glacier.

  2. Petrological characterization of the seismic low-velocity anomaly beneath the Eifel volcanic field (West Germany) using major and trace element compositions of olivine macrocrysts

    NASA Astrophysics Data System (ADS)

    Dejan, Prelevic; Dieter, Mertz; Regina, Mertz-Kraus; Stephan, Buhre

    2014-05-01

    The Eifel volcanic field is part of the Central European Cenozoic Magmatic Province and was periodically active from the mid-Cretaceous until the latest Pleistocene. Two contrasting models are used to explain sources and magma generation mechanisms of the Pleistocene Eifel volcanism: i) decompressional partial melting at the base of the subcontinental lithosphere as a consequence of extension caused by lithospheric flexuring from emplacement of Alpine nappes (Wilson & Downes, 1991); ii) plume-type thermal upwelling in the asthenosphere on the basis of seismic tomography indicating a low-velocity anomaly beneath the Eifel probably caused by temperatures higher than the normal asthenosphere adiabat (e.g., Ritter et al. 2001). We present high-precision electron microprobe data for major and minor elements as well as laser ablation ICP-MS data for trace elements of olivine from the Eifel in order to put new constraints on the origin of Pleistocene Eifel volcanism. Being an early liquidus phase in the crystallization of basaltic melts, olivine composition may be used to characterize the composition of primary mantle melts and their source region in terms of major and trace elements. Moreover, it is useful for T estimation providing a snapshot of the liquid equilibria at early magmatic stage. In addition, important petrological parameters can be constrained, like the extent of prior melt extraction of their mantle source, the presence of different geochemical components in the source, olivine residence times etc. Olivine macrocrysts occur in most of the Eifel Mg-rich lavas, forming up to 10 vol% of the rocks. We studied olivines from 10 representative lava flows of basanitic composition. Based on compositional and textural differences, three genetic groups are recognized: i) volumetrically dominant igneous olivines or phenocrysts (melt related); they are equilibrated with their host melt showing normal zonation (core-rim Fo89-80) and NiO contents up to 0.3 wt%, whereas Cr2O3 and CaO are around 0.18 wt% and 0.20 wt%, respectively; ii) mantle xenocrysts are typically mantled by olivine of phenocrystal composition, with the plateau-like core compositions typically with Fo91.5 and NiO contents around 0.4 wt%; a number of features supports their mantle origin, namely CaO contents lower than 0.1 wt%, homogeneous compositions within the grain (typical for mantle olivine, resulting from long equilibration times), anhedral shapes showing deformation features such as kink bands etc; iii) a genetic group also demonstrating xenocrystic features (e.g., compositional disequilibration with the host melt, the mantling by olivine of phenocrystal composition); however, it differs from the mantle olivine by having higher CaO (> 0.3 wt%), slightly lower Mg# (up to 90), and considerably lower NiO contents (< 0.1 wt%); we interpret these grains to originate from wherlitic assemblages within the lithospheric mantle. Our preliminary estimation of the olivine-liquid equilibria using compositions of the phenocrysts indicates temperatures not considerably higher than 1300 oC. The trace element composition of olivine phenocrysts and two types of xenocrysts show several important characteristics. Relative to mantle xenocrystal olivine that is depleted in the most trace elements, phenocrysts are considerably enriched in Li and Zn, and depleted in Ti. Low NiO xenocrysts have high Ti with slightly elevated Li concentration. There is a certain overlap between the phenocrysts from Eifel lavas and those from orogenic Mediterranean volcanics, indicating compositional similarities in their mantle sources that may imply the presence of common metasomatizing agent(s). Wilson, M. & Downes, H. (1991). Journal of Petrology 32, 811-849. Ritter, J. R. R., Jordan, M., Christensen, U. R. & Achauer, U. (2001). Earth and Planetary Science Letters 186, 7-14.

  3. Episodic growth of a Late Cretaceous and Paleogene intrusive complex of pegmatitic leucogranite, Ruby Mountains core complex, Nevada, USA

    USGS Publications Warehouse

    Howard, Keith A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.

    2011-01-01

    Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains–East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%–100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a batholithic volume even while the regional tectonic environment varied dramatically from contractile thickening to extension and mafic underplating.

  4. Osmium Isotope Compositions of Komatiite Sources Through Time

    NASA Astrophysics Data System (ADS)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os value of only +1.2 and a 186Os/188Os enrichment relative to the contemporary upper mantle of only +13 ppm. Greater isotopic enrichments could have been achieved by 2.7 Ga if either the inner core comprised >2.8% of the mass of the core by 2.7 Ga, or if Re and Os solid metal-liquid metal D's for core crystallization were greater that those applied in the initial calculation.

  5. Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Jackson, John C.; Horton, J. Wright; Chou, I-Ming; Belkin, Harvey E.

    2011-01-01

    X-ray diffraction and Raman spectroscopy confirm a rare terrestrial occurrence of monoclinic tridymite in clast-rich impact melt rock from the Eyreville B drill core in the Chesapeake Bay impact structure. The monoclinic tridymite occurs with quartz paramorphs after tridymite and K-feldspar in a microcrystalline groundmass of devitrified glass and Fe-rich smectite. Electron-microprobe analyses revealed that the tridymite and quartz paramorphs after tridymite contain different amounts of chemical impurities. Inspection by SEM showed that the tridymite crystal surfaces are smooth, whereas the quartz paramorphs contain irregular tabular voids. These voids may represent microporosity formed by volume decrease in the presence of fluid during transformation from tridymite to quartz, or skeletal growth in the original tridymite. Cristobalite locally rims spherulites within the same drill core interval. The occurrences of tridymite and cristobalite appear to be restricted to the thickest clast-rich impact melt body in the core at 1402.02–1407.49 m depth. Their formation and preservation in an alkali-rich, high-silica melt rock suggest initially high temperatures followed by rapid cooling.

  6. A discontinuous melt sheet in the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Izett, G. A.; Reynolds, R. L.; Rosenbaum, J. G.; Nishi, J. M.

    1993-01-01

    Petrologic studies of the core recovered from holes drilled in the Manson, Iowa, buried impact structure may unravel the thermal history of the crater-fill debris. We made a cursory examination of about 200 m of core recovered from the M-1 bore hole. The M-1 bore hole was the first of 12 holes drilled as part of a cooperative drilling program between the U.S. Geological Survey and the Iowa Geological Survey Bureau. The M-1 core hole is about 6 km northeast of the center of the impact structure, apparently on the flank of its central peak. We developed a working hypothesis that a 30-m-thick breccia unit within a 53-m-thick unit previously termed the 'crystalline clast breccia with glassy matrix' is part of a discontinuous melt sheet in the crater-fill impact debris. The 30-m-thick breccia unit reached temperatures sufficient to partially melt some small breccia clasts and convert the fine-grained breccia matrix into a silicate melt that cooled to a greenish-black, flinty, microcrystalline rock. The results of the investigation of this unit are presented.

  7. The Gao-Guenie impact melt breccia—Sampling a rapidly cooled impact melt dike on an H chondrite asteroid?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Kring, David A.; Swindle, Timothy D.; Bond, Jade C.; Moore, Carleton B.

    2016-06-01

    The Gao-Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact-melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth-crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao-Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous-textured impact melt domain. Olivine is predominantly Fo80-82. The clast domain contains low-Ca pyroxene. Impact melt-grown pyroxene is commonly zoned from low-Ca pyroxene in cores to pigeonite and augite in rims. Metal-troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni-rich troilite. The metallography of metal-troilite droplets suggest a stage I cooling rate of order 10 °C s-1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao-Guenie impact melt breccia and the impact-melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000-40,000 °C yr-1. A simple model of conductive heat transfer shows that the Gao-Guenie impact melt breccia may have formed in a melt injection dike ~0.5-5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.

  8. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOEpatents

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  9. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 1. Effect of Percolating Meltwater on their Distribution in Glacier Ice.

    PubMed

    Pavlova, Pavlina Aneva; Jenk, Theo Manuel; Schmid, Peter; Bogdal, Christian; Steinlin, Christine; Schwikowski, Margit

    2015-12-15

    In Alpine regions, glaciers act as environmental archives and can accumulate significant amounts of atmospherically derived pollutants. Due to the current climate-warming-induced accelerated melting, these pollutants are being released at correspondingly higher rates. To examine the effect of melting on the redistribution of legacy pollutants in Alpine glaciers, we analyzed polychlorinated biphenyls in an ice core from the temperate Silvretta glacier, located in eastern Switzerland. This glacier is affected by surface melting in summer. As a result, liquid water percolates down and particles are enriched in the current annual surface layer. Dating the ice core was a challenge because meltwater percolation also affects the traditionally used parameters. Instead, we counted annual layers of particulate black carbon in the ice core, adding the years with negative glacier mass balance, that is, years with melting and subsequent loss of the entire annual snow accumulation. The analyzed samples cover the time period 1930-2011. The concentration of indicator PCBs (iPCBs) in the Silvretta ice core follows the emission history, peaking in the 1970s (2.5 ng/L). High PCB values in the 1990s and 1930s are attributed to meltwater-induced relocation within the glacier. The total iPCB load at the Silvretta ice core site is 5 ng/cm(2). A significant amount of the total PCB burden in the Silvretta glacier has been released to the environment.

  10. Diatoms in late Quaternary sediment from the Orca Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klas, M.; Burckle, L.H.

    1985-01-01

    Diatoms and clays were studied in core EN32-PC6 from the Orca Basin. This core contains oxygen isotope evidence for increased melt-water outflow from the Mississippi River during the post-Wisconsin deglaciation. Diatoms are present in two intervals: the period of increased melt-water outflow at about 15,000 to 12,000 years BP and during the past 5000 years. The earlier interval (the melt-water spike) contains fresh and brackish water diatoms and open ocean forms that prefer lower salinities while the youngest interval is characterized by open ocean forms. The melt-water spike interval also contains fewer reworked Cretaceous and Paleogene coccoliths and has littlemore » or no quartz. A decrease in smectite in the core at about 22,000 years BP may be related to a similar decrease in the Morton loess due to the blocking and diversion of the ancient Mississippi by the advancing Woodfordian glacier of the Lake Michigan lobe. After this diversion, the Mississippi took its present-day course and continued to take outwash away from the receding glacier. In Orca Basin sediments, this is indicated by an increase in smectite. The interval of the melt-water spike seems to be characterized by increased rainfall and sheet flooding.« less

  11. 40 CFR 63.11544 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nonferrous foundry has an annual metal melt production (for existing affected sources) or an annual metal... melt production for existing affected sources or the annual metal melt capacity for new affected... annual metal melt production for calendar year 2010. (ii) If you construct or reconstruct a melting...

  12. Ureilite petrogenesis: A limited role for smelting during anatexis and catastrophic disruption

    NASA Astrophysics Data System (ADS)

    Warren, Paul H.; Huber, Heinz

    2006-06-01

    A popular model for ureilites assumes that during anatexis in an asteroidal mantle, pressure-buffered equilibrium smelting (partial reduction coincident with partial melting) engendered their conspicuous mafic-silicate-core mg diversity (75-96 mol%). Several mass-balance problems arise from this hypothesis. Smelting inevitably consumes a large proportion of any plausible initial carbon while generating significant proportions of Fe metal and copious proportions of CO gas. The most serious problem concerns the yield of CO gas. If equilibrium smelting produced the ureilites' entire 21 mol% range in olivine-core mg, the proportion of gas within the asteroidal mantle (assuming plausibly low pressure <˜80 bar) should have reached ≥85 vol%. Based on the remarkably stepwise cooling history inferred from ureilite texture and mineralogy, a runaway, CO-leaky process that can loosely be termed smelting appears to have occurred, probably triggered by a major impact. The runaway scenario appears likely because, by Le Châtelier's principle, CO leakage would tend to accelerate the smelting process. Also, the copious volumes of gas produced by smelting would have led to explosive, mass-leaky eruptions into the vacuum surrounding the asteroid. Loss of mass would mean diminution of interior pressure, which would induce further smelting, leading to further loss of mass (basalt), and so on. Such a disruptive runaway process may have engendered the ureilites' distinctive reduced olivine rims. But the only smelting, according to this scenario, was a short-lived disequilibrium process that reduced only the olivine rims, not the cores; and the ureilites were cooling, not melting, during the abortive "smelting" episode.

  13. Electrochemistry of cations in diopsidic melt - Determining diffusion rates and redox potentials from voltammetric curves

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.; Crane, Daniel

    1990-01-01

    Results are presented on determinations of reduction potentials and their temperature dependence of selected ions in diopsidic melt, by using linear sweep voltammetry. Diffusion coefficients were measured for cations of Eu, Mn, Cr, and In. Enthalpies and entropies of reduction were determined for the cations V(V), Cr(3+), Mn(2+), Mn(3+), Fe(2+), Cu(2+), Mo(VI), Sn(IV), and Eu(3+). Reduction potentials were used to study the structural state of cations in the melt.

  14. Core Noise: Overview of Upcoming LDI Combustor Test

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  15. Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.

    2011-01-01

    The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.

  16. In situ determination of binary alloy melt compositions in the LHDAC by X- Radiography

    NASA Astrophysics Data System (ADS)

    Lord, O. T.; Walter, M. J.; Walker, D.; Clark, S. M.

    2008-12-01

    Constraining the light element in Earth's molten outer core requires an understanding of the melting phase relations in iron-light element binary systems. For example, it is critical to determine the composition of liquids at binary eutectics. Typically such measurements are carried out after the sample has been quenched in temperature and pressure. Such 'cook and look' methods possibly suffer from systematic errors introduced by exsolution of the light element from the melt on quench and error in the reintegration of the liquid composition [1]. Here, we present a novel method for the determination of melt compositions in iron-light element binary systems in situ in the LHDAC at simultaneous high-pressure, high-temperature conditions. Samples consist of a light element bearing compound, such as FeO, surrounded by a pure iron ring, forming a donut ~100 μm in diameter and ~15 μm thick. The donuts are loaded into stainless steel gaskets in the DAC, sandwiched between discs fabricated from sol-gel deposited nanocrystalline Al2O3 with similar dimensions to the donut. Pressure is monitored by ruby fluorescence during compression. The sample is heated at the boundary between the iron and light element compound using two 100 W IR lasers in a double-sided configuration at beamline 12.2.2 at the Advanced Light Source. Temperature is measured by spectroradiometry. Before, during and after melting, X-radiographic images of the sample are taken by shining a defocused beam of synchrotron X-rays through the sample and onto a CdWO4 phosphor. The visible light from the phosphor is then focused onto a high resolution CCD, where absorption contrast images are recorded. The absorption of the molten region is then determined, and it's composition calculated by linear interpolation between the absorption of the two solid end members. As a test of the reliability of the method we measured the Fe-FeS eutectic to 20 GPa and our results are in good agreement with previous studies that are based on various ex situ techniques. We measured the eutectic composition between Fe and Fe3C up to 44 GPa, and found that the carbon content of the eutectic drops rapidly above about 10 GPa, dropping to less that 1 wt% by 44 GPa. This result is generally consistent with the thermodynamic calculations of Wood [2]. Experiments on the Fe-FeSi eutectic yielded an increase in the Si content of the eutectic to 35 GPa, consistent with data from large volume press experiments [3] Notably, melting experiments at 35-43 GPa and ~2500 K on a boundary between Fe and FeO failed to yield evidence of a melt with a composition distinguishable from pure iron. However, an experiment at 12 GPa and 2700 K between Fe and FeO(OH) did yield a melt with a composition intermediate between the two end members. This suggests that O solubility in the Fe-O eutectic melt is low at mid-mantle pressures, but that H may dissolve into the melt by itself or in combination with O. [1] Walker, D., 2005. Core-Mantle chemical issues. Canad. Min., 43, 1553-1564 [2] Wood, B. J., 1993. Carbon in the core. Earth Planet Sci. Lett., 117, 593-607 [3] Kuwayama, Y. & Hirose, K., 2004. Phase relations in the system Fe-FeSi at 21 GPa. Am. Min., 89, 273-276.

  17. Eutectic melting temperature of the lowermost Earth's mantle

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings, and changes in the relation between sample-temperature and laser-power. In this work, we show that temperatures higher than 4000 K are necessary for melting mean mantle at the 135 GPa pressure found at the core mantle boundary (CMB). Such temperature is much higher than that from estimated actual geotherms. Therefore, melting at the CMB can only occur if (i) pyrolitic mantle resides for a very long time in contact with the outer core, (ii) the mantle composition is severely affected by additional elements depressing the solidus such as water or (iii) the temperature gradient in the D" region is amazingly steep. Other implications for the temperature state and the lower mantle properties will be presented. References (1) Ito et al., Phys. Earth Planet. Int., 143-144, 397-406, 2004 (2) Ohtani et al., Phys. Earth Planet. Int., 100, 97-114, 1997 (3) Zerr et al., Science, 281, 243-246, 1998 (4) Holland and Ahrens, Science, 275, 1623-1625, 1997 (5) Schultz et al., High Press. Res., 25, 1, 71-83, 2005.

  18. The Complex History of Alarcon Rise Mid-Ocean Ridge Rhyolite Revealed through Mineral Chemistry

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Portner, R. A.; Clague, D. A.; Daczko, N. R.; Castillo, P.; Bindeman, I. N.

    2014-12-01

    A suite of basalts to rhyolites recovered from the Alarcon Rise, the northern extension of the intermediate spreading-rate East Pacific Rise, provides an unparalleled test of established mechanisms for high-Si lava formation at ridges. Rhyolites are ≤35% phyric and poorly vesicular. Mafic xenoclasts are common, and plagioclase is the dominant phase. Olivine and clinopyroxene are also common, and orthopyroxene, FeTi-oxides, zircon, and rare pyrite blebs are present. Major and trace element glass data are consistent with MELTS models of fractional crystallization from a parental melt, but a diverse mineral population records added complexity. Olivine and plagioclase compositions are broadly consistent with models, with the exception of more variable Fo52-77 and An87-28 in a basaltic andesitic composition where pigeonite is predicted to replace olivine in the crystallizing assemblage between ~1085-1015°C; pigeonites analyzed in an andesite have lower Ca and Fe than predicted. Clinopyroxene variability generally increases with host melt SiO2, from Mg# 86-84 in basalts to Mg# 80-21 in rhyolites, and zoning is common with higher-MgO anhedral cores mantled by lower-MgO euhedral rims. Cooler magmas aided the preservation of disequilibrium and are supported by ~715-835°C Ti-in-zircon and ilmenite-magnetite thermometry in rhyolites. Despite a well-predicted liquid line of decent, multiple signals of chemical disequilibrium in intermediate to silicic melts support mixing of magmatic batches and/or assimilation of partially hydrous crust. Assimilation is permissible given δ18O values that are lower than expected solely from fractional crystallization (i.e., <6.3‰ at 77% SiO2), but assimilation extent is limited on the basis of δD ~82±8 and Pacific MORB-like 87Sr/86Sr. Zircon Hf-isotopes and trace element patterns support a juvenile oceanic crustal source. Whereas depleted Pacific MORB mantle source reservoir is supported by whole rock Sr-Nd isotopes, slight enrichments in zircon 176Hf/177Hf and whole rock 207,206Pb/204Pb may indicate an enriched MORB mantle component. In conclusion, mid-ocean rhyolite at Alarcon formed from a variety of petrogenetic processes including magma-mixing, assimilation, and crystallization following partial melting of slightly heterogeneous mantle source(s).

  19. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Liang, Y.

    2017-12-01

    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb <1. Residual liquid from the magma ocean has Ce/Yb 1.5. Many primitive lunar basalts have Ce/Yb>1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few hundred Myr. [1] Dygert et al. (2014), GCA 132, 170-186. [2] Sun et al. (2017), GCA 206, 273-295. [3] Lin et al. (2017), EPSL 471, 104-116. [4] Dygert et al. (2016), GRL 43, 10.1002/2015GL066546. [5] Zhang et al. (2017), GRL 44, 10.1002/2017GL073702.

  20. Fukushima Daiichi Unit 1 ex-vessel prediction: Core melt spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Robb, K. R.; Francis, M. W.

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input.more » MELTSPREAD was then used to predict the spatially-dependent melt conditions and extent of spreading during relocation from the vessel. Lastly, this information was then used as input for the long-term debris coolability analysis with CORQUENCH that is reported in a companion paper.« less

  1. Fukushima Daiichi Unit 1 ex-vessel prediction: Core melt spreading

    DOE PAGES

    Farmer, M. T.; Robb, K. R.; Francis, M. W.

    2016-10-31

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input.more » MELTSPREAD was then used to predict the spatially-dependent melt conditions and extent of spreading during relocation from the vessel. Lastly, this information was then used as input for the long-term debris coolability analysis with CORQUENCH that is reported in a companion paper.« less

  2. Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths.

    PubMed

    González-Cataldo, Felipe; Davis, Sergio; Gutiérrez, Gonzalo

    2016-05-23

    Ultrahigh-pressure phase boundary between solid and liquid SiO2 is still quite unclear. Here we present predictions of silica melting curve for the multimegabar pressure regime, as obtained from first principles molecular dynamics simulations. We calculate the melting temperatures from three high pressure phases of silica (pyrite-, cotunnite-, and Fe2P-type SiO2) at different pressures using the Z method. The computed melting curve is found to rise abruptly around 330 GPa, an increase not previously reported by any melting simulations. This is in close agreement with recent experiments reporting the α-PbO2-pyrite transition around this pressure. The predicted phase diagram indicates that silica could be one of the dominant components of the rocky cores of gas giants, as it remains solid at the core of our Solar System's gas giants. These results are also relevant to model the interior structure and evolution of massive super-Earths.

  3. Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths

    PubMed Central

    González-Cataldo, Felipe; Davis, Sergio; Gutiérrez, Gonzalo

    2016-01-01

    Ultrahigh-pressure phase boundary between solid and liquid SiO2 is still quite unclear. Here we present predictions of silica melting curve for the multimegabar pressure regime, as obtained from first principles molecular dynamics simulations. We calculate the melting temperatures from three high pressure phases of silica (pyrite-, cotunnite-, and Fe2P-type SiO2) at different pressures using the Z method. The computed melting curve is found to rise abruptly around 330 GPa, an increase not previously reported by any melting simulations. This is in close agreement with recent experiments reporting the α-PbO2–pyrite transition around this pressure. The predicted phase diagram indicates that silica could be one of the dominant components of the rocky cores of gas giants, as it remains solid at the core of our Solar System’s gas giants. These results are also relevant to model the interior structure and evolution of massive super-Earths. PMID:27210813

  4. Annually-layered lake sediments reveal strongly increased release of persistent chemicals due to accelerated glacier melting

    NASA Astrophysics Data System (ADS)

    Anselmetti, Flavio S.; Blüthgen, Nancy; Bogdal, Christian; Schmid, Peter

    2010-05-01

    Melting glaciers may represent a secondary source of chemical pollutants that have previously been incorporated and stored in the ice. Of particular concern are persistent organic pollutants (POPs), such as the insecticide dichlorodiphenyl trichloroethane (DDT) and industrial chemicals like polychlorinated biphenyls (PCBs), which are hazardous environmental contaminants due to their persistent, bioaccumulative and toxic properties. They were introduced in the 1930s and eventually banned in the 1970s. After release into the environment these chemicals were atmospherically transported to even remote areas such as the Alps and were deposited and stored in glaciers. Ongoing drastic glacier melting due to global warming, which is expected to further accelerate, implies the significance of studying the fate of these 'legacy pollutants'. Proglacial lake sediments provide well-dated and high-resolution archives to reconstruct timing and quantities of such a potentially hazardous remobilization. The goal of this study is to reconstruct the historical inputs of POPs into remote alpine lakes and to investigate the accelerated release of POPs from melting glaciers. Due to their lipophilic character, these chemicals exhibit a high tendency to adsorb to particles whereas concentrations in water are expected to be low. Therefore, quantitative determination in annually-layered lake sediment provides an excellent way to investigate the temporal trend of inputs into lakes that act as particle sinks. For this purpose, sediment cores were sampled from proglacial lakes in the Bernese Alps (Switzerland), which are exclusively fed by glacial melt waters. For comparison, cores were also taken from nearby high-alpine lakes located in non-glaciated catchments, which only should record the initial atmospheric fall-out. Sediment layers were dated by annual varve counting and radionuclide measurements; they cover the time period from the mid 20th century to today. The measured time series of POPs indicate indeed different patterns in proglacial and non-glacial lakes. Similar to lowland Swiss plateau lakes [1,2], high-alpine lakes show a historic maximum of POP-concentrations some decades ago, which is synchronous with their primary use at that time. However, only proglacial lakes exhibit a dramatic re-increase in POP-input during the last years, thus confirming the crucial role of glaciers as reservoir and secondary source of these pollutants. The burden of pollutants in these sediments due to glacier melting is already in the same range as the earlier accumulations from direct atmospheric fall-out. Furthermore, the undiminished increase of the fluxes of many POPs into the sediment of proglacial lakes does not yet indicate an exhaust of the glacial inventory of these contaminants. Considering ongoing global warming and accelerated massive glacier melting predicted for the future, our study indicates the potential for significant environmental hazards due to pollutants delivered into such remote mountainous areas. [3] [1] Zennegg M. et al., Chemosphere 2007, 67, 1754. [2] Bogdal C. et al., Env. Sci. & Technol. 2008, 47, 6817. [3] Bogdal C. et al., Env. Sci. & Technol. 2009, 43, 8173.

  5. Frictional melt generated by the 2008 Mw 7.9 Wenchuan earthquake and its faulting mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Si, J.; Sun, Z.; Zhang, L.; He, X.

    2017-12-01

    Fault-related pseudotachylytes are considered as fossil earthquakes, conveying significant information that provide improved insight into fault behaviors and their mechanical properties. The WFSD project was carried out right after the 2008 Wenchuan earthquake, detailed research was conducted in the drilling cores. 2 mm rigid black layer with fresh slickenlines was observed at 732.6 m in WFSD-1 cores drilled at the southern Yingxiu-Beichuan fault (YBF). Evidence of optical microscopy, FESEM and FIB-TEM show it's frictional melt (pseudotachylyte). In the northern part of YBF, 4 mm fresh melt was found at 1084 m with similar structures in WFSD-4S cores. The melts contain numerous microcracks. Considering that (1) the highly unstable property of the frictional melt (easily be altered or devitrified) under geological conditions; (2) the unfilled microcracks; (3) fresh slickenlines and (4) recent large earthquake in this area, we believe that 2-4 mm melt was produced by the 2008 Wenchuan earthquake. This is the first report of fresh pseudotachylyte with slickenlines in natural fault that generated by modern earthquake. Geochemical analyses show that fault rocks at 732.6 m are enriched in CaO, Fe2O3, FeO, H2O+ and LOI, whereas depleted in SiO2. XRF results show that Ca and Fe are enriched obviously in the 2.5 cm fine-grained fault rocks and Ba enriched in the slip surface. The melt has a higher magnetic susceptibility value, which may due to neoformed magnetite and metallic iron formed in fault frictional melt. Frictional melt visible in both southern and northern part of YBF reveals that frictional melt lubrication played a major role in the Wenchuan earthquake. Instead of vesicles and microlites, numerous randomly oriented microcracks in the melt, exhibiting a quenching texture. The quenching texture suggests the frictional melt was generated under rapid heat-dissipation condition, implying vigorous fluid circulation during the earthquake. We surmise that during earthquakes vigorous fluid influx within fault zone, likely dissipating the frictional heat and resulting in rapid temperature drop, may facilitate the solidification of melt and hamper the aftermost fault slip. Meanwhlie, the high temperature fluid-rock interaction may play an important role in the chemical elements migrating in fault zones.

  6. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2017-12-01

    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as higher temperature leading to partial melting of the silicate portion of the mantle could have contributed to fast enough core formation. 1. Todd, K.A., Watson, H.C., Yu, T., Wang, Y., American Mineralogist, 101.9, 1996-2004, 2016

  7. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    NASA Astrophysics Data System (ADS)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (<50% and <25% crystallization). Step-like compatible Cr (and co-varying Al) and incompatible Ti, Zr, Y and rare earth elements (REE) decrease from anhedral core1 to overgrown core2, while Mg# and Sr/Sr* ratios increase. We show that partial resorption textures and geochemical zoning result from partial melting of REE-poor lower oceanic crust gabbroic cumulate (protolith) following intrusion by hot primitive mantle-derived melt, and subsequent overgrowth crystallization (refertilization) from a hybrid melt. In addition, towards the outer rims of crystals, Ti, Zr, Y and the REE strongly increase and Al, Cr, Mg#, Eu/Eu* and Sr/Sr* decrease, suggesting crystallization either from late-stage percolating relatively differentiated melt or from in situ trapped melt. Intrusion of primitive hot reactive melt and percolation of interstitial differentiated melt are two distinct MASH processes in the lower oceanic crust. They are potentially fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).

  8. Simulation of the planetary interior differentiation processes in the laboratory.

    PubMed

    Fei, Yingwei

    2013-11-15

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.

  9. Simulation of the Planetary Interior Differentiation Processes in the Laboratory

    PubMed Central

    Fei, Yingwei

    2013-01-01

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245

  10. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    NASA Astrophysics Data System (ADS)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.

  11. Shock compression of Fe-Ni-Si system to 280 GPa: Implications for the composition of the Earth's outer core

    NASA Astrophysics Data System (ADS)

    Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian

    2014-07-01

    The shock Hugoniot of an Fe-9 wt %Ni-10 wt %Si system as a model of the Earth's core has been measured up to ~280 GPa using a two-stage light-gas gun. The samples had an average density of 6.853 (±0.036) g/cm3. The relationship between shock velocity (Us) and particle velocity (up) can be described by Us (km/s) = 3.95 (±0.15) + 1.53 (±0.05) up (km/s). The calculated Hugoniot temperatures and the melting curve indicate that the model composition melts above a shock pressure of ~168 GPa, which is significantly lower than the shock-melting pressure of iron (~225 GPa). A comparison of the pressure-density (P-ρ) profiles between the model composition and the preliminary reference Earth model gives a silicon content close to 10 wt %, necessary to compensate the density deficit in the Earth's outer core from seismological observations, if silicon is present as a major light element in the Fe-Ni core system.

  12. Differentiation of Asteroid 4 Vesta: Core Formation by Iron Rain in a Silicate Magma Ocean

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft while orbiting asteroid 4 Vesta, suggest that Vesta resembles H chondrites in bulk chemical composition, possible with about 25 percent of a CM-chondrite like composition added in. For this model, the core is 15 percent by mass (or 8 percent by volume) of the asteroid, with a composition of 73.7 percent by weight Fe, 16.0 percent by weight S, and 10.3 percent by weight Ni. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. The combination of the melting phase relationships for the silicate and metal phases, together with the moderately siderophile element concentrations together require that complete melting of the metal phase occurred (temperature is greater than1350 degrees Centigrade), along with substantial (greater than 40 percent) melting of the silicate material. Thus, core formation on Vesta occurs as iron rain sinking through a silicate magma ocean.

  13. The Divnoe meteorite: Petrology, chemistry, oxygen isotopes and origin

    NASA Technical Reports Server (NTRS)

    Petaev, M. I.; Barsukova, L. D.; Lipschultz, M. E.; Wang, M.-S.; Ariskin, A. A.; Clayton, R. N.; Mayeda, T. K.

    1994-01-01

    The Divnoe meteorite is an olivine-rich primitive achondrite with subchondritic chemistry and mineralogy. It has a granoblastic, coarse-grained, olivine groundmass (CGL: coarse-grained lithology) with relatively large pyroxene-plagioclase poiklitic patches (PP) and small fine-grained domains of an opaque-rich lithology (ORL). Both PP and ORL are inhomogeneously distributed and display reaction boundaries with the groundmass. Major silicates, olivine Fa(20-28) and orthopyroxyene Fs(20-28 Wo(0.5-2.5), display systematic differences in composition between CGL and ORL as well as a complicated pattern of variations within CGL. Accessory plagioclase has low K content and displays regular igneous zoning with core compositions An(40-45) and rims An(32-37). The bulk chemical composition of Divnoe is similar to that of olivine-rich primitive achondrites, except for a depletion of incompatible elements and minor enrichment of refractory siderophiles. Oxygen isotope compositions for whole-rock and separated minerals from Divnoe fall in a narrow range, with mean delta O-18 = +4.91, delta O-17 = +2.24, and Delta O-17 = -0.26 +/- 0.11. The isotopic composition is not within the range of any previously recognized group but is very close to that of the brachinites. To understand the origin of Divnoe lithologies, partial melting and crystallization were modelled using starting compositions equal to that of Divnoe and some chondritic meteorites. It was found that the Divnoe composition could be derived from a chondritic source region by approximately 20 wt% partial melting at Ta approximately 1300 C and log(fO2) = IW-1.8, followed by approximtely 60 wt% crystallization of the partial melt formed, and removal of the still-liquid portion of the partial melt. Removal of the last partial melt resulted in depletion of the Divnoe plagioclase in Na and K. In this scenario, CGL represents the residue of partial melting, and PP is a portion of the partial melt that crystallized in situ. The ORL was formed during the final stages of partial melting by reaction between gaseous sulfur and residual olivine in the source region. A prominent feature of Divnoe is fine micron-scale chemical variations within olivine grains, related to lamellar structures the olivines display. The origin of these structures is not known.

  14. Reduction-melting combined with a Na₂CO₃ flux recycling process for lead recovery from cathode ray tube funnel glass.

    PubMed

    Okada, Takashi; Yonezawa, Susumu

    2014-08-01

    With large quantity of flux (Na2CO3), lead can be recovered from the funnel glass of waste cathode-ray tubes via reduction-melting at 1000°C. To reduce flux cost, a technique to recover added flux from the generated oxide phase is also important in order to recycle the flux recovered from the reduction-melting process. In this study, the phase separation of sodium and the crystallization of water-soluble sodium silicates were induced after the reduction-melting process to enhance the leachability of sodium in the oxide phase and to extract the sodium from the phase for the recovery of Na2CO3 as flux. A reductive atmosphere promoted the phase separation and crystallization, and the leachability of sodium from the oxide phase was enhanced. The optimum temperature and treatment time for increasing the leachability were 700°C and 2h, respectively. After treatment, more than 90% of the sodium in the oxide phase was extracted in water. NaHCO3 can be recovered by carbonization of the solution containing sodium ions using carbon dioxide gas, decomposed to Na2CO3 at 50°C and recycled for use in the reduction-melting process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Internal stress-induced melting below melting temperature at high-rate laser heating

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  16. The MELTSPREAD Code for Modeling of Ex-Vessel Core Debris Spreading Behavior, Code Manual – Version3-beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.

    MELTSPREAD3 is a transient one-dimensional computer code that has been developed to predict the gravity-driven flow and freezing behavior of molten reactor core materials (corium) in containment geometries. Predictions can be made for corium flowing across surfaces under either dry or wet cavity conditions. The spreading surfaces that can be selected are steel, concrete, a user-specified material (e.g., a ceramic), or an arbitrary combination thereof. The corium can have a wide range of compositions of reactor core materials that includes distinct oxide phases (predominantly Zr, and steel oxides) plus metallic phases (predominantly Zr and steel). The code requires input thatmore » describes the containment geometry, melt “pour” conditions, and cavity atmospheric conditions (i.e., pressure, temperature, and cavity flooding information). For cases in which the cavity contains a preexisting water layer at the time of RPV failure, melt jet breakup and particle bed formation can be calculated mechanistically given the time-dependent melt pour conditions (input data) as well as the heatup and boiloff of water in the melt impingement zone (calculated). For core debris impacting either the containment floor or previously spread material, the code calculates the transient hydrodynamics and heat transfer which determine the spreading and freezing behavior of the melt. The code predicts conditions at the end of the spreading stage, including melt relocation distance, depth and material composition profiles, substrate ablation profile, and wall heatup. Code output can be used as input to other models such as CORQUENCH that evaluate long term core-concrete interaction behavior following the transient spreading stage. MELTSPREAD3 was originally developed to investigate BWR Mark I liner vulnerability, but has been substantially upgraded and applied to other reactor designs (e.g., the EPR), and more recently to the plant accidents at Fukushima Daiichi. The most recent round of improvements that are documented in this report have been specifically implemented to support industry in developing Severe Accident Water Management (SAWM) strategies for Boiling Water Reactors.« less

  17. Mercury's core evolution

    NASA Astrophysics Data System (ADS)

    Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim

    2016-10-01

    Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.

  18. Experimental pathways to understand and avoid high-Z impurity contamination from ICRF heating in tokamaks

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew

    2016-10-01

    Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out within the framework of the EUROfusion Consortium and has received funding from Euratom under Grant Agreement No 633053.

  19. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yan; Xu, Yi-Gang; Ryan, Jeffrey G.; Huang, Xiao-Long; Ren, Zhong-Yuan; Guo, Hua; Ning, Zhen-Guo

    2016-04-01

    Contributions from fluid and melt inputs from the subducting Pacific slab to the chemical makeup of intraplate basalts erupted on the eastern Eurasian continent have long been suggested but have not thus far been geochemically constrained. To attempt to address this question, we have investigated Cenozoic basaltic rocks from the western Shandong and Bohai Bay Basin, eastern North China Craton (NCC), which preserve coherent relationships among the chemistries of their melt inclusions, their hosting olivines and their bulk rock compositions. Three groups of samples are distinguished: (1) high-Si and (2) moderate-Si basalts (tholeiites, alkali basalts and basanites) which were erupted at ∼23-20 Ma, and (3) low-Si basalts (nephelinites) which were erupted at <9 Ma. The high-Si basalts have lower alkalies, CaO and FeOT contents, lower trace element concentrations, lower La/Yb, Sm/Yb and Ce/Pb but higher Ba/Th ratios, and lower εNd and εHf values than the low-Si basalts. The olivines in the high-Si basalts have higher Ni and lower Mn and Ca at a given Fo value than those crystallizing from peridotite melts, and their corresponding melt inclusions have lower CaO contents than peridotite melts, suggesting a garnet pyroxenitic source. The magmatic olivines from low-Si basalts have lower Ni but higher Mn at a given Fo value than that of the high-Si basalts, suggesting more olivine in its source. The olivine-hosted melt inclusions of the low-Si basalts have major elemental signatures different from melts of normal peridotitic or garnet pyroxenitic mantle sources, pointing to their derivation from a carbonated mantle source consisting of peridotite and garnet pyroxenite. We propose a model involving the differential melting of a subduction-modified mantle source to account for the generation of these three suites of basalts. Asthenospheric mantle beneath the eastern NCC, which entrains garnet pyroxenite with an EM1 isotopic signature, was metasomatized by carbonatitic melts from carbonated eclogite derived from subducted Pacific slab materials present in the deeper mantle. High degree melting of garnet pyroxenites from a shallower mantle source produced the early (∼23-20 Ma) higher-Si basalts. Mixing of these materials with deeper-sourced melts of carbonated mantle source produced the moderate-Si basalts. A thicker lithosphere after 9 Ma precluded melting of shallower garnet pyroxenites, so melts of the deeper carbonated mantle source are responsible for the low-Si basalts.

  20. Tomography & Geochemistry: Precision, Repeatability, Accuracy and Joint Interpretations

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Panza, G. F.; Artemieva, I. M.; Bastow, I. D.; Cammarano, F.; Doglioni, C.; Evans, J. R.; Hamilton, W. B.; Julian, B. R.; Lustrino, M.; Thybo, H.; Yanovskaya, T. B.

    2015-12-01

    Seismic tomography can reveal the spatial seismic structure of the mantle, but has little ability to constrain composition, phase or temperature. In contrast, petrology and geochemistry can give insights into mantle composition, but have severely limited spatial control on magma sources. For these reasons, results from these three disciplines are often interpreted jointly. Nevertheless, the limitations of each method are often underestimated, and underlying assumptions de-emphasized. Examples of the limitations of seismic tomography include its ability to image in detail the three-dimensional structure of the mantle or to determine with certainty the strengths of anomalies. Despite this, published seismic anomaly strengths are often unjustifiably translated directly into physical parameters. Tomography yields seismological parameters such as wave speed and attenuation, not geological or thermal parameters. Much of the mantle is poorly sampled by seismic waves, and resolution- and error-assessment methods do not express the true uncertainties. These and other problems have become highlighted in recent years as a result of multiple tomography experiments performed by different research groups, in areas of particular interest e.g., Yellowstone. The repeatability of the results is often poorer than the calculated resolutions. The ability of geochemistry and petrology to identify magma sources and locations is typically overestimated. These methods have little ability to determine source depths. Models that assign geochemical signatures to specific layers in the mantle, including the transition zone, the lower mantle, and the core-mantle boundary, are based on speculative models that cannot be verified and for which viable, less-astonishing alternatives are available. Our knowledge is poor of the size, distribution and location of protoliths, and of metasomatism of magma sources, the nature of the partial-melting and melt-extraction process, the mixing of disparate melts, and the re-assimilation of crust and mantle lithosphere by rising melt. Interpretations of seismic tomography, petrologic and geochemical observations, and all three together, are ambiguous, and this needs to be emphasized more in presenting interpretations so that the viability of the models can be assessed more reliably.

  1. The Pressure Dependence of Thermal Expansion of Core-Forming Alloys: A Key Parameter in Determining the Convective Style of Planetary Cores

    NASA Astrophysics Data System (ADS)

    Williams, Q. C.; Manghnani, M. H.

    2017-12-01

    The convective style of planetary cores is critically dependent on the thermal properties of iron alloys. In particular, the relation between the adiabatic gradient and the melting curve governs whether planetary cores solidify from their top down (when the adiabat is steeper than the melting curve) or the bottom up (the converse). Molten iron alloys, in general, have large, ambient pressure thermal expansions: values in excess of 1.2 x 10^-4/K are dictated by data derived from levitated and sessile drop techniques. These high values of the thermal expansion imply that the adiabatic gradients within early planetesimals and present day moons that have comparatively low-pressure, iron-rich cores are steep (typically greater than 35 K/GPa at low pressures): values, at low pressures, that are greater than the slope of the melting curve, and hence show that the cores of small solar system objects probably crystallize from the top-down. Here, we deploy a different manifestation of these large values of thermal expansion to determine the pressure dependence of thermal expansion in iron-rich liquids: a difficult parameter to experimentally measure, and critical for determining the size range of cores in which top-down core solidification predominates. In particular, the difference between the adiabatic and isothermal bulk moduli of iron liquids is in the 20-30% range at the melting temperature, and scales as the product of the thermal expansion, the Grüneisen parameter, and the temperature. Hence, ultrasonic (and adiabatic) moduli of iron alloy liquids, when coupled with isothermal sink-float measurements, can yield quantitative constraints on the pressure dependence of thermal expansion. For liquid iron alloys containing 17 wt% Si, we find that the thermal expansion is reduced by 50% over the first 8 GPa of compression. This "squeezing out" of the anomalously high low-pressure thermal expansion of iron-rich alloys at relatively modest conditions likely limits the size range over which top-down crystallizing cores are anticipated within planetary bodies.

  2. Role of a gas phase in the kinetics of zinc and iron reduction with carbon from slag melts

    NASA Astrophysics Data System (ADS)

    Chumarev, V. M.; Selivanov, E. N.

    2013-03-01

    The influence of the mass transfer conditions in the gas phase having formed at the carbon-slag melt interface on CO regeneration is approximately estimated in the framework of a two-stage scheme of metal reduction from slag melts by carbon. The effect of zinc vapors on the combined reduction of iron and zinc from slags is considered. The influence of the slag composition and temperature on the critical concentration of zinc oxide above which no iron forms as an individual phase is explained.

  3. Petrochemistry of late miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia

    USGS Publications Warehouse

    Morgan, VI G.B.; London, D.; Luedke, R.G.

    1998-01-01

    Late Miocene peraluminous volcanic rocks of the Morococala field, Bolivia, define a layered stratigraphy of basal andalusite-, biotite-(?? Muscovite)-bearing rhyolite tuffs (AR), overlain by cordierite-, biotite-bearing rhyolite tuffs (CR), and capped by biotite-beanng quartz latite tuffs, lavas, and late domal flows (QL). Mineral and whole-rock compositions become more evolved from top to bottom, with differentiation reflected by decreasing Ca, Ba, Mg, Fe, and rare earth elements (REE) versus increasing F, Na/K, and aluminosity from QL to AR. Mineral, whole-rock, and glass inclusion compositions are consistent with derivation of all three rock types from a single stratified magma reservoir, but age and spatial relations between the three units make this unlikely. Genesis of the QL involved biotite-dehydration melting of an aluminous source at T > 750??C and P ??? 4-6 kbar. If not co-magmatic with QL, the other units were generated primarily by muscovite-dehydration melting at T = 730-750??C and P ??? 3??5-4??5 kbar for CR, and T ??? 750??C for AR with pre-emptive residence at low pressure (1??5-3??0 kbar). Low hematite contents (XHem ??? 0??06) of ilmenite grains in AR, CR, and early grains (as inclusions in plagioclase and sanidine cores) in QL indicate reduced conditions imposed by a graphite-bearing source. Compositional variability among texturally later oxides (ilmenite with XHem = 0??06-0??50, primary magnetite), however, apparently records progressive increases in pre-eruptive f(O2) in QL. Plagioclase-melt equilibria and electron microprobe analysis difference for quartz-hosted glass inclusions suggest pre-emptive melt H2O contents ??? 5-7 wt % for the AR, ???4-6 wt % for the CR, and ???3-5 wt % for the QL.

  4. A massively parallel adaptive scheme for melt migration in geodynamics computations

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Heister, Timo; Grove, Ryan

    2016-04-01

    Melt generation and migration are important processes for the evolution of the Earth's interior and impact the global convection of the mantle. While they have been the subject of numerous investigations, the typical time and length-scales of melt transport are vastly different from global mantle convection, which determines where melt is generated. This makes it difficult to study mantle convection and melt migration in a unified framework. In addition, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. We describe our extension of the community mantle convection code ASPECT that adds equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects, and it incorporates the individual compressibilities of the solid and the fluid phase. For this, we derive an accurate and stable Finite Element scheme that can be combined with adaptive mesh refinement. This is particularly advantageous for this type of problem, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high resolution, 3d, compressible, global mantle convection simulations coupled with melt migration. Furthermore, scalable iterative linear solvers are required to solve the large linear systems arising from the discretized system. Finally, we present benchmarks and scaling tests of our solver up to tens of thousands of cores, show the effectiveness of adaptive mesh refinement when applied to melt migration and compare the compressible and incompressible formulation. We then apply our software to large-scale 3d simulations of melting and melt transport in mantle plumes interacting with the lithosphere. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. The presented implementation is available online under an Open Source license together with an extensive documentation.

