Science.gov

Sample records for coregistered single-photon emission

  1. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  2. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  3. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  4. Single photon emission from ZnO nanoparticles

    SciTech Connect

    Choi, Sumin; Ton-That, Cuong; Phillips, Matthew R.; Aharonovich, Igor; Johnson, Brett C.; Castelletto, Stefania

    2014-06-30

    Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work, we study single photon emission from defect centers in 20 nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm with polarized excitation and emission. The studied emitters showed continuous blinking; however, bleaching can be suppressed using a polymethyl methacrylate coating. Furthermore, hydrogen termination increased the density of single photon emitters. Our results will contribute to the identification of quantum systems in ZnO.

  5. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  6. The investigation of Alzheimer's disease with single photon emission tomography.

    PubMed Central

    Burns, A; Philpot, M P; Costa, D C; Ell, P J; Levy, R

    1989-01-01

    Twenty patients satisfying standard clinical criteria for Alzheimer's disease (AD) and six age-matched normal controls were studied using 99mTc hexamethyl-propyleneamine oxime and single photon emission tomography. The AD patients had lower regional cerebral blood flow (rCBF) in the temporal and posterior parietal lobes compared to controls. AD patients with apraxia and aphasia had lower rCBF in the lateral temporal and posterior parietal lobes than AD patients without these features. Within the AD group, correlations were found between neuropsychological tests and rCBF: praxis correlated with posterior parietal activity, memory with left temporal lobe activity and language with activity throughout the left hemisphere. Images PMID:2467967

  7. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  8. Single photon emission computed tomography in seizure disorders.

    PubMed Central

    Denays, R; Rubinstein, M; Ham, H; Piepsz, A; Noël, P

    1988-01-01

    Fourteen children with various seizure disorders were studied using a cerebral blood flow tracer, 123I iodoamphetamine (0.05 mCi/kg), and single photon emission computed tomography (SPECT). In the five patients with radiological lesions, SPECT showed congruent or more extensive abnormalities. Five of the nine children with a normal scan on computed tomography had abnormal SPECT studies consisting of focal hypoperfusion, diffuse hemispheric hypoperfusion, multifocal and bilateral hypoperfusion, or focal hyperperfusion. A focal lesion seen on SPECT has been found in children with tonic-clonic seizures suggesting secondarily generalised seizures. Moreover the pattern seen on SPECT seemed to be related to the clinical status. An extensive impairment found on SPECT was associated with a poor evolution in terms of intellectual performance and seizure frequency. Conversely all children with a normal result on SPECT had less than two seizures per year and normal neurological and intellectual development. Images Figure PMID:3264135

  9. Brain single-photon emission CT physics principles.

    PubMed

    Accorsi, R

    2008-08-01

    The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.

  10. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  11. Brain single photon emission computed tomography in neonates

    SciTech Connect

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. )

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  12. Stress-first single photon emission computed myocardial perfusion imaging

    PubMed Central

    Aquino, C I; Scarano, M; Squame, F; Casaburi, G; Nori, S L; Pace, L

    2016-01-01

    Background Myocardial perfusion imaging (MPI) with single photon emission tomography (SPET) is widely used in coronary artery disease evaluation. Recently major dosimetric concerns have arisen. The aim of this study was to evaluate if a pre-test scoring system could predict the results of stress SPET MPI, thus avoiding two radionuclide injections. Methods All consecutive patients (n=309) undergoing SPET MPI during the first 6 months of 2014 constituted the study group. The scoring system is based on these characteristics: age >65 years (1 point), diabetes (2 points), typical chest pain (2 points), congestive heart failure (3 points), abnormal ECG (4 points), male gender (4 points), and documented previous CAD (5 points). The patients were divided on the basis of the prediction score into 3 classes of risk for an abnormal stress-first protocol. Results An abnormal stress SPET MPI was present in 7/31 patients (23%) with a low risk score, in 24/90 (27%) with an intermediate score risk, and in 124/188 (66%) with an high score risk. ROC curve analysis showed good prediction of abnormal stress MPI. Conclusions Our results suggest an appropriate use of a pre-test clinical prediction formula of abnormal stress MPI in a routine clinical setting. PMID:27896227

  13. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  14. Single-photon emission of two-level system via rapid adiabatic passage

    NASA Astrophysics Data System (ADS)

    Miao, Qiang; Zheng, Yujun

    2016-09-01

    In this paper, we present a high quality single-photon source based on the two-level system undergoing rapid adiabatic passage (RAP). A trigger strategy (sweet region) is suggested to optimize the single-photon emission and explain a counter-intuitive phenomenon on the optimal parameters. The RAP strategy of single-photon source is robust against control error and environmental fluctuation.

  15. Single-photon emission of two-level system via rapid adiabatic passage

    PubMed Central

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, we present a high quality single-photon source based on the two-level system undergoing rapid adiabatic passage (RAP). A trigger strategy (sweet region) is suggested to optimize the single-photon emission and explain a counter-intuitive phenomenon on the optimal parameters. The RAP strategy of single-photon source is robust against control error and environmental fluctuation. PMID:27601295

  16. [Ventricular volumes determined by single-photon emission computed tomography].

    PubMed

    Katohno, E; Ono, K; Owada, K; Fujino, A; Watanabe, N; Sato, M; Konno, I; Yaoita, H; Tsuda, F; Kariyone, S

    1987-06-01

    To determine right (RV) and left ventricular (LV) volumes, a new technique was developed using ECG-gated single-photon emission computed tomography (SPECT). RV volumes of nine patients and LV volumes of 22 patients measured by SPECT and biplane contrast cineangiography were compared. In addition, volume and ejection fraction (EF) of the RV and LV were obtained by SPECT for 10 normal controls, 21 patients with old myocardial infarction (OMI), eight patients with hypertrophic cardiomyopathy (HCM) and 12 patients with dilated cardiomyopathy (DCM), and these results were compared. The intracardiac blood pool was labeled with Tc-99m sodium pertechnetate and 32 images were recorded through 180 degrees by a rotating gamma-camera. End-diastolic and end-systolic counts during 50 msec were recorded during 50 or 60 cardiac cycles. These counting data were reconstructed as tomographic images of vertical long-axial slices with thickness of a pixel without any attenuation correction. The numbers of voxels within the % cut-off level were summed, and the sum was multiplied by the one voxel volume. The cut-off level for ventricular delineation was determined as 45% by phantom studies. 1. The values obtained from SPECT and contrast angiography correlated well. 2. In normal controls, LV end-diastolic and end-systolic volumes were significantly less than those of the RV (p less than 0.05, p less than 0.001) and LVEF was significantly greater than the RVEF (p less than 0.001). 3. In OMI (single vessel disease), both end-diastolic and end-systolic volumes of the LV were significantly greater than those of normals (p less than 0.01, p less than 0.001) and LVEF was significantly less. In HCM end-systolic volumes of the RV were significantly less (p less than 0.05) than those of the normals. 4. LV volume was greater and LVEF was extremely low both in DCM and in OMI (multivessel disease) compared to that of the normals. In DCM, RV end-systolic volumes was greater and RVEF was lower than

  17. Quantum-confined single photon emission at room temperature from SiC tetrapods.

    PubMed

    Castelletto, Stefania; Bodrog, Zoltán; Magyar, Andrew P; Gentle, Angus; Gali, Adam; Aharonovich, Igor

    2014-09-07

    Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H)--a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics.

  18. Quantum-confined single photon emission at room temperature from SiC tetrapods

    NASA Astrophysics Data System (ADS)

    Castelletto, Stefania; Bodrog, Zoltán; Magyar, Andrew P.; Gentle, Angus; Gali, Adam; Aharonovich, Igor

    2014-08-01

    Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) - a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics.Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) - a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics. Electronic supplementary information (ESI) available

  19. Design of highly efficient metallo-dielectric patch antennas for single-photon emission.

    PubMed

    Bigourdan, F; Marquier, F; Hugonin, J-P; Greffet, J-J

    2014-02-10

    Quantum emitters such as NV-centers or quantum dots can be used as single-photon sources. To improve their performance, they can be coupled to microcavities or nano-antennas. Plasmonic antennas offer an appealing solution as they can be used with broadband emitters. When properly designed, these antennas funnel light into useful modes, increasing the emission rate and the collection of single-photons. Yet, their inherent metallic losses are responsible for very low radiative efficiencies. Here, we introduce a new design of directional, metallo-dielectric, optical antennas with a Purcell factor of 150, a total efficiency of 74% and a collection efficiency of emitted photons of 99%.

  20. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  1. Single-Photon Emission of a Hydrogenlike Atom

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2016-11-01

    Implementing a previously obtained, original solution of the Dirac equation for an electron in the field of a nucleus ( Ze) expressed in terms of the wave function of the corresponding Schrödinger equation and its derivatives in spherical coordinates and the spin projection operator Σ3 associated with the eigenfunction, taking into account in each component of the spinor the leading term of the expansion in the small parameter ( Zα), α = e 2 / ħc ≈ 1 / 137, the partial probabilities W of emission of a photon ( Zα)* → ( Zα) + γ have been calculated. Here two orthogonal states of the linear polarization of the photon, and also the spin states of the electron, which previously had not been taken into consideration, have been taken into account in the transverse gauge. It turns out that the probabilities W of emission of a photon per unit time for any allowed transitions are proportional to (Zα)4, as was previously accepted, and the selection rules for the quantum number m have the usual form ∆ m = 0,±1. It was found that a spin flip does not take place during emission. In contrast to the customary situation with the selection rules for the quantum number l being of the form ∆ l = ±1, for ∆ m = ±1 there also exist integrals over dcosθ which are not equal to zero for undetermined odd values of ∆ l. In this, and also in a fundamentally different dependence of the amplitude on the quantum numbers consist the differences from the traditional approach to the problem. Necessary conditions are formulated, under the fulfillment of which the selection rules for l are not changed, having values ∆ l = ±1 for arbitrary ∆ m, but it was not possible, however, to give a complete proof of these rules.

  2. Positron emission tomography and single-photon emission computed tomography in substance abuse research.

    PubMed

    Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack

    2003-04-01

    Many advances in the conceptualization of addiction as a disease of the brain have come from the application of imaging technologies directly in the human drug abuser. New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) and single-photon emission computed tomography (SPECT) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology, and medicine. This topic cuts across the medical specialties of neurology, psychiatry, oncology, and cardiology because of the high medical, social, and economic toll that drugs of abuse, including the legal drugs, cigarettes and alcohol, take on society. This article highlights recent advances in the use of PET and SPECT imaging to measure the pharmacokinetic and pharmacodynamic effects of drugs of abuse on the human brain.

  3. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  4. Cascaded emission of single photons from the biexciton in monolayered WSe2

    PubMed Central

    He, Yu-Ming; Iff, Oliver; Lundt, Nils; Baumann, Vasilij; Davanco, Marcelo; Srinivasan, Kartik; Höfling, Sven; Schneider, Christian

    2016-01-01

    Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe2, sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe2, which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors. PMID:27830703

  5. Single photon emission computed tomography in Alzheimer's disease. Abnormal iofetamine I 123 uptake reflects dementia severity

    SciTech Connect

    Johnson, K.A.; Holman, B.L.; Mueller, S.P.; Rosen, T.J.; English, R.; Nagel, J.S.; Growdon, J.H.

    1988-04-01

    To determine whether abnormalities in regional cerebral functional activity estimated by iofetamine hydrochloride I 123 and single photon emission computed tomography can be detected in mild or moderate as well as severe cases of Alzheimer's disease (AD), we performed iofetamine I 123-single photon emission computed tomography in 37 patients with probable AD (nine patients with mild, 18 patients with moderate, and ten patients with severe dementia) and nine age-matched control subjects. Iofetamine I 123 uptake was measured in right and left frontal, temporal, parietal, and occipital cortices. Mean (right and left) iofetamine I 123 activity was lowest in the parietal region of patients with AD and was significantly reduced in the other three regions compared with control subjects. Only in the parietal region was lower relative iofetamine I 123 activity associated with an impaired level of patient function and with cognitive deficit.

  6. Monitoring CBF in clinical routine by dynamic single photon emission tomography (SPECT) of inhaled xenon-133

    SciTech Connect

    Sugiyama, H.; Christensen, J.; Skyhoj Olsen, T.; Lassen, N.A.

    1986-11-01

    A very simple and low-cost brain dedicated, rapidly rotating Single Photon Emission Tomograph SPECT is described. Its use in following patients with ischemic stroke is illustrated by two middle cerebral artery occlusion cases, one with persistent occlusion and low CBF in MCA territory, and one with early lysis of the occlusion having high CBF (massive luxury perfusion) for some weeks. Evidence of this kind may be essential in the evaluation of therapeutic measures in ischemic stroke.

  7. Advances in Single-Photon Emission Computed Tomography Hardware and Software.

    PubMed

    Piccinelli, Marina; Garcia, Ernest V

    2016-02-01

    Nuclear imaging techniques remain today's most reliable modality for the assessment and quantification of myocardial perfusion. In recent years, the field has experienced tremendous progress both in terms of dedicated cameras for cardiac applications and software techniques for image reconstruction. The most recent advances in single-photon emission computed tomography hardware and software are reviewed, focusing on how these improvements have resulted in an even more powerful diagnostic tool with reduced injected radiation dose and acquisition time.

  8. Iofetamine I 123 single photon emission computed tomography is accurate in the diagnosis of Alzheimer's disease

    SciTech Connect

    Johnson, K.A.; Holman, B.L.; Rosen, T.J.; Nagel, J.S.; English, R.J.; Growdon, J.H. )

    1990-04-01

    To determine the diagnostic accuracy of iofetamine hydrochloride I 123 (IMP) with single photon emission computed tomography in Alzheimer's disease, we studied 58 patients with AD and 15 age-matched healthy control subjects. We used a qualitative method to assess regional IMP uptake in the entire brain and to rate image data sets as normal or abnormal without knowledge of subjects'clinical classification. The sensitivity and specificity of IMP with single photon emission computed tomography in AD were 88% and 87%, respectively. In 15 patients with mild cognitive deficits (Blessed Dementia Scale score, less than or equal to 10), sensitivity was 80%. With the use of a semiquantitative measure of regional cortical IMP uptake, the parietal lobes were the most functionally impaired in AD and the most strongly associated with the patients' Blessed Dementia Scale scores. These results indicated that IMP with single photon emission computed tomography may be a useful adjunct in the clinical diagnosis of AD in early, mild disease.

  9. Single photon emission from diamond nanocrystals in an opal photonic crystal.

    PubMed

    Stewart, L A; Zhai, Y; Dawes, J M; Steel, M J; Rabeau, J R; Withford, M J

    2009-09-28

    We present the first optical measurement of a single nitrogen-vacancy (NV) center in a three-dimensional photonic crystal. The photonic crystal, fabricated by self-assembly of polystyrene microspheres, exhibits a photonic stopband that overlaps the NV photoluminescence spectrum. A modified emission spectrum and photon antibunching were measured from the NV centers. Time-resolved fluorescence measurements revealed a 30% increase in the source lifetime. Encapsulation of single NV centers in a three-dimensional photonic crystal is a step towards controlling emission properties of a single photon source.

  10. Painful spondylolysis or spondylolisthesis studied by radiography and single-photon emission computed tomography

    SciTech Connect

    Collier, B.D.; Johnson, R.P.; Carrera, G.F.; Meyer, G.A.; Schwab, J.P.; Flatley, T.J.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.; Knobel, J.

    1985-01-01

    Planar bone scintigraphy (PBS) and single-photon emission computed tomography (SPECT) were compared in 19 adults with radiographic evidence of spondylolysis and/or spondylolisthesis. SPECT was more sensitive than PBS when used to identify symptomatic patients and sites of painful defects in the pars interarticularis. In addition, SPECT allowed more accurate localization than PBS. In 6 patients, spondylolysis or spondylolisthesis was unrealted to low back pain, and SPECT images of the posterior neural arch were normal. The authors conclude that when spondylolysis or spondylolisthesis is the cause of low back pain, pars defects are frequently heralded by increased scintigraphic activity which is best detected and localized by SPECT.

  11. High-performance imaging of stem cells using single-photon emissions

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.

    2011-10-01

    Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.

  12. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography

    PubMed Central

    Bénard, François; Turcotte, Éric

    2005-01-01

    Although mammography remains a key imaging method for the early detection and screening of breast cancer, the overall accuracy of this test remains low. Several radiopharmaceuticals have been proposed as adjunct imaging methods to characterize breast masses by single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). Useful in characterizing indeterminate palpable masses and in the detection of axillary metastases, these techniques are insufficiently sensitive to detect subcentimetric tumor deposits. Their role in staging nodal involvement of the axillary areas therefore currently remains limited. Several enzymes and receptors have been targeted for imaging breast cancers with PET. [18F]Fluorodeoxyglucose is particularly useful in the detection and staging of recurrent breast cancer and in assessing the response to chemotherapy. Several other ligands targeting proliferative activity, protein synthesis, and hormone and cell-membrane receptors may complement this approach by providing unique information about biological characteristics of breast cancer across primary and metastatic tumor sites. PMID:15987467

  13. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  14. Brain single photon emission computed tomography: Newer activation and intervention studies

    SciTech Connect

    Tikofsky, R.S.; Hellman, R.S. )

    1991-01-01

    Single-photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) findings using non-xenon 133 tracers in combination with activation and intervention techniques are reviewed. Examination of the currently available data indicates that it is possible to detect the effects of a variety of activations and interventional procedures using SPECT rCBF with non-xenon 133 tracers. There are still many issues to be resolved before SPECT can reach the level of sophistication attained by xenon 133 and positron emission tomography in studying rCBF during activation or intervention. However, research to date indicates that SPECT rCBF studied with tracers other than xenon 133 has an excellent potential for increasing the ability to differentiate normal and pathological states. 97 refs.

  15. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-03-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  16. Dementias appear to have individual profiles in single photon emission computed tomography

    SciTech Connect

    Not Available

    1989-02-17

    A number of researchers are seeking clinical applications for single photon emission computed tomographic (SPECT) images of demented patients. They have found that dementias have somewhat individual SPECT profiles. The challenge now, they say, is to determine if the SPECT information is meaningful to the clinician and to develop more specific radiotracers, such as tracers for individual neuroreceptors. The initial work was done with positron emission tomography (PET), a sometimes more sensitive, but much more expensive technique. Recently, a number of centers began trying to duplicate the PET findings using SPECT. Developing SPECT could actually make dementia scanning fairly available, they say. Radiologists estimate that three fourths of the nation's nuclear medicine departments have SPECT scanning machines-either rotating or multiaperature gamma cameras.

  17. Single photon emission computerized tomography (SPECT) in detecting neurodegeneration in Huntington's disease.

    PubMed

    Reynolds, N C; Hellman, R S; Tikofsky, R S; Prost, R W; Mark, L P; Elejalde, B R; Lebel, R; Hamsher, K S; Swanson, S; Benezra, E E

    2002-01-01

    Single photon emission computerized tomography (SPECT) studies were performed on 34 manifest Huntington's disease (HD) patients at various stages of clinical pathology ranging from early chorea to late dystonia with or without signs of dementia and 12 pre-symptomatic patients with abnormal terminal CAG expansions. Thirty HD patients with obvious clinical signs and seven pre-symptomatic patients without signs or symptoms of HD displayed selective caudate hypoperfusion by direct visual inspection. Such qualitative, selective striatal hypoperfusion patterns can be indicative of early and persistent metabolic changes in striatal neuropathology. SPECT studies can be useful in documenting early pre-clinical changes in patients with abnormal terminal CAG expansions and in confirming the presence of caudate pathology in patients with clinical signs of HD.

  18. Detection of avascular necrosis in adults by single photon emission computed tomography

    SciTech Connect

    Collier, B.D.; Johnston, R.P.; Carrera, G.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.

    1984-01-01

    Twenty-one adult patients with the clinical diagnosis of avascular necrosis (AVN) of the femoral head were examined with planar bone scintigraphy (high resolution collimator) and single photon emission computed tomography (SPECT). The duration of hip pain ranged from 1 day to 18 months. Risk factors (including steroids, renal transplantation, alcoholism, and trauma) were present in 17 cases. A final diagnosis of AVN (20 hips), osteochondral facture, or stress fracture, was established for 17 patients. The 4 remaining patients, who were radiographically normal and did not complain of pain 3 months later, were thought to have no significant bone pathology. SPECT and planar bone scintigraphy were reported as positive for AVN only if a photopenic bony defect could be identified. In particular, uniformly increased activity throughout the femoral head was not considered to be diagnostic of AVN. The authors conclude that by identifying a photopenic defect which is not evident on planar bone scintigraphy, SPECT can contribute to accurate diagnosis of AVN.

  19. High-energy two-electron capture with emission of a single photon

    SciTech Connect

    Drukarev, E. G.; Mikhailov, A. I.; Mikhailov, I. A.; Scheid, W.

    2007-12-15

    We investigate the two-electron capture with emission of a single photon to the ground state in the Coulomb field of a heavy nucleus in its collision with a light atom. Describing electron-electron interactions in the bound state perturbatively, we obtained an analytical formula for the high-energy limit of the cross section. In combination with previous results obtained in the same approach we calculated the cross section in a broad interval of energies of the collision. We show that the amplitude of the process at high energy depends on the behavior of the bound state wave function near the triple coalescence point. We analyze the properties of the approximate wave functions which are necessary for the description of the high-energy limit.

  20. Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice

    PubMed Central

    Santra, Amburanjan; Kumar, Rakesh

    2014-01-01

    Brain single photon emission computed tomography (SPECT) is a well-established and reliable method to assess brain function through measurement of regional cerebral blood flow (rCBF). It can be used to define a patient's pathophysiological status when neurological or psychiatric symptoms cannot be explained by anatomical neuroimaging findings. Though there is ample evidence validating brain SPECT as a technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, only few psychiatrists have adopted brain SPECT in routine clinical practice. It can be utilized to evaluate the involvement of brain regions in a particular patient, to individualize treatment on basis of SPECT findings, to monitor the treatment response and modify treatment, if necessary. In this article, we have reviewed the available studies in this regard from existing literature and tried to present the evidence for establishing the clinical role of brain SPECT in major psychiatric illnesses. PMID:25400359

  1. Myocardial stunning in hypertrophic cardiomyopathy: recovery predicted by single photon emission computed tomographic thallium-201 scintigraphy

    SciTech Connect

    Fine, D.G.; Clements, I.P.; Callahan, M.J.

    1989-05-01

    A young woman with hypertrophic cardiomyopathy confirmed by echocardiography and cardiac catheterization presented with chest pain and features of a large left ventricular aneurysm. The initial diagnosis was myocardial ischemia with either an evolving or an ancient myocardial infarction. Subsequently, verapamil therapy was associated with complete resolution of the extensive left ventricular wall motion abnormalities, normalization of left ventricular ejection fraction and a minimal myocardial infarction. Normal thallium uptake on single photon emission computed tomographic scintigraphy early in the hospital course predicted myocardial viability in the region of the aneurysm. Thus, orally administered verapamil may reverse spontaneous extensive myocardial ischemia in hypertrophic cardiomyopathy and possibly limit the extent of myocardial infarction in such circumstances.

  2. Diagnosis of partial and total physeal arrest by bone single-photon emission computed tomography.

    PubMed

    Wioland, M; Bonnerot, V

    1993-09-01

    Bone single-photon emission computed tomography (SPECT), capable of creating maps of the distribution of osteoblastic activity in every spatial plane of a physis, should provide images of diagnostic value in the case of patients suffering from growth arrests (epiphysiodeses). Seventy-five bone SPECT scans were obtained in 64 children suspected to have developed physeal arrests. The transaxial slices of the physis, in the case of partial epiphysiodeses: (a) indicated the percentage of the remaining normal physis, (b) located the bony bridge within the physis and (c) showed the slowdown of the growth of the remaining normal physis induced by the bony bridge in some children. Misdiagnosis occurred in six patients. For total epiphysiodeses, the radionuclide diagnosis was confirmed in 20 of 21 patients. Radionuclide, x-ray and MRI examinations in the study of growth disturbances were found to be complementary.

  3. Enhanced single-photon emission from a diamond-silver aperture

    NASA Astrophysics Data System (ADS)

    Choy, Jennifer T.; Hausmann, Birgit J. M.; Babinec, Thomas M.; Bulu, Irfan; Khan, Mughees; Maletinsky, Patrick; Yacoby, Amir; Lončar, Marko

    2011-12-01

    Solid-state quantum emitters, such as the nitrogen-vacancy centre in diamond, are robust systems for practical realizations of various quantum information processing protocols and nanoscale magnetometry schemes at room temperature. Such applications benefit from the high emission efficiency and flux of single photons, which can be achieved by engineering the electromagnetic environment of the emitter. One attractive approach is based on plasmonic resonators, in which sub-wavelength confinement of optical fields can strongly modify the spontaneous emission of a suitably embedded dipole despite having only modest quality factors. Meanwhile, the scalability of solid-state quantum systems critically depends on the ability to control such emitter-cavity interaction in a number of devices arranged in parallel. Here, we demonstrate a method to enhance the radiative emission rate of single nitrogen-vacancy centres in ordered arrays of plasmonic apertures that promises greater scalability over the previously demonstrated bottom-up approaches for the realization of on-chip quantum networks.

  4. Electrically driven single photon emission from a CdSe/ZnSSe single quantum dot at 200 K

    SciTech Connect

    Quitsch, Wolf; Kümmell, Tilmar; Bacher, Gerd; Gust, Arne; Kruse, Carsten; Hommel, Detlef

    2014-09-01

    High temperature operation of an electrically driven single photon emitter based on a single epitaxial quantum dot is reported. CdSe/ZnSSe/MgS quantum dots are embedded into a p-i-n diode architecture providing almost background free excitonic and biexcitonic electroluminescence from individual quantum dots through apertures in the top contacts. Clear antibunching with g{sup 2}(τ = 0) = 0.28 ± 0.20 can be tracked up to T = 200 K, representing the highest temperature for electrically triggered single photon emission from a single quantum dot device.

  5. Accuracy of coregistration of single-photon emission CT with MR via a brain surface matching technique.

    PubMed

    Hogan, R E; Cook, M J; Kilpatrick, C J; Binns, D W; Desmond, P M; Morris, K

    1996-04-01

    We describe a technique of brain surface matching of single-photon emission CT and MR images in human subjects and document the accuracy of this technique with the use of fiduciary markers. This mismatch averaged 4.3 mm as measured by the fiduciary markers and 2.1 mm as measured by the root mean square distance.

  6. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature

    PubMed Central

    Chakravarty, Rubel; Hong, Hao; Cai, Weibo

    2014-01-01

    Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called `image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for treatment of cancer but might also find utility in management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field. PMID:25182469

  7. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors.

    PubMed

    Reithmaier, G; Lichtmannecker, S; Reichert, T; Hasch, P; Müller, K; Bichler, M; Gross, R; Finley, J J

    2013-01-01

    We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems.

  8. Brain uptake of iomazenil in cirrhotic patients: a single photon emission tomography study.

    PubMed

    Kapczinski, F; Quevedo, J; Curran, H V; Fleminger, S; Toone, B; Cluckie, A; Lader, M

    1999-01-01

    Brain uptake of 123I-iomazenil was studied in seven cirrhotic patients and eight normal controls using single photon emission computerized tomography. The highest concentration of the ligand was found in the occipital cortex, which corresponds to the brain region with the highest concentration of benzodiazepine receptors. The peak uptake was delayed in patients across all brain regions. The uptake in occipital cortex was higher in low albumin cirrhotics. Patients with low albumin also presented a more delayed peak uptake in occipital cortex and a higher volume of distribution of iomazenil in plasma, compared to patients with normal albumin levels and controls. The changes in brain uptake (delayed peak uptake and increased maximal uptake in occipital cortex) appears to reflect changes in the pharmacokinetics of the ligand, particularly in cirrhotics with low levels of plasma albumin. The curve of brain uptake of the tracer was modelled into a two compartments equation, which seems to provide a practical and reliable method to calculate the slopes of acquisition and decay, time to peak and maximal acquisition.

  9. Fragile X syndrome and cerebral perfusion abnormalities: single-photon emission computed tomographic study.

    PubMed

    Kabakus, Nimet; Aydin, Mustafa; Akin, Haluk; Balci, Tansel Ansal; Kurt, Abdullah; Kekilli, Ersoy

    2006-12-01

    Fragile X syndrome is an inherited disorder caused by a defective gene on the X chromosome. It is associated with developmental or behavioral symptoms and various degrees of mental retardation. Morphologic abnormalities and altered perfusion of various brain areas can underlie these functional disturbances. The aim of this study was to investigate the cerebral perfusion state in patients with fragile X syndrome using single-photon emission computed tomography (SPECT). Structural and functional assessment was also performed by magnetic resonance imaging (MRI) and electroencephalography (EEG). Eight boys with cytogenetically confirmed fragile X syndrome (mean age 8.8 +/- 4.4 years, range 5-18 years), were included. All patients had mental retardation, with a mean IQ of 58.9 +/- 8.8 (range 40-68), and additional neurobehavioral symptoms. SPECT revealed cerebral perfusion abnormalities in six patients (75%), most commonly in the frontoparietotemporal area and prominent in the right hemisphere. The SPECT and EEG findings were concordant: hypoperfused areas in SPECT corresponded to regions of persistent slow-wave paroxysms on EEG. On the other hand, cranial MRI was abnormal qualitatively only in two patients (25%) showing cerebellar and vermal hypoplasia and cerebral hemispheric asymmetry. Our results indicate that cerebral perfusion abnormalities, which are correlated with electrophysiologic findings but not necessarily with anatomic abnormalities, can underlie the pathogenesis of the clinical findings observed in fragile X syndrome.

  10. Cardiac single-photon emission-computed tomography using combinedcone-beam/fan-beam collimation

    SciTech Connect

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-12-03

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images.

  11. Single photon emission computed tomography: An alternative imaging modality in left ventricular evaluation

    PubMed Central

    Yalçin, Hulya; Maza, Sofiane; Yalçin, Fatih

    2008-01-01

    Various diagnostic imaging modalities have been used for quantitative left ventricular (LV) parameters. Because of the suboptimal value of the most widely used technology, two-dimensional (2D) echocardiography, 3D ultrasonographic imaging has improved accuracy for LV volume and function. Single photon emission computed tomography (SPECT) is another diagnostic method where LV volumetric and functional parameters can be accurately provided by gated myocardial perfusion tomographic slices. First pass radionuclide venticulography is another imaging modality which has some practical limitations. Despite lower ejection fraction (EF) values compared with invasive approach, noninvasive techniques are accurate in determination of normal and depressed EF. Noninvasive techniques with 3D approach including gated SPECT are beneficial for not only global but also regional LV evaluation. It has been mentioned that the slight difference between echocardiography and SPECT could be caused by the diverse population studied. The results of diagnostic stress tests support that SPECT is feasible to use in evaluation of LV volume and functional analysis. Magnetic resonance imaging is an expensive modality to use routinely, but it preserves its importance in selected patients for providing precise LV geometric data. PMID:19183754

  12. Comparison of Ga-67 planar imaging and single photon emission computed tomography in malignant chest disease

    SciTech Connect

    Tumeh, S.S.; Rosenthal, D.; Kaplan, W.D.; English, R.E.; Holman, B.L.

    1985-05-01

    To determine the value of Ga-67 single photon emission computed tomography (SPECT) in patients (pts) with malignant chest disease, the authors compared Ga-67 planar scans (ps) and SPECT with the medical records in twenty-five consecutive patients. Twenty-three examinations were performed on 17 pts with Hodgkin's disease (HD) and three pts with non-Hodgkin's lymphoma. Five examinations were performed on 5 pts with bronchogenic carcinoma (BC). The two modalities were evaluated for (1) presence or absence of disease, (2) number of foci of abnormal uptake and (3) extent of disease. In pts with lymphoma, SPECT defined the extent of disease better than planar imaging in eight examinations; it demonstrated para-cardial involvement in one pt, separated hilar from mediastinal disease in 4, and demonstrated posterior mediastinal disease in 3. SPECT clarified suspicious foci on planar images in seven examinations, correctly ruled out disease in two pts with equivocal planar images and did not exchange planar image findings in six examinations. In pts with bronchogenic carcinoma, both medalities correctly ruled out mediastinal involvement in three pts. SPECT detected mediastinal lymph node involvement in one pt with equivocal planar images. Both SPECT and planar imaging missed direct tumor extension to the mediastinum in one pt. They conclude that Ga-67 with SPECT is better than planar images for staging of chest lymphoma and BC. Since it defines different lymph node groups it carries a good potential for staging as well as follow up of those pts.

  13. Scintigraphic appearance of focal fatty infiltration of the liver using single-photon emission computed tomography

    SciTech Connect

    Kudo, M.; Hirasa, M.; Ibuki, Y.; Takakuwa, H.; Fujimi, K.; Veda, S.; Tomita, S.; Komori, H.; Todo, A.; Kitaura, Y.