  5. Shock compression of stishovite and melting of silica at planetary interior conditions

    NASA Astrophysics Data System (ADS)

    Millot, M.; Dubrovinskaia, N.; Černok, A.; Blaha, S.; Dubrovinsky, L.; Braun, D. G.; Celliers, P. M.; Collins, G. W.; Eggert, J. H.; Jeanloz, R.

    2015-01-01

    Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet’s internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets.

  6. Planetary science. Shock compression of stishovite and melting of silica at planetary interior conditions.

    PubMed

    Millot, M; Dubrovinskaia, N; Černok, A; Blaha, S; Dubrovinsky, L; Braun, D G; Celliers, P M; Collins, G W; Eggert, J H; Jeanloz, R

    2015-01-23

    Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet's internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets. Copyright © 2015, American Association for the Advancement of Science.

  7. Time-dependent heat transfer in the spherical Earth: Implications on the power and thermal evolution of the core

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Criss, R. E.

    2015-12-01

    We quantitatively investigate the time-dependence of heat conduction for a post-core, spherical Earth that is not convecting, due to compositional layering, based on hundreds of measurements of thermal diffusivity (D) for insulators and metals. Consistency of our solutions for widely ranging input parameters indicates how additional heat transfer mechanisms (mantle magmatism and convection) affect thermal evolution of the core. We consider 1) interior starting temperatures (T) of 273-5000 K, which represent variations in primordial heat, 2) different distributions and decay of long-lived radioactive isotopes, 3) additional heat sources in the core (primordial or latent heat), and 4) variable depth-T dependence of D. Our new analytical solution for cooling of a constant D sphere validates our numerical results. The bottom line is that the thermally insulating nature of minerals, combined with constraints of spherical geometry, limits steep thermal gradients to the upper mantle, consistent with the short length scale (x ~700 km) of cooling over t = 4.5 Ga indicated by dimensional analysis [x2 ~ 4Dt], and with plate tectonics. Consequently, interior temperatures vary little so the core has remained hot and is possibly warming. Findings include: 1) Constant vs. variable D affects thermal profiles only in detail, with D for the metallic core being inconsequential. 2) The hottest zone in Earth may lie in the uppermost lower mantle; 3) Most radiogenic heat is released in Earth's outermost 1000 km thereby driving an active outer shell; 4) Earth's core is essentially isothermal and is thus best described by the liquid-solid phase boundary; 5) Deeply sequestered radioactivity or other heat will melt the core rather than by run the dynamo (note that the heat needed to have melted the outer core is 10% of radiogenic heat generated over Earth's history); 6) Inefficient cooling of an Earth-sized mass means that heat essentially remains where it is generated, until it is removed by magmatism; 7) Importantly, the observed plate velocities are consistent with a Nusselt number of 1, i.e. the present day cooling is essentially conductive. Conductive cooling plus magmatism largely governs Earth's thermal structure and dynamics, below a unicellular upper mantle. Core dynamics and magnetism are likely driven by rotational effects.

  8. Use of MODIS Data in Dynamic SPARROW Analysis of Watershed Loading Reductions

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Schwarz, G. E.; Brakebill, J. W.; Hoos, A.; Moore, R. B.; Nolin, A. W.; Shih, J. S.; Journey, C. A.; Macauley, M.

    2014-12-01

    Predicting the temporal response of stream water quality to a proposed reduction in contaminant loading is a major watershed management problem due to temporary storage of contaminants in groundwater, vegetation, snowpack, etc. We describe the response of dynamically calibrated SPARROW models of total nitrogen (TN) flux to hypothetical reductions in reactive nitrogen inputs in three sub-regional watersheds: Potomac River Basin (Chesapeake Bay drainage), Long Island Sound drainage, and South Carolina coastal drainage. The models are based on seasonal water quality and watershed input data from 170 monitoring stations for the period 2002 to 2008.The spatial reference frames of the three models are stream networks containing an average 38,000 catchments and the time step is seasonal. We use MODIS Enhanced Vegetation Index (EVI) and snow/ice cover data to parameterize seasonal uptake and release of nitrogen from vegetation and snowpack. The model accounts for storage of total nitrogen inputs from fertilized cropland, pasture, urban land, and atmospheric deposition. Model calibration is by non-linear regression. Model source terms based on previous season export allow for recursive simulation of stream flux and can be used to estimate the approximate residence times of TN in the watersheds. Catchment residence times in the Long Island Sound Basin are shorter (typically < 1 year) than in the Potomac or South Carolina Basins (typically > 1 year), in part, because a significant fraction of nitrogen flux derives from snowmelt and occurs within one season of snowfall. We use the calibrated models to examine the response of TN flux to hypothetical step reductions in source inputs at the beginning of the 2002-2008 period and the influence of observed fluctuations in precipitation, temperature, vegetation growth and snow melt over the period. Following non-point source reductions of up to 100%, stream flux was found to continue to vary greatly for several years as a function of seasonal conditions, with high values in both winter (January, February, March) and spring due to high precipitation and snow melt, but much lower summer yields due to low precipitation and nitrogen retention in growing vegetation (EVI). Temporal variations in stream flux are large enough to potentially mask water quality improvements for several years.

  9. Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts

    NASA Astrophysics Data System (ADS)

    Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan

    2017-06-01

    Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a primary melt (i.e. in equilibrium with the mantle) from which other enriched shergottites derived.

  10. Heat transport in the high-pressure ice mantle of large icy moons

    NASA Astrophysics Data System (ADS)

    Choblet, Gael; Tobie, Gabriel; Sotin, Christophe; Kalousova, Klara; Grasset, Olivier

    2017-04-01

    While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (˜ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to the above ocean.

  11. Heat transport in the high-pressure ice mantle of large icy moons

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Tobie, G.; Sotin, C.; Kalousová, K.; Grasset, O.

    2017-03-01

    While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (∼ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to the above ocean.

  12. The Chornobyl accident revisited, part II: The state of the nuclear fuel located within the Chornobyl Sarcophagus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovol, A.A.; Sich, A.R.

    1995-10-01

    Approximately 135 tonnes of the 190.3-tonne initial core fuel load ({approx}71%) at Chornobyl Unit 4 melted and flowed into the lower regions of the reactor building to form various kinds of the now-solidified lava-like fuel-containing materials (LFCMs) or corium. The results of radiochemical analyses reveal that only 5% of the LFCM inventory of Ru-106 remains, whereas, surprisingly, 35% of the LFCM inventory of Cs-137 remains. Moreover, the results of these analyses support the fact that little if any of the 5020 tonnes of various materials (dropped from helicopters during the active phase of the accident in an attempt to smothermore » the burning graphite) ever made it into the core shaft, where the bulk of the core was located. The results appear to support earlier Western source-term estimates that significantly more volatile radionuclides may have been released as a result of the accident.« less

  13. The Chornobyl accident revisited, Part II: The state of the nuclear fuel located within the Chornobyl sarcophagus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovoi, A.A.; Sich, A.R.

    1995-01-01

    Approximately 135 tonnes of the 190.3-tonne initial core fuel load ({approx}71%) at Chernobyl Unit 4 melted and flowed into the lower regions of the reactor building to form various kinds of the now-solidified lava-like fuel-containing materials (LFCMs) or corium. The results of radiochemical analyses reveal that only 5% of the LFCM inventory of Ru-106 remains. whereas, surprisingly, 35% of the LFCM inventory of Cs-137 remains. Moreover, the results of these analyses support the fact that little if any of the 5020 tonnes of various materials (dropped from helicopters during the active phase of the accident in an attempt to smothermore » the burning graphite) ever made it into the core shaft, where the bulk of the core was located. The results appear to support earlier Western source-term estimates that significantly more volatile radionuclides may have been released as a result of the accident. 37 refs., 13 figs., 7 tabs.« less

  14. Eemian and penultimate transition reflected in the chemical ice core record from Dome C

    NASA Astrophysics Data System (ADS)

    Bigler, M.; Lambert, F.; Stauffer, B.; Röthlisberger, R.; Wolff, E. W.

    2003-04-01

    Within the scope of the European Project for Ice Coring in Antarctica (EPICA) chemical analyses have been done along the Dome C ice core. Among other substances, Ca2+, dust, Na+, NH_4{}+, NO_3{}- and electrolytical melt water conductivity have been measured at 1 cm resolution with the Bern Continuous Flow Analysis (CFA) system. Here we present new data from the Eemian and the preceding transition covering an age interval from approximately 180 kyr to 110 kyr before present. This sequence is compared with the Holocene and the last transition, mainly with emphasis on terrestrial and marine tracers. Concentration levels for the two periods compare quite well, but the general shape differs considerably. The changes in dust input to Dome C seemed to have been much more abrupt during the penultimate transition than during the last transition (18 to 15 kyr BP). This may reflect different conditions and/or processes in the dust source region.

  15. Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.

    PubMed

    Pham, Loan; Christensen, John M

    2014-02-01

    Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.

  16. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  17. In situ recovery of water from dormant comet cores and CI carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Kuck, David L.

    A model is presented for the derivation of water and volatiles from drill holes in dormant comet cores and class CI or CM asteroids, as in the Frasch process applied to sulfur mines. Hot gas is injected to melt ice, as well as to blow water and/or steam from the hole; heating to over 393 K removes six of the seven water molecules from epsomite, and melts elemental sulfur; a temperature above 573 K can drive water from hydrated phylosilicates.

  18. Random pinning elucidates the nature of melting transition in two-dimensional core-softened potential system

    NASA Astrophysics Data System (ADS)

    Tsiok, E. N.; Fomin, Y. D.; Ryzhov, V. N.

    2018-01-01

    Despite about forty years of investigations, the nature of the melting transition in two dimensions is not completely clear. In the framework of the most popular Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) theory, 2D systems melt through two continuous Berezinskii-Kosterlitz-Thouless (BKT) transitions with intermediate hexatic phase. The conventional first-order transition is also possible. On the other hand, recently on the basis of computer simulations the new melting scenario was proposed with continuous BKT type solid-hexatic transition and first order hexatic-liquid transition. However, in the simulations the hexatic phase is extremely narrow that makes its study difficult. In the present paper, we propose to apply the random pinning to investigate the hexatic phase in more detail. The results of molecular dynamics simulations of two dimensional system having core-softened potentials with narrow repulsive step which is similar to the soft disk system are outlined. The system has a small fraction of pinned particles giving quenched disorder. Random pinning widens the hexatic phase without changing the melting scenario and gives the possibility to study the behavior of the diffusivity and order parameters in the vicinity of the melting transition and inside the hexatic phase.

  19. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Cerantola, V.; Walte, N. P.; Rubie, D. C.

    2015-05-01

    Deformation-assisted segregation of metallic and sulphidic liquid from a solid peridotitic matrix is a process that may contribute to the early differentiation of small planetesimals into a metallic core and a silicate mantle. Here we present results of an experimental study using a simplified system consisting of a polycrystalline Fo90-olivine matrix containing a small percentage of iron sulphide and a synthetic primitive MORB melt, in order to investigate whether the silicate melt enhances the interconnection and segregation of FeS liquid under deformation conditions at varying strain rates. The experiments have been performed at 2 GPa, 1450 °C and strain rates between 1 ×10-3s-1 to 1 ×10-5s-1. Our results show that the presence of silicate melt actually hinders the migration and segregation of sulphide liquid by reducing its interconnectivity. At low to moderate strain rates the sulphide liquid pockets preserved a roundish shape, showing the liquid behavior is governed mainly by surface tension rather than by differential stress. Even at the highest strain rates, insignificant FeS segregation and interconnection were observed. On the other hand the basaltic melt was very mobile during deformation, accommodating part of the strain, which led to its segregation from the matrix at high bulk strains leaving the sulphide liquid stranded in the olivine matrix. Hence, we conclude that deformation-induced percolation of sulphide liquid does not contribute to the formation of planetary cores after the silicate solidus is overstepped. A possible early deformation enhanced core-mantle differentiation after overstepping the Fe-S solidus is not possible between the initial formation of silicate melt and the formation of a widespread magma ocean.

  20. Effect of controlling recrystallization from the melt on the residual stress and structural properties of the Silica-clad Ge core fiber

    NASA Astrophysics Data System (ADS)

    Zhao, Ziwen; Cheng, Xueli; He, Ting; Xue, Fei; Zhang, Wei; Chen, Na; Wen, Jianxiang; Zeng, Xianglong; Wang, Tingyun

    2017-09-01

    Effect of controlling recrystallization from the melt (1000 °C) on the residual stress and structural properties of a Ge core fiber via molten core drawing (MCD) method is investigated. Ge core fibers is investigated using Raman spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Compared with the as-drawn Ge fiber, the Raman peak of the recrystallized Ge fiber shift from 300 cm-1 to 300.6 cm-1 and full width at half maximum (FWHM) decreased from 5.36 cm-1 to 4.48 cm-1. The Ge crystal grains which sizes are of 200-600 nm were formed during the process of recrystallization; the XRD peak of (1 1 1) plane is observed after recrystallization. These results show that controlling recrystallization allows the release of the thermal stress, and improvement of the crystal quality of Ge core.

  1. The high-pressure phase diagram of Fe(0.94)O - A possible constituent of the earth's core

    NASA Technical Reports Server (NTRS)

    Knittle, Elise; Jeanloz, Raymond

    1991-01-01

    Electrical resistivity measurements to pressures of 83 GPa and temperatures ranging from 300 K to 4300 K confirm the presence of both crystalline and liquid metallic phases of FeO at pressures above 60-70 GPa and temperatures above 1000 K. By experimentally determinig the melting temperature of FeO to 100 GPa and of a model-core composition at 83 GPa, it is found that the solid-melt equilibria can be described by complete solid solution across the Fe-FeO system at pressures above 70 GPa. The results indicate that oxygen is a viable and likely candidate for the major light alloying element of the earth's liquid outer core. The data suggest that the temperature at the core-mantle boundary is close to 4800 K and that heat lost out of the core accounts for more than 20 percent of the heat flux observed at the surface.

  2. Experimental evidence of body centered cubic iron in Earth's core

    NASA Astrophysics Data System (ADS)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  3. Viscosity of komatiite liquid at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  4. Iron Supply and Demand in an Antarctic Shelf Ecosystem

    NASA Astrophysics Data System (ADS)

    McGillicuddy, D. J., Jr.; Sedwick, P.; Dinniman, M. S.; Arrigo, K. R.; Bibby, T. S.; Greenan, B. J. W.; Hofmann, E. E.; Klinck, J. M., II; Smith, W.; Mack, S. L.; Marsay, C. M.; Sohst, B. M.; van Dijken, G.

    2016-02-01

    The Ross Sea sustains a rich ecosystem and is the most productive sector of the Southern Ocean. Most of this production occurs within a polynya during the November-February period, when the availability of dissolved iron (dFe) is thought to exert the major control on phytoplankton growth. Here we combine new data on the distribution of dFe, high-resolution model simulations of ice melt and regional circulation, and satellite-based estimates of primary production to quantify iron supply and demand over the Ross Sea continental shelf. Our analysis suggests that the largest sources of dFe to the euphotic zone are wintertime mixing and melting sea ice, with a lesser input from intrusions of Circumpolar Deep Water, and a small amount from melting glacial ice. Together these sources are in approximate balance with the annual biological dFe demand inferred from satellite-based productivity algorithms, although both the supply and demand estimates have large uncertainties. Our findings illustrate the complexities of iron cycling in the Southern Ocean, highlighting the heterogeneity of the underlying processes along the Antarctic continental margin. Explicit representation of these complexities, and the temporal variability in both proximate and ultimate sources of iron, will be necessary to understand how a changing climate will affect this important ecosystem and its influence on biogeochemical cycles. Reduction of the present uncertainties in iron supply and demand will require coupled observational and modeling systems capable of resolving the wide range of physical, biological, and chemical processes involved.

  5. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Kang, Shichang; Cong, Zhiyuan; Schmale, Julia; Sprenger, Michael; Li, Chaoliu; Yang, Wei; Gao, Tanguang; Sillanpää, Mika; Li, Xiaofei; Liu, Yajun; Chen, Pengfei; Zhang, Xuelei

    2017-07-01

    Light-absorbing impurities (LAIs) in snow of the southeastern Tibetan Plateau (TP) and their climatic impacts are of interest not only because this region borders areas affected by the South Asian atmospheric brown clouds but also because the seasonal snow and glacier melt from this region form important headwaters of large rivers. In this study, we collected surface snow and snowpit samples from four glaciers in the southeastern TP in June 2015 to investigate the comprehensive observational data set of LAIs. Results showed that the LAI concentrations were much higher in the aged snow and granular ice than in the fresh snow and snowpits due to postdepositional processes. Impurity concentrations fluctuated across snowpits, with maximum LAI concentrations frequently occurring toward the bottom of snowpits. Based on the SNow ICe Aerosol Radiative model, the albedo simulation indicated that black carbon and dust account for approximately 20% of the albedo reduction relative to clean snow. The radiative forcing caused by black carbon and dust deposition on the glaciers were between 1.0-141 W m-2 and 1.5-120 W m-2, respectively. Black carbon (BC) played a larger role in albedo reduction and radiative forcing than dust in the study area, enhancing approximately 15% of glacier melt. Analysis based on the Fire INventory from NCAR indicated that nonbiomass-burning sources of BC played an important role in the total BC deposition, especially during the monsoon season. This study suggests that eliminating anthropogenic BC could mitigate glacier melt in the future of the southeastern TP.

  6. Structure, Frictional Melting and Fault Weakening during the 2008 Mw 7.9 Wenchuan Earthquake Slip: Observation from the WFSD Drilling Core Samples

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, H.; Li, C.; Zhang, J.; Sun, Z.; Si, J.; Liu, D.; Chevalier, M. L.; Han, L.; Yun, K.; Zheng, Y.

    2015-12-01

    The 2008 Mw7.9 Wenchuan earthquake produced two co-seismic surface ruptures along Yingxiu-Beichuan fault (~270 km) and the Guanxian-Anxian fault (~80 km) simultaneously in the Longmen Shan thrust belt. Besides, two surface rupture zones were tracked in the southern segment of the Yingxiu-Beichuan rupture zone, one along the Yingxiu fault, the other along the Shenxigou-Longchi fault, which both converged into one rupture zone at the Bajiaomiao village, Hongkou town, where one distinct fault plane with two striation orientations was exposed. The Wenchuan earthquake Fault Scientific Drilling project (WFSD) was carried out right after the earthquake to investigate its faulting mechanisms and rupture process. Six boreholes were drilled along the rupture zones with depths ranging from 600 to 2400 m. WFSD-1 and WFSD-2 are located at the Bajiaomiao area, the southern segment of the Yingxiu-Beichuan rupture zone, while WFSD-4 and WFSD-4S are in the Nanba town area, in the northern part of the rupture zone. Detailed research showed that ~1 mm thick Principal Slip Zone (PSZ) of the Wenchuan earthquake is located at ~589 m-depth in the WFSD-1 cores. Graphite present in the PSZ indicates a low fault strength. Long-term temperature monitoring shows an extremely low fault friction coefficient during the earthquake. Recently, another possible PSZ was found in WFSD-1 cores at ~732 m-depth, with a ~2 mm thick melt layer in the fault gouge, where feldspar was melted but quartz was not, indicating that the frictional melting temperature was 1230°C < T < 1720°C. These two PSZs at depth may correspond to the two co-seismic surface rupture zones. Besides, the Wenchuan earthquake PSZ was also recognized in the WFSD-4S cores, at ~1084 m-depth. About 200-400 μm thick melt layer (fault vein, mainly feldspar), as well as melt injection veins, were observed in the slip zone, where oblique distinct striations were visible on the slip surface. Therefore, there are two PSZs in the shallow crust at the southern segment along the Yingxiu-Beichuan fault, and another one along the northern segment. Melt and graphite in the PSZs indicate that the frictional melting and thermal pressurization are the main fault mechanisms during the Wenchuan earthquake. The melt and graphite can be considered as markers of large earthquakes.

  7. Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys

    NASA Astrophysics Data System (ADS)

    Demir, Orhan; Eric, R. Hurman

    1994-08-01

    The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.

  8. Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components

    PubMed Central

    Golowin, Roman; Portnyagin, Maxim; Hoernle, Kaj; Hauff, Folkmar; Gurenko, Andrey; Garbe-Schönberg, Dieter; Werner, Reinhard; Turner, Simon

    2017-01-01

    The Ontong Java and Manihiki oceanic plateaus are believed to have formed through high-degree melting of a mantle plume head. Boninite-like, low-Ti basement rocks at Manihiki, however, imply a more complex magma genesis compared with Ontong Java basement lavas that can be generated by ∼30% melting of a primitive mantle source. Here we show that the trace element and isotope compositions of low-Ti Manihiki rocks can best be explained by re-melting of an ultra-depleted source (possibly a common mantle component in the Ontong Java and Manihiki plume sources) re-enriched by ≤1% of an ocean-island-basalt-like melt component. Unlike boninites formed via hydrous flux melting of refractory mantle at subduction zones, these boninite-like intraplate rocks formed through adiabatic decompression melting of refractory plume material that has been metasomatized by ocean-island-basalt-like melts. Our results suggest that caution is required before assuming all Archaean boninites were formed in association with subduction processes. PMID:28181497

  9. Preparation of Aluminum-Zirconium Master Alloy by Aluminothermic Reduction in Cryolite Melt

    NASA Astrophysics Data System (ADS)

    Liu, Fengguo; Ding, Chenliang; Tao, Wenju; Hu, Xianwei; Gao, Bingliang; Shi, Zhongning; Wang, Zhaowen

    2017-12-01

    Al-Zr master alloy was prepared by aluminothermic reduction in cryolite melt without alumina impurity. The Al-Zr master alloy was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The composition of the master alloy was analyzed by inductively coupled plasma optical emission spectrometry. The results indicated that Al-Zr master alloy with high purity could be obtained when byproduct Al2O3 was dissolved in the cryolite melt. The Al-Zr alloy was embedded in the Al matrix in the form of Al3Zr phase with long rod or tetragonal morphology due to temperature variation. Finally, we obtained Al-Zr alloy with 7 wt.% Zr by aluminothermic reduction for 90 min in cryolite melt at 980°C.

  10. Effect of Microstructure on Diffusional Solidification of 4343/3005/4343 Multi-Layer Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Tu, Yiyou; Tong, Zhen; Jiang, Jianqing

    2013-04-01

    The effect of microstructure on clad/core interactions during the brazing of 4343/3005/4343 multi-layer aluminum brazing sheet was investigated employing differential scanning calorimetry (DSC) and electron back-scattering diffraction (EBSD). The thickness of the melted clad layer gradually decreased during the brazing operation. It could be completely removed isothermally as a result of diffusional solidification at the brazing temperature. During the brazing cycle, the rate of loss of the melt in the brazing sheet, with small equiaxed grains' core layer, was higher than that with the core layer consisting of elongated large grains. The difference in microstructure affected the amount of liquid formed during brazing.

  11. The Influence of Static and Rotating Magnetic Fields on Heat and Mass Transfer in Silicon Floating Zones

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Dold, P.; Kaiser, Th.; Szofran, Frank; Benz, K. W.

    1999-01-01

    Hear and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a def@ned flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to ST and in transverse rotating magnetic fields up to 7.S mT. Static fields of a few 100 MT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, is possible with static fields ? 1T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelec:romagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few mT. The field shifts time-dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes

  12. The Influence of Static and Rotating Magnetic Fields on Heat and Mass Transfer in Silicon Floating Zones

    NASA Technical Reports Server (NTRS)

    Croll, A.; Dold, P.; Kaiser, Th.; Szofran, F. R.; Benz, K. W.

    1999-01-01

    Heat and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio-frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a defined flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to 5 T and in transverse rotating magnetic fields up to 7.5 mT. Static fields of a few 100 mT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile toward a more diffusion-limited case, is possible with static fields greater than or equal to 1 T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelectromagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few millitesla. The field shifts time- dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes.

  13. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Edmonds, Marie; Scaillet, Bruno; Peters, Nial; Gennaro, Emanuela; Sides, Issy; Oppenheimer, Clive

    2016-09-01

    Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer - hence preserving mantle conditions - or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of Kīlauea volcano (Hawai'i). We show that the oxidation state of these melts is strongly correlated with their volatile content, particularly in respect of water and sulfur contents. We argue that sulfur degassing has played a major role in the observed reduction of iron in the melt, while the degassing of H2O and CO2 appears to have had a negligible effect on the melt oxidation state under the conditions investigated. Using gas-melt equilibrium degassing models, we relate the oxidation state of the melt to the composition of the gases emitted at Kīlauea. Our measurements and modelling yield a lower constraint on the oxygen fugacity of the mantle source beneath Kīlauea volcano, which we infer to be near the nickel nickel-oxide (NNO) buffer. Our findings should be widely applicable to other basaltic systems and we predict that the oxidation state of the mantle underneath most hotspot volcanoes is more oxidised than that of the associated lavas. We also suggest that whether the oxidation states of a basalt (in particular MORB) reflects that of its source, is primarily determined by the extent of sulfur degassing.

  14. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    NASA Technical Reports Server (NTRS)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of water availability.

  15. The history of hexachlorobenzene accumulation in Svalbard fjords.

    PubMed

    Pouch, A; Zaborska, A; Pazdro, K

    2018-05-24

    In the present study, we investigated the spatial and historical trends of hexachlorobenzene (HCB) contamination in dated sediments of three Svalbard fjords (Kongsfjorden, Hornsund, Adventfjorden) differing in environmental conditions and human impact. HCB concentrations ranging from below limit of quantification (6.86 pg/g d.w.) to 143.99 pg/g d.w. were measured. The highest concentrations were measured in two surface sediment layers of the core collected in Hornsund near the melting glacier. The lowest concentrations of HCB were measured in Adventfjorden, suggesting that local source of HCB is not significant and global transport processes are the major transport pathways. The history of HCB deposition did not fully reflect the history of HCB emission (largest in 1950s and 1960s). In case of several sediment cores, the HCB enrichment in surface (recent) sediments was noticed. This can indicate importance of secondary sources of HCB, e.g., the influx of HCB accumulated over decades on the surface of glaciers. Detected levels of HCB were generally low and did not exceed background concentration levels; thus, a negative effect on benthic organisms is not expected.

  16. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise

    NASA Astrophysics Data System (ADS)

    Gao, Changgui; Dick, Henry J. B.; Liu, Yang; Zhou, Huaiyang

    2016-03-01

    This paper works on the trace and major element compositions of spatially associated basalts and peridotites from the Dragon Bone amagmatic ridge segment at the eastern flank of the Marion Platform on the ultraslow spreading Southwest Indian Ridge. The rare earth element compositions of basalts do not match the pre-alteration Dragon Bone peridotite compositions, but can be modeled by about 5 to 10% non-modal batch equilibrium melting from a DMM source. The Dragon Bone peridotites are clinopyroxene-poor harzburgite with average spinel Cr# 27.7. The spinel Cr# indicates a moderate degree of melting. However, CaO and Al2O3 of the peridotites are lower than other abyssal peridotites at the same Mg# and extent of melting. This requires a pyroxene-poor initial mantle source composition compared to either hypothetical primitive upper mantle or depleted MORB mantle sources. We suggest a hydrous melting of the initial Dragon Bone mantle source, as wet melting depletes pyroxene faster than dry. According to the rare earth element patterns, the Dragon Bone peridotites are divided into two groups. Heavy REE in Group 1 are extremely fractionated from middle REE, which can be modeled by 7% fractional melting in the garnet stability field and another 12.5 to 13.5% in the spinel stability field from depleted and primitive upper mantle sources, respectively. Heavy REE in Group 2 are slightly fractionated from middle REE, which can be modeled by 15 to 20% fractional melting in the spinel stability field from a depleted mantle source. Both groups show similar melting degree to other abyssal peridotites. If all the melt extraction occurred at the middle oceanic ridge where the peridotites were dredged, a normal 6 km thick oceanic crust is expected at the Dragon Bone segment. However, the Dragon Bone peridotites are exposed in an amagmatic ridge segment where only scattered pillow basalts lie on a partially serpentinized mantle pavement. Thus their depletion requires an earlier melting occurred at other place. Considering the hydrous melting of the initial Dragon Bone mantle source, we suggest the earlier melting event occurred in an arc terrain, prior to or during the closure of the Mozambique Ocean in the Neproterozoic, and the subsequent assembly of Gondwana. Then, the Al2O3 depleted and thus buoyant peridotites became the MORB source for Southwest Indian Ridge and formed the Marion Rise during the Gondwana breakup.

  17. The influence of melting on the kinematic development of the Himalayan crystalline core

    NASA Astrophysics Data System (ADS)

    Webb, Alexander

    2016-04-01

    Current hypotheses for the development and emplacement of the Himalayan crystalline core are 1) models with intense upper plate out-of-sequence activity (i.e., tunneling of channel flow, and some modes of critical taper wedge behavior) and 2) models in which the upper plate mainly records basal accretion of horses (i.e., duplexing). The two concepts can be considered end-members. A signal difference between these two models is the role of melting. The intense upper plate deformation envisioned in the first set of models has been hypothesized to be largely a product of partial melting, particularly in channel flow models. Specifically, the persistent presence of melt in the middle crust of the upper plate may dramatically lower the viscosity of these rocks, allowing distributed deformation. The second set of models - duplexing - predicts in-sequence thrusting with only minor out-of-sequence deformation. Stacking of a duplex acts like a deli cheese-slicing machine: slice after slice is cut from the intact block to a stack of slices, but neither the block (~down-going plate) nor the stack (~upper plate) features much internal deformation. In this model, partial melting produces no significant kinematic impact. The dominant preserved structural elements across the Himalayan crystalline core rocks are flattening and L-S fabrics. Structurally high portions of the crystalline core locally display complex outcrop-scale deformation associated with migmatitic rocks, and contain km-scale leucogranite bodies; both features developed in the early to middle Miocene. The flattening and L-S fabrics have been interpreted to record either (A) southwards channel tunneling across the upper plate, or (B) fabric development during metamorphism of the down-going plate, prior to accretion to the upper plate. The deformation of migmatitic rock and emplacement of leucogranite have been interpreted in support of widespread distributed deformation. Alternatively, these features may have accumulated from increments of melting and crystallization which did not produce sufficient melt during any one period to significantly alter viscosity at >100 m scales. Recent work integrating monazite and zircon geochronology with structural records shows that the Himalayan middle crust has been assembled along a series of mainly southwards-younging thrust faults throughout the early to middle Miocene. The thrust faults separate 1-5 km thick panels that experienced similar metamorphic cycles during different time periods. At this scale, out-of-sequence deformation is rare, with its apparent significance enhanced because of the high throw-to-heave ratio of out-of-sequence thrusting. These findings support the duplexing model and indicate that melting did not have a significant impact on the kinematic development of the Himalayan crystalline core.

  18. Chemical Convention in the Lunar Core from Melting Experiments on the Ironsulfur System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Liu, J.; Chen, B.

    2012-03-26

    By reanalyzing Apollo lunar seismograms using array-processing methods, a recent study suggests that the Moon has a solid inner core and a fluid outer core, much like the Earth. The volume fraction of the lunar inner core is 38%, compared with 4% for the Earth. The pressure at the Moon's core-mantle boundary is 4.8 GPa, and that at the ICB is 5.2 GPa. The partially molten state of the lunar core provides constraints on the thermal and chemical states of the Moon: The temperature at the inner core boundary (ICB) corresponds to the liquidus of the outer core composition, andmore » the mass fraction of the solid core allows us to infer the bulk composition of the core from an estimated thermal profile. Moreover, knowledge on the extent of core solidification can be used to evaluate the role of chemical convection in the origin of early lunar core dynamo. Sulfur is considered an antifreeze component in the lunar core. Here we investigate the melting behavior of the Fe-S system at the pressure conditions of the lunar core, using the multi-anvil apparatus and synchrotron and laboratory-based analytical methods. Our goal is to understand compositionally driven convection in the lunar core and assess its role in generating an internal magnetic field in the early history of the Moon.« less

  19. Core segregation mechanism and compositional evolution of terretrial planets

    NASA Astrophysics Data System (ADS)

    Petford, N.; Rushmer, T.

    2009-04-01

    A singular event in the formation of the earth and terrestrial planets was the separation iron-rich melt from mantle silicate to form planetary cores. On Earth, and by implication other rocky planets, this process induced profound internal chemical fractionation, with siderophile elements (Ni, Co, Au, Pt, W, Re) following Fe into the core, leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, ‘raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation. The potential for flow of metal-rich melt to induce local magnetic anomalies will also be addressed.

  20. Os-186 and Os-187 Enrichments and High-He-3/He-4 sources in the Earth's Mantle: Evidence from Icelandic Picrites

    NASA Technical Reports Server (NTRS)

    Brandon, Alan D.; Graham, David W.; Waight, Tod; Gautason, Bjarni

    2007-01-01

    Picrites from the neovolcanic zones in Iceland display a range in Os-187/Os-188O from 0.1297 to 0.1381 ((gamma)Os = 0.0 to 6.5) and uniform Os-186/Os-188 of 0.1198375+/-32 (2 (sigma)). The value for Os-186/Os-188 is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398+/-16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in Os-186/Os-188 and Os-187/Os-188 from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high He-3/He-4, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not. A positive correlation between Os-187/Os-188 and He-3/He-4 from 9.6 to 19 RA in Iceland picrites is best modeled as mixtures of 500 Ma or older ancient recycled crust mixed with primitive mantle, creating a hybrid source region that subsequently mixes with the convecting MORB mantle during ascent and melting. This multistage mechanism to explain these isotope systematics is consistent with ancient recycled crust juxtaposed with more primitive, relatively He-rich mantle, in convective isolation from the upper mantle, most likely in the lowermost mantle. This is inconsistent with models that propose random mixing between heterogeneities in the convecting upper mantle as a mechanism to explain the observed isotopic variation in oceanic lavas or models that produce a high He-3/He-4 signature in melt depleted and strongly outgassed, He-poor mantle. Instead these systematics require a deep mantle source to explain the 3He/4He signature in Iceland lavas. The He-3/He-4 of lavas derived from the Iceland plume changed over time, from a maximum of 50 RA at 60 Ma, to approximately 25-27 RA at present. The changes are coupled with distinct compositional gaps between the different aged lavas when H-3/He-4 is plotted versus various geochemical parameters such as Nd-143/Nd-144 and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.

  1. Two-Phase Dynamics Simulations of the Growth and Instability of Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.; Jellinek, M.; Labrosse, S.

    2008-12-01

    When the center of Earth's core began to freeze from a homogeneous liquid 1-2 billion years ago, its constitution was very likely that of a mushy region. As this incipient inner core grew by further crystallization of the outer core, an increase in gravity force allowed for the solid grains to compress against one another, undergo viscous compaction, and begin to expel remnant fluid out of the inner core by percolation. Meanwhile, inside the inner core the residual fluid and solid remained in equilibrium, and any perturbations that resulted in upwelling of the deformable mush would also be accompanied by decompression melting. Upwelling and melting regions might then increase in liquid fraction, become less dense, and hence buoyant in a way that would propel them upward at a faster rate, setting up a runaway instability and partial Rayleigh-Taylor-like overturn of Earth's inner core. Structures inherited from this event possibly include the distinct innermost inner core posited by seismologists to exist at Earth's centermost 300-600 km. We use a new two-phase dynamics code to model this scenario in axi-symmetric geometry in order to understand whether and when such an instability occurred, what size the core will have been at the onset of instability, and the degree and style of deformation that would have accompanied this episode. We have found that the growth of instability competes with the rate of background melt percolation, such that the instability would only have occurred after the inner core reaches a critical size and expelled a certain amount of liquid from its interior. A linear stability analysis confirms that there is a critical Rayleigh number for the onset of instability at a given radius. The combined constraints show that the inner core is guaranteed to have undergone this kind of instability, at a time and strength governed solely by physical properties such as grain size, density differences between liquid and solid, and viscosities of the phases.

  2. OECD 2-D Core Concrete Interaction (CCI) tests : CCI-2 test plan, Rev. 0 January 31, 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1)more » resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. The first of these two tests, CCI-1, was conducted on December 19, 2003. This test investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % calcined siliceous concrete, with a specially designed two-dimensional siliceous concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The second of these two planned tests, CCI-2, will be conducted with a nearly identical test facility and experiment boundary conditions, but with a Limestone/Common Sand (LCS) concrete test section to investigate the effect of concrete type on the two-dimensional core-concrete interaction and debris cooling behavior. The objective of this report is to provide the overall test plan for CCI-2 to enable pretest calculations to be carried out. The report begins by providing a summary description of the CCI-2 test apparatus, followed by a description of the planned test operating procedure. Overall specifications for CCI-2 are provided in Table 1-1.« less

  3. Nitrogen partitioning during Earth's accretion and core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Speelmanns, I. M.; Schmidt, M. W.; Liebske, C.

    2017-12-01

    On present day Earth, N is one of the key constituents of our atmosphere and forms the basis of life. However, the deep Earth geochemistry of N, i.e. its distribution and isotopic fractionation between Earth's deep reservoirs is not well constrained. This study investigates nitrogen partitioning between metal and silicate melts as relevant for core segregation during the accretion of planetesimals into the Earth. We have determined N-partitioning coefficients over a wide range of temperatures (1250-2000 °C), pressures (15-35 kbar) and oxygen fugacity's, the latter in the relevant range of core segregation (IW-5 to IW). Centrifuging piston cylinders were used to equilibrate and then gravitationally separate metal-silicate melt pairs. Separation of the two melts is necessary to avoid micro nugget contamination in the silicate melt at reducing conditions < IW-2.5. Complete segregation of the two melts was reached within 1 to 3 hours at 1000 g and 1600-1250 °C respectively, the interface showing a proper meniscus. The applied double capsule technique in all experiments, using an outer metallic (Pt) and inner non-metallic capsule (graphite or Al2O3), minimizes N-loss over the course of the experiments compared to single non-metallic capsules. The two quenched melts were cut apart mechanically, cleaned at the outside, their N concentrations were then analysed on bulk samples by an elemental analyser, the low abslute masses requiring careful development of analytical routines. Despite these difficulties, we were able to determine a DNmetal/silicate of 13±0.3 at IW-1 decreasing to 2.0±0.2 at IW-5.5, at 1250°C and 15 kbar, N partitioning into the core forming metal. Increasing temperature dramatically lowers the DNmetal/silicate to e.g. 0.5±0.15 at IW-4, during early core formation N was hence mildly incompatible in the metal. The results suggest that under magma ocean conditions (> 2000 oC and fO2 IW-2.5), N-partition coefficents were within a factor of 2 of unity. Hence, N did not partition into the core, which should contain negliligible quantities of N. The few available literature data [1],[2],[3] support N changing compatibility with decreasing fO2. [1] Kadik et al., (2011) Geochem Int 49.5: 429-438. [2] Roskosz et al., (2013) GCA 121: 15-28. [3] Dalou et al., (2017) EPSL 458: 141-151

  4. OECD MCCI 2-D Core Concrete Interaction (CCI) tests : CCI-2 test data report-thermalhydraulic results, Rev. 0 October 15, 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1)more » resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-2 experiment, which was conducted on August 24, 2004. Test specifications for CCI-2 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % Limestone/Common Sand (LCS) concrete, with a specially designed two-dimensional LCS concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The report begins by providing a summary description of the CCI-2 test apparatus and operating procedures, followed by presentation of the thermal-hydraulic results. Detailed posttest debris examination results will be provided in a subsequent publication. Observations drawn within this report regarding the overall cavity erosion behavior may be subject to revision once the posttest examinations are completed, since these examinations will fully reveal the final cavity shape.« less

  5. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment.

    PubMed

    Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-06-01

    A previous study by the authors using a heated thermal manikin showed that the cooling rates of phase change material (PCM) are dependent on temperature gradient, mass, and covering area. The objective of this study was to investigate if the cooling effects of the temperature gradient observed on a thermal manikin could be validated on human subjects in extreme heat. The subjects wore cooling vests with PCMs at two melting temperatures (24 and 28°C) and fire-fighting clothing and equipment, thus forming three test groups (vest24, vest28 and control group without the vest). They walked on a treadmill at a speed of 5 km/h in a climatic chamber (air temperature = 55°C, relative humidity = 30%, vapour pressure = 4,725 Pa, and air velocity = 0.4 m/s). The results showed that the PCM vest with a lower melting temperature (24°C) has a stronger cooling effect on the torso and mean skin temperatures than that with a higher melting temperature (28°C). Both PCM vests mitigate peak core temperature increase during the resting recovery period. The two PCM vests tested, however, had no significant effect on the alleviation of core temperature increase during exercise in the heat. To study the possibility of effective cooling of core temperature, cooling garments with PCMs at even lower melting temperatures (e.g. 15°C) and a larger covering area should be investigated.

  6. Platinum Partitioning at Low Oxygen Fugacity: Implications for Core Formation Processes

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Lanziroti, A.; Newville, M.

    2016-01-01

    Highly siderophile elements (HSE = Au, Re, and the Pt-group elements) are tracers of silicate / metal interactions during planetary processes. Since most core-formation models involve some state of equilibrium between liquid silicate and liquid metal, understanding the partioning of highly siderophile elements (HSE) between silicate and metallic melts is a key issue for models of core / mantle equilibria and for core formation scenarios. However, partitioning models for HSE are still inaccurate due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variable like temperature, pressure, and oxygen fugacity. In this abstract, we describe a self-consistent set of experiments aimed at determining the valence of platinum, one of the HSE, in silicate melts. This is a key information required to parameterize the evolution of platinum partitioning with oxygen fugacity.

  7. Detectability of temporal changes in fine structures near the inner core boundary beneath the eastern hemisphere

    NASA Astrophysics Data System (ADS)

    Yu, Wen-che

    2016-04-01

    The inner core boundary (ICB), where melting and solidification of the core occur, plays a crucial role in the dynamics of the Earth's interior. To probe temporal changes near the ICB beneath the eastern hemisphere, I analyze differential times of PKiKP (dt(PKiKP)), double differential times of PKiKP-PKPdf, and PKiKP coda waves from repeating earthquakes in the Southwest Pacific subduction zones. Most PKiKP differential times are within ±30 ms, comparable to inherent travel time uncertainties due to inter-event separations, and suggest no systematic changes as a function of calendar time. Double differential times measured between PKiKP codas and PKiKP main phases show promising temporal changes, with absolute values of time shifts of >50 ms for some observations. However, there are discrepancies among results from different seismographs in the same calendar time window. Negligible changes in PKiKP times, combined with changes in PKiKP coda wave times on 5 year timescales, favor a smooth inner core boundary with fine-scale structures present in the upper inner core. Differential times of PKiKP can be interpreted in the context of either melting based on translational convection, or growth based on thermochemical mantle-inner core coupling. Small dt(PKiKP) values with inherent uncertainties do not have sufficient resolution to distinguish the resultant longitudinal (melting) and latitudinal (growth) dependencies predicted on the basis of the two models on 5 year timescales.

  8. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core-Concrete Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.; Farmer, Mitchell T.; Francis, Matthew W.

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for the analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, in this paper an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 weremore » used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH. For the MELCOR-based melt pour scenario, CORQUENCH predicted the melt would readily cool within 2.5 h after the pour, and the sumps would experience limited ablation (approximately 18 cm) under water-flooded conditions. Finally, for the MAAP-based melt pour scenarios, CORQUENCH predicted that the melt would cool in approximately 22.5 h, and the sumps would experience approximately 65 cm of concrete ablation under water-flooded conditions.« less

  9. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core-Concrete Interaction

    DOE PAGES

    Robb, Kevin R.; Farmer, Mitchell T.; Francis, Matthew W.

    2016-10-31

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for the analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, in this paper an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 weremore » used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH. For the MELCOR-based melt pour scenario, CORQUENCH predicted the melt would readily cool within 2.5 h after the pour, and the sumps would experience limited ablation (approximately 18 cm) under water-flooded conditions. Finally, for the MAAP-based melt pour scenarios, CORQUENCH predicted that the melt would cool in approximately 22.5 h, and the sumps would experience approximately 65 cm of concrete ablation under water-flooded conditions.« less

  10. Precipitation hydrometeor type relative to the mesoscale airflow in mature oceanic deep convection of the Madden-Julian Oscillation

    DOE PAGES

    Barnes, Hannah C.; Houze, Robert A.

    2014-12-25

    We present that composite analysis of mature near-equatorial oceanic mesoscale convective systems (MCSs) during the active stage of the Madden-Julian Oscillation (MJO) shows where different hydrometeor types occur relative to convective updraft and stratiform midlevel inflow layers. The National Center for Atmospheric Research (NCAR) S-PolKa radar observed these MCSs during the Dynamics of the Madden-Julian Oscillation/Atmospheric Radiation Measurement-MJO Investigation Experiment (DYNAMO/AMIE). NCAR's particle identification algorithm (PID) is applied to S-PolKa's polarimetric data to identify the dominant hydrometeor type in each radar sample volume. Combining S-PolKa's Doppler velocity data with the PID demonstrates that hydrometeors have a systematic relationship to themore » airflow within mature MCSs. In the convective region, moderate rain occurs within the updraft core; the heaviest rain occurs just downwind of the core; wet aggregates occur immediately below the melting layer; narrow zones containing graupel/rimed aggregates occur just downstream of the updraft core at midlevels; dry aggregates dominate above the melting level; and smaller ice particles occur along the edges of the convective zone. In the stratiform region, rain intensity decreases toward the anvil; melting aggregates occur in horizontally extensive but vertically thin regions at the melting layer; intermittent pockets of graupel/rimed aggregates occur atop the melting layer; dry aggregates and small ice particles occur sequentially above the melting level; and horizontally oriented ice crystals occur between -10°C and -20°C in turbulent air above the descending midlevel inflow, suggesting enhanced depositional growth of dendrites. Finally, the organization of hydrometeors within the midlevel inflow layer is insensitive to the presence or absence of a leading convective line.« less

  11. The Evolution of Protective Covers for Army Aviation and Missile Systems

    DTIC Science & Technology

    2010-02-01

    reaction • Softening, melting and sublimination • Viscosity reduction and evaporation • Physical expansion • Decreased MTBF • Thermal aging: oxidation...structural change, chemical reaction • Softening, melting and sublimination • Viscosity reduction and evaporation • Physical expansion • Decreased MTBF

  12. Gas-lift pumps for flowing and purifying molten silicon

    DOEpatents

    Kellerman, Peter L.; Carlson, Frederick

    2016-02-23

    The embodiments herein relate to a sheet production apparatus. A vessel is configured to hold a melt of a material and a cooling plate is disposed proximate the melt. This cooling plate configured to form a sheet of the material on the melt. A pump is used. In one instance, this pump includes a gas source and a conduit in fluid communication with the gas source. In another instance, this pump injects a gas into a melt. The gas can raise the melt or provide momentum to the melt.