    1984-01-01

    Fatty infiltration of the liver had been considered to assume a uniform distribution until quite recently. However, the development of X-ray computed tomography (XCT) and the ultrasound (US) has proven that fatty infiltration of the liver may sometimes assume a nonuniform distribution (focal fatty infiltration (FFI)). This investigation was undertaken to evaluate the scintigraphic appearance of FFI using single-photon emission computed tomography (SPECT) with a GE Maxicamera 400T. Radionuclide images including SPECT were evaluated in 12 cases with FFI which were diagnosed by XCT and US. Most of them were histrogically confirmed to be positive fatty infiltration in the liver. The results were as follows. The fatty infiltrated area was visualized as a hot spot in one case, a defect in 2 cases, a low uptake in one case and a normal uptake in 8 cases. Radionuclide imaging of FFI shows a large variety of findings and it suggests that Kupffer cell function varies with the causes or stage of fatty infiltration. And one can understand the pathological state of FFI from a viewpoint of Kupffer cell function only by radionuclide imaging including SPECT, which is very useful to compare the images with XCT images.

  14. Single photon emission computed tomograms of the liver: normal vascular intrahepatic structures.

    PubMed

    Pettigrew, R I; Witztum, K F; Perkins, G C; Johnson, M L; Burks, R N; Verba, J W; Halpern, S E

    1984-01-01

    Because of the high target-to-background contrast obtained with single photon emission computed tomography (SPECT), normal intrahepatic vessels approximately 2 cm in diameter may appear as distinct focal defects in tomographic sections throughout the liver even though normal vessels rarely cause such defects on planar images. To assess this problem, five subjects without evidence of liver disease underwent tomography of the liver with Tc-99m sulfur colloid (TSC) and on a separate occasion tomography of the intrahepatic blood pool with Tc-99m autologous red blood cells (RBC). In each case, well demarcated defects were obvious in contiguous TSC liver tomograms in various planes. Direct comparison with RBC tomograms showed that all of these defects corresponded to intrahepatic veins, typically the right portal vein, its posterior branch, and the left portal vein. Knowledge of the intrahepatic vascular anatomy in a variety of tomographic planes, with examination of each defect in multiple orthogonal planes is necessary to avoid false positive interpretations. In some instances a study with RBC may also be required for more conclusive evaluation of defects seen on TSC liver tomograms.

  15. Regional brain hematocrit in stroke by single photon emission computed tomography imaging

    SciTech Connect

    Loutfi, I.; Frackowiak, R.S.; Myers, M.J.; Lavender, J.P.

    1987-01-01

    Nineteen studies on 18 subjects were performed by single photon emission computed tomography (SPECT) of the head after the successive intravenous administration of a plasma label (/sup 99m/Tc-human serum albumin (HSA)) and /sup 99m/Tc-labeled autologous red blood cells (RBC). Two sets of cerebral tomographic sections were generated: for cerebral /sup 99m/Tc-HSA alone and for combined /sup 99m/Tc-HSA and /sup 99m/Tc-RBC. By relating counts in regions of interest from the cerebral tomograms to counts from blood samples obtained during each tomographic acquisition, regional cerebral haematocrit (Hct) was calculated by the application of a simple formula. Results show 1) lower cerebral Hct than venous Hct (ratio of HCT brain/Hct venous 0.65-0.90) in all subjects, and 2) comparison between right and left hemisphere Hct in 3/3 normal subjects, 6/6 patients with transient ischaemic attacks and 3/8 patients with stroke showed no significant difference. However, in 3/8 patients with stroke (most recent strokes) significant differences were found, the higher Hct value corresponding to the affected side.

  16. Rapid calculation of detectability in Bayesian single photon emission computed tomography

    NASA Astrophysics Data System (ADS)

    Xing, Yuxiang; Hsiao, Ing-Tsung; Gindi, Gene

    2003-11-01

    We consider the calculation of lesion detectability using a mathematical model observer, the channelized Hotelling observer (CHO), in a signal-known-exactly/background-known-exactly detection task for single photon emission computed tomography (SPECT). We focus on SPECT images reconstructed with Bayesian maximum a posteriori methods. While model observers are designed to replace time-consuming studies using human observers, the calculation of CHO detectability is usually accomplished using a large number of sample images, which is still time consuming. We develop theoretical expressions for a measure of detectability, the signal-to-noise-ratio (SNR) of a CHO observer, that can be very rapidly evaluated. Key to our expressions are approximations to the reconstructed image covariance. In these approximations, we use methods developed in the PET literature, but modify them to reflect the different nature of attenuation and distance-dependent blur in SPECT. We validate our expressions with Monte Carlo methods. We show that reasonably accurate estimates of the SNR can be obtained at a computational expense equivalent to approximately two projection operations, and that evaluating SNR for subsequent lesion locations requires negligible additional computation.

  17. Multicenter evaluation of single-photon emission computed tomography quantification with third-party reconstruction software.

    PubMed

    Kangasmaa, Tuija S; Constable, Chris; Hippeläinen, Eero; Sohlberg, Antti O

    2016-09-01

    Reliable and reproducible quantification is essential in many clinical situations. Previously, single-photon emission computed tomography (SPECT) has not been considered a quantitative imaging modality, but recent advances in reconstruction algorithm development have made SPECT quantitative. In this study, we investigate the reproducibility of SPECT quantification with phantoms in a multicenter setting using novel third-party reconstruction software. A total of five hospitals and eight scanners (three GE scanners and five Siemens scanners) participated in the study. A Jaszczak phantom without inserts was used to calculate counts to activity concentration conversion factors. The quantitative accuracy was tested using the NEMA-IEC phantom with six spherical inserts (diameters from 10 to 37 mm) filled to an 8 : 1 insert-background concentration ratio. Phantom studies were reconstructed at one central location using HERMES HybridRecon applying corrections for attenuation, collimator-detector response, and scatter. Spherical volumes of interest with the same diameter as the inserts were drawn on the images and recovery coefficients for the spheres were calculated. The coefficient of variation (CoV) of the NEMA-IEC phantom recovery coefficients ranged from ∼19 to 5% depending on the insert diameter so that the lowest CoV was obtained with the largest spheres. The intersite CoV was almost equal to intrasite CoV. In conclusion, quantitative SPECT is reproducible in a multicenter setting with third-party reconstruction software.

  18. Quantitative and Qualitative Imaging in Single Photon Emission Tomography for Nuclear Medicine Applications.

    NASA Astrophysics Data System (ADS)

    Masoomi, Mojtaba (Arash).

    Available from UMI in association with The British Library. An important goal of single photon emission tomography (SPECT) is the determination of absolute regional radionuclide concentration as a function of time. Quantitative and qualitative studies of SPECT with regard to clinical application is the object of this work. Three basic approaches for image reconstruction and factors which affect the choice of a reconstruction algorithm have been reviewed, discussed and the reconstruction techniques, GRADY and CBP evaluated, based on computer modelling. A sophisticated package of computational subroutines, RECLBL, for image reconstruction and for generation of phantoms, which was fully implemented on PRIME was used throughout this study. Two different systems, a rotating gamma-camera and a prototype scanning-rig have been used to carry out tomography experiments with different phantoms in emission and transmission mode. Performance assessment and reproducibility of the gamma-camera was tested prior to the experimental work. SPECT studies are generally hampered for a number of reasons, the most severe being attenuation and scattering. The effect of scattered photons on image quality was discussed, three distinct techniques were utilised to correct the images and results were compared. Determination of the depth of the source, Am-241 and Tc-99m in the attenuating media, water and TEMEX by analysing the spectroscopic data base on the SPR and spatial resolution was studied, results revealed that both techniques had the same range of depth sensitivity. A method of simultaneous emission and transmission tomography was developed to correct the images for attenuation. The reproducibility of the technique was examined. Results showed that the technique is able to present a promising and a practical approach to more accurate quantitative SPECT imaging. A procedure to evaluate images, under certain conditions has been defined, its properties were evaluated using computer

  19. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission

    PubMed Central

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-01-01

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly. PMID:26436776

  20. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  1. Single-photon emission computed tomography/computed tomography in brain tumors.

    PubMed

    Schillaci, Orazio; Filippi, Luca; Manni, Carlo; Santoni, Riccardo

    2007-01-01

    Anatomic imaging procedures (computed tomography [CT] and magnetic resonance imaging [MRI]) have become essential tools for brain tumor assessment. Functional images (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]) can provide additional information useful during the diagnostic workup to determine the degree of malignancy and as a substitute or guide for biopsy. After surgery and/or radiotherapy, nuclear medicine examinations are essential to assess persistence of tumor, to differentiate recurrence from radiation necrosis and gliosis, and to monitor the disease. The combination of functional images with anatomic ones is of the utmost importance for a full evaluation of these patients, which can be obtained by means of imaging fusion. Despite the fast-growing diffusion of PET, in most cases of brain tumors, SPECT studies are adequate and provide results that parallel those obtained with PET. The main limitation of SPECT imaging with brain tumor-seeking radiopharmaceuticals is the lack of precise anatomic details; this drawback is overcome by the fusion with morphological studies that provide an anatomic map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT or MRI demonstrated usefulness for brain tumor assessment, but this process is often time consuming and not practical for everyday nuclear medicine studies. The recent development of dual-modality integrated imaging systems, which allow the acquisition of SPECT and CT images in the same scanning session, and their co-registration by means of the hardware, has facilitated this process. In SPECT studies of brain tumors with various radiopharmaceuticals, fused images are helpful in providing the precise localization of neoplastic lesions, and in excluding the disease in sites of physiologic tracer uptake. This information is useful for optimizing diagnosis, therapy monitoring, and radiotherapy treatment planning, with a

  2. Abnormal 201Tl myocardial single photon emission computed tomography in energetic male patients with myocardial bridge.

    PubMed

    Huang, W S; Chang, H D; Yang, S P; Tsao, T P; Cheng, C Y; Cherng, S C

    2002-11-01

    Myocardial bridge is a relatively benign condition where a major coronary artery is bridged by a band of muscle and narrows during systole, particularly during rapid heart rates. Its clinical presentation and electrocardiogram (ECG) changes overlap with that of coronary artery disease. 201Tl myocardial perfusion imaging is thus frequently prescribed for further evaluation. This retrospective study was carried out to determine the 201Tl image patterns in patients with myocardial bridge. A total of 17 male patients (aged from 30 to 63 years) who had a positive exercise ECG and angiographic evidence of myocardial bridge in the mid-third of the left anterior descending coronary artery were recruited. Most of them were robust and received routine physical check-ups. They had no known heart disease or medication that affected cardiac function. The patients' clinical presentations, echocardiograph and exercise ECG findings were analysed. 201Tl single photon emission computed tomography (SPECT) was performed by intravenous injection of 201Tl (111 MBq) immediately following stress (treadmill or dipyridamole induced) and 4 h after stress, using a fixed, right angle camera equipped with a low energy, general purpose collimator. The images were interpreted independently by two experienced nuclear medicine physicians. Nine of the 17 patients had anterior chest pain during exercise. All patients had an abnormal ECG during exercise, including ST-T wave depression in leads II, III and aVF, and v4-6. Except for eight patients revealing reversible perfusion defect (R), 16 of the 17 patients also exhibited a partial reversible perfusion defect (PR) or a significant reverse redistribution (RR) scan pattern in the anterior or inferior walls of the left ventricle. Myocardial bridge should be taken into consideration in energetic male patients who had abnormal exercise ECGs and the corresponding patterns of Tl SPECT abnormalities including R, PR and RR.

  3. Prognostic value of single-photon emission tomography in acute ischaemic stroke.

    PubMed

    Weir, C J; Bolster, A A; Tytler, S; Murray, G D; Corrigall, R S; Adams, F G; Lees, K R

    1997-01-01

    Single-photon emission tomography (SPET) is widely used in the investigation of acute stroke. We investigated the relationship between SPET data and functional outcome in a large group of acute stroke patients. One hundred and eight patients underwent cerebral computed tomography (CT) and technetium-99m hexamethylpropylene amine oxime SPET after acute ischaemic stroke. We categorised the clinical presentation according to the Oxford classification of acute stroke. Outcome was measured 1 year after stroke using mortality and the Barthel Index for survivors. SPET scans were interpreted without reference to the clinical data using a semi-automatic technique. Three experienced observers determined the presence of luxury perfusion using suitably scaled SPET images in conjunction with the CT scan. Both SPET volume and severity of deficit were significantly negatively correlated with Barthel Index at 1 year (rs=-0.310, P<0.0001, and rs=-0.316, P<0.0001 respectively). In patients scanned with SPET within 16 h of stroke onset, the correlations were more strongly negative (rs=-0.606, P<0. 001, and rs=-0.492, P<0.005 respectively). Luxury perfusion was not associated (chi2=0.073, df=1, P=0.79) with good functional outcome (Barthel score >/=60). Stepwise logistic regression identified Oxford classification, total deficit volume and patient's age as significant predictors of functional outcome. Overall predictive accuracy was 72%. Predictive accuracy was better in patients who received SPET within 16 h of stroke onset. SPET provides useful information about the functional outcome of acute stroke at 1 year. However, the accuracy of prediction decreases the longer SPET is delayed. Prognostication using SPET in combination with clinical assessment and other investigations may also be considered.

  4. Development of correction methods for variable pinhole single-photon emission computed tomography

    NASA Astrophysics Data System (ADS)

    Bae, S.; Bae, J.; Lee, H.; Lee, K.

    2016-02-01

    We propose a novel pinhole collimator in which the pinhole shape can be changed in real-time, and a new single-photon emission computed tomography (SPECT) system that utilizes this variable pinhole (VP) collimator. The acceptance angle and distance between the collimator and the object of VP SPECT are varied so that the optimum value of the region-of-interest (ROI) can be obtained for each rotation angle. Because of these geometrical variations, new correction methods are required for image reconstruction. In this study, we developed two correction methods. The first is the sensitivity-correction algorithm, which minimizes the variation of a system matrix caused by varying the acceptance angle for each rotation angle. The second is the acquisition-time-correction method, which reduces the variation of uniformity caused by varying the distance between the collimator and the object for each rotation angle. A 3D maximum likelihood expectation maximization (MLEM) algorithm was applied to image reconstruction, and two digital phantoms were studied to evaluate the resolution and sensitivity of the images obtained using the proposed methods. The images obtained by using the proposed correction methods show higher uniformity and resolution than those obtained without using these methods. In particular, the results of the resolution phantom study show that hot rods (0.8-mm-diameter) can be clearly distinguished using the proposed correction methods. A quantitative analysis of the ROI phantom revealed that the mean square error (MSE) was 0.42 without the acquisition-time-correction method, and 0.04 with the acquisition-time-correction method. The MSEs of the resolution phantom without and with the acquisition-time-correction method were calculated as 55.14 and 14.69, respectively.

  5. UK audit of single photon emission computed tomography reconstruction software using software generated phantoms.

    PubMed

    Jarritt, P H; Whalley, D R; Skrypniuk, J V; Houston, A S; Fleming, J S; Cosgriff, P S

    2002-05-01

    The purpose of this study was to undertake an audit of the quantitative characteristics of single photon emission computed tomography software using projection data from an analytically generated software phantom and a measured line source. The phantom consisted of three structures. A uniformly filled cylinder, a series of cylindrical rods of various diameters in a background activity with a rod to background ratio of 2:1 and lastly, a set of three concentric rings of activity in the ratio 1:0:1. The phantom contained no added statistical noise. No attenuation was imposed on the data. The phantom was generated analytically and projections were distributed at six different count densities. A single set of projections from a thin line source was also distributed. These data were distributed to centres throughout the UK. Centres were asked to reconstruct the data using a 'ramp only' reconstruction with no additional smoothing function applied. Data were requested for mean and standard deviation in the uniform cylinder, the maximum counts for each cylindrical rod and the mean counts in regions placed within the concentric rings. For the measured line source, centres were asked to measure the full width at half maximum and peak pixel counts for a profile through the reconstructed line. Results from 115 systems were obtained from 100 centres throughout the UK. These provided data from 12 software providers, 11 of these being commercial companies. Data were compared with the known input values and histograms of the distribution of results obtained. Significant differences in quantitative parameters were noted for the different input count densities as well as between suppliers and revisions of software from single suppliers.

  6. A Study on Determination of an Optimized Detector for Single Photon Emission Computed Tomography

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Mohammad; Mahmoudian, Babak; Mardanshahi, Ali Reza

    2016-01-01

    The detector is a critical component of the single photon emission computed tomography (SPECT) imaging system for giving accurate information from the exact pattern of radionuclide distribution in the target organ. The SIMIND Monte Carlo program was utilized for the simulation of a Siemen's dual head variable angle SPECT imaging system with a low energy high resolution (LEHR) collimator. The Planar and SPECT scans for a 99mTc point source and a Jaszczak Phantom with the both experiment and simulated systems were prepared and after verification and validation of the simulated system, the similar scans of the phantoms were compared (from the point of view of the images’ quality), namely, the simulated system with the detectors including bismuth germanate (BGO), yttrium aluminum garnet (YAG:Ce), Cerium-doped yttrium aluminum garnet (YAG:Ce), yttrium aluminum perovslite (YAP:Ce), lutetium aluminum garnet (LuAG:Ce), cerium activated lanthanum bromide (LaBr3), cadmium zinc telluride (CZT), and sodium iodide activated with thallium [NaI(Tl)]. The parameters of full width at half maximum (FWHM), energy and special resolution, sensitivity, and also the comparison of images’ quality by the structural similarity (SSIM) algorithm with the Zhou Wang and Rouse/Hemami methods were analyzed. FWHMs for the crystals were calculated at 13.895, 14.321, 14.310, 14.322, 14.184, and 14.312 keV and the related energy resolutions obtained 9.854, 10.229, 10.221, 10.230, 10.131, and 10.223 %, respectively. Finally, SSIM indexes for comparison of the phantom images were calculated at 0.22172, 0.16326, 0.18135, 0.17301, 0.18412, and 0.20433 as compared to NaI(Tl). The results showed that BGO and LuAG: Ce crystals have high sensitivity and resolution, and better image quality as compared to other scintillation crystals. PMID:26912973

  7. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  8. Dynamic single photon emission computed tomography—basic principles and cardiac applications

    PubMed Central

    Gullberg, Grant T; Reutter, Bryan W; Sitek, Arkadiusz; Maltz, Jonathan S; Budinger, Thomas F

    2011-01-01

    The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time–activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time–activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging

  9. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light.

    PubMed

    Rivas, David; Muñoz-Matutano, Guillermo; Canet-Ferrer, Josep; García-Calzada, Raúl; Trevisi, Giovanna; Seravalli, Luca; Frigeri, Paola; Martínez-Pastor, Juan P

    2014-02-12

    In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.

  10. Measurements of wavelength-dependent double photoelectron emission from single photons in VUV-sensitive photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Faham, C. H.; Gehman, V. M.; Currie, A.; Dobi, A.; Sorensen, P.; Gaitskell, R. J.

    2015-09-01

    Measurements of double photoelectron emission (DPE) probabilities as a function of wavelength are reported for Hamamatsu R8778, R8520, and R11410 VUV-sensitive photomultiplier tubes (PMTs). In DPE, a single photon strikes the PMT photocathode and produces two photoelectrons instead of a single one. It was found that the fraction of detected photons that result in DPE emission is a function of the incident photon wavelength, and manifests itself below ~250 nm. For the xenon scintillation wavelength of 175 nm, a DPE probability of 18-24% was measured depending on the tube and measurement method. This wavelength-dependent single photon response has implications for the energy calibration and photon counting of current and future liquid xenon detectors such as LUX, LZ, XENON100/1T, Panda-X and XMASS.

  11. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  12. Central representation of phantom limb phenomenon in amputees studied with single photon emission computerized tomography.

    PubMed

    Liaw, M Y; You, D L; Cheng, P T; Kao, P F; Wong, A M

    1998-01-01

    To explore the possible mechanisms of phantom limb discomfort after amputation, three amputees with phantom limb pain were studied. This study examined the change of regional cerebral blood flow using technetium-99m hexamethylpropyleneamine oxime-single photon emission computerized tomography, which was arranged at the time of severe phantom limb discomfort and after the discomfort subsided or was completely relieved. Nine representative transverse slices parallel to the orbitomeatal line were selected for quantification. The cortical ribbon (2-cm thickness) was equally subdivided into 12 symmetrical pairs of sector regions of interest in each slice. The irregularly shaped regions of interest were drawn manually around the right thalamus and basal ganglion and then mirrored to the left thalamus and basal ganglion. The contralateral to ipsilateral ratio of regional cerebral blood flow for each area was calculated. The intensity of phantom limb pain was evaluated on a 0 to 10 visual analog scale. In Cases 1 and 2, the contralateral to ipsilateral regional cerebral blood flow ratios of multiple areas of the frontal, temporal, or parietal lobes were increased at the time of more severe phantom limb pain, and the ratios were normalized or even decreased when the phantom limb pain subsided. In Case 3, increased contralateral to ipsilateral regional cerebral blood flow ratios were also found over the frontal, temporal, and parietal lobe. However, most of the increased regional cerebral blood flow ratios of regions of interest in the first study persisted in the follow-up study. Also, the regional cerebral blood flow ratios of greater number of regions of interest of the same gyrus and new gyrus were increased. There was no significant right-left difference of regional cerebral blood flow over bilateral thalami and basal ganglia in all three cases. The results suggested that phantom limb pain might be associated with cortical activation involving the frontal, temporal, or

  13. Cerebral Hypoperfusion in Hereditary Coproporphyria (HCP): A Single Photon Emission Computed Tomography (SPECT) Study

    PubMed Central

    Valle, Guido; Guida, Claudio Carmine; Nasuto, Michelangelo; Totaro, Manuela; Aucella, Filippo; Frusciante, Vincenzo; Di Mauro, Lazzaro; Potenza, Adele; Savino, Maria; Stanislao, Mario; Popolizio, Teresa; Guglielmi, Giuseppe; Giagulli, Vito Angelo; Guastamacchia, Edoardo; Triggiani, Vincenzo

    2016-01-01

    Background: Hereditary Coproporphyria (HCP) is characterized by abdominal pain, neurologic symptoms and psychiatric disorders, even if it might remain asymptomatic. The pathophysiology of both neurologic and psychiatric symptoms is not fully understood. Therefore, aiming to evaluate a possible role of brain blood flow disorders, we have retrospectively investigated cerebral perfusion patterns in Single Photon Emission Computed Tomography (SPECT) studies in HCP patients. Materials & Methods: We retrospectively evaluated the medical records of patients diagnosed as being affected by HCP. A total of seven HCP patients had been submitted to brain perfusion SPECT study with 99mTc-Exametazime (hexamethylpropyleneamine oxime, HMPAO) or with its functionally equivalent 99mTc-Bicisate (ECD or Neurolite) according with common procedures. In 3 patients the scintigraphic study had been repeated for a second time after the first evaluation at 3, 10 and 20 months, respectively. All the studied subjects had been also submitted to an electromyographic and a Magnetic Resonance Imaging (MRI) study of the brain. Results: Mild to moderate perfusion defects were detected in temporal lobes (all 7 patients), frontal lobes (6 patients) and parietal lobes (4 patients). Occipital lobe, basal ganglia and cerebellar involvement were never observed. In the three subjects in which SPECT study was repeated, some recovery of hypo-perfused areas and appearance of new perfusion defects in other brain regions have been found. In all patients electromyography resulted normal and MRI detected few unspecific gliotic lesions only in one patient. Discussion & Conclusions: Since perfusion abnormalities were usually mild to moderate, this can probably explain the normal pattern observed at MRI studies. Compared to MRI, SPECT with 99mTc showed higher sensitivity in HCP patients. Changes observed in HCP patients who had more than one study suggest that transient perfusion defects might be due to a brain

  14. Single-photon emission from InAsP quantum dots embedded in density-controlled InP nanowires

    NASA Astrophysics Data System (ADS)

    Yanase, Shougo; Sasakura, Hirotaka; Hara, Shinjiro; Motohisa, Junichi

    2017-04-01

    We attempted to control the density and size of InP-based nanowires (NWs) and nanowire quantum dots (NW-QDs) during selective-area metalorganic vapor phase epitaxy. InP nanowire arrays with a 5 µm pitch and an average NW diameter d of 67 nm were successfully grown by optimization of growth conditions. InAsP quantum dots were embedded in these density-controlled InP NW arrays, and clear single-photon emission and exciton-biexciton cascaded emission were confirmed by excitation-dependent photoluminescence and photon correlation measurements.

  15. Single photon emission tomography in neurological studies: Instrumentation and clinical applications

    NASA Astrophysics Data System (ADS)

    Nikkinen, Paivi Helena

    One triple head and two single head gamma camera systems were used for single photon emission tomography (SPET) imaging of both patients and brain phantoms. Studies with an anatomical brain phantom were performed for evaluation of reconstruction and correction methods in brain perfusion SPET studies. The use of the triple head gamma camera system resulted in a significant increase in image contrast and resolution. This was mainly due to better imaging geometry and the use of a high resolution collimator. The conventional Chang attenuation correction was found suitable for the brain perfusion studies. In the brain perfusion studies region of interest (ROI) based semiquantitation methods were used. A ROI map based on anatomical areas was used in 70 elderly persons (age range 55-85 years) without neurological diseases and in patients suffering from encephalitis or having had a cardiac arrest. Semiquantitative reference values are presented. For the 14 patients with encephalitis the right-to-left side differences were calculated. Defect volume indexes were calculated for 64 patients with brain infarcts. For the 30 cardiac arrest patients the defect percentages and the anteroposterior ratios were used for semiquantitation. It is concluded that different semiquantitation methods are needed for the various patient groups. Age-related reference values will improve the interpretation of SPET data. For validation of the basal ganglia receptor studies measurements were performed using a cylindrical and an anatomical striatal phantom. In these measurements conventional and transmission imaging based non-uniform attenuation corrections were compared. A calibration curve was calculated for the determination of the specific receptor uptake ratio. In the phantom studies using the triple head camera the uptake ratio obtained from simultaneous transmission-emission protocol (STEP) acquisition and iterative reconstruction was closest to the true activity ratio. Conventional

  16. CO2BOLD assessment of moyamoya syndrome: Validation with single photon emission computed tomography and positron emission tomography imaging

    PubMed Central

    Pellaton, Alain; Bijlenga, Philippe; Bouchez, Laurie; Cuvinciuc, Victor; Barnaure, Isabelle; Garibotto, Valentina; Lövblad, Karl-Olof; Haller, Sven

    2016-01-01

    AIM To compare the assessment of cerebrovascular reserve (CVR) using CO2BOLD magnetic resonance imaging (MRI) vs positron emission tomography (PET) and single photon emission computed tomography (SPECT) as reference standard. METHODS Ten consecutive patients (8 women, mean age of 41 ± 26 years) with moyamoya syndrome underwent 14 pre-surgical evaluations for external-internal carotid artery bypass surgery. CVR was assessed using CO2BOLD and PET (4)/SPECT (11) with a maximum interval of 36 d, and evaluated by two experienced neuroradiologists. RESULTS The inter-rater agreement was 0.81 for SPECT (excellent), 0.43 for PET (fair) and 0.7 for CO2BOLD (good). In 9/14 cases, there was a correspondence between CO2BOLD and PET/SPECT. In 4/14 cases, CVR was over-estimated in CO2BOLD, while in 1/14 case, CVR was underestimated in CO2BOLD. The sensitivity of CO2BOLD was 86% and a specificity of 43%. CONCLUSION CO2BOLD can be used for pre-surgical assessment of CVR in patients with moyamoya syndrome and combines the advantages of absent irradiation, high availability of MRI and assessment of brain parenchyma, cerebral vessels and surrogate CVR in one stop. PMID:27928470

  17. Assessment of cardiac single-photon emission computed tomography performance using a scanning linear observer

    SciTech Connect

    Lee, Chih-Jie; Kupinski, Matthew A.; Volokh, Lana

    2013-01-15

    Purpose: Single-photon emission computed tomography (SPECT) is widely used to detect myocardial ischemia and myocardial infarction. It is important to assess and compare different SPECT system designs in order to achieve the highest detectability of cardiac defects. Methods: Whitaker et al.'s study ['Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods,' Opt. Express 16(11), 8150-8173 (2008)] on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than with reconstruction data. Thus, this observer model assesses the overall hardware performance independent of any reconstruction algorithm. In addition, the computation time of image quality studies is significantly reduced. In this study, three systems based on the design of the GE cadmium zinc telluride-based dedicated cardiac SPECT camera Discovery 530c were assessed. This design, which is officially named the Alcyone Technology: Discovery NM 530c, was commercialized in August, 2009. The three systems, GE27, GE19, and GE13, contain 27, 19, and 13 detectors, respectively. Clinically, a human heart can be virtually segmented into three coronary artery territories: the left-anterior descending artery, left-circumflex artery, and right coronary artery. One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can accurately predict in which territory the defect exists [http://www.asnc.org/media/PDFs/PPReporting081511.pdf, Guideline from American Society of Nuclear Cardiology]. A good estimation of the extent of the defect from the projection images is also very helpful for determining the seriousness of the myocardial ischemia. In this study, both the location and extent of defects were estimated by the SLO, and the system performance was assessed by localization

  18. Assessment of cardiac single-photon emission computed tomography performance using a scanning linear observer

    PubMed Central

    Lee, Chih-Jie; Kupinski, Matthew A.; Volokh, Lana

    2013-01-01

    Purpose: Single-photon emission computed tomography (SPECT) is widely used to detect myocardial ischemia and myocardial infarction. It is important to assess and compare different SPECT system designs in order to achieve the highest detectability of cardiac defects. Methods:Whitaker ’s study [“Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods,” Opt. Express 16(11), 8150–8173 (2008)]10.1364/OE.16.008150 on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than with reconstruction data. Thus, this observer model assesses the overall hardware performance independent of any reconstruction algorithm. In addition, the computation time of image quality studies is significantly reduced. In this study, three systems based on the design of the GE cadmium zinc telluride-based dedicated cardiac SPECT camera Discovery 530c were assessed. This design, which is officially named the Alcyone Technology: Discovery NM 530c, was commercialized in August, 2009. The three systems, GE27, GE19, and GE13, contain 27, 19, and 13 detectors, respectively. Clinically, a human heart can be virtually segmented into three coronary artery territories: the left-anterior descending artery, left-circumflex artery, and right coronary artery. One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can accurately predict in which territory the defect exists [http://www.asnc.org/media/PDFs/PPReporting081511.pdf, Guideline from American Society of Nuclear Cardiology]. A good estimation of the extent of the defect from the projection images is also very helpful for determining the seriousness of the myocardial ischemia. In this study, both the location and extent of defects were estimated by the SLO, and the system performance was assessed by

  19. Diagnosis of sclerosing cholangitis with technetium 99m-labeled iminodiacetic acid planar and single photon emission computed tomographic scintigraphy

    SciTech Connect

    Rodman, C.A.; Keeffe, E.B.; Lieberman, D.A.; Krishnamurthy, S.; Krishnamurthy, G.T.; Gilbert, S.; Eklem, M.J.

    1987-03-01

    The purpose of this study was to determine whether /sup 99m/Tc-iminodiacetic acid planar biliary scintigraphy combined with single photon emission computed tomography could detect sclerosing cholangitis and provide additional information regarding the extent and severity of disease. Thirteen patients with sclerosing cholangitis and 13 normal control subjects were studied. Scintigraphic results were also compared with previously reported studies of patients with isolated common bile duct obstruction and with primary biliary cirrhosis. The planar scintigraphy in patients with sclerosing cholangitis showed beading or bandlike constrictions of the biliary tract corresponding to lesions seen on cholangiography, and the image pattern was distinctly different from images obtained from patients with isolated common bile duct obstruction or primary biliary cirrhosis. The single photon emission computed tomography images of the liver in patients with sclerosing cholangitis demonstrated multiple focal areas of /sup 99m/Tc-iminodiacetic acid retention, representing bile stasis in intrahepatic bile ducts. Compared to controls, the mean hepatic clearance half-time of /sup 99m/Tc-iminodiacetic acid was markedly delayed in patients with sclerosing cholangitis (6-10 times normal). Individual patients with sclerosing cholangitis had wider variation in isotope clearance half-time from three regions of the liver than patients with isolated common bile duct obstruction, consistent with regional difference in disease severity and variable impairment of bile flow. In 4 patients with sclerosing cholangitis with incomplete filling of the right and left hepatic ducts at cholangiography, planar and single photon emission computed tomographic scintigraphy provided evidence of significant intrahepatic sclerosing cholangitis.

  20. Room-temperature single-photon emission from zinc oxide nanoparticle defects and their in vitro photostable intrinsic fluorescence

    NASA Astrophysics Data System (ADS)

    Chung, Kelvin; Karle, Timothy J.; Khalid, Asma; Abraham, Amanda N.; Shukla, Ravi; Gibson, Brant C.; Simpson, David A.; Djurišic, Aleksandra B.; Amekura, Hiroshi; Tomljenovic-Hanic, Snjezana

    2017-01-01

    Zinc oxide (ZnO) is a promising semiconductor that is suitable for bioimaging applications due to its intrinsic defect fluorescence. However, ZnO generally suffers from poor photostability. We report room-temperature single-photon emission from optical defects found in ZnO nanoparticles (NPs) formed by ion implantation followed by thermal oxidation in a silica substrate. We conduct a thorough investigation into the photophysics of a particularly bright defect and identify other single emitters within the NPs. Photostability was observed when the NPs were removed from the growth substrate and taken up by skin cells for in vitro imaging.

  1. Single photon emission photography/magnetic resonance imaging (SPECT/MRI) visualization for frontal-lobe-damaged regions

    NASA Astrophysics Data System (ADS)

    Stokking, Rik; Zuiderveld, Karel J.; Hulshoff Pol, Hilleke E.; Viergever, Max A.

    1994-09-01

    We present multi-modality visualization strategies to convey information contained in registered Single Photon Emission Photography (SPECT) and Magnetic Resonance (MR) images of the brain. Multi-modality visualization provides a means to retrieve valuable information from the data which might otherwise remain obscured. Here we use MRI as an anatomical framework for functional information acquired with SPECT. This is part of clinical research studying the change of functionality caused by a frontal lobe damaged region. A number of known and newly developed techniques for the integrated visualization of SPECT and MR images will be discussed.

  2. Right parietal stroke with Gerstmann's syndrome. Appearance on computed tomography, magnetic resonance imaging, and single-photon emission computed tomography.

    PubMed

    Moore, M R; Saver, J L; Johnson, K A; Romero, J A

    1991-04-01

    We examined a patient who exhibited Gerstmann's syndrome (left-right disorientation, finger agnosia, dyscalculia, and dysgraphia) in association with a perioperative stroke in the right parietal lobe. This is the first description of the Gerstmann tetrad occurring in the setting of discrete right hemisphere pathologic findings. A well-localized vascular lesion was demonstrated by computed tomography, magnetic resonance imaging, and single-photon emission computed tomographic studies. The patient had clinical evidence of reversed functional cerebral dominance and radiologic evidence of reversed anatomic cerebral asymmetries.

  3. Two Cases of Legionella pneumophila Pneumonia with Prolonged Neurologic Symptoms and Brain Hypoperfusion on Single-Photon Emission Computed Tomography

    PubMed Central

    Miura, You; Seto, Akira; Kanazawa, Minoru; Nagata, Makoto

    2016-01-01

    Cerebral and cerebellar symptoms are frequently associated with Legionnaires' disease. However, corresponding brain lesions are difficult to demonstrate using either computed tomography (CT) or magnetic resonance imaging (MRI). We report here two patients with Legionella pneumophila pneumonia accompanied by prolonged neurologic symptoms. In contrast to brain CT and MRI, which failed to detect any abnormalities, single-photon emission computed tomography (SPECT) showed multiple sites of hypoperfusion within the brains of both patients. These cases suggest that vasculopathy, which is detectable by SPECT, might be one of the causes of neurologic symptoms in patients with Legionnaires' disease. PMID:27478660

  4. Domestic Development of Single-Photon Emission Computed Tomography (SPECT) Unit with Detector based on Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Grishakov, S.; Ryzhikova, O.; Sergienko, V.; Ansheles, A.; Novikov, S.

    2017-01-01

    The idea of creating a single-photon emission computed tomography unit with solid-state photomultipliers is not new [1], as the problems of analog-to-digital conversion with a lot of noise and a wide range of values of intrinsic spatial resolution of the detector in a center and relevant fields of view could not be solved by means of gamma-camera detector architectures based on vacuum photomultipliers. This paper offers a new SPECT imaging solution that is free from these problems.

  5. Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure

    PubMed Central

    2016-01-01

    Metal-halide semiconductors with perovskite crystal structure are attractive due to their facile solution processability, and have recently been harnessed very successfully for high-efficiency photovoltaics and bright light sources. Here, we show that at low temperature single colloidal cesium lead halide (CsPbX3, where X = Cl/Br) nanocrystals exhibit stable, narrow-band emission with suppressed blinking and small spectral diffusion. Photon antibunching demonstrates unambiguously nonclassical single-photon emission with radiative decay on the order of 250 ps, representing a significant acceleration compared to other common quantum emitters. High-resolution spectroscopy provides insight into the complex nature of the emission process such as the fine structure and charged exciton dynamics. PMID:26771336

  6. Cascaded emission of linearly polarized single photons from positioned InP/GaInP quantum dots

    SciTech Connect

    Braun, T.; Unsleber, S.; Baumann, V.; Schneider, C.; Höfling, S.; Kamp, M.; Gschrey, M.; Rodt, S.; Reitzenstein, S.

    2013-11-04

    We report on the optical characterization of site-controlled InP/GaInP quantum dots (QDs). Spatially resolved low temperature cathodoluminescence proves the long-range ordering of the buried emitters, revealing a yield of ∼90% of optically active, positioned QDs and a strong suppression of emitters on interstitial positions. The emission of single QDs shows a pronounced degree of linear polarization along the [0,−1,1] crystal axis with an average degree of polarization of 94%. Photon correlation measurements of the emission from a single QD indicate the single-photon character of the exciton and biexciton emission lines as well as the cascaded nature of the photon pair.

  7. Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity

    NASA Astrophysics Data System (ADS)

    Kaupp, Hanno; Hümmer, Thomas; Mader, Matthias; Schlederer, Benedikt; Benedikter, Julia; Haeusser, Philip; Chang, Huan-Cheng; Fedder, Helmut; Hänsch, Theodor W.; Hunger, David

    2016-11-01

    Optical microcavities are a powerful tool for enhancing the fluorescence of individual quantum emitters. However, the broad emission spectra encountered in the solid state at room temperature limit the influence of a cavity, calling for an ultrasmall mode volume. We demonstrate Purcell-enhanced single-photon emission from nitrogen-vacancy centers in nanodiamonds coupled to a tunable fiber-based microcavity with a mode volume down to 1.0 λ3. We record cavity-enhanced fluorescence images and study several single emitters with one cavity. The Purcell effect is evidenced by enhanced fluorescence collection and tunable lifetime modification, and we infer an effective Purcell factor of up to 2. Furthermore, we show an alternative regime for light confinement, where a Fabry-Perot mode is combined with additional mode confinement by the nanocrystal itself. Simulations predict effective Purcell factors of up to 11 for nitrogen-vacancy centers and 63 for silicon-vacancy centers, holding promise for bright single-photon sources and efficient spin readout under ambient conditions.

  8. Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Zhang, Bin; Tian, Jian; Wang, Jiaqing; Chong, Yu; Wang, Xin; Deng, Yaoyao; Tang, Minghua; Li, Yonggang; Ge, Cuicui; Pan, Yue; Gu, Hongwei

    2015-02-01

    We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging.We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging. Electronic supplementary information (ESI) available: Details of general experimental procedures, TEM image. See DOI: 10.1039/c4nr07255c

  9. Efficient single photon emission from a high-purity hexagonal boron nitride crystal

    NASA Astrophysics Data System (ADS)

    Martínez, L. J.; Pelini, T.; Waselowski, V.; Maze, J. R.; Gil, B.; Cassabois, G.; Jacques, V.

    2016-09-01

    Among a variety of layered materials used as building blocks in van der Waals heterostructures, hexagonal boron nitride (hBN) appears as an ideal platform for hosting optically active defects owing to its large band gap (˜6 eV ). Here we study the optical response of a high-purity hBN crystal under green laser illumination. By means of photon correlation measurements, we identify individual defects emitting a highly photostable fluorescence under ambient conditions. A detailed analysis of the photophysical properties reveals a high quantum efficiency of the radiative transition, leading to a single photon source with very high brightness (˜4 ×106 counts s-1). These results illustrate how the wide range of applications offered by hBN could be further extended to photonic-based quantum information science and metrology.

  10. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission

    PubMed Central

    Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio; Srinivasan, Kartik

    2015-01-01

    Self-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices. To that end, we create QD single-photon sources, based on a circular Bragg grating geometry, that simultaneously exhibit high collection efficiency (48%±5% into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50%), low multiphoton probability (g(2)(0) <1%), and a significant Purcell enhancement factor (≈3). PMID:26211442

  11. Single-photon quadratic optomechanics

    PubMed Central

    Liao, Jie-Qiao; Nori, Franco

    2014-01-01

    We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the optomechanical coupling strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time emission and scattering states. The linear entropy is employed to characterize this entanglement by treating it as a bipartite one between a single mode of phonons and a single photon. PMID:25200128

  12. Design and Feasibility Study of a Single Photon Emission Microscope System for Small Animal I-125 Imaging

    PubMed Central

    Meng, L. J.; Clinthorne, N. H.; Skinner, S.; Hay, R. V.; Gross, M.

    2016-01-01

    This paper presents a design study of a single photon emission microscope (SPEM) system for small animal imaging using I-125 labelled radiotracers. This system is based on the use of a very-high resolution gamma camera coupled to a converging non-multiplexing multiple pinhole collimator. This enables one to “zoom” into a small local region inside the object to extract imaging information with a very high spatial resolution and a reasonable sensitivity for gamma rays emitted from this local region. The SPEM system also includes a pinhole (or multiple pinhole) gamma camera that has a full angular coverage of the entire object. The designed imaging spatial resolution for the SPEM system is between 250 μm to 500 μm FWHM.

  13. Evaluation of extracranial-to-intracranial bypass surgery using iodine 123 iodoamphetamine single-photon emission computed tomography

    SciTech Connect

    Kobayashi, H.; Hayashi, M.; Kawano, H.; Handa, Y.; Kabuto, M.; Maeda, H.; Ishii, Y. )

    1991-06-01

    Eleven patients with occlusive cerebrovascular diseases were imaged with N-isopropyl-p-I-123 iodoamphetamine. Preoperative and postoperative single-photon emission computed tomography was performed in 10 patients undergoing extracranial-to-intracranial bypass procedures. New images were reconstructed from the two images obtained on the different days by superimposition and division in each pixel to get the ratio of cerebral perfusion change. All patients with bypass procedures had an increase in cerebral blood flow in the affected areas, and nine of 10 had an increase in cerebral blood flow in the contralateral cortex. There was no increase in cerebral blood flow in one case with no operation. Neither our procedure nor the results in this small series prove that recovery of function is due to an increase in blood flow, but we believe this is the case.

  14. Long-term noninvasive single photon emission computed tomography monitoring of perfusional changes after EC-IC bypass surgery.

    PubMed Central

    Di Piero, V; Lenzi, G L; Collice, M; Triulzi, F; Gerundini, P; Perani, D; Savi, A R; Fieschi, C; Fazio, F

    1987-01-01

    The rCBF was evaluated using I-123 HIPDM and single photon emission computed tomography (SPECT) on 14 patients undergoing extracranial-intracranial (EC-IC) bypass surgery because of internal carotid artery (ICA) occlusion. Before surgery, all patients showed cortical areas of hypoperfusion over the affected cerebral hemisphere. Shortly after EC-IC bypass a rCBF increase was observed in six patients. However, at the 6 and 12 month follow-ups, with angiographic control of bypass patency, rCBF studies did not show any significant rCBF change. Long-term noninvasive tomographic monitoring of perfusion changes occurring after EC-IC bypass surgery failed to show a long-lasting improvement in perfusion. Images PMID:3498800

  15. Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate

    SciTech Connect

    Drayer, B.; Jaszczak, R.; Coleman, E.; Storni, A.; Greer, K.; Petry, N.; Lischko, M.; Flanagan, S.

    1982-06-01

    An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatum and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.

  16. Hepatic cavernous hemangioma: diagnosis with /sup 99m/Tc-labeled red cells and single-photon emission CT

    SciTech Connect

    Brodsky, R.I.; Friedman, A.C.; Maurer, A.H.; Radecki, P.D.; Caroline, D.F.

    1987-01-01

    During the performance of high-resolution real-time abdominal sonography, small echogenic hepatic masses are frequently discovered. A second imaging test to confirm the suspected diagnosis of hemangioma is often required. Planar labeled red-cell imaging will often not detect hemangiomas smaller than 3 cm. We studied 14 patients with labeled red-cell scintigraphy and single-photon emission CT (SPECT). Six hemangiomas were diagnosed by SPECT that would have been missed by planar imaging alone. All six were smaller than 2.5 cm. With the addition of SPECT, labeled red-cell scintigraphy has specificity and sensitivity that make it at least as reliable as dynamic CT for the noninvasive diagnosis of hepatic cavernous hemangioma.

  17. Single Photon Emission Computed Tomography-Based Three-Dimensional Conformal Radiotherapy for Hepatocellular Carcinoma With Portal Vein Tumor Thrombus

    SciTech Connect

    Shirai, Shintaro; Sato, Morio Suwa, Kazuhiro; Kishi, Kazushi; Shimono, Chigusa; Kawai, Nobuyuki; Tanihata, Hirohiko; Minamiguchi, Hiroki; Nakai, Motoki

    2009-03-01

    Purpose: To evaluate the safety and efficacy of three-dimensional conformal radiotherapy (3D-CRT) using single photon emission computed tomography (SPECT) in unresectable hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT). Methods and Materials: Patients with HCC with PVTT in the first branch and/or main trunk were selected for this study. The optimal beam directions for 3D-CRT were explored using a Tc-99m-galactosyl human serum albumin SPECT image for guidance. The SPECT image was classified as either wedge type or localized type. The clinical target volume to a total dose of 45 or 50 Gy per 18-20 fractions included the main tumor and PVTT in the wedge type and PVTT alone in the localized type. Results: Twenty-six patients were enrolled: 18 with wedge type and 8 with localized type. Mean tumor size was 7.1 cm (range, 4.4-12.3 cm). Clinical target volumes of wedge type vs. localized type were 111.2 cm{sup 3} vs. 48.4 cm{sup 3} (p = 0.010), respectively. Mean dose to normal liver and mean dose to functional liver were 1185 cGy and 988 cGy (p = 0.001) in wedge type and 1046 cGy and 1043 cGy (p = 0.658) in localized type, respectively. Despite an incidence of Child-Pugh B and C of 57.7%, no patients experienced radiation-induced liver disease. The progression of PVTT was inhibited, with an incidence of 92.2%; survival rates at 1 and 2 years were 44% and 30%, respectively. Conclusion: Single photon emission computed tomography-based 3D-CRT enables irradiation of both the main tumor and PVTT with low toxicity and promising survival.

  18. Comparison of left ventricular ejection fraction values obtained using invasive contrast left ventriculography, two-dimensional echocardiography, and gated single-photon emission computed tomography

    PubMed Central

    Garg, Nadish; Dresser, Thomas; Aggarwal, Kul; Gupta, Vishal; Mittal, Mayank K; Alpert, Martin A

    2016-01-01

    Objectives: Left ventricular ejection fraction can be measured by a variety of invasive and non-invasive cardiac techniques. This study assesses the relation of three diagnostic modalities to each other in the measurement of left ventricular ejection fraction: invasive contrast left ventriculography, two-dimensional echocardiography, and quantitative gated single-photon emission computed tomography. Methods: Retrospective chart review was conducted on 58 patients hospitalized with chest pain, who underwent left ventricular ejection fraction evaluation using each of the aforementioned modalities within a 3-month period not interrupted by myocardial infarction or revascularization. Results: The mean left ventricular ejection fraction values were as follows: invasive contrast left ventriculography (0.44±0.15), two-dimensional echocardiography (0.46±0.13), and gated single-photon emission computed tomography (0.37±0.10). Correlations coefficients and associated p values were as follows: invasive contrast left ventriculography versus two-dimensional echocardiography (r=0.69, p<0.001), invasive contrast left ventriculography versus gated single-photon emission computed tomography (r=0.80, p<0.0001), and gated single-photon emission computed tomography versus two-dimensional echocardiography (r=0.69, p<0.001). Conclusion: Our results indicate that strong positive correlations exist among the three techniques studied. PMID:27621804

  19. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot

    SciTech Connect

    Deshpande, Saniya; Frost, Thomas; Hazari, Arnab; Bhattacharya, Pallab

    2014-10-06

    We demonstrate a semiconductor quantum dot based electrically pumped single-photon source operating at room temperature. Single photons emitted in the red spectral range from single In{sub 0.4}Ga{sub 0.6}N/GaN quantum dots exhibit a second-order correlation value g{sup (2)}(0) of 0.29, and fast recombination lifetime ∼1.3 ±0.3 ns at room temperature. The single-photon source can be driven at an excitation repetition rate of 200 MHz.

  20. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots.

    PubMed

    Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan

    2016-12-01

    Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g (2)(0) < 0.5 which demonstrates a pure single-photon emission.

  1. Diagnostic accuracy of exercise thallium-201 single-photon emission computed tomography in patients with left bundle branch block.

    PubMed

    Larcos, G; Gibbons, R J; Brown, M L

    1991-09-15

    Recent reports have proposed that abnormal apical or anterior wall perfusion with exercise thallium-201 imaging may increase diagnostic accuracy for disease of the left anterior descending artery in patients with left bundle branch block (LBBB). To evaluate these suggestions, 83 patients with LBBB who underwent thallium-201 single-photon emission computed tomography and coronary angiography within an interval of 3 months were retrospectively reviewed. There were 59 men and 24 women aged 33 to 84 years (mean 65). Myocardial perfusion to the apex, anterior wall and anterior septum were scored qualitatively by consensus of 2 experienced observers and by quantitative analysis in comparison with a normal data base. The sensitivity, specificity and accuracy of perfusion defects in these segments were then expressed according to angiographic findings. Significant stenosis of vessels within the left anterior descending artery territory was present in 38 patients. By receiver-operator characteristic analysis, a fixed or reversible defect within the apex by the qualitative method was the best criterion for coronary artery disease. However, although highly sensitive (79 and 85% by the qualitative and quantitative methods, respectively), an apical defect was neither specific (38 and 16%, respectively), nor accurate (57 and 46%, respectively). Perfusion abnormalities in the anterior wall and septum were also of limited diagnostic accuracy. Thus, modified interpretative criteria in patients with LBBB are not clinically useful in the assessment of left anterior descending artery disease.

  2. Diagnostic accuracy of exercise thallium-201 single-photon emission computed tomography in patients with left bundle branch block

    SciTech Connect

    Larcos, G.; Gibbons, R.J.; Brown, M.L. )

    1991-09-15

    Recent reports have proposed that abnormal apical or anterior wall perfusion with exercise thallium-201 imaging may increase diagnostic accuracy for disease of the left anterior descending artery in patients with left bundle branch block (LBBB). To evaluate these suggestions, 83 patients with LBBB who underwent thallium-201 single-photon emission computed tomography and coronary angiography within an interval of 3 months were retrospectively reviewed. There were 59 men and 24 women aged 33 to 84 years (mean 65). Myocardial perfusion to the apex, anterior wall and anterior septum were scored qualitatively by consensus of 2 experienced observers and by quantitative analysis in comparison with a normal data base. The sensitivity, specificity and accuracy of perfusion defects in these segments were then expressed according to angiographic findings. Significant stenosis of vessels within the left anterior descending artery territory was present in 38 patients. By receiver-operator characteristic analysis, a fixed or reversible defect within the apex by the qualitative method was the best criterion for coronary artery disease. However, although highly sensitive (79 and 85% by the qualitative and quantitative methods, respectively), an apical defect was neither specific (38 and 16%, respectively), nor accurate (57 and 46%, respectively). Perfusion abnormalities in the anterior wall and septum were also of limited diagnostic accuracy. Thus, modified interpretative criteria in patients with LBBB are not clinically useful in the assessment of left anterior descending artery disease.

  3. Magnetic Resonance Spectroscopy and Single-Photon Emission Computed Tomography in the Evaluation of Cerebral Tumors: A Case Report

    PubMed Central

    Siasios, Ioannis; Valotassiou, Varvara; Kapsalaki, Eftychia; Tsougos, Ioannis; Georgoulias, Panagiotis; Fotiadou, Aggeliki; Ioannou, Maria; Koukoulis, Georgios; Dimopoulos, Vassilios; Fountas, Kostas

    2017-01-01

    In their daily clinical practice, physicians have to confront diagnostic dilemmas which cannot be resolved by the application of only one imaging technique. In this case report, we present a 66-year-old woman who was admitted to our institution for the surgical resection of a recently diagnosed brain tumor. The patient had a history of epileptic seizures and was hospitalized in the past for anti-phospholipid syndrome related to a non-Hodgkin lymphoma in remission. Magnetic resonance imaging (MRI) examination revealed an enhancing right parasagittal lesion with significant edema suggestive of a high grade glioma. Advanced MRI techniques including proton magnetic resonance spectroscopy (1H-MRS) showed findings compatible of glioma. An additional examination was performed as part of a protocol that we are routinely performing in our institution for all brain tumors including not only the gold standard advanced MRI techniques but also single-photon emission computed tomography (SPECT) with technetium-99m (Tc99m). Brain SPECT indicated the presence of a meningioma which was verified by the histopathology of the resected specimen. In conclusion, a multimodality approach for the pre-surgical assessment of brain tumors has significant advantages not only for the diagnosis but also for the evaluation of intracranial tumors histology. PMID:27924180

  4. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice

    PubMed Central

    Zhang, Minfang; Jasim, Dhifaf A; Ménard-Moyon, Cécilia; Nunes, Antonio; Iijima, Sumio; Bianco, Alberto; Yudasaka, Masako; Kostarelos, Kostas

    2016-01-01

    In this work, we report that the biodistribution and excretion of carbon nanohorns (CNHs) in mice are dependent on their size and functionalization. Small-sized CNHs (30–50 nm; S-CNHs) and large-sized CNHs (80–100 nm; L-CNHs) were chemically functionalized and radiolabeled with [111In]-diethylenetriaminepentaacetic acid and intravenously injected into mice. Their tissue distribution profiles at different time points were determined by single photon emission computed tomography/computed tomography. The results showed that the S-CNHs circulated longer in blood, while the L-CNHs accumulated faster in major organs like the liver and spleen. Small amounts of S-CNHs- and L-CNHs were excreted in urine within the first few hours postinjection, followed by excretion of smaller quantities within the next 48 hours in both urine and feces. The kinetics of excretion for S-CNHs were more rapid than for L-CNHs. Both S-CNH and L-CNH material accumulated mainly in the liver and spleen; however, S-CNH accumulation in the spleen was more prominent than in the liver. PMID:27524892

  5. Effect of beta blockade on single photon emission computed tomographic (SPECT) thallium-201 images in patients with coronary disease

    SciTech Connect

    Narahara, K.A.; Thompson, C.J.; Hazen, J.F.; Brizendine, M.; Mena, I.

    1989-05-01

    We evaluated the effect of beta blockers on thallium-201 (Tl-201) single photon emission computed tomographic (SPECT) imaging in 12 patients with coronary disease using an automated computer algorithm. Maximal exercise heart rate and blood pressure were reduced and exercise time was increased with beta blockers. Estimated stress defect size decreased from 47 +/- 36.3 gm during placebo treatment to 32 +/- 27.1 gm during beta blocker therapy (-32%; p less than 0.01). The placebo treatment redistribution defect was estimated to be 28 +/- 29.8 gm. It fell to 15 +/- 23.3 gm with beta blockade (-46%; p less than 0.005). All patients had a stress Tl-201 defect during placebo treatment and eight had redistribution defects consistent with residual scar. During beta blocker therapy, 2 of 12 patients had normal stress-redistribution studies and only five patients had redistribution defects. Beta blockade can reduce exercise and redistribution Tl-201 SPECT defect size significantly while simultaneously increasing exercise time and reducing angina. Beta blockers may unmask or may eliminate evidence of redistribution. Tl-201 SPECT imaging may be useful in defining the reduction in ischemia produced by cardiac drugs.

  6. Use of fuzzy edge single-photon emission computed tomography analysis in definite Alzheimer's disease - a retrospective study

    PubMed Central

    2010-01-01

    Background Definite Alzheimer's disease (AD) requires neuropathological confirmation. Single-photon emission computed tomography (SPECT) may enhance diagnostic accuracy, but due to restricted sensitivity and specificity, the role of SPECT is largely limited with regard to this purpose. Methods We propose a new method of SPECT data analysis. The method is based on a combination of parietal lobe selection (as regions-of-interest (ROI)), 3D fuzzy edge detection, and 3D watershed transformation. We applied the algorithm to three-dimensional SPECT images of human brains and compared the number of watershed regions inside the ROI between AD patients and controls. The Student's two-sample t-test was used for testing domain number equity in both groups. Results AD patients had a significantly reduced number of watershed regions compared to controls (p < 0.01). A sensitivity of 94.1% and specificity of 80% was obtained with a threshold value of 57.11 for the watershed domain number. The narrowing of the SPECT analysis to parietal regions leads to a substantial increase in both sensitivity and specificity. Conclusions Our non-invasive, relatively low-cost, and easy method can contribute to a more precise diagnosis of AD. PMID:20809946

  7. Comparison of deconvolution techniques using a distribution mixture parameter estimation: application in single photon emission computed tomography imagery

    NASA Astrophysics Data System (ADS)

    Mignotte, Max; Meunier, Jean; Soucy, Jean-Paul; Janicki, Christian

    2002-01-01

    Thanks to its ability to yield functionally rather than anatomically-based information, the single photon emission computed tomography (SPECT) imagery technique has become a great help in the diagnostic of cerebrovascular diseases which are the third most common cause of death in the USA and Europe. Nevertheless, SPECT images are very blurred and consequently their interpretation is difficult. In order to improve the spatial resolution of these images and then to facilitate their interpretation by the clinician, we propose to implement and to compare the effectiveness of different existing 'blind' or 'supervised' deconvolution methods. To this end, we present an accurate distribution mixture parameter estimation procedure which takes into account the diversity of the laws in the distribution mixture of a SPECT image. In our application, parameters of this distribution mixture are efficiently exploited in order to prevent overfitting of the noisy data for the iterative deconvolution techniques without regularization term, or to determine the exact support of the object to be restored when this one is needed. Recent blind deconvolution techniques such as the NAS--RIF algorithm, combined with this estimation procedure, can be efficiently applied in SPECT imagery and yield promising results.

  8. Unusual extracardiac findings detected on myocardial perfusion single photon emission computed tomography studies with Tc-99m sestamibi.

    PubMed

    Gedik, Gonca Kara; Ergün, Eser Lay; Aslan, Mehmet; Caner, Biray

    2007-12-01

    The authors describe the incidence and various uptake patterns of Tc-99m sestamibi (MIBI) in the extracardiac area due to unusual causes on myocardial perfusion single photon emission computed tomography (SPECT) studies. Seven patients are presented in whom incidental extracardiac findings were observed during the interpretation of the raw data besides the routine evaluation of myocardial reconstructed SPECT slices. These 7 patients were detected out of 582 consecutive patients (1.2%) who had myocardial perfusion SPECT with Tc-99m MIBI. The findings on the raw data led to additional reconstruction of thoracic SPECT images and eventually detailed examination of the extracardiac area. Two of the patients underwent surgery because of incidental extracardiac findings (thymoma and multinodular goiter) on cardiac scintigraphy. Other causes of increased extracardiac activity were the intestine protruded through the left hemithorax, uptake in the pulmonary arterial wall, and pulmonary interstitial fibrosis due to sarcoidosis. The reasons for decreased Tc-99m MIBI accumulation in the extracardiac area in the 2 other patients were significantly dilated pulmonary arteries and hydatic cyst, which were not defined before to our knowledge. Familiarity with the normal biodistribution and variable uptake patterns in the raw images becomes necessary during the interpretation of myocardial SPECT in order not to miss very unusual incidental extracardiac uptake or information that could lead to alteration in patient management. Potential underlying mechanisms of extracardiac Tc-99m MIBI accumulation are discussed, and the literature about noncardiac Tc-99m MIBI findings detected on myocardial perfusion SPECT studies was reviewed.

  9. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  10. The association between heroin expenditure and dopamine transporter availability--a single-photon emission computed tomography study.

    PubMed

    Lin, Shih-Hsien; Chen, Kao Chin; Lee, Sheng-Yu; Chiu, Nan Tsing; Lee, I Hui; Chen, Po See; Yeh, Tzung Lieh; Lu, Ru-Band; Chen, Chia-Chieh; Liao, Mei-Hsiu; Yang, Yen Kuang

    2015-03-30

    One of the consequences of heroin dependency is a huge expenditure on drugs. This underlying economic expense may be a grave burden for heroin users and may lead to criminal behavior, which is a huge cost to society. The neuropsychological mechanism related to heroin purchase remains unclear. Based on recent findings and the established dopamine hypothesis of addiction, we speculated that expenditure on heroin and central dopamine activity may be associated. A total of 21 heroin users were enrolled in this study. The annual expenditure on heroin was assessed, and the availability of the dopamine transporter (DAT) was assessed by single-photon emission computed tomography (SPECT) using [(99m)TC]TRODAT-1. Parametric and nonparametric correlation analyses indicated that annual expenditure on heroin was significantly and negatively correlated with the availability of striatal DAT. After adjustment for potential confounders, the predictive power of DAT availability was significant. Striatal dopamine function may be associated with opioid purchasing behavior among heroin users, and the cycle of spiraling dysfunction in the dopamine reward system could play a role in this association.

  11. Stress scintigraphy using single-photon emission computed tomography in the evaluation of coronary artery disease

    SciTech Connect

    Nohara, R.; Kambara, H.; Suzuki, Y.; Tamaki, S.; Kadota, K.; Kawai, C.; Tamaki, N.; Torizuka, K.

    1984-05-01

    Twenty-seven patients with angina pectoris, 24 with postmyocardial infarction angina and 7 with normal coronary arteries were examined by exercise thallium-201 emission computed tomography (SPECT) and planar scintigraphy. Exercise SPECT was compared with the reperfusion imaging obtained approximately 2 to 3 hours after exercise. The sensitivity and specificity of demonstrating involved coronary arteries by identifying the locations of myocardial perfusion defects were 96 and 87% for right coronary artery, 88 and 89% for left anterior descending artery (LAD) and 78 and 100% for left circumflex artery (LC). These figures are higher than those for planar scintigraphy (85 and 87% for right coronary artery, 73 and 89% for LAD and 39 and 100% for LC arteries). In patients with 3-vessel disease, sensitivity of SPECT (100, 88 and 75% for right coronary artery, LAD and LC, respectively) was higher than planar imaging (88, 63 and 31%, respectively), with a significant difference for LC (p less than 0.05). In 1, 2 and 0-vessel disease the sensitivity and specificity of the 2 techniques were comparable. Multivessel disease was more easily identified as multiple coronary involvement than planar imaging with a significant difference in 3-vessel disease (p less than 0.05). In conclusion, stress SPECT provides useful information for the identification of LC lesions in coronary heart disease, including 3-vessel involvement.

  12. Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots.

    PubMed

    Park, Young-Shin; Guo, Shaojun; Makarov, Nikolay S; Klimov, Victor I

    2015-10-27

    Lead-halide-based perovskites have been the subject of numerous recent studies largely motivated by their exceptional performance in solar cells. Electronic and optical properties of these materials have been commonly controlled by varying the composition (e.g., the halide component) and/or crystal structure. Use of nanostructured forms of perovskites can provide additional means for tailoring their functionalities via effects of quantum confinement and wave function engineering. Furthermore, it may enable applications that explicitly rely on the quantum nature of electronic excitations. Here, we demonstrate that CsPbX3 quantum dots (X = I, Br) can serve as room-temperature sources of quantum light, as indicated by strong photon antibunching detected in single-dot photoluminescence measurements. We explain this observation by the presence of fast nonradiative Auger recombination, which renders multiexciton states virtually nonemissive and limits the fraction of photon coincidence events to ∼6% on average. We analyze limitations of these quantum dots associated with irreversible photodegradation and fluctuations ("blinking") of the photoluminescence intensity. On the basis of emission intensity-lifetime correlations, we assign the "blinking" behavior to random charging/discharging of the quantum dot driven by photoassisted ionization. This study suggests that perovskite quantum dots hold significant promise for applications such as quantum emitters; however, to realize this goal, one must resolve the problems of photochemical stability and photocharging. These problems are largely similar to those of more traditional quantum dots and, hopefully, can be successfully resolved using advanced methodologies developed over the years in the field of colloidal nanostructures.

  13. Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes

    PubMed Central

    Zhou, P. Y.; Dou, X. M.; Wu, X. F.; Ding, K.; Li, M. F.; Ni, H. Q.; Niu, Z. C.; Jiang, D. S.; Sun, B. Q.