  13. Silicate glasses and sulfide melts in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure, Virginia, USA

    USGS Publications Warehouse

    Belkin, H.E.; Horton, J. Wright

    2009-01-01

    Optical and electron-beam petrography of melt-rich suevite and melt-rock clasts from selected samples from the Eyreville B core, Chesapeake Bay impact structure, reveal a variety of silicate glasses and coexisting sulfur-rich melts, now quenched to various sulfi de minerals (??iron). The glasses show a wide variety of textures, fl ow banding, compositions, devitrifi cation, and hydration states. Electron-microprobe analyses yield a compositional range of glasses from high SiO2 (>90 wt%) through a range of lower SiO2 (55-75 wt%) with no relationship to depth of sample. Some samples show spherical globules of different composition with sharp menisci, suggesting immiscibility at the time of quenching. Isotropic globules of higher interfacial tension glass (64 wt% SiO2) are in sharp contact with lower-surface-tension, high-silica glass (95 wt% SiO2). Immiscible glass-pair composition relationships show that the immiscibility is not stable and probably represents incomplete mixing. Devitrifi cation varies and some low-silica, high-iron glasses appear to have formed Fe-rich smectite; other glass compositions have formed rapid quench textures of corundum, orthopyroxene, clinopyroxene, magnetite, K-feldspar, plagioclase, chrome-spinel, and hercynite. Hydration (H2O by difference) varies from ~10 wt% to essentially anhydrous; high-SiO2 glasses tend to contain less H2O. Petrographic relationships show decomposition of pyrite and melting of pyrrhotite through the transformation series; pyrite? pyrrhotite? troilite??? iron. Spheres (~1 to ~50 ??m) of quenched immiscible sulfi de melt in silicate glass show a range of compositions and include phases such as pentlandite, chalcopyrite, Ni-As, monosulfi de solid solution, troilite, and rare Ni-Fe. Other sulfi de spheres contain small blebs of pure iron and exhibit a continuum with increasing iron content to spheres that consist of pure iron with small, remnant blebs of Fe-sulfi de. The Ni-rich sulfi de phases can be explained by melting and/or concentrating targetderived Ni without requiring an asteroid impactor source component. The presence of locally unaltered glasses in these rocks suggests that in some rock volumes, isolation from postimpact hydrothermal systems was suffi cient for glass preservation. Pressure and temperature indicators suggest that, on a thin-section scale, the suevites record rapid mixing and accumulation of particles that sustained widely different peak temperatures, from clasts that never exceeded 300 ?? 50 ??C, to the bulk of the glasses where melted sulfi de and unmelted monazite suggest temperatures of 1500 ?? 200 ??C. The presence of coesite in some glass-bearing samples suggests that pressures exceeded ~3 GPa. ?? 2009 Geological Society of America.

  14. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Sharpton, V.L.; Dalrymple, G.B.; Marin, L.E.; Ryder, G.; Schuraytz, B.C.; Urrutia-Fucugauchi, J.

    1992-01-01

    THE 200-km-diameter Chicxulub structure1-3 in northern Yucatan, Mexico has emerged as the prime candidate for the Cretaceous/Tertiary (K/T) boundary impact crater3-6. Concentric geophysical anomalies associated with enigmatic occurrences of Upper Cretaceous breccias and andesitic rocks led Penfield and Camargo1 to suspect that this structure was a buried impact basin. More recently, the discovery of shocked quartz grains in a Chicxulub breccia3, and chemical similarities between Chicxulub rocks and K/T tektite-like glasses3-6 have been advanced as evidence that the Chicxulub structure is a K/T impact site. Here we present evidence from core samples that Chicxulub is indeed a K/T source crater, and can apparently account for all the evidence of impact distributed globally at the K/T boundary without the need for simultaneous multiple impacts or comet showers. Shocked breccia clasts found in the cores are similar to shocked lithic fragments found worldwide in the K/T boundary ejecta layer7,8. The Chicxulub melt rocks that we studied contain anomalously high levels of iridium (up to 13.5 parts per 109), also consistent with the indium-enriched K/T boundary layer9. Our best estimate of the crystallization age of these melt rocks, as determined by 40Ar/39Ar analyses, is 65.2??0.4 (1??) Myr, in good agreement with the mean plateau age of 64.98 ?? 0.05 Myr recently reported10. Furthermore, these melt rocks acquired a remanent magnetization indicating that they cooled during an episode of reversed geomagnetic polarity. The only such episode consistent with 40Ar/39Ar constraints is chron 29R, which includes the K/T boundary.

  15. Contrasting accessory mineral behavior in minimum-temperature melts: Empirical constraints from the Himalayan metamorphic core

    NASA Astrophysics Data System (ADS)

    Cottle, John M.; Larson, Kyle P.; Yakymchuk, Chris

    2018-07-01

    Medium-grained leucogranite in the Tama Kosi region of the Nepalese Himalayan Metamorphic Core yields a relatively narrow range of monazite 208Pb/232Th dates with a dominant population at 21.0 Ma inferred to represent crystallization of an early plutonic phase. In contrast, the pegmatitic portion of the same intrusive complex, that cross-cuts the medium-grained leucogranite, contains zircon, monazite and xenotime that each display near-identical age spectra, recording semi-continuous (re-)crystallization from 27.5 Ma to 21.0 Ma, followed by a 2 m.y. hiatus then further (re-)crystallization between 19.4 and 18.6 Ma. The "gap" in pegmatite dates corresponds well to the crystallization age of the older leucogranite, whereas the end of accessory phase growth in the pegmatite coincides with the onset of regional-scale cooling. Detailed textural, trace element and thermochronologic data indicate that the range of zircon, monazite and xenotime dates recorded in the pegmatite reflect inherited components that underwent semi-continuous (re-)crystallization during metamorphism and/or anatexis in the source region(s), whereas dates younger than the hiatus indicate accessory phase recrystallization, related to both fluid influx and a concomitant increase in temperature. In contrast, the lack of an inherited component(s) in the medium-grained leucogranite phase is inferred to be a result of complete dissolution during partial melting. A model is proposed in which influx of heat and H2O-rich fluids associated with early leucogranite emplacement temporarily delayed zircon and monazite and xenotime crystallization, respectively. These data highlight the importance of measuring spatially resolved dates, trace elements and textural patterns from multiple accessory minerals combined with model constraints to better understand the often-complex crystallization history of anatectic melts in collisional orogens.

  16. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    DOEpatents

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  17. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core Concrete Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R; Farmer, Mitchell; Francis, Matthew W

    Lower head failure and corium concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input.more » MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH.« less

  18. Internal stress-induced melting below melting temperature at high-rate laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Seok, E-mail: yshwang@iastate.edu; Levitas, Valery I., E-mail: vlevitas@iastate.edu

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamicmore » equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.« less

  19. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  20. Electrical Resistivity Measurement of Cu and Zn on the Pressure-Dependent Melting Boundary

    NASA Astrophysics Data System (ADS)

    Secco, R. A.; Ezenwa, I.; Yong, W.

    2016-12-01

    Understanding how the core cools through heat conduction and modelling the geodynamo requires knowledge of the thermal and electrical conductivity of solid and liquid Fe and its relevant alloys at high pressures. It has been proposed that electrical resistivity of a pure metal is constant along its P-dependent melting boundary (Stacey and Anderson, PEPI, 2001). If confirmed, this invariant behavior could serve as a practical tool for low P studies to assess electrical resistivity of Earth's core. Since Earth's inner core boundary (ICB) is a melting boundary of mainly Fe, measurements of electrical resistivity of Fe at the melting boundary, under any P, would serve as a proxy for the resistivity at the ICB. A revised treatment (Stacey and Loper, PEPI, 2007) accounted for s-d scattering in transition metals with unfilled d-bands and limited the proposal to metals with electrons of the same type in filled d-band metals. To test this proposal, we made high P, T measurements of electrical resistivity of d-band filled Cu and Zn in solid and liquid states. Experiments were carried out in a 1000 ton cubic anvil press up to 5 GPa and 300K above melting temperatures. Two thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was used to remove any bias voltage measurement using thermocouple legs. Electron microprobe analyses were used to check the compositions of the recovered samples. The expected resistivity decrease with P and increase with T were found and comparisons with 1atm data are in very good agreement. Within the error of measurement, the resistivity values of Cu decrease along the melting boundary while Zn appears to support the hypothesis of constant resistivity along the melting boundary.

  1. Magnetic Signatures of Nectarian-Aged Lunar Basin-Forming Impacts: Probable Evidence for a Former Core Dynamo

    NASA Astrophysics Data System (ADS)

    Hood, Lon

    2010-05-01

    Previous analyses of Lunar Prospector magnetometer (MAG) and electron reflectometer (ER) data have shown that impact processes played an important role in producing the observed crustal magnetization. In particular, the largest areas of strong anomalies occur antipodal to the youngest large basins and correlative studies indicate that basin ejecta materials are important anomaly sources. Models suggest that transient fields generated by the expansion of impact vapor-melt clouds in the presence of an initial solar wind magnetic field are sufficient to explain the antipodal anomalies (Hood and Artemieva, Icarus, v. 193, p. 485, 2008). However, analyses of ER data have also shown that some anomalies are present within Nectarian-aged basins including Moscoviense, Mendel-Rydberg, and Crisium (Halekas et al., Meteorit. Planet. Sci., v. 38, p. 565, 2003). These latter anomalies could be due either to thermoremanence (TRM) in impact melt or to shock remanence in the central uplift. The former interpretation would require a long-lived, steady magnetizing field, consistent with a core dynamo, while the latter interpretation could in principle be explained by an impact-generated field. Here, LP MAG data are applied to produce more detailed regional maps of magnetic anomalies within selected Nectarian basins. Anomalies within the Crisium basin, in particular, are located inside the inner rim edges and are clearly genetically associated with the basin (rather than being due to ejecta from younger basins superposed on Crisium). An analysis of the vector field components shows that the directions of magnetization of the two main sources are close to parallel within the errors of the modeling. These anomalies are therefore most probably due to TRM of impact melt that cooled in a steady, large-scale field. In addition, the paleomagnetic pole position calculated for the strongest and most isolated anomaly lies close to the present rotational pole. Assuming no true polar wander since the Crisium impact and that the lunar dynamo behaved similarly to presently existing terrestrial planet dynamos, they are therefore consistent with the existence of a lunar dynamo field.

  2. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    USGS Publications Warehouse

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.

    2014-01-01

    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been migrating toward, and subparallel to, the northeast margin of the Colorado Plateau since the middle Miocene. Quaternary volcanism within this northern Rio Grande rift corridor is evidence that the rift is continuing to evolve.

  3. Composition of Impact Melt Debris from the Eltanin Impact Strewn Field, Bellingshausen Sea

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The impact of the km-sized Eltanin asteroid into the Bellingshausen Sea produced mm- to cm-sized vesicular impact melt-rock particles found in sediment cores across a large area of the ocean floor. These particles are composed mainly of olivine and glass with minor chromite and traces of NiFe-sulfides. Some particles have inclusions of unmelted mineral and rock fragments from the precursor asteroid. Although all samples of melt rock examined have experienced significant alteration since their deposition in the late Pliocene, a significant portion of these particles have interiors that remain pristine and can be used to estimate the bulk composition of the impact melt. The bulk composition of the melt-rock particles is similar to the composition of basaltic meteorites such as howardites or mesosiderite silicates, with a contribution from seawater salts and a siderophile-rich component. There is no evidence that the Eltanin impact melt contains a significant terrestrial silicate component that might have been incorporated by mixing of the projectile with oceanic crust. If terrestrial silicates were incorporated into the melt, then their contribution must be much less than 10 wt%. Since excess K, Na, and CI are not present in seawater proportions, uptake of these elements into the melt must have been greatest for K and least for CI, producing a K/CI ratio about 4 times that in seawater. After correcting for the seawater component, the bulk composition of the Eltanin impact melt provides the best estimate of the bulk composition of the Eltanin asteroid. Excess Fe in the impact melt, relative to that in howardites, must be from a significant metal phase in the parent asteroid. Although the estimated Fe:Ni:Ir ratios (8:1:4 x 10(exp -5)) are similar to those in mesosiderite metal nodules (10:1:6 x 10(exp -5), excess Co and Au by factors of about 2 and 10 times, respectively, imply a metal component distinct from that in typical mesosiderites. An alternative interpretation, that siderophiles have been highly fractionated from a mesosiderite source, would require loss of about 90% of the original metal from the impact melt and the sediments, and is unsupported by any observational data. More likely, the excess Fe in the melt rocks is 'representative of the amount of metal in the impacting asteroid, which is estimated to be 4+/- 1 wt%.

  4. Can basal magma oceans generate magnetic fields?

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Ziegler, L. B.; Davies, C.

    2015-12-01

    Earth's magnetic field is very old, with recent data now showing the field possibly extended back to 4.1 billion years ago (Tarduno et al., Science, 2015). Yet, based upon our current knowledge there are difficulties in sustained a core dynamo over most of Earth's history. Moreover, recent estimates of thermal and electrical conductivity of liquid iron at core conditions from mineral physics experiments indicate that adiabatic heat flux is approximately 15 TW, nearly 3 times larger than previously thought, exacerbating difficulties for driving a core dynamo by convective core cooling alone throughout Earth history. A long-lived basal magma ocean in the lowermost mantle has been proposed to exist in the early Earth, surviving perhaps into the Archean. While the modern, solid lower mantle is an electromagnetic insulator, electrical conductivities of silicate melts are known to be higher, though as yet they are unconstrained for lowermost mantle conditions. Here we explore the geomagnetic consequences of a basal magma ocean layer for a range of possible electrical conductivities. For the highest electrical conductivities considered, we find a basal magma ocean could be a primary dynamo source region. This would suggest the proposed three magnetic eras observed in paleomagnetic data originate from distinct sources for dynamo generation: from 4.5-2.45 Ga within a basal magma ocean, from 2.25-0.4 Ga within a superadiabatically cooled liquid core, and from 0.4-present within a quasi-adiabatic core that includes a solidifying inner core. We have extended this work by developing a new code, Dynamantle, which is a model with an entropy-based approach, similar to those commonly used in core dynamics models. We present new results using this code to assess the conditions under which basal magma oceans can generate positive ohmic dissipation. This is more generally useful than just considering the early Earth, but also for many silicate exoplanets in which basal magma oceans are even more likely to exist.

  5. Performing a local reduction operation on a parallel computer

    DOEpatents

    Blocksome, Michael A; Faraj, Daniel A

    2013-06-04

    A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.

  6. Performing a local reduction operation on a parallel computer

    DOEpatents

    Blocksome, Michael A.; Faraj, Daniel A.

    2012-12-11

    A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.

  7. Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean.

    PubMed

    Cai, Minghong; Zhao, Zhen; Yin, Zhigao; Ahrens, Lutz; Huang, Peng; Cai, Minggang; Yang, Haizhen; He, Jianfeng; Sturm, Renate; Ebinghaus, Ralf; Xie, Zhiyong

    2012-01-17

    Perfluoroalkyl compounds (PFCs) were determined in 22 surface water samples (39-76°N) and three sea ice core and snow samples (77-87°N) collected from North Pacific to the Arctic Ocean during the fourth Chinese Arctic Expedition in 2010. Geographically, the average concentration of ∑PFC in surface water samples were 560 ± 170 pg L(-1) for the Northwest Pacific Ocean, 500 ± 170 pg L(-1) for the Arctic Ocean, and 340 ± 130 pg L(-1) for the Bering Sea, respectively. The perfluoroalkyl carboxylates (PFCAs) were the dominant PFC class in the water samples, however, the spatial pattern of PFCs varied. The C(5), C(7) and C(8) PFCAs (i.e., perfluoropentanoate (PFPA), perfluoroheptanoate (PFHpA), and perfluorooctanoate (PFOA)) were the dominant PFCs in the Northwest Pacific Ocean while in the Bering Sea the PFPA dominated. The changing in the pattern and concentrations in Pacific Ocean indicate that the PFCs in surface water were influenced by sources from the East-Asian (such as Japan and China) and North American coast, and dilution effect during their transport to the Arctic. The presence of PFCs in the snow and ice core samples indicates an atmospheric deposition of PFCs in the Arctic. The elevated PFC concentration in the Arctic Ocean shows that the ice melting had an impact on the PFC levels and distribution. In addition, the C(4) and C(5) PFCAs (i.e., perfluorobutanoate (PFBA), PFPA) became the dominant PFCs in the Arctic Ocean indicating that PFBA is a marker for sea ice melting as the source of exposure.

  8. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    NASA Astrophysics Data System (ADS)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS-CFA systems, including optimizing liquid and vapor mixing lengths, determining melt rates for ice cores with different accumulation and thinning histories, and removing system-wide mixing effects that are convolved with the natural diffusional signal that results primarily from water molecule diffusion in the firn column.

  9. A TEM analysis of nanoparticulates in a Polar ice core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esquivel, E.V.; Murr, L.E

    2004-03-15

    This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less

  10. Chicxulub Impact Crater and Yucatan Carbonate Platform - Stratigraphy and Petrography of PEMEX Borehole Cores

    NASA Astrophysics Data System (ADS)

    Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on initial results from this new joint project for the carbonate sequences and impact lithologies.

  11. An Iron-Rain Model for Core Formation on Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2016-01-01

    Asteroid 4 Vesta is differentiated into a crust, mantle, and core, as demonstrated by studies of the eucrite and diogenite meteorites and by data from NASA's Dawn spacecraft. Most models for the differentiation and thermal evolution of Vesta assume that the metal phase completely melts within 20 degrees of the eutectic temperature, well before the onset of silicate melting. In such a model, core formation initially happens by Darcy flow, but this is an inefficient process for liquid metal and solid silicate. However, the likely chemical composition of Vesta, similar to H chondrites with perhaps some CM or CV chondrite, has 13-16 weight percent S. For such compositions, metal-sulfide melting will not be complete until a temperature of at least 1350 degrees Centigrade. The silicate solidus for Vesta's composition is between 1100 and 1150 degrees Centigrade, and thus metal and silicate melting must have substantially overlapped in time on Vesta. In this chemically and physically more likely view of Vesta's evolution, metal sulfide drops will sink by Stokes flow through the partially molten silicate magma ocean in a process that can be envisioned as "iron rain". Measurements of eucrites show that moderately siderophile elements such as Ni, Mo, and W reached chemical equilibrium between the metal and silicate phases, which is an important test for any Vesta differentiation model. The equilibration time is a function of the initial metal grain size, which we take to be 25-45 microns based on recent measurements of H6 chondrites. For these sizes and reasonable silicate magma viscosities, equilibration occurs after a fall distance of just a few meters through the magma ocean. Although metal drops may grow in size by merger with other drops, which increases their settling velocities and decreases the total core formation time, the short equilibration distance ensures that the moderately siderophile elements will reach chemical equilibrium between metal and silicate before metal drop merger becomes important. In this model, there must be at least 30 percent melting of the silicate phase when metal melting is complete, corresponding to a crust thickness of at least 30 kilometers on Vesta, consistent with Dawn gravity observations. Greater degrees of silicate melting and a correspondingly thicker crust are possible if Vesta accreted sufficiently rapidly.

  12. Timing of Deglacial AMOC Variability From a High-Resolution Seawater Cadmium Reconstruction

    NASA Astrophysics Data System (ADS)

    Valley, Shannon; Lynch-Stieglitz, Jean; Marchitto, Thomas M.

    2017-11-01

    A new, high-resolution record of benthic seawater Cd (Cdw) was generated from a Florida Straits sediment core at 546 m water depth. The record provides additional evidence for Cdw below modern values in this channel during the Younger Dryas and Heinrich Stadial 1—climatological periods associated with ice sheet melt. Lower Cdw values are interpreted as a weakening of the Atlantic Meridional Overturning Circulation (AMOC), reflecting a decreased northward transport of southern sourced higher-nutrient intermediate waters by the surface return flow of AMOC. Comparison of this new Cdw record with previously published neodymium isotope and δ18O records from the same core shows synchronous transitions, further illustrating the connection between Cdw levels and AMOC strength in the Florida Straits. An increase in Cdw near 16 ka bolsters existing evidence for a resumption of upper branch AMOC strength approximately midway through Heinrich Stadial 1.

  13. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and actinolite are deposited to form IOA deposits; 6) the further ascending fluid transports Fe, Cu, Au and S toward the surface where metal-oxides and metal-sulfides precipitate to form IOCG deposits. This model is globally applicable and explains the observed temporal and spatial relationship between magmatism and formation of IOA and IOCG deposits.

  14. Inflation of a magma chamber surrounded by poroelastic mush shell

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Soule, S. A.; Jones, M.

    2017-12-01

    Recent studies have highlighted the importance of crystal-rich mush in crustal magmatic system [Cashman et. al. 2017]. This potential paradigm shift from isolated melt bodies in elastic crust poses new challenges to our previous understanding of igneous processes. Existing models describing the physical processes in a conventional magma plumbing system may require modification to account for the properties of mush. In this study, we demonstrate that the abundance of very crystalline mush between magma lenses and the crustal rocks influences the mechanical coupling between pressurized magma lenses and their surroundings with regard to deformation and melt transport. We develop a conceptual model invoking a simplified geometry and presumed rheological properties of liquid magma, mush and country rock. In our preliminary study, a magma chamber is modeled as a spherical liquid core enveloped by a shell of poroelastic, magma-(and/or)-gas-bearing mush in an infinite domain of elastic country rock. We interrogate the effect of varying physical properties of the system (e.g., geometry) and mush material (e.g., elastic moduli) on the deformation in the liquid core, mush shell and host rock, as well as pressure built-up in the chamber, upon injection of magma into the liquid core. When we allow the pore spaces to be connected in the mush shell, melt can migrate within the permeable matrix, thereby promoting melt segregation or `leaking' from the core to the shell. These initial results highlight the importance of constraining the physical properties of crystal mush in order for us to properly evaluate the mechanics of magmatic system.

  15. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    PubMed

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  16. Evaluation of solar flares and electron precipitation by nitrate distribution in Antarctica

    NASA Astrophysics Data System (ADS)

    Dreschhoff, Gisela A.; Zeller, Edward J.

    1991-10-01

    Most of the time devoted to project research was spent in Antarctica. A firm core was drilled by hand to a depth of 29 meters at Windless Bight on the Ross Ice Shelf. The main result is that all of the major peaks identified as resulting from ionization caused by SPEs that were found in the 1988-89 core could also be identified in the analytical sequence from the 1990-91 core. Following the Antarctic field season, a set of snow samples were obtained that had been collected by the International Trans-Antarctica Expedition. The analysis of these samples showed nitrate flux that correlates closely with known spatial distribution of electron precipitation in the south polar region. A new apparatus has been build for field analysis on a continuous basis of nitrate and conductivity in a melt derived from the vertical melting of ice cores.

  17. Implications for the melting phase relations in the MgO-FeO system at Core-Mantle Boundary conditions

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.

    2017-12-01

    At nearly 2900 km depth, the core-mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron-alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure and seismic velocities. Here we compute the melting phase relations of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's mantle, at CMB conditions and find that ultralow-velocity zones (ULVZs) could be explained by solid ferropericlase with 35 < Mg# = 100×(Mg/(Mg+Fe) by mol%) < 65. For compositions outside of this range, a solid ferropericlase cannot explain ULVZs. Additionally, solid ferropericlase can also provide a matrix for iron infiltration at the CMB by morphological instability, providing a mechanism for a high electrical conductivity layer of appropriate length scale inferred from core nutations.

  18. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers.

    PubMed

    McCann, Jesse T; Marquez, Manuel; Xia, Younan

    2006-12-01

    We have developed a method based on melt coaxial electrospinning for fabricating phase change nanofibers consisting of long-chain hydrocarbon cores and composite sheaths. This method combines melt electrospinning with a coaxial spinneret and allows for nonpolar solids such as paraffins to be electrospun and encapsulated in one step. Shape-stabilized, phase change nanofibers have many potential applications as they are able to absorb, hold, and release large amounts of thermal energy over a certain temperature range by taking advantage of the large heat of fusion of long-chain hydrocarbons. We have focused on compounds with melting points near room temperature (octadecane) and body temperature (eicosane) as these temperature ranges are most valuable in practice. We have produced thermally stable, phase change materials up to 45 wt % octadecane, as measured by differential scanning calorimetry. In addition, the resultant fibers display novel segmented morphologies for the cores due to the rapid solidification of the hydrocarbons driven by evaporative cooling of the carrier solution. Aside from the fabrication of phase change nanofibers, the melt coaxial method is promising for applications related to microencapsulation and controlled release of drugs.

  19. Quenching behavior of molten pool with different strategies – A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrikant,, E-mail: 2014rmt9018@mnit.ac.in; Pandel, U.; Duchaniya, R. K.

    After the major severe accident in nuclear reactor, there has been lot of concerns regarding long term core melt stabilization following a severe accident in nuclear reactors. Numerous strategies have been though for quenching and stabilization of core melt like top flooding, bottom flooding, indirect cooling, etc. However, the effectiveness of these schemes is yet to be determined properly, for which, lot of experiments are needed. Several experiments have been performed for coolability of melt pool under bottom flooding as well as for indirect cooling. Besides these tests are very scattered because they involve different simulants material initial temperatures andmore » masses of melt, which makes it very complex to judge the effectiveness of a particular technique and advantage over the other. In this review paper, a study has been carried on different cooling techniques of simulant materials with same mass. Three techniques have been compared here and the results are discussed. Under top flooding technique it took several hours to cool the melt under without decay heat condition. In bottom flooding technique was found to be the best technique among in indirect cooling technique, top flooded technique, and bottom flooded technique.« less

  20. Experimental alteration of artificial and natural impact melt rock from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Declercq, J.; Dypvik, H.; Aagaard, Per; Jahren, J.; Ferrell, R.E.; Horton, J. Wright

    2009-01-01

    The alteration or transformation of impact melt rock to clay minerals, particularly smectite, has been recognized in several impact structures (e.g., Ries, Chicxulub, Mj??lnir). We studied the experimental alteration of two natural impact melt rocks from suevite clasts that were recovered from drill cores into the Chesapeake Bay impact structure and two synthetic glasses. These experiments were conducted at hydrothermal temperature (265 ??C) in order to reproduce conditions found in meltbearing deposits in the first thousand years after deposition. The experimental results were compared to geochemical modeling (PHREEQC) of the same alteration and to original mineral assemblages in the natural melt rock samples. In the alteration experiments, clay minerals formed on the surfaces of the melt particles and as fine-grained suspended material. Authigenic expanding clay minerals (saponite and Ca-smectite) and vermiculite/chlorite (clinochlore) were identified in addition to analcime. Ferripyrophyllite was formed in three of four experiments. Comparable minerals were predicted in the PHREEQC modeling. A comparison between the phases formed in our experiments and those in the cores suggests that the natural alteration occurred under hydrothermal conditions similar to those reproduced in the experiment. ?? 2009 The Geological Society of America.

  1. Generating Melt During Exhumation of Continental Crust from Ultrahigh Pressure (UHP) Conditions

    NASA Astrophysics Data System (ADS)

    Brown, M.; Wang, S.; Wang, L.; Piccoli, P. M.; Johnson, T. E.

    2017-12-01

    Hydrate breakdown rather than fluid-present melting is commonly cited during exhumation of UHP continental crust, but may have been overemphasized in relation to petrographic evidence. In this study from the central Sulu belt, China, we posit that dm- to m-scale dikes of leucosome in stromatic migmatite, formerly UHP eclogite, crystallized from hydrous melt derived by evolution of supercritical fluid as it drained through exhuming crust and increased in solute content. Leucosomes comprise Qz + Ph + Ab + Aln/Ep + Grt. Overgrowths of Zrn on inherited cores and new grains crystallized at ca. 223-219 Ma, within the age range of HP eclogite facies recrystallization in the belt. Si-in-Ph/Ti-in-Zrn thermobarometry yields crystallization conditions of 3.0-2.5 GPa at 830-770 °C. Compositions are granitic with normalized TE patterns enriched in LREE relative to HREE and enriched in LILE relative to HFSE, features consistent with crystallization from crustally derived hydrous melt. The leucosomes have Sr-Nd isotope compositions intermediate between host eclogites and surrounding gneisses. At the metamorphic peak, the source rocks were likely fluid deficient or fluid absent. During exhumation from UHP conditions, structural water stored in nominally anhydrous minerals during the prograde evolution was exsolved to form a grain boundary supercritical fluid in eclogite and gneiss. By migrating from grain boundaries into channels and draining from the volumetrically dominant gneiss through eclogite, the fluid acquired a blended Sr-Nd isotope composition intermediate between end-members. Concomitantly, the ascending fluid evolved to a denser, more viscous and more polymerized hydrous melt by dissolution of the silicate matrix. Trapped around the transition from UHP to HP eclogite facies conditions, the melt crystallized by diffusive loss of water to the host eclogite. Aggregates of Pl + Bt around Ph and thin films and cuspate veinlets/patches of Kfs along grain boundaries in leucosomes are consistent with subsequent low degrees of melting by Ph breakdown. Phase equilibria modeling indicates melting occurred during the transition from HP eclogite to amphibolite facies, with final subsolidus equilibration at 1.04-0.87 GPa and T <640 °C. However, Ph-breakdown melting was not the mechanism by which the leucosomes formed.

  2. Carbon isotopic variation in ureilites: Evidence for an early, volatile-rich Inner Solar System

    NASA Astrophysics Data System (ADS)

    Barrat, Jean-Alix; Sansjofre, Pierre; Yamaguchi, Akira; Greenwood, Richard C.; Gillet, Philippe

    2017-11-01

    We analyzed the C isotopic compositions of 32 unbrecciated ureilites, which represent mantle debris from a now disrupted, C-rich, differentiated body. The δ13C values of their C fractions range from -8.48 to +0.11‰. The correlations obtained between δ13C, δ18O and Δ17O values and the compositions of the olivine cores, indicate that the ureilite parent body (UPB) accreted from two reservoirs displaying distinct O and C isotopic compositions. The range of Fe/Mg ratios shown by its mantle was not the result of melting processes involving reduction with C ("smelting"), but was chiefly inherited from the mixing of these two components. Because smelting reactions are pressure-dependent, this result has strong implications for the size of the UPB, and points to a large parent body, at least 690 km in diameter. It demonstrates that C-rich primitive matter distinct from that represented by carbonaceous chondrites was present in some areas of the early inner Solar System, and could have contributed to the growth of the terrestrial planets. We speculate that differentiated, C-rich bodies, or debris produced by their disruption, were an additional source of volatiles during the later accretion stages of the rocky planets, including Earth.

  3. Viterbi sparse spike detection and a compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel Paul

    Accurate interpretation of seismic travel times and amplitudes in both the exploration and global scales is complicated by the band-limited nature of seismic data. We present a stochastic method, Viterbi sparse spike detection (VSSD), to reduce a seismic waveform into a most probable constituent spike train. Model waveforms are constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) is constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. The Viterbi algorithm is employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data, and to assign a score to each candidate spike train. The most probable travel times and amplitudes are inferred from the alignments of the highest scoring models. Our analyses show that the method can resolve closely spaced arrivals below traditional resolution limits and that travel time estimates are robust in the presence of random noise and source wavelet errors. We applied the VSSD method to constrain the elastic properties of a ultralow- velocity zone (ULVZ) at the core-mantle boundary beneath the Coral Sea. We analyzed vertical component short period ScP waveforms for 16 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array (ASAR) in central Australia. These waveforms show strong pre and postcursory seismic arrivals consistent with ULVZ layering. We used the VSSD method to measure differential travel-times and amplitudes of the post-cursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of approximately 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S-wave velocity reduction of 24%, a P-wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. We simultaneously constrain both P- and S-wave velocity reductions as a 1:1 ratio inside this ULVZ. This 1:1 ratio is not consistent with a partial melt origin to ULVZs. Rather, we demonstrate that a compositional origin is more likely.

  4. Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: Evidence for magmatic digestion and erosion of Pleistocene hyaloclastites

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya; Gurenko, Andrey; Sigmarsson, Olgeir; Chaussidon, Marc

    2008-09-01

    This work considers petrogenesis of the largest Holocene basaltic fissure eruptions of Iceland, which are also the largest in the world: Laki (1783-84 AD, 15 km 3), Eldgjá (934 AD, 18 km 3), Veidivötn (900, 1480 AD, multiple eruptions, >2 km 3), Núpahraun (ca. 4000 BP, >1 km 3) and Thjórsárhraun (ca 8000 BP, >20 km 3). We present oxygen isotope laser fluorination analyses of 55 individual and bulk olivine crystals, coexisting individual and bulk plagioclase phenocrysts, and their host basaltic glasses with average precision of better than 0.1‰ (1SD). We also report O isotope analyses of cores and rims of 61 olivine crystals by SIMS with average precision on single spots of 0.24‰ (1SD) in 13 samples coupled with electron microprobe data for major and trace elements in these olivines. Within each individual sample, we have found that basaltic glass is relatively homogeneous with respect to oxygen isotopes, plagioclase phenocrysts exhibit crystal to crystal variability, while individual olivines span from the values in equilibrium with the low-δ 18O matrix glass to those being three permil higher in δ 18O than the equilibrium. Olivine cores with maximum value of 5.2‰ are found in many of these basalts and suggest that the initial magma was equilibrated with normal-δ 18O mantle. No olivines or their intracrystalline domains are found with bulk or spot value higher than those found in MORB olivines. The δ 18O variability of 0.3-3‰ exists for olivine grains from different lavas, and variable core-to-rim oxygen isotopic zoning is present in selected olivine grains. Many olivines in the same sample are not zoned, while a few grains are zoned with respect to oxygen isotopes and exhibit small core-to-core variations in Fe-Mg, Ni, Mn, Ca. Grains that are zoned in both Mg# and δ 18O exhibit positive correlation of these two parameters. Electron microprobe analysis shows that most olivines equilibrated with the transporting melt, and thin Fe-richer rim is present around many grains, regardless of the degree of olivine-melt oxygen isotope disequilibrium. The preservation of isotopic and compositional zoning in selected grains, and subtle to severe Δ 18O (melt-olivine) and Δ 18O (plagioclase-olivine) disequilibria suggests rather short crystal residence times of years to centuries. Synglacially-altered upper crustal, tufaceous hyaloclastites of Pleistocene age serve as a viable source for low-δ 18O values in Holocene basalts through assimilation, mechanical and thermal erosion, and devolatilization of stoped blocks. Cumulates formed in response to cooling during assimilation, and xenocrysts derived from hyaloclastites, contribute to the diverse δ 18O crystalline cargo. The magma plumbing systems under each fissure are likely to include a network of interconnected dikes and sills with high magma flow rates that contribute to the efficacy of magmatic erosion of large quantities (10-60% mass) of hyaloclastites required by isotopic mass balance. Olivine diversity and the pervasive lack of phenocryst-melt oxygen isotopic equilibrium suggest that a common approach of analyzing bulk olivine for oxygen isotopes, as a proxy for the basaltic melt or to infer mantle δ 18O value, needs to proceed with caution. The best approach is to analyze olivine crystals individually and demonstrate their equilibrium with matrix.

  5. Effect of hydrogen on the melting of the Fe-C system and the fate of the subducted carbon

    NASA Astrophysics Data System (ADS)

    Lai, X.; Chen, B.; Gao, J.; Zhu, F.

    2017-12-01

    The subducted oceanic crust carries significant amount of carbonates and organic carbons from the surface into the deep mantle. Through slab-mantle interactions, subducted carbons can react with metallic iron in the metal-saturated regions of the mantle and form various reduced species such as Fe carbides. The Fe-C system is found to have higher eutectic melting temperature than mantle geotherm and thus carbon by forming iron carbides may be "redox freezed" in the mantle (Rohrbach and Schmidt 2011). Hydrogen was found to be have significant effect on the melting of the Fe-light-elements systems such as the Fe-S system (Shibazaki et al., 2011). Here we report experimental results from both multi-anvil press and diamond anvil cell experiments on the melting behaviors of the Fe-C-H system. C14H12, a solid-state C-H organic compound was used as a C-H source to react with the metallic iron at high pressure and high temperature conditions. With excess C14H12, hydrogen in the FeHx alloy was totally replaced by carbon at 14.8-24.7 GPa. Conversely, with excess Fe, the existence of hydrogen is found to depress the melting temperature of the Fe-C system by at least 100 K. Hydrogen may facilitate the transport and cycling of subducted carbon in the deep mantle and contribute to formation of superdeep diamonds (Smith et al. 2016). Rohrbach, Arno, and Max W. Schmidt. "Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling." Nature 472.7342 (2011): 209. Shibazaki, Yuki, et al. "Effect of hydrogen on the melting temperature of FeS at high pressure: Implications for the core of Ganymede." Earth and Planetary Science Letters 301.1 (2011): 153-158. Smith, Evan M., et al. "Large gem diamonds from metallic liquid in Earth's deep mantle." Science 354.6318 (2016): 1403-1405.

  6. Identification and addressing reduction-related misconceptions

    NASA Astrophysics Data System (ADS)

    Gal-Ezer, Judith; Trakhtenbrot, Mark

    2016-07-01

    Reduction is one of the key techniques used for problem-solving in computer science. In particular, in the theory of computation and complexity (TCC), mapping and polynomial reductions are used for analysis of decidability and computational complexity of problems, including the core concept of NP-completeness. Reduction is a highly abstract technique that involves revealing close non-trivial connections between problems that often seem to have nothing in common. As a result, proper understanding and application of reduction is a serious challenge for students and a source of numerous misconceptions. The main contribution of this paper is detection of such misconceptions, analysis of their roots, and proposing a way to address them in an undergraduate TCC course. Our observations suggest that the main source of the misconceptions is the false intuitive rule "the bigger is a set/problem, the harder it is to solve". Accordingly, we developed a series of exercises for proactive prevention of these misconceptions.

  7. Preliminary Ar-40/Ar-39 age spectrum and laser probe dating of the M1 core of the Manson Impact Structure, Iowa: A K-T boundary crater candidate

    NASA Technical Reports Server (NTRS)

    Kunk, M. J.; Snee, L. W.; French, B. M.; Harlan, S. S.; Mcgee, J. J.

    1993-01-01

    Preliminary Ar-40/Ar-39 age spectrum and laser probe dating results from new drill core from the 35-km-diameter Manson Impact Structure (MIS), Iowa indicates a reasonable possibility that the MIS is a Cretaceous-Tertiary (K-T) boundary impact event. Several different types of samples from a melt-matrix breccia, a unit of apparent crater fill intersected by the M1 core, were analyzed. Ar-40/Ar-39 results from these samples indicate a maximum age for the MIS of about 65.4 plus or minus 0.4(2 sigma) Ma. Petrographic analyses of the samples indicate a high probability that all the dated samples from the melt-matrix breccia contain relict grains that were not entirely melted or degassed at the time of impact, suggesting that the actual age of the MIS could be somewhat younger than our preliminary results indicate. The results are consistent with a previously published age estimate of shocked microcline from the MIS central uplift of 65.7 plus or minus 1.0 Ma.

  8. Correlation between the length reduction of carbon nanotubes and the electrical percolation threshold of melt compounded polyolefin composites.

    PubMed

    Vasileiou, Alexandros A; Kontopoulou, Marianna; Gui, Hua; Docoslis, Aristides

    2015-01-28

    The objectives of this work are to quantify the degree of multiwalled carbon nanotube (MWCNT) length reduction upon melt compounding and to demonstrate unambiguously that the length reduction is mainly responsible for the increase in electrical percolation threshold of the resulting composites. Polyolefin matrices of varying viscosities and different functional groups are melt compounded with MWCNTs. A simple method is developed to solubilize the polymer matrix and isolate the MWCNTs, enabling detailed imaging analysis. In spite of the perceived strength of the MWCNTs, the results demonstrate that the shear forces developed during melt mixing are sufficient to cause significant nanotube breakage and length reduction. Breakage is promoted when higher MWCNT contents are used, due to increased probability of particle collisions. Furthermore, the higher shear forces transmitted to the nanotubes in the presence of higher matrix viscosities and functional groups that promote interfacial interactions, shift the nanotube distribution toward smaller sizes. The length reduction of the MWCNTs causes significant increases in the percolation threshold, due to the loss of interconnectivity, which results in fewer conductive pathways. These findings are validated by comparing the experimental percolation threshold values with those predicted by the improved interparticle distance theoretical model.

  9. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The inner core of these planets crystallized at the center of the core and it has the relatively Si rich inner core and the S enriched outer core. Based on melting and solid-liquid partitioning, the equation of state, and sound velocity of iron-light element alloys, we examined the plausible distribution of light elements in the liquid outer and solid inner cores of the terrestrial planets.

  10. Structural domains and conformational changes in nuclear chromatin: a quantitative thermodynamic approach by differential scanning calorimetry.

    PubMed

    Balbi, C; Abelmoschi, M L; Gogioso, L; Parodi, S; Barboro, P; Cavazza, B; Patrone, E

    1989-04-18

    A good deal of information on the thermodynamic properties of chromatin was derived in the last few years from optical melting experiments. The structural domains of the polynucleosomal chain, the linker, and the core particle denature as independent units. The differential scanning calorimetry profile of isolated chromatin is made up of three endotherms, at approximately 74, 90, and 107 degrees C, having an almost Gaussian shape. Previous work on this matter, however, was mainly concerned with the dependence of the transition enthalpy on external parameters, such as the ionic strength, or with the melting of nuclei from different sources. In this paper we report the structural assignment of the transitions of rat liver nuclei, observed at 58, 66, 75, 92, and 107 degrees C. They are representative of the quiescent state of the cell. The strategy adopted in this work builds on the method developed for the investigation of complex biological macromolecules. The heat absorption profile of the nucleus was related to the denaturation of isolated nuclear components; electron microscopy and electrophoretic techniques were used for their morphological and molecular characterization. The digestion of chromatin by endogenous nuclease mimics perfectly the decondensation of the higher order structure and represented the source of several misinterpretations. This point was carefully examined in order to define unambiguously the thermal profile of native nuclei. The low-temperature transitions, centered around 58 and 66 degrees C, arise from the melting of scaffolding structures and of the proteins associated with heterogeneous nuclear RNA.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Quantifying Textures of Rapakivi Granites and Mantle Formation Insights

    NASA Astrophysics Data System (ADS)

    Ashauer, Z.; Currier, R. M.

    2017-12-01

    Rapakivi texture, the mantling of plagioclase on alkali feldspar, is a common occurrence in granitoids derived from crustal melting. Presented here, are several textural analyses that quantify mantle thickness and the overall distribution of crystal populations. Analyses were performed on outcrops and slabbed samples from the Wolf River Batholith, Wisconsin, USA and the Wiborg Batholith, Finland. Both localities are "classical" rapakivi granites of Proterozoic age associated with incipient rifting of the supercontinent Nuna/Columbia. Mantle thickness analysis reveals a relationship between the characteristic size of the mantle and the size of the core. The thickest mantles tend to be on relatively small cores while relatively large cores display thin mantles. This relationship is consistent with a replacement origin as a result of alkali feldspar dissolution with concomitant reprecipitation of plagioclase, due to disequilibrium between crystal and melt. If this is the case then crystal size distributions should be similar between unmantled and mantled megacrysts. Preliminary results confirm this supposition: rapakivi mantle formation in these classical systems appear to be the result of replacement. These textural analyses immediately call into question the viability of epitaxial growth models. A certain amount of disequilibrium is required to drive the replacement reaction. Two potential mechanisms are 1) mechanical transfer of crystals into a magma of more mafic composition (i.e., magma mixing), and 2) the production of a heterogeneous melt during rapid melting of granitic rock and reaction between unmelted crystals and partial melt. The classical rapakivi granites are associated with prolonged bimodal magmatism, and so there is clear potential to drive either of these mantling mechanisms.

  12. Experiments on the rheology of vesicle-bearing magmas

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia

    2016-04-01

    We present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. Starting materials having variable vesicularity (φ = 0 - 66%) were synthesized by high-temperature foaming (T = 900 - 1050 ° C and P = 1 bar) of cores of natural rhyolitic obsidian from Hrafntinnuhryggur, Krafla, Iceland. These cores were subsequently deformed using a high-temperature uniaxial press at dry atmospheric conditions. Each experiment involved deforming vesicle-bearing cores isothermally (T = 750 ° C), at constant displacement rates (strain rates between 0.5-1 x 10-4 s-1), and to total strains (ɛ) of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods and establishes a baseline for comparing data derived from experiments on vesicle rich cores. At the experimental conditions, the presence of vesicles has a major impact on the rheological response, producing a marked decrease of bulk viscosity (maximum decrease of 2 log units Pa s) that is best described by a two-parameter empirical equation: log ηBulk = log η0 - 1.47 * [φ/(1-φ)]0.48. Our model provides a means to compare the diverse behaviour of vesicle-bearing melts reported in the literature and reflecting material properties (e.g., analogue vs. natural), geometry and distribution of pores (e.g. foamed/natural vs. unconsolidated/sintered materials), and flow regime. Lastly, we apply principles of Maxwell relaxation theory, combined with our parameterization of bubble-melt rheology, to map the potential onset of non-Newtonian behaviour (strain localization) in vesiculated magmas and lavas as a function of melt viscosity, vesicularity, strain rate, and geological condition. Increasing vesicularity in magmas can initiate non-Newtonian behaviour at constant strain rates. Lower melt viscosity sustains homogeneous Newtonian flow in vesiculated magmas even at relatively high strain rates.