    2014-01-01

    We developed a new approach to test the single-photon emissions of semiconductor quantum dots (QDs) in the optical communication band. A diamond-anvil cell pressure device was used for blue-shifting the 1.3 μm emissions of InAs/GaAs QDs to 0.9 μm for detection by silicon avalanche photodiodes. The obtained g(2)(0) values from the second-order autocorrelation function measurements of several QD emissions at 6.58 GPa were less than 0.3, indicating that this approach provides a convenient and efficient method of characterizing 1.3 μm single-photon source based on semiconductor materials. PMID:24407193

  14. Incorporating Quantitative Single Photon Emission Computed Tomography into Radiation Therapy Treatment Planning for Lung Cancer: Impact of Attenuation and Scatter Correction on the Single Photon Emission Computed Tomography-Weighted Mean Dose and Functional Lung Segmentation

    SciTech Connect

    Yin Lingshu; Shcherbinin, Sergey; Celler, Anna

    2010-10-01

    Purpose: To assess the impact of attenuation and scatter corrections on the calculation of single photon emission computed tomography (SPECT)-weighted mean dose (SWMD) and functional volume segmentation as applied to radiation therapy treatment planning for lung cancer. Methods and Materials: Nine patients with lung cancer underwent a SPECT lung perfusion scan. For each scan, four image sets were reconstructed using the ordered subsets expectation maximization method with attenuation and scatter corrections ranging from none to a most comprehensive combination of attenuation corrections and direct scatter modeling. Functional volumes were segmented in each reconstructed image using 10%, 20%, ..., 90% of maximum SPECT intensity as a threshold. Systematic effects of SPECT reconstruction methods on treatment planning using functional volume were studied by calculating size and spatial agreements of functional volumes, and V{sub 20} for functional volume from actual treatment plans. The SWMD was calculated for radiation beams with a variety of possible gantry angles and field sizes. Results: Functional volume segmentation is sensitive to the particular method of SPECT reconstruction used. Large variations in functional volumes, as high as >50%, were observed in SPECT images reconstructed with different attenuation/scatter corrections. However, SWMD was less sensitive to the type of scatter corrections. SWMD was consistent within 2% for all reconstructions as long as computed tomography-based attenuation correction was used. Conclusion: When using perfusion SPECT images during treatment planning optimization/evaluation, the SWMD may be the preferred figure of merit, as it is less affected by reconstruction technique, compared with threshold-based functional volume segmentation.

  15. Factors determining altered perfusion after acute pulmonary embolism assessed by quantified single-photon emission computed tomography-perfusion scan

    PubMed Central

    Meysman, Marc; Everaert, Hendrik; Vincken, Walter

    2017-01-01

    AIM OF THE STUDY: The aim of the study was to analyze the evolution of perfusion (Q)-defects in patients treated for acute pulmonary embolism (PE), correlation with baseline parameters and evaluation of recurrence risk. METHODS: This is a single-center prospective observational cohort study in symptomatic normotensive PE. Comparison of the ventilation/perfusion single-photon emission computed tomography (V/Q-SPECT) acquired at baseline with a quantified SPECT (Q-SPECT) repeated at 1 week and 6 months. The Q-defect extent (percentage of total lung volume affected) was measured semiquantitatively. Data collected at baseline were age, gender, body mass index (BMI), history of previous venous thromboembolism (HVTE), Charlson's Comorbidity Score (CcS), plasma troponin-T and D-dimer levels, PE Severity Index, and tricuspid regurgitation jet (TRJ) velocity. RESULTS: Forty-six patients (22 men/24 women, mean age 61.7 years (± standard deviation 16.3)) completed the study. At 1 week, 13/46 (28.3 %) and at 6 months 22/46 (47.8%) patients had completely normalized Q-SPECT. Persistence of Q-defects was more frequent in female patients in univariate and multivariate analysis. We found no correlation between the persistence of Q-defects on Q-SPECT and HVTE, BMI, plasma troponin-T, and CcS. However, lower TRJ and younger age were statistically significantly linked to normalization of Q-scans after 6 months of treatment only in univariate analysis. There is no difference in the frequency of recurrent PE in relation to the persistence of Q-defects. CONCLUSION: Acute PE patients of female, older age, and higher TRJ in univariate analysis and patients of female in multivariate analysis seem to have a higher risk of persistent Q-defects after 6 months treatment. The presence of residual Q-abnormalities at 6 months was not associated with an increased risk for recurrent PE. PMID:28197219

  16. The value of combining single photon emission computerised tomography and computerised tomography in the investigation of spondylolysis.

    PubMed

    Gregory, P L; Batt, M E; Kerslake, R W; Scammell, B E; Webb, J F

    2004-10-01

    The aim of this study was to assess the diagnostic value of combining single photon emission computerised tomography (SPECT) with reverse gantry computerised tomography (rg-CT) in the investigation of spondylolysis. Patient characteristics and imaging results in 118 patients, aged 8-44 years, with low back pain (LBP) were analysed. SPECT showed increased scintigraphic uptake in 80 patients, and spondylolysis was identified on rg-CT in 53. The Cohen Kappa ratio of 0.362 (95% CI: 0.198-0.526) suggests only fair agreement for the result of increased scintigraphic activity with the finding of spondylolysis on rg-CT. We conclude that these investigations give mutually exclusive information, which leads to four diagnostic categories. When there was increased scintigraphic activity on SPECT, 58.8% (95% CI: 48.0-69.5%) of patients had spondylolysis on rg-CT. With rest from provoking activities, these lesions may heal. We interpret the findings of increased scintigraphic activity, but no spondylolysis demonstrated on rg-CT as indicating a bone stress response. These also require rest from provoking activity to prevent a stress fracture developing. In this study, 84.2% (95% CI: 72.67-95.8%) of those patients without increased activity on SPECT had no spondylolysis identified on rg-CT. These patients may need further investigations such as magnetic resonance imaging (MRI) to diagnose pathology, which typically does not involve the posterior elements--but rest from sport may not be so important. There were five patients in our study, without increased scintigraphic activity, but in whom bilateral chronic-appearing (wide separation, smooth sclerotic bone margins) spondylolyses were identified at L5. These all were anticipated from previous plain radiographs or MRI. This group will almost certainly not heal, and if the spondylolyses are the cause of pain these vertebrae will need stabilisation by surgery if physiotherapy fails.

  17. Quantitative exercise thallium-201 single photon emission computed tomography for the enhanced diagnosis of ischemic heart disease

    SciTech Connect

    Mahmarian, J.J.; Boyce, T.M.; Goldberg, R.K.; Cocanougher, M.K.; Roberts, R.; Verani, M.S. )

    1990-02-01

    The clinical utility of exercise thallium-201 single photon emission computed tomography was investigated in 360 consecutive patients who had concomitant coronary arteriography. Tomographic images were assessed visually and from computer-quantified polar maps. Sensitivity for detecting coronary artery disease was comparably high using quantitative and visual analysis, although specificity tended to improve using the former method (87% versus 76%, p = 0.09). Quantitative analysis was superior to the visual method for identifying left anterior descending (81% versus 68%, p less than 0.05) and circumflex coronary artery (77% versus 60%, p less than 0.05) stenoses and detected most patients (92%) with multivessel coronary artery disease. Multivessel involvement was correctly predicted in 65% of the patients with more than one critically stenosed vessel. Exercise variables in patients with significant coronary artery disease were similar whether the tomographic images were normal or abnormal. However, patients with coronary stenoses and normal versus abnormal tomograms had a trend toward more single vessel disease (79% versus 62%, p = 0.07) and moderate coronary stenosis (66% versus 28%, p less than 0.001), but had less proximal left anterior descending artery involvement (8% versus 34%, p = 0.05). Computer-quantified perfusion defect size was directly related to the extent of coronary artery disease. Intra- and interobserver agreement for quantifying defects were excellent (r = 0.98 and 0.97, respectively). In conclusion, quantitative thallium-201 tomography offers improved detection of coronary artery disease, localization of the anatomic site of coronary stenosis, prediction of multivessel involvement and accurate determination of perfusion defect size, while maintaining a high specificity.

  18. Evaluation of myocardial infarction size with three-dimensional speckle tracking echocardiography: a comparison with single photon emission computed tomography.

    PubMed

    Wang, Qiushuang; Zhang, Chunhong; Huang, Dangsheng; Zhang, Liwei; Yang, Feifei; An, Xiuzhi; Ouyang, Qiaohong; Zhang, Meiqing; Wang, Shuhua; Guo, Jiarui; Ji, Dongdong

    2015-12-01

    To assess whether global and regional myocardial strains from three-dimensional speckle tracking echocardiography (3D-STE) correlate with myocardial infarction size (MIS) detected by single photon emission computed tomography (SPECT). Fifty-seven patients with a history of ST-segment elevation myocardial infarction (MI) within 3-6 months were enrolled, alongside 24 healthy volunteers. Left ventricular (LV) global area strain, global longitudinal strain (GLS), global radial strain, global circumferential strain, left ventricular ejection fraction (LVEF) and wall motion score index (WMSI) were measured and compared with the corresponding SPECT-detected MISs. Patients were sub-grouped into massive MIS group (MIS ≥ 12%) and small MIS group (MIS < 12%). Myocardial strains of all the LV segments were compared with the corresponding MIS. Global myocardial strain parameters, LVEF and WMSI of the patients were significantly different from the control group (all P < 0.05) and correlated well with MISs, most significantly for GLS (r = 0.728, P < 0.01). Significant differences in myocardial strain parameters were found between the massive and small MIS groups (all P < 0.05). Receiver operating characteristic curve analysis indicated that GLS had a highest diagnostic value and when the cutoff was -13.8%, the area under the curve was 0.84, with the 70.6% sensitivity and 87.5% specificity. Significant differences of myocardial strain parameters were observed between segments with and without transmural MIs (P < 0.01). 3D-STE myocardial strain parameters evaluated LV global MIS, 3D GLS had the highest diagnostic value. It also preliminarily gauged the degree of ischemia and necrosis of regional myocardial segments.

  19. Alterations in myocardial thallium-201 distribution in patients with chronic systemic hypertension undergoing single-photon emission computed tomography

    SciTech Connect

    DePuey, E.G.; Guertler-Krawczynska, E.; Perkins, J.V.; Robbins, W.L.; Whelchel, J.D.; Clements, S.D.

    1988-08-01

    To characterize thallium-201 distribution in single-photon emission computed tomography (SPECT) cardiac images and polar bullseye maps, 100 patients with chronic systemic hypertension due to end-stage renal disease were studied and the results compared with those in 35 normotensive control subjects. Thallium-201 SPECT was performed after exercise in all control subjects and 70 hypertensive patients, and after intravenous dipyridamole in 30 patients. A frequent finding in hypertensive patients was a fixed decrease in the normal lateral-to-septal count density ratio in immediate thallium-201 SPECT images (1.02 +/- 0.10 vs 1.17 +/- 0.08 in control subjects, p less than 0.00001) and in 3-hour delayed images (1.02 +/- 0.11 vs 1.11 +/- 0.08 in control subjects, p less than 0.00001). No significant difference in count density ratio was present in patients undergoing treadmill versus diypridamole intervention. In 35 patients the count density ratio was greater than 2.0 standard deviations below the normal mean, creating the false impression of a fixed lateral defect (i.e., myocardial infarction). In 12 patients, myocardial wall thickness was measured at end-diastole by 2-dimensional echocardiography. Wall thickness was increased (greater than 11 mm) in all patients. The mean lateral-to-septal wall thickness ratio was 1.08 +/- 1.11; in no patient was the ratio less than 0.76 to indicate selective septal hypertrophy. The lateral-to-septal wall thickness and lateral-to-septal thallium-201 count density ratios correlated poorly (r = 0.43).

  20. Blue single photon emission up to 200 K from an InGaN quantum dot in AlGaN nanowire

    NASA Astrophysics Data System (ADS)

    Deshpande, Saniya; Das, Ayan; Bhattacharya, Pallab

    2013-04-01

    We demonstrate polarized blue single photon emission up to 200 K from an In0.2Ga0.8N quantum dot in a single Al0.1Ga0.9N nanowire. The InGaN/AlGaN dot-in-nanowire heterostructure was grown on (111) silicon by plasma assisted molecular beam epitaxy. Nanowires dispersed on a silicon substrate show sharp exciton and biexciton transitions in the micro-photoluminescence spectra. Second-order correlation measurements performed under pulsed excitation at the biexciton wavelength confirm single photon emission, with a g(2)(0) of 0.43 at 200 K. The emitted photons have a short radiative lifetime of 0.7 ns and are linearly polarized along the c-axis of the nanowire with a degree of polarization of 78%.

  1. Hepatocellular carcinoma with intra-atrial tumor extension identified on 99mTc-labeled macroaggregated albumin single photon emission computed tomography/computed tomography

    PubMed Central

    Chandra, Piyush; Shah, Sneha; Purandare, Nilendu; Agrawal, Archi; Rangarajan, Venkatesh

    2016-01-01

    99mTc macroaggregated albumin (MAA) scintigraphy is always performed before administration of 90Y--microspheres for the treatment of liver tumors for hepatopulmonary shunt calculation. Tumor thrombus visualization in the hepatic vasculature is an infrequent finding on the 99m Tc--MAA single photon emission computed tomography. We present a rare case of a hepatocellular carcinoma extending as a tumor thrombus through hepatic vein, inferior vena cava into the right atrium. PMID:27833324

  2. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography improves the diagnostic accuracy of osteoid osteoma

    PubMed Central

    Squier, Samuel Brian; Lewis, Jacob Ian; Accurso, Joseph Matthew; Jain, Manoj Kumar

    2016-01-01

    We present a case of a 17-year-old football player who had previously received multiple facet joint injections for presumed secondary osteoarthritis. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography imaging of the cervical spine demonstrated focal increased radiopharmaceutical activity in the right C2 lamina, which was associated with an osteolytic lesion with a central irregular sclerotic nidus. Surgical pathology confirmed an osteoid osteoma. PMID:27833319

  3. The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography

    SciTech Connect

    Weinberger, D.R.; Gibson, R.; Coppola, R.; Jones, D.W.; Molchan, S.; Sunderland, T.; Berman, K.F.; Reba, R.C. )

    1991-02-01

    A high-affinity muscarinic receptor antagonist, 123IQNB (3-quinuclidinyl-4-iodobenzilate labeled with iodine 123), was used with single photon emission computed tomography to image muscarinic acetylcholine receptors in 14 patients with dementia and in 11 healthy controls. High-resolution single photon emission computed tomographic scanning was performed 21 hours after the intravenous administration of approximately 5 mCi of IQNB. In normal subjects, the images of retained ligand showed a consistent regional pattern that correlated with postmortem studies of the relative distribution of muscarinic receptors in the normal human brain, having high radioactivity counts in the basal ganglia, occipital cortex, and insular cortex, low counts in the thalamus, and virtually no counts in the cerebellum. Eight of 12 patients with a clinical diagnosis of Alzheimer's disease had obvious focal cortical defects in either frontal or posterior temporal cortex. Both patients with a clinical diagnosis of Pick's disease had obvious frontal and anterior temporal defects. A region of interest statistical analysis of relative regional activity revealed a significant reduction bilaterally in the posterior temporal cortex of the patients with Alzheimer's disease compared with controls. This study demonstrates the practicability of acetylcholine receptor imaging with 123IQNB and single photon emission computed tomography. The data suggest that focal abnormalities in muscarinic binding in vivo may characterize some patients with Alzheimer's disease and Pick's disease, but further studies are needed to address questions about partial volume artifacts and receptor quantification.

  4. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease.

    PubMed

    Horger, Marius; Bares, Roland

    2006-10-01

    Radiological (plain radiographs, computed tomography [CT], magnetic resonance imaging [MRI]) and nuclear medicine methods (bone scan, leukocyte scan) both provide unique information about the status of the skeleton. Both have typical strengths and weaknesses, which often lead to the sequential use of different procedures in daily routine. This use causes the unnecessary loss of time and sometimes money, if redundant information is obtained without establishing a final diagnosis. Recently, new devices for hybrid imaging (single-photon emission computed tomography/computed tomography [SPECT/CT], positron emission tomography/computed tomography [PET/CT]) were introduced, which allow for direct fusion of morphological (CT) and functional (SPECT, PET) data sets. With regard to skeletal abnormalities, this approach appears to be extremely useful because it combines the advantages of both techniques (high-resolution imaging of bone morphology and high sensitivity imaging of bone metabolism). By the accurate correlation of both, a new quality of bone imaging has now become accessible. Although researchers undertaking the initial studies exclusively used low-dose CT equipment, a new generation of SPECT/CT devices has emerged recently. By integrating high-resolution spiral CT, quality of bone imaging may improve once more. Ongoing prospective studies will have to show whether completely new diagnostic algorithms will come up for classification of bone disease as a consequence of this development. Besides, the role of ultrasonography and MRI for bone and soft-tissue imaging also will have to be re-evaluated. Looking at the final aim of all imaging techniques--to achieve correct diagnosis in a fast, noninvasive, comprehensive, and inexpensive way--we are now on the edge of a new era of multimodality imaging that will probably change the paths and structure of medicine in many ways. Presently, hybrid imaging using SPECT/CT has been proven to increase sensitivity and specificity

  5. All-Optical Fiber Hanbury Brown &Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot.

    PubMed

    Muñoz-Matutano, G; Barrera, D; Fernández-Pousa, C R; Chulia-Jordan, R; Seravalli, L; Trevisi, G; Frigeri, P; Sales, S; Martínez-Pastor, J

    2016-06-03

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown &Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths.

  6. All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    PubMed Central

    Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C.R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.

    2016-01-01

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. PMID:27257122

  7. All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    NASA Astrophysics Data System (ADS)

    Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C. R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.

    2016-06-01

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths.

  8. Characterization of [(123)I]IDAM as a novel single-photon emission tomography tracer for serotonin transporters.

    PubMed

    Kung, M P; Hou, C; Oya, S; Mu, M; Acton, P D; Kung, H F

    1999-08-01

    Development of selective serotonin transporter (SERT) tracers for single-photon emission tomography (SPET) is important for studying the underlying pharmacology and interaction of specific serotonin reuptake site inhibitors, commonly used antidepressants, at the SERT sites in the human brain. In search of a new tracer for imaging SERT, IDAM (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio]benzyl alcohol) was developed. In vitro characterization of IDAM was carried out with binding studies in cell lines and rat tissue homogenates. In vivo binding of [(125)I]IDAM was evaluated in rats by comparing the uptakes in different brain regions through tissue dissections and ex vivo autoradiography. In vitro binding study showed that IDAM displayed an excellent affinity to SERT sites (K(i)=0.097 nM, using membrane preparations of LLC-PK(1) cells expressing the specific transporter) and showed more than 1000-fold of selectivity for SERT over norepinehrine and dopamine (expressed in the same LLC-PK(1) cells). Scatchard analysis of [(125)I]IDAM binding to frontal cortical membrane homogenates prepared from control or p-chloroamphetamine (PCA)-treated rats was evaluated. As expected, the control membranes showed a K(d) value of 0.25 nM+/-0.05 nM and a B(max) value of 272+/-30 fmol/ mg protein, while the PCA-lesioned membranes displayed a similar K(d), but with a reduced B(max) (20+/-7 fmol/ mg protein). Biodistribution of [(125)I]IDAM (partition coefficient =473; 1-octanol/buffer) in the rat brain showed a high initial uptake (2.44%dose at 2 min after i.v. injection) with the specific binding peaked at 60 min postinjection (hypothalamus-cerebellum/cerebellum =1.75). Ex vivo autoradiographs of rat brain sections (60 min after i.v. injection of [(125)I]IDAM) showed intense labeling in several regions (olfactory tubercle, lateral septal nucleus, hypothalamic and thalamic nuclei, globus pallidus, central gray, superior colliculus, substantia nigra, interpeduncular nucleus, dorsal

  9. Impact of ventilation/perfusion single-photon emission computed tomography on treatment duration of pulmonary embolism

    PubMed Central

    Begic, Amela; Opanković, Emina; Čukić, Vesna; Rustempašić, Medzida; Bašić, Amila; Miniati, Massimo; Jögi, Jonas

    2015-01-01

    Purpose The aim of the study was to establish whether the duration of anticoagulant (AC) therapy can be tailored, on an objective basis, by using ventilation/perfusion single-photon emission computed tomography (V/P SPECT) and to assess the extent of residual perfusion defects over time. In particular, we addressed the following: (a) is the extent of perfusion recovery at 3 months of initial pulmonary embolism (PE) diagnosis a satisfactory criterion for deciding the duration of oral AC? (b) Is it safe to withdraw AC at 3 months if perfusion recovery is complete? Patients and methods Of 269 consecutive patients with suspected PE, 100 patients were diagnosed with PE using V/P SPECT. Sixty-seven patients with acute PE were followed up clinically and with V/P SPECT at 3 months. Sixty-four patients were subject to review and examination using V/P SPECT for a period of 6 months and 33 were followed up only clinically. Therapy was terminated after 3 months if perfusion was normalized, and patients were free of symptoms and the risk of hypercoagulability. Initial extension of PE did not have an impact on decision making. Results PE extension varied from 10 to 70% in the acute stage. After 3 months, complete resolution of PE was found in 48 patients. The treating pulmonologist decided to terminate therapy in 35 (73%) patients and to continue AC in 13 patients because of persistent risk factors. Six months later, at the second control stage, 53 patients had complete recovery of pulmonary perfusion. Eleven patients still had perfusion defects at 6 months. No recurrence was identified at 6 months in the 35 patients whose therapy was terminated after 3 months. No bleeding effects were observed in any of the patients during the 6-month follow-up. Conclusion This study shows that AC therapy can be tailored, on an objective basis, by using V/P SPECT. Normalization of perfusion at 3 months of initial PE diagnosis was a reliable indicator that AC could be safely withdrawn in

  10. Tetrofosmin early time gated post-stress single-photon emission computed tomography imaging: Feasibility and potential benefits

    PubMed Central

    Mérino, Bertrand; Blaire, Tanguy; Bailliez, Alban; Casset-Senon, Danielle; Levy, Maurice; Halley, Arnaud; Divry, Guillaume

    2010-01-01

    Background The purpose of this study is to evaluate the feasibility, the image quality, and the clinical relevance of an early gated post-stress (GPS) single-photon emission computed tomography (SPECT) tetrofosmin (Myoview™—GE Healthcare) acquisition protocol. Time delay between myocardial technetium-labeled tracer administration and SPECT acquisition is usually about 30 minutes after stress, and 45 to 60 minutes at rest: because of the absence of significant redistribution, perfusion images are related to stress even 30 minutes after stress injection, while function and thickening data obtained with gated acquisition 30 minutes after stress are mainly related to rest conditions. Methods 194 patients were prospectively included and analyzed, in a multicenter registry. Three gated-SPECT 99mTc-Tetrofosmin studies were performed per patient: GPS-SPECT, 30 minutes post-stress (GS30), and at rest (GR30). Results GPS image quality was excellent/good (93.9%), and similar to GS30 images (96.6%). The presence of adjacent myocardial sub-diaphragmatic activity on GPS images was similar to GS30 images (24% vs 22%), and less frequent than on GR30 images (31%). For perfusion, thickening, and motion scores, there was no significant difference between early and 30 minute post-stress in the global patient population, but significant differences were observed between GPS and GS30 for LVEF (65% ± 15% vs 63% ± 14%). In the ischemic patients, with the stress-rest protocol, the perfusion score was 14.2 on GPS images and 12.4 on GS30 images (P = .002). Conclusions Tetrofosmin early GPS-SPECT is feasible without impairment of image quality (better count rate). Ischemic defect size on early post-stress images is slightly more pronounced than at 30 minutes: this could modify therapeutic decision. This technique produces reliable function information during early post-stress period, and might be useful for disclosing transient motion abnormalities. PMID:21063927

  11. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Campbell, Janice M. Wong, C. Oliver; Muzik, Otto; Marples, Brian; Joiner, Michael; Burmeister, Jay

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardized uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.

  12. Importance of 123I-metaiodobenzylguanidine scintigraphy/single photon emission computed tomography for diagnosis and differential diagnostics of Parkinson syndromes.

    PubMed

    Jost, Wolfgang H; Del Tredici, Kelly; Landvogt, Christian; Braune, Stefan

    2010-01-01

    The goal of Parkinson syndrome diagnostics is twofold: early diagnosis on the one hand, and accurate differentiation among idiopathic and atypical Parkinson syndromes on the other. (123)I-metaiodobenzylguanidine scintigraphy is the only method that can distinguish with a high degree of sensitivity and specificity between atypical Parkinson syndromes and Parkinson's disease or dementia with Lewy bodies. Additional advantages are the method's widespread availability and radioactive exposure dose comparable to that for single photon emission computed tomography imaging with much lower costs. Only a single radiotracer study is necessary. (123)I-metaiodobenzylguanidine scintigraphy is an indispensable tool for purposes of differentiating among the various Parkinson syndromes.

  13. Tc-99m Sulfur Colloid Lymphoscintigraphy with Single-photon Emission Computed Tomography/Computed Tomography in a Case of Acquired Vulval Lymphangiomas

    PubMed Central

    Tulsyan, Shruti; Tripathi, Madhavi; Das, Kalpa; Yadav, Divya; Shamim, Shamim Ahmed; Damle, Nishikant; Bal, Chandrasekhar

    2017-01-01

    We describe the lymphoscintigraphy findings of a 25-year-old female patient who was undergoing presurgical workup for lymphangiomas of the vulva. She had a history of treatment for disseminated tuberculosis 6 years back and presented with herpetiform oozing vesicles in the external genitalia. Single-photon emission computed tomography/computed tomography (SPECT/CT) confirmed cutaneous tracer accumulation in the vulval lesions and demonstrated the presence of densely calcified inguinal nodes secondary to healed tuberculosis as the etiology of secondary lymphangioma. PMID:28242996

  14. Quantitative thallium-201 single photon emission computed tomography after oral dipyridamole for assessing the presence, anatomic location and severity of coronary artery disease

    SciTech Connect

    Borges-Neto, S.; Mahmarian, J.J.; Jain, A.; Roberts, R.; Verani, M.S.

    1988-05-01

    The objective of this investigation was to determine whether analysis of thallium-201 images as detected by quantitative single photon emission computed tomography after a single high oral dose of dipyridamole (300 mg) would accurately detect the presence of coronary artery disease and the anatomic location of the individual stenosis. Analyses were performed on 100 patients who concomitantly underwent diagnostic coronary arteriography and myocardial imaging. Tomographic myocardial perfusion defects were quantified using computer-generated polar maps. Eighty-four patients had significant coronary artery disease defined as greater than 50% luminal diameter stenosis. The sensitivity for detecting patients with coronary disease was 92% overall, 89% in patients without previous myocardial infarction and 97% in those with prior infarction. The technique had a sensitivity of 80, 87 and 51% for localizing coronary artery stenosis of the left anterior descending, the right coronary and the left circumflex artery, respectively. The corresponding specificity was 84, 92 and 92%. Furthermore, the presence of severe (greater than or equal to 70%) multivessel disease was identified with a sensitivity of 79% and a specificity of 87%. In conclusion, quantitative thallium-201 single photon emission computed tomography after oral dipyridamole has high sensitivity and specificity for diagnosing the presence of coronary disease, ascertaining the location of stenosed vessels and identifying the presence of multivessel disease.

  15. Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: A source of single photons in the ultraviolet

    SciTech Connect

    Schmidt, Gordon Berger, Christoph; Veit, Peter; Metzner, Sebastian; Bertram, Frank; Bläsing, Jürgen; Dadgar, Armin; Strittmatter, André; Christen, Jürgen; Callsen, Gordon; Kalinowski, Stefan; Hoffmann, Axel

    2015-06-22

    Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function at zero time delay.

  16. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity

    SciTech Connect

    Albrecht, Roland; Bommer, Alexander; Becher, Christoph; Pauly, Christoph; Mücklich, Frank; Schell, Andreas W.; Engel, Philip; Benson, Oliver; Schröder, Tim; Reichel, Jakob

    2014-08-18

    We report the realization of a device based on a single Nitrogen-Vacancy (NV) center in diamond coupled to a fiber-cavity for use as single photon source (SPS). The device consists of two concave mirrors each directly fabricated on the facets of two optical fibers and a preselected nanodiamond containing a single NV center deposited onto one of these mirrors. Both, cavity in- and out-put are directly fiber-coupled, and the emission wavelength is easily tunable by variation of the separation of the two mirrors with a piezo-electric crystal. By coupling to the cavity, we achieve an increase of the spectral photon rate density by two orders of magnitude compared to free-space emission of the NV center. With this work, we establish a simple all-fiber based SPS with promising prospects for the integration into photonic quantum networks.

  17. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Schlehahn, A.; Gaafar, M.; Vaupel, M.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Stolz, W.; Rahimi-Iman, A.; Heindel, T.; Koch, M.; Reitzenstein, S.

    2015-07-01

    We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g(2)(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.

  18. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    SciTech Connect

    Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T. Reitzenstein, S.; Gaafar, M.; Vaupel, M.; Stolz, W.; Rahimi-Iman, A.; Koch, M.

    2015-07-27

    We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g{sup (2)}(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.

  19. Prevalence and predictors of ischemia and outcomes in outpatients with diabetes mellitus referred for single-photon emission computed tomography myocardial perfusion imaging.

    PubMed

    Bourque, Jamieson M; Patel, Chetan A; Ali, Mohamed M; Perez, Margarita; Watson, Denny D; Beller, George A

    2013-05-01

    Background- The prevalence of ischemia and its prediction of events are unclear in outpatients with diabetes mellitus in the modern era of intensive medical management. We sought to identify the prevalence of ischemia, subsequent cardiac events, and impact of sex, stress type, and symptom status on these findings in a cohort of stable outpatients with diabetes mellitus referred for single-photon emission computed tomography myocardial perfusion imaging (MPI). Methods and Results- The study cohort included 575 consecutive outpatients with diabetes mellitus who underwent quantitative, gated single-photon emission computed tomography MPI. Clinical information, stress MPI variables, and cardiac events were prospectively collected and analyzed. The study population was at intermediate risk of coronary artery disease or had known coronary artery disease (40.3%); 29% of patients were asymptomatic at the time of stress testing. Scintigraphic ischemia and significant (≥10%) left ventricular ischemia were present in 126 patients (21.9%) and 29 patients (5.0%), respectively, and <1% of patients had early revascularization. The risk of ischemia was increased >2-fold by male sex (P<0.001), but was not impacted by pharmacological stress (P=0.15) or presence of symptoms (P=0.89). During a median 4.4 years follow-up, the rate of cardiac death/nonfatal myocardial infarction was moderate at 2.6%/y (cardiac death 0.8%/y) in the total cohort, but was 5.7%/y in those with ischemia (P<0.001). Pharmacological stress predicted a higher cardiac event rate (P<0.001) but symptoms did not (P=0.55). Conclusions- This cohort of stable outpatients with diabetes mellitus referred for single-photon emission computed tomography had low rates of significant ischemia and early revascularization; an initially low cardiac event rate increased after 2 years. Independent predictors of cardiac death/nonfatal myocardial infarction were known coronary artery disease, pharmacological stress, and MPI

  20. Single-photon sources

    NASA Astrophysics Data System (ADS)

    Lounis, Brahim; Orrit, Michel

    2005-05-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information.

  1. Differentiation of clear cell ependymoma of the cerebellum from hemangioblastoma by thallium-201 single photon emission computed tomography-case report-.

    PubMed

    Nagamatsu, Ken-ichi; Kumabe, Toshihiro; Watanabe, Mika; Nakazato, Yoichi; Tominaga, Teiji

    2009-12-01

    A 57-year-old man suffered from dizziness for about one year and truncal ataxia for about one month. Magnetic resonance imaging demonstrated a cystic tumor with a homogeneously enhanced mural nodule located in the cerebellar vermis. Computed tomography angiography revealed a hypervascular nodule. These findings were compatible with hemangioblastoma. Thallium-201 single photon emission computed tomography ((201)Tl-SPECT) showed moderately high uptake in the early phase and moderately high retention in the delayed phase, whereas hemangioblastoma shows almost no retention in the delayed phase. The patient underwent total removal of the tumor. The histological diagnosis was clear cell ependymoma (CCE). CCE is a rare subtype of ependymoma, which resembles hemangioblastoma in histological and neuroimaging findings, but is considerably more aggressive. (201)Tl-SPECT can provide useful information for the preoperative differential diagnosis of infratentorial CCE and hemangioblastoma.

  2. Crossed cerebellar diaschisis in ischemic stroke: a study of regional cerebral blood flow by /sup 133/Xe inhalation and single photon emission computerized tomography

    SciTech Connect

    Meneghetti, G.; Vorstrup, S.; Mickey, B.; Lindewald, H.; Lassen, N.A.

    1984-06-01

    Seventy measurements of CBF were performed in 12 stroke patients by /sup 133/Xe inhalation and a rapidly rotating single photon emission computerized tomograph. CBF was measured every other day during the acute phase and at 2- and 6-month follow-up visits. A persistent contralateral cerebellar blood flow depression was evident in five patients with severe hemispheric low flow areas, which correlated with large, hypodense lesions on the computerized tomographic scan. In a sixth patient with a small, deep infarct, a transient crossed cerebellar low flow was observed, while the clinical symptoms persisted. It is concluded from this serial study that crossed cerebellar diaschisis is a common finding in completed stroke. It is probably caused by disconnection of the corticopontine pathways, a disconnection that tends to persist. The phenomenon is in fact less variable than the stroke-related CBF changes in the infarcted hemisphere, in which a period of relative hyperemia is frequently seen.

  3. Method for reducing background artifacts from images in single-photon emission computed tomography with a uniformly redundant array coded aperture

    NASA Astrophysics Data System (ADS)

    Vassilieva, Olga I.; Chaney, Roy C.

    2002-03-01

    Uniformly redundant array coded apertures have proven to be useful in the design of collimators for x-ray astronomy. They were initially expected to be equally successful in single-photon emission computed tomography (SPECT). Unfortunately, the SPECT images produced by this collimator contain artifacts, which mask the true picture and can lead to false diagnosis. Monte Carlo simulation has shown that the formation of a composite image will significantly reduce these artifacts. A simulation of a tumor in a compressed breast phantom has produced a composite image, which clearly indicates the presence of a 5 mm x 5 mm x 5 mm tumor with a 6:1 intensity ratio relative to the background tissue.

  4. Regional cerebral blood flow assessed by single photon emission computed tomography (SPECT) in dogs with congenital portosystemic shunt and hepatic encephalopathy.

    PubMed

    Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde

    2017-02-01

    Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a (99m)technetium-hexamethylpropylene amine oxime ((99m)Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain.

  5. Variable uptake feature of focal nodular hyperplasia in Tc-99m phytate hepatic scintigraphy/single-photon emission computed tomography-A parametric analysis.

    PubMed

    Hsu, Yu-Ling; Chen, Yu-Wen; Lin, Chia-Yang; Lai, Yun-Chang; Chen, Shinn-Cherng; Lin, Zu-Yau

    2015-12-01

    Tc-99m phytate hepatic scintigraphy remains the standard method for evaluating the functional features of Kupffer cells. In this study, we demonstrate the variable uptake feature of focal nodular hyperplasia (FNH) in Tc-99m phytate scintigraphy. We reviewed all patients who underwent Tc-99m phytate hepatic scintigraphy between 2008 and 2012 in Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Cases with FNH were diagnosed on the basis of pathology or at least one or more prior imaging with a periodic clinical follow-up. All patients received a standard protocol of dynamic flow study and planar and Tc-99m phytate single-photon emission computed tomography (E. CAM; Siemens). The correlation of variable nodular radioactivity with parameters such as tumor size and localization was analyzed. In total, 15 lesions of 14 patients in the clinic were diagnosed as FNH. The tumor size was approximately 2.9-7.4 cm (mean size 4.6 cm). Four lesions were larger than 5 cm. The major anatomic distribution was in the right hepatic lobe (10 lesions), particularly in the superior segments (7 lesions). Tc-99m phytate single-photon emission computed tomography imaging for determining the functional features of Kupffer cells included cool/cold (8 lesions), isoradioactive/warm (6 lesions), and hot (1 lesion) patterns of uptake. We did not observe any statistically significant correlation between variable nodular radioactivity and tumor size (p=0.68) or localization (p=0.04). Herein, we demonstrate the variable uptake feature of FNH in Tc-99m phytate scintigraphy. In small FNH tumors (< 5 cm), increased or equal uptake still provided specificity for the differential diagnosis of hepatic solid tumors.

  6. Lifetime Reduction and Enhanced Emission of Single Photon Color Centers in Nanodiamond via Surrounding Refractive Index Modification

    PubMed Central

    Khalid, Asma; Chung, Kelvin; Rajasekharan, Ranjith; Lau, Desmond W.M.; Karle, Timothy J.; Gibson, Brant C.; Tomljenovic-Hanic, Snjezana

    2015-01-01

    The negatively-charged nitrogen vacancy (NV−) center in diamond is of great interest for quantum information processing and quantum key distribution applications due to its highly desirable long coherence times at room temperature. One of the challenges for their use in these applications involves the requirement to further optimize the lifetime and emission properties of the centers. Our results demonstrate the reduction of the lifetime of NV− centers, and hence an increase in the emission rate, achieved by modifying the refractive index of the environment surrounding the nanodiamond (ND). By coating the NDs in a polymer film, experimental results and numerical calculations show an average of 63% reduction in the lifetime and an average enhancement in the emission rate by a factor of 1.6. This strategy is also applicable for emitters other than diamond color centers where the particle refractive index is greater than the refractive index of the surrounding media. PMID:26109500

  7. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector.

    PubMed

    Kleymenov, Evgeny; van Bokhoven, Jeroen A; David, Christian; Glatzel, Pieter; Janousch, Markus; Alonso-Mori, Roberto; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten

    2011-06-01

    A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60°-88°. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu Kα(1) line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

  8. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector

    SciTech Connect

    Kleymenov, Evgeny; Bokhoven, Jeroen A. van; David, Christian; Janousch, Markus; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten; Glatzel, Pieter; Alonso-Mori, Roberto

    2011-06-15

    A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60 deg. - 88 deg. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu K{alpha}{sub 1} line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

  9. Value of image fusion using single photon emission computed tomography with integrated low dose computed tomography in comparison with a retrospective voxel-based method in neuroendocrine tumours.

    PubMed

    Amthauer, H; Denecke, T; Rohlfing, T; Ruf, J; Böhmig, M; Gutberlet, M; Plöckinger, U; Felix, R; Lemke, A J

    2005-07-01

    The objective was the evaluation of single photon emission computed tomography (SPECT) with integrated low dose computed tomography (CT) in comparison with a retrospective fusion of SPECT and high-resolution CT and a side-by-side analysis for lesion localisation in patients with neuroendocrine tumours. Twenty-seven patients were examined by multidetector CT. Additionally, as part of somatostatin receptor scintigraphy (SRS), an integrated SPECT-CT was performed. SPECT and CT data were fused using software with a registration algorithm based on normalised mutual information. The reliability of the topographic assignment of lesions in SPECT-CT, retrospective fusion and side-by-side analysis was evaluated by two blinded readers. Two patients were not enrolled in the final analysis because of misregistrations in the retrospective fusion. Eighty-seven foci were included in the analysis. For the anatomical assignment of foci, SPECT-CT and retrospective fusion revealed overall accuracies of 91 and 94% (side-by-side analysis 86%). The correct identification of foci as lymph node manifestations (n=25) was more accurate by retrospective fusion (88%) than from SPECT-CT images (76%) or by side-by-side analysis (60%). Both modalities of image fusion appear to be well suited for the localisation of SRS foci and are superior to side-by-side analysis of non-fused images especially concerning lymph node manifestations.

  10. Use Of Clinical Decision Analysis In Predicting The Efficacy Of Newer Radiological Imaging Modalities: Radioscintigraphy Versus Single Photon Transverse Section Emission Computed Tomography

    NASA Astrophysics Data System (ADS)

    Prince, John R.

    1982-12-01

    Sensitivity, specificity, and predictive accuracy have been shown to be useful measures of the clinical efficacy of diagnostic tests and can be used to predict the potential improvement in diagnostic certitude resulting from the introduction of a competing technology. This communication demonstrates how the informal use of clinical decision analysis may guide health planners in the allocation of resources, purchasing decisions, and implementation of high technology. For didactic purposes the focus is on a comparison between conventional planar radioscintigraphy (RS) and single photon transverse section emission conputed tomography (SPECT). For example, positive predictive accuracy (PPA) for brain RS in a specialist hospital with a 50% disease prevalance is about 95%. SPECT should increase this predicted accuracy to 96%. In a primary care hospital with only a 15% disease prevalance the PPA is only 77% and SPECT may increase this accuracy to about 79%. Similar calculations based on published data show that marginal improvements are expected with SPECT in the liver. It is concluded that: a) The decision to purchase a high technology imaging modality such as SPECT for clinical purposes should be analyzed on an individual organ system and institutional basis. High technology may be justified in specialist hospitals but not necessarily in primary care hospitals. This is more dependent on disease prevalance than procedure volume; b) It is questionable whether SPECT imaging will be competitive with standard RS procedures. Research should concentrate on the development of different medical applications.

  11. Effect of diltiazem on myocardial infarct size estimated by enzyme release, serial thallium-201 single-photon emission computed tomography and radionuclide angiography

    SciTech Connect

    Zannad, F.; Amor, M.; Karcher, G.; Maurin, P.; Ethevenot, G.; Sebag, C.; Bertrand, A.; Pernot, C.; Gilgenkrantz, J.M.

    1988-06-01

    Diltiazem is a calcium antagonist with demonstrated experimental cardioprotective effects. Its effects on myocardial infarct size were studied in 34 patients admitted within 6 hours after the first symptoms of acute myocardial infarction. These patients were randomized, double-blind to placebo or diltiazem (10-mg intravenous bolus followed by 15 mg/hr intravenous infusion during 72 hours, followed by 4 X 60 mg during 21 days). Myocardial infarct size was assessed by plasma creatine kinase and creatine kinase-MB indexes, perfusion defect scores using single-photon emission computed tomography with thallium-201 and left ventricular ejection fraction measured by radionuclide angiography. Tomographic and angiographic scanning was performed serially before randomization, after 48 hours and 21 days later. Groups were comparable in terms of age, sex, inclusion time and baseline infarct location and size. Results showed no difference in creatine kinase and creatine kinase-MB data between controls and treated patients, a significant decrease in the perfusion defect scores in the diltiazem group (+0.1 +/- 3.0 placebo vs -2.2 +/- 1.9 diltiazem, p less than 0.02) and a better ejection fraction recovery in the diltiazem group (-4.2 +/- 7.4 placebo vs +7.7 +/- 11.2 diltiazem, p less than 0.05). Myocardial infarct size estimates from perfusion defect scores and enzyme data were closely correlated. These preliminary results suggest that diltiazem may reduce ischemic injury in acute myocardial infarction.

  12. A single photon emission computed tomography scan study of striatal dopamine D2 receptor binding with 123I-epidepride in patients with schizophrenia and controls.

    PubMed Central

    Tibbo, P; Silverstone, P H; McEwan, A J; Scott, J; Joshua, A; Golberg, K

    1997-01-01

    The usefulness of 123I-epidepride as a single photon emission computed tomography (SPECT) scan D2 receptor ligand was examined in vivo in 13 medicated patients with schizophrenia and age- and sex-matched normal controls. To establish the effect of endogenous dopamine on 123I-epidepride binding, 4 of the 13 controls also received 20 mg D-amphetamine. The results showed that 123I-epidepride had high specific binding to the striatum in both patients with schizophrenia and normal controls. There was a trend for the total striatal binding of medicated patients with schizophrenia, as measured by total basal ganglia: frontal cortex (TBG:FC) ratios, to be less than the binding of controls (P = 0.053). This trend confirms previous work showing that antipsychotic medication decreases the number of D2 receptors available for binding to the radioligand. Interestingly, there was also a significant relationship between 123I-epidepride binding ratios and global functioning scales (Global Assessment of Functioning scale [GAF]) for schizophrenia (r = 0.56, P = 0.045), although there was no such relationship with the Brief Psychiatric Rating Scale (BPRS). In addition, our results showed that amphetamine-induced dopamine release did not alter 123I-epidepride binding, confirming the high specific binding of 123I-epidepride to the D2 receptor. We conclude that 123I-epidepride appears to be a very useful SPECT ligand for imaging the D2 receptor. PMID:9002391

  13. Quantitative severity of stress thallium-201 myocardial perfusion single-photon emission computed tomography defects in one-vessel coronary artery disease.

    PubMed

    Matzer, L; Kiat, H; Van Train, K; Germano, G; Papanicolaou, M; Silagan, G; Eigler, N; Maddahi, J; Berman, D S

    1993-08-01

    The relation between the quantitative myocardial perfusion defect severity of exercise thallium-201 single-photon emission computed tomography (SPECT) and the quantitative degree of coronary stenosis was examined in 18 patients with 1-vessel disease (> or = 50% diameter stenosis), and abnormal thallium-201 SPECT. A total of 26 vessels were analyzed. Thallium-201 SPECT quantitative defect severity score was derived by summing the number of pixels in a coronary territory in which counts fell below the normal mean and multiplied by the number of SDs by which they fell below the normal mean. The thallium-201 defect severity score was significantly (p < 0.001) related to the maximal percent luminal diameter narrowing (r = 0.93), percent area narrowing (r = 0.89), absolute stenotic area (r = 0.79), and absolute stenotic diameter (r = 0.81). As expected, the strongest relation between thallium-201 defect severity and quantitative angiographic indexes was in the low and high ranges of coronary stenosis, with more variability and lower correlation coefficients (percent diameter: r = 0.75, p < 0.02, percent area stenosis: r = 0.63, p < 0.05) in the middle ranges (50 to 80% diameter stenosis). This observation is likely to be due to the complex flow characteristics across stenotic lesions. The findings suggest that in a select population, thallium-201 defect severity is potentially useful for noninvasive characterization of the functional severity of coronary artery stenosis and may complement coronary angiography in predicting functionally significant stenosis.

  14. A Family with Von Hippel-Lindau Syndrome: The Findings of Indium-111 Somatostatin Receptor Scintigraphy, Iodine-123 Metaiodobenzylguanidine Scintigraphy and Single Photon Emission Computerized Tomography

    PubMed Central

    Arıcan, Pelin; Okudan Tekin, Berna; Naldöken, Seniha; Şefizade, Rıza; Berker, Dilek

    2017-01-01

    Von Hippel-Lindau syndrome (VHLS) is an autosomal dominant hereditary familial disorder characterized by development of malignant and benign neoplasms. Differential diagnosis of the adrenal and pancreatic masses are difficult in patients with VHLS. Iodine-123 metaiodobenzylguanidine (I-123 MIBG) and indium-111 somatostatin receptor scintigraphies (In-111 SRS) have important roles in the differential diagnosis of adrenal and pancreatic masses in those patients. In this case report, we present the findings of I-123 MIBG single-photon emission computerized tomography (SPECT/CT) and In-111 SRS SPECT/CT in three members of a family with VHLS. In case 1, a residual neuroendocrine tumor (NET) was detected in the head of pancreas on In-111 SRS SPECT/CT images. In case 2 and 3, I-123 MIBG SPECT/CT confirmed the adrenal masses as pheochromocytoma, and the extra-adrenal mass as NET, before surgery. We thought that In-111 SRS and I-123 MIBG scan might be helpful in the routine work up of VHLS patients for diagnostic and therapeutic purposes. Hybrid SPECT/CT system may improve diagnostic accuracy of planar images since it assesses morphologic and functional information together. PMID:28291009

  15. Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages.

    PubMed

    Cheng, Dengfeng; Li, Xiao; Zhang, Chunfu; Tan, Hui; Wang, Cong; Pang, Lifang; Shi, Hongcheng

    2015-02-04

    Atherosclerosis (AS), especially the vulnerable AS plaque rupture-induced acute obstructive vascular disease, is a leading cause of death. Accordingly, there is a need for an effective method to draw accurate predictions about AS progression and plaque vulnerability. Herein we report on an approach to constructing a hybrid nanoparticle system using a single-photon-emission computed tomography (SPECT)/magnetic resonance imaging (MRI) multimodal probe, aiming for a comprehensive evaluation of AS progression by achieving high sensitivity along with high resolution. Ultrasmall superparamagnetic iron oxide (USPIO) was covered by aminated poly(ethylene glycol) (PEG) and carboxylated PEG simultaneously and then functionalized with diethylenetriaminepentacetate acid for (99m)Tc coordination and subsequently Annexin V for targeting apoptotic macrophages abundant in vulnerable plaques. The in vivo accumulations of imaging probe reflected by SPECT and MRI were consistent and accurate in highlighting lesions. Intense radioactive signals detected by SPECT facilitated focus recognization and quantification, while USPIO-based T2-weighted MRI improved the focal localization and volumetry of AS plaques. For subsequent ex vivo planar images, targeting effects were further confirmed by immunohistochemistry, including CD-68 and TUNEL staining; meanwhile, the degree of concentration was proven to be statistically correlated with the Oil Red O staining results. In conclusion, these results indicated that the Annexin V-modified hybrid nanoparticle system specifically targeted the vulnerable AS plaques containing apoptotic macrophages and could be of great value in the invasively accurate detection of vulnerable plaques.

  16. Quantitative thallium-201 single-photon emission computed tomography during maximal pharmacologic coronary vasodilation with adenosine for assessing coronary artery disease

    SciTech Connect

    Nishimura, S.; Mahmarian, J.J.; Boyce, T.M.; Verani, M.S. )

    1991-09-01

    The diagnostic value of maximal pharmacologic coronary vasodilation with intravenously administered adenosine in conjunction with thallium-201 single-photon emission computed tomography (SPECT) for detection of coronary artery disease was investigated in 101 consecutive patients who had concomitant coronary arteriography. Tomographic images were assessed visually and from computer-quantified polar maps of the thallium-201 distribution. Significant coronary artery disease, defined as greater than 50% luminal diameter stenosis, was present in 70 patients. The sensitivity for detecting patients with coronary artery disease using quantitative analysis was 87% in the total group, 82% in patients without myocardial infarction and 96% in those with prior myocardial infarction; the specificity was 90%. The sensitivity for diagnosing coronary artery disease in patients without infarction with single-, double-and triple-vessel disease was 76%, 86% and 90%, respectively. All individual stenoses were identified in 68% of patients with double-vessel disease and in 65% of those with triple-vessel disease. The extent of the perfusion defects, as quantified by polar maps, was directly related to the extent of coronary artery disease. In conclusion, quantitative thallium-201 SPECT during adenosine infusion has high sensitivity and specificity for diagnosing the presence of coronary artery disease, localizing the anatomic site of coronary stenosis and identifying the majority of affected vascular regions in patients with multivessel involvement.

  17. Dual-single photon emission computed tomography and contrast-enhanced magnetic resonance imaging to evaluate dissimilar features of apical hypertrophic cardiomyopathy.

    PubMed

    Okayama, Satoshi; Kawata, Hiroyuki; Sung, Ji Hee; Okada, Sadanori; Nishida, Taku; Onoue, Kenji; Soeda, Tsunenari; Uemura, Shiro; Saito, Yoshihiko

    2010-01-01

    Apical hypertrophic cardiomyopathy (HCM) is an uncommon variant of HCM characterized by hypertrophy located in the left ventricular apex that occurs at a rate of about 30% in the Japanese population. Although the prognosis of most patients with apical HCM is relatively benign, it can be poor if apical left ventricular aneurysms develop. However, the mechanism of aneurysmal formation is unclear. We describe two patients with apical HCM and dissimilar findings in 201Thallous chloride ((201)TlCl) and (123)I-betamethyl-p-iodophenyl-pentadecanoic acid ((123)I-BMIPP) dual single-photon emission computed tomography (dual-SPECT), but no myocardial fibrosis on contrast-enhanced magnetic resonance images (MRI). One had apparently normal myocardial perfusion and metabolism, whereas the other had exercise-induced myocardial ischemia and impaired myocardial metabolism. These findings indicated that even apical HCM without myocardial fibrosis is pathophysiologically heterogeneous. Apical HCM has been evaluated by either dual-SPECT or cardiac MRI, but not by both. Thus, a combination of imaging modalities is apparently essential for elucidating the pathophysiology of apical HCM. These dissimilar findings in dual-SPECT might be important in identifying patients with apical HCM who are at high risk of forming aneurysms.

  18. Receptor binding characterization of the benzodiazepine radioligand sup 125 I-Ro16-0154: Potential probe for SPECT (Single Photon Emission Computed Tomography) brain imaging

    SciTech Connect

    Johnson, E.W.; Woods, S.W.; Zoghbi, S.; Baldwin, R.M.; Innis, R.B. ); McBride, B.J. )

    1990-01-01

    The binding of an iodinated benzodiazepine (BZ) radioligand has been characterized, particularly in regard to its potential use as a neuroreceptor brain imaging agent with SPECT (Single Photon Emission Computed Tomography). Ro16-0154 is an iodine-containing BZ antagonist and a close analog of Ro15-1788. In tissue homogenates prepared from human and monkey brain, the binding of {sup 125}I-labeled Ro16-0154 was saturable, of high affinity, and had high ratios of specific to non-specific binding. Physiological concentrations of NaCl enhanced specific binding approximately 15% compared to buffer without this salt. Kinetic studies of association and dissociation demonstrated a temperature dependent decrease in affinity with increasing temperature. Drug displacement studies confirmed that {sup 125}I-Ro16-0154 binds to the central type BZ receptor: binding is virtually identical to that of {sup 3}H-Ro15-1788 except that {sup 125}I-Ro16-0154 shows an almost 10 fold higher affinity at 37{degree}C. These in vitro results suggest that {sup 123}I-labeled Ro16-0154 shows promise as a selective, high affinity SPECT probe of the brain's BZ receptor.

  19. Effect of nitroglycerin on coronary collateral function during exercise evaluated by quantitative analysis of thallium-201 single photon emission computed tomography

    SciTech Connect

    Aoki, M.; Sakai, K.; Koyanagi, S.; Takeshita, A.; Nakamura, M. )

    1991-05-01

    A noninfarcted, entirely collateral-dependent myocardial region provides an opportunity to assess the effect of nitroglycerin on coronary collateral function during exercise. Stress thallium-201 computed tomography was performed in seven patients with effort angina and no history of myocardial infarction, both before and after nitroglycerin (0.3 mg). All patients had single-vessel disease with total or subtotal (99% with delay) occlusion of proximal left anterior descending coronary artery and well-developed collaterals. The pressure-rate product, mean blood pressure, and heart rate at peak exercise did not differ before and after nitroglycerin. The size of the perfusion defect and the severity of ischemia during exercise estimated by quantitative analysis of thallium-201 single photon emission computed tomography were significantly less after nitroglycerin administration (extent score: 23 +/- 17 vs 7 +/- 9, p less than 0.01; severity score: 20 +/- 22 vs 3 +/- 4, p less than 0.05). The pressure-rate products at peak exercise did not differ before and after nitroglycerin, which suggested that the reduction in perfusion defect size was unlikely to be the result of decreased myocardial oxygen consumption. These results suggest that nitroglycerin improved coronary collateral function during exercise and thus prevented exercise-induced myocardial ischemia.

  20. Comparative study of thallium-201 single-photon emission computed tomography and electrocardiography in Duchenne and other types of muscular dystrophy

    SciTech Connect

    Yamamoto, S.; Matsushima, H.; Suzuki, A.; Sotobata, I.; Indo, T.; Matsuoka, Y.

    1988-04-01

    Single-photon emission computed tomography (SPECT) using thallium-201 was compared with 12-lead electrocardiography (ECG) in patients with Duchenne (29), facioscapulohumeral (7), limb-girdle (6) and myotonic (5) dystrophies, by dividing the left ventricular (LV) wall into 5 segments. SPECT showed thallium defects (37 patients, mostly in the posteroapical wall), malrotation (23), apical aneurysm (5) and dilatation (7). ECG showed abnormal QRS (36 patients), particularly as a posterolateral pattern (13). Both methods of assessment were normal in only 7 patients. The Duchenne type frequently showed both a thallium defect (particularly in the posteroapical wall) and an abnormal QRS (predominantly in the posterolateral wall); the 3 other types showed abnormalities over the 5 LV wall segments in both tests. The percent of agreement between the 2 tests was 64, 66, 70, 72 and 72 for the lateral, apical, anteroseptal, posterior and inferior walls, respectively. The 2 tests were discordant in 31% of the LV wall, with SPECT (+) but ECG (-) in 21% (mostly in the apicoinferior wall) and SPECT (-) but ECG (+) in 10% (mostly in the lateral wall). Some patients showed large SPECT hypoperfusion despite minimal electrocardiographic changes. ECG thus appeared to underestimate LV fibrosis and to reflect posteroapical rather than posterolateral dystrophy in its posterolateral QRS pattern. In this disease, extensive SPECT hypoperfusion was also shown, irrespective of clinical subtype and skeletal involvement.

  1. Cerebral blood flow measurement in patients with impaired consciousness: usefulness of 99mTc-HMPAO single-photon emission tomography in clinical practice.

    PubMed

    Chang, C C; Kuwana, N; Noji, M; Tanabe, Y; Koike, Y; Ikegami, T

    1998-09-01

    The relationship between impairment of consciousness and quantitative cerebral blood flow (CBF) was investigated. The mean CBF of the whole brain was measured by the Patlak-plot method using technetium-99m hexamethylpropylene amine oxime single-photon emission tomography (99mTc-HMPAO SPET) in patients with the following diseases: cerebral infarction, intraparenchymal haemorrhage, subarachnoid haemorrhage, brain tumour and cerebral contusion. The clinical symptoms were evaluated according to the severity of impaired consciousness, aphasia and dementia. Four hundred and eighty-five CBF measurements were performed. Patients with alert consciousness showed an age-related decline in mean CBF. Patients with aphasia showed a significant reduction in mean CBF compared with those without aphasia. Impaired consciousness was proportional to reduction in mean CBF regardless of types of pathology, and the size of lesion did not influence the mean CBF. Patients with dementia showed a significant reduction in mean CBF proportional to the severity of dementia. The quantitative measurement of CBF using 99mTc-HMPAO SPET is reliable in clinical evaluations.

  2. Optimization of helical acquisition parameters to preserve uniformity of mouse whole body using multipinhole collimator in single-photon emission computed tomography

    NASA Astrophysics Data System (ADS)

    Ukon, Naoyuki; Kubo, Naoki; Ishikawa, Masayori; Zhao, Songji; Tamaki, Nagara; Kuge, Yuji

    Focusing on whole-body uniformity in small-animal single-photon emission computed tomography (SPECT), we examined the optimal helical acquisition parameters using five-pinhole collimators for mouse imaging. SPECT images of an 80-mm-long cylindrical phantom with 99mTc solution were acquired using an Inveon multimodality imaging platform. The bed travels used in this study were 0, 30, 60, 90 and 120 mm, and the numbers of revolutions traversed during the SPECT scan were 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0, respectively. Artifacts that degrade uniformity in reconstructed images were conspicuous when the bed travel was smaller than the object length. Regarding the distal-to-center ratio (DCR) of SPECT values in the object's axial direction, the DCR nearest to the ideal ratio of 1.00 was 1.02 in the optimal uniformity with 4.0 revolutions and a bed travel of 120 mm. Moreover, the helical acquisition using these parameters suppressed the formation of artifacts. We proposed the optimal parameters in whole-body helical SPECT; the bed travel was sufficiently larger than the object length; the 4.0 or more revolutions were required for a pitch of approximately 30 mm/revolution. The optimal acquisition parameters in SPECT to preserve uniformity would contribute to the accurate quantification of whole-body biodistribution.

  3. Relation of gender to physician use of test results and to the prognostic value of stress technetium 99m sestamibi myocardial single-photon emission computed tomography scintigraphy.

    PubMed

    Travin, M I; Duca, M D; Kline, G M; Herman, S D; Demus, D D; Heller, G V

    1997-07-01

    We analyzed potential gender differences in the use and prognostic value of stress technetium 99m sestamibi tomography, image results, and cardiac event rates over a period of 15 +/- 8 months in 1226 men and 1151 women. Men had more abnormal tomographic images, but referral for catheterization and revascularization similarly increased in relation to the number of defects. Men and women with abnormal images had similar event rates, 19.6% and 18.2%, respectively, although men more often had myocardial infarction or cardiac death (7.6% vs 4.1 %, p < 0.05), whereas women had an increased likelihood of unstable angina or congestive heart failure (11.5% vs 7.6%, p < 0.05). Normal images predicted a low yearly rate of myocardial infarction or death: 1.7% for men and 0.8% for women. Image findings, particularly defect extent, were independent predictors of events in both groups. Thus, after stress Tc-99m sestamibi single-photon emission computed tomography perfusion imaging, there was no gender bias in referral for invasive procedures, and for both men and women image findings were strongly associated with prognostic outcome.

  4. Simultaneous multivessel coronary artery spasm demonstrated by quantitative analysis of thallium-201 single photon emission computed tomography

    SciTech Connect

    Kugiyama, K.; Yasue, H.; Okumura, K.; Minoda, K.; Takaoka, K.; Matsuyama, K.; Kojima, A.; Koga, Y.; Takahashi, M.

    1987-11-01

    Thallium-201 myocardial scintigraphy with quantitative analysis of emission computed tomography was performed during episodes of angina in 19 patients with variant angina and nearly normal coronary arteriographic findings. Eleven patients (group I) were shown by arteriography to have spasm in 2 or more large coronary arteries. Eight patients (group II) had spasm in only 1 coronary artery. In 7 patients in group I, significant diffuse perfusion defects simultaneously appeared in multiple coronary artery regions on the scintigram (group IA). The extent and severity of the perfusion defect as measured by thallium-201 tomography were significantly greater in group IA than in group II (p less than 0.001 and p less than 0.01, respectively). The duration of transient ST-segment elevation during the attack in group IA was significantly longer than in group II (p less than 0.001). The incidence of ventricular arrhythmias, including ventricular tachycardia, or complete atrioventricular block during the anginal attack was significantly higher (p less than 0.05) in group IA than in group II. In all study patients, neither attack nor scintigraphic perfusion defect appeared on the repeat test after oral administration of nifedipine. In conclusion, multivessel coronary artery spasm simultaneously appears and causes the attack in many patients with variant angina and nearly normal coronary arteriographic findings, and myocardial ischemia due to simultaneous multivessel coronary spasm is likely to be more extensive and severe, persist longer and have a higher frequency of potentially dangerous arrhythmias than that due to spasm of only 1 coronary artery.

  5. Coregistration of magnetic resonance and single photon emission computed tomography images for noninvasive localization of stem cells grafted in the infarcted rat myocardium.

    PubMed

    Shen, Dinggang; Liu, Dengfeng; Cao, Zixiong; Acton, Paul D; Zhou, Rong

    2007-01-01

    This paper demonstrates the application of mutual information based coregistration of radionuclide and magnetic resonance imaging (MRI) in an effort to use multimodality imaging for noninvasive localization of stem cells grafted in the infarcted myocardium in rats. Radionuclide imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) inherently has high sensitivity and is suitable for tracking of labeled stem cells, while high-resolution MRI is able to provide detailed anatomical and functional information of myocardium. Thus, coregistration of PET or SPECT images with MRI will map the location and distribution of stem cells on detailed myocardium structures. To validate this coregistration method, SPECT data were simulated by using a Monte Carlo-based projector that modeled the pinhole-imaging physics assuming nonzero diameter and photon penetration at the edge. Translational and rotational errors of the coregistration were examined with respect to various SPECT activities, and they are on average about 0.50 mm and 0.82 degrees , respectively. Only the rotational error is dependent on activity of SPECT data. Stem cells were labeled with (111)Indium oxyquinoline and grafted in the ischemic myocardium of a rat model. Dual-tracer small-animal SPECT images were acquired, which allowed simultaneous detection of (111)In-labeled stem cells and of [(99m)Tc]sestamibi to assess myocardial perfusion deficit. The same animals were subjected to cardiac MRI. A mutual-information-based coregistration method was then applied to the SPECT and MRIs. By coregistration, the (111)In signal from labeled cells was mapped into the akinetic region identified on cine MRIs; the regional perfusion deficit on the SPECT images also coincided with the akinetic region on the MR image.

  6. Non-Uniform Object-Space Pixelation (NUOP) for Penalized Maximum-Likelihood Image Reconstruction for a Single Photon Emission Microscope System

    PubMed Central

    Meng, L. J.; Li, Nan

    2016-01-01

    This paper presents a non-uniform object-space pixelation (NUOP) approach for image reconstruction using the penalized maximum likelihood methods. This method was developed for use with a single photon emission microscope (SPEM) system that offers an ultrahigh spatial resolution for a targeted local region inside mouse brain. In this approach, the object-space is divided with non-uniform pixel sizes, which are chosen adaptively based on object-dependent criteria. These include (a) some known characteristics of a target-region, (b) the associated Fisher Information that measures the weighted correlation between the responses of the system to gamma ray emissions occurred at different spatial locations, and (c) the linear distance from a given location to the target-region. In order to quantify the impact of this non-uniform pixelation approach on image quality, we used the Modified Uniform Cramer-Rao bound (MUCRB) to evaluate the local resolution-variance and bias-variance tradeoffs achievable with different pixelation strategies. As demonstrated in this paper, an efficient object-space pixelation could improve the speed of computation by 1–2 orders of magnitude, whilst maintaining an excellent reconstruction for the target-region. This improvement is crucial for making the SPEM system a practical imaging tool for mouse brain studies. The proposed method also allows rapid computation of the first and second order statistics of reconstructed images using analytical approximations, which is the key for the evaluation of several analytical system performance indices for system design and optimization.

  7. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm

    NASA Astrophysics Data System (ADS)

    Kettler, Jan; Paul, Matthias; Olbrich, Fabian; Zeuner, Katharina; Jetter, Michael; Michler, Peter

    2016-03-01

    InAs quantum dots grown on a GaAs substrate have been one of the most successful semiconductor material systems to demonstrate single-photon-based quantum optical phenomena. In this context, we present the feasibility to extend the low-temperature photoluminescence emission range of In(Ga)As/GaAs quantum dots grown by metal-organic vapor-phase epitaxy from the typical window between 880 and 960 nm to wavelengths above 1.3 μm. A low quantum dot density can be obtained throughout this range, enabling the demonstration of single- and cascaded photon emission. We further analyze polarization-resolved micro-photoluminescence from a large number of individual quantum dots with respect to anisotropy and size of the underlying fine-structure splittings in the emission spectra. For samples with elevated emission wavelengths, we observe an increasing tendency of the emitted photons to be polarized along the main crystal axes.