  13. Is formation segregation melts in basaltic lava flows a viable analogue to melt generation in basaltic systems?

    NASA Astrophysics Data System (ADS)

    Thordarson, Thorvaldur; Sigmarsson, Olgeir; Hartley, Margaret E.; Miller, Jay

    2010-05-01

    Pahoehoe sheet lobes commonly exhibit a three-fold structural division into upper crust, core and lower crust, where the core corresponds to the liquid portion of an active lobe sealed by crust. Segregations are common in pahoehoe lavas and are confined to the core of individual lobes. Field relations and volume considerations indicate that segregation is initiated by generation of volatile-rich melt at or near the lower crust to core boundary via in-situ crystallization. Once buoyant, the segregated melt rises through the core during last stages of flow emplacement and accumulates at the base of the upper crust. The segregated melt is preserved as vesicular and aphyric, material within well-defined vesicle cylinders and horizontal vesicle sheets that make up 1-4% of the total lobe volume. We have undertaken a detailed sampling and chemical analysis of segregations and their host lava from three pahoehoe flow fields; two in Iceland and one in the Columbia River Basalt Group (CRBG). The Icelandic examples are: the olivine-tholeiite Thjorsa lava (24 cubic km) of the Bardarbunga-Veidivotn volcanic system and mildly alkalic Surtsey lavas (1.2 cubic km) of the Vestmannaeyjar volcanic system. The CRBG example is the tholeiitic ‘high-MgO group' Levering lava (>100? cubic km) of the N2 Grande Ronde Basalt. The thicknesses of the sampled lobes ranges from 2.3 to 14 m and each lobe feature well developed network of segregation structures [1,2,3]. Our whole-rock analyses show that the segregated melt is significantly more evolved than the host lava, with enrichment factors of 1.25 (Thjorsa) to 2.25 (Surtsey) for incompatible trace elements (Ba, Zr). Calculations indicate that the segregation melt was formed by 20 to 50% closed-system fractional crystallization of plagioclase (plus minor pyroxene and/or olivine). A more striking feature is the whole-rock composition of the segregations. In the olivine-tholeiite Thjorsa lava the segregations exhibit quartz tholeiite composition that is identical to the magma compositions produced by the nearby Grimsvotn and Kverkfjoll volcanic systems during the Holocene. The Surtsey segregations have whole-rock composition remarkably similar to the FeTi basalts from adjacent Katla volcanic system, whereas the segregations of the Levering flow are identical to the ‘low-MgO group' basalts of the CRBG. Is this a coincidence or does volatile induced liquid transfer, as inferred for the formation of the segregations, play an important role in magma differentiation in basaltic systems? [1]Thordarson & Self The Roza Member, Columbia River Basalt Group. J Geophys Res - Solid Earth [2] Sigmarsson, et al, 2009. Segregations in Surtsey lavas (Iceland). In Studies in Volcanology: The Legacy of George Walker. Special Publication of IAVCEI No 3. [3] Hartley & Thordarson, 2009, Melt segregations in a Columbia River Basalt lava flow. Lithos

  14. Early mantle heterogeneities in the Réunion hotspot source inferred from highly siderophile elements in cumulate xenoliths

    NASA Astrophysics Data System (ADS)

    Peters, Bradley J.; Day, James M. D.; Taylor, Lawrence A.

    2016-08-01

    Ultramafic cumulate rocks form during intrusive crystallization of high-MgO magmas, incorporating relatively high abundances of compatible elements, including Cr and Ni, and high abundances of the highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re). Here, we utilize a suite of cumulate xenoliths from Piton de la Fournaise, La Réunion (Indian Ocean), to examine the mantle source composition of the Réunion hotspot using HSE abundances and Os isotopes. Dunite and wherlite xenoliths and associated lavas from the Piton de la Fournaise volcanic complex span a range of MgO contents (46 to 7 wt.%), yet exhibit remarkably homogeneous 187Os/188Os (0.1324 ± 0.0014, 2σ), representing the Os-isotopic composition of Réunion hotspot primary melts. A significant fraction of the xenoliths also have primitive upper-mantle (PUM) normalized HSE patterns with elevated Ru and Pd (PUM-normalized Ru/Ir and Pd/Ir of 0.8-6.3 and 0.2-7.2, respectively). These patterns are not artifacts of alteration, fractional crystallization, or partial melting processes, but rather require a primary magma with similar relative enrichments. Some highly olivine-phyric (>40 modal percent olivine) Piton de la Fournaise lavas also preserve these relative Ru and Pd enrichments, while others preserve a pattern that is likely related to sulfur saturation in evolved melts. The estimate of HSE abundances in PUM indicates high Ru/Ir and Pd/Pt values relative to carbonaceous, ordinary and enstatite chondrite meteorite groups. Thus, the existence of cumulate rocks with even more fractionated HSE patterns relative to PUM suggests that the Réunion hotspot samples a yet unrecognized mantle source. The origin of fractionated HSE patterns in Réunion melts may arise from sampling of a mantle source that experienced limited late accretion (<0.2% by mass) compared with PUM (0.5-0.8%), possibly involving impactors that were distinct from present-day chondrites, or limited core-mantle interactions. Given the remarkably homogeneous Os, Pb, and noble-gas isotopic signatures of Réunion, which plot near the convergence point of isotopic data for many hotspots, such a conclusion provides evidence for an early differentiated and subsequently isolated mantle domain that may be partially sampled by some ocean island basalts.

  15. Composition of Apollo 17 core 76001

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Bishop, Kaylynn M.

    1993-01-01

    Core 76001 is a single drive tube containing a column of regolith taken at the base of the North Massif, station 6, Apollo 17. The core material is believed to have accumulated through slow downslope mass wasting from the massif. As a consequence, the core soil is mature throughout its length. Results of INAA for samples taken every half centimeter along the length of the core indicate that there is only minor systematic compositional variation with depth. Concentrations of elements primarily associated with mare basalt (Sc, Fe) and noritic impact melt breccia (Sm) decrease slightly with depth, particularly between 20 cm and the bottom of the core at 32 cm depth. This is consistent with petrographic studies that indicate a greater proportion of basalt and melt breccia in the top part of the core. However, Sm/Sc and La/Sm ratios are remarkably constant with depth, indicating no variation in the ratio of mare material to Sm-rich highlands material with depth. Other than these subtle changes, there is no compositional evidence for the two stratigraphic units (0-20 cm and 20-32 cm) defined on the basis of modal petrography, although all samples with anomalously high Ni concentrations (Fe-Ni metal nuggets) occur above 20 cm depth.

  16. A Novel Inter Core-Cladding Lithium Niobate Thin Film Coated Fiber Modulator/Sensor

    NASA Technical Reports Server (NTRS)

    Jamison, Tracee L.; Komriech, Phillip; Yu, Chung

    2004-01-01

    A fiber modulator/sensor has been fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125 micron fiber. The proposed design of lithium niobate cylinder fibers can enhance the existing methodology for detecting sound waves under water utilizing the acoustooptic properties of lithium niobate. Upon application of a stress or strain, light propagating inside the core, according to the principle of total internal reflection, escapes, into the cladding because of the photoelastic boundary layer of lithium niobate. Test results of the lithium niobate fiber reveal a reduction in the 1550 nm, 4mW source with applied tension. The source power from an ordinary quartz fiber under the same stress condition remained invariant to applied tension.

  17. Characterization of Fractures in the Chicxulub Peak Ring: Preliminary Results from IODP/ICDP Expedition 364

    NASA Astrophysics Data System (ADS)

    McCall, N.; Gulick, S. P. S.; Morgan, J. V.; Hall, B. J.; Jones, L.; Expedition 364 Science Party, I. I.

    2017-12-01

    During Expedition 364, IODP/ICDP drilled the peak ring of the Chicxulub impact crater at Site M0077, recovering core from 505.7 to 1334.7 mbsf. The core has been imaged via X-ray Computer Tomography (CT) as a noninvasive method to create a 3-dimensional model of the core, providing information on the density and internal structure at a 0.3 mm resolution. Results from the expedition show that from 748 mbsf and deeper the peak ring is largely composed of uplifted and fractured granitic basement rocks originally sourced from approximately 8-10 km depth. Impact crater modeling suggests the peak ring was formed through dynamic collapse of a rebounding central peak within 10 minutes of impact, requiring the target rocks to temporarily behave as a viscous fluid. The newly recovered core provides a rare opportunity to investigate the cratering process, specifically how the granite was weakened, as well as the extent of the hydrothermal system created after the impact. Based on the CT data, we identify four classes of fractures based on their CT facies deforming the granitoids: pervasive fine fractures, discrete fine fractures, discrete filled fractures, and discrete open fractures. Pervasive fine fractures were most commonly found proximal to dikes and impact melt rock. Discrete filled fractures often displayed a cataclastic texture. We present density trends for the different facies and compare these to petrophysical properties (density, NGR, P-wave seismic velocity). Fractured areas have a lower density than the surrounding granite, as do most filled fractures. This reduction suggests that fluid migrating through the peak ring in the wake of the impact either deposited lower density minerals within the fractures and/or altered the original fracture fill. The extent and duration of fluid flow recorded in these fractures will assist in the characterization of the post-impact hydrothermal system. Future work includes combining information from CT images with thin sections and plug samples at similar depths, refinement of CT facies characterization, examining cross-cutting relationships to determine timing constraints of deformation processes, and measurement of the orientation of the fractures.

  18. NUT SCREW MECHANISMS

    DOEpatents

    Glass, J.A.F.

    1958-07-01

    A reactor control mechanism is described wherein the control is achieved by the partial or total withdrawal of the fissile material which is in the form of a fuel rod. The fuel rod is designed to be raised and lowered from the reactor core area by means of two concentric ball nut and screw assemblies that may telescope one within the other. These screw mechanisms are connected through a magnetic clutch to a speed reduction gear and an accurately controllable prime motive source. With the clutch energized, the fuel rod may be moved into the reactor core area, and fine adjustments may be made through the reduction gearing. However, in the event of a power failure or an emergency signal, the magnetic clutch will become deenergized, and the fuel rod will drop out of the core area by the force of gravity, thus shutting down the operation of the reactor.

  19. K-Rich Basaltic Sources beneath Ultraslow Spreading Central Lena Trough in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ling, X.; Snow, J. E.; Li, Y.

    2016-12-01

    Magma sources fundamentally influence accretion processes at ultraslow spreading ridges. Potassium enriched Mid-Ocean Ridge Basalt (K-MORB) was dredged from the central Lena Trough (CLT) in the Arctic Ocean (Nauret et al., 2011). Its geochemical signatures indicate a heterogeneous mantle source with probable garnet present under low pressure. To explore the basaltic mantle sources beneath the study area, multiple models are carried out predicting melting sources and melting P-T conditions in this study. P-T conditions are estimated by the experimental derived thermobarometer from Hoang and Flower (1998). Batch melting model and major element model (AlphaMELTs) are used to calculate the heterogeneous mantle sources. The modeling suggests phlogopite is the dominant H2O-K bearing mineral in the magma source. 5% partial melting of phlogopite and amphibole mixing with depleted mantle (DM) melt is consistent with the incompatible element pattern of CLT basalt. P-T estimation shows 1198-1212oC/4-7kbar as the possible melting condition for CLT basalt. Whereas the chemical composition of north Lena Trough (NLT) basalt is similar to N-MORB, and the P-T estimation corresponds to 1300oC normal mantle adiabat. The CLT basalt bulk composition is of mixture of 40% of the K-MORB endmember and an N-MORB-like endmember similar to NLT basalt. Therefore the binary mixing of the two endmembers exists in the CLT region. This kind of mixing infers to the tectonic evolution of the region, which is simultaneous to the Arctic Ocean opening.

  20. OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1)more » resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of a third long-term 2-D Core-Concrete Interaction (CCI) experiment designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-3 experiment, which was conducted on September 22, 2005. Test specifications for CCI-3 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 375 kg PWR core melt, initially containing 15 wt% siliceous concrete, with a specially designed two-dimensional siliceous concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The sand and aggregate constituents for this particular siliceous concrete were provided by CEA as an in-kind contribution to the program. The report begins by providing a summary description of the CCI-3 test apparatus and operating procedures, followed by presentation of the thermal-hydraulic results. Detailed posttest debris examination results will be provided in a subsequent publication. Observations drawn within this report regarding the overall cavity erosion behavior may be subject to revision once the posttest examinations are completed, since these examinations will fully reveal the final cavity shape.« less

  1. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions.

    PubMed

    Bennett, Neil R; Brenan, James M; Fei, Yingwei

    2015-06-13

    Estimates of the primitive upper mantle (PUM) composition reveal a depletion in many of the siderophile (iron-loving) elements, thought to result from their extraction to the core during terrestrial accretion. Experiments to investigate the partitioning of these elements between metal and silicate melts suggest that the PUM composition is best matched if metal-silicate equilibrium occurred at high pressures and temperatures, in a deep magma ocean environment. The behavior of the most highly siderophile elements (HSEs) during this process however, has remained enigmatic. Silicate run-products from HSE solubility experiments are commonly contaminated by dispersed metal inclusions that hinder the measurement of element concentrations in the melt. The resulting uncertainty over the true solubility and metal-silicate partitioning of these elements has made it difficult to predict their expected depletion in PUM. Recently, several studies have employed changes to the experimental design used for high pressure and temperature solubility experiments in order to suppress the formation of metal inclusions. The addition of Au (Re, Os, Ir, Ru experiments) or elemental Si (Pt experiments) to the sample acts to alter either the geometry or rate of sample reduction respectively, in order to avoid transient metal oversaturation of the silicate melt. This contribution outlines procedures for using the piston-cylinder and multi-anvil apparatus to conduct solubility and metal-silicate partitioning experiments respectively. A protocol is also described for the synthesis of uncontaminated run-products from HSE solubility experiments in which the oxygen fugacity is similar to that during terrestrial core-formation. Time-resolved LA-ICP-MS spectra are presented as evidence for the absence of metal-inclusions in run-products from earlier studies, and also confirm that the technique may be extended to investigate Ru. Examples are also given of how these data may be applied.

  2. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions

    PubMed Central

    Bennett, Neil R.; Brenan, James M.; Fei, Yingwei

    2015-01-01

    Estimates of the primitive upper mantle (PUM) composition reveal a depletion in many of the siderophile (iron-loving) elements, thought to result from their extraction to the core during terrestrial accretion. Experiments to investigate the partitioning of these elements between metal and silicate melts suggest that the PUM composition is best matched if metal-silicate equilibrium occurred at high pressures and temperatures, in a deep magma ocean environment. The behavior of the most highly siderophile elements (HSEs) during this process however, has remained enigmatic. Silicate run-products from HSE solubility experiments are commonly contaminated by dispersed metal inclusions that hinder the measurement of element concentrations in the melt. The resulting uncertainty over the true solubility and metal-silicate partitioning of these elements has made it difficult to predict their expected depletion in PUM. Recently, several studies have employed changes to the experimental design used for high pressure and temperature solubility experiments in order to suppress the formation of metal inclusions. The addition of Au (Re, Os, Ir, Ru experiments) or elemental Si (Pt experiments) to the sample acts to alter either the geometry or rate of sample reduction respectively, in order to avoid transient metal oversaturation of the silicate melt. This contribution outlines procedures for using the piston-cylinder and multi-anvil apparatus to conduct solubility and metal-silicate partitioning experiments respectively. A protocol is also described for the synthesis of uncontaminated run-products from HSE solubility experiments in which the oxygen fugacity is similar to that during terrestrial core-formation. Time-resolved LA-ICP-MS spectra are presented as evidence for the absence of metal-inclusions in run-products from earlier studies, and also confirm that the technique may be extended to investigate Ru. Examples are also given of how these data may be applied. PMID:26132380

  3. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    NASA Astrophysics Data System (ADS)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method is shown for the West Eifel volcanic field.

  4. Zircon from charnockite gneiss, charnockite, and leucosome of migmatite in the Nimnyr Block of the Aldan Shield

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Sedova, I. S.; Berezhnaya, N. G.; Skublov, S. G.; Samorukova, L. M.

    2015-12-01

    The microgeochemistry of zircon was studied in three samples: charnockite gneiss (1594), charnockite (1594a), and migmatite leucosome Lc4 (1594c). Prismatic (Zrn I) and oval (Zrn II) zircon morphotypes are distinguished in the first two samples. Most zircon grains consist of two-phase cores and overgrowth rims variable in thickness. The average weighted concordant U-Pb age of Zrn II cores from charnockite gneiss is 2436 ± 10 Ma. The concordant ages of Zrn I and Zrn II cores from charnockite are 2402 ± 16 Ma and 2453 ± 14 Ma, respectively. Some overgrowth rims are 1.9-2.1 Ga in age. In leucosome Lc4, all measured prismatic zircon crystals yielded a discordant age of 1942 ± 11 Ma (the upper intersection of discordia with concordia). These zircons are strongly altered and anomalously enriched in U and Th. Zrn I grains are enriched relative to Zrn II in REE, Li, Ca, Sr, Ba, Hf, Th, and U. Zrn I is considered to be a product of melt crystallization or subsolidus recrystallization in the presence of melt. Zrn II is relict or crystallizing from melt and then partly fused again. Zrn I from charnockite gneiss and especially from charnockite are markedly altered and have a more discordant age than Zrn II. This is probably related to concentration of fluid in the residual melt left after zircon crystallization.

  5. Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

    NASA Astrophysics Data System (ADS)

    Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.

    2018-05-01

    ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1  +  SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on W transport assumptions during the ELM, a maximum ELM frequency is also identified above which core tungsten accumulation takes place.

  6. Mass Balance of Multiyear Sea Ice in the Southern Beaufort Sea

    DTIC Science & Technology

    2015-09-30

    1) Determination of the net growth and melt of multiyear (MY) sea ice during its transit through the southern Beaufort Sea 2) Identification of...which we refer to as the FGIV dataset. Analysis of melt processes from ice core and IMB data (Eicken) Through stratigraphic analysis of sea ice...samples that are brought back to shore were melted and used to determine profiles of salinity and stable isotope ratios. These data allow us to identify

  7. The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle

    NASA Astrophysics Data System (ADS)

    Novella, Davide; Frost, Daniel J.; Hauri, Erik H.; Bureau, Helene; Raepsaet, Caroline; Roberge, Mathilde

    2014-08-01

    The partitioning of H2O between a mantle peridotite assemblage and low degree hydrous melt has been investigated at 6 GPa (corresponding to ∼180 km depth) at a temperature of 1400 °C. Peridotite mineral phases were analysed from 6 melting experiments performed in a natural chemical system. The experiments contained ∼80 wt% of a low degree hydrous melt that was obtained through a series of experiments where the melt composition was iteratively adjusted until saturation with the appropriate peridotite assemblage was achieved. The melt is fluid-undersaturated at the conditions of the experiment. Ion microprobe measurements of the mineral phases indicate olivine H2O concentrations of 434±61 ppm wt and average clinopyroxene (cpx) concentrations of 1268±173 ppm wt H2O. Orthopyroxene (opx) and garnet contain 700±46 ppm wt and 347±83 ppm wt H2O, respectively. The H2O content of the hydrous melts was determined by mass balance to be 11±0.5 wt% H2O. H2O partition coefficients between minerals and melt (DH2Omin/melt=XH2Omin/XH2Omelt) are 0.0040±0.0006 for olivine, 0.0064±0.0004 for opx, 0.0115±0.0016 for cpx and 0.0032±0.0008 for garnet. Using the determined H2O partition coefficients the onset and extent of melting at conditions equivalent to 180 km below mid-ocean ridges was determined as a function of mantle H2O content. Current estimates for the H2O content of the depleted mantle (50-200 ppm wt H2O) are insufficient to induce mantle melting at this depth, which requires ∼700 ppm wt H2O to produce 0.1% melting and 1600 ppm wt H2O for 1% melting, along an adiabat with a potential temperature of 1327 °C. Melting can occur at these conditions within the mantle source of ocean island basalts, which are estimated to contain up to 900 ppm wt H2O. If adiabatic temperatures are 200 °C higher within such plume related sources, then melt fractions of over 1% can be reached at 180 km depth. In addition, a model for the distribution of H2O between peridotite mineral phases as a function of depth and at H2O-undersaturated conditions is constructed. The model indicates that for a fixed mantle composition containing 150 ppm wt H2O, the olivine H2O content will increase with depth solely due to changes in inter-phase partitioning and modal proportions of minerals. The change in the olivine H2O concentration with depth corresponds to proposed changes in the dominant olivine slip system for deformation by dislocation creep, that might provide an explanation for the reduction in seismic anisotropy observed at depths >200 km.

  8. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  9. State-of-the-art of turbofan engine noise control

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Groeneweg, J. F.

    1977-01-01

    The technology of turbofan engine noise reduction is surveyed. Specific topics discussed include: (1) new fans for low noise; (2) fan and core noise suppression; (3) turbomachinery noise sources; and (4) a new program for improving static noise testing of fans and engines.

  10. Early evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Tackley, Paul J.

    2014-05-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat such as conversion of gravitational energy of formation into heat, heat losses from the core at the core-mantle boundary, radioactive decay, electromagnetic induction heating and tidal heating, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet, influencing the chemical composition of the mantle after differentiation, the style of tectonic regime prevailing in the solid-state mantle and its habitability. Considerable research has been done on magma oceans using 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton, EPSL 2008). However, its dynamics, evolution from a molten state to the present day solid state, and crystallisation are still not fully understood and are more complex than a 1-D formulation. Recent advances in computational methods and resources allow us to address numerically more complex problems, with higher resolution and multiple physics incorporated. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterise the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to test existing published 1-D parameterisations of magma ocean dynamics and extend them into 2-D models. We will address this problem using the numerical code StagYY (Tackley, PEPI 2008), which uses a finite-volume scheme for advection of temperature, a multigrid solver to obtain a velocity-pressure solution at each timestep, tracers to track composition, and a treatment of partial melting and crustal formation. Additional enhancements are needed in the code and are related to the physics and parameterisation of melting.

  11. Muscovite-Dehydration Melting: A Textural Study of a Key Reaction in Transforming Continental Margin Strata Into a Migmatitic Orogenic Core

    NASA Astrophysics Data System (ADS)

    Dyck, B. J.; St Onge, M. R.; Waters, D. J.; Searle, M. P.

    2015-12-01

    Metamorphosed continental margin sedimentary sequences, which comprise the dominant tectonostratigraphic assemblage exposed in orogenic hinterlands, are crucial to understanding the architecture and evolution of collisional mountain belts. This study explores the textural effect of anatexis in amphibolite-grade conditions and documents the mineral growth mechanisms that control nucleation and growth of K-feldspar, sillimanite and silicate melt. The constrained textural evolution follows four stages: 1) Nucleation - K-feldspar is documented to nucleate epitaxially on isomorphic plagioclase in quartzofeldspathic (psammitic) domains, whereas sillimanite nucleates in the Al-rich (pelitic) domain, initially on [001] mica planes. The first melt forms at the site of muscovite breakdown. 2) Chemically driven growth - In the quartzofeldspathic domain, K-feldspar progressively replaces plagioclase by a K+ - Na+ cation transfer reaction, driven by the freeing of muscovite-bound K+ during breakdown of the mica. Sillimanite forms intergrowths with the remaining hydrous melt components, contained initially in ovoid clots. 3) Merge and coarsening - With an increase in pressure, melt and sillimanite migrate away from clots along grain boundaries. A melt threshold is reached once the grain-boundary network is wetted by melt, increasing the length-scale of diffusion, resulting in grain boundary migration and grain-size coarsening. The melt threshold denotes the transition to an open-system on the lithology scale, where melt is a transient phase. 4) Residual melt crystallization - Residual melt crystallizes preferentially on existing peritectic grains as anatectic quartz, plagioclase, and K-feldspar. As the system cools and closes, grain growth forces melt into the intersections of grain-boundaries, recognized as irregular shaped melt films, or as intergrowths of the volatile-rich phases (i.e. Tur-Ms-Ap). In the Himalayan metamorphic core these processes result in the formation of: pelitic K-feldspar augen gneiss, stockwork leucogranites, and an effective strengthening of the hinterland, as evidenced by a switch in tectonic deformation style, from thin-skinned cover sequence thrust imbrication and folding to out-of-sequence basement-involved thick-skinned thrusting and folding.

  12. Microstructures and Petrology of Melt Inclusions in the Anatectic Sequence of Jubrique (Betic Cordillera, S Spain): Implications for Crustal Anatexis

    NASA Astrophysics Data System (ADS)

    Acosta-vigil, A.; Barich, A.; Garrido, C. J.; Cesare, B.; Tajčmanová, L.; Bartoli, O.

    2014-12-01

    We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence garnet decreases whereas biotite increases in proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈5 to 200 micrometers, with a mean size of ≈30-40 micrometers. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈850 ºC and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈800-850 ºC and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the matrix with oriented sillimanite. Previous conventional petrologic studies on these strongly deformed rocks have proposed that anatexis started during decompression from peak to post-peak conditions and in the field of sillimanite. The study of melt inclusions shows, however, that melt was already present in the system at peak conditions, and that most garnet grew in the presence of melt.

  13. Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core

    DOE PAGES

    Matthes, M.; Fischer-Godde, M.; Kruijer, T. S.; ...

    2017-09-07

    To constrain the timescales and processes involved in the crystallization and cooling of protoplanetary cores, we examined the Pd-Ag isotope systematics of the IVA iron meteorites Muonionalusta and Gibeon. A Pd-Ag isochron for Muonionalusta provides an initial 107Pd/ 108Pd = (2.57 ± 0.07) × 10 -5. The three metal samples analyzed from Gibeon plot below the Muonionalusta isochron, but these samples also show significant effects of cosmic ray-induced neutron capture reactions, as is evident from 196Pt excesses in the Gibeon samples. After correction for neutron capture effects on Ag isotopes, the Gibeon samples plot on the Muonionalusta isochron, indicating thatmore » these two IVA irons have indistinguishable initial 107Pd/ 108Pd. Collectively, the Pd-Ag data indicate cooling of the IVA core below Pd-Ag closure between 2.9 ± 0.4 Ma and 8.9 ± 0.6 Ma after CAI formation, where this age range reflects uncertainties in the initial 107Pd/ 108Pd ratios of the solar system, which in turn result from uncertainties in the Pb-Pb age of Muonionalusta. The Ag isotopic data indicate that the IVA core initially evolved with a modestly elevated Pd/Ag, but the low Ag concentrations measured for some metal samples indicate derivation from a source with much lower Ag contents and, hence, higher Pd/Ag. These contrasting observations can be reconciled if the IVA irons crystallized from an initially more Ag-rich core, followed by extraction of Fe-S melts during compaction of the nearly solidified core. Owing to its strong tendency to partition into Fe-S melts, Ag was removed from the IVA core during compaction, leading to the very low Ag concentration observed in metal samples of IVA irons. Alternatively, Ag was lost by evaporation from a still molten metallic body just prior to the onset of crystallization. The Pd-Ag isotopic data indicate that Muonionalusta cooled at >500 K/Ma through the Pd-Ag closure temperature of ~900 K, consistent with the rapid cooling inferred from metallographic cooling rates for IVA irons. Finally, combined, these observations are consistent with cooling of IVA irons in a metallic body with little or no silicate mantle.« less

  14. Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core

    NASA Astrophysics Data System (ADS)

    Matthes, M.; Fischer-Gödde, M.; Kruijer, T. S.; Kleine, T.

    2018-01-01

    To constrain the timescales and processes involved in the crystallization and cooling of protoplanetary cores, we examined the Pd-Ag isotope systematics of the IVA iron meteorites Muonionalusta and Gibeon. A Pd-Ag isochron for Muonionalusta provides an initial 107Pd/108Pd = (2.57 ± 0.07) × 10-5. The three metal samples analyzed from Gibeon plot below the Muonionalusta isochron, but these samples also show significant effects of cosmic ray-induced neutron capture reactions, as is evident from 196Pt excesses in the Gibeon samples. After correction for neutron capture effects on Ag isotopes, the Gibeon samples plot on the Muonionalusta isochron, indicating that these two IVA irons have indistinguishable initial 107Pd/108Pd. Collectively, the Pd-Ag data indicate cooling of the IVA core below Pd-Ag closure between 2.9 ± 0.4 Ma and 8.9 ± 0.6 Ma after CAI formation, where this age range reflects uncertainties in the initial 107Pd/108Pd ratios of the solar system, which in turn result from uncertainties in the Pb-Pb age of Muonionalusta. The Ag isotopic data indicate that the IVA core initially evolved with a modestly elevated Pd/Ag, but the low Ag concentrations measured for some metal samples indicate derivation from a source with much lower Ag contents and, hence, higher Pd/Ag. These contrasting observations can be reconciled if the IVA irons crystallized from an initially more Ag-rich core, followed by extraction of Fe-S melts during compaction of the nearly solidified core. Owing to its strong tendency to partition into Fe-S melts, Ag was removed from the IVA core during compaction, leading to the very low Ag concentration observed in metal samples of IVA irons. Alternatively, Ag was lost by evaporation from a still molten metallic body just prior to the onset of crystallization. The Pd-Ag isotopic data indicate that Muonionalusta cooled at >500 K/Ma through the Pd-Ag closure temperature of ∼900 K, consistent with the rapid cooling inferred from metallographic cooling rates for IVA irons. Combined, these observations are consistent with cooling of IVA irons in a metallic body with little or no silicate mantle.

  15. Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthes, M.; Fischer-Godde, M.; Kruijer, T. S.

    To constrain the timescales and processes involved in the crystallization and cooling of protoplanetary cores, we examined the Pd-Ag isotope systematics of the IVA iron meteorites Muonionalusta and Gibeon. A Pd-Ag isochron for Muonionalusta provides an initial 107Pd/ 108Pd = (2.57 ± 0.07) × 10 -5. The three metal samples analyzed from Gibeon plot below the Muonionalusta isochron, but these samples also show significant effects of cosmic ray-induced neutron capture reactions, as is evident from 196Pt excesses in the Gibeon samples. After correction for neutron capture effects on Ag isotopes, the Gibeon samples plot on the Muonionalusta isochron, indicating thatmore » these two IVA irons have indistinguishable initial 107Pd/ 108Pd. Collectively, the Pd-Ag data indicate cooling of the IVA core below Pd-Ag closure between 2.9 ± 0.4 Ma and 8.9 ± 0.6 Ma after CAI formation, where this age range reflects uncertainties in the initial 107Pd/ 108Pd ratios of the solar system, which in turn result from uncertainties in the Pb-Pb age of Muonionalusta. The Ag isotopic data indicate that the IVA core initially evolved with a modestly elevated Pd/Ag, but the low Ag concentrations measured for some metal samples indicate derivation from a source with much lower Ag contents and, hence, higher Pd/Ag. These contrasting observations can be reconciled if the IVA irons crystallized from an initially more Ag-rich core, followed by extraction of Fe-S melts during compaction of the nearly solidified core. Owing to its strong tendency to partition into Fe-S melts, Ag was removed from the IVA core during compaction, leading to the very low Ag concentration observed in metal samples of IVA irons. Alternatively, Ag was lost by evaporation from a still molten metallic body just prior to the onset of crystallization. The Pd-Ag isotopic data indicate that Muonionalusta cooled at >500 K/Ma through the Pd-Ag closure temperature of ~900 K, consistent with the rapid cooling inferred from metallographic cooling rates for IVA irons. Finally, combined, these observations are consistent with cooling of IVA irons in a metallic body with little or no silicate mantle.« less

  16. Measurements and Predictions of the Noise from Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.

    2015-01-01

    An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary-to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum flux.

  17. Measurements and Predictions of the Noise from Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.

    2015-01-01

    An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary- to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum- flux.

  18. An early geodynamo driven by exsolution of mantle components from Earth’s core

    PubMed Central

    Badro, James; Siebert, Julien; Nimmo, Francis

    2016-01-01

    Terrestrial core formation occurred in the early molten Earth by gravitational segregation of immiscible metal and silicate melts, stripping iron-loving elements from the silicate mantle to the metallic core1–3, and leaving rock-loving components behind. Here we performed experiments showing that at high enough temperature, Earth’s major rock-loving component, magnesium oxide, can also dissolve in core-forming metallic melts. Our data clearly point to a dissolution reaction, and are in agreement with recent DFT calculations4. Using core formation models5, we further show that a high-temperature event during Earth’s accretion (such as the Moon-forming giant impact6) can contribute significant amounts of magnesium to the early core. As it subsequently cools, the ensuing exsolution7 of buoyant magnesium oxide generates a substantial amount of gravitational energy. This energy is comparable to if not significantly higher than that produced by inner core solidification8 — the primary driver of the Earth’s current magnetic field9–11. Since the inner core is too young12 to explain the existence of an ancient field prior to ~1 billion years, our results solve the conundrum posed by the recent paleomagnetic observation13 of an ancient field at least 3.45 Gyr old. PMID:27437583

  19. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  20. OECD MMCI 2-D Core Concrete Interaction (CCI) tests : CCCI-1 test data report-thermalhydraulic results. Rev 0 January 31, 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Lomperski, S.; Aeschlimann, R. W.

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1)more » resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten coreconcrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-1 experiment, which was conducted on December 19, 2003. Test specifications for CCI-1 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % calcined siliceous concrete, with a specially designed two-dimensional siliceous concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The report begins by providing a summary description of the CCI-1 test apparatus and operating procedures, followed by presentation of the thermal-hydraulic results. The posttest debris examination results will be provided in a subsequent publication. Observations drawn within this report regarding the overall cavity erosion behavior may be subject to revision once the posttest examinations are completed, since these examinations will fully reveal the final cavity shape.« less

  1. Making rhyolite in a basalt crucible

    NASA Astrophysics Data System (ADS)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the storage limit is likely near 2-km depth at which IDDP-1 and other Krafla boreholes encountered rhyolite melt. Rearrangement of components within the crucible during brewing produces little in terms of a gravity or deformation signals, hence the surprise in finding newly intruded magma. Below 2 km much of the charge in the crucible is near the basalt solidus, so that pockets, sills, and chambers of near-liquidus rhyolite magma will all be close to thermal and chemical equilibrium. Heat is advected upwards from the mantle first by basalt to the crucible, then by rhyolite magma within the crucible, then by hydrothermal fluid to the surface. A major portion of the thermal energy is stored as latent heat of crystallization of rhyolite magma. Such a view challenges some basic tenets of volcano hazard assessment and geothermal energy. The Krafla Magma Drilling Project of the International Continental Scientific Drilling Program will provide a critical test in 2017 by coring from subsolidus granite to liquidus rhyolite, wherein the transitions of heat advection by hydrothermal fluid, to heat conduction, to heat advection by rhyolite magma must occur.

  2. Fine Structure of the Outermost Solid Core from Analysis of PKiKP Coda Waves

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, D.; Kaazik, P.; Ovtchinnikov, V.

    2006-05-01

    Near surface heterogeneities in the Earth's inner core have recently been confirmed to exist, and pods of partial melt or variations in seismic anisotropy either due to orientation of iron crystals or changes in strength were indicated as possible sources for such peculiarities. In the same time, analysis of the phase reflected from the inner core boundary (PKiKP) predicts complex character of the reflecting discontinuity in the form of local thin transition layers resulting in mosaic structure of the Earth's inner core's surface. Precritical PKiKP waveforms and coda waves provide necessary seismological constraints to investigate fine structure of the upper part of the Earth's inner core and its boundary, and rank high among researches that detected the described specifics of the solid core. PKiKP coda studies have to do with weak amplitudes and subtle effects, which frequently requires using a reference core related seismic phase and array data processing, as well as eliminating max number of factors biasing the resulting estimates (for example, source related inaccuracies typical for earthquake analysis). In this work we report new observations of PKiKP coda waves detected on records of a group of Underground Nuclear Explosions (UNEs) carried out in USSR and recorded at distances from 6 to 95 degrees by stations of the world seismological network. Our dataset benefits from using accurate ground truth information on source parameters (locations, origin times, depths, etc.), requires no accounting for different source radiation patterns and contains records corresponding to the whole range of precritical reflection including so called transparent zone where amplitudes of direct PKiKP phase are negligible. The processed dataset incorporates records of the array of sources consisted of the same magnitude explosions closely carried out at Semipalatinsk Test Site and recorded by stations located in Eurasia, Africa and North America. We detect PKiKP coda waves on records of all stations that registered this array. The performed frequency-wavenumber analysis and stacking of the array data reveal both scattering mechanism tracked in the form of slight dependence of PKiKP coda's frequency content on epicentral distance, and reflective mechanism evidenced by detection of distinct arrivals of waves reflected from isotropic or anisotropic discontinuities below the inner core boundary. We infer, that PKiKP coda is built by both volumetric scattering and reverberations on reflectors in the upper portion of the inner core. We also find no significant evidence for the presence of a constant depth global isotropic reflector all through 300 km below the ICB and attribute different types of the observed PKiKP coda patterns to variability in properties of the outermost portion of the Earth's inner core either due to its anisotropy or local specifics. The research described was made possible in part by contribution from grant RUG1-2675-MO-05 of the US Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF) and the President Grant MK-1600.2005.5.

  3. Translation and convection of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Monnereau, M.; Calvet, M.; Margerin, L.; Mizzon, H.; Souriau, A.

    2012-12-01

    The image of the inner core growing slowly at the center of the Earth by gradual cooling and solidification of the surrounding liquid outer core is being replaced by the more vigorous image of a ``deep foundry'', where melting and crystallization rates exceed by many times the net growth rate. Recently, a particular mode of convection, called translation, has been put forward as an important mode of inner core dynamics because this mechanism is able to explain the observed East-West asymmetry of P-wave velocity and attenuation (Monnereau et al. 2010). Translation is a pure solid displacement of the inner core material (solid iron) within its envelop, implying crystallization of entering iron on one side of the inner core and melting on the opposite side. Translation is consistent with multiple scattering models of wave propagation. If they do not experience deformation, iron crystals grow as they transit from one hemisphere to the other. Larger crystals constituting a faster and more attenuating medium, a translation velocity of some cm/yr (about ten times the growth rate) is enough to account for the superficial asymmetry observed for P-wave velocity and attenuation, with grains of a few hundred meters on the crystallizing side (West) growing up to a few kilometers before melting on the East side, and a drift direction located in the equatorial plane. Among all hypotheses that have been proposed to account for the seismic asymmetry, translation is the only one based on a demonstrated link between the seismic data and the proposed dynamics, notably through a model of seismic wave propagation. This mechanism was also proposed to be responsible for the formation of a dense layer at the bottom of the outer core, since the high rate of melting and crystallization would release a liquid depleted in light elements at the surface of the inner core (Alboussiere et al 2010). This would explain the anomalously low gradient of P wave velocity in the lowermost 200 km of the outer core. Translation is a particular solution of Navier-Stokes equation with permeable boundary conditions, but depending on the viscosity of the solid core, modes with higher spherical harmonics degree can develop. At low viscosity, these modes can be dominant and dissipate the degree l=1 of thermal heterogeneities. Hence, a viscosity threshold may be expected below which translation cannot take place, thereby constraining the viscosity of iron at inner core conditions. Using a hybrid finite-difference spherical harmonics Navier-Stokes solver, we investigate the interplay between translation and convection in a 3D spherical model with permeable boundary conditions. Our numerical simulations show the dominance of pure translation for viscosities of the inner core higher than 5 x 1018 Pas. Translation is almost completely hampered by convective motions for viscosities lower than 1017 Pas and the phase change becomes an almost impermeable boundary. Between these values, a well developed circulation at the harmonic degree l=1 persists, but composed of localized cold downwellings, a passive upward flow taking place on the opposite side (the melting side). Such a convective structure remains compatible with the seismic asymmetry. Alboussiere, T., Deguen, R., Melzani, M., 2010. Nature 466 (7307), 744-U9. Monnereau, M., Calvet, M., Margerin, L., Souriau, A., 2010. Science 328 (5981), 1014-1017.

  4. A laboratory model for solidification of Earth's core

    NASA Astrophysics Data System (ADS)

    Bergman, Michael I.; Macleod-Silberstein, Marget; Haskel, Michael; Chandler, Benjamin; Akpan, Nsikan

    2005-11-01

    To better understand the influence of rotating convection in the outer core on the solidification of the inner core we have constructed a laboratory model for solidification of Earth's core. The model consists of a 15 cm radius hemispherical acrylic tank concentric with a 5 cm radius hemispherical aluminum heat exchanger that serves as the incipient inner core onto which we freeze ice from salt water. Long exposure photographs of neutrally buoyant particles in illuminated planes suggest reduction of flow parallel to the rotation axis. Thermistors in the tank near the heat exchanger show that in experiments with rotation the temperature near the pole is lower than near the equator, unlike for control experiments without rotation or with a polymer that increases the fluid viscosity. The photographs and thermistors suggest that our observation that ice grows faster near the pole than near the equator for experiments with rotation is a result of colder water not readily convecting away from the pole. Because of the reversal of the thermal gradient, we expect faster equatorial solidification in the Earth's core. Such anisotropy in solidification has been suggested as a cause of inner core elastic (and attenuation) anisotropy, though the plausibility of this suggestion will depend on the core Nusselt number and the slope of the liquidus, and the effects of post-solidification deformation. Previous experiments on hexagonal close-packed alloys such as sea ice and zinc-tin have shown that fluid flow in the melt can result in a solidification texture transverse to the solidification direction, with the texture depending on the nature of the flow. A comparison of the visualized flow and the texture of columnar ice crystals in thin sections from these experiments confirms flow-induced transverse textures. This suggests that the convective pattern at the base of the outer core is recorded in the texture of the inner core, and that outer core convection might contribute to the complexity in the seismically inferred pattern of anisotropy in the Earth's inner core.

  5. Continuous analysis of phosphate in a Greenland shallow ice core

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe

    2010-05-01

    Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.

  6. Carbothermal Processing of Lunar Regolith Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2009-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.

  7. Carbothermal Processing of Lunar Regolith Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2008-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.

  8. Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebel, D.S.; Fogel, R.A.; Rivers, M.L.

    2005-02-04

    Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography (<2micron/pxl) of >200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently drivenmore » by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO{sub 2}) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single {approx}450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest {approx}30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass magma is thought to derive from {approx} 400 km depth, the calculations imply a 4 km depth of graphite oxidation (and melt saturation in C-O volatiles) during ascent. We have imaged several hundred similar orange glass spherules, from sample 74220,764, using synchrotron x-ray computer-aided microtomography (XRCMT). Our goals: (1) locate similar phenocrysts containing melt inclusions; (2) analyze phenocrysts to understand the evolution of the magma; (3) analyze melt and fluid inclusions using EPMA and FTIR to obtain direct evidence of magmatic volatiles and pristine bulk compositions.« less

  9. Constraints on Ureilite Petrogenesis and Carbon-Metal-Silicate Equilibria on the UPB

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Holloway, J. R.

    1992-07-01

    The most important constraints on models of ureilite petrogenesis are 1) Ureilites have lost a basaltic complement (they are ultramafic, extremely depleted in plagiophile elements, enriched in HREE, and have negative Eu anomalies and superchondritic Ca/Al ratios). 2) Ureilites experienced long equilibration times at high T (indicated by coarse grain size, extreme homogeneity of core crystals, correlations between olivine and pyroxene compositions, and metamorphic-like textures), followed by rapid cooling (indicated by structural features of pyroxene and narrow reduction rims on olivine). 3) Ureilites are probably residues (based on mass balance) but partly crystallized from melts. 4) Ureilites are derived from a minimum of six reservoirs that were distinct in oxygen isotopic composition and did not equilibrate with one another (this is consistent with the observation that olivine and pyroxene cores do not show correlations of mg with MnO, Cr2O3, Sm/Eu or Lu/Eu). 5) There is a correlation between oxygen isotopic composition and mg ratio in ureilites. Similar correlations are observed for Allende chondrules and group means of H3-L3-LL3 chondrites (Fig. 1), and are argued to result from nebular processes [1]. 6) If graphite-metal-silicate-CO/CO2 equilibrium was established during melting, then mg ratios of ureilites were determined by depth because CCO redox reactions are strongly pressure-dependent. Cohenite-bearing metallic spherule inclusions in the silicates and euhedral shapes of large graphite crystals in low-shock ureilites have been taken as evidence of equilibrium. Olivine reduction rims, highly variable interstitial metal compositions, and a lack of correlation between mg and metal content argue against equilibrium. 7) Ureilites either lost a low melting-T metal fraction or gained a refractory-rich metal component. (they have high abundances of siderophile elements but show fractionation between [Os, Ir, W, Re] and [Ni, Ga, Ge, Au]). 8) Primordial noble gases were retained in some carbon phases. 9) Ureilites formed at ~4.55 Ga but both Sm-Nd and Rb-Sr isotopic systematics have been subsequently disturbed. Constraints 1-4 are best met if ureilites are partial melt residues produced by ~25% equilibrium partial melting on an oxygen-isotopically heterogeneous parent body in >=6 distinct melting zones. If there was no global magma ocean, km-sized melting zones would not equilibrate oxygen with one another in 10 m.y. Constraints 5 and 6 appear difficult to reconcile. If the UPB inherited a nebular oxygen isotope-mg correlation how could this correlation have survived partial melting? If the melting zones all experienced approximately the same degree of melting (Mn/Mg, Cr/Mg, and HRE provide evidence for this), and silicate equilibria determined mg, then the original correlation may simply have shifted to higher mg, consistent with the position of the ureilite trend relative to the Allende trends (Fig. 1). However, if mg was depth-dependent then it is unlikely that any oxygen isotope-mg correlation would remain. Also, noble gases in carbon would be lost (violating constraint 8) during carbon redox reactions. All constraints would be better met if graphite-metal-silicate-CO/CO2 equilibrium was not established during partial melting. If graphite was primary but a CO/CO2 fluid phase was not present then there would have been no pressure/depth dependence of fO(sub)2. As long as the pressure was sufficiently high (~100-200 bars) to stabilize the most ferroan ureilite (Fo 76) then the more magnesian ureilites would have been stable in the presence of graphite and metal. On the other hand, constraints 7, 8, and 9 could be neatly met if most of the carbon was not primary but a carbon-metal-noble gas assemblage was added as a late component to the ultramafic rocks. The cohenite-bearing metallic spherules are rare and tiny (10-50 micrometers) compared to interstitial metal (mm-sized irregular grains). They appear to have been droplets of immiscible, hypereutectic Fe(Ni)-C liquids that were trapped by crystallizing silicates. In contrast, the interstitial metal and graphite show no evidence of having been a liquid Fe-C alloy and their confinement to grain boundaries and reduction rims is consistent with late addition. Goodrich and Berkley (2) argued that the spherules were carbon-saturated at 1200-1225 degrees C and therefore that the silicate liquid must have contained graphite. However, in the Fe-C system the stable graphite liquidus is much steeper than the metastable cohenite liquidus, and although these alloys were cohenite-saturated, they were not graphite-saturated. Hence, the silicate magma probably did not contain graphite and carbon was not the dominant control on fO(sub)2. Thus, it may be possible to reconcile the main constraints on ureilite petrogenesis without high pressures. [1] R.N. Clayton & T.K. Mayeda (1988] GCA 52, 1313. [2] C.A. Goodrich & J.L. Berkely (1986) GCA 50, 681.