  8. Quantitative estimation of infarct size by simultaneous dual radionuclide single photon emission computed tomography: comparison with peak serum creatine kinase activity

    SciTech Connect

    Kawaguchi, K.; Sone, T.; Tsuboi, H.; Sassa, H.; Okumura, K.; Hashimoto, H.; Ito, T.; Satake, T. )

    1991-05-01

    To test the hypothesis that simultaneous dual energy single photon emission computed tomography (SPECT) with technetium-99m (99mTc) pyrophosphate and thallium-201 (201TI) can provide an accurate estimate of the size of myocardial infarction and to assess the correlation between infarct size and peak serum creatine kinase activity, 165 patients with acute myocardial infarction underwent SPECT 3.2 +/- 1.3 (SD) days after the onset of acute myocardial infarction. In the present study, the difference in the intensity of 99mTc-pyrophosphate accumulation was assumed to be attributable to difference in the volume of infarcted myocardium, and the infarct volume was corrected by the ratio of the myocardial activity to the osseous activity to quantify the intensity of 99mTc-pyrophosphate accumulation. The correlation of measured infarct volume with peak serum creatine kinase activity was significant (r = 0.60, p less than 0.01). There was also a significant linear correlation between the corrected infarct volume and peak serum creatine kinase activity (r = 0.71, p less than 0.01). Subgroup analysis showed a high correlation between corrected volume and peak creatine kinase activity in patients with anterior infarctions (r = 0.75, p less than 0.01) but a poor correlation in patients with inferior or posterior infarctions (r = 0.50, p less than 0.01). In both the early reperfusion and the no reperfusion groups, a good correlation was found between corrected infarct volume and peak serum creatine kinase activity (r = 0.76 and r = 0.76, respectively; p less than 0.01).

  9. The variable extent of jeopardized myocardium in patients with single vessel coronary artery disease: Quantification by thallium-201 single photon emission computed tomography

    SciTech Connect

    Mahmarian, J.J.; Pratt, C.M.; Boyce, T.M.; Verani, M.S. )

    1991-02-01

    To assess the extent of jeopardized myocardium in patients with single vessel coronary artery disease of variable severity and location, quantitative exercise thallium-201 single photon emission computed tomography was performed in 158 consecutive patients with angiographically proved single vessel coronary artery disease. The extent of abnormal left ventricular perfusion was quantified from computer-generated polar maps of three-dimensional myocardial radioactivity. Patients with only a moderate (51% to 69%) stenosis tended to have a small perfusion defect irrespective of the coronary artery involved. Whereas a perfusion defect measuring greater than or equal to 10% of the left ventricle was found in 78% of patients with no prior infarction and severe (greater than or equal to 70%) stenosis, this was observed in only 24% of patients with moderate stenosis. Perfusion defect size increased with increasing severity of stenosis for the entire group without infarction and for those with left anterior descending, right and circumflex coronary artery stenosis. However, the correlation between stenosis severity and perfusion defect size was at best only modest (r = 0.38, p = 0.0001). The left anterior descending artery was shown to be the most important of the three coronary arteries for providing left ventricular perfusion. Proximal stenosis of this artery produced a perfusion defect approximately twice as large as that found in patients with a proximal right or circumflex artery stenosis. However, marked heterogeneity in perfusion defect size existed among all three vessels despite comparable stenosis severity. This was most apparent for the left anterior descending coronary artery, where mid vessel stenosis commonly produced a perfusion defect similar in size to that found in proximally stenosed vessels.

  10. A new method for measuring dynamic change of tracer distribution using dynamic single photon emission tomography with a slip-ring rotational gamma camera.

    PubMed

    Miyazaki, Y; Hashimoto, M; Kinuya, S; Murata, Y; Inoue, H; Shiozaki, J; Takimoto, M; Yoshioka, K; Nakajima, K; Taki, J

    2002-11-01

    The clinical applicability of dynamic single photon emission tomograpy (SPET) using a dual-head gamma camera equipped with a slip-ring rotational mechanism, referred to as serial SPET, was examined in the present investigation. Serial SPET enables the production of tomographic images for any arbitrary time frame from an arbitrary range of data to 360 degrees. In a pre-clinical evaluation, a correlation between radioactivity concentration and serial SPET counts was evaluated in a phantom with continuous changes in 99mTc concentration. A differential value was obtained from each pair of SPET images; moreover, moving average approximation processing was investigated with respect to the elimination of noise in the data. In 11 and one patient presenting with cerebrovascular disease and meningioma, respectively, changes in SPET counts were evaluated when 99mTc ethyl cysteinate dimer (99mTc-ECD) was continuously administered at a constant rate in the resting state. Furthermore, in six of 11 subjects with cerebrovascular disease, changes occurring in SPET counts were examined by using acetazolamide loading while continuously administering 99mTc-ECD at a constant rate. Consequently, serial SPET enabled the evaluation of changes in radioactivity concentration over time in both the phantom and preliminary clinical studies. Data analysis by differential processing utilizing moving average approximation processing enabled the detection of minor changes in radioactivity concentration. An increase of 15.1+/-5.4% was observed in SPET counts of the unaffected cerebral hemisphere with acetazolamide loading. The response of the affected hemisphere was less prominent. These findings suggest that serial SPET would be an effective technique for the pharmacokinetic analysis of radiopharmaceuticals.

  11. Evaluation of Silent Myocardial Ischemia with Single-Photon Emission Computed Tomography/Computed Tomography in Asymptomatic Subjects with Diabetes and Pre-Diabetes

    PubMed Central

    Özdemir, Elif; Burçak Polat, Şefika; Yıldırım, Nilüfer; Türkölmez, Şeyda; Ersoy, Reyhan; Durmaz, Tahir; Keleş, Telat; Bozkurt, Engin; Çakır, Bekir

    2016-01-01

    Objective: The aim of this study was to disclose the prevalence of myocardial ischemia, as detected by adenosine stress myocardial perfusion imaging (MPI) with hybrid single-photon emission computed tomography/computed tomography (SPECT/CT), in asymptomatic diabetic and pre-diabetic patients and to find out whether ischemia predicted the occurrence of adverse cardiac/cerebrovascular events (ACCE) at follow-up. Methods: Forty-three diabetic and thirty-five pre-diabetic asymptomatic patients without any history of coronary artery disease, underwent MPI and were followed-up for a 12.8±2.2 (8-19) months for the occurrence of ACCE. Baseline variables that would predict the presence of ischemia and the value of ischemia on MPI for predicting the occurrence of ACCE at follow-up were evaluated by logistic regression analysis. Results: Ischemia was detected in ten (23.3%) of the diabetic and in four (11.4%) of the pre-diabetic patients. The presence of diabetes was the only independent predictor of myocardial ischemia [odds ratio (OR): 12.31, 95% confidence interval (CI): 1.83-82.66; p<0.01]. During 12.8±2.2 (8-19) months of follow-up, ACCE was observed in five out of 78 (6.4%) patients. Patients with ischemia were significantly more likely to have ACCE during follow-up as compared to those with normal MPI scans (event rates: 21.4% vs. 3.1%, OR: 8.455 95% CI: 1.264-56.562, p=0.038). Conclusion: Myocardial ischemia as detected by adenosine stress SPECT/CT in a population of asymptomatic patients with diabetes mellitus or pre-diabetes appeared to predict the occurrence of ACCE at follow-up. PMID:27277323

  12. Technetium-99m dimercaptosuccinic acid scan in evaluation of renal cortical scarring: Is it mandatory to do single photon emission computerized tomography?

    PubMed Central

    Saleh Farghaly, Hussein Rabie; Mohamed Sayed, Mohamed Hosny

    2015-01-01

    Objectives: Renal cortical scintigraphy with technetium-99m (Tc-99m) dimercaptosuccinic acid (DMSA) is the method of choice to detect acute pyelonephritis and cortical scarring. Different acquisition methods have been used: Planar parallel-hole or pinhole collimation and single photon emission tomography (SPECT). This study compared planar parallel-hole cortical scintigraphy and dual-head SPECT for detection of cortical defects. Patients and Methods: We retrospectively reviewed 190 consecutive patients with 380 kidneys and 200 DMSA scans referred to rule out renal cortical scarring. The diagnoses were 52 vesicoureteric reflux, 61 recurrent urinary tract infection, 39 hydronephrosis, 20 renal impairment, and 18 hypertension. All patients were imaged 3 h after injection of Tc-99m DMSA with SPECT and planar imaging (posterior, anterior, left, and right posterior oblique views). For each patient, planar and SPECT images were evaluated at different sittings, in random order. Each kidney was divided into three cortical segments (upper, middle and lower) and was scored as normal or reduced uptake. The linear correlation coefficient for the number of abnormal segments detected between planner and SPECT techniques was calculated. Results: From 200 DMSA scans, 100 scans were positive for scar in SPECT images, from which only 95 scans were positive for scar in planner imaging. Out of the five mismatched scans, three scans were for patients with renal impairment and high background activity and two scans were for very small scars. No significant difference was seen in the average number of abnormal segments detected by planar versus SPECT imaging (P = 0.31). The average correlation coefficient between was high (r = 0.91 – 0.92). Conclusions: Tc-99m DMSA renal cortical scanning using SPECT offers no statistically significant diagnostic advantage over multiple views planar imaging for detection of cortical defect. PMID:25589802

  13. 99Tcm-MIBI single photon emission tomography (SPET) for detecting myocardial ischaemia and necrosis in patients with significant coronary artery disease.

    PubMed

    Sciammarella, M G; Fragasso, G; Gerundini, P; Maffioli, L; Cappelletti, A; Margonato, A; Savi, A; Chierchia, S

    1992-12-01

    The ability of 99Tcm-methoxyisobutylisonitrile (MIBI) single photon emission tomography (SPET) to detect myocardial ischaemia and necrosis was assessed in 56 patients (45 male, 11 female, aged 55 +/- 5 years), with clinically recognized ischaemic heart disease (IHD). All underwent coronary angiography (CA) and left ventriculography (LV). SPET images were obtained at rest and at peak exercise (Modified Bruce) 90 min after injection of 99Tcm-MIBI (650-850 MBq). Data were acquired in 30 min over 180 degrees (from 45 degrees RAO to 45 degrees LPO) with no correction for attenuation, using a 64 x 64 matrix. The presence of persistent (P) or reversible (R) perfusion defects (PD) was then correlated to the resting and exercise ECG and to the results of CA and LV. Of the 56 patients, 34 had reversible underperfusion (RPD), 46 persistent underperfusion (PPD) and 31 had both. The occurrence of RPD correlated well with the occurrence of exercise-induced ST segment depression and/or angina (27 patients of 34 patients, 79%) and with the presence of significant coronary artery disease (CAD) (33 of 44, 73%). In 45 of 46 patients (98%) PPD corresponded to akinetic or severely hypokinetic segments (LV) usually explored by ECG leads exhibiting diagnostic Q waves (42 of 46 patients, 91%). The scan was normal both at rest and after stress in four of 11 patients with no CAD, and in two of 45 patients with CAD. Finally, an abnormal resting scan was seen in seven of 11 patients with normal coronary arteries, of whom six had regional wall motion abnormalities.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Regadenoson-stress myocardial CT perfusion and single-photon emission CT: rationale, design, and acquisition methods of a prospective, multicenter, multivendor comparison.

    PubMed

    Cury, Ricardo C; Kitt, Therese M; Feaheny, Kathleen; Akin, Jamie; George, Richard T

    2014-01-01

    Pharmacologic stress myocardial CT perfusion (CTP) has been reported to be a viable imaging modality for detection of myocardial ischemia compared with single-photon emission CT (SPECT) in several single-center studies. However, regadenoson-stress CTP has not previously been compared with SPECT in a multicenter, multivendor study. The rationale and design of a phase 2, randomized, cross-over study of regadenoson-stress myocardial perfusion imaging by CTP compared with SPECT are described herein. The study will be conducted at approximately 25 sites by using 6 different CT scanner models, including 64-, 128-, 256-, and 320-slice systems. Subjects with known/suspected coronary artery disease will be randomly assigned to 1 of 2 imaging procedure sequences; rest and regadenoson-stress SPECT on day 1, then regadenoson-stress CTP and rest CTP/coronary CT angiography (same acquisition) on day 2; or regadenoson-stress CTP and rest CTP/CT angiography on day 1, then rest and regadenoson-stress SPECT on day 2. The prespecified primary analysis examines the agreement rate between CTP and SPECT for detecting or excluding ischemia (≥2 or 0-1 reversible defects, respectively), as assessed by 3 independent blinded readers for each modality. Non-inferiority will be indicated if the lower boundary of the 95% CI for the agreement rate is within 0.15 of 0.78 (the observed agreement rate in the regadenoson pivotal trials). The protocol described herein will support the first evaluation of regadenoson-stress CTP by using multiple scanner types compared with SPECT.

  15. Risk of node metastasis of sentinel lymph nodes detected in level II/III of the axilla by single-photon emission computed tomography/computed tomography

    PubMed Central

    SHIMA, HIROAKI; KUTOMI, GORO; SATOMI, FUKINO; MAEDA, HIDEKI; TAKAMARU, TOMOKO; KAMESHIMA, HIDEKAZU; OMURA, TOSEI; MORI, MITSURU; HATAKENAKA, MASAMITSU; HASEGAWA, TADASHI; HIRATA, KOICHI

    2014-01-01

    In breast cancer, single-photon emission computed tomography/computed tomography (SPECT/CT) shows the exact anatomical location of sentinel nodes (SN). SPECT/CT mainly exposes axilla and partly exposes atypical sites of extra-axillary lymphatic drainage. The mechanism of how the atypical hot nodes are involved in lymphatic metastasis was retrospectively investigated in the present study, particularly at the level II/III region. SPECT/CT was performed in 92 clinical stage 0-IIA breast cancer patients. Sentinel lymph nodes are depicted as hot nodes in SPECT/CT. Patients were divided into two groups: With or without hot node in level II/III on SPECT/CT. The existence of metastasis in level II/III was investigated and the risk factors were identified. A total of 12 patients were sentinel lymph node biopsy metastasis positive and axillary lymph node dissection (ALND) was performed. These patients were divided into two groups: With and without SN in level II/III, and nodes in level II/III were pathologically proven. In 11 of the 92 patients, hot nodes were detected in level II/III. There was a significant difference in node metastasis depending on whether there were hot nodes in level II/III (P=0.0319). Multivariate analysis indicated that the hot nodes in level II/III and lymphatic invasion were independent factors associated with node metastasis. There were 12 SN-positive patients followed by ALND. In four of the 12 patients, hot nodes were observed in level II/III. Two of the four patients with hot nodes depicted by SPECT/CT and metastatic nodes were pathologically evident in the same lesion. Therefore, the present study indicated that the hot node in level II/III as depicted by SPECT/CT may be a risk of SN metastasis, including deeper nodes. PMID:25289038

  16. Differential patterns of dopamine transporter loss in the basal ganglia of progressive supranuclear palsy and Parkinson's disease: analysis with [(123)I]IPT single photon emission computed tomography.

    PubMed

    Im, Joo-Hyuk; Chung, Sun J; Kim, Jae-Seung; Lee, Myoung C

    2006-05-15

    We evaluated the patterns of dopamine transporter loss in the striatum of ten controls, twenty patients with Parkinson's disease (PD), and nine with progressive supranuclear palsy (PSP) using (123)I-IPT single photon emission tomography (SPECT). Four ROIs in the striatum correspond to the head of caudate nucleus (ROI 1), a transitional region between head of caudate and putamen (ROI 2), anterior putamen (ROI 3), and posterior putamen (ROI 4). A striatal ratio of specific to nondisplaceable uptake (V3'') was calculated normalizing the activity of the ROIs to that of occipital cortex. V3'' values were significantly reduced in all ROIs of PD and PSP patients, compared with controls (p=0.001). V3'' value in ROI 2 was significantly lower in PSP group, compared with PD group (p=0.02). The percent reductions of striatal uptake in ROI 1, ROI 2, ROI 3 and ROI 4 were 56%, 53%, 64% and 78% in PD patients, whereas 75%, 72%, 75% and 77% in PSP patients, respectively. The reduction patterns of uptake were significantly different between PD and PSP groups (p=0.001). In PD patients, the percent reductions of (123)I-IPT uptake were significantly greater in ROI 3 and 4 compared with ROI 1 or 2, whereas those were similar in all ROIs of PSP patients. In addition, PD patients showed a significantly higher posterior putamen/caudate ratio of reduced (123)I-IPT uptake than the anterior putamen/caudate ratio (p=0.005). Our results implicate that (123)I-IPT SPECT is a relatively simple and reliable technique that may be useful in differentiating PD from PSP.

  17. Quantifying regional cerebral blood flow by N-isopropyl-P-[I-123]iodoamphetamine (IMP) using a ring type single-photon emission computed tomography system

    SciTech Connect

    Takahashi, N.; Odano, I.; Ohkubo, M.

    1994-05-01

    We developed a more accurate quantitative measurement of regional cerebral blood flow (rCBF) with the microsphere model using N-isopropyl-p-[I-123] iodoamphetamine (IMP) and a ring type single photon emission computed tomography (SPECT) system. SPECT studies were performed in 17 patients with brain diseases. A dose of 222 MBq (6 mCi) of [I-123]IMP was injected i.v., at the same time a 5 min period of arterial blood withdrawal was begun. SPECT data were acquired from 25 min to 60 min after tracer injection. For obtaining the brain activity concentration at 5 min after IMP injection, total brain counts collections and one minute period short time SPECT studies were performed at 5, 20, and 60 min. Measurement of the values of rCBF was calculated using short time SPECT images at 5 min (rCBF), static SPECT images corrected with total cerebral counts (rCBF{sub Ct}.) and those corrected with reconstructed counts on short time SPECT images (rCBF{sub Cb}). There was a good relationship (r=0.69) between rCBF and rCBF{sub Ct}, however, rCBF{sub Ct} tends to be underestimated in high flow areas and overestimated in low flow areas. There was better relationship between rCBF and rCBF{sub Cb}(r=0.92). The overestimation and underestimation shown in rCBF{sub Ct} was considered to be due to the correction of reconstructed counts using a total cerebral time activity curve, because of the kinetic behavior of [I-123]IMP was different in each region. We concluded that more accurate rCBF values could be obtained using the regional time activity curves.

  18. Single photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia: Correlation with coronary arteriography, exercise thallium imaging and two-dimensional echocardiography

    SciTech Connect

    Nguyen, T.; Heo, J.; Ogilby, J.D.; Iskandrian, A.S. )

    1990-11-01

    The feasibility, safety and diagnostic accuracy of single photon emission computed tomography (SPECT) with thallium-201 imaging during adenosine-induced coronary hyperemia were evaluated in 53 patients with and 7 without coronary artery disease proved by coronary angiography. Adenosine was infused intravenously at a dose of 0.14 mg/kg body weight per min for 6 min and thallium was injected at 3 min. Adenosine caused an increase in heart rate (68 +/- 12 at baseline versus 87 +/- 18 beats/min at peak effect, p less than 0.0001) but no change in blood pressure. The sensitivity and specificity were 92% (95% confidence intervals 81% to 98%) and 100% (95% confidence intervals 59% to 100%), respectively; 20 (61%) of 33 patients with multivessel coronary artery disease were also correctly identified. In 30 patients, the predictive accuracy of adenosine thallium imaging was slightly higher than that of exercise SPECT thallium imaging (90% versus 80%, p = NS) (95% confidence intervals 72% to 97% and 61% to 92%, respectively). In 25 patients, two-dimensional echocardiography during adenosine infusion disclosed a new wall motion abnormality in 2 (10%) of 20 patients with coronary artery disease; 80% of these patients had reversible thallium defects (p less than 0.001). Side effects were mild and transient; aminophylline was used in only three patients. Thus, adenosine SPECT thallium imaging provides a high degree of accuracy in the diagnosis of coronary artery disease. The results are comparable with those of exercise SPECT thallium imaging. Most reversible defects in the adenosine study are not associated with any transient wall motion abnormality.

  19. Quantification of infarct size by /sup 201/Tl single-photon emission computed tomography during acute myocardial infarction in humans. Comparison with enzymatic estimates

    SciTech Connect

    Mahmarian, J.J.; Pratt, C.M.; Borges-Neto, S.; Cashion, W.R.; Roberts, R.; Verani, M.S.

    1988-10-01

    We prospectively investigated whether /sup 201/Tl single-photon emission computed tomography (SPECT) could accurately diagnose the presence and quantify the extent of acute myocardial infarction when compared with infarct size assessed by plasma MB-creatine kinase activity. Thirty patients with enzymatic evidence of infarction were imaged within 12-36 hours of chest pain (mean, 23.4 hours). No patient had a previous infarction, and none underwent intervention seeking to restore coronary patency. Infarct size was quantified with computer-generated polar maps of the myocardial radioactivity and expressed as a percentage of the total left ventricular volume. To assess left and right ventricular performance, blood-pool gated radionuclide angiography was performed immediately after SPECT. All 30 patients had perfusion defects consistent with myocardial infarction. Scintigraphic and enzymatic estimates of infarct size correlated well for the group as a whole (r = 0.78, p less than 0.001, SEE = 9.1) but especially for those patients with anterior infarction (r = 0.91, p less than 0.001, SEE = 7.9). The poor correlation observed in patients with inferior infarction (r = 0.50, p less than 0.05, SEE = 10.0) was believed to be related to the frequent occurrence of right ventricular involvement because SPECT assessed only left ventricular damage, whereas the enzymatic method estimated the myocardial injury in both ventricles. A quantitative index of right ventricular infarct size, derived from the relation between the scintigraphic and enzymatic estimates, had a strong inverse correlation with right ventricular ejection fraction (r = -0.89, p less than 0.001, SEE = 3.6).

  20. Postoperative myocardial infarction documented by technetium pyrophosphate scan using single-photon emission computed tomography: Significance of intraoperative myocardial ischemia and hemodynamic control

    SciTech Connect

    Cheng, D.C.; Chung, F.; Burns, R.J.; Houston, P.L.; Feindel, C.M. )

    1989-12-01

    The aim of this prospective study was to document postoperative myocardial infarction (PMI) by technetium pyrophosphate scan using single-photon emission computed tomography (TcPPi-SPECT) in 28 patients undergoing elective coronary bypass grafting (CABG). The relationships of intraoperative electrocardiographic myocardial ischemia, hemodynamic responses, and pharmacological requirements to this incidence of PMI were correlated. Radionuclide cardioangiography and TcPPi-SPECT were performed 24 h preoperatively and 48 h postoperatively. A standard high-dose fentanyl anesthetic protocol was used. Twenty-five percent of elective CABG patients were complicated with PMI, as documented by TcPPi-SPECT with an infarcted mass of 38.0 +/- 5.5 g. No significant difference in demographic, preoperative right and left ventricular function, number of coronary vessels grafted, or aortic cross-clamp time was observed between the PMI and non-PMI groups. The distribution of patients using preoperative beta-adrenergic blocking drugs or calcium channel blocking drugs was found to have no correlation with the outcome of PMI. As well, no significant differences in hemodynamic changes or pharmacological requirements were observed in the PMI and non-PMI groups during prebypass or postbypass periods, indicating careful intraoperative control of hemodynamic indices did not prevent the outcome of PMI in these patients. However, the incidence of prebypass ischemia was 39.3% and significantly correlated with the outcome of positive TcPPi-SPECT, denoting a 3.9-fold increased risk of developing PMI. Prebypass ischemic changes in leads II and V5 were shown to correlate with increased CPK-MB release (P less than 0.05) and tends to occur more frequently with lateral myocardial infarction.

  1. Quantification of myocardial infarction: a comparison of single photon-emission computed tomography with pyrophosphate to serial plasma MB-creatine kinase measurements

    SciTech Connect

    Jansen, D.E.; Corbett, J.R.; Wolfe, C.L.; Lewis, S.E.; Gabliani, G.; Filipchuk, N.; Redish, G.; Parkey, R.W.; Buja, L.M.; Jaffe, A.S.

    1985-08-01

    Single photon-emission computed tomography (SPECT) with /sup 99m/Tc-pyrophosphate (PPi) has been shown to estimate size of myocardial infarction accurately in animals. The authors tested the hypothesis that SPECT with /sup /sup 99m//Tc-PPi and blood pool subtraction can provide prompt and accurate estimates of size of myocardial infarction in patients. SPECT estimates are potentially available early after the onset of infarction and should correlate with estimates of infarct size calculated from serial measurements of plasma MB-creatine kinase (CK) activity. Thirty-three patients with acute myocardial infarction and 16 control patients without acute myocardial infarction were studied. Eleven of the patients had transmural anterior myocardial infarction, 16 had transmural inferior myocardial infarction, and six had nontransmural myocardial infarction. SPECT was performed with a commercially available rotating gamma camera. Identical projection images of the distribution of 99mTc-PPi and the ungated cardiac blood pool were acquired sequentially over 180 degrees. Reconstructed sections were color coded and superimposed for purposes of localization of infarct. Areas of increased PPi uptake within myocardial infarcts were thresholded at 65% of peak activity. The blood pool was thresholded at 50% and subtracted to determine the endocardial border for the left ventricle. Myocardial infarcts ranged in size from 1 to 126 gram equivalents (geq) MB-CK. The correlation of MB-CK estimates of size of infarct with size determined by SPECT (both in geq) was good (r = .89 with a regression line of y = 13.1 + 1.5x).

  2. Imaging of human pancreatic cancer xenografts by single-photon emission computed tomography with 99mTc-Hynic-PEG-AE105

    PubMed Central

    ZHANG, XIN; TIAN, YE; SUN, FANGFANG; FENG, HONGBO; YANG, CHUN; GONG, XIAOYAN; TAN, GUANG

    2015-01-01

    The elevated expression of urokinase-type plasminogen activator receptor (uPAR) is associated with the poor prognosis of pancreatic cancer patients. Thus, uPAR is a promising candidate as a molecular target for the non-invasive imaging of pancreatic cancer. The present study aimed to develop a technetium-99m (99mTc)-labeled uPAR-binding peptide for non-invasive single-photon emission computed tomography (SPECT) assessment of uPAR expression in pancreatic cancer xenograft models. A linear high-affinity uPAR peptide antagonist, Hynic-PEG-AE105, was labeled with 99mTc. Human uPAR-positive pancreatic cancer BxPC-3 cells were inoculated into nude mice. SPECT was performed in the pancreatic cancer xenograft mice models. The results showed that the rate of the 99mTc labeling of Hynic-PEG-AE105 was 97.72±1.73%. The tumor uptake of 99mTc-Hynic-PEG-AE105 was higher than the control inactive peptide 99mTc-Hynic-PEG-AE105mut at 4 h (3.37±0.11 vs. 1.36±0.18; P<0.001) and 6 h (3.64±0.25 vs. 1.28±0.20; P<0.001) (n=10). Moreover, a significant correlation was observed between the tumor uptake of 99mTc-Hynic-PEG-AE105 and uPAR expression (r=0.791, P=0.006). In conclusion, in the present study, a peptide-based SPECT tracer, 99mTc-Hynic-PEG-AE105, with a high purity and specific radioactivity was synthesized. 99mTc-Hynic-PEG-AE105 is a promising agent for the non-invasive determination of uPAR expression in pancreatic cancer. PMID:26622829

  3. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

    PubMed Central

    Kim, Hyunki; Furenlid, Lars R.; Crawford, Michael J.; Wilson, Donald W.; Barber, H. Bradford; Peterson, Todd E.; Hunter, William C. J.; Liu, Zhonglin; Woolfenden, James M.; Barrett, Harrison H.

    2008-01-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm × 2.7 cm × ~ 0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 × 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of −180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 × 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 × 10−4 with the energy window of ±10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT. PMID:16532954

  4. Altered myocardial perfusion in patients with angina pectoris or silent ischemia during exercise as assessed by quantitative thallium-201 single-photon emission computed tomography

    SciTech Connect

    Mahmarian, J.J.; Pratt, C.M.; Cocanougher, M.K.; Verani, M.S. )

    1990-10-01

    The extent of abnormally perfused myocardium was compared in patients with and without chest pain during treadmill exercise from a large, relatively low-risk consecutive patient population (n = 356) referred for quantitative thallium-201 single-photon emission computed tomography (SPECT). All patients had concurrent coronary angiography. Patients were excluded if they had prior coronary angioplasty or bypass surgery. Tomographic images were assessed visually and from computer-generated polar maps. Chest pain during exercise was as frequent in patients with normal coronary arteries (12%) as in those with significant (greater than 50% stenosis) coronary artery disease (CAD) (14%). In the 219 patients with significant CAD, silent ischemia was fivefold more common than symptomatic ischemia (83% versus 17%, p = 0.0001). However, there were no differences in the extent, severity, or distribution of coronary stenoses in patients with silent or symptomatic ischemia. Our major observation was that the extent of quantified SPECT perfusion defects was nearly identical in patients with (20.9 +/- 15.9%) and without (20.5 +/- 15.6%) exertional chest pain. The sensitivity for detecting the presence of CAD was significantly improved with quantitative SPECT compared with stress electrocardiography (87% versus 65%, p = 0.0001). Although scintigraphic and electrocardiographic evidence of exercise-induced ischemia were comparable in patients with chest pain (67% versus 73%, respectively; p = NS), SPECT was superior to stress electrocardiography for detecting silent myocardial ischemia. The majority of patients in this study with CAD who developed ischemia during exercise testing were asymptomatic, although they exhibited an angiographic profile and extent of abnormally perfused myocardium similar to those of patients with symptomatic ischemia.

  5. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays.

    PubMed

    Kim, Hyunki; Furenlid, Lars R; Crawford, Michael J; Wilson, Donald W; Barber, H Bradford; Peterson, Todd E; Hunter, William C J; Liu, Zhonglin; Woolfenden, James M; Barrett, Harrison H

    2006-02-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm x 2.7 cm x -0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 x 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 x 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 x 10(-4) with the energy window of +/-10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT.

  6. Anti-3-[18F]FACBC Positron Emission Tomography-Computerized Tomography and 111In-Capromab Pendetide Single Photon Emission Computerized Tomography-Computerized Tomography for Recurrent Prostate Carcinoma: Results of a Prospective Clinical Trial

    PubMed Central

    Schuster, David M.; Nieh, Peter T.; Jani, Ashesh B.; Amzat, Rianot; Bowman, F. DuBois; Halkar, Raghuveer K.; Master, Viraj A.; Nye, Jonathon A.; Odewole, Oluwaseun A.; Osunkoya, Adeboye O.; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M.

    2014-01-01

    Purpose We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[18F]FACBC compared to ProstaScint® (111In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. Materials and Methods A total of 93 patients met study inclusion criteria who underwent anti-3-[18F]FACBC positron emission tomography-computerized tomography plus 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. Results In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[18F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to 111In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[18F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to 111In-capromabpendetide with10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[18F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[18F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Conclusions Better diagnostic performance was noted for anti-3-[18F]FACBC positron emission tomography-computerized tomography than for 111In

  7. Ultrafast electrical control of a resonantly driven single photon source

    SciTech Connect

    Cao, Y.; Bennett, A. J. Ellis, D. J. P.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2014-08-04

    We demonstrate generation of a pulsed stream of electrically triggered single photons in resonance fluorescence, by applying high frequency electrical pulses to a single quantum dot in a p-i-n diode under resonant laser excitation. Single photon emission was verified, with the probability of multiple photon emission reduced to 2.8%. We show that despite the presence of charge noise in the emission spectrum of the dot, resonant excitation acts as a “filter” to generate narrow bandwidth photons.

  8. Single-photon electroluminescence for on-chip quantum networks

    NASA Astrophysics Data System (ADS)

    Bentham, C.; Hallett, D.; Prtljaga, N.; Royall, B.; Vaitiekus, D.; Coles, R. J.; Clarke, E.; Fox, A. M.; Skolnick, M. S.; Itskevich, I. E.; Wilson, L. R.

    2016-10-01

    An electrically driven single-photon source has been monolithically integrated with nano-photonic circuitry. Electroluminescent emission from a single InAs/GaAs quantum dot (QD) is channelled through a suspended nanobeam waveguide. The emission line has a linewidth of below 6 μeV, demonstrating the ability to have a high coherence, electrically driven, waveguide coupled QD source. The single-photon nature of the emission is verified by g ( 2 ) ( τ ) correlation measurements. Moreover, in a cross-correlation experiment, with emission collected from the two ends of the waveguide, the emission and propagation of single photons from the same QD is confirmed. This work provides the basis for the development of electrically driven on-chip single-photon sources, which can be readily coupled to waveguide filters, directional couplers, phase shifters, and other elements of quantum photonic networks.

  9. The Incremental Prognostic Value of Cardiac Computed Tomography in Comparison with Single-Photon Emission Computed Tomography in Patients with Suspected Coronary Artery Disease

    PubMed Central

    Lee, Heesun; Yoon, Yeonyee E.; Park, Jun-Bean; Kim, Hack-Lyoung; Park, Hyo Eun; Lee, Seung-Pyo; Kim, Hyung-Kwan; Choi, Su-Yeon; Kim, Yong-Jin; Cho, Goo-Yeong; Zo, Joo-Hee; Sohn, Dae-Won

    2016-01-01

    Background Coronary computed tomographic angiography (CCTA) facilitates comprehensive evaluation of coronary artery disease (CAD), including plaque characterization, and can provide additive diagnostic value to single-photon emission computed tomography (SPECT). However, data regarding the incremental prognostic value of CCTA to SPECT remain sparse. We evaluated the independent and incremental prognostic value of CCTA, as compared with clinical risk factors and SPECT. Materials and methods A total of 1,077 patients with suspected CAD who underwent both SPECT and cardiac CT between 2004 and 2012 were enrolled retrospectively. Presence of reversible or fixed perfusion defect (PD) and summed stress score were evaluated on SPECT. Presence, extent of coronary atherosclerosis and diameter stenosis (DS) were evaluated on CCTA. Plaque composition was categorized as non-calcified, mixed, or calcified according to the volume of calcified component (>130 Hounsfield Units). Patients were followed up for the occurrence of adverse cardiac events including cardiac death, non-fatal myocardial infarction, unstable angina, and late revascularization (>90 days after imaging studies). Results During follow-up (median 23 months), adverse cardiac events were observed in 71 patients (6.6%). When adjusted for clinical risk factors and SPECT findings, the presence of any coronary plaque, any plaque in ≥3 segments, coronary artery calcium score (CACS) ≥400, a plaque ≥50% DS, presence of non-calcified plaque (NCP) or mixed plaque (MP), and NCP/MP in ≥2 segments were independent predictors of adverse cardiac events; however, the presence of calcified plaque (CP) was not. Conventional CCTA findings, including CACS ≥400 and a plaque ≥50% DS, demonstrated incremental prognostic value over clinical risk factors and SPECT (χ² 54.19 to 101.03; p <0.001). Addition of NCP/MP in ≥2 segments resulted in further significantly improved prediction (χ² 101.03 to 113.29; p <0

  10. Evaluation of external beam hardening filters on image quality of computed tomography and single photon emission computed tomography/computed tomography.

    PubMed

    Rana, Nivedita; Rawat, Dinesh; Parmar, Madan; Dhawan, Devinder Kumar; Bhati, Ashok Kumar; Mittal, Bhagwant Rai

    2015-01-01

    This study was undertaken to evaluate the effect of external metal filters on the image quality of computed tomography (CT) and single photon emission computed tomography (SPECT)/CT images. Images of Jaszack phantom filled with water and containing iodine contrast filled syringes were acquired using CT (120 kV, 2.5 mA) component of SPECT/CT system, ensuring fixation of filter on X-ray collimator. Different thickness of filters of Al and Cu (1 mm, 2 mm, 3 mm, and 4 mm) and filter combinations Cu 1 mm, Cu 2 mm, Cu 3 mm each in combination with Al (1 mm, 2 mm, 3 mm, and 4 mm), respectively, were used. All image sets were visually analyzed for streak artifacts and contrast to noise ratio (CNR) was derived. Similar acquisition was done using Philips CT quality control (QC) phantom and CNR were calculated for its lexan, perspex, and teflon inserts. Attenuation corrected SPECT/CT images of Jaszack phantom filled with 444-555 MBq (12-15 mCi) of (99m)Tc were obtained by applying attenuation correction map generated by hardened X-ray beam for different filter combination, on SPECT data. Uniformity, root mean square (rms) and contrast were calculated in all image sets. Less streak artifacts at iodine water interface were observed in images acquired using external filters as compared to those without a filter. CNR for syringes, spheres, and inserts of Philips CT QC phantom was almost similar to Al 2 mm, Al 3 mm, and without the use of filters. CNR decreased with increasing copper thickness and other filter combinations. Uniformity and rms were lower, and value of contrast was higher for SPECT/CT images when CT was acquired with Al 2 mm and 3 mm filter than for images acquired without a filter. The study suggests that for Infinia Hawkeye 4, SPECT/CT system, Al 2 mm, and 3 mm are the optimum filters for improving image quality of SPECT/CT images of Jaszack or Philips CT QC phantom keeping other parameters of CT constant.

  11. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study.

    PubMed

    Compton, J; Travis, M J; Norbury, R; Erlandsson, K; van Amelsvoort, T; Daly, E; Waddington, W; Matthiasson, P; Eersels, J L H; Whitehead, M; Kerwin, R W; Ell, P J; Murphy, D G M

    2008-01-01

    Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human brain. We investigated the effect of long-term ET on cortical 5-HT(2A) receptor availability in postmenopausal women. In a cross-sectional study, we compared cortical 5-HT(2A) receptor availability in 17 postmenopausal ERT-naive women and 17 long-term oophorectomised estrogen-users, age- and IQ-matched using single photon emission tomography and the selective 5-HT(2A) receptor ligand (123)I-5-I-R91150. Also, we used the Revised Wechsler Memory Scale to relate memory function to 5-HT(2A) receptor availability. Never-users had significantly higher 5-HT(2A) receptor availability than estrogen-users in hippocampus (1.17 vs. 1.11, respectively, p=0.02), although this did not remain significant after correction for multiple comparisons. Hippocampal 5-HT(2A) receptor availability correlated negatively with verbal and general memory and delayed recall (r=-0.45, p=0.01; r=-0.40, p=0.02; r=-0.36, p=0.04). Right superior temporal 5-HT(2A) receptor availability correlated negatively with verbal memory (r=-0.36, p=0.04). In estrogen-users, receptor availability correlated negatively with verbal and general memory (r=-0.70, p=0.002; r=-0.69, p=0.002); and in never-users, receptor availability negatively correlated with attention and concentration (r=-0.54, p=0.02). Long-term ET may be associated with lower 5-HT(2A) receptor availability in hippocampus. This may reflect increased activity within the serotonergic pathway leading to down-regulation of post-synaptic receptor. Also, increased availability of the 5-HT(2A) receptor in hippocampus is associated with poorer memory function.

  12. Impact of Gender on the Prognostic Value of Coronary Artery Calcium in Symptomatic Patients With Normal Single-Photon Emission Computed Tomography Myocardial Perfusion.

    PubMed

    Engbers, Elsemiek M; Timmer, Jorik R; Ottervanger, Jan Paul; Mouden, Mohamed; Knollema, Siert; Jager, Pieter L

    2016-12-01

    The coronary artery calcium (CAC) score provides independent prognostic value on top of single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). We sought to determine whether the prognostic value of the CAC score in patients with normal SPECT MPI is gender specific. We studied 3,705 consecutive symptomatic patients without a history of coronary artery disease with normal SPECT MPI. All patients underwent concomitant CAC scoring, which was categorized as CAC score 0, 1 to 99, 100 to 399, 400 to 999, or ≥1,000. Major adverse cardiac events were defined as revascularization, nonfatal myocardial infarction, or all-cause mortality. The median CAC score was 9 in women (interquartile range 0 to 113) and 47 in men (interquartile range 1 to 307, p <0.001). The annual event rate was lower in women than in men (1.6% and 2.7%, respectively, p <0.001). When stratified by CAC score, annual event rates were similar (for women and men, respectively: CAC score 0, 0.6% and 0.5%, p = 0.95; CAC score 1 to 99, 0.9% and 1.2%, p = 0.45; CAC score 100 to 399, 2.7% and 3.8%, p = 0.23; CAC score 400 to 999, 3.8% and 5.3%, p = 0.34; CAC score ≥1,000, 8.4% and 8.7%, p = 0.99). The CAC score was an independent predictor of major adverse cardiac events in both genders (CAC score ≥1,000: hazard ratio for women 8.5, 95% confidence interval 4.0 to 18.1; hazard ratio for men 14.8, 95% confidence interval 5.3 to 41.1). In conclusion, risk for events is similar for both genders when stratified by CAC score, wherein a high CAC score carries a high risk for events despite normal SPECT MPI. Our findings do not reveal a gender-specific prognostic value of the CAC score.

  13. Ten-Year Outcomes: The Clinical Utility of Single Photon Emission Computed Tomography/Computed Tomography Capromab Pendetide (Prostascint) in a Cohort Diagnosed With Localized Prostate Cancer

    SciTech Connect

    Ellis, Rodney J.; Kaminsky, Deborah A.; Zhou, Esther H.; Fu, Pingfu; Chen, Wei-Dong; Faulhaber, Peter F.; Bodner, Donald

    2011-09-01

    Purpose: To evaluate the clinical utility of capromab pendetide imaging with single photon emission computed tomography coregistration with computed tomography (SPECT/CT) in primary prostate cancer (CaP) for pretreatment prognostic staging and localization of biologic target volumes (BTV) for individualized image-guided radiotherapy dose escalation (IGRT-DE). Methods and Materials: Patients consecutively presenting for primary radiotherapy (February 1997 to December 2002), having a clinical diagnosis of localized CaP, were evaluated for tumor stage using conventional staging and SPECT/CT (N = 239). Distant metastatic uptake (mets) were identified by SPECT/CT in 22 (9.2%). None of the suspected mets could be clinically confirmed. Thus, all subjects were followed without alteration in disease management. The SPECT/CT pelvic images defined BTV for IGRT-DE (+150% brachytherapy dose) without (n = 150) or with (n = 89) external radiation of 45 Gy. The National Comprehensive Cancer Network criteria defined risk groups (RG). The median survivor follow-up was 7 years. Biochemical disease-free survival (bDFS) was reported by clinical nadir +2 ng/mL (CN+2) criteria. Statistical analyses included Kaplan-Meier, multivariate analysis, and Concordance-index models. Results: At 10-year analyses, overall survival was 84.8% and bDFS was 84.6%. With stratification by RG, CN+2 bDFS was 93.5% for the low-RG (n = 116), 78.7% for the intermediate-RG (n = 94), and 68.8% for the high-RG (n = 29), p = 0.0002. With stratification by pretreatment SPECT/CT findings, bDFS was 65.5% in patients with suspected mets (n = 22) vs. 86.6% in patients with only localized uptake (n = 217), p = 0.0014. CaP disease-specific survival (DSS) was 97.7% for the cohort. With stratification by SPECT/CT findings, DSS was 86.4% (with suspected mets) vs. 99.0% (localized only), p = 0.0001. Using multivariate analysis, the DSS hazard ratio for SPECT/CT findings (mets vs. localized) was 3.58 (p = 0.0026). Concordance

  14. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy.

    PubMed

    Wagner, D R; Kim, H S; Saykally, R J

    2000-12-20

    Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.

  15. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Wagner, D. R.; Kim, H. S.; Saykally, R. J.

    2000-01-01

    Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.

  16. Early Changes by (18)Fluorodeoxyglucose positron emission tomography coregistered with computed tomography predict outcome after Mycobacterium tuberculosis infection in cynomolgus macaques.

    PubMed

    Coleman, M Teresa; Maiello, Pauline; Tomko, Jaime; Frye, Lonnie James; Fillmore, Daniel; Janssen, Christopher; Klein, Edwin; Lin, Philana Ling

    2014-06-01

    Cynomolgus macaques infected with low-dose Mycobacterium tuberculosis develop both active tuberculosis and latent infection similar to those of humans, providing an opportunity to study the clinically silent early events in infection. (18)Fluorodeoxyglucose radiotracer with positron emission tomography coregistered with computed tomography (FDG PET/CT) provides a noninvasive method to measure disease progression. We sought to determine temporal patterns of granuloma evolution that distinguished active-disease and latent outcomes. Macaques (n = 10) were infected with low-dose M. tuberculosis with FDG PET/CT performed during infection. At 24 weeks postinfection, animals were classified as having active disease (n = 3) or latent infection (n = 6), with one "percolator" monkey. Imaging characteristics (e.g., lesion number, metabolic activity, size, mineralization, and distribution of lesions) were compared among active and latent groups. As early as 3 weeks postinfection, more pulmonary granulomas were observed in animals that would later develop active disease than in those that would develop latent infection. Over time, new lesions developed in active-disease animals but not in latent animals. Granulomas and mediastinal lymph nodes from active-disease but not latent animals consistently increased in metabolic activity at early time points. The presence of fewer lesions at 3 weeks and the lack of new lesion development in animals with latent infection suggest that innate and rapid adaptive responses are critical to preventing active tuberculosis. A greater emphasis on innate responses and/or rapid recruitment of adaptive responses, especially in the airway, should be emphasized in newer vaccine strategies.

  17. T-shaped single-photon router.

    PubMed

    Lu, Jing; Wang, Z H; Zhou, Lan

    2015-09-07

    We study the transport properties of a single photon scattered by a two-level system (TLS) in a T-shaped waveguide, which is made of two coupled-resonator waveguides (CRWs)- an infinite CRW and a semi-infinite CRW. The spontaneous emission of the TLS directs single photons from one CRW to the other. Although the transfer rate is different for the wave incident from different CRWs, due to the boundary breaking the translational symmetry, the boundary can enhance the transfer rate found in Phys. Rev. Lett. 111, 103604 (2013) and Phys. Rev. A 89, 013805 (2014), as the transfer rate could be unity for the wave incident from the semi-infinite CRW.

  18. Single-photon decision maker

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-08-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  19. Single-photon decision maker.

    PubMed

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-08-17

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  20. Single-photon decision maker

    PubMed Central

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-01-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions. PMID:26278007

  1. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with (99m)Tc-methylene diphosphonate single photon emission computed tomography/computed tomography.

    PubMed

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. (99m)Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis.

  2. Single photon searches at PEP

    SciTech Connect

    Hollebeek, R.

    1985-12-01

    The MAC and ASP searches for events with a single photon and no other observed particles are reviewed. New results on the number of neutrino generations and limits on selection, photino, squark and gluino masses from the ASP experiment are presented.

  3. All-optical tailoring of single-photon spectra in a quantum-dot microcavity system

    NASA Astrophysics Data System (ADS)

    Breddermann, D.; Heinze, D.; Binder, R.; Zrenner, A.; Schumacher, S.

    2016-10-01

    Semiconductor quantum-dot cavity systems are promising sources for solid-state-based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study cavity-enhanced single-photon generation from the quantum-dot biexciton through a partly stimulated nondegenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.

  4. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    SciTech Connect

    Paul, Matthias Kettler, Jan; Zeuner, Katharina; Clausen, Caterina; Jetter, Michael; Michler, Peter

    2015-03-23

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  5. Whole-body imaging of adoptively transferred T cells using magnetic resonance imaging, single photon emission computed tomography and positron emission tomography techniques, with a focus on regulatory T cells

    PubMed Central

    Leech, J M; Sharif-Paghaleh, E; Maher, J; Livieratos, L; Lechler, R I; Mullen, G E; Lombardi, G; Smyth, L A

    2013-01-01

    Cell-based therapies using natural or genetically modified regulatory T cells (Tregs) have shown significant promise as immune-based therapies. One of the main difficulties facing the further advancement of these therapies is that the fate and localization of adoptively transferred Tregs is largely unknown. The ability to dissect the migratory pathway of these cells in a non-invasive manner is of vital importance for the further development of in-vivo cell-based immunotherapies, as this technology allows the fate of the therapeutically administered cell to be imaged in real time. In this review we will provide an overview of the current clinical imaging techniques used to track T cells and Tregs in vivo, including magnetic resonance imaging (MRI) and positron emission tomography (PET)/single photon emission computed tomography (SPECT). In addition, we will discuss how the finding of these studies can be used, in the context of transplantation, to define the most appropriate Treg subset required for cellular therapy. PMID:23574314

  6. Ramsey Interference with Single Photons

    NASA Astrophysics Data System (ADS)

    Clemmen, Stéphane; Farsi, Alessandro; Ramelow, Sven; Gaeta, Alexander L.

    2016-11-01

    Interferometry using discrete energy levels of nuclear, atomic, or molecular systems is the foundation for a wide range of physical phenomena and enables powerful techniques such as nuclear magnetic resonance, electron spin resonance, Ramsey-based spectroscopy, and laser or maser technology. It also plays a unique role in quantum information processing as qubits may be implemented as energy superposition states of simple quantum systems. Here, we demonstrate quantum interference involving energy states of single quanta of light. In full analogy to the energy levels of atoms or nuclear spins, we implement a Ramsey interferometer with single photons. We experimentally generate energy superposition states of a single photon and manipulate them with unitary transformations to realize arbitrary projective measurements. Our approach opens the path for frequency-encoded photonic qubits in quantum information processing and quantum communication.

  7. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  8. Enhancement of Single-Photon Sources with Metamaterials

    NASA Astrophysics Data System (ADS)

    Shalaginov, M. Y.; Bogdanov, S.; Vorobyov, V. V.; Lagutchev, A. S.; Kildishev, A. V.; Akimov, A. V.; Boltasseva, A.; Shalaev, V. M.

    2015-06-01

    Scientists are looking for new, breakthrough solutions that can greatly advance computing and networking systems. These solutions will involve quantum properties of matter and light as promised by the ongoing experimental and theoretical work in the areas of quantum computation and communication. Quantum photonics is destined to play a central role in the development of such technologies due to the high transmission capacity and outstanding low-noise properties of photonic information channels. Among the vital problems to be solved in this direction, are efficient generation and collection of single photons. One approach to tackle these problems is based on engineering emission properties of available single-photon sources using metamaterials. Metamaterials are artificially engineered structures with sub-wavelength features whose optical properties go beyond the limitations of conventional materials. As promising single-photon sources, we have chosen nitrogen-vacancy (NV) color centers in diamond, which are capable to operate stably in a single-photon regime at room temperature in a solid state environment. In this chapter, we report both theoretical and experimental studies of the radiation from a nanodiamond single NV center placed near a hyperbolic metamaterial (HMM). In particular, we derive the reduction of excited-state lifetime and the enhancement of collected single-photon emission rate and compare them with the experimental observations. These results could be of great impact for future integrated quantum sources, especially owing to a CMOS-compatible approach to HMM synthesis.

  9. Efficient Generation of Frequency-Multiplexed Entangled Single Photons

    NASA Astrophysics Data System (ADS)

    Qiu, Tian-Hui; Xie, Min

    2016-12-01

    We present two schemes to generate frequency-multiplexed entangled (FME) single photons by coherently mapping photonic entanglement into and out of a quantum memory based on Raman interactions. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its frequency conversion, and find that the both progresses have the characteristic of inherent determinacy. Our theory can reproduce the prominent features of observed results including pulse shapes and the condition for deterministically generating the FME single photons. The schemes are suitable for the entangled photon pairs with a wider frequency range, and could be immune to the photon loss originating from cavity-mode damping, spontaneous emission, and the dephasing due to atomic thermal motion. The sources might have significant applications in wavelength-division-multiplexing quantum key distribution.

  10. Strategies for optical integration of single-photon sources

    NASA Astrophysics Data System (ADS)

    Benson, Oliver; Schell, Andreas W.; Neumer, Tanja; Shi, Qiang; Kaschke, Johannes; Fischer, Joachim; Wegener, Martin

    2015-02-01

    Single-photon sources based on solid-state emitters, like quantum dots, molecules or defect centers in diamond, are one of the key components for an integrated quantum technology. Here, we will show different strategies used in order to integrate single-photon emitters. Among others, we introduce an hybrid approach using photon emission from defect centers in diamond and laser-written photonic structures. Waveguides, microresonators, and optical antennas can be fabricated and oriented with respect to the single emitters. We describe our general approach before we specifically address the problem of efficient single-photon collection through optical antennas. We discuss the limitations of the method, its potential for scalability as well as its extension towards optical sensing applications.

  11. Highly efficient heralding of entangled single photons.

    PubMed

    Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert

    2013-03-25

    Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

  12. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    NASA Astrophysics Data System (ADS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  13. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    SciTech Connect

    Razali, Azhani Mohd Abdullah, Jaafar

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  14. Measurement of infarct size using single photon emission computed tomography and /sup 99m/Tc pyrophosphate: a description of the method and comparison with patient prognosis

    SciTech Connect

    Holman, B.L.; Goldhaber, S.Z.; Kirsch, C.M.; Polak, J.F.; Friedman, B.J.; English, R.J.; Wynne, J.

    1982-09-01

    The application of dual tracer transaxial emission computed tomography of the heart was studied with use of /sup 99m/Tc pyrophosphate and /sup 99m/Tc-labeled red blood cells for measuring infarct size in 20 patients with acute myocardial infarction and 10 without infarction. Imaging was performed with a standard gamma camera and with a multidetector transaxial emission computed tomographic body scanner 3 hours after injection of /sup 99m/Tc pyrophosphate. Immediately after the scanning procedure, /sup 99m/Tc pertechnetate was injected to label red blood cells, and the scanning protocol was repeated. /sup 99m/Tc pyrophosphate was detected in the anterior wall with involvement of the interventricular septum or lateral wall in patients with electrocardiographic criteria for anterior infarction, whereas uptake was detected in the diaphragmatic left ventricular wall with involvement of the posterior, posteroseptal or posterolateral left ventricle or of the right ventricle in patients with electrocardiographic criteria for inferior or posterior infarction. Infarct size measured from transaxial images ranged from 14.0 to 117.0 g in weight. There was a direct relation between infarct size and patient prognosis in that, of the 13 patients with infarct greater than 40 g, 11 (85 percent) had complications, whereas only 2 (29 percent) of 7 patients with an infarct less than 40 g had complications during a follow-up period averaging 17.8 months (p less than 0.05).

  15. Single-photon superradiance and radiation trapping by atomic shells

    NASA Astrophysics Data System (ADS)

    Svidzinsky, Anatoly A.; Li, Fu; Li, Hongyuan; Zhang, Xiwen; Ooi, C. H. Raymond; Scully, Marlan O.

    2016-04-01

    The collective nature of light emission by atomic ensembles yields fascinating effects such as superradiance and radiation trapping even at the single-photon level. Light emission is influenced by virtual transitions and the collective Lamb shift which yields peculiar features in temporal evolution of the atomic system. We study how two-dimensional atomic structures collectively emit a single photon. Namely, we consider spherical, cylindrical, and spheroidal shells with two-level atoms continuously distributed on the shell surface and find exact analytical solutions for eigenstates of such systems and their collective decay rates and frequency shifts. We identify states which undergo superradiant decay and states which are trapped and investigate how size and shape of the shell affects collective light emission. Our findings could be useful for quantum information storage and the design of optical switches.

  16. Synthesis and structure-affinity relationships of selective high-affinity 5-HT(4) receptor antagonists: application to the design of new potential single photon emission computed tomography tracers.

    PubMed

    Dubost, Emmanuelle; Dumas, Noé; Fossey, Christine; Magnelli, Rosa; Butt-Gueulle, Sabrina; Ballandonne, Céline; Caignard, Daniel H; Dulin, Fabienne; Sopkova de-Oliveira Santos, Jana; Millet, Philippe; Charnay, Yves; Rault, Sylvain; Cailly, Thomas; Fabis, Frederic

    2012-11-26

    The work described herein aims at finding new potential ligands for the brain imaging of 5-HT(4) receptors (5-HT(4)Rs) using single-photon emission computed tomography (SPECT). Starting from the nonsubstituted phenanthridine compound 4a, exhibiting a K(i) value of 51 nM on the 5-HT(4)R, we explored the structure-affinity in this series. We found that substitution in position 4 of the tricycle with a fluorine atom gave the best result. Introduction of an additional nitrogen atom inside the tricyclic framework led to an increase of both the affinity and selectivity for 5-HT(4)R, suggesting the design of the antagonist 4v, exhibiting a high affinity of 0.04 nM. Several iodinated analogues were then synthesized as potential SPECT tracers. The iodinated compound 11d was able to displace the reference radioiodinated 5-HT(4)R antagonist (1-butylpiperidin-4-yl)methyl-8-amino-7-iodo[(123)I]-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate {[(123)I]1, [(123)I]SB 207710} both in vitro and in vivo in brain. Compound 11d was radiolabeled with [(125)I]iodine, providing a potential SPECT candidate for brain imaging of 5-HT(4)R.

  17. Non-invasive three-dimensional localisation of arrhythmogenic foci in Wolff-Parkinson-White syndrome and in ventricular tachycardia by radionuclide ventriculography: phase analysis of double-angulated integrated single photon emission computed tomography (SPECT).

    PubMed Central

    Weismüller, P; Clausen, M; Weller, R; Richter, P; Steinmann, J; Henze, E; Dormehl, I; Kochs, M; Adam, W E; Hombach, V

    1993-01-01

    A new tomographic technique combined with phase analysis was used to detect premature and ectopic ventricular contraction patterns in 15 patients with Wolff-Parkinson-White syndrome and during ventricular tachycardia in seven patients. Data generated by gated single-photon emission computed tomography (SPECT) were analysed by backprojection of the Fourier coefficients, double-angulation, and integration to thick slices containing the ventricles, thus allowing visualisation of the contraction patterns in three perpendicular views. The results were compared with those of catheter mapping. In nine patients with Wolff-Parkinson-White syndrome the site of initial contraction detected was identical with the site of the accessory pathway found by catheter mapping. The sites of origin of the ventricular tachycardias determined by catheter mapping were within 3 cm of the sites detected by the new technique. This new technique seems to be a promising non-invasive method for localising ectopic ventricular activity that will considerably shorten the time required for subsequent invasive procedures. Images PMID:8461217

  18. Synthesis and Structure-Affinity Relationships of Selective High-Affinity 5-HT4 Receptor Antagonists: Application to the Design of New Potential Single Photon Emission Computed Tomography (SPECT) Tracers

    PubMed Central

    Dubost, Emmanuelle; Dumas, Noé; Fossey, Christine; Magnelli, Rosa; Butt-Gueulle, Sabrina; Ballandonne, Céline; Caignard, Daniel H.; Dulin, Fabienne; de-Oliveira Santos, Jana Sopkova; Millet, Philippe; Charnay, Yves; Rault, Sylvain; Cailly, Thomas; Fabis, Frederic

    2012-01-01

    The work described herein aims at finding new potential ligands for the brain imaging of 5-HT4 receptors using single-photon emission computed tomography (SPECT). Starting from the non-substituted phenanthridine compound 4a exhibiting a Ki value of 51 nM on 5-HT4R, we explored structure-affinity in this series. We found that substitution in position 4 of the tricycle with a fluorine atom gave the best result. Introduction of an additional nitrogen atom inside the tricyclic framework led to increase both the affinity and the selectivity for 5-HT4R suggesting the design of the antagonist 4v exhibiting a high affinity of 0.04 nM. Several iodinated analogues were then synthesized as potential SPECT tracers. The iodinated compound 11d was able to displace the reference radioiodinated 5-HT4R antagonist (1-butylpiperidin-4-yl)methyl-8-amino-7-iodo[123I]-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate ([123I]1, [123I]SB 207710) both in vitro and in vivo in brain. Compound 11d was radiolabeled with [125I]iodine, providing a potential SPECT candidate for brain imaging of 5-HT4R. PMID:23102207

  19. Real-Time Three-Dimensional Echocardiography as a Novel Approach to Quantify Left Ventricular Dyssynchrony: A Comparison Study with Phase Analysis of Gated Myocardial Perfusion Single Photon Emission Computed Tomography

    PubMed Central

    Marsan, Nina Ajmone; Henneman, Maureen M.; Chen, Ji; Ypenburg, Claudia; Dibbets, Petra; Ghio, Stefano; Bleeker, Gabe B.; Stokkel, Marcel P.; van der Wall, Ernst E.; Tavazzi, Luigi; Garcia, Ernest V.; Bax, Jeroen J.

    2010-01-01

    Background Different imaging modalities have been explored for assessment of left ventricular (LV) dyssynchrony. Gated myocardial perfusion single photon emission computed tomography (GMPS) with phase analysis is a reliable technique to quantify LV dyssynchrony and predict response to cardiac resynchronization therapy. Objective Real-time 3-dimensional echocardiography (RT3DE) is a novel imaging technique that provides a LV systolic dyssynchrony index, based on regional volumetric changes as a function of time and calculated as the SD of time to minimum systolic volume of 16 standard myocardial segments expressed in percentage of cardiac cycle. The aim of this study was to compare LV dyssynchrony evaluated with GMPS with LV dyssynchrony assessed with RT3DE. Methods The study population consisted of 40 patients with heart failure who underwent both GMPS and RT3DE. Results Good correlations between LV dyssynchrony assessed with RT3DE and GMPS were demonstrated (r = 0.76 for histogram bandwidth, r = 0.80 for phase SD, P < .0001). Patients with substantial LV dyssynchrony on GMPS (defined as ≥135 degrees for histogram bandwidth and ≥43 degrees for phase SD) had significantly higher LV systolic dyssynchrony index than patients without substantial LV dyssynchrony. Conclusions The good correlations between LV dyssynchrony assessed with GMPS and with RT3DE provide further support for the use of RT3DE for reliable assessment of LV dyssynchrony. PMID:18222645

  20. Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer

    NASA Astrophysics Data System (ADS)

    Deng, Shengming; Zhang, Wei; Zhang, Bin; Hong, Ruoyu; Chen, Qing; Dong, Jiajia; Chen, Yinyiin; Chen, Zhiqiang; Wu, Yiwei

    2015-01-01

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) modified with a novel cyclic arginine-glycine-aspartate (RGD) peptide were made and radiolabeled as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. The probe was tested both in vitro and in vivo to determine its receptor targeting efficacy and feasibility for SPECT and MRI. The radiochemical syntheses of 125I-cRGD-USPIO were accomplished with a radiochemical purity of 96.05 ± 0.33 %. High radiochemical stability was found in fresh human serum and in phosphate-buffered saline. The average hydrodynamic size of 125I-cRGD-USPIO determined by dynamic light scattering was 51.3 nm. Results of in vitro experiments verified the specificity of the radiolabeled nanoparticles to tumor cells. Preliminary biodistribution studies of 125I-radiolabeled cRGD-USPIO in Bcap37-bearing nude mice showed that it had long circulation half-life, high tumor uptake, and high initial blood retention with moderate liver uptake. In vivo tumor targeting and uptake of the radiolabeled nanoparticles in mice model were visualized by SPECT and MRI collected at different time points. Our results strongly indicated that the 125I-cRGD-USPIO could be used as a promising bifunctional radiotracer for early clinical tumor detection with high sensitivity and high spatial resolution by SPECT and MRI.

  1. High-resolution nuclear magnetic resonance imaging and single photon emission computerized tomography--cerebral blood flow in a case of pure sensory stroke and mild dementia owing to subcortical arteriosclerotic encephalopathy (Binswanger's disease)

    SciTech Connect

    De Chiara, S.; Lassen, N.A.; Andersen, A.R.; Gade, A.; Lester, J.; Thomsen, C.; Henriksen, O.

    1987-01-01

    Pure sensory stroke (PSS) is typically caused by a lacunar infarct located in the ventral-posterior (VP) thalamic nucleus contralateral to the paresthetic symptoms. The lesion is usually so small that it cannot be seen on computerized tomography (CT), as illustrated by our case. In our moderately hypertensive, 72-year-old patient with PSS, CT scanning and conventional nuclear magnetic resonance imaging (NMRI) scanning using a 7-mm-thick slice on a 1.5 Tesla instrument all failed to visualize the thalamic infarct. Using the high-resolution mode with 2-mm slice thickness it was, however, clearly seen. In addition, NMRI unexpectedly showed diffuse periventricular demyelinization as well as three other lacunar infarcts, i.e., findings characteristic of subcortical arteriosclerotic encephalopathy (SAE). This prompted psychometric testing, which revealed signs of mild (subclinical) dementia, in particular involving visiospatial apraxia; this pointed to decreased function of the right parietal cortex, which was structurally intact on CT and NMRI. Single photon emission computerized tomography by Xenon-133 injection and by hexamethyl-propyleneamine-oxim labeled with Technetium-99m showed asymmetric distribution of cerebral blood flow (CBF), with an 18% lower value in the right parietal cortex compared to the left side; this indicated asymmetric disconnection of the cortex by the SAE. Thus, the tomograms of the functional parameter, CBF, correlated better with the deficits revealed by neuropsychological testing than by CT or NMRI.

  2. Localised excitation of a single photon source by a nanowaveguide.

    PubMed

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-29

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10(-4) only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.

  3. Pure single photons from a trapped atom source

    NASA Astrophysics Data System (ADS)

    Higginbottom, D. B.; Slodička, L.; Araneda, G.; Lachman, L.; Filip, R.; Hennrich, M.; Blatt, R.