  10. Carbon Solubility in Metallic Iron and Melting Relations in the Fe-C System at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fei, Y.

    2006-05-01

    Carbon has been proposed to be one of the light elements in the Earth's core. Knowledge of phase relations in the Fe-C system at high pressure and temperature is needed to understand the carbon content in the core and its effect on the physical properties and the temperature of the core. Experimental data in this system at high pressure and temperature are limited. In this study we report new experimental data on melting relations up to 25 GPa. The experiments were performed using piston-cylinder and multi-anvil devices at the Geophysical Laboratory. Mixtures of fine power of pure iron and graphite with different carbon content were prepared as starting materials. The starting materials were loaded into MgO capsules and then compressed to the desired pressures, using various high-pressure cell assemblies that have been calibrated at high pressure. High temperatures were achieved using either graphite heater (<6 GPa) or rhenium heater at higher pressures and measured with a tungsten-rhenium thermocouple. Melting relations were determined with a JEOL JXA-8900 electron microprobe, based on quench textures and chemical composition of the quenched phases. Powder X- ray diffraction technique was also used to identify phases and determine unit cell parameters. A positive slope between the solubility of carbon in metallic iron and pressure was found at elevated temperatures. The eutectic temperature increases with increasing pressure. The liquidus temperature determined in this study is significantly lower than the calculated value in previous study. Our study presents directly experimental measurements of the melting relations in the Fe-C system at high pressure and temperature, which provides better constraints on composition and temperature of the Earth's core.

  11. Is Eruption Style Linked to Magma Residence Time at Kilauea Volcano? Results from Chemical Zoning in Olivine

    NASA Astrophysics Data System (ADS)

    Lynn, K. J.; Costa Rodriguez, F.; Shea, T.; Garcia, M. O.

    2015-12-01

    Kilauea is generally characterized by its modern effusive activity, but the past 2500 years were dominated by cycles of explosive and effusive eruptions lasting 100's of years (Swanson et al. 2012). These different eruption styles may reflect variable volatile contents in the source that control magma ascent rate and storage durations (e.g., Sides et al. 2014). A detailed petrological study of the dominantly explosive Keanakako'i tephras (1500-1820 CE) was undertaken to better understand the storage and transport conditions preceding high-energy eruptions. Here, we focus on preliminary results for olivine from the 1500 CE Basal Reticulite (>600 m fountain; May et al. 2015). Olivine major (Fe, Mg), minor (Mn, Ca, Ni) and trace (Li, Na, Al, P, Sc, Ti, V, Cr, Co, Zn) element traverses and 2D maps were collected for 10 crystals and reveal two major populations. The dominant population has homogeneous Fo89 and Fo87 cores with thin (3-12 μm) rims of intermediate composition (Fo87.5-88.5). Normal, reverse, and complex trace element zoning (Al, P, Ti, Cr) is prominent in these otherwise homogenous (Fo, Ni, Ca, Mn) crystals. 2D maps reveal early skeletal growth and the progressive decrease of Cr from core to rim suggests olivine and Cr-spinel crystallization, which should produce significant Fo zoning. Absence of Fo zoning could imply significant storage time in a reservoir allowing homogenization. The majority of rim compositions are out of equilibrium with adhering glass, and Fe-Mg modeling indicates that their residence within the carrier melt was of a few days. A second population consists of strongly zoned (normal and reverse) crystals with a wide range of core Fo (78 to 89) and Fo82-84 rims. Timescales from Fe-Mg zoning are up to 1 year, and may record storage histories before interaction with the carrier melt. The diversity in olivine zoning suggests at least two stages of magma mixing, and a more complex evolution for the magmas that fed the reticulite eruptions than a simple closed-system and fast transport of a volatile-rich magma from the source to the surface.

  12. Petrology and Geochemistry of Lunar Regolith Particle 65903,16-7: Evidence for Extreme Reduction and Oxidation

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Jolliff, B. L.; Korotev, R. L.; Kremser, D. T.; Haskin, L. A.

    2001-01-01

    Apollo 16 particle 65903,16-7 is a magnesian, alkali-rich impact melt breccia. Low Fe/Mn and high phosphide/phosphate ratios are evidence of severe reduction during impact-melt cooling. Presence of carbonate and FeOOH is evidence for later oxidation. Additional information is contained in the original extended abstract.

  13. Atmospheric depositions of black carbon, inorganic pollutants and mineral dust from the Ortles, Eastern European Alps ice cores during the last 3000 years

    NASA Astrophysics Data System (ADS)

    Bertò, Michele; Barbante, Carlo; Gabrielli, Paolo; Gabrieli, Jacopo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Stenni, Barbara

    2017-04-01

    Reconstructions of the atmospheric content of black carbon, heavy metals and mineral dust covering millennial time scales are rare, particularly in the European region. Evaluating the human impact on the environment through mining and industrial activities, road traffic, biomass and coal burning, and the naturally emitted aerosols atmospheric load, is important to know the degree of contaminations and the quality of melting water, the radiative effect on the glacier's radiative balance, the atmospheric aerosols' climatic impacts and the recent decades pollutions emissions policies' efficiencies. Four ice cores were drilled in 2011 from the "Alto dell'Ortles" (3859 m), the highest glacier of the Mt. Ortles massif (South Tirol, Italy). Three 74 m long ice cores were dated by mean of 210Pb, tritium, beta emissions and 14C analyses following also the new dating technique based on filtering the ice for extracting the carbonaceous component of the deposited aerosols. The depth-age curve was obtained by using a Monte Carlo based empirical fitting model (COPRA). The basal ice of core#2 and #3 was dated back to about 7000 years b.p., whereas that of core#1, about one meter shorter, to 3000 years before present. Below the firn-ice transition, at a depth of about 24 m, the borehole temperature revealed the presence of well-preserved cold ice (Gabrielli et al, 2012). The O and H stable isotopes profiles describe well the atmospheric warming as well as the low temperatures recorded during the Little Ice Age (LIA). The proximity of the "Alto dell'Ortles" to densely industrialized areas (Po Valley) makes these ice cores specifically suited for reconstructing the anthropogenic impacts in the Eastern European Alpine region over the last 3 millennia. The ice core#1 was analyzed with a "Continuous Flow Analysis" system (CFA). The separation between internal and external parts of the core prevents any kind of contamination. The core was melted at about 2.5 cm min-1 and simultaneous analyses of conductivity, dust concentration and size distribution (from 0.8 to 80 μm), trace elements with Inductive Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500) and refractory black carbon (rBC) with the Single Particle Soot Photometer (SP2, Droplet Measurement Technologies) were performed. A fraction of the melt water was collected by an auto-sampler. More than 1000 samples were analyzed discreetly with a CRC-ICP-MS (with the highest resolution of about 3 cm). The rBC shows significant variability over the last century peaking in concentrations of about 10 ng g-1 from the 1920s to the 1970s, whereas very low values characterized the period from 1000 BC to 1850 AD. The seasonality appears to be preserved even in the firn temperate part of the core as argued from the comparison with the water stable isotopes ratios (δO18). The overall determined trace elements are Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Sr, Ag, Cd, Sb, Te, I, Cs, Ba, Hg, Tl, Pb, Bi, U. The Enrichment Factors (EF) for the crustal elements didn't show any particular trend. While mining and smelting activities appeared to be the most significant heavy metals sources before the 19th century, other anthropogenic heavy metals strongly increased from the onset of the Industrial Revolutions.

  14. Triple point fcc-hcp-liquid in the Fe phase diagram determined by in-situ XANES diagnostic and post-mortem XRD and FIB-SEM analysis.

    NASA Astrophysics Data System (ADS)

    Morard, G.; Boccato, S.; Rosa, A. D.; Anzellini, S.; Miozzi Ferrini, F.; Laura, H.; Garbarino, G.; Harmand, M.; Guyot, F. J.; Boulard, E.; Kantor, I.; Irifune, T.; Torchio, R.

    2017-12-01

    Iron is the main constituent of planetary cores. Studying its phase diagram under high pressure is necessary to constrain properties of planetary interiors, and to model key parameters such as the generation of magnetic field. Though, strong controversy on the melting curve of pure Fe still remains. Recently, Aquilanti et al, (PNAS, 2015) reported a Fe melting curved based on XANES measurements which is in open disagreement with previous X-ray diffraction results (Anzellini et al, Science, 2013). Discrepancies in the melting temperature exceed several hundred degrees close to Mbar pressures, which may be related to differences in temperature measurement techniques, melting diagnostics, or to chemical reactions of the sample with the surrounding medium. We therefore performed new in situ high P/T XANES experiments on pure Fe (up to 115 GPa and 4000 K) at the ESRF beamline ID24, combining the energy dispersive absorption set up with laser heated diamond anvil cells. X-ray diffraction maps were collected from all recovered samples in order to identify and characterize laser-heated spots. The XANES melting criterion was further cross checked by analyzing the recovered sample textures using FIB cutting techniques and SEM imaging. We found systematically that low melting temperatures are related to the presence of Fe3C, implying that in those cases chemical reactions occurred during heating resulting in carbon contamination from the diamonds. These low melting points fall onto the melting line reported by Aquilanti et al, (2015). Uncontaminated points are in agreement with the melting curve of Anzellini et al, (2013) within their uncertainties. Moreover, this data set allowed us to refine the location of the triple point in the Fe phase diagram at 105 (±10) GPa and 3600 (±200) K, which may imply a small kink in the melting curve around this point. This refined Fe phase diagram could be then used to compute thermodynamic models for planetary cores.

  15. Accumulated phenocrysts and origin of feldspar porphyry in the Chanho area, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Xu, Xing-Wang; Jiang, Neng; Yang, Kai; Zhang, Bao-Lin; Liang, Guang-He; Mao, Qian; Li, Jin-Xiang; Du, Shi-Jun; Ma, Yu-Guang; Zhang, Yong; Qin, Ke-Zhang

    2009-12-01

    The No. 1 feldspar porphyry in the Chanho area, western Yunnan, China is characterized by the development of deformed glomeroporphyritic aggregates (GA) that contain diagnostic gravity settling textures. These textures include interlocking curved grain boundaries caused by compaction, bent twins, and arch-like structures. The GAs are accumulated phenocrysts (AP) and antecrysts. The unstable textural configurations such as extensive penetrative microfractures that are restricted within the AP and fractured cores of zircon grains, all suggest that the GAs are transported fragments of fractured cumulates that formed in a pre-emplacement magma chamber rather than form in situ at the current intrusion site. Compositions of minerals and melt as represented by different mineral aggregates formed at various stages of the magmatic process and their relations to the composition of porphyry bodies in the Chanho area indicate that the porphyritic melt for the No. 1 feldspar porphyry experienced two stages of melt mixing. Pulses of potassic melt flowed into a pre-emplacement magma chamber and mixed with crystallizing dioritic magma containing phenocrysts resulted in the first hybrid alkaline granitic melt. The mixing caused denser phenocrysts to settle and aggregate to form cumulates. Secondly, new dioritic melt was injected into the magma chamber and was mixed with the previously formed hybrid alkaline granitic melt to produce syenitic melt. Geochron data, including U-Pb age of zircon and 39Ar/ 40Ar age of hornblende and oligoclase phenocrysts, indicate that hornblende and oligoclase phenocrysts, as well as the core of zircon grains, were antecrysts that formed in a number of crystallization events between 36.3 and 32.78 Ma. Gravity settling of phenocrysts took place at about 33.1 to 32.78 Ma and melts with deformed GAs were transported upwards and emplaced into the current site at 32 Ma. Results of this research indicate that the No. 1 feldspar porphyry was a shallow intrusion of mixed melts that contained phenocrysts and GAs, both of which formed in a deeper transitional magma chamber.

  16. Rapid assembly and rejuvenation of a large silicic magmatic system: Insights from mineral diffusive profiles in the Kidnappers and Rocky Hill deposits, New Zealand

    NASA Astrophysics Data System (ADS)

    Cooper, George F.; Morgan, Daniel J.; Wilson, Colin J. N.

    2017-09-01

    The timescales over which magmas in large silicic systems are reactivated, assembled and stored remains a fundamental question in volcanology. To address this question, we study timescales from Fe-Mg interdiffusion in orthopyroxenes and Ti diffusion in quartz from the caldera-forming 1200 km3 Kidnappers and 200 km3 Rocky Hill eruptions from the Mangakino volcanic centre (Taupo Volcanic Zone, New Zealand). The two eruptions came from the same source area, have indistinguishable 40Ar/39Ar ages (∼1.0 Ma) and zircon U-Pb age spectra, but their respective deposits are separated by a short period of erosion. Compositions of pumice, glass and mineral species in the collective eruption deposits define multiple melt dominant bodies but indicate that these shared a common magmatic mush zone. Diffusion timescales from both eruptions are used to build on chemical and textural crystal signatures and interpret both the crystal growth histories and the timing of magma accumulation. Fe-Mg interdiffusion profiles in orthopyroxenes imply that the three melt-dominant bodies, established through extraction of melt and crystals from the common source, were generated within 600 years and with peak accumulation rates within 100 years of each eruption. In addition, a less-evolved melt interacted with the Kidnappers magma, beginning ∼30 years prior to and peaking within 3 years of the eruption. This interaction did not directly trigger the eruption, but may have primed the magmatic system. Orthopyroxene crystals with the same zoning patterns from the Kidnappers and Rocky Hill pumices yield consistently different diffusion timescales, suggesting a time break between the eruptions of ∼20 years (from core-rim zones) to ∼10 years (outer rim zones). Diffusion of Ti in quartz reveals similarly short timescales and magmatic residence times of <30 years, suggesting quartz is only recording the last period of crystallization within the final eruptible melt. Accumulation of the eruptible magma for these two, closely successive eruptions was accomplished over centuries to decades, in contrast to the gestation time of the magmatic system of ∼200 kyr, as indicated by zircon age patterns. The magmatic system was able to recover after the Kidnappers eruption in only ∼10-20 years to accumulate enough eruptible melt and crystals for a second ∼ 200 km3 eruption. Our data support concepts of large silicic systems being stored as long-lived crystal mushes, with eruptible melts generated over extraordinarily short timescales prior to eruption.

  17. The evolution of complex type B Allende inclusion - An ion microprobe trace element study

    NASA Technical Reports Server (NTRS)

    Macpherson, Glenn J.; Crozaz, Ghislaine; Lundberg, Laura L.

    1989-01-01

    Results are presented of a detailed trace-element and isotopic analyses of the constituent phases in each of the major textural parts (mantle, core, and islands) of a Type B refractory inclusion, the USNM 5241 inclusion from Allende, first described by El Goresy et al. (1985). The REE data on 5241 were found to be largely consistent with a model in which the mantle and the core of 5241 formed sequentially out of a single melt by fractional crystallization. The numerical models of REE evolution in the 5241 melt, especially that of Eu, require that a significant mass of spinel-free island material was assimilated into the evolving melt during the last half of the solidification history of 5241. The trace element results pbtained thus strongly support the interpretation of El Goresy et al. (1985) that the spinel-free islands in the 5241 are trapped xenoliths.

  18. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  19. Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: Insights into magma mixing and source metasomatism

    NASA Astrophysics Data System (ADS)

    Liang, Yayun; Deng, Jun; Liu, Xuefei; Wang, Qingfei; Qin, Cheng; Li, Yan; Yang, Yi; Zhou, Mian; Jiang, Jieyan

    2018-03-01

    Early Cretaceous mafic dyke swarms are widely developed on Jiaodong Peninsula in the southeastern part of the North China Craton (NCC), but their petrogenesis remains enigmatic. We have examined the in-situ major element, trace element and Sr isotope compositions of the clinopyroxene phenocrysts in these dykes in order to evaluate the extent of magma mixing and source metasomatism. Depending on the type of mineral zoning, the clinopyroxene phenocrysts in our samples can be classified into two groups: Group I (reverse zoning) and Group II (no zoning). Based on core compositions, the Group I phenocrysts with obvious reverse zoning can be divided into two subgroups: Groups IA and IB. The cores of Group IA clinopyroxenes have low values of Mg#, low Al2O3 contents, high Na2O contents, and high 87Sr/86Sr ratios, and they were probably derived from newly accreted lower crust that formed through the underplating of basaltic magma. In contrast, the cores of Group IB clinopyroxenes have lower Mg# values and lower contents of Al2O3, ΣREE (total rare earth elements), and incompatible elements, but they have similar 87Sr/86Sr ratios; these cores crystallised from crust-derived andesitic-dacitic magma. Group IA and IB clinopyroxene phenocryst rims (Group I rims) all have similar compositions with higher values of Mg# and higher Al2O3, Cr and Ni contents than the cores. The rims have high 87Sr/86Sr ratios, are enriched in LREEs (light rare earth elements) and LILEs (large ion lithophile elements), and are depleted in HFSEs (high field strength elements); these characteristics indicate that all the high-Mg rims were derived from a similar magma, possibly a relatively primitive magma derived from lithospheric mantle. We suggest, therefore, that the reversely-zoned clinopyroxene phenocrysts (Group I) in the Jiaodong mafic dykes provide evidence of magma mixing between a magma derived from lithospheric mantle and crust-derived andesitic-dacitic melt alongside with the newly accreted lower crust. The Group II clinopyroxene phenocrysts, which lack zoning, display major and trace element compositions and 87Sr/86Sr ratios that are similar to those of the Group I rims, which indicates that all the high-Mg clinopyroxenes were derived from a common source in the lithospheric mantle. These high-Mg clinopyroxenes exhibit high 87Sr/86Sr ratios, high Sr contents and remarkable depletions in HFSEs, reflecting metasomatism of the mantle source by aqueous fluids derived by dehydration of the subducting slab and its marine sediments. The metasomatism of the source reveals that the lithospheric mantle beneath Jiaodong Peninsula was metasomatised by fluids from the subducting Paleo-Pacific slab. Progressive thinning of the lithosphere mantle under the NCC was induced by continuous thermo-mechanical erosion, promoting the partial melting of lithospheric mantle and generating the mafic dykes at Jiaodong. Table A2 Analytical results for the trace element standards used during LA-ICP-MS analyses of clinopyroxene phenocrysts. Table A3 Analytical results for the Sr isotope standards used during MC-ICP-MS analyses of clinopyroxene phenocrysts. Table A4 Major element contents (wt%) of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A5 Representative Sr isotopic compositions of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A6 Geochemistry of the mafic dykes on Jiaodong Peninsula. Table A7 Partition coefficients (KD) and end-member components used for REE modeling.

  20. MC21 analysis of the MIT PWR benchmark: Hot zero power results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.

    2013-07-01

    MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has alsomore » been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)« less

  1. DART Core/Combustor-Noise Initial Test Results

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.; Henderson, Brenda S.; Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. The new NASA DGEN Aero0propulsion Research Turbofan (DART) is a cost-efficient testbed for the study of core-noise physics and mitigation. This presentation gives a brief description of the recently completed DART core combustor-noise baseline test in the NASA GRC Aero-Acoustic Propulsion Laboratory (AAPL). Acoustic data was simultaneously acquired using the AAPL overhead microphone array in the engine aft quadrant far field, a single midfield microphone, and two semi-infinite-tube unsteady pressure sensors at the core-nozzle exit. An initial assessment shows that the data is of high quality and compares well with results from a quick 2014 feasibility test. Combustor noise components of measured total-noise signatures were educed using a two-signal source-separation method an dare found to occur in the expected frequency range. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject.

  2. Geochemical variability of the Yucatan basement: Constraints from crystalline clasts in Chicxulub impactites

    NASA Astrophysics Data System (ADS)

    Kettrup, B.; Deutsch, A.

    2003-07-01

    The 65 Ma old Chicxulub impact structure with a diameter of about 180 km is again in the focus of the geosciences because of the recently commenced drilling of the scientific well Yaxcopoil- 1. Chicxulub is buried beneath thick post-impact sediments, yet samples of basement lithologies in the drill cores provide a unique insight into age and composition of the crust beneath Yucatan. This study presents major element, Sr, and Nd isotope data for Chicxulub impact melt lithologies and clasts of basement lithologies in impact breccias from the PEMEX drill cores C-1 and Y-6, as well as data for ejecta material from the K/T boundaries at La Lajilla, Mexico, and Furlo, Italy. The impact melt lithologies have an andesitic composition with significantly varying contents of Al, Ca, and alkali elements. Their present day 87Sr/86Sr ratios cluster at about 0.7085, and 143Nd/144Nd ratios range from 0.5123 to 0.5125. Compared to the melt lithologies that stayed inside the crater, data for ejecta material show larger variations. The 87Sr/86Sr ratios range from 0.7081 for chloritized spherules from La Lajilla to 0.7151 for sanidine spherules from Furlo. The 143Nd/144Nd ratio is 0.5126 for La Lajilla and 0.5120 for the Furlo spherules. In an tCHUR(Nd)-tUR(Sr) diagram, the melt lithologies plot in a field delimited by Cretaceous platform sediments, various felsic lithic clasts and a newly found mafic fragment from a suevite. Granite, gneiss, and amphibolite have been identified among the fragments from crystalline basement gneiss. Their 87Sr/86Sr ratios range from 0.7084 to 0.7141, and their 143Nd/144Nd ratios range from 0.5121 to 0.5126. The TNdDM model ages vary from 0.7 to 1.4 Ga, pointing to different source terranes for these rocks. This leads us to believe that the geological evolution and the lithological composition of the Yucatàn basement is probably more complex than generally assumed, and Gondwanan as well as Laurentian crust may be present in the Yucatàn basement.

  3. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and late-stage Lunar Magma Ocean (LMO) cumulates, requiring an overturn of the cumulate pile.

  4. Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000

    NASA Technical Reports Server (NTRS)

    Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick

    2012-01-01

    Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.

  5. Relationship Between the Melting Temperature of hcp Iron at ICB Pressure and the Light Impurity Content of Earth's Core

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    2001-12-01

    The table below leads the reader through calculation of the core density deficit starting from the melting temperature (solidus), Tm, at the pressure, P, of the inner core boundary (ICB) (330 GPa). Tm values come from recent data of four sets of authors. Thermal pressure, Δ PTH, values were calculated in the author's laboratory. P0 = 330 - PTH is the P corresponding to the volume, V, of iron at Tm, V0 (sol.). P0 yields V0 (sol.) from an equation of state. The volume change of melting, Δ Vm, which leads to the liquidus V, V0 (liq.), was determined by the author. The liquidus density, ρ 0 (liq.), is higher than the seismic density at 330 GPa by the core density deficit. S wt.% is the amount of sulfur alone that satisfies the core ρ deficit. Δ Tf is the freezing point depression arising from impurities. %table { \\setlength{\\tabcolsep}{.05truein} \\begin{center} \\begin{tabular}{lcccc} \\multicolumn{5}{l}{ Core density deficit and freezing point depression} multicolumn{5}{l}{calculated from Tm} \\hline Tm (330)& 4800 K& 5850 K& 6700 K& 7500 K \\hline Δ PTH& 64.0& 82.0& 97.0& 112\\P0 (330 K)& 266& 248& 233& 218\\V0 (sol.)& 4.25& 4.30& 4.37& 4.43Δ Vm& .055& .055& .055& .055\\V0 (liq.)& 4.305& 4.355& 4.425& 4.485ρ (liq.)& 13.09& 12.94& 12.73& 12.48 core ρ def.& 7.1& 6& 4& 2.9 S wt.% & 7.3& 6.2& 3.8& 2.5 Δ Tf& ~ 330& ~ 300& ~ 200& ~ 150 \\hline \\multicolumn{5}{l}{Units: PTH & P0, GPa; V0 & Δ Vm, cm3mol.-1;} multicolumn{5}{l}{ρ , kg m-3x 103; core ρ def., %; Δ Tf, K.}\\ } Cosmochemists' estimates of viable amounts of S and Si in the core are most easily satisfied by the core density deficit arising from Tm = 5850 K. High Tm values result in surprisingly high values for Earth's ICB temperature, because Δ Tf is low. A large Δ PTH results in a low Δ Tf.

  6. Characterization of Heat Melt Compactor (HMC) Product Water

    NASA Technical Reports Server (NTRS)

    Harris, Linden; Wignarajah, Kanapathipi; Alba, Richard Gilbert; Pace, Gregory S.; Fisher, John W.

    2013-01-01

    The Heat Melt Compactor (HMC) is designed to sterilize and process wastes produced during space missions. Benefits of the HMC include reduction of biohazards to the crew, reduction in volume of wastes that would otherwise require storage, production of radiation shielding tiles, and recovery of water and other resources. Water reuse is critical onboard spacecrafts; it reduces the need for resupply missions and saves valuable storage space. The main sources of water in HMC batches are food, beverages, shampoo, disinfecting wipes, toothpaste, and diapers. Water reclaimed by the HMC was analyzed for concentrations of Na+, NH4+, K+, Mg2+, Ca2+, Cl-­-, NO2-­-, Br-­-, NO3-­-, PO43-­-, SO42-­-, total organic carbon (TOC), total inorganic carbon (TIC), % total solids, and pH. The data are discussed in relation to the current water input characteristics established for the International Space Station Water Processor Assembly system. Batches with higher than average amounts of food produced HMC product water with higher sulfate content, and batches with higher proportions of disinfectant wipes and food yielded HMC product water with higher ammonium concentration. We also compared theoretical chemical composition of HMC product water based on food labels and literature values to experimental results.

  7. Core Formation: an Experimental Study of Metallic Melt-Silicate Segregation

    NASA Astrophysics Data System (ADS)

    Herpfer, M. A.; Larimer, J. W.

    1993-07-01

    To a large extent, the question of how metallic cores form reduces to the problem of understanding the surface tension between metallic melts and silicates [1]. This problem was addressed by performing experiments to determine the surface tensions between metallic melts with variable S contents and the silicate phases (olivine and orthopyroxene) expected in planetary mantles. The experiments were conducted in a piston-cylinder apparatus at P = 1GPa and T = 1250-1450 degrees C. Textural and chemical equilibration was confirmed in several ways: theoretical estimates were checked by conducting a series of experiments at progressively longer times (up to 72 hrs) until phase composition and dihedral angle ceased to change and the distribution of measured "apparent" angles matched the standard cumulative frequency curve. The dihedral "wetting" angles (theta) were measured from high resolution photomicrgraphs using a 10X optical protractor; 100-400 measurements were made for most experiments. The dihedral angle is related to the ratio of interfacial energies: gamma(sub)ss/gamma(sub)sl = 2 cos(theta/2), where gamma(sub)ss and gamma(sub)sl are the interfacial energies between solid-solid and liquid-solid. Since data exist for the pertinent solid-solid energies, the liquid-solid interfacial energies can be computed from measured theta values. However, the important relations are best expressed in terms of theta values. The extent to which a melt is interconnected along grain boundaries, and hence able to flow and segregate depends on the value of theta and the fraction of melt present. When theta < 60 degrees, the liquid can be interconnected at all melt fractions but when theta > 60 degrees, the melt fraction must be at least 1 vol% and increses as theta increases. Actually there is a predicted effect, analogous to a hysteresis effect, where for a given theta value the amount of melt that needs to be added for interconnection is greater than the amount left when the melt disconnects (pinches off). In our experiments, where dense metallic melt drained away, the disconnect theta values match the theoretical predictions. The composition of the metallic melt in the experiments was varied from stoichiometric FeS to Fe/S ratios near the the eutectic and on to more Fe rich compositons. The theta values vary in a systematic manner; for example, for melts in contact with olivine at 1300 degrees C the theta values range from 67 degrees for FeS to 55 degrees at the eutectic and back toward higher values at higher Fe contents. Theoretical considerations indicate that eutectic compositions are expected to have the lowest theta values, just as observed. The theta values indicate that melts with eutectic composition can interconnect and segregate at 1-2 vol% melt fraction at 1300 degrees C. Some previous estimates of the melt fraction required for interconnection are much higher [2,3], but the inferences were drawn from experiments that were not designed to test for textural equilibrium, fraction of melt present, etc. The present experiments clearly show that metallic melts can readily segregate from solid silicates. Simple extrapolations to other phases, compositions and PT conditions provide a rather complete picture of how the "plumbing" worked in the mantles of planetary objects during the initial stages of core segregation. References: [1] Stevenson D. J. (1990) In Origin of the Earth, 231-249. [2] Taylor G. J. (1989) LPSC XX, 1109. [3] Walker D. and Agee C. B. Meteor. 23, 81-91.

  8. Asteroid 4 Vesta: A Fully Differentiated Dwarf Planet

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David

    2014-01-01

    One conclusion derived from the study of meteorites is that some of them - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where metallic cores and basaltic crusts were formed. Telescopic observations show that there remains only one large asteroid with a basaltic crust, 4 Vesta; present day mean radius 263 km. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are cumulate gabbros, diabases and basalts from the upper crust. Howardites are impact-engendered breccias of diogenites and eucrites. A strong case can be made that HEDs are derived from Vesta. The NASA Dawn spacecraft orbited Vesta for 14 months returning data allowing geological, mineralogical, compositional and geophysical interpretations of Vesta's surface and structure. Combined with geochemical and petrological observations of HED meteorites, differentiation models for Vesta can be developed. Proto-Vesta probably consisted of primitive chondritic materials. Compositional evidence, primarily from basaltic eucrites, indicates that Vesta was melted to high degree (>=50%) which facilitated homogenization of the silicate phase and separation of immiscible Fe,Ni metal plus Fe sulphide into a core. Geophysical models based on Dawn data support a core of 110 km radius. The silicate melt vigorously convected and initially followed a path of equilibrium crystallization forming a harzburgitic mantle, possibly overlying a dunitic restite. Once the fraction of crystals was sufficient to cause convective lockup, the remaining melt collected between the mantle and the cool thermal boundary layer. This melt undergoes fractional crystallization to form a dominantly orthopyroxenite (diogenite) lower crust. The initial thermal boundary layer of primitive chondritic material is gradually replaced by a mafic crust through impact disruption and foundering. The quenched mafic crust thickens over time through magma extrusion/intrusion. Melt from the residual magma ocean intrudes and penetrates the mafic crust forming cumulate eucrite plutons, and dikes, sills and flows of basaltic eucrite composition. The post-differentiation vestan structure is thus not too dissimilar from that of terrestrial planets: (i) a metallic core; (ii) an ultramafic mantle comprised of a lower dunitic layer (if melting was substantially <100%) and an upper cumulate harzburgitic layer; (iii) a lower crust of harzburgitic and orthopyroxenitic cumulates; and (iv) an upper mafic crust of basalts and diabases (melt compositions) with cumulate gabbro intrusions. Impacts have excavated to the lower crust and delivered howardites, eucrites and diogenites to Earth, but there is yet no evidence demonstrating excavation of the vestan mantlle.

  9. Subsurface iceberg melt key to Greenland fjord freshwater budget

    NASA Astrophysics Data System (ADS)

    Moon, T.; Sutherland, D. A.; Carroll, D.; Felikson, D.; Kehrl, L.; Straneo, F.

    2018-01-01

    Liquid freshwater fluxes from the Greenland ice sheet affect ocean water properties and circulation on local, regional and basin-wide scales, with associated biosphere effects. The exact impact, however, depends on the volume, timing and location of freshwater releases, which are poorly known. In particular, the transformation of icebergs, which make up roughly 30-50% of the loss of the ice-sheet mass to liquid freshwater, is not well understood. Here we estimate the spatial and temporal distribution of the freshwater flux for the Helheim-Sermilik glacier-fjord system in southeast Greenland using an iceberg-melt model that resolves the subsurface iceberg melt. By estimating seasonal variations in all the freshwater sources, we confirm quantitatively that iceberg melt is the largest annual freshwater source in this system type. We also show that 68-78% of the iceberg melt is released below a depth of 20 m and, seasonally, about 40-100% of that melt is likely to remain at depth, in contrast with the usual model assumptions. Iceberg melt also peaks two months after all the other freshwater sources peak. Our methods provide a framework to assess individual freshwater sources in any tidewater system, and our results are particularly applicable to coastal regions with a high solid-ice discharge in Greenland.

  10. A scaling relationship for impact-induced melt volume

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Rubie, D. C.; Melosh, H., IV; Jacobson, S. A.; Golabek, G.; Nimmo, F.; Morbidelli, A.

    2016-12-01

    During the late stages of planetary accretion, protoplanets experience a number of giant impacts and extensive mantle melting. The impactor's core sinks through the molten part of the target mantle (magma ocean) and experiences metal-silicate partitioning (e.g., Stevenson, 1990). For understanding the chemical evolution of the planetary mantle and core, we need to determine the impact-induced melt volume because the partitioning strongly depends on the ranges of the pressures and temperatures within the magma ocean. Previous studies have investigated the effects of small impacts (i.e. impact cratering) on melt volume, but those for giant impacts are not well understood yet. Here, we perform giant impact simulations to derive a scaling law for melt volume as a function of impact velocity, impact angle, and impactor-to-target mass ratio. We use two different numerical codes, namely smoothed particle hydrodynamics we developed (SPH, a particle method) and the code iSALE (a grid-based method) to compare their outcomes. Our simulations show that these two codes generally agree as long as the same equation of state is used. We also find that some of the previous studies developed for small impacts (e.g., Abramov et al., 2012) overestimate giant impact melt volume by orders of magnitudes partly because these models do not consider self-gravity of the impacting bodies. Therefore, these models may not be extrapolated to large impacts. Our simulations also show that melt volume can be scaled by the total mass of the system. In this presentation, we further discuss geochemical implications for giant impacts on planets, including Earth and Mars.

  11. Eemian interglacial reconstructed from a Greenland folded ice core.

    PubMed

    2013-01-24

    Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

  12. A More Reduced Mantle Source for Enriched Shergottites; Insights from the Olivine-Phyric Shergottite Lar 06319

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Hnatyshin, D.; Herd, C. D. K.; Walton, E. L.; Brandon, A. D.; Lapen, T. J.; Shafer, J.

    2010-01-01

    A detailed petrographic study of melt inclusions and Cr-Fe-Ti oxides of LAR 06319 leads to two main conclusions: 1) this enriched oxidized olivine- phyric shergottite represents nearly continuous crystallization of a basaltic shergottite melt, 2) the melt became more oxidized during differentiation. The first crystallized mineral assemblages record the oxygen fugacity which is closest to that of the melt s mantle source, and which is lower than generally attributed to the enriched shergottite group.

  13. Geologic History of Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2014-01-01

    Some types of meteorites - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where magmatism occurred within a very few million years of the formation of the earliest solids in the solar system. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid]. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are basalts, diabases and cumulate gabbros from the upper crust. Howardites are impact-engendered breccias mostly of diogenites and eucrites. There remains only one large asteroid with a basaltic crust, 4 Vesta, which is thought to be the source of the HED clan. Differentiation models for Vesta are based on HED compositions. Proto-Vesta consisted of chondritic materials containing Al-26, a potent, short-lived heat source. Inferences from compositional data are that Vesta was melted to high degree (=50%) allowing homogenization of the silicate phase and separation of a metallic core. Convection of the silicate magma ocean allowed equilibrium crystallization, forming a harzburgitic mantle. After convective lockup occurred, melt collected between the mantle and the cool thermal boundary layer and underwent fractional crystallization forming an orthopyroxene-rich (diogenite) lower crust. The initial thermal boundary layer of chondritic material was replaced by a mafic upper crust through impact disruption and foundering. The mafic crust thickened over time as additional residual magma intrudes and penetrates the mafic crust forming plutons, dikes, sills and flows of cumulate and basaltic eucrite composition. This magmatic history may have taken only 2-3 Myr. This magma ocean scenario is at odds with a model of heat and magma transport that indicates that small degrees of melt would be rapidly expelled from source regions, precluding development of a magma ocean. Constraints from radiogenic Mg-26 distibutions suggest that the parent asteroid of HEDs was much smaller than Vesta. Thus, first-order questions regarding asteroid differentiation remain.

  14. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  15. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  16. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice.

    PubMed

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A

    2010-05-01

    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  17. Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy.

    PubMed

    Glover, Amanda L; Bennett, James B; Pritchett, Jeremy S; Nikles, Sarah M; Nikles, David E; Nikles, Jacqueline A; Brazel, Christopher S

    2013-01-01

    The inclusion of magnetic nanoparticles into block copolymer micelles was studied towards the development of a targeted, magnetically triggered drug delivery system for cancer therapy. Herein, we report the synthesis of magnetic nanoparticles and poly(ethylene glycol-b-caprolactone) block copolymers, and experimental verification of magnetic heating of the nanoparticles, self-assembly of the block copolymers to form magnetic micelles, and thermally-enhanced drug release. The semicrystalline core of the micelles melted at temperatures just above physiological conditions, indicating that they could be used to release a chemotherapy agent from a thermo-responsive polymer system. The magnetic nanoparticles were shown to heat effectively in high frequency magnetic fields ranging from 30-70 kA/m. Magnetic micelles also showed heating properties, that when combined with a chemotherapeutic agent and a targeting ligand could be developed for localized, triggered drug delivery. During the magnetic heating experiments, a time lag was observed in the temperature profile for magnetic micelles, likely due to the heat of fusion of melting of polycaprolactone micelle cores before bulk solution temperatures increased. Doxorubicin, incorporated into the micelles, released faster when the micelles were heated above the core melting point.

  18. Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism

    NASA Astrophysics Data System (ADS)

    Condamine, Pierre; Médard, Etienne

    2014-07-01

    We have experimentally investigated the fluid-absent melting of a phlogopite peridotite at 1.0 GPa (1000-1300 °C) to understand the source of K2O- and SiO2-rich magmas that occur in continental, post-collisional and island arc settings. Using a new extraction technique specially developed for hydrous conditions combined with iterative sandwich experiments, we have determined the composition of low- to high-degree melts (Φ=1.4 to 24.2 wt.%) of metasomatized lherzolite and harzburgite sources. Due to small amounts of adsorbed water in the starting material, amphibole crystallized at the lowest investigated temperatures. Amphibole breaks down at 1050-1075 °C, while phlogopite-breakdown occurs at 1150-1200 °C. This last temperature is higher than the previously determined in a mantle assemblage, due to the presence of stabilizing F and Ti. Phlogopite-lherzolite melts incongruently according to the continuous reaction: 0.49 phlogopite + 0.56 orthopyroxene + 0.47 clinopyroxene + 0.05 spinel = 0.58 olivine + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.70 phlogopite + 1.24 orthopyroxene + 0.05 spinel = 0.99 olivine + 1.00 melt. The K2O content of water-undersaturated melts in equilibrium with residual phlogopite is buffered, depending on the source fertility: from ∼3.9 wt.% in lherzolite to ∼6.7 wt.% in harzburgite. Primary melts are silica-saturated and evolve from trachyte to basaltic andesite (63.5-52.1 wt.% SiO2) with increasing temperature. Calculations indicate that such silica-rich melts can readily be extracted from their mantle source, due to their low viscosity. Our results confirm that potassic, silica-rich magmas described worldwide in post-collisional settings are generated by melting of a metasomatized phlogopite-bearing mantle in the spinel stability field.

  19. Stretching and smearing of chemical heterogeneity by melting and melt migration beneath mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liang, Y.

    2017-12-01

    The size of mantle source heterogeneity is important to the interpretation of isotopic signals observed in residual peridotites and basalts. During concurrent melting and melt migration beneath a mid-ocean ridge, both porosity and melt velocity increase upward, resulting in an upward increase in the effective transport velocity for a trace element. Hence a chemical heterogeneity of finite size will be stretched during its transport in the upwelling mantle. This melt migration induced chemical deformation can be quantified by a simple stretching factor. During equilibrium melting, the isotope signals of Sr, Nd and Hf in a 1 km size enriched mantle will be stretched to 2 6 km at the top of the melting column, depending on the style of melt migration. A finite rate of diffusive exchange between residual minerals and partial melt will result in smearing of chemical heterogeneity during its transport in the upwelling melting column. A Gaussian-shaped enriched source in depleted background mantle would be gradually deformed its transit through the melting column. The width of the enriched signal spreads out between the fronts of melt and solid while its amplitude decreases. This melt migration induced smearing also cause mixing of nearby heterogeneities or absorption of enriched heterogeneity by the ambient mantle. Smaller heterogeneities in the solid is more efficiently mixed or aborted by the background mantle than larger ones. Mixing of heterogeneities in the melt depends on the size in the same sense although the erupted melt is more homogenized due to melt accumulation and magma chamber process. The mapping of chemical heterogeneities observed in residual peridotites and basalts into their source region is therefore highly nonlinear. We will show that the observed variations in Nd and Hf isotopes in the global MORB and abyssal peridotites are consistent with kilometer-scale enriched heterogeneities embedded in depleted MORB mantle.

  20. Melting of Fe and Fe0.9Ni0.1 alloy at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Jackson, J. M.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Hu, M. Y.; Toellner, T.

    2014-12-01

    Cosmochemical studies suggest that the cores of terrestrial planets are primarily composed of Fe alloyed with about 5 to 10 wt% Ni, plus some light elements (e.g., McDonough and Sun 1995). Thus, the high pressure melting curve of Fe0.9Ni0.1 is considered to be an important reference for characterizing the cores of terrestrial planets. We have determined the melting points of fcc-structured Fe and Fe0.9Ni0.1 up to 86 GPa using an in-situ method that monitors the atomic dynamics of the Fe atoms in the sample, synchrotron Mössbauer spectroscopy (Jackson et al. 2013). A laser heated diamond anvil cell is used to provide the high pressure-high temperature environmental conditions, and in-situ X-ray diffraction is used to constrain the pressure of the sample. To eliminate the influence of temperature fluctuations experienced by the sample on the determination of melting, we develop a Fast Temperature Readout (FasTeR) spectrometer. The FasTeR spectrometer features a fast reading rate (>100 Hz), a high sensitivity, a large dynamic range and a well-constrained focus. By combining the melting curve of fcc-structured Fe0.9Ni0.1 alloy determined in our study and the fcc-hcp phase boundary from Komabayashi et al. (2012), we calculate the fcc-hcp-liquid triple point of Fe0.9Ni0.1. Using this triple point and the thermophysical parameters from a nuclear resonant inelastic X-ray scattering study on hcp-Fe (Murphy et al. 2011), we compute the melting curve of hcp-structured Fe0.9Ni0.1. We will discuss our new experimental results with implications for the cores of Venus, Earth and Mars. Select references: McDonough & Sun (1995): The composition of the Earth. Chem. Geol. 120, 223-253. Jackson et al. (2013): Melting of compressed iron by monitoring atomic dynamics, EPSL, 362, 143-150. Komabayashi et al. (2012): In situ X-ray diffraction measurements of the fcc-hcp phase transition boundary of an Fe-Ni alloy in an internally heated diamond anvil cell, PCM, 39, 329-338. Murphy et al. (2011): Melting and thermal pressure of hcp-Fe from the phonon density of states, PEPI, 188, 114-120.

  1. Fe-Ti-oxide textures and microstructures in shear zones from oceanic gabbros at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Morales, Luiz F. G.; Rybacki, Erik

    2016-04-01

    Ocean drilling expeditions at several oceanic core complexes formed at slow- and ultra-slow-spreading ridges have recovered cores containing numerous zones of oxide-rich gabbros containing ilmenite and magnetite. In these cores, high modal concentrations of Fe-Ti-oxides are systematically associated with high-temperature plastic deformation features in silicates. We present observations of Fe-Ti-oxide mineral structures and textural characteristics from a series of oxide-rich shear zones from Atlantis Bank (ODP Site 735B) on the Southwest Indian Ridge aimed at determining how oxide mineral abundances relate to strain localization. Fe-Ti-oxide minerals in undeformed oxide gabbros and in highly deformed samples from natural shear zones generally have morphologies characteristic of crystallized melt, including highly cuspate grains and low dihedral angles. Anisotropy of magnetic susceptibility in oxide-rich shear zones is very strong, with fabrics mainly characterized by strong magnetic foliations parallel to the macroscopic foliation. Crystallographic preferred orientations (CPO) in magnetite are generally weak, with occasionally well-defined textures. Ilmenite typically displays well-developed CPOs, however, the melt-like ilmenite grain shapes indicate that at least part of the crystallographic texture results from oriented ilmenite growth during post-deformation crystallization. The oxides are hypothesized to have initially been present as isolated pockets of trapped melt (intercumulus liquid) in a load-bearing silicate framework. Progressive plastic deformation of silicate phases at high-temperature mainly produced two features: (i) elongated melt pockets, which crystallized to form strings of opaque minerals and (ii), interconnected networks of melt regions. The latter lead to intense strain localization of the rock, which appears as oxide-rich mylonites in the samples. In some samples, abundant low-angle grain boundaries in both magnetite and ilmenite suggest that deformation may have continued after crystallization of the late melt, imposing a weak strain on the oxides. Recent experimental deformation results indicate that magnetite and ilmenite should be weaker than most mafic silicates under anhydrous conditions. However, melt-like oxide morphologies observed in Atlantis Bank shear zones indicate that the redistribution of Fe-Ti-oxide melts may have more influence on the strength and strain localization behavior of oceanic gabbros than their solid-state rheology.

  2. Compositions of Magmatic and Impact Melt Sulfides in Tissint And EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Rao, M. N.; Nyquist, L.; Agee, C.; Sutton, S.

    2013-01-01

    Immiscible sulfide melt spherules are locally very abundant in shergottite impact melts. These melts can also contain samples of Martian atmospheric gases [1], and cosmogenic nuclides [2] that are present in impact melt, but not in the host shergottite, indicating some components in the melt resided at the Martian surface. These observations show that some regolith components are, at least locally, present in the impact melts. This view also suggests that one source of the over-abundant sulfur in these impact melts could be sulfates that are major constituents of Martian regolith, and that the sulfates were reduced during shock heating to sulfide. An alternative view is that sulfide spherules in impact melts are produced solely by melting the crystalline sulfide minerals (dominantly pyrrhotite, Fe(1-x)S) that are present in shergottites [3]. In this abstract we report new analyses of the compositions of sulfide immiscible melt spherules and pyrrhotite in the shergottites Tissint, and EETA79001,507, and we use these data to investigate the possible origins of the immiscible sulfide melt spherules. In particular, we use the metal/S ratios determined in these blebs as potential diagnostic criteria for tracking the source material from which the numerous sulfide blebs were generated by shock in these melts.

  3. Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Yongquan; Shen, Tong; Lu, Xionggang

    2013-03-01

    A structural evolution during solidification and melting processes of nanoparticle Fe9577 was investigated from MD simulations. A perfect lamellar structure, consisting alternately of fcc and hcp layers, was obtained from solidification process. A structural heredity of early embryo is proposed to explain the structural preference of solidification. Defects were found inside the solid core and play the same role as surface premelting on melting. hcp was found more stable than fcc in high temperature. The difference between melting and solidification points can be deduced coming fully from the overcoming of thermodynamic energy barrier, instead of kinetic delay of structural relaxation.

  4. No sodium in the vapour plumes of Enceladus.

    PubMed

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  5. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (<5 μm) contain halite crystals indicating a saline environment during magnetite growth. The combination of these observations are consistent with a formation model for IOA deposits in northern Chile that involves crystallization of magnetite microlites from a silicate melt, nucleation of aqueous fluid bubbles on magnetite surfaces, and formation and ascent of buoyant fluid bubble-magnetite aggregates. Decompression of the fluid-magnetite aggregate during ascent along regional-scale transcurrent faults promotes continued growth of the magmatic magnetite microlites from the Fe-rich magmatic-hydrothermal fluid, which manifests in magnetite rims that have trace element abundances consistent with growth from a magmatic-hydrothermal fluid. Mass balance calculations indicate that this process can leach and transport sufficient Fe from a magmatic source to form large IOA deposits such as Los Colorados. Furthermore, published experimental data demonstrate that a saline magmatic-hydrothermal ore fluid will scavenge significant quantities of metals such as Cu and Au from a silicate melt, and when combined with solubility data for Fe, Cu and Au, it is plausible that the magmatic-hydrothermal ore fluid that continues to ascend from the IOA depositional environment can retain sufficient concentrations of these metals to form iron oxide copper-gold (IOCG) deposits at lateral and/or stratigraphically higher levels in the crust. Notably, this study provides a new discrimination diagram to identify magnetite from Kiruna-type deposits and to distinguish them from IOCG, porphyry and Fe-Ti-V/P deposits, based on low Cr (<100 ppm) and high V (>500 ppm) concentrations.

  6. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  7. Constant electrical resistivity of Ni along the melting boundary up to 9 GPa

    NASA Astrophysics Data System (ADS)

    Silber, Reynold E.; Secco, Richard A.; Yong, Wenjun

    2017-07-01

    Characterization of transport properties of liquid Ni at high pressures has important geophysical implications for terrestrial planetary interiors, because Ni is a close electronic analogue of Fe and it is also integral to Earth's core. We report measurements of the electrical resistivity of solid and liquid Ni at pressures 3-9 GPa using a 3000 t multianvil large volume press. A four-wire method, in conjunction with a rapid acquisition meter and polarity switch, was used to overcome experimental challenges such as melt containment and maintaining sample geometry and to mitigate the extreme reactivity/solubility of liquid Ni with most thermocouple and electrode materials. Thermal conductivity is calculated using the Wiedemann-Franz law. Electrical resistivity of solid Ni exhibits the expected P dependence and is consistent with earlier experimental values. Within experimental uncertainties, our results indicate that resistivity of liquid Ni remains invariant along the P-dependent melting boundary, which is in disagreement with earlier prediction for liquid transition metals. The potential reasons for such behavior are examined qualitatively through the impact of P-independent local short-range ordering on electron mean free path and the possibility of constant Fermi surface at the onset of Ni melting. Correlation among metals obeying the Kadowaki-Woods ratio and the group of late transition metals with unfilled d-electron band displaying anomalously shallow melting curves suggests that on the melting boundary, Fe may exhibit the same resistivity behavior as Ni. This could have important implications for the heat flow in the Earth's core.

  8. Fire impacts on the cryosphere

    NASA Astrophysics Data System (ADS)

    Kehrwald, N. M.; Zennaro, P.; Skiles, M.; Barbante, C.

    2015-12-01

    Continental-scale smog clouds and massive boreal smoke plumes deposit dark particles on glaciers, darkening their surfaces and altering surface albedo. These atmospheric brown clouds are primarily comprised of both fossil fuel and biomass burning combustion products. Here, we examine the biomass burning contribution to aerosols trapped in the cryosphere through investigating the specific molecular marker levoglucosan (1,6-anhydro-β-D-glucopyranose) in ice cores. Levoglucosan is only produced by cellulose combustion, and therefore is an ideal comparison for multi-proxy investigations incorporating other markers with multiple sources. Wildfire combustion products are a major component of dark aerosols deposited on the Greenland ice sheet during the 2012 melt event. Levoglucosan concentrations that demonstrate the biomass burning contribution are similar to black carbon concentrations that record both fossil fuel and biomass burning during this same event. This similarity is especially important as levoglucosan and black carbon trends differ during the industrial era in the NEEM, Greenland ice core, demonstrating different contributions of fossil fuel and biomass burning to the Greenland ice sheet. These differences are also present in the EPICA Dome C Antarctic ice core. Low-latitude ice cores such as Kilimanjaro, Tanzania and Muztag, Tibet demonstrate that climate is still the primary control over fire activity in these regions, even with increased modern biomass burning and the possible impacts of atmospheric brown clouds.

  9. Microstructural evidence of melting in crustal rocks (Invited)

    NASA Astrophysics Data System (ADS)

    Holness, M. B.; Cesare, B.; Sawyer, E. W.

    2010-12-01

    The signature of the former presence of melt on a microscopic scale is highly variable, subject to modification both during the melting event and during its subsequent history. Static pyrometamorphism results in melt films on grain boundaries between reactant phases. If a volume increase is involved, melting results in hydrofracture. On a longer timescale, as demonstrated by fragments of the crustal source in lava flows at El Hoyazo (SE Spain), melt occurs throughout the rock. These examples are highly unusual: the great majority of rocks that underwent melting cooled more slowly, permitting microstructural modification driven by a combination of textural equilibration, reaction and deformation. In the absence of deformation, and at constant temperature, melt-bearing rocks approach textural equilibrium, characterised by uniform grain size, smoothly curved grain boundaries and the establishment at all three-grain junctions of the equilibrium dihedral angle. The dihedral angle controls melt connectivity, with consequences for melt mobility and rock rheology. However, deformation is the rule rather than the exception in regional metamorphic terrains with profound effects on melt distribution. If deformation occurs predominantly by diffusive processes, textural equilibration can keep pace. At higher deformation rates melt is squeezed into planar pockets aligned parallel to the shearing direction or perpendicular to the extensional stress. Microstructures formed during solidification are controlled by cooling rate, H2O, and the size of the melt pockets. Large pockets solidify to look like igneous rocks. In small pores the supersaturation required for crystal growth is high and melt persist to lower temperatures, even being preserved as tiny glassy inclusions (“nanogranites”) in regional terranes. The pore size effect changes crystallization order, resulting in small, highly cuspate grains on grain boundaries with low dihedral angles. Crystallisation microstructures of poly-component liquids are highly dependent on diffusion rates, and therefore H2O content. Dry conditions result in diffusion-limited crystallisation to form intergrowths and symplectites (e.g. granophyre). The cooling rate must be slow in order to nucleate and grow individual grains from the melt. If the melt was primarily concentrated in thick films on grain boundaries this results in the “string of beads” texture. If there is sufficient water, and the rocks stay sufficiently hot, the microstructures will move towards a granular texture, driven by the reduction in interfacial energy. Highly cuspate pseudomorphs of melt at three-grain junctions will become rounded as the dihedral angle increases (generally towards the range 110-140°). Melt-related microstructures are more likely to be retained in dry rocks: in migmatite terranes in which melting was driven by infiltration of aqueous fluids and where melt extraction wasn’t pervasive, microstructures are likely to have been significantly modified by sub-solidus recrystallisation, especially likely if the rock underwent intense deformation on the retrograde path.

  10. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  11. Reduction of nonpoint source contamination of surface water and groundwater by starch encapsulation of herbicides

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.

    1994-01-01

    The loss of the preemergent herbicide atrazine in surface runoff from experimental field plots growing corn (Zea mays L.) was significantly reduced using a starchencapsulated formulation versus a conventional powdered formulation. Field edge losses of starch-encapsulated atrazine were described as following a Rayleigh distribution totaling 1.8% of applied herbicide compared to exponential powdered atrazine losses of 2.9% applied - a 40% decrease. This has important implications for the reduction of nonpoint source contamination of surface water by agricultural chemicals. Unsaturated zone release of starchencapsulated atrazine was gradual, but comparable weed control was maintained. Deethylatrazine was a major dealkylated metabolite from each formulation, and deisopropylatrazine was a minor metabolite. The determination of soil partition coefficients for deethylatrazine and deisopropylatrazine (0.4 and 0.3, respectively), aqueous solubilities (3200 and 670 mg/L, respectively), and melting points (133 and 177 ??C, respectively) confirmed that the dealkylated metabolites should move more rapidly through the soil profile to groundwater than atrazine.

  12. Thermal Modeling of the Injection of Standard and Thermally Insulated Cored Wire

    NASA Astrophysics Data System (ADS)

    Castro-Cedeno, E.-I.; Jardy, A.; Carré, A.; Gerardin, S.; Bellot, J. P.

    2017-12-01

    Cored wire injection is a widespread method used to perform alloying additions during ferrous and non-ferrous liquid metal treatment. The wire consists of a metal casing that is tightly wrapped around a core of material; the casing delays the release of the material as the wire is immersed into the melt. This method of addition presents advantages such as higher repeatability and yield of cored material with respect to bulk additions. Experimental and numerical work has been performed by several authors on the subject of alloy additions, spherical and cylindrical geometries being mainly considered. Surprisingly this has not been the case for cored wire, where the reported experimental or numerical studies are scarce. This work presents a 1-D finite volume numerical model aimed for the simulation of the thermal phenomena which occurs when the wire is injected into a liquid metal bath. It is currently being used as a design tool for the conception of new types of cored wire. A parametric study on the effect of injection velocity and steel casing thickness for an Al cored wire immersed into a steel melt at 1863 K (1590 °C) is presented. The standard single casing wire is further compared against a wire with multiple casings. Numerical results show that over a certain range of injection velocities, the core contents' release is delayed in the multiple casing when compared to a single casing wire.

  13. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Caracas, Razvan; Reaman, Daniel M.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2012-12-01

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure-temperature properties and behavior of an iron-silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe-16 wt%Si to 140 GPa, finding a conversion from the D03 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, if it consists solely of Fe-Si alloy, and that the eutectic composition in the Fe-Si system is less than 16 wt% silicon at core-mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe-Ni-Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core-mantle boundary. We have also performed first-principles calculations of the equations of state of Fe3Si with the D03 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.

  14. Geochemical characteristics of the La Réunion mantle plume source inferred from olivine-hosted melt inclusions from the adventive cones of Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Valer, Marina; Schiano, Pierre; Bachèlery, Patrick

    2017-09-01

    Major and trace element compositions were obtained for bulk rocks and melt inclusions hosted in olivine crystals (Fo > 85) from the adventive cones of the Piton de La Fournaise volcano (La Réunion Island). Ratios of highly incompatible trace elements for these magmas are used to identify the nature of the La Réunion mantle plume source. Although adventive cone lavas display unusual major element compositions compared to the historical lavas of the volcano (e.g., lower CaO/Al2O3), trace element data suggest that the magmas emitted by the adventive cones originate from a common chemical source. This source may correspond to either a homogeneous mixed source of different mantle components or a near-primitive less-differentiated mantle source. The melt inclusions display ratios of highly incompatible elements (e.g., Th/La, Nb/La) which are similar to primitive mantle values, and lower Nb/U ratios compared to most oceanic basalts. These results and previous isotopic and trace element data suggest that La Réunion plume samples a source which is intermediate between a primitive-like mantle domain and a slightly depleted one almost unaffected by the recycling processes. This source could have originated from early depletion of the primitive mantle. Assuming a depletion 4.45 Gyr ago, 10% melting of this slightly depleted source could explain the enriched trace element concentrations of the melt inclusions.

  15. Compact X-ray Binary Re-creation in Core Collapse: NGC 6397

    NASA Astrophysics Data System (ADS)

    Grindlay, J. E.; Bogdanov, S.; van den Berg, M.; Heinke, C.

    2005-12-01

    We report new Chandra observations of the core collapsed globular cluster NGC 6397. In comparison with our original Chandra observations (Grindlay et al 2001, ApJ, 563, L53), we now detect some 30 sources (vs. 20) in the cluster. A new CV is confirmed, though new HST/ACS optical observations (see Cohn et al this meeting) show that one of the original CV candidates is a background AGN). The 9 CVs (optically identified) yet only one MSP and one qLMXB suggest either a factor of 7 reduction in NSs/WDs vs. what we find in 47Tuc (see Grindlay 2005, Proc. Cefalu Conf. on Interacting Binaries) or that CVs are produced in the core collapse. The possible second MSP with main sequence companion, source U18 (see Grindlay et al 2001) is similar in its X-ray and optical properties to MSP-W in 47Tuc, which must have swapped its binary companion. Together with the one confirmed (radio) MSP in NGC 6397, with an evolved main sequence secondary, the process of enhanced partner swapping in the high stellar density of core collapse is implicated. At the same time, main sequence - main sequence binaries (active binaries) are depleted in the cluster core, presumably by "binary burning" in core collapse. These binary re-creation and destruction mechanisms in core collapse have profound implications for binary evolution and mergers in globulars that have undergone core collapse.

  16. An electrochemical series of redox couples in silicate melts - A review and applications to geochemistry

    NASA Technical Reports Server (NTRS)

    Schreiber, Henry D.

    1987-01-01

    An electrochemical series for redox couples in a glass-forming oxide melt is developed. This series is a quantitative numerical scale of reference reduction potentials of the redox couples in a silicate melt that is a model for basaltic magmas. The redox couples are ordered in terms of their reference reduction potentials; the order appears to be relatively independent of the exact melt composition and temperature. Thus, upon calibration to a desired composition, oxygen fugacity, and temperature, this electrochemical series can provide estimates of redox state proportions in basaltic magmas on different planetary bodies. The geochemical electrochemical series can also be used to understand the interrelationship of the redox state of the magma and the presence of volatile species such as oxygen, water, sulfur gases, and carbon gases.

  17. High resolution and high precision on line isotopic analysis of Holocene and glacial ice performed in the field

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Johnsen, S. J.; Blunier, T.; Bigler, M.; Stowasser, C.; Schüpbach, S.; Leuenberger, D.

    2010-12-01

    Ice core records as obtained from polar ice caps provide a wealth of paleoclimatic information. One of the main features of ice cores is their potential for high temporal resolution. The isotopic signature of the ice, expressed through the relative abundances of the two heavy isotopologues H218O and HD16O, is a widely used proxy for the reconstruction of past temperature and accumulation. One step further the combined information obtained from these two isotopologues, commonly referred to as the deuterium excess, can be utilized to infer additional information about the source of the precipitated moisture. Until very recently isotopic analysis of polar ice was performed with isotope Ratio Mass Spectrometry (IRMS) in a discrete fashion resulting in a high workload related to the preparation of samples. Most important though the available temporal resolution of the ice core was in many cases not fully exploited. In order to overcome these limitations we have developed a system that interfaces a commercially available IR laser cavity ring-down spectrometer tailored for water isotope analysis to a stream of liquid water as extracted from a continuously melted ice rod. The system offers the possibility for simultaneous δ18O and δD analysis with a sample requirement of approximately 0.1 ml/min. The system has been deployed in the field during the NEEM ice core drilling project on 2009 and 2010. In this study we present actual on line measurements of Holocene and glacial ice. We also discuss how parameters as the melt rate, acquisition rate and integration time affect the obtained precision and resolution and we describe data analysis techniques that can improve these last two parameters. By applying spectral methods we are able to quantify the smoothing effects imposed by diffusion of the sample in the sample transfer lines and the optical cavity of the instrument. We demonstrate that with an acquisition rate of 0.2 Hz we are able to obtain a precision of 0.5‰ and 0.15‰ for δD and δ18O respectively. This is comparable to the performance of traditional IRMS systems for δD but slightly less precise for δ18O. With this acquisition rate the system’s 3db bandwidth is 0.006 Hz. With a melt rate equal to 3 cm/min, the latter translates to signals with wavelengths of 8.3 cm. We will comment on the quality of the acquired ice core data and their potential use for dating, paleotemperature reconstruction, isotopic firn diffusion and deuterium excess studies.

  18. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano

    NASA Astrophysics Data System (ADS)

    Bryce, Julia G.; Depaolo, Donald J.; Lassiter, John C.

    2005-09-01

    Sr, Nd, and Os isotopic measurements were made on 110 Mauna Kea lava and hyaloclastite samples from the drillcore retrieved from the second phase of the Hawaii Scientific Drilling Project (HSDP-2). The samples come from depths of 255 to 3098 meters below sea level, span an age range from 200 to about 550-600 kyr, and represent an ordered record of the lava output from Mauna Kea volcano as it drifted a distance of about 40 km over the magma-producing region of the Hawaiian hot spot. The deepest (oldest) samples represent the time when Mauna Kea was closest to the center of the melting region of the Hawaiian plume. The Sr and Os isotopic ratios in HSDP-2 lavas show only subtle isotopic shifts over the ˜400 kyr history represented by the core. Neodymium isotopes (ɛNd values) increase systematically with decreasing age from an average value of nearly +6.5 to an average value of +7.5. This small change corresponds to subtle shifts in 87Sr/86Sr and 187Os/188Os isotope ratios, with small shifts of ɛHf, a large shift in 208Pb/204Pb and 208Pb/207Pb values, and with a very large shift in He isotope ratios from R/RA values of about 7-8 to values as high as 25. When Mauna Kea was closest to the plume core, the magma source did not have primitive characteristics for Nd, Sr, Pb, Hf, and Os isotopes but did have variable amounts of "primitive" helium. The systematic shifts in Nd, Hf, Pb, and He isotopes are consistent with radial isotopic zoning within the melting region of the plume. The melting region constitutes only the innermost, highest-temperature part of the thermally anomalous plume mantle. The different ranges of values observed for each isotopic system, and comparison of Mauna Kea lavas with those of Mauna Loa, suggest that the axial region of the plume, which has a radius of ˜20 km, is a mixture of recycled subducted components and primitive lower mantle materials, recently combined during the formational stages of the plume at the base of the mantle. The proportions of recycled and primitive components are not constant, and this requires there be longitudinal (vertical) heterogeneity within the core of the plume. The remainder of the plume, outside this plume "core zone," is less heterogeneous but distinct from upper mantle as represented by mid-ocean ridge basalt (MORB). The plume structure may provide a detailed view of mantle isotopic composition near the core-mantle boundary.

  19. Constraining lithospheric removal and asthenospheric input to melts in Central Asia: A geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia)

    NASA Astrophysics Data System (ADS)

    Sheldrick, Thomas C.; Barry, Tiffany L.; Van Hinsbergen, Douwe J. J.; Kempton, Pamela D.

    2018-01-01

    Throughout northeast China, eastern and southern Mongolia, and eastern Russia there is widespread Mesozoic intracontinental magmatism. Extensive studies on the Chinese magmatic rocks have suggested lithospheric mantle removal was a driver of the magmatism. The timing, distribution and potential diachroneity of such lithospheric mantle removal remains poorly constrained. Here, we examine successions of Mesozoic lavas and shallow intrusive volcanic plugs from the Gobi Altai in southern Mongolia that appear to be unrelated to regional, relatively small-scale deformation; at the time of magmatism, the area was 200 km from any active margin, or, after its Late Jurassic-Early Cretaceous closure, from the suture of the Mongol-Okhotsk Ocean. 40Ar/39Ar radiometric age data place magmatic events in the Gobi Altai between 220 to 99.2 Ma. This succession overlaps Chinese successions and therefore provides an opportunity to constrain whether Mesozoic lithosphere removal may provide an explanation for the magmatism here too, and if so, when. We show that Triassic to Lower Cretaceous lavas in the Gobi Altai (from Dulaan Bogd, Noyon Uul, Bulgantiin Uul, Jaran Bogd and Tsagaan Tsav) are all light rare-earth element (LREE) and large-ion lithophile element (LILE)-enriched, with negative Nb and Ta anomalies (Nb/La and Ta/La ≤ 1). Geochemical data suggest that these lavas formed by low degrees of partial melting of a metasomatised lithospheric mantle that may have been modified by melts derived from recycled rutile-bearing eclogite. A gradual reduction in the involvement of garnet in the source of these lavas points towards a shallowing of the depth of melting after 125 Ma. By contrast, geochemical and isotope data from the youngest magmatic rocks in the area - 107-99 Ma old volcanic plugs from Tsost Magmatic Field - have OIB-like trace element patterns and are interpreted to have formed by low degrees of partial melting of a garnet-bearing lherzolite mantle source. These rocks did not undergo significant crustal contamination, and were derived from asthenospheric mantle. The evidence of a gradual shallowing of melting in the Gobi lava provinces, culminating in an asthenospheric source signature in the youngest magmatic rocks is similar to examples from neighboring China, emphasising the wide-scale effect of a regional Mesozoic magmatic event during similar time periods. We suggest that Mongolia underwent lithospheric thinning/delamination during the Mesozoic (between 125 and 107 Ma) with patchy areas thinning sufficiently to enable the generation of relatively small-scale asthenospheric-derived magmatism to predominate in the late Cretaceous.

  20. Iron-rich (Fe1-x-yNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Dong, Bowen; Lan, Song; Willard, Matthew A.

    2018-05-01

    As inductor technology advances, greater efficiency and smaller components demand new core materials. With recent developments of nanocrystalline magnetic materials, soft magnetic properties of these cores can be greatly improved. FeCo-based nanocrystalline magnetic alloys have resulted in good soft magnetic properties and high Curie temperatures; however, magnetoelastic anisotropies persist as a main source of losses. This investigation focuses on the design of a new Fe-based (Fe,Ni,Co)88Zr7B4Cu1 alloy with reduced magnetostriction and potential for operation at elevated temperatures. The alloys have been processed by arc melting, melt spinning, and annealing in a protective atmosphere to produce nanocrystalline ribbons. These ribbons have been analyzed for structure, hysteresis, and magnetostriction using X-Ray diffraction, vibrating sample magnetometry (VSM), and a home-built magnetostriction system, respectively. In addition, Curie temperatures of the amorphous phase were analyzed to determine the best performing, high-temperature material. Our best result was found for a Fe77Ni8.25Co2.75Zr7B4Cu1 alloy with a 12 nm average crystallite size (determined from Scherrer broadening) and a 2.873 Å lattice parameter determined from the Nelson-Riley function. This nanocrystalline alloy possesses a coercivity of 10 A/m, magnetostrictive coefficient of 4.8 ppm, and amorphous phase Curie temperature of 218°C.

  1. Experimentally determined sulfur isotope fractionation between metal and silicate and implications for planetary differentiation

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Shahar, A.; Le Losq, C.; Hillgren, V. J.; Mysen, B. O.; Farquhar, J.

    2016-02-01

    The Earth's mantle displays a subchondritic 34S/32S ratio. Sulfur is a moderately siderophile element (i.e. iron-loving), and its partitioning into the Earth's core may have left such a distinctive isotope composition on the terrestrial mantle. In order to constrain the sulfur isotope fractionation occurring during core-mantle differentiation, high-pressure and temperature experiments were conducted with synthetic mixtures of metal and silicate melts. With the purpose to identify the mechanism(s) responsible for the S isotope fractionations, we performed our experiments in different capsules - namely, graphite and boron nitride capsules - and thus at different fO2, with varying major element chemistry of the silicate and metal fractions. The S isotope fractionations Δ34Smetal-silicate of equilibrated metal alloys versus silicate melts is +0.2 ± 0.1‰ in a boron-free and aluminum-poor system quenched at 1-1.5 GPa and 1650 °C. The isotope fractionation increases linearly with increasing boron and aluminum content, up to +1.4 ± 0.2‰, and is observed to be independent of the silicon abundance as well as of the fO2 over ∼3.5 log units of variations explored here. The isotope fractionations are also independent of the graphite or nitride saturation of the metal. Only the melt structural changes associated with aluminum and boron concentration in silicate melts have been observed to affect the strength of sulfur bonding. These results establish that the structure of silicate melts has a direct influence on the S2- average bonding strengths. These results can be interpreted in the context of planetary differentiation. Indeed, the structural environments of silicate evolve strongly with pressure. For example, the aluminum, iron or silicon coordination numbers increase under the effect of pressure. Consequently, based on our observations, the sulfur-bonding environment is likely to be affected. In this scheme, we tentatively hypothesize that S isotope fractionations between the silicate mantle and metallic core of terrestrial planetary bodies would depend on the average pressure at which their core-mantle differentiation occurred.

  2. The electronic structure of iron in rhyolitic and basaltic glasses at high pressure

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Jackson, J. M.; Sturhahn, W.; Roskosz, M.

    2016-12-01

    The physical properties of silicate melts within the Earth's mantle affect the chemical and thermal evolution of the Earth's interior. To understand melting processes within the Earth, it is imperative to determine the structure of silicate melts at high pressure. It has been proposed that iron-bearing silicate melts may exist in the lower mantle just above the core-mantle boundary [1]. The behavior of iron in mantle melts is poorly understood, but can be experimentally approximated by iron-bearing silicate glasses. Previous studies have conflicting conclusions on whether iron in lower mantle silicate melts goes through a high-spin to low-spin transition [2-4]. Additionally, the average coordination environment of iron in glasses is poorly constrained. XANES experiments on basaltic glasses have demonstrated that both four and six-fold coordinated iron may exist in significant amounts regardless of oxidation state [5] while conventional Mössbauer experiments have observed five-fold coordinated Fe2+ with small amounts of four and six-fold coordinated Fe2+ [6]. In an attempt to resolve these discrepancies, we have measured the hyperfine parameters of iron-bearing rhyolitic glass up to 115 GPa and basaltic glass up to 92 GPa in a neon pressure medium using time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source (Argonne National Laboratory, IL). We observed changes in the hyperfine parameters likely due to coordination changes as a result of increasing pressure. Our results indicate that iron does not undergo a high-spin to low-spin transition within the pressure range investigated. Changes in the electronic configuration, such as the spin state of iron affects the compressibility and thermal properties of melts. With the assumption that silica glasses can be used to model structural behavior in silicate melts, our study predicts that iron in chemically-complex silica-rich melts in the lower mantle likely exists in a high-spin state. Select references: [1] Williams and Garnero, Science 273, 1528-1530 (1996). [2] Nomura et al., Nature 473, 199-202 (2011). [3] Gu et al., Geophys. Res. Lett. 39 (2012). [4] Mao et al., Am. Mineral. 99, 415-423 (2014). [5] Wilke et al., Chem. Geology 220, 143-161 (2005). [6] Cottrell and Kelley Earth Planet. Sci. Lett. 305, 270-282 (2011).

  3. Modeling the Time-dependent Changes in Electrical Conductivity of Basaltic Melts With Redox State

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.

    2008-12-01

    The electrical conductivity σ is an efficient probe of mass transfer processes within silicate melts and magmas. Little attention has been given to the influence of redox state (fO2) on the melts conductivity. We present an experimental setup allowing electrical conductivity measurements for basaltic melts under variable fO2. We demonstrate a significant dependence of σ with fO2, allowing to characterize in situ the mechanisms and kinetics of redox changes in the melt. Experiments were conducted on basalts from Pu'u 'O'o, Hawaii, and Mt.Vesuvius, Italy. Measurements were performed cylindrical glass samples (OD: 6mm, ID: 1mm, L: 8mm) using an impedance spectrometer. Experiments were conducted in a 1atm vertical furnace, from 1200°C to 1400°C. Variable gas atmosphere (air, CO2 or CO-CO2 gas mixtures) were used, imposing ΔNNO from -1 to +7. Electrical conductivities were determined for the two melts at constant fO2, different T (constant fO2) and constant T, different fO2 (variable fO2) obtained by changing the gas composition. Isothermal reduction and oxidation cycles were performed. Glasses quenched from different T and fO2 conditions were analyzed by electron microprobe, the FeO concentration was determined by wet chemistry. In constant fO2 experiments, a small but detectable effect of fO2 on σ is evidenced. At 1300°C, the difference in the Kilauea sample conductivity between reduced (ΔNNO=-1) and oxidized (ΔNNO=+7) fO2 is <1(ohm.m)-1, the sample being more conductive when reduced. The temperature dependence of σ was fitted using Arrhenian equations, the activation energy Ea being 100kJ/mol. Sodium was identified as the main charge carrier in the melts. The fO2-effect on σ can thus be attributed to the influence of the Fe2+/Fe3+ ratio on sodium mobility. The fO2-dependence of σ was included in the model of Pommier et al.(2008), allowing the conductivity of natural melts to be calculated as a function of T, P, H2O, and fO2. Variable fO2 experiments confirmed the increase in σ when reducing the melt. At 1200°C, for both reduction-oxidation cycles, a stable value of σ following a change in fO2 is reached in 15hours, while 2hours are needed at 1400°C. The real-time changes in σ of basaltic melts following fO2 step changes were monitored. The time-dependent changes in σ are interpreted in terms of kinetics processes due to redox reequilibration between melt and gas. The evolution of σ with time can be fitted using a diffusion-limited process for reduction in CO-CO2 gas mixtures and oxidation in air. However, a reaction at the gas-melt interface probably rate limits oxidation in CO2. Reduction and oxidation rates are similar and increase with T. Oxidation-reduction rates calculated from the analysis of the conductivity evolution with time range from 10-9 to 10-8m2/s for the T range 1200-1400°C. These reaction rates are in agreement with typical alkali diffusion coefficients in basaltic melts. However, the high value of Ea (230kJ/mol) calculated from the T dependence of the oxidation-reduction rates agrees with the Ea for alkali-Earth elements. Furthermore, microprobe analyses document the existence of alkali-Earth cation fluxes during oxidations and reductions. Such cation migration probably occurs to charge-balance electron fluxes in the melt, in agreement with the study of Cooper et al. (1996). Our results suggest that the migration of alkali and alkali-Earth elements rate-limits the redox state changes in basaltic melts, and that redox mechanisms are not restricted to oxygen chemical diffusion. A discussion of chemical vs tracer oxygen diffusion studies is proposed.

  4. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    NASA Astrophysics Data System (ADS)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

  5. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect.

    PubMed

    Carenzo, M; Pellicciotti, F; Mabillard, J; Reid, T; Brock, B W

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

  6. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is underway and JET has successfully achieved H 98(y,2)  =  1 for plasma currents up to 2.5 MA at moderate β N.

  7. Application of Nonlinear Seismic Soil-Structure Interaction Analysis for Identification of Seismic Margins at Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varma, Amit H.; Seo, Jungil; Coleman, Justin Leigh

    2015-11-01

    Seismic probabilistic risk assessment (SPRA) methods and approaches at nuclear power plants (NPP) were first developed in the 1970s and aspects of them have matured over time as they were applied and incrementally improved. SPRA provides information on risk and risk insights and allows for some accounting for uncertainty and variability. As a result, SPRA is now used as an important basis for risk-informed decision making for both new and operating NPPs in the US and in an increasing number of countries globally. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures thatmore » can lead to a seismic induced core damage event. However, in some instances the current SPRA approach contains large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). INL has an advanced SPRA research and development (R&D) activity that will identify areas in the calculation process that contain significant uncertainties. One current area of focus is the use of nonlinear soil-structure interaction (NLSSI) analysis methods to accurately capture: 1) nonlinear soil behavior and 2) gapping and sliding between the NPP and soil. The goal of this study is to compare numerical NLSSI analysis results with recorded earthquake ground motions at Fukushima Daichii (Great Tohuku Earthquake) and evaluate the sources of nonlinearity contributing to the observed reduction in peak acceleration. Comparisons are made using recorded data in the free-field (soil column with no structural influence) and recorded data on the NPP basemat (in-structure response). Results presented in this study should identify areas of focus for future R&D activities with the goal of minimizing uncertainty in SPRA calculations. This is not a validation activity since there are too many sources of uncertainty that a numerical analysis would need to consider (variability in soil material properties, structural material properties, etc.). Rather the report will determine if the NLSSI calculations are following similar trends observed in the recorded data (i.e. reductions in maximum acceleration between the free-field and basemat) Numerical NLSSI results presented show maximum accelerations between the free field and basemat were reduced the EW and NS directions. The maximum acceleration in the UD direction increased slightly. The largest reduction in maximum accelerations between the modeled free-field and the NPP basemat resulted in nearly 50% reduction. The observation in reduction of numerical maximum accelerations in the EW and NS directions follows the observed trend in the recorded data. The maximum reductions observed in these NLSSI studies were due to soil nonlinearities, not gapping and sliding (although additional R&D is needed to develop an appropriate approach to model gapping and sliding). This exploratory study highlights the need for additional R&D on developing: (i) improved modeling of soil nonlinearities (soil constitutive models that appropriately capture cyclic soil behavior), (ii) improved modeling of gapping and sliding at the soil-structure interface (to appropriately capture the dissipation of energy at this interface), and (iii) experimental laboratory test data to calibrate the items (i) and (ii).« less

  8. Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): Implications for crustal anatexis

    NASA Astrophysics Data System (ADS)

    Barich, Amel; Acosta-Vigil, Antonio; Garrido, Carlos J.; Cesare, Bernardo; Tajčmanová, Lucie; Bartoli, Omar

    2014-10-01

    We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though strongly thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and in contact with the peridotites, and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence, garnet decreases whereas biotite increases in modal proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈ 5 to 200 μm, with a mean size of ≈ 30-40 μm. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈ 850 °C and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈ 800-850 °C and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the matrix with oriented sillimanite. Previous conventional petrologic studies on these strongly deformed rocks have proposed that anatexis started during decompression from peak to post-peak conditions and in the field of sillimanite. The study of melt inclusions shows, however, that melt was already present in the system at peak conditions, and that most garnet grew in the presence of melt.

  9. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    DOE PAGES

    Wang, Mo; Xu, B.; Cao, J.; ...

    2015-02-02

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia hasmore » the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.« less

  10. Siderophile Element Partitioning between Cohenite and Liquid in Fe-Ni-S-C System and Implications for Geochemistry of Planetary Cores and Mantles

    NASA Astrophysics Data System (ADS)

    Buono, A. S.; Dasgupta, R.; Walker, D.

    2011-12-01

    Secular cooling of terrestrial planets is known to cause crystallization of a solid inner core from metallic liquid core. Fractionation of light and siderophile elements is important during such crystallization for evolution of outer core and possible core-mantle interaction. Thus far studies focused on a pure Fe inner core in simple binary systems but the effects of possible formation of a carbide inner core component on siderophile element partitioning in a multi-component system has yet to be looked at in detail. We investigated the effects of pressure and S content on partition coefficients (D) between cohenite and liquid in the Fe-Ni-S-C system. Multi-anvil experiments were performed at 3 and 6 GPa at 1150 °C, in an Fe-rich mix containing a constant C and Ni to which S contents of 0, 5, and 14 wt.% were added. All the mixes were doped with W, Re, Os, Pt, and Co. Samples were imaged and analyzed for Fe, Ni, S, and C using an EPMA. Fe, Ni, and trace elements were analyzed using a LA-ICP-MS. All the experiments produced cohenite and Fe-Ni-C±S liquid. Compared to solid-Fe/melt Ds [1-2], cohenite/melt Ds are lower for all elements except W. The light element (S+C) content of the liquid is the dominant controlling factor in siderophile element partitioning between cohenite and liquid as it is between crystalline Fe and liquid. In the cohenite-metallic melt experiments, D Ni decreases as S+C increases. Ni is excluded from the crystallizing solid if the solid is cohenite. We also find that in the Fe-Ni-S-C system, cohenite is stabilized to higher P than in the Fe-S-C system [3-5]. Similar to the Fe-metallic liquid systems the non-metal avoidance model [6] is applicable to the Fe3C-metallic liquid system studied here. Our study has implications for both the cores of smaller planets and the mantles of larger planets. If inner core forms a cohenite layer we would predict that depletions in the outer core will be less than they might be for Fe metal crystallization. For the mantle of the earth, which is thought to become Fe-Ni metal-saturated as shallow as 250 km, the sub-system Fe-Ni + C + S becomes relevant and Fe-Ni carbide rather than metallic Fe-Ni alloy may become the crystalline phase of interest. Our study implies that because the partition coefficients between cohenite and Fe-C-S melts are significantly lower than those between Fe-metal and S-rich liquid, in the presence of cohenite and Fe-C-S melt in the mantle, the mantle budget of Ni, Co, and Pt may be dominated by Fe-C-S liquid. W, Re, and Os will also be slightly enriched in C-rich Fe-Ni liquid over cohenite if the metal sub-system of interest is S-free. [1] Chabot et al., GCA 70, 1322-1335, 2006 [2] Chabot et al., GCA 72, 4146-4158, 2008 [3] Chabot et al., Meteorit. Planet. Sci. 42, 1735-1750, 2007 [4] Stewart et al., EPSL 284, 302-309, 2009 [5] Van Orman et al., EPSL 274, 250-257, 2008 [6] Jones, J.H., Malvin, D.J., Metall Mater Trans B 21, 697-706, 1990

  11. The Effect of Inner Core Translation on Outer Core Flow and the Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Mound, J. E.; Davies, C. J.; Silva, L.

    2015-12-01

    Bulk translation of the inner core has been proposed to explain quasi-hemispheric patterns of seismic heterogeneity. Such a translation would result in differential melting and freezing at the inner core boundary (ICB) and hence a heterogeneous pattern of buoyancy flux that could influence convection in the outer core. This heterogeneous flux at the ICB will tend to promote upwelling on the trailing hemisphere, where enhanced inner core growth results in increased latent heat and light element release, and inhibit upwelling on the leading hemisphere, where melting of the inner core occurs. If this difference in convective driving between the two hemispheres propagated across the thickness of the outer core, then flows near the surface of the core could be linked to the ICB heterogeneity and result in a hemispheric imbalance in the geomagnetic field. We have investigated the influence of such ICB boundary conditions on core flows and magnetic field structure in numerical geodynamo models and analysed the resultant hemispheric imbalance relative to the hemispheric structure in models constructed from observations of Earth's field. Inner core translation at rates consistent with estimates for the Earth produce a strong hemispheric bias in the field, one that should be readily apparent in averages of the field over tens of thousands of years. Current models of the field over the Holocene may be able to rule out the most extreme ICB forcing scenarios, but more information on the dynamic structure of the field over these time scales will be needed to adequately test all cases.

  12. Melting Penetration Simulation of Fe-U System at High Temperature Using MPS_LER

    NASA Astrophysics Data System (ADS)

    Mustari, A. P. A.; Yamaji, A.; Irwanto, Dwi

    2016-08-01

    Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS_LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS_LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS_LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate.

  13. Core formation, wet early mantle, and H2O degassing on early Mars

    NASA Technical Reports Server (NTRS)

    Kuramoto, K.; Matsui, T.

    1993-01-01

    Geophysical and geochemical observations strongly suggest a 'hot origin of Mars,' i.e., the early formation of both the core and the crust-mantle system either during or just after planetary accretion. To consider the behavior of H2O in the planetary interior it is specifically important to determine by what mechanism the planet is heated enough to cause melting. For Mars, the main heat source is probably accretional heating. Because Mars is small, the accretion energy needs to be effectively retained in its interior. Therefore, the three candidates of heat retention mechanism are discussed first: (1) the blanketing effect of the primordial H2-He atmosphere; (2) the blanketing effect of the impact-induced H2O-CO2 atmosphere; and (3) the higher deposition efficiency of impact energy due to larger impacts. It was concluded that (3) the is the most plausible mechanism for Mars. Then, its possible consequence on how wet the early martian mantle was is discussed.

  14. Free energy change of a dislocation due to a Cottrell atmosphere

    DOE PAGES

    Sills, R. B.; Cai, W.

    2018-03-07

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less

  15. Free energy change of a dislocation due to a Cottrell atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, R. B.; Cai, W.

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less

  16. Free energy change of a dislocation due to a Cottrell atmosphere

    NASA Astrophysics Data System (ADS)

    Sills, R. B.; Cai, W.

    2018-06-01

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. We show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel-hydrogen system, predicting hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Finally, the influence of the free energy change on a dislocation's line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank-Read source using discrete dislocation dynamics.

  17. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate Processes.

    PubMed

    Steinlin, Christine; Bogdal, Christian; Pavlova, Pavlina A; Schwikowski, Margit; Lüthi, Martin P; Scheringer, Martin; Schmid, Peter; Hungerbühler, Konrad

    2015-12-15

    We present results from a chemical fate model quantifying incorporation of polychlorinated biphenyls (PCBs) into the Silvretta glacier, a temperate Alpine glacier located in Switzerland. Temperate glaciers, in contrast to cold glaciers, are glaciers where melt processes are prevalent. Incorporation of PCBs into cold glaciers has been quantified in previous studies. However, the fate of PCBs in temperate glaciers has never been investigated. In the model, we include melt processes, inducing elution of water-soluble substances and, conversely, enrichment of particles and particle-bound chemicals. The model is validated by comparing modeled and measured PCB concentrations in an ice core collected in the Silvretta accumulation area. We quantify PCB incorporation between 1900 and 2010, and discuss the fate of six PCB congeners. PCB concentrations in the ice core peak in the period of high PCB emissions, as well as in years with strong melt. While for lower-chlorinated PCB congeners revolatilization is important, for higher-chlorinated congeners, the main processes are storage in glacier ice and removal by particle runoff. This study gives insight into PCB fate and dynamics and reveals the effect of snow accumulation and melt processes on the fate of semivolatile organic chemicals in a temperate Alpine glacier.

  18. The melting points of MgO up to 4 TPa predicted based on ab initio thermodynamic integration molecular dynamics

    NASA Astrophysics Data System (ADS)

    Taniuchi, Takashi; Tsuchiya, Taku

    2018-03-01

    The melting curve of MgO is extended up to 4 TPa, corresponding to the Jovian core pressure, based on the one-step thermodynamic integration method implemented on ab initio molecular dynamics. The calculated melting temperatures are 3100 and 16 000 K at 0 and 500 GPa, respectively, which are consistent with previous experimental results, and 20 600 K at 3900 GPa, which is inconsistent with a recent experimental extrapolation, which implies the molten Jovian core. A quite small Clapeyron slope (dT/dP ) of 0.0+/- 0.5 is found at 3900 GPa due to comparable densities of the liquid and B2 phases under extreme compression. The Mg-O coordination number in the liquid phase is saturated at around 7.5 above 1 TPa and remains smaller than that in the B2 phase (8) even at 4 TPa, suggesting no density crossover between liquid and crystal and thus no further denser crystalline phases. Dynamical properties (atomic diffusivity and viscosity) are also investigated along the melting curve to understand these behaviors in greater detail.

  19. The early thermal evolution of Mars

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  20. Levoglucosan Levels in Alaskan Ice Cores as a Record of Past Wildfires

    NASA Astrophysics Data System (ADS)

    Dunham, M. E.; Osterberg, E. C.; Kehrwald, N. M.; Kennedy, J.; Ferris, D. G.

    2017-12-01

    Glaciers in southeast Alaska are significant contributors to global sea-level rise, and therefore understanding the mechanisms driving their recent mass loss is crucial for predicting future sea-level change. Fire activity in Alaska has increased dramatically during the last decade, adding a potential new source of light-absorbing organic material (soot) to the Juneau Icefield that can reduce albedo and enhance surface melt rates. The goal of this project is to create an accurate record of Alaskan wildfires to understand how Alaskan glacial mass balance is affected by the deposition of organic aerosols from wildfires. Previously, oxalate, ammonia, and potassium ion levels have been used as proxies for past wildfire activity, but these ions all have broader emission sources in addition to wildfires. Here we develop a record of past Alaskan fire events and climate from: (1) levels of a biomass burning indicator, levoglucosan, which only forms when cellulose is burned over 300 °C, (2) major ions including oxalate, ammonia, and potassium; (3) the number and size distribution of particles to quantify trace amounts of soot from wildfires; and (4) stable water isotope ratios as a proxy for past temperature in ice cores. We utilize a total of four shallow ice cores, ranging from 7 to 9 m in length, that were collected by a biogeochemistry team during the Juneau Icefield Research Program (JIRP) in 2016. Complications include our limited understanding of the conservation and degradation of levoglucosan over time or during the firnification process. We hypothesize that particle counts will be correlated with levoglucosan peaks, co-varying with wildfire frequency and temperatures over time. Based on previous work, we also expect to find correlations between levoglucosan and oxalate ion concentrations, even though oxalate ions have sources in addition to wildfire activity.

  1. Si and O partitioning between core metal and lower mantle minerals during core formation

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Frost, D. J.; Rubie, D. C.

    2010-12-01

    In addition to Fe and Ni, the Earth’s core contains light alloying elements (e.g., H, C, O, Si, and/or S) in order to explain the 10% core density deficit (e.g., Birch, 1964, JGR). Experimental data on the partitioning behavior of siderophile elements such as Ni and Co between liquid Fe and mantle minerals indicate that equilibration between core-forming metal and a silicate magma ocean likely occurred at lower-mantle pressures (e.g., Li and Agee, 1996 Nature). If core-mantle differentiation has occurred under such conditions, significant quantities of O or Si could have entered the core. At these conditions the nature of the dominant light element in the core will depend strongly on the oxygen fugacity at which equilibration occurred. High pressure experiments were carried out at 25 GPa and 2400-2950 K using a Kawai-type multi-anvil apparatus in order to investigate the partitioning of Si and O between liquid Fe and (Mg,Fe)SiO3 perovskite (Pv), silicate melt, and (Mg,Fe)O ferropericlace (Fp). Starting materials consisting of metallic Fe (+-Si) and olivine (Fo70-95) were contained in single-crystal MgO capsules. Over the oxygen fugacity range IW-0.5 to -3, the Si molar partition coefficient D* (= [Si]metal /[Si]silicate) between metal and Pv increases linearly with decreasing oxygen fugacity at a fixed given temperature. The partition coefficient between metal and silicate melt is of a similar magnitude but is less dependent on the oxygen fugacity. The obtained oxygen distribution coefficient Kd (= [Fe]metal[O]metal /[FeO]Fp) is in agreement with that determined in the Fe-Fp binary system (Asahara et al., 2007 EPSL) below the silicate liquidus temperature. In contrast, a correlation between the O partitioning and Si concentration in Fe is observed above 2700 K where liquid metal coexists with silicate melt + Fp. With an increasing concentration of Si in the liquid metal, O partitioning into Fp is strongly enhanced. Five atomic% Si in the metal reduces the metal-silicate O partition coefficient by about 1 order magnitude. Near the base of a deep magma ocean where pressures exceed 20 GPa, liquid metal could have coexisted with silicate melt, Pv, and Fp. Our results show that Si would readily partitioned into core-forming metal from both perovskite and silicate liquid at a relevant oxygen fugacity (e.g., IW-2). Simultaneously, the Si solubility would hinder the dissolution of O in the liquid metal. This implies that the presence of Si in liquid metal must be included in models of O partitioning.

  2. Early evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, D. J.; Tackley, P. J.

    2014-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics.

  3. Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan)

    NASA Astrophysics Data System (ADS)

    Jagoutz, O.; Müntener, O.; Burg, J.-P.; Ulmer, P.; Jagoutz, E.

    2006-02-01

    Whole-rock and Sm-Nd isotopic data of the main units of the Chilas zoned ultramafic bodies (Kohistan paleo-island arc, NW Pakistan) indicate that ultramafic rocks and gabbronorite sequences stem from a common magma. However, field observations rule out formation of both ultramafic and mafic sequences in terms of gravitational crystal settling in a large magma chamber. Contacts between ultramafic and gabbronorite sequences show emplacement of the dunitic bodies into a semi-consolidated gabbronoritic crystal-mush, which in turn has intruded and reacted with the ultramafic rocks to produce concentric zoning. Field and petrological observations indicate a replacive origin of the dunite. Bulk Mg#'s of dunitic rocks range from 0.87-0.81 indicating that the dunite-forming melt underwent substantial fractionation-differentiation and that percolative fractional crystallization probably generated the dunitic core. The REE chemistry of clinopyroxene in primitive dunite samples and the Nd isotopic composition of ultramafic rocks are in equilibrium with the surrounding gabbronorite. Accordingly, liquids that formed the dunitic rocks and later the mafic sequence derived from a similar depleted source ( ɛNd˜4.8). We propose a mechanism for the comagmatic emplacement, where km-scale ultramafic bodies represent continuous channels reaching down into the upper mantle. The melt-filled porosity in these melt channels diminishes the mean-depth-integrated density difference to the surrounding rocks. Due to buoyancy forces, melt channels raise into the overlying crustal sequence. In the light of such processes, the ultramafic bodies are interpreted as melt channels through which the Chilas gabbronorite sequence was fed. The estimated basaltic-andesitic, low Mg# (˜0.53) bulk composition of the Chilas gabbronorite sequence closely matches estimates of lower crustal compositions. Since the mafic sequence originated from a primary, high Mg# (> 0.7) basaltic arc magma, differentiation of such high Mg# magmas within km-scale isolated melt conduits may explain the "Mg#-gap" between bulk estimates of the continental crust and primary basaltic magmas, a major paradox in the andesite model of crust formation.

  4. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    NASA Astrophysics Data System (ADS)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  5. Ice core evidence for extensive melting of the greenland ice sheet in the last interglacial.

    PubMed

    Koerner, R M

    1989-05-26

    Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.

  6. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    PubMed Central

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-01-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045

  7. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    PubMed

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  8. Phase equilibria and geochemical constraints on the petrogenesis of high-Ti picrite from the Paleogene East Greenland flood basalt province

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Shen; Hou, Tong; Veksler, Ilya V.; Lesher, Charles E.; Namur, Olivier

    2018-02-01

    Phase equilibrium experiments have been performed on an extremely high-Ti (5.4 wt.% TiO2) picrite from the base of the Paleogene ( 55 Ma) East Greenland Flood Basalt Province. This sample has a high CaO/Al2O3 ratio (1.14), a steep rare-earth elements (REE) profile, is enriched in incompatible trace elements, and is in chemical equilibrium with highly primitive olivine. This all suggests that the picrite is a near-primary melt that did not suffer major chemical evolution during ascent from the mantle source and through the crust. Near-liquidus phase relations were determined over the pressure range of 1 atm, 1 to 1.5 GPa and at temperatures from 1094 to 1400°C. They provide an important constraint on the petrogenesis of these lavas. The high-Ti picritic melt is multi-saturated with olivine (Ol) + orthopyroxene (Opx) at 1 GPa but has only Ol or Opx on the liquidus at lower and higher pressures, respectively. This indicates the primitive melt was last equilibrated with its mantle source at relatively shallow pressure ( 1 GPa). Melting probably started at 2-3 GPa and the picritic melt was produced by 15-30% melting of the mantle source. Such a degree of partial melting requires a mantle with a high potential temperature (1480-1530˚C). The relatively low CaO content and high FeO/MnO ratios of the most primitive East Greenland picrites, the high Ni content of olivine phenocrysts and the presence of low-Ca pyroxene (i.e., pigeonite) at high pressure in our experiments all suggest that the mantle source contained a major component of garnet pyroxenite. Residual garnet in the source could adequately explain the low Al2O3 content (7.92 wt.%) and steep REE patterns of the picrite sample. However, simple melting of a lherzolitic source, even with a major pyroxenite component, cannot explain the formation of magmas with the very high Ti contents observed in some East Greenland basalts. We therefore propose that magmas highly-enriched in Ti were produced by melting of a metasomatized mantle source containing Ti-enriched amphibole and/or phlogopite.

  9. The controversy over plumes: Who is actually right?

    NASA Astrophysics Data System (ADS)

    Puchkov, V. N.

    2009-01-01

    The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes’ advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle-core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-isotope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow. In the author’s opinion, the crisis may be overcome by returning to the beginnings of the plume concept and by providing an adequate specification of plume attributes. Only mantle flows with sources situated below the asthenosphere should be referred to as plumes. These flows are not directly related to such plate-tectonic mechanisms as passive rifting and decompression melting in the upper asthenosphere and are marked by time-progressive volcanic chains; their subasthenospheric roots are detected in seismic tomographic images. Such plumes are mostly located at the margins of superswells, regions of attenuation of seismic waves at the mantle-core interface.

  10. Constraints on The Coupled Thermal Evolution of the Earth's Core and Mantle, The Age of The Inner Core, And The Origin of the 186Os/188Os Core(?) Signal in Plume-Derived Lavas

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2005-12-01

    Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5-14 TW. In the absence of heat-producing elements in the core, such high heat flow rates require an inner core younger than ~1 Ga and preclude the development of significant 186Os enrichment in the outer core. Experimental studies suggest that potassium may partition into Fe-S-O liquids during core formation. Radioactive decay of potassium in the core could provide an additional heat source and reconcile geophysical evidence for high core/mantle heat flow with apparent geochemical evidence for an ancient inner core. However, high concentrations of chalcophile elements such as Cu in the mantle are inconsistent with significant segregation of a S-rich liquid during core formation, precluding K partitioning into the core by this mechanism. Furthermore, core formation scenarios that would lead to high K content in the core (e.g., core formation prior to terrestrial volatile depletion) also result in high core Pb concentrations. Core/mantle interaction would then produce strong negative correlations between 186Os/188Os and 207Pb/204Pb ratios, but such correlations are not observed. In summary, elevated 186Os/188Os ratios in some plume-derived lavas are unlikely to reflect core/mantle interaction because the inner core is too young for this isotopic signature to have developed in the outer core. Melt generation from pyroxenite or fractionation of PGEs between sulfide melts and monosulfide solid solutions provide alternative mechanisms for generating ancient mantle reservoirs with elevated Pt/Os and 186Os/188Os.

  11. Nitric-glycolic flowsheet reduction/oxidation (redox) model for the defense waste processing facility (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Williams, M. S.; Edwards, T. B.

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc 4+ state as TcO 2 than as NaTcO 4 or Tc 2O 7, and ruthenium radionuclides in the reduced Ru 4+ state are insoluble RuO 2 inmore » the melt which are not as volatile as NaRuO 4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr 6+ occurs in oxidized melt pools as Na 2CrO 4 or Na 2Cr 2O 7, while the Cr +3 state is less volatile and remains in the melt as NaCrO 2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.« less

  12. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  13. Recovering Paleo-Records from Antarctic Ice-Cores by Coupling a Continuous Melting Device and Fast Ion Chromatography.

    PubMed

    Severi, Mirko; Becagli, Silvia; Traversi, Rita; Udisti, Roberto

    2015-11-17

    Recently, the increasing interest in the understanding of global climatic changes and on natural processes related to climate yielded the development and improvement of new analytical methods for the analysis of environmental samples. The determination of trace chemical species is a useful tool in paleoclimatology, and the techniques for the analysis of ice cores have evolved during the past few years from laborious measurements on discrete samples to continuous techniques allowing higher temporal resolution, higher sensitivity and, above all, higher throughput. Two fast ion chromatographic (FIC) methods are presented. The first method was able to measure Cl(-), NO3(-) and SO4(2-) in a melter-based continuous flow system separating the three analytes in just 1 min. The second method (called Ultra-FIC) was able to perform a single chromatographic analysis in just 30 s and the resulting sampling resolution was 1.0 cm with a typical melting rate of 4.0 cm min(-1). Both methods combine the accuracy, precision, and low detection limits of ion chromatography with the enhanced speed and high depth resolution of continuous melting systems. Both methods have been tested and validated with the analysis of several hundred meters of different ice cores. In particular, the Ultra-FIC method was used to reconstruct the high-resolution SO4(2-) profile of the last 10,000 years for the EDML ice core, allowing the counting of the annual layers, which represents a key point in dating these kind of natural archives.

  14. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  15. Optimum Water Chemistry in radiation field buildup control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chien, C.

    1995-03-01

    Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of lowmore » exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.« less

  16. Preliminary results of sulfide melt/silicate wetting experiments in a partially melted ordinary chondrite

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1994-01-01

    Recently, mechanisms for core formation in planetary bodies have received considerable attention. Most current theories emphasize the need for large degrees of silicate partial melting to facilitate the coalescence and sinking of sulfide-metal liquid blebs through a low strength semi-crystalline silicate mush. This scenario is based upon observations that sulfide-metal liquid tends to form circular blebs in partially molten meteorites during laboratory experiments. However, recent experimental work by Herpfer and Larimer indicates that some sulfide-Fe liquids have wetting angles at and slightly below 60 deg in an olivine aggregate, implying an interconnected melt structure at any melt fraction. Such melt interconnectivity provides a means for gravitational compaction and extraction of the majority of a sulfide liquid phase in small planetary bodies without invoking large degrees of silicate partial melting. Because of the important ramifications of these results, we conducted a series of experiments using H-chondrite starting material in order to evaluate sulfide-liquid/silicate wetting behavior in a more complex natural system.

  17. Dynamics of melt generation beneath mid-ocean ridge axes: Theoretical analysis based on 238- 230Th- 226Ra and 235U- 231Pa disequilibria

    NASA Astrophysics Data System (ADS)

    Qin, Zhenwei

    1993-04-01

    Although slow melting favors the generation of basaltic melt from a mantle matrix with large radioactive disequilibrium between two actinide nuclides ( MCKENZIE, 1985a), it results in long residence time in a magma chamber, during which the disequilibrium may be removed. An equilibrium melting model modified after MCKENZIE (1985a) is presented here which suggests that, for a given actinide parent-daughter pair, there exists a specific melting rate at which disequilibrium between these two nuclides reaches its maximum. This melting rate depends on the decay constant of the daughter nuclide concerned and the magma chamber volume scaled to that of its source. For a given scaled chamber size, large radioactive disequilibrium between two actinide nuclides in basalts will be observed if the melting rate is such that the residence time of the magma in the chamber is comparable to the mean life of the daughter nuclide. With a chamber size 1% in volume of the melting source, the melting rates at which maximum disequilibrium in basalts is obtained are 10 -7, 2 × 10 -7 and 3 × 10 -6y-1, respectively, for 238U- 230Th, 235U- 231Pa and 230Th- 226Ra. This implies that, while large disequilibrium between 238U- 230Th and between 235U- 231Pa may occur together, large 230Th- 226Ra disequilibrium will not coexist with large 238U- 230Th disequilibrium, consistent with some observations. The active mantle melting zone which supplies melt to a ridge axis is inferred to be only about 10 km thick and 50 km wide. The fraction of melt present in such a mantle source at any time is about 0.01 and 0.04, respectively, if melting rate is 10 -7 and 10 -6 y -1. The corresponding residence time of the residual melt in the matrix is 10 5 and 4 × 10 4y.

  18. Glaciochemical investigation of an ice core from Belukha Glacier,Siberian Altai

    NASA Astrophysics Data System (ADS)

    Olivier, S.; Schwikowski, S.; Gäggeler, H. W.; Lüthi, M.; Eyrik, S.; Blaser, C.; Saurer, M.; Schotterer, U.

    2003-04-01

    Little is known about climatic change and paleo-atmospheric composition in Siberia. The Altai is the only alpine region in this area covered by glaciers that might serve as archives for such studies. Moreover, it is located close to air pollution sources in East Kazakhstan and South Siberia (heavy metal mining, metallurgy) as well as to the nuclear test site of Semipalatinsk (release of radionuclides into the atmosphere). In order to reconstruct air pollution levels in the Altai region, a 140-meter ice core down to bedrock was recovered from the Belukha glacier (N49^o48'26", E86^o34'43", 4062 m asl) in July 2001. This site was selected based on the results of an exploratory study conducted in 2000. So far, the concentrations of major ionic species and the stable isotope ratio δ18O were determined in the approx. 90 topmost meters of the ice core covering about 200 years. Dating of the upper part of the ice core was performed by a combination of methods that include e.g. nuclear techniques and annual-layer counting. The annual net accumulation amounts to about 0.53 m weq. and indicates that snow at the Belukha glacier might be partly eroded by wind, a situation that is often observed for a glacier saddle. The borehole temperature (-16 ^oC at 80 m depth), the discernible fluctuations of the stable isotope and chemistry records as well as the linearity of the decrease of the log. 210Pb activities with depth indicate that the glaciochemical record is well preserved and not significantly altered by melting processes. In pre-industrial ice concentrations of carboxylic acids and ammonium are high, suggesting the surrounding forest as source of biogenic emissions.

  19. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    NASA Astrophysics Data System (ADS)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid compositions extracted from these hybrid sources are higher in normative quartz and hypersthene (i.e., they have a more silica-saturated character) in comparison with basalts derived from prior melt-depleted asthenospheric mantle beneath ridges. These primary arc melts range from silica-rich picrite to boninite and high-Mg basaltic andesite along a residual spinel harzburgite cotectic. Silica enrichment in the mantle sources of arc-related, subalkaline picrite-boninite-andesite suites coupled with the amount of water and depth of melting, are important for the formation of medium-Fe ('calc-alkaline') andesite-dacite-rhyolite suites, key lithologies forming the continental crust.

  20. Experimental determination of the partitioning of gallium between solid iron metal and synthetic basaltic melt Electron and ion microprobe study

    NASA Technical Reports Server (NTRS)

    Drake, M. J.; Newsom, H. E.; Reed, S. J. B.; Enright, M. C.

    1984-01-01

    The distribution of Ga between solid Fe metal and synthetic basaltic melt is investigated experimentally at temperatures of 1190 and 1330 C, and over a narrow range of oxygen fugacities. Metal-silicate reversal experiments were conducted, indicating a close approach to equilibrium. The analysis of the partitioned products was performed using electron and ion microprobes. At one bar total pressure, the solid metal/silicate melt partition coefficient D(Ga) is used to evaluate metal-silicate fractionation processes in the earth, moon, and Eucrite Parent Body (EPB). It is found that the depletion of Ga abundances in the EPB is due to the extraction of Ga into a metallic core. Likewise, the depletion of Ga in the lunar mantle is consistent with the extraction of Ga into a smaller lunar core if Ga was originally present in a subchondritic concentration. The relatively high Ga abundances in the earth's mantle are discussed, with reference to several theoretical models.

  1. Thermal Constraints from Siderophile Trace Elements in Acapulcoite-Lodranite Metals

    NASA Technical Reports Server (NTRS)

    Herrin, Jason S.; Mittlefehldt, D. W.; Humayun, M.

    2006-01-01

    A fundamental process in the formation of differentiated bodies is the segregation of metal-sulfide and silicate phases, leading to the formation of a metallic core. The only known direct record of this process is preserved in some primitive achondrites, such as the acapulcoite-lodranites. Meteorites of this clan are the products of thermal metamorphism of a chondritic parent. Most acapulcoites have experienced significant partial melting of the metal-sulfide system but not of silicates, while lodranites have experienced partial melting and melt extraction of both. The clan has experienced a continuum of temperatures relevant to the onset of metal mobility in asteroidal bodies and thus could yield insight into the earliest stages of core formation. Acapulcoite GRA 98028 contains relict chondrules, high modal sulfide/metal, has the lowest 2-pyroxene closure temperature, and represents the least metamorphosed state of the parent body among the samples examined. Comparison of the metal-sulfide component of other clan members to GRA 98028 can give an idea of the effects of metamorphism.

  2. Wire Composition: Its Effect on Metal Disintegration and Particle Formation in Twin-Wire Arc-Spraying Process

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.

    2013-03-01

    The wire tips in twin-wire arc-spraying (TWAS) are heated in three different zones. A high-speed camera was used to observe the melting behavior, metal breakup, and particle formation under different operating conditions. In zone (I), the wire tips are melted (liquidus metal) and directly atomized in the form of smaller droplets. Their size is a function of the specific properties of the molten metal and the exerting aerodynamic forces. Zone (II) is directly beneath zone (I) and the origin of the extruded metal sheets at the wire tips. The extruded metal sheets in the case of cored wires are shorter than those observed while using solid wires. In this study, the effects of adjustable parameters and powder filling on melting behavior, particle formation, and process instability were revealed, and a comparison between solid and cored wires was made. The findings can improve the accuracy of the TWAS process modeling.

  3. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.

  4. The Ge/Si ratio quantifies the role of recycled crust in the generation of MORBs

    NASA Astrophysics Data System (ADS)

    Yang, S.; Humayun, M.; Salters, V. J. M.

    2017-12-01

    Global MORBs cover a broad spectrum of incompatible element compositions from depleted [(La/Sm)N < 0.5] to enriched [(La/Sm)N 0.5-2]. Two explanations for the origin of the enriched mantle sources of E-MORBs from ridge segments not associated with plumes have been proposed: (1) re-fertilization of Depleted Mantle (DM) by infiltration of low-degree melts (<1%) from subducted crust, or (2) by entrainment of solid recycled crust in the Depleted Mantle (DM). Whether pyroxenite contributes melt to E-MORB can be resolved by chemically distinguishing between partial melts of a peridotite source vs. those of a lithologically heterogeneous source of peridotite and pyroxenite. In this study, we exploit the mineralogical preferences of elements like Ge and Si to distinguish melts formed from peridotite or pyroxenite. In-situ analyses of 60 elements in 319 MORB glasses from north (10-36 °N) Mid-Atlantic Ridge (MAR) and Mid-Cayman Rise were performed by LA-ICP-MS. Use of a large laser spot size (150 μm) and high repetition rate (50 Hz) yielded a low blank correction (< 5%) for Ge, and high external precision for the Ge/Si ratio (± 3%, 1σ) in MORB glasses. E-MORBs (6.4±0.2) are systematically lower in Ge/Si than D-MORBs (7.2±0.2), while N-MORBs fall in between and are not fully resolved from either D- or E-MORB. Based on experimental Ds, partial melts from pyroxenites are always lower in Ge/Si than partial melts from peridotites because Ge is more compatible in garnet and clinopyroxene than in olivine [1]. E-MORBs also have lower Sc abundances (37 vs. 43 ppm) but slightly higher Fe/Mn ratios (55 vs. 53) than D-MORBs, and lower La/Nb (0.6 vs. 1-2) and Sr/Nb (<20 vs. >40), consistent with addition of 27% pyroxenite-derived melts to a D-MORB-like composition. This requires that the amount of solid recycled garnet pyroxenite in a peridotite source is 12%. The Ge/Si ratio is a new tool that effectively discriminates between melts derived from peridotite sources and melts derived from pyroxenite sources. Extrapolating from the correlation between K2O/TiO2 and Ge/Si established in this study, we estimated the distribution of pyroxenite, solid recycled crust, in the mantle sources of global MORB segments, which reveals a mode of 3-4% pyroxenite in the MORB source. [1] Davis et al., 2013

  5. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny)

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U.

    2018-01-01

    Zircon grains extracted from S-type granites of the Mêda-Escalhão-Penedono Massif (Central Iberian Zone, Variscan Orogen) constrain the timing of emplacement and provide information about potential magma sources. Simple and composite zircon grains from three samples of S-type granite were analyzed by LA-ICP-MS. New U-Pb data indicate that granites crystallized in the Bashkirian (318.7 ± 4.8 Ma) overlapping the proposed age range of ca. 321-317 Ma of the nearby S-type granitic rocks of the Carrazeda de Anciães, Lamego and Ucanha-Vilar massifs. The timing of emplacement of such S-type granites seems to coincide with the waning stages of activity of a D2 extensional shear zone (i.e. Pinhel shear zone) developed in metamorphic conditions that reached partial melting and anatexis (ca. 321-317 Ma). Dykes of two-mica granites (resembling diatexite migmatite) are concordant and discordant to the compositional layering and S2 (main) foliation of the high-grade metamorphic rocks of the Pinhel shear zone. Much of the planar fabric in these dykes was formed during magmatic crystallization and subsequent solid-state deformation. Field relationships suggest contemporaneity between the ca. 319-317 Ma old magmatism of the study area and the switch from late D2 extensional deformation to early D3 contractional deformation. Inherited zircon cores are well preserved in these late D2-early D3 S-type granite plutons. U-Pb ages of inherited zircon cores range from ca. 2576 to ca. 421 Ma. The spectra of inherited cores overlap closely the range of detrital and magmatic zircon grains displayed by the Ediacaran to Silurian metasedimentary and metaigneous rocks of the Iberian autochthonous and parautochthonous domains. This is evidence of a genetic relationship between S-type granites and the host metamorphic rocks. There is no substantial evidence for the addition of mantle-derived material in the genesis of these late D2-early D3 S-type granitic rocks. The ɛNd arrays of heterogeneous crustal anatectic melts may be just inherited from the source, probably reflecting mixing of a range of crustal materials with different ages and primary isotopic signatures. The generation of the Bashkirian S-type granites has been dominated by continental crust recycling, rather than the addition of new material from mantle sources.

  6. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  7. Experimental segregation of iron-nickel metal, iron-sulfide, and olivine in a thermal gradient: Preliminary results

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, J. H.

    1993-01-01

    Speculation about the possible mechanisms for core formation in small asteroids raises more questions than answers. Petrologic evidence from iron meteorites, pallasites, and astronomical observations of M asteroids suggests that many small bodies were capable of core formation. Recent work by Taylor reviews the geochemical evidence and examines the possible physical/mechanical constraints on segregation processes. Taylor's evaluation suggests that extensive silicate partial melting (preferably 50 vol. percent or greater) is required before metal can segregate from the surrounding silicate and form a metal core. The arguments for large degrees of silicate partial melting are two-fold: (1) elemental trends in iron meteorites require that the metal was at is liquidus; and (2) experimental observations of metal/sulfide inclusions in partially molten silicate meteorites show that the metal/sulfide tends to form spherules in the liquid silicate due to surface tension effects. Taylor points out that for these metal spherules to sink through a silicate mush, high degrees of silicate partial melting are required to lower the silicate yield strength. Although some qualitative experimental data exists, little is actually known about the behavior of metals and liquid sulfides dispersed in silicate systems. In addition, we have been impressed with the ability of cumulative olivine to expel trapped liquid when placed in a thermal gradient. Consequently, we undertook to accomplish the following: (1) experimentally evaluate the potential for metal/sulfide/silicate segregation in a thermal gradient; and (2) obtain quantitative data of the wetting parameters of metal-sulfide melts among silicate grains.

  8. Origin and evolution of primitive melts from the Debunscha Maar, Cameroon: Consequences for mantle source heterogeneity within the Cameroon Volcanic Line

    NASA Astrophysics Data System (ADS)

    Ngwa, Caroline N.; Hansteen, Thor H.; Devey, Colin W.; van der Zwan, Froukje M.; Suh, Cheo E.

    2017-09-01

    Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77-87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9-11.7 wt%), and are generally more primitive than the matrix glasses (MgO 5.0-5.5 wt%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.

  9. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  10. Transient induced tungsten melting at the Joint European Torus (JET)

    NASA Astrophysics Data System (ADS)

    Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET

    2017-12-01

    Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes—power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15{}\\circ slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.

  11. Magma Chamber of the 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Anderson, A. T.; Wilson, C. J.; Davis, A. M.

    2004-12-01

    We have investigated melt inclusions and their host quartz crystals from the Bishop-Tuff-sized 26.5 ka Oruanui eruption at Taupo volcano, New Zealand. Compositions (major and trace elements, H2O and CO2) of melt inclusions and cathodoluminescence (CL) images of quartz were obtained for eight individual pumices from early, middle and late depositional units. All melt inclusions are high-silica weakly peraluminous rhyolites. Melt inclusions for different eruptive phases have similar ranges of H2O contents (3.8-5.2 wt %), but late-erupted samples have higher CO2 contents (mostly > 140 ppm). A positive correlation between CO2 and compatible trace elements such as Sr suggests that crystallization and melt entrapment occurred under gas-saturated conditions. Trace elements variations in melt inclusions are consistent with fractionation of 30-40 wt % crystals (plagioclase+quartz+pyroxene+amphibole). Crystal contents in pumices, trace-element contents in melt inclusions, and CL zoning patterns of quartz show no correlation with eruptive phases, suggesting that the Oruanui magma was well mixed before eruption. Some Oruanui quartz crystals contain distinctive CL zonings with a jagged ('restitic') core mantled by a black CL zone. Trace element variations in melt inclusions in the 'restitic' cores are consistent with fractionation of Ba-bearing minerals such as sanidine and/or biotite, both of which are rare or absent in rocks erupted from Taupo volcanic center. The above evidence suggests that Oruanui rhyolite is generated by assimilation of previous intruded rocks or country rocks, differentiated by crystal fractionation, and then mixed prior to eruption. Despite the differences in trace element and volatile contents, and crystal assemblages, both Bishop Tuff and Oruanui magmas involve crystal fractionation as one of the main differentiation mechanisms during their evolution. However, there are pronounced differences in the pre-eruptive stratification of the two chambers, which may reflect the tectonic settings, eruption rates, and ages of the systems.

  12. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: Insights from trace element composition of zircon, monazite and garnet coupled to Usbnd Pb geochronology

    NASA Astrophysics Data System (ADS)

    Rocha, B. C.; Moraes, R.; Möller, A.; Cioffi, C. R.; Jercinovic, M. J.

    2017-04-01

    The timing of partial melting and melt crystallization in granulite facies rocks of the Socorro-Guaxupé Nappe (SGN), Brazil is constrained using a combination of imaging techniques, LA-ICP-MS and EPMA dating, trace element geochemistry and thermobarometry. (Orthopyroxene)-garnet-bearing migmatite that records extensive biotite dehydration melting shows evidence for a clockwise P-T-t path. UHT peak conditions were attained at 1030 ± 110 °C, 11.7 ± 1.4 kbar, with post-peak cooling to 865 ± 38 °C, 8.9 ± 0.8 kbar. Cryogenian igneous inheritance of ca. 720-640 Ma is identified in oscillatory zoned zircon cores (n = 167) with steep HREE patterns. Resorbed, Y-rich monazite cores preserve a prograde growth stage at 631 ± 4 Ma prior to the partial melting event, providing an upper age limit for the granulite facies metamorphism in the SGN. REE-rich, Th-depleted monazite related to apatite records the initial stages of decompression at 628 ± 4 Ma. Multiple monazite growth episodes record melt crystallization events at 624 ± 3 Ma, 612 ± 5 Ma and 608 ± 6 Ma. Stubby, equant "soccer ball" zircon provide evidence for melt crystallization at 613 ± 2 Ma and 607 ± 4 Ma. The excess scatter in zircon and monazite age populations between 629 ± 4 and 601 ± 3 Ma is interpreted as discontinuous and episodic growth within this age range, characterizing a prolonged metamorphic event in the SGN lasting ca. 30 m.y. The development of Y + HREE-rich monazite rims at ca. 600 Ma documents retrograde garnet breakdown, extensive biotite growth and the final stages of melt crystallization. Th-rich, Y + HREE-poor monazite rims at ca. 590 Ma record monazite recrystallization.

  13. “Skin-Core-Skin” Structure of Polymer Crystallization Investigated by Multiscale Simulation

    PubMed Central

    Ruan, Chunlei

    2018-01-01

    “Skin-core-skin” structure is a typical crystal morphology in injection products. Previous numerical works have rarely focused on crystal evolution; rather, they have mostly been based on the prediction of temperature distribution or crystallization kinetics. The aim of this work was to achieve the “skin-core-skin” structure and investigate the role of external flow and temperature fields on crystal morphology. Therefore, the multiscale algorithm was extended to the simulation of polymer crystallization in a pipe flow. The multiscale algorithm contains two parts: a collocated finite volume method at the macroscopic level and a morphological Monte Carlo method at the microscopic level. The SIMPLE (semi-implicit method for pressure linked equations) algorithm was used to calculate the polymeric model at the macroscopic level, while the Monte Carlo method with stochastic birth-growth process of spherulites and shish-kebabs was used at the microscopic level. Results show that our algorithm is valid to predict “skin-core-skin” structure, and the initial melt temperature and the maximum velocity of melt at the inlet mainly affects the morphology of shish-kebabs. PMID:29659516

  14. Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core

    NASA Technical Reports Server (NTRS)

    Hess, P. C.; Parmentier, E. M.

    1993-01-01

    We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.

  15. Experimental investigation on V isotope equilibrium fractionation factor between metal and silicate melt

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Zhang, H.; Huang, F.

    2017-12-01

    Equilibrium fractionation factors of stable isotopes between metal and silicate melt are of vital importance for understanding the isotope variations within meteorites and planetary bodies. The V isotope composition (reported as δ51V = 1000 × [(51V/50Vsample/51V/50VAA)-1] ) of the bulk silicate Earth (BSE) has been estimated as δ51V = -0.7 ± 0.2‰ (2sd) [1], which is significantly heavier than most meteorites by 1‰ [2]. Such isotopic offset may provide insights for the core formation and core-mantle segregation. Therefore, it is important to understand V isotope equilibrium fractionation factor between silicate melt and metal. Nielsen et al. (2014) [2] had performed 3 experiments using starting materials of pure Fe metal and An50Di28Fo22 composition, revealing no resolvable V isotope fractionation. However, it is not clear whether chemical compositions in the melts can affect V isotope fractionations. Therefore, we experimentally calibrated equilibrium V isotope fractionation between Fe metallic and basaltic melt, with particular focus on the effect of Ni and other light elements. Experiments were performed at 1 GPa and 1600 oC using a 3/4″ end-loaded piston cylinder. The starting materials consisted of 1:1 mixture of pure Fe metal and basaltic composition [3]. The isotope equilibrium was assessed using time series experiments combined with the reverse reaction method. Carbon saturation and C-free experiments were achieved by using graphite and silica capsules, respectively. The Ni series experiments were doped with 6 wt% Ni into the starting Fe metal. The metal and silicate phases of samples were mechanically separated, V was purified using a chromatographic technique, and V isotope ratios were measured using MC-ICP-MS [4]. Carbon saturation, C-free experiments and Ni series experiment all show non-resolvable V isotope fractionation between metal and basaltic melt, which indicates that the presence of C and Ni could not affect V isotope fractionation during core formation. More experiments will be performed to explore the effect of Si and S in the metal on V isotope fractionation between metal and silicate melt.References: [1] Prytulak et al. (2013) EPSL 365, 177-189 [2] Nielsen et al. (2014) EPSL 389, 167-175 [3] Cottrell et al. (2009) CG 268, 167-179 [4] Wu et al. (2016) CG 421, 17-25

  16. Mantle amphibole control on arc and within-plate chemical signatures: Quaternary lavas from Kurdistan Province, Iran

    NASA Astrophysics Data System (ADS)

    Kheirkhah, M.; Allen, M. B.; Neill, I.; Emami, M. H.; McLeod, C.

    2012-04-01

    New analyses of Quaternary lavas from Kurdistan Province in west Iran shed light on the nature of collision zone magmatism. The rocks are from the Turkish-Iranian plateau within the Arabia-Eurasia collision. Compositions are typically basanite, hawaiite and alkali basalt. Sr-Nd isotope values are close to BSE, which is similar to Quaternary alkali basalts of NW Iran, but distinct from a depleted source melting under Mount Ararat. The chemical signatures suggests variable melting of two distinct sources. One inferred source produced melts with La/Nb from~3.5 to~1.2, which we model as the result of depletion of amphibole during ≤1% melting in the garnet stability field. We infer phlogopite in the source of potassic lavas from Takab. Lithosphere delamination or slab break-off mechanisms for triggering melting are problematic, as the lithosphere is~150-200km thick. It is possible that the negative dT/dP section of the amphibole peridotite solidus was crossed as a result of lithospheric thickening in the collision zone. This explanation is conditional upon the mantle source being weakly hydrated and so only containing a small proportion of amphibole, which can be exhausted during small degrees of partial melting. Our model maybe viable for other magmatic areas within orogenic plateaux, e.g. northern Tibet. Depletion of mantle amphibole may also help explain larger scale transitions from arc to within-plate chemistry in orogens, such as the Palaeogene Arabia-Eurasia system.

  17. Petrology of the Yamato nakhlites

    NASA Astrophysics Data System (ADS)

    Imae, N.; Ikeda, Y.; Kojima, H.

    2005-11-01

    The Yamato nakhlites, Y-000593, Y-000749, and Y-000802, were recovered in 2000 from the bare icefield around the Yamato mountains in Antarctica, consisting of three independent specimens with black fusion crusts. They are paired cumulate clinopyroxenites. We obtained the intercumulus melt composition of the Yamato nakhlites and here call it the Yamato intercumulus melt (YIM). The YIM crystallized to form the augite rims, the olivine rims and the mesostasis phases in the cumulates. The augite rims consist of two layers: inner and outer. The crystallization of the inner rim drove the interstitial melt into the plagioclase liquidus field. Subsequently, the residual melt crystallized pigeonites and plagioclase to form the outer rims and the mesostasis.Three types of inclusions were identified in olivine phenocrysts: rounded vitrophyric, angular vitrophyric, and monomineralic augite inclusions. The monomineralic augite inclusions are common and may have been captured by growing olivine phenocrysts. The rounded vitrophyric inclusions are rare and may represent the composition of middle-stage melts, whereas the angular vitrophyric inclusions seem to have been derived from fractionated late-stage melts. Glass inclusions occur in close association with titanomagnetite and ferroan augite halo in phenocryst core augites and the assemblages may be magmatic inclusions in augites. We compared the YIM with compositions of magmatic inclusions in olivine and augite. The composition of magmatic inclusions in augite is similar to the YIM.Phenocrystic olivines contain exsolution lamellae, augite-magnetite aggregates, and symplectites in the cores. The symplectites often occur at the boundaries between olivine and augite grains. The aggregates, symplectite and lamellae formed by exsolution from the host olivine at magmatic temperatures.We present a formational scenario for nakhlites as follows: (1) accumulation of augite, olivine, and titanomagnetite phenocrysts took place on the floor of a magma chamber; (2) olivine exsolved augite and magnetite as augite-magnetite aggregates, symplectites and lamellae; (3) the overgrowth on olivine phenocrysts formed their rims, and the inner rims crystallized on augite phenocryst cores; and finally, (4) the outer rim formed surrounding the inner rims of augite phenocrysts, and plagioclase and minor minerals crystallized to form mesostasis under a rapid cooling condition, probably in a lava flow or a sill.

  18. Laboratory Experiments Investigating Glacier Submarine Melt Rates and Circulation in an East Greenland Fjord

    NASA Astrophysics Data System (ADS)

    Cenedese, C.

    2014-12-01

    Idealized laboratory experiments investigate the glacier-ocean boundary dynamics near a vertical 'glacier' (i.e. no floating ice tongue) in a two-layer stratified fluid, similar to Sermilik Fjord where Helheim Glacier terminates. In summer, the discharge of surface runoff at the base of the glacier (subglacial discharge) intensifies the circulation near the glacier and increases the melt rate with respect to that in winter. In the laboratory, the effect of subglacial discharge is simulated by introducing fresh water at melting temperatures from either point or line sources at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous studies. The buoyant plume of cold meltwater and subglacial discharge water entrains ambient water and rises vertically until it finds either the interface between the two layers or the free surface. The results suggest that the meltwater deposits within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The submarine melt rate increases with the subglacial discharge rate. Furthermore, the same subglacial discharge causes greater submarine melting if it exits from a point source rather than from a line source. When the subglacial discharge exits from two point sources, two buoyant plumes are formed which rise vertically and interact. The results suggest that the distance between the two subglacial discharges influences the entrainment in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation. Support was given by NSF project OCE-113008.

  19. Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.

    2008-12-01

    (Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant than the cutting chips has been collected. When the drilling passed 3033.46m, the amount of ice chip was decreased. But the amount of ice chip collected increase again from 3034.59m and many large ices have taken the upper part of ice core. The temperature of ice sheet near the bedrock is the pressure melting point. So the liquid water can exist easy there. The water like groundwater infiltrated into the borehole and froze in drilling liquid from 3031.44m to 3033.46m. Under 3034.59m, the subglacial water infiltrated into the borehole and froze in drilling liquid. The existence of water channel in the ice core was found. We think that the liquid water has been flowing through the boundary of ice crystal. (Characteristics of chemical constituents): The melted ice was analyzed every 10cm per 50cm from 2400m to 3028m and continuously every 10cm from 3028m to 3034m. The analytical items were water isotopes (d18O and dD), micro particles (dust) and major ion components. The variations of water isotope and dust in ice near the bedrock have no conspicuous change. But, the concentrations of Cl- and Na+ ions had interesting behavior. The concentration of Cl- ion increased and Na+ ion was decreased deeper than 3020m. Further the concentrations of all ions were decreased suddenly deeper than 3034m. The concentration of ions will be decrease in turn according to the solubility of the ion. home/

  20. Thermo-Physics Technical Note No. 60: thermal analysis of SNAP 10A reactor core during atmospheric reentry and resulting core disintegration and fuel element separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouradian, E.M.

    1966-02-16

    A thermal analysis is carried out to determine the temperature distribution throughout a SNAP 10A reactor core, particularly in the vicinity of the grid plates, during atmospheric reentry. The transient temperatue distribution of the grid plate indicates when sufficient melting occurs so that fuel elements are free to be released and continue their descent individually.

  1. Viscosity of the earth's core.

    NASA Technical Reports Server (NTRS)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  2. The Influence of Lithology on the Formation of Reaction Infiltration Instabilities in Mantle Rocks

    NASA Astrophysics Data System (ADS)

    Pec, M.; Holtzman, B. K.; Zimmerman, M. E.; Kohlstedt, D. L.

    2017-12-01

    The formation of oceanic plates requires extraction of large volumes of melt from the mantle. Several lines of evidence suggest that melt extraction is rapid and, therefore, necessitates high-permeability pathways. Such pathways may form as a result of melt-rock reactions. We report the results of a series of Darcy-type experiments designed to study the development of channels due to melt-solid reactions in mantle lithologies. We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high pressure (P = 300 MPa) and high temperatures (T = 1200° or 1250°C) with a controlled pressure gradient (∂P/∂z = 0-100 MPa/mm). To study the influence of lithology on the channel formation, we synthesized partially molten rocks of harzburgitic (40:40:20 Ol - Opx - basalt), wehrlitic (40:40:20 Ol - Cpx - basalt) and lherzolitic (65:25:10 Ol - Opx - Cpx) composition. The melt source was a disk of alkali basalt. In all experiments, irrespective of the exact mineralogy, melt - undersaturated in silica - from the source dissolved pyroxene in the partially molten rock and precipitated olivine ( Fo82), thereby forming a dunite reaction layer at the interface between the source and the partially molten rock. In samples annealed under a small pressure gradient, the reaction layer was roughly planar. However, if the velocity of melt due to porous flow exceeded 0.1 µm/s, the reaction layer locally protruded into the partially molten rock forming finger-like, melt-rich channels in rocks of wehrlitic and harzburgitic composition. The lherzolitic rocks were generally impermeable to the melt except at highest-pressure gradients where a narrow fracture developed, forming a dyke which drained the melt reservoir. Three-dimensional reconstructions using micro-CT images revealed clear differences between the dyke (a narrow, through-going planar feature) and the channels formed by reactive infiltration (multiple sinuous finger-like features). Apparently, the fraction of soluble minerals together with the melt fraction in the partially molten rock control whether dykes or reactive channels develop. Our experiments demonstrate that melt-rock reactions can lead to channelization in mantle lithologies, and the observed lithological transformations broadly agree with those observed in nature

  3. Toda hierarchies and their applications

    NASA Astrophysics Data System (ADS)

    Takasaki, Kanehisa

    2018-05-01

    The 2D Toda hierarchy occupies a central position in the family of integrable hierarchies of the Toda type. The 1D Toda hierarchy and the Ablowitz–Ladik (aka relativistic Toda) hierarchy can be derived from the 2D Toda hierarchy as reductions. These integrable hierarchies have been applied to various problems of mathematics and mathematical physics since 1990s. A recent example is a series of studies on models of statistical mechanics called the melting crystal model. This research has revealed that the aforementioned two reductions of the 2D Toda hierarchy underlie two different melting crystal models. Technical clues are a fermionic realization of the quantum torus algebra, special algebraic relations therein called shift symmetries, and a matrix factorization problem. The two melting crystal models thus exhibit remarkable similarity with the Hermitian and unitary matrix models for which the two reductions of the 2D Toda hierarchy play the role of fundamental integrable structures.

  4. Plastic deformation of FeSi at high pressures: implications for planetary cores

    NASA Astrophysics Data System (ADS)

    Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen

    2017-04-01

    The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.

  5. Geochemical Overview of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Furman, T.

    2003-12-01

    Mafic volcanics of the East African Rift System (EARS) record a protracted history of continental extension that is linked to mantle plume activity. The modern EARS traverses two post-Miocene topographic domes separated by a region of polyphase extension in northern Kenya and southern Ethiopia. Basaltic magmatism commenced ˜45 Ma in this highly extended region, while the onset of plume-related activity took place ˜30 Ma with eruption of flood basalts in central Ethiopia. A spatial and temporal synthesis of EARS volcanic geochemistry shows progressive lithospheric removal (by erosion and melting) as the degree of rifting increases, with basalts in the most highly extended areas recording melting of depleted asthenosphere. Plume contributions are indicated locally in the northern half of the EARS, but are absent from the southern half. The geochemical signatures are compatible with a physical model in which the entire EARS is fed by a discontinuous plume emanating from the core-mantle boundary as the South African Superswell. Quaternary basaltic lavas erupted in the Afar triangle, Red Sea and Gulf of Aden define the geochemical signature attributed to the Afar plume (87Sr/86Sr 0.7034-0.7037, 143Nd/144Nd 0.5129-0.5130; La/Nb 0.6-0.9; Nb/U 40-50). These suites commonly record mixing with ambient upper mantle having less radiogenic isotopes but generally overlapping incompatible trace element abundances. Within the Ethiopian dome both lithospheric and sub-lithoshperic contributions can be documented clearly; lithospheric contributions are manifest in more radiogenic isotope values (87Sr/86Sr up to 0.7050) and distinctive trace element abundances (e.g., La/Nb <2.0, Nb/U > 10). The degree of lithospheric contribution is lowest within the active Main Ethiopian Rift and increases towards the southern margin of the dome. The estimated depth of melting (65-75 km) is consistent with geophysical observations of lithospheric thickness. In regions of prolonged volcanism the lithospheric contributions and estimated melting depths decrease through time, corresponding to a higher degree of rifting. In the Kenyan dome, including the western rift, the degree of extension is low and lithospheric melting is the dominant source for basaltic magmatism. Mafic lavas from these regions have generally lower MgO but higher contents of alkalis, P2O5 and many incompatible trace elements than are observed in the Ethiopian Rift. High values of 87Sr/86Sr, 207Pb/204Pb and Zr/Hf relative to other parts of the EARS indicate melting of metasomatized lithosphere. Melting in this area occurs at depths up to 100+ km, consistent with the thick crustal section observed seismically. Between the topographic domes, basalts from the Turkana region record melting at shallow levels ( ˜35 km) consistent with seismic evidence for nearly complete rifting of the crustal section. The geochemistry of these lavas is dominated by asthenospheric source materials, with only minor lithospheric involvement. Temporal evolution of EARS geochemistry reflects progressive rifting of the thick craton. This change is manifest within lavas that are interpreted as plume-derived, as Tb/Yb values decrease from 30 Ma through the present. The modern thermal anomaly associated with Afar volcanism does not appear to extend below the shallow mantle, but may reflect a large blob of deep mantle material that became stuck to Africa 30 Ma and has contributed to regional volcanism ever since. Relative contributions from this deep mantle source, shallow asthenosphere and lithosphere are controlled by the extent of rifting and cannot be predicted solely on the basis of surface topography.

  6. Models for viscosity and shear localization in bubble-rich magmas

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia

    2016-09-01

    Bubble content influences magma rheology and, thus, styles of volcanic eruption. Increasing magma vesicularity affects the bulk viscosity of the bubble-melt suspension and has the potential to promote non-Newtonian behavior in the form of shear localization or brittle failure. Here, we present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. The starting materials are cores of natural rhyolitic obsidian synthesized to have variable vesicularity (ϕ = 0- 66%). The foamed cores were deformed isothermally (T = 750 °C) at atmospheric conditions using a high-temperature uniaxial press under constant displacement rates (strain rates between 0.5- 1 ×10-4 s-1) and to total strains of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods to establish a baseline for experiments on the vesicle rich cores. At the experimental conditions, rising vesicle content produces a marked decrease in bulk viscosity that is best described by a two-parameter empirical equation: log10 ⁡ηBulk =log10 ⁡η0 - 1.47[ ϕ / (1 - ϕ) ] 0.48. Our parameterization of the bubble-melt rheology is combined with Maxwell relaxation theory to map the potential onset of non-Newtonian behavior (shear localization) in magmas as a function of melt viscosity, vesicularity, and strain rate. For low degrees of strain (i.e. as in our study), the rheological properties of vesicular magmas under different flow types (pure vs. simple shear) are indistinguishable. For high strain or strain rates where simple and pure shear viscosity values may diverge, our model represents a maximum boundary condition. Vesicular magmas can behave as non-Newtonian fluids at lower strain rates than unvesiculated melts, thereby, promoting shear localization and (explosive or non-explosive) magma fragmentation. The extent of shear localization in magma influences outgassing efficiency, thereby, affecting magma ascent and the potential for explosivity.

  7. The extreme melt across the Greenland ice sheet in 2012

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.

    2012-10-01

    The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.

  8. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.

    PubMed

    Patil, Hemlata; Kulkarni, Vijay; Majumdar, Soumyajit; Repka, Michael A

    2014-08-25

    Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. This work aimed at developing continuous and scalable processes for SLN by mixing a lipid and aqueous phase containing an emulsifier in the extruder barrel at temperatures above the melting point of the lipid and further reducing the particle size of emulsion by HPH linked to HME in a sequence. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm (for 60 mg/ml lipid solution at a flow rate of 100ml/min). Among the several process parameters investigated, the lipid concentration, residence time and screw design played major roles in influencing the size of the SLN. This new process demonstrates the potential use of hot melt extrusion technology for continuous and large-scale production of SLN. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Petrogenesis of Mare Basalts, Mg-Rich Suites and SNC Parent Magmas

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.

    2004-01-01

    The successful models for the internal evolution of the Moon must consider the volume, distribution, timing, composition and, ultimately, the petrogenesis of mare basaltic volcanism. Indeed, given the paucity of geophysical data, the internal state of the Moon in the past can be gleaned only be unraveling the petrogenesis of the various igneous products on the Moon and, particularly, the mare basalts. most useful in constraining the depth and composition of their source region [Delano, 1980] despite having undergone a certain degree of shallow level olivine crystallization.The bulk of the lunar volcanic glass suite can be modeled as the partial melting products of an olivine + orthopyroxene source region deep within the lunar mantle. Ti02 contents vary from 0.2 wt % -1 7.0wt [Shearer and Papike, 1993]. Values that extreme would seem to require a Ti- bearing phase such as ilmenite in the source of the high-Ti (but not in the VLT source) because a source region of primitive LMO olivine and orthopyroxene, even when melted in small degrees cannot account for the observed range of Ti02 compositions. The picritic glasses are undersaturated with respect to ilmenite at all pressures investigated therefore ilmenite must have been consumed during melting, leaving an ilmenite free residue and an undersaturated melt [Delano, 1980, Longhi, 1992, Elkins et al, 2000 among others]. Multi- saturation pressures for the glasses potentially represent the last depths at which the liquids equilibrated with a harzburgite residue before ascending to the surface. These occur at great depths within the lunar mantle. Because the liquids have suffered some amount of crystal fractionation, this is at best a minimum depth. If the melts are mixtures, then it is only an average depth of melting. Multisaturation, nevertheless, is still a strong constraint on source mineralogy, revealing that the generation of the lunar basalts was dominated by melting of olivine and orthopyroxene.

  10. Toward a coherent model for the melting behavior of the deep Earth's mantle

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Bolfan-Casanova, N.; Bouhifd, M. A.; Boujibar, A.; Garbarino, G.; Manthilake, G.; Mezouar, M.; Monteux, J.; Parisiades, P.; Pesce, G.

    2017-04-01

    Knowledge of melting properties is critical to predict the nature and the fate of melts produced in the deep mantle. Early in the Earth's history, melting properties controlled the magma ocean crystallization, which potentially induced chemical segregation in distinct reservoirs. Today, partial melting most probably occurs in the lowermost mantle as well as at mid upper-mantle depths, which control important aspects of mantle dynamics, including some types of volcanism. Unfortunately, despite major experimental and theoretical efforts, major controversies remain about several aspects of mantle melting. For example, the liquidus of the mantle was reported (for peridotitic or chondritic-type composition) with a temperature difference of ∼1000 K at high mantle depths. Also, the Fe partitioning coefficient (DFeBg/melt) between bridgmanite (Bg, the major lower mantle mineral) and a melt was reported between ∼0.1 and ∼0.5, for a mantle depth of ∼2000 km. Until now, these uncertainties had prevented the construction of a coherent picture of the melting behavior of the deep mantle. In this article, we perform a critical review of previous works and develop a coherent, semi-quantitative, model. We first address the melting curve of Bg with the help of original experimental measurements, which yields a constraint on the volume change upon melting (ΔVm). Secondly, we apply a basic thermodynamical approach to discuss the melting behavior of mineralogical assemblages made of fractions of Bg, CaSiO3-perovskite and (Mg,Fe)O-ferropericlase. Our analysis yields quantitative constraints on the SiO2-content in the pseudo-eutectic melt and the degree of partial melting (F) as a function of pressure, temperature and mantle composition; For examples, we find that F could be more than 40% at the solidus temperature, except if the presence of volatile elements induces incipient melting. We then discuss the melt buoyancy in a partial molten lower mantle as a function of pressure, F and DFeBg/melt. In the lower mantle, density inversions (i.e. sinking melts) appear to be restricted to low F values and highest mantle pressures. The coherent melting model has direct geophysical implications: (i) in the early Earth, the magma ocean crystallization could not occur for a core temperature higher than ∼5400 K at the core-mantle boundary (CMB). This temperature corresponds to the melting of pure Bg at 135 GPa. For a mantle composition more realistic than pure Bg, the right CMB temperature for magma ocean crystallization could have been as low as ∼4400 K. (ii) There are converging arguments for the formation of a relatively homogeneous mantle after magma ocean crystallization. In particular, we predict the bulk crystallization of a relatively large mantle fraction, when the temperature becomes lower than the pseudo-eutectic temperature. Some chemical segregation could still be possible as a result of some Bg segregation in the lowermost mantle during the first stage of the magma ocean crystallization, and due to a much later descent of very low F, Fe-enriched, melts toward the CMB. (iii) The descent of such melts could still take place today. There formation should to be related to incipient mantle melting due to the presence of volatile elements. Even though, these melts can only be denser than the mantle (at high mantle depths) if the controversial value of DFeBg/melt is indeed as low as suggested by some experimental studies. This type of melts could contribute to produce ultra-low seismic velocity anomalies in the lowermost mantle.

  11. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Huang, Fang; Wang, Zaicong; Zhang, Xingchao; Yu, Huimin

    2017-08-01

    To investigate the behavior of Cu isotopes during partial melting and melt percolation in the mantle, we have analyzed Cu isotopic compositions of a suite of well-characterized Paleozoic peridotites from the Balmuccia and Baldissero massifs in the Ivrea-Verbano Zone (IVZ, Northern Italy). Our results show that fresh lherzolites and harzburgites have a large variation of δ65Cu ranging from -0.133 to 0.379‰, which are negatively correlated with Al2O3 contents as well as incompatible platinum-group (e.g., Pd) and chalcophile element (e.g., Cu, S, Se, and Te) contents. The high δ65Cu can be explained by Cu isotope fractionation during partial melting of a sulfide-bearing peridotite source, with the light isotope (63Cu) preferentially entering the melts. The low δ65Cu can be attributed to precipitation of sulfides enriched in 63Cu during sulfur-saturated melt percolation. Replacive dunites from the Balmuccia massif display high δ65Cu from 0.544 to 0.610‰ with lower Re, Pd, S, Se, and Te contents and lower Pd/Ir ratios relative to lherzolites, which may result from dissolution of sulfides during interactions between S-undersaturated melts and lherzolites at high melt/rock ratios. Thus, our results suggest that partial melting and melt percolation largely account for the Cu isotopic heterogeneity of the upper mantle. The correlation between δ65Cu and Cu contents of the lherzolites and harzburgites was used to model Cu isotope fractionation during partial melting of a sulfide-bearing peridotite, because Cu is predominantly hosted in sulfide. The modelling results indicate an isotope fractionation factor of αmelt-peridotite = 0.99980-0.99965 (i.e., 103lnαmelt-peridotite = -0.20 to -0.35‰). In order to explain the Cu isotopic systematics of komatiites and mid-ocean ridge basalts reported previously, the estimated αmelt-peridotite was used to simulate Cu isotopic variations in melts generated by variable degrees of mantle melting. The results suggest that high degrees (>25%) of partial melting extracts nearly all source Cu and it cannot produce Cu isotope fractionation in komatiites relative to their mantle source, and that sulfide segregation during magma evolution have modified Cu isotopic compositions of mid-ocean ridge basalts.

  12. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  13. Central magnetic anomalies of Nectarian-aged lunar impact basins: Probable evidence for an early core dynamo

    NASA Astrophysics Data System (ADS)

    Hood, Lon L.

    2011-02-01

    A re-examination of all available low-altitude LP magnetometer data confirms that magnetic anomalies are present in at least four Nectarian-aged lunar basins: Moscoviense, Mendel-Rydberg, Humboldtianum, and Crisium. In three of the four cases, a single main anomaly is present near the basin center while, in the case of Crisium, anomalies are distributed in a semi-circular arc about the basin center. These distributions, together with a lack of other anomalies near the basins, indicate that the sources of the anomalies are genetically associated with the respective basin-forming events. These central basin anomalies are difficult to attribute to shock remanent magnetization of a shocked central uplift and most probably imply thermoremanent magnetization of impact melt rocks in a steady magnetizing field. Iterative forward modeling of the single strongest and most isolated anomaly, the northern Crisium anomaly, yields a paleomagnetic pole position at 81° ± 19°N, 143° ± 31°E, not far from the present rotational pole. Assuming no significant true polar wander since the Crisium impact, this position is consistent with that expected for a core dynamo magnetizing field. Further iterative forward modeling demonstrates that the remaining Crisium anomalies can be approximately simulated assuming a multiple source model with a single magnetization direction equal to that inferred for the northernmost anomaly. This result is most consistent with a steady, large-scale magnetizing field. The inferred mean magnetization intensity within the strongest basin sources is ˜1 A/m assuming a 1-km thickness for the source layer. Future low-altitude orbital and surface magnetometer measurements will more strongly constrain the depth and/or thicknesses of the sources.

  14. Melt generation in the West Antarctic Rift System: the volatile legacy of Gondwana subduction?

    NASA Astrophysics Data System (ADS)

    Aviado, K.; Rilling-Hall, S.; Mukasa, S. B.; Bryce, J. G.; Cabato, J.

    2013-12-01

    The West Antarctic Rift System (WARS) represents one of the largest extensional alkali volcanic provinces on Earth, yet the mechanisms responsible for driving rift-related magmatism remain controversial. The failure of both passive and active models of decompression melting to explain adequately the observed volume of volcanism has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. The latter is supported by roughly 500 Ma of subduction along the paleo-Pacific margin of Gondwana, although both processes are capable of producing the broad seismic anomaly imaged beneath most of the Southern Ocean. Olivine-hosted melt inclusions from basanitic lavas provide a means to evaluate the volatile budget of the mantle responsible for active rifting beneath the WARS. We present H2O, CO2, F, S and Cl concentrations determined by SIMS and major oxide compositions by EMPA for olivine-hosted melt inclusions from lavas erupted in Northern Victoria Land (NVL) and Marie Byrd Land (MBL). The melt inclusions are largely basanitic in composition (4.05 - 17.09 wt % MgO, 37.86 - 45.89 wt % SiO2, and 1.20 - 5.30 wt % Na2O), and exhibit water contents ranging from 0.5 up to 3 wt % that are positively correlated with Cl and F. Coupling between Cl and H2O indicates metasomatic enrichment by subduction-related fluids produced during dehydration reactions; coupling between H2O and F, which is more highly retained in subducting slabs, may be related to partial melting of slab remnants [1]. Application of source lithology filters [2] to whole rock major oxide data shows that primitive lavas (MgO wt % >7) from the Terror Rift, considered the locus of on-going tectonomagmatic activity, have transitioned from a pyroxenite source to a volatilized peridotite source over the past ~4 Ma. Integrating the volatile data with the modeled characteristics of source lithologies suggests that partial melting of lithosphere modified by subduction processes is the source of pyroxenite and volatiles in the mantle beneath the present-day rift. The earliest magmatic activity preferentially removed the most readily fusible components from the mantle, resulting in transition to a metasomatized peridotite source over time. [1] Straub & Layne, 2003, GCA; [2] Herzberg & Asimow, 2008, G3; [3] Rilling et al., 2009, JGR.

  15. Experimental Investigation on Reduction Kinetics of Stainless Steel-Making Slag in Iron Bath Smelting Reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liu, Jienan; Yang, Yanfeng; Liu, Luming; Liu, Jiechao; Luo, Lijian; Ma, Yubao; Hong, Xin

    Reduction kinetics of stainless steel slag in iron bath smelting reduction was studied at the temperature of 1500°C ˜ 1650°C. It was concluded that the reduction process consisted of two parts. That is to say smelting reduction was controlled by stainless steel slag melting initially and by interface reaction later. In order to increase smelting reaction rate, the melting point of slag should be decreased at the first stage and adjust the liquidity of slag at later stage. Smelting reaction rate will be accelerated by means of optimize the slag content. The optimal reduction result that all most all of the chromium in slag been recovered was obtained in temperature was 1500°C, basicity of slag was 1.0˜1.2, the value of Al2O3+MgO was 25%.

  16. Foam injection molding of poly(lactic acid) with physical blowing agents

    NASA Astrophysics Data System (ADS)

    Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.

    2014-05-01

    Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.

  17. Controlled in situ etch-back

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Seabaugh, A. C. (Inventor)

    1981-01-01

    A controlled in situ etch-back technique is disclosed in which an etch melt and a growth melt are first saturated by a source-seed crystal and thereafter etch-back of a substrate takes place by the slightly undersaturated etch melt, followed by LPE growth of a layer by the growth melt, which is slightly supersaturated.

  18. Application of the in situ three channel WET Star fluorometer to characterize FDOM sources and determine water masses in the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Raczkowska, Anna; Kowalczuk, Piotr; Sagan, Slawomir; Zablocka, Monika; Stedmon, Colin; Granskog, Mats

    2017-04-01

    Water masses exchange between the Atlantic Ocean and the Arctic Ocean occurs in Nordic Seas and this process represents a crucial component of the northern hemisphere climate system. Nordic Seas are dominated by Atlantic Waters (AW) and Polar Waters (PW) and water formed in the mixing process or local modifications like precipitation and sea-ice melt. Classification of water masses only on the basis of temperature, salinity or density not take into account different sources of fresh water in the Nordic Seas. In this study we propose that measured signal from the in situ three channel WET Star fluorometer could be a useful tool for characterization of dissolved organic matter (DOM) and refinement of water masses classification . Spectral properties of Chromophoric Dissolved Organic Matter and Fluorescent Dissolved Organic Matter (CDOM and FDOM) were characterized in different water masses along a section across the Fram Strait at 79°N as well as in the Nordic Seas in 2014 and 2015. Observations of CDOM and FDOM were carried out with use of in situ three channel WET Labs WET Star fluorometer and Excitation Emission Matrix spectra (EEMs) measured in the water samples. The WET Labs WET Star three channels in situ fluorometer was designed to measure emission of humic and protein-like FDOM fractions. Instruments output was calibrated against respective fluorescence intensity of EMMs measured with use of Aqualog fluorometer (Horiba Scientific) at excitation and emission ranges corresponding to in situ fluorometer channels. The correctness of the calibration was confirmed by empirical linear relationship between WET Star in situ fluorescence intensities and aCDOM(350) derived from water samples. Measured WET Star fluorometer signal enabled to asses distribution of different FDOM fractions in the Nordic Seas. The distribution of humic-like fluorescence intensity in the function of salinity revealed three distinct mixing curves: the first indicates mixing between surface PW diluted by sea ice melt with core of PW from East Greenland Current, the second imply transition from PW to AW, the third curve is an indicator of modification of AW by sea ice melting in the area of Western and Northern Spitsbergen Shelf. Furthermore, fluorescence intensities of humic-like DOM fraction is very low and remains practically constant in the core of AW. In the AW there is a strong subsurface maximum of chlorophyll a fluorescence which was aligned with protein-like fraction of DOM. The linear relationship between phytoplankton fluorescence and fluorescence intensity of protein-like DOM fraction proved that phytoplankton was primary source of protein like fraction of DOM in the AW.

  19. Petrology of chromite in ureilites: Deconvolution of primary oxidation states and secondary reduction processes

    NASA Astrophysics Data System (ADS)

    Goodrich, Cyrena Anne; Harlow, George E.; Van Orman, James A.; Sutton, Stephen R.; Jercinovic, Michael J.; Mikouchi, Takashi

    2014-06-01

    Ureilites are ultramafic achondrites thought to be residues of partial melting on a carbon-rich asteroid. They show a trend of FeO-variation (olivine Fo from ∼74 to 95) that suggests variation in oxidation state. Whether this variation was established during high-temperature igneous processing on the ureilite parent body (UPB), or preserved from nebular precursors, is a subject of debate. The behavior of chromium in ureilites offers a way to assess redox conditions during their formation and address this issue, independent of Fo. We conducted a petrographic and mineral compositional study of occurrences of chromite (Cr-rich spinel) in ureilites, aimed at determining the origin of the chromite in each occurrence and using primary occurrences to constrain models of ureilite petrogenesis. Chromite was studied in LEW 88774 (Fo 74.2), NWA 766 (Fo 76.7), NWA 3109 (Fo 76.3), HaH 064 (Fo 77.5), LAP 03587 (Fo 74.9), CMS 04048 (Fo 76.4), LAP 02382 (Fo 78.6) and EET 96328 (Fo 85.2). Chromite occurs in LEW 88774 (∼5 vol.%), NWA 766 (<1 vol.%), NWA 3109 (<1 vol.%) and HaH 064 (<1 vol.%) as subhedral to anhedral grains comparable in size (∼30 μm to 1 mm) and/or textural setting to the major silicates (olivine and pyroxenes[s]) in each rock, indicating that it is a primary phase. The most FeO-rich chromites in these sample (rare grain cores or chadocrysts in silicates) are the most primitive compositions preserved (fe# = 0.55-0.6; Cr# varying from 0.65 to 0.72 among samples). They record olivine-chromite equilibration temperatures of ∼1040-1050 °C, reflecting subsolidus Fe/Mg reequilibration during slow cooling from ∼1200 to 1300 °C. All other chromite in these samples is reduced. Three types of zones are observed. (1) Inclusion-free interior zones showing reduction of FeO (fe# ∼0.4 → 0.28); (2) Outer zones showing further reduction of FeO (fe# ∼0.28 → 0.15) and containing abundant laths of eskolaite-corundum (Cr2O3-Al2O3); (3) Outermost zones showing extreme reduction of both FeO (fe# <0.15) and Cr2O3 (Cr# as low as 0.2). The grains are surrounded by rims of Si-Al-rich glass, graphite, Fe, Cr-carbides ([Fe,Cr]3C and [Fe,Cr]7C3), Cr-rich sulfides (daubréelite and brezinaite) and Cr-rich symplectic bands on adjacent silicates. Chromite is inferred to have been reduced by graphite, forming eskolaite-corundum and carbides as byproducts, during impact excavation. This event involved initial elevation of T (to 1300-1400 °C), followed by rapid decompression and drop in T (to <700 °C) at 1-20 °C/h. The kinetics of reduction of chromite is consistent with this scenario. The reduction was facilitated by silicate melt surrounding the chromites, which was partly generated by shock-melting of pyroxenes. Symplectic bands, consisting of fine-scale intergrowths of Ca-pyroxene, chromite and glass, formed by reaction between the Cr-enriched melt and adjacent silicates. Early chromite also occurs in a melt inclusion in olivine in HaH 064 and in a metallic spherule in olivine in LAP 02382. LAP 03587 and CMS 04048 contain ⩽μm-sized chromite + pyroxene symplectic exsolutions in olivine, indicating high Cr valence in the primary olivine. EET 96328 contains a round grain of chromite that could be a late-crystallizing phase. Tiny chromite grains in melt inclusions in EET 96328 formed in late, closed-system reactions. For 7 of the 8 ureilites we conclude that the relatively oxidizing conditions evidenced by the presence of primary or early chromite pertain to the period of high-T igneous processing. The observation that such conditions are recorded almost exclusively in low-Fo samples supports the interpretation that the ureilite FeO-variation was established during igneous processing on the UPB.

  20. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC

    NASA Astrophysics Data System (ADS)

    Xu, Xuexia; Li, Wenbin; Wang, Yong; Dong, Guozhen; Jing, Shangqian; Wang, Qing; Feng, Yanting; Fan, Xiaoliang; Ding, Haimin

    2018-06-01

    In this work, Cu-TiC composites have been successfully prepared by reaction of soluble Ti and carbon coating TiC. Firstly, the ball milling of graphite and TiC mixtures is used to obtain the carbon coating TiC which has fine size and improved reaction activity. After adding the ball milled carbon coating TiC into Cu-Ti melts, the soluble Ti will easily react with the carbon coating to form TiC. This process will also improve the wettability between Cu melts and TiC core. As a result, besides the TiC prepared by reaction of soluble Ti and carbon coating, the ball milled TiC will also be brought into the melts. Some of these ball-milled TiC particles will go on being coated by the formed TiC from the reaction of Ti and the coating carbon and left behind in the composites. However, most of TiC core will be further reacted with the excessive Ti and be transformed into the newly formed TiC with different stoichiometry. The results indicate that it is a feasible method to synthesize TiC in Cu melts by reaction of soluble Ti and ball-milled carbon coating TiC.

  1. Vapor Growth of Binary and Ternary Chalcogenides in Preparation for Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Su, C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In the bulk crystal growth of some technologically important semiconducting chalcopyrites, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials. The realization of routine production of high-quality single crystals of these semiconductors requires a fundamental, systematic and in-depth study on the PVT growth process and crystal growth by vapor transport in low gravity offers a set of unique conditions for this study. Previously, two reasons have been put forward to account for this. The first is weight-related reductions in crystal strain and defects. These are thought to be caused by the weight of the crystals during processing at elevated temperatures and retained on cooling, particularly for materials with a low yield strength. The second, and more general, reason is related to the reduction in density-gradient driven convection. The PVT crystal growth process consists of essentially three processes: sublimation of the source material, transport of the vapor species and condensation of the vapor species to form the crystal. The latter two processes can be affected by the convection caused by gravitational accelerations on Earth. Reductions in such convection in low gravity is expected to yield a nearly diffusion-limited growth condition which results in more uniform growth rates (on the microscopic scale) and hence greater crystalline perfection and compositional homogeneity. The reduction of convective contamination by performing flight experiments in a reduced gravity environment will help to understand the relation between fluid phase processes (growth parameters) and defect and impurity incorporation in grown crystals.

  2. Viscosity and Structure of a Late Lunar Magma Ocean Liquid: Implications for the Purity of Ferroan Anorthosites and the Dynamics of a Crystallizing Magma Ocean

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Lin, J. F.; Marshall, E. W., IV; Kono, Y.; Gardner, J. E.

    2016-12-01

    The current paradigm argues the Moon formed after a giant impact that produced a deep lunar magma ocean (LMO). After a period of turbulent convection, the LMO experienced fractional crystallization, causing the initially peridotitic liquid to evolve to a plagioclase-saturated ferrobasalt. The lunar crust, much of which comprises 93-98% pure anorthosite [1,2], formed by flotation of positively buoyant plagioclase on the residual liquid. A flotation crust would contain some trapped melt; compaction of the melt out of the crust before solidification may be necessary to generate a very pure anorthitic crust. The efficiency of this process depends on the previously unmeasured viscosity of the residual liquid [3]. To characterize the viscosity and thermal equation of state of a late LMO liquid, we conducted experiments at the Advanced Photon Source, Beamline 16-BM-B, Argonne National Laboratory on a nominally anhydrous Ti-rich ferrobasalt [4]. X-ray radiography and diffuse scattering experiments were conducted in a Paris-Edinburgh apparatus in graphite-lined BN capsules, allowing in-situ observation of viscosity and derivation of thermal EoS at P-T conditions relevant to the Moon (1300-1600°C, 0.1-4.4GPa). We calculated viscosities of 0.23-1.45 Pa·s for the melt; based on 11 observations, we find that viscosity is pressure insensitive under the conditions explored. Viscosity can be modeled by an Arrhenius relation with an activation enthalpy of 66 kJ/mol. Composition-dependent predictive models [5] overestimate our observations by roughly a factor of 2. Preliminary analysis suggests no pressure-dependent structural transition over the conditions explored. Late LMO liquids brought to the lunar core-mantle boundary by cumulate mantle overturn may be positively buoyant, implying the seismically attenuating layer around the lunar core contains a denser, higher-Ti melt. Our results suggest that efficient phase segregation in the lunar magma ocean and compaction in the anorthositic flotation crust can produce a high-purity crust under physically reasonable conditions. [1] Warren (1990), AmMin 75, 46-58. [2] Ohtake et al. (2009), Nature 461, 236-240. [3] Piskorz, & Stevenson (2014), Icarus 239, 238-243. [4] Longhi (2003), JGR 108, doi:10.1029/2002JE001941. [5] Giordano et al. (2008), EPSL 271, 123-134.

  3. Fluorine and the viscosity of jadeite-leucite and nepheline-kalsilite melts at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Robert, G.; Bruno, M.; Carty, O.; Smith, R. A.; Whittington, A. G.

    2017-12-01

    While fluorine has a lower abundance than H2O and CO2 in most magmatic and volcanic systems, F is as effective as water at reducing the viscosity of silica-rich melts. Previous studies have also shown that, just like water, the effect of F in reducing melt viscosity is strongest in the most highly polymerized melts. We measured the viscosity of fluorine-free and fluorine-bearing melts along the jadeite-leucite (Jd-Lct) and nepheline-kalsilite (Ne-Kls) joins of the NaAlSiO4-KAlSiO4-SiO2 system. All compositions studied are metaluminous to slightly peraluminous, and nominally fully polymerized (noting that non-bridging oxygen sites exist in metaluminous and peraluminous glasses, their proportion being a function of Al/Si ratio and cation charge). We test whether the effects of fluorine on viscosity have a dependence on Na/K or Al/Si ratios in these melts. In fluorine-free melts, the K-rich melts have the highest viscosity and T12 (temperature of the 1012 Pas isokom). The mixed-alkali effect results in a viscosity minimum at compositions with intermediate Na/K ratios. At 1200K, for the Na- end-member melts, the lowest Al/Si ratio melts (nepheline-kalsilite melts) have the highest viscosity. Available literature data and extrapolation of trends from our measurements suggest there is little difference in viscosity between the K- end-member melts at 1200K. At high temperatures, the jadeite-leucite melts generally have higher viscosities than the nepheline-kalsilite melts. Fluorine reduces the viscosity of all of the melts we studied, and, although it has been suggested that fluorine preferentially bonds with potassium over sodium, its effects on viscosity appears to be approximately independent of Na/K ratio in metaluminous melts. With increasing Al/Si ratio, more order is required to satisfy the aluminum avoidance principle, but this also does not seem to affect the magnitude of viscosity reduction due to the addition of fluorine, at least for melts with intermediate Na/K ratio. Adding 8 mol% F to melts with Na/(Na+K) ratio of 0.5 results in a T12 reduction of 186°C relative to F-free melts.

  4. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Quiet-Aircraft Subproject aims to develop concepts and technologies to reduce perceived community noise attributable to aircraft with minimal impact on weight and performance. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  5. Origin and Role of Recycled Crust in Flood Basalt Magmatism: Case Study of the Central East Greenland Rifted Margin

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2015-12-01

    Continental flood basalts (CFB) are extreme manifestations of mantle melting derived from chemically/isotopically heterogeneous mantle. Much of this heterogeneity comes from lithospheric material recycled into the convecting mantle by a range of mechanisms (e.g. subduction, delamination). The abundance and petrogenetic origins of these lithologies thus provide important constraints on the geodynamical origins of CFB magmatism, and the timescales of lithospheric recycling in the mantle. Basalt geochemistry has long been used to constrain the compositions and mean ages of recycled lithologies in the mantle. Typically, this work assumes the isotopic compositions of the basalts are the same as their mantle source(s). However, because basalts are mixtures of melts derived from different sources (having different fusibilities) generated over ranges of P and T, their isotopic compositions only indirectly represent the isotopic compositions of their mantle sources[1]. Thus, relating basalts compositions to mantle source compositions requires information about the melting process itself. To investigate the nature of lithologic source heterogeneity while accounting for the effects of melting during CFB magmatism, we utilize the REEBOX PRO forward melting model[2], which simulates adiabatic decompression melting in lithologically heterogeneous mantle. We apply the model to constrain the origins and abundance of mantle heterogeneity associated with Paleogene flood basalts erupted during the rift-to-drift transition of Pangea breakup along the Central East Greenland rifted margin of the North Atlantic igneous province. We show that these basalts were derived by melting of a hot, lithologically heterogeneous source containing depleted, subduction-modified lithospheric mantle, and <10% recycled oceanic crust. The Paleozoic mean age we calculate for this recycled crust is consistent with an origin in the region's prior subduction history, and with estimates for the mean age of recycled crust in the modern Iceland plume[3]. These results suggest that this lithospheric material was not recycled into the lower mantle before becoming entrained in the Iceland plume. [1] Rudge et al. (2013). GCA, 114, p112-143; [2] Brown & Lesher (2014). Nat. Geo., 7, p820-824; [3] Thirlwall et al. (2004). GCA, 68, p361-386

  6. Asteroidal impacts and the origin of terrestrial and lunar volatiles

    NASA Astrophysics Data System (ADS)

    Albarede, Francis; Ballhaus, Chris; Blichert-Toft, Janne; Lee, Cin-Ty; Marty, Bernard; Moynier, Frédéric; Yin, Qing-Zhu

    2013-01-01

    Asteroids impacting the Earth partly volatilize, partly melt (O'Keefe, J.D., Ahrens, T.J. [1977]. Proc. Lunar Sci. Conf. 8, 3357-3374). While metal rapidly segregates out of the melt and sinks into the core, the vaporized material orbits the Earth and eventually rains back onto its surface. The content of the mantle in siderophile elements and their chondritic relative abundances hence is accounted for, not by the impactors themselves, as in the original late-veneer model (Chou, C.L. [1978]. Proc. Lunar Sci. Conf. 9, 219-230; Morgan, J.W. et al. [1981]. Tectonophysics 75, 47-67), but by the vapor resulting from impacts. The impactor's non-siderophile volatiles, notably hydrogen, are added to the mantle and hydrosphere. The addition of late veneer may have lasted for 130 Ma after isolation of the Solar System and probably longer, i.e., well beyond the giant lunar impact. Constraints from the stable isotopes of oxygen and other elements suggest that, contrary to evidence from highly siderophile elements, ˜4% of CI chondrites accreted to the Earth. The amount of water added in this way during the waning stages of accretion, and now dissolved in the deep mantle or used to oxidize Fe in the mantle and the core, may correspond to 10-25 times the mass of the present-day ocean. The Moon is at least 100 times more depleted than the Earth in volatile elements with the exception of some isolated domains, such as the mantle source of 74220 pyroclastic glasses, which appear to contain significantly higher concentrations of water and other volatiles.

  7. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean

    USGS Publications Warehouse

    Polyak, L.; Bischof, J.; Ortiz, J.D.; Darby, D.A.; Channell, J.E.T.; Xuan, C.; Kaufman, D.S.; Lovlie, R.; Schneider, D.A.; Eberl, D.D.; Adler, R.E.; Council, E.A.

    2009-01-01

    Sediment cores from the western Arctic Ocean obtained on the 2005 HOTRAX and some earlier expeditions have been analyzed to develop a stratigraphic correlation from the Alaskan Chukchi margin to the Northwind and Mendeleev-Alpha ridges. The correlation was primarily based on terrigenous sediment composition that is not affected by diagenetic processes as strongly as the biogenic component, and paleomagnetic inclination records. Chronostratigraphic control was provided by 14C dating and amino-acid racemization ages, as well as correlation to earlier established Arctic Ocean stratigraphies. Distribution of sedimentary units across the western Arctic indicates that sedimentation rates decrease from tens of centimeters per kyr on the Alaskan margin to a few centimeters on the southern ends of Northwind and Mendeleev ridges and just a few millimeters on the ridges in the interior of the Amerasia basin. This sedimentation pattern suggests that Late Quaternary sediment transport and deposition, except for turbidites at the basin bottom, were generally controlled by ice concentration (and thus melt-out rate) and transportation distance from sources, with local variances related to subsurface currents. In the long term, most sediment was probably delivered to the core sites by icebergs during glacial periods, with a significant contribution from sea ice. During glacial maxima very fine-grained sediment was deposited with sedimentation rates greatly reduced away from the margins to a hiatus of several kyr duration as shown for the Last Glacial Maximum. This sedimentary environment was possibly related to a very solid ice cover and reduced melt-out over a large part of the western Arctic Ocean.

  8. Glacial melt water in Greenland - A renewable resource for the future

    NASA Astrophysics Data System (ADS)

    Alther, G. R.; Ruedisili, L. C.; Stauber, H.; Kollbrunner, C. F.

    1981-06-01

    Glacial melt water in Greenland can be used as a renewable resource for generating electricity (a yearly estimate of 60-115 GW), and it can serve as a supplementary source for drinking and irrigation, metallurgical processing, and the manufacturing of liquid hydrogen as fuel. Southern Greenland is particularly suited for this melt water hydropower project, having high precipitation and summer temperatures, large quantities of melt water, natural 'nunatak' dams, and coastal ranges with steep gradients. Transportation of the generated energy is proposed in the form of sea cables and overland transmission lines, hydrogen gas pipelines, and tankers for liquid hydrogen transport. A hypothetical glacial power station is schematically illustrated, and production costs are calculated. The glacial melt project would serve as an economical source of energy with minimal damage to the environment.

  9. Aircraft gas-turbine engines: Noise reduction and vibration control. (Latest citations from Information Services in Mechanical Engineering data base). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    The bibliography contains citations concerning the design and analysis of aircraft gas turbine engines with respect to noise and vibration control. Included are studies regarding the measurement and reduction of noise at its source, within the aircraft, and on the ground. Inlet, nozzle and core aerodynamic studies are cited. Propfan, turbofan, turboprop engines, and applications in short take-off and landing (STOL) aircraft are included. (Contains a minimum of 202 citations and includes a subject term index and title list.)

  10. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan; Box, Jason E.; Feulner, Georg; Mann, Michael E.; Robinson, Alexander; Rutherford, Scott; Schaffernicht, Erik J.

    2015-05-01

    Possible changes in Atlantic meridional overturning circulation (AMOC) provide a key source of uncertainty regarding future climate change. Maps of temperature trends over the twentieth century show a conspicuous region of cooling in the northern Atlantic. Here we present multiple lines of evidence suggesting that this cooling may be due to a reduction in the AMOC over the twentieth century and particularly after 1970. Since 1990 the AMOC seems to have partly recovered. This time evolution is consistently suggested by an AMOC index based on sea surface temperatures, by the hemispheric temperature difference, by coral-based proxies and by oceanic measurements. We discuss a possible contribution of the melting of the Greenland Ice Sheet to the slowdown. Using a multi-proxy temperature reconstruction for the AMOC index suggests that the AMOC weakness after 1975 is an unprecedented event in the past millennium (p > 0.99). Further melting of Greenland in the coming decades could contribute to further weakening of the AMOC.

  11. The Impact of Transported Pollution on Arctic Climate

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Stohl, A.; Arneth, A.; Berntsen, T.; Burkhart, J. F.; Flanner, M. G.; Kupiainen, K.; Shepherd, M.; Shevchenko, V. P.; Skov, H.; Vestreng, V.

    2011-12-01

    Arctic temperatures have increased at almost twice the global average rate over the past 100 years. Warming in the Arctic has been accompanied by an earlier onset of spring melt, a lengthening of the melt season, changes in the mass balance of the Greenland ice sheet, and a decrease in sea ice extent. Short-lived, climate warming pollutants such as black carbon (BC) have recently gained attention as a target for immediate mitigation of Arctic warming in addition to reductions in long lived greenhouse gases. Model calculations indicate that BC increases surface temperatures within the Arctic primarily through deposition on snow and ice surfaces with a resulting decrease in surface albedo and increase in absorbed solar radiation. In 2009, the Arctic Monitoring and Assessment Program (AMAP) established an Expert Group on BC with the goal of identifying source regions and energy sectors that have the largest impact on Arctic climate. Here we present the results of this work and investigate links between mid-latitude pollutants and Arctic climate.

  12. Molecular dynamics simulation of Coulomb explosion, melting and shock wave creation in silicon after an ionization pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhongyu; Shao, Lin, E-mail: lshao@tamu.edu; Chen, Di

    Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion ismore » linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.« less

  13. Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications

    PubMed Central

    Glauß, Benjamin; Steinmann, Wilhelm; Walter, Stephan; Beckers, Markus; Seide, Gunnar; Gries, Thomas; Roth, Georg

    2013-01-01

    This research explains the melt spinning of bicomponent fibers, consisting of a conductive polypropylene (PP) core and a piezoelectric sheath (polyvinylidene fluoride). Previously analyzed piezoelectric capabilities of polyvinylidene fluoride (PVDF) are to be exploited in sensor filaments. The PP compound contains a 10 wt % carbon nanotubes (CNTs) and 2 wt % sodium stearate (NaSt). The sodium stearate is added to lower the viscosity of the melt. The compound constitutes the fiber core that is conductive due to a percolation CNT network. The PVDF sheath’s piezoelectric effect is based on the formation of an all-trans conformation β phase, caused by draw-winding of the fibers. The core and sheath materials, as well as the bicomponent fibers, are characterized through different analytical methods. These include wide-angle X-ray diffraction (WAXD) to analyze crucial parameters for the development of a crystalline β phase. The distribution of CNTs in the polymer matrix, which affects the conductivity of the core, was investigated by transmission electron microscopy (TEM). Thermal characterization is carried out by conventional differential scanning calorimetry (DSC). Optical microscopy is used to determine the fibers’ diameter regularity (core and sheath). The materials’ viscosity is determined by rheometry. Eventually, an LCR tester is used to determine the core’s specific resistance. PMID:28811400

  14. Model for the formation of the earth's core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, C.A.; Ringwood, A.E.; Jackson, I.

    1983-02-15

    The recent discovery of a phase transformation in Fe/sub 0.94/O by Jeanloz and Ahrens has allowed a more detailed development of a model for core formation involving oxygen as the principal light alloying element in the core. It is predicted, based on calculations, that an increasing pressure in the system FeO-MgO will result in a gradual exsolution of an almost pure high-pressure phase FeO(hpp), leaving an iron-depleted (Fe,Mg)O rocksalt (B1) phase. We also predict that FeO(hhp) will form a low-melting point alloy with Fe at high temperature and high pressure. On the basis of our interpretations, we have constructed amore » model for core segregation. Assuming the earth to have accreted from the primordial solar nebula as a relatively homogeneous mixture of metallic iron and silicate-oxide phases, core segregation involving oxygen would commence at a depth where pressure is sufficiently high to cause exsolution of FeO(hpp) from the rocksalt phase, and temperature is sufficiently high to allow formation of an Fe-FeO(hpp) melt. A gravitational instability arises, leading to vertical differentiation of the earth as molten blobs of the metal sink downwards to form the core and the residual depleted silicate material coalesces to form large bodies which rise diapirically upwards to form the mantle.« less

  15. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Rebecca A; Campbell, Andrew J; Caracas, Razvan

    2016-07-29

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure–temperature properties and behavior of an iron–silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe–16 wt%Si to 140 GPa, finding a conversion from the D0 3 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, ifmore » it consists solely of Fe–Si alloy, and that the eutectic composition in the Fe–Si system is less than 16 wt% silicon at core–mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe–Ni–Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core–mantle boundary. We have also performed first-principles calculations of the equations of state of Fe 3Si with the D0 3 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.« less

  16. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    NASA Astrophysics Data System (ADS)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

  17. Sodium Inverse Relationships During Melting in Ultraslow Spreading Regions: Insights from SWIR-Smoothseafloor Peridotites

    NASA Astrophysics Data System (ADS)

    Cannat, M.; Brunelli, D.; Paquet, M.; Sforna, M. C.; Seyler, M.

    2015-12-01

    Ultraslow spreading ridges are key regions to unravel mantle processes. Low potential temperatures and reduced melting allow decrypting early melting processes and shad lights on the source short-scale heterogeneities and their interactions with transient melts. Mantle-derived peridotites from the Smoothseafloor region of the eastern Southwest Indian Ridge reveal countertrending Na-Ti relationships. Na apparently behaves as a compatible element during partial melting similarly to light REEs. Heavy REEs, however, follow a normal relationship with the other melting indicators (e.g. Cr#), a behaviour that results in pattern rotation around a pivot element when looking to REE systematic. These relationships can be explained by percolation of relatively enriched, grt-field derived, melts in the spinel-field melting mantle 1. A feature that also explains the inverse Na-Cr# correlation, frequently observed in abyssal mantle rocks. Experimental relationships constraint the grt-field derived melts to be produced by low-melting paragenesis that experience a garnet to spinel phase transition shallower than mantle peridotites for a given temperature. Based on potential mantle temperatures estimated by Cannat et al., 19992, the grt-sp transition can be set at ca. 2.0 and 1.5 GPa for mantle peridotites and Mg pyroxenites respectively with the onset of mantle melting at 1.2 GPa. Mass balance calculations based on the amount of produced melt constrains the pyroxenitic fraction < 10% by mass of the mantle source. The contemporaneous presence of lithologies too depleted with respect to the described process suggests that some portions of the mantle source are inherited from more sustained ancient depletion events not related to present-day processes beneath this ridge portion. PNRA funding : PdR 2013/B1.02 1. Brunelli, D., et al., 2104. Percolation of enriched melts during incremental open-system melting in the spinel field : A REE approach to abyssal peridotites from the Southwest Indian Ridge. Geochim. Cosmochim. Acta 127,190-203. 2. Cannat, M., et al., 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J. Geophys. Res. 104, 22825-22843.

  18. Characterizing Long-term Contaminant Mass Discharge and the Relationship Between Reductions in Discharge and Reductions in Mass for DNAPL Source Areas

    PubMed Central

    Matthieu, D.E.; Carroll, K.C.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M.

    2013-01-01

    The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The results indicated that factors such as domain scale, hydraulic-gradient status (induced or natural), and flushing-solution composition had insignificant impact on the CMDR-MR profiles and thus on underlying mass-removal behavior. Conversely, source-zone age, through its impact on contaminant distribution and accessibility, was implicated as a critical factor influencing the nature of the CMDR-MR relationship. PMID:23528743

  19. A Multi-proxy Approach to Understanding the Diagenesis of Carbonates in Pennsylvanian Mudrocks in the Midland Basin

    NASA Astrophysics Data System (ADS)

    Reis, A.; McGlue, M. M.; Waite, L.; Erhardt, A. M.

    2017-12-01

    Diagenetic processes influenced by changing climate, eustatic fluctuations, and porewater evolution led to the formation and alteration of carbonate layers in the Pennsylvanian Wolfcamp D Formation of the Midland Basin. Preliminary evidence from bulk geochemistry, oxygen and carbon stable isotopes, and petrographic analysis of the carbonates recovered from two drill cores indicate multiple generations of diagenesis. High Mg calcite and dolomite layers predominantly occur in the fine grained intervals of both cores. Whereas there are less carbonate layers in the central basin core, more of the layers underwent diagenesis compared to the carbonates in the southern core. δ13CPDB values ranging from -6‰ to -4‰ and the presence of framboidal pyrite indicate initial dolomite precipitation occurring in the zone of bacterial sulfate reduction. Later stages alteration occurred following the burial diagenesis of clay, releasing Mg2+ and Fe2+ into the pore waters allowing ferroan dolomite rims to precipitate on the precursor iron-poor dolomite rhombs. δ13CPDB and δ18OPDBvalues from altered beds in the southern core show a positive 4-6‰ offset from the central basin beds. Petrographic analysis of the carbonate intervals shows a larger allochem size, and lower pyrite abundance in the southern core. These differences can be associated with a shorter source-to-sink distance and less frequent bottom water anoxia, leading to reduced rates of sulfate reduction. One possibility we will explore is if increased circulation due to the proximity of the southern core to the Sheffield Channel could stabilize the bottom water conditions in this region of the basin. In addition to dolomite precipitation and replacement, scanning electron microscopy reveals the replacement of silica cements by calcite, suggesting an increase in porewater pH during or following sulfate reduction coinciding with pyrite formation. Changing bottom water chemistry tied to fluctuations in sea-level through time led to porewater conditions favorable to several generations of post-depositional diagenesis.

  20. An Ice Core Melter System for Continuous Major and Trace Chemical Analyses of a New Mt. Logan Summit Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Handley, M. J.; Sneed, S. D.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D. A.

    2004-12-01

    The ice core melter system at the University of Maine Climate Change Institute has been recently modified and updated to allow high-resolution (<1-2 cm ice/sample), continuous and coregistered sampling of ice cores, most notably the 2001 Mt. Logan summit ice core (187 m to bedrock), for analyses of 34 trace elements (Sr, Cd, Sb, Cs, Ba, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, REE suite) by inductively coupled plasma mass spectrometry (ICP-MS), 8 major ions (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, NO3-, MSA) by ion chromatography (IC), stable water isotopes (δ 18O, δ D, d) and volcanic tephra. The UMaine continuous melter (UMCoM) system is housed in a dedicated clean room with HEPA filtered air. Standard clean room procedures are employed during melting. A Wagenbach-style continuous melter system has been modified to include a pure Nickel melthead that can be easily dismantled for thorough cleaning. The system allows melting of both ice and firn without wicking of the meltwater into unmelted core. Contrary to ice core melter systems in which the meltwater is directly channeled to online instruments for continuous flow analyses, the UMCoM system collects discrete samples for each chemical analysis under ultraclean conditions. Meltwater from the pristine innermost section of the ice core is split between one fraction collector that accumulates ICP-MS samples in acid pre-cleaned polypropylene vials under a class-100 HEPA clean bench, and a second fraction collector that accumulates IC samples. A third fraction collector accumulates isotope and tephra samples from the potentially contaminated outer portion of the core. This method is advantageous because an archive of each sample remains for subsequent analyses (including trace element isotope ratios), and ICP-MS analytes are scanned for longer intervals and in replicate. Method detection limits, calculated from de-ionized water blanks passed through the entire UMCoM system, are below 10% of average Mt. Logan values. A strong correlation (R2>0.9) between Ca and S concentrations measured on different fractions of the same sample by IC and ICP-MS validates sample coregistration. Preliminary analyses of data from the 2001 Mt. Logan summit ice core confirm subannual resolution sampling and annual scale variability of major and trace elements. Accumulation rate models and isotope data suggest that annual resolution will be possible to 1000-2000 y.b.p., with multi-annual to centennial resolution for the remainder of the Holocene and possibly including the last deglaciation. Dust proxy elements, including REEs, strongly co-vary in time-series and reveal concentration ratio fluctuations interpreted as source region changes. Volcanic eruptions are characterized by elevated concentrations of S, SO42-, Cu, Sb, Zn and other trace elements. Concentrations of potential anthropogenic contaminants are also discussed.

Top