    2016-09-01

    Single atoms or atom-like emitters are the purest source of single photons, they are intrinsically incapable of multi-photon emission. To demonstrate this degree of photon number-state purity we have realized a single-photon source using a single ion trapped at the common focus of high numerical aperture lenses. Our trapped-ion source produces single-photon pulses with {g}2(0)=(1.9+/- 0.2)× {10}-3 without any background subtraction. After subtracting detector dark counts the residual {g}2(0) is less than 3 × 10-4 (95% confidence interval). The multi-photon component of the source light field is low enough that we measure violation of a quantum non-Gaussian state witness, by this characterization the source output is indistinguishable from ideal attenuated single photons. In combination with efforts to enhance collection efficiency from single emitters, our results suggest that single trapped ions are not only ideal stationary qubits for quantum information processing, but promising sources of light for scalable optical quantum networks.

  4. Localised excitation of a single photon source by a nanowaveguide

    PubMed Central

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-01

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10−4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system. PMID:26822999

  5. Weaving single photon imaging into new drug development.

    PubMed

    Mozley, P David

    2005-01-01

    The specific aim of this review is to assess the potential contribution of single photon emitting radiopharmaceutical technologies to new drug development. For each phase of therapeutic drug development, published literature was sought that shows single photon emitters can add value by quantifying pharmacokinetics, visualizing mechanisms of drug action, estimating therapeutic safety indices, or measuring dose-dependent pharmacodynamic effects. Not any published reports were found that describe using nuclear medicine techniques to help manage the progress of a new drug development program. As a consequence, most of the case in favor of weaving single photon imaging into the process had to be built on extrapolations from studies that showed feasibility post hoc. The strongest evidence of potential value was found for drug candidates that hope to influence diseases characterized by cell proliferation or cell death, particularly in the fields of oncology, cardiology, nephrology, and inflammation. Receptor occupancy studies were observed to occasionally offer unique advantages over analogous studies with positron emission tomography (PET). Enough hard data sets were found to justify the costs of using single photon imaging in a variety of new drug development paradigms.

  6. Entangling single photons from independently tuned semiconductor nanoemitters.

    PubMed

    Sanaka, Kaoru; Pawlis, Alexander; Ladd, Thaddeus D; Sleiter, Darin J; Lischka, Klaus; Yamamoto, Yoshihisa

    2012-09-12

    Quantum communication systems based on nanoscale semiconductor devices is challenged by inhomogeneities from device to device. We address this challenge using ZnMgSe/ZnSe quantum-well nanostructures with local laser-based heating to tune the emission of single impurity-bound exciton emitters in two separate devices. The matched emission in combination with photon bunching enables quantum interference from the devices and allows the postselection of polarization-entangled single photons. The ability to entangle single photons emitted from nanometer-sized sources separated by macroscopic distances provides an essential step for a solid-state realization of a large-scale quantum optical network. This paves the way toward measurement-based entanglement generation between remote electron spins localized at macroscopically separated fluorine impurities.

  7. Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters.

    PubMed

    Hu, Fengrui; Zhang, Huichao; Sun, Chun; Yin, Chunyang; Lv, Bihu; Zhang, Chunfeng; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2015-12-22

    The power conversion efficiency of photovoltaic devices based on semiconductor perovskites has reached ∼20% after just several years of research efforts. With concomitant discoveries of other promising applications in lasers, light-emitting diodes, and photodetectors, it is natural to anticipate what further excitement these exotic perovskites could bring about. Here we report on the observation of single photon emission from single CsPbBr3 perovskite nanocrystals (NCs) synthesized from a facile colloidal approach. Compared with traditional metal-chalcogenide NCs, these CsPbBr3 NCs exhibit nearly 2 orders of magnitude increase in their absorption cross sections at similar emission colors. Moreover, the radiative lifetime of CsPbBr3 NCs is greatly shortened at both room and cryogenic temperatures to favor an extremely fast output of single photons. The above superior optical properties have paved the way toward quantum-light applications of perovskite NCs in various quantum information processing schemes.

  8. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    PubMed

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  9. Integrated optomechanical single-photon frequency shifter

    NASA Astrophysics Data System (ADS)

    Fan, Linran; Zou, Chang-Ling; Poot, Menno; Cheng, Risheng; Guo, Xiang; Han, Xu; Tang, Hong X.

    2016-12-01

    The ability to manipulate single photons is of critical importance for fundamental quantum optics studies and practical implementations of quantum communications. While extraordinary progresses have been made in controlling spatial, temporal, spin and orbit angular momentum degrees of freedom, frequency-domain control of single photons so far relies on nonlinear optical effects, which have faced obstacles such as noise photons, narrow bandwidth and demanding optical filtering. Here, we demonstrate the first integrated optomechanical single-photon frequency shifter with near-unity efficiency. A frequency shift up to 150 GHz at telecom wavelength is realized without measurable added noise and the preservation of quantum coherence is verified through quantum interference between twin photons of different colours. This single-photon frequency shifter will be invaluable for increasing the channel capacity of quantum communications and compensating frequency mismatch between quantum systems, paving the road towards a hybrid quantum network.

  10. Stroing single-photons in microcavities arrays

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; Enk, S. J. Van; Kimble, H. J.

    2014-03-01

    Coupling light to arrays of microcavities is one of the most promising avenues to store/delay classical light pulses [F. Krauss, Nat. Phot. 2, 448-450 (2008)]. However, from the perspective of benefiting quantum communication protocols, the same ideas in principle can be extended down to the single-photon (quantum) level as well. Particularly, for the purposes of entanglement purification and quantum repeaters a reliable storage of single photons is needed. We consider in our work [I. M. Mirza, S. Van Enk, H. Kimble JOSA B, 30,10 (2013)] cavities that are coupled through an optical fiber which is assumed to be forming a Markovian bath. For this study two powerful open quantum system techniques, Input-Output theory for cascaded quantum systems and the Quantum Trajectory approach are used in combination. For the confirmation of photon delays the Time-Dependent Spectrum of such a single photon is obtained. Interestingly this leads to a hole-burning effect showing that only certain frequency components in the single photon wavepackets are stored inside the cavities and hence are delayed in time. Since on-demand production of single photons is not an easy task we include in our description the actual generation of the single photon by assuming a single emitter in one the resonators.

  11. Molecular imaging by single-photon emission

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Accorsi, R.; Cinti, M. N.; Colilli, S.; Fortuna, A.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lanza, R. C.; Loizzo, A.; Lucentini, M.; Pani, R.; Pellegrini, R.; Santavenere, F.; Scopinaro, F.

    2004-07-01

    In vivo imaging of pharmaceuticals labeled with radionuclides has proven to be a powerful tool in human subjects. The same imaging methods have often been applied to small animal but usually only within the nuclear medicine (NM) community, and usually only to evaluate the efficacy of new radiopharmaceuticals. We have built a compact mini gamma camera, a pixellated array of NaI(Tl) crystals coupled to 3'' R2486 Hamamatsu Position Sensitive PMT; in combination with a pinhole collimator, which allows for high resolution in vivo SPECT imaging. Calculations show that reasonable counting rates are possible. The system has been tested and preliminary measurements on mice have been done. The performances of the camera are in the expectations. Improvements will be done both on the collimation technique and on the detector. Simulations have been performed to study a coded aperture collimator. The results show that the efficiency can be greatly improved without sacrificing the spatial resolution. A dedicated mask has been designed and will be used soon.

  12. Single Photon Emission Computed Tomography (SPECT)

    MedlinePlus

    ... Search By Zipcode Search by State SELECT YOUR LANGUAGE Español (Spanish) 简体中文 (Traditional Chinese) 繁体中文 (Simplified Chinese) ... blood pressure. The technician will put an intravenous line (IV) in your arm. The tracer will be ...

  13. Single Photon Emission Local Tomography (SPELT)

    SciTech Connect

    Zeng, G.L.; Gullberg, G.T.

    1996-12-31

    Local tomography uses truncated projection data to reconstruct a region of interest, and is important in medical imaging and industrial non-destructive evaluation using micro X-ray CT. The popular filtered backprojection (FBP) algorithm does not reconstruct a reliable image, which varies with the degree and location of truncation due to its global convolution kernel. A typical local tomography method uses a second derivative local operator to replace the global convolution kernel in the filtered backprojection algorithm (LFBP). By using a local filter, the reconstructed region depends only on the local projections. The singularities (edges) are preserved, but the exact image value cannot be recovered. This paper, using the data consistency conditions, developed a pre-processing technique that uses the FBP algorithm, which outperforms direct FBP and LFBP.

  14. Controlled generation of single photons in a coupled atom-cavity system at a fast repetition-rate.

    PubMed

    Kang, Sungsam; Lim, Sooin; Hwang, Myounggyu; Kim, Wookrae; Kim, Jung-Ryul; An, Kyungwon

    2011-01-31

    We have demonstrated high-speed controlled generation of single photons in a coupled atom-cavity system. A single 85Rb atom, pumped with a nanosecond-pulse laser, generates a single photon into the cavity mode, and the photon is then emitted out the cavity rapidly. By employing cavity parameters for a moderate coupling regime, the single-photon emission process was optimized for both high efficiency and fast bit rates up to 10 MHz. The temporal single-photon wave packet was studied by means of the photon-arrival-time distribution relative to the pump pulse and the efficiency of the single-photon generation was investigated as the pump power. The single-photon nature of the emission was confirmed by the second-order correlation of emitted photons.

  15. Single-photon emission computed tomographic imaging of the early time course of therapy-induced cell death using technetium 99m tricarbonyl His-annexin A5 in a colorectal cancer xenograft model.

    PubMed

    Vangestel, Christel; Van de Wiele, Christophe; Mees, Gilles; Mertens, Koen; Staelens, Steven; Reutelingsperger, Chris; Pauwels, Patrick; Van Damme, Nancy; Peeters, Marc

    2012-04-01

    As apoptosis occurs over an interval of time after administration of apoptosis-inducing therapy in tumors, the changes in technetium 99m ((99m)Tc)-tricarbonyl (CO)₃ His-annexin A5 (His-ann A5) accumulation over time were examined. Colo205-bearing mice were divided into six treatment groups: (1) control, (2) 5-fluorouracil (5-FU; 250 mg/kg), (3) irinotecan (100 mg/kg), (4) oxaliplatin (30 mg/kg), (5) bevacizumab (5 mg/kg), and (6) panitumumab (6 mg/kg). (99m)Tc-(CO)₃ His-ann A5 was injected 4, 8, 12, 24, and 48 hours posttreatment, and micro-single-photon emission computed tomography was performed. Immunostaining of caspase-3 (apoptosis), survivin (antiapoptosis), and LC3-II (autophagy marker) was also performed. Different dynamics of (99m)Tc-(CO)₃ His-ann A5 uptake were observed in this colorectal cancer xenograft model, in response to a single dose of three different chemotherapeutics (5-FU, irinotecan, and oxaliplatin). Bevacizumab-treated mice showed no increased uptake of the radiotracer, and a peak of (99m)Tc-(CO)₃ His-ann A5 uptake in panitumumab-treated mice was observed 24 hours posttreatment, as confirmed by caspase-3 immunostaining. For irinotecan-, oxaliplatin-, and bevacizumab-treated tumors, a significant correlation was established between the radiotracer uptake and caspase-3 immunostaining (r  =  .8, p < .05; r  =  .9, p < .001; r  =  .9, p < .001, respectively). For 5-FU- and panitumumab-treated mice, the correlation coefficients were r  =  .7 (p  =  .18) and r  =  .7 (p  =  .19), respectively. Optimal timing of annexin A5 imaging after the start of different treatments in the Colo205 model was determined.

  16. Feasibility and Efficacy of Single Photon Emission Computed Tomography-Based Three-Dimensional Conformal Radiotherapy for Hepatocellular Carcinoma 8 cm or More With Portal Vein Tumor Thrombus in Combination With Transcatheter Arterial Chemoembolization

    SciTech Connect

    Shirai, Shintaro; Sato, Morio; Suwa, Kazuhiro; Kishi, Kazushi; Shimono, Chigusa; Sonomura, Tetsuo; Kawai, Nobuyuki; Tanihata, Hirohiko; Minamiguchi, Hiroki; Nakai, Motoki

    2010-03-15

    Purpose: To assess the feasibility and efficacy of single photon emission computed tomography-based three-dimensional conformal radiotherapy (SPECT-B 3D-CRT) for large hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT). Methods and Materials: HCC patients with PVTT in the first branch or main trunk, 8 cm or greater in size, were admitted to the study. SPECT, using Tc-99m-galactosyl human serum albumin, was used in radiation treatment planning to explore the optimal irradiation beam angle. SPECT enabled the minimum possible irradiation of functional liver (FL). Clinical target volume (CTV) included the main tumor and PVTT. SPECT-B 3D-CRT targeted the CTV to a total dose of 45 Gy/18 fractions. HCC outside the CTV was treated by transcatheter arterial chemoembolization (TACE). Results: Nineteen cases were enrolled in this study. The mean maximum dimension, mean CTV, and mean dose to FL were 11.0 cm (range, 8.0-20.0), 435 cm{sup 3} (range, 60-2,535), and 1,102 cGy (range, 691-1,695), respectively. Follow-up SPECT demonstrated radiation-induced dysfunctional liver. Despite the inclusion of 6 cases of Child-Pugh B or C, no patients experienced Grade 3 or worse radiation-induced liver disease. The cumulative non-progression rates of PVTT and PVTT plus main tumor were 78.0 and 43.2%, respectively. Survival rates at 1 and 2 years were 47.4 and 23.7%, respectively. Conclusions: SPECT-B 3D-CRT with TACE appears to be tolerable to cirrhotic liver and to provide promising prognosis for patients with HCC sized 8 cm or more, in comparison with previous treatment methods. A longer follow-up period is required to evaluate these findings.

  17. A Pilot Study Measuring the Distribution and Permeability of a Vaginal HIV Microbicide Gel Vehicle Using Magnetic Resonance Imaging, Single Photon Emission Computed Tomography/Computed Tomography, and a Radiolabeled Small Molecule

    PubMed Central

    Schwartz, Jill L.; Friend, David R.; Coleman, Jenell S.; Hendrix, Craig W.

    2015-01-01

    Abstract Vaginal microbicide gels containing tenofovir have proven effective in HIV prevention, offering the advantage of reduced systemic toxicity. We studied the vaginal distribution and effect on mucosal permeability of a gel vehicle. Six premenopausal women were enrolled. In Phase 1, a spreading gel containing 99mtechnetium-DTPA (99mTc) radiolabel and gadolinium contrast for magnetic resonance imaging (MRI) was dosed intravaginally. MRI was obtained at 0.5, 4, and 24 h, and single photon emission computed tomography with conventional computed tomography (SPECT/CT) at 1.5, 5, and 25 h postdosing. Pads and tissues were measured for activity to determine gel loss. In Phase 2, nonoxynol-9 (N-9), containing 99mTc-DTPA, was dosed as a permeability control; permeability was measured in blood and urine for both phases. SPECT/CT showed the distribution of spreading gel throughout the vagina with the highest concentration of radiosignal in the fornices and ectocervix; signal intensity diminished over 25 h. MRI showed the greatest signal accumulation in the fornices, most notably 1–4 h postdosing. The median (interquartile range) isotope signal loss from the vagina through 6 h was 29.1% (15.8–39.9%). Mucosal permeability to 99mTc-DTPA following spreading gel was negligible, in contrast to N-9, with detectable radiosignal in plasma, peaking at 8 h (5–12). Following spreading gel dosing, 0.004% (0.001–2.04%) of the radiosignal accumulated in urine over 12 h compared to 8.31% (7.07–11.01%) with N-9, (p=0.043). Spreading gel distributed variably throughout the vagina, persisting for 24 h, with signal concentrating in the fornices and ectocervix. The spreading gel had no significant effect on vaginal mucosal permeability. PMID:26077739

  18. Use of a tantalum-178 generator and a multiwire gamma camera to study the effect of the Mueller maneuver on left ventricular performance: comparison to hemodynamics and single photon emission computed tomography perfusion patterns.

    PubMed

    Gioia, G; Lin, B; Katz, R; DiMarino, A J; Ogilby, J D; Cassel, D; DePace, N L; Heo, J; Iskandrian, A S

    1995-11-01

    During the Mueller maneuver, there is a decrease in intrathoracic pressure and an increase in transmural left ventricular pressure. The changes in loading conditions cause transient left ventricular dysfunction. This study examined the effects of the Mueller maneuver on left ventricular performance using tantalum (Ta)-178 (half-life 9.3 min) and a multiwire gamma camera. First-pass radionuclide angiograms were obtained at baseline and during Mueller maneuver in 41 patients aged 58 +/- 10 years. In 34 patients, stress single photon emission computed tomography (SPECT) myocardial perfusion imaging with thallium-201 or sestamibi was also performed. Hemodynamic measurements during the Mueller maneuver (n = 10) showed a decrease in systemic pressure (139 +/- 25 mm Hg vs 123 +/- 24 mm Hg, p < 0.001) and pulmonary artery pressure (24 +/- 6 mm Hg vs 14 +/- 12 mm Hg, p = 0.01) and an increase in heart rate (67 +/- 10 bpm vs 75 +/- 14 beats/min, p = 0.001). Among the 34 patients who had perfusion imaging, the left ventricular ejection fraction remained unchanged or increased in 17 patients (group 1) (48% +/- 19% vs 49% +/- 21%, p not significant) and decreased (> or = 5%) in 17 patients (group 2) (55% +/- 13% vs 40% +/- 16%, p = 0.001). The stress SPECT images showed no or only fixed defects in 11 (65%) patients in group 1 and 3 (18%) patients in group 2 (p = 0.02), and reversible defects in 6 (35%) patients in group 1 and 14 (82%) patients in group 2 (p = 0.04).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice.

    PubMed

    Liu, Qiong; Pang, Hua; Hu, Xiaoli; Li, Wenbo; Xi, Jimei; Xu, Lu; Zhou, Jing

    2016-01-01

    Medullary thyroid carcinoma (MTC) is a rare tumor of the endocrine system with poor prognosis as it exhibits high resistance against conventional therapy. Recent studies have shown that monoclonal antibodies labeled with radionuclide have become important agents for diagnosing tumors. To elucidate whether single-chain fragment of variable (scFv) antibody labeled with 131I isotope is a potential imaging agent for diagnosing MTC. A human scFv antibody library of MTC using phage display technique was constructed with a capacity of 3x10(5). The library was panned with thyroid epithelial cell lines and MTC cell lines (TT). Western blotting and enzyme-linked immunosorbent assay (ELISA) were used to identify the biological characteristics of the panned scFv. Methyl thiazolyl tetrazolium (MTT) assay was also used to explore the optimal concentration of the TT cell proliferation inhibition rate. They were categorized into TT, SW480 and control groups using phosphate-buffered saline. Western blotting showed that molecular weight of scFv was 28 kDa, cell ELISA showed that the absorbance of TT cell group was significantly increased (P=0.000??) vs. the other three groups, and MTT assay showed that the inhibition rate between the two cell lines was statistically significantly different (P<0.05) when the concentration of scFv was 0.1, 1 and 10 µmol/l. The tumor uptake of 131I-scFv was visible at 12 h and clear image was obtained at 48 h using the single photon emission computed tomography. scFv rapidly and specifically target MTC cells, suggesting the potential of this antibody as an imaging agent for diagnosing MTC.

  20. Regional Cerebral Blood Flow in [123]I-IMP Single-photon Emission Computed Tomography and the Wechsler Memory Scale-revised in Nondemented Elderly Subjects with Subjective Cognitive Impairment

    PubMed Central

    Niwa, Fumitoshi; Kondo, Masaki; Sakurada, Kumi; Nakagawa, Masanori; Imanishi, Jiro; Mizuno, Toshiki

    2016-01-01

    Objective Regional cerebral blood flow (rCBF) imaging with single-photon emission computed tomography (SPECT) is useful in the early diagnosis of dementia. We aimed to investigate the association between the rCBF and various domains related to the memory function in elderly subjects with subjective cognitive impairment (SCI). Methods Thirty-two subjects with SCI were included in the present study. Patients with dementia and mild cognitive impairment (MCI) were excluded based on the presence of logical memory impairment. N-isopropyl-p-[123I]-iodoamphetamine SPECT was performed and Wechsler Memory Scale-Revised (WMS-R) was administered to all subjects (mean age, 68.4 years; average Mini-Mental State Examination score, 27.6). The SPECT results were analyzed using the easy Z-score imaging system and the voxel-based stereotactic extraction estimation method. Correlation analyses were performed to investigate the correlation between the mean positive Z-scores in the decrease of the rCBF and the WMS-R indices. Results The SPECT study indicated marked hypoperfusion in some areas, including the bilateral temporal areas, the caudate, and the thalamus, in these subjects in comparison to the normal database. The decrease in the rCBF that was observed in several regions, including the left precuneus and left inferior frontal gyrus (LIFG), showed a significant negative correlation with several indices of the memory function, particularly visual memory. Conclusion The regional hypoperfusion observed in the study using the voxel-based stereotactic extraction estimation method suggest that the regional cerebral dysfunction is associated with the memory function of patients with SCI, even though the subjects in the present study were cognitively intact. The correlation analysis with the WMS-R suggested the contribution of the LIFG to the memory function and indicated the significance of visual memory dysfunction in the neuropsychological assessment to determine the stage of SCI

  1. A review on single photon sources in silicon carbide

    NASA Astrophysics Data System (ADS)

    Lohrmann, A.; Johnson, B. C.; McCallum, J. C.; Castelletto, S.

    2017-03-01

    This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

  2. A review on single photon sources in silicon carbide.

    PubMed

    Lohrmann, A; Johnson, B C; McCallum, J C; Castelletto, S

    2017-03-01

    This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

  3. Efficient generation of indistinguishable single photons on-demand at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Kim, Jehyung; Cai, Tao; Richardson, Christopher; Leavitt, Richard; Waks, Edo

    Highly efficient single photon sources are important building blocks for optical quantum information processing. For practical use and long-distance quantum communication, single photons should have fiber-compatible telecom wavelengths. In addition, most quantum communication applications require high degree of indistinguishability of single photons, such that they exhibit interference on a beam splitter. However, deterministic generation of indistinguishable single photons with high brightness remains a challenging problem in particular at telecom wavelengths. We demonstrate a telecom wavelength source of indistinguishable single photons using an InAs/InP quantum dot in a nanophotonic cavity. To obtain the efficient single quantum dot emission, we employ the higher order mode in L3 photonic crystal cavity that shows a nearly Gaussian transverse mode profile and results in out-coupling efficiency exceeding 46 % and unusual bright single quantum dot emission exceeding 1.5 million counts per second at a detector. We also observe Purcell enhanced spontaneous emission rate as large as 4 and high linear polarization ratio of 0.96 for the coupled dots. Using this source, we generate high purity single photons at 1.3 μm wavelength and demonstrate the indistinguishable nature of the emission using a two-photon interference measurement.

  4. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  5. What are single photons good for?

    NASA Astrophysics Data System (ADS)

    Sangouard, Nicolas; Zbinden, Hugo

    2012-10-01

    In a long-held preconception, photons play a central role in present-day quantum technologies. But what are sources producing photons one by one good for precisely? Well, in opposition to what many suggest, we show that single-photon sources are not helpful for point to point quantum key distribution because faint laser pulses do the job comfortably. However, there is no doubt about the usefulness of sources producing single photons for future quantum technologies. In particular, we show how single-photon sources could become the seed of a revolution in the framework of quantum communication, making the security of quantum key distribution device-independent or extending quantum communication over many hundreds of kilometers. Hopefully, these promising applications will provide a guideline for researchers to develop more and more efficient sources, producing narrowband, pure and indistinguishable photons at appropriate wavelengths.

  6. A single-photon server with just one atom

    NASA Astrophysics Data System (ADS)

    Hijlkema, Markus; Weber, Bernhard; Specht, Holger P.; Webster, Simon C.; Kuhn, Axel; Rempe, Gerhard

    2007-04-01

    Neutral atoms are ideal objects for the deterministic processing of quantum information. Entanglement operations have been carried out by photon exchange or controlled collisions, and atom-photon interfaces have been realized with single atoms in free space or strongly coupled to an optical cavity. A long-standing challenge with neutral atoms, however, is to overcome the limited observation time. Without exception, quantum effects appeared only after ensemble averaging. Here, we report on a single-photon source with one, and only one, atom quasi-permanently coupled to a high-finesse cavity. `Quasi-permanent' refers to our ability to keep the atom long enough to, first, quantify the photon-emission statistics and, second, guarantee the subsequent performance as a single-photon server delivering up to 300,000 photons for up to 30s. This is achieved by a unique combination of single-photon generation and atom cooling. Our scheme brings deterministic protocols of quantum information science with light and matter closer to realization.

  7. Prognostic Contribution of Exercise Capacity, Heart Rate Recovery, Chronotropic Incompetence, and Myocardial Perfusion Single-Photon Emission Computerized Tomography in the Prediction of Cardiac Death and All-Cause Mortality.

    PubMed

    Arbit, Boris; Azarbal, Babak; Hayes, Sean W; Gransar, Heidi; Germano, Guido; Friedman, John D; Thomson, Louise; Berman, Daniel S

    2015-12-01

    Chronotropic incompetence, measured by the percentage (%) of heart rate (HR) reserve achieved (%HR reserve), abnormal HR recovery, reduced exercise capacity (EC), and myocardial perfusion single-photon emission computerized tomography (SPECT MPS) abnormalities are known predictors of all-cause mortality (ACM) and cardiac death (CD). The aim of this study was to determine if EC, %HR reserve, and HR recovery add incremental value to MPS in the prediction of ACM and CD. A total of 11,218 patients without valvular disease and not on β blockers underwent symptom-limited exercise MPS. %HR reserve was (peak HR - rest HR)/(220 - age - rest HR) × 100, with %HR reserve <80 defined as low. HR recovery was peak HR - recovery HR. An HR recovery <22 beats/min at 2 minutes after peak exercise was considered abnormal. Poor EC was defined as exercise duration ≤6 minutes (7 metabolic equivalents). Summed stress scores (SSSs) were calculated using a 20-segment, 5-point MPS model. Statistical analysis was performed using Cox regression models. There were 445 deaths (148 CD) during a mean follow-up of 3.2 ± 2.5 years. In multivariate analysis, the independent predictors of ACM were age, χ(2) = 154.81; EC, χ(2) = 74.00; SSS, χ(2) = 32.99; %HR reserve, χ(2) = 24.74; abnormal electrocardiogram at rest, χ(2) = 23.13; HR recovery, χ(2) = 18.45; diabetes, χ(2) = 17.75; and previous coronary artery disease, χ(2) = 11.85 (p ≤0.0006). The independent predictors of CD were SSS, χ(2) = 54.25; EC, χ(2) = 49.34; age, χ(2) = 46.45; abnormal electrocardiogram at rest, χ(2) = 30.60; previous coronary artery disease, χ(2) = 20.69; Duke treadmill score, χ(2) = 19.50; %HR reserve, χ(2) = 11.43; diabetes, χ(2) = 10.23 (all p ≤0.0014); and HR recovery, χ(2) = 5.30 (p = 0.0214). The exercise variables showed increases in Harrell's C static and net improvement reclassification, with EC showing the strongest incremental improvement in predicting ACM and CD (respective C-index 76

  8. Interactive Screen Experiments with Single Photons

    ERIC Educational Resources Information Center

    Bronner, Patrick; Strunz, Andreas; Silberhorn, Christine; Meyn, Jan-Peter

    2009-01-01

    Single photons are used for fundamental quantum physics experiments as well as for applications. Originally being a topic of advance courses, such experiments are increasingly a subject of undergraduate courses. We provide interactive screen experiments (ISE) for supporting the work in a real laboratory, and for students who do not have access to…

  9. Quantum Key Distribution Using Polarized Single Photons

    DTIC Science & Technology

    2009-04-01

    Cu-O high-temperature superconducting materials, and ferromagnet /superconductor nano-bilayer structures. 15. SUBJECT TERMS Quantum communications...based on high-temperature superconducting materials and ferromagnet /superconductor NiCu/Nb nano-bilayer structures. Time- resolved photoresponse...NOTES none 20090724231 14. ABSTRACT Exhaustive research, development, and testing studies were performed on novel superconducting single-photon

  10. Infrared Superconducting Single-Photon Detectors

    DTIC Science & Technology

    2012-10-05

    group realized small microstrip devices, the next iteration of which may narrow the line width to below 100 nm, entering the single-photon detection...and will explore superconducting detectors with integrated waveguide circuits and novel deposition techniques. 15. SUBJECT...world record quantum cryptography demonstrations [9] and operation of quantum waveguide circuits at telecom wavelengths [10]. Beyond the quantum

  11. Simulating single photons with realistic photon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Zhang, Zhen; Lütkenhaus, Norbert; Ma, Xiongfeng

    2016-12-01

    Quantum information processing provides remarkable advantages over its classical counterpart. Quantum optical systems have been proved to be sufficient for realizing general quantum tasks, which, however, often rely on single-photon sources. In practice, imperfect single-photon sources, such as a weak-coherent-state source, are used instead, which will inevitably limit the power in demonstrating quantum effects. For instance, with imperfect photon sources, the key rate of the Bennett-Brassard 1984 (BB84) quantum key distribution protocol will be very low, which fortunately can be resolved by utilizing the decoy-state method. As a generalization, we investigate an efficient way to simulate single photons with imperfect ones to an arbitrary desired accuracy when the number of photonic inputs is small. Based on this simulator, we can thus replace the tasks that involve only a few single-photon inputs with the ones that make use of only imperfect photon sources. In addition, our method also provides a quantum simulator to quantum computation based on quantum optics. In the main context, we take a phase-randomized coherent state as an example for analysis. A general photon source applies similarly and may provide some further advantages for certain tasks.

  12. Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Alber, G.

    2016-05-01

    We propose a scheme for triggering a dissipation-dominated highly efficient excitation transfer from a single-photon wave packet to a single quantum emitter. This single-photon-induced optical pumping turns dominant dissipative processes, such as spontaneous photon emission by the emitter or cavity decay, into valuable tools for quantum information processing and quantum communication. It works for an arbitrarily shaped single-photon wave packet with sufficiently small bandwidth provided a matching condition is satisfied which balances the dissipative rates involved. Our scheme does not require additional laser pulses or quantum feedback and does not rely on high finesse optical resonators. In particular, it can be used to enhance significantly the coupling of a single photon to a single quantum emitter implanted in a one-dimensional waveguide or even in a free space scenario. We demonstrate the usefulness of our scheme for building a deterministic quantum memory and a deterministic frequency converter between photonic qubits of different wavelengths.

  13. Photon statistics of light fields based on single-photon-counting modules

    NASA Astrophysics Data System (ADS)

    Li, G.; Zhang, T. C.; Li, Y.; Wang, J. M.

    2005-02-01

    Single-photon-counting modules (SPCM’s), with their high quantum efficiency, have been widely used to investigate effectively the photon statistics of various light sources, such as the single-photon state and emission light from controlled molecules, atoms, and quantum dots. However, such SPCM’s cannot distinguish the arrivals of one photon and two (or more than two) photons at a moment, which makes measurement correction in real experiments. We analyze the effect of SPCM’s on photon statistics based on the Hanbury-Brown-Twiss configuration when the total efficiency and background are considered, and it shows that the measured second-order degree of coherence and Mandel Q factor for different quantum states, including single-photon states and squeezed vacuum states, are corrected in different forms. A way of determining the squeezing of a squeezed vacuum state based on single-photon detection is presented.

  14. A gallium nitride single-photon source operating at 200 K.

    PubMed

    Kako, Satoshi; Santori, Charles; Hoshino, Katsuyuki; Götzinger, Stephan; Yamamoto, Yoshihisa; Arakawa, Yasuhiko

    2006-11-01

    Fundamentally secure quantum cryptography has still not seen widespread application owing to the difficulty of generating single photons on demand. Semiconductor quantum-dot structures have recently shown great promise as practical single-photon sources, and devices with integrated optical cavities and electrical-carrier injection have already been demonstrated. However, a significant obstacle for the application of commonly used III-V quantum dots to quantum-information-processing schemes is the requirement of liquid-helium cryogenic temperatures. Epitaxially grown gallium nitride quantum dots embedded in aluminium nitride have the potential for operation at much higher temperatures. Here, we report triggered single-photon emission from gallium nitride quantum dots at temperatures up to 200 K, a temperature easily reachable with thermo-electric cooling. Gallium nitride quantum dots also open a new wavelength region in the blue and near-ultraviolet portions of the spectrum for single-photon sources.

  15. Nano-manipulation of diamond-based single photon sources.

    PubMed

    Ampem-Lassen, E; Simpson, D A; Gibson, B C; Trpkovski, S; Hossain, F M; Huntington, S T; Ganesan, K; Hollenberg, L C L; Prawer, S

    2009-07-06

    The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a approximately 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.

  16. Evaluation of the left ventricular hemodynamic function and myocardial perfusion by gated single photon emission tomography, in patients with type 1 diabetes mellitus; prodromal signs of cardiovascular disease after four years.

    PubMed

    Chrapko, Beata; Kowalczyk, Mariusz; Nocuń, Anna; Nowakowski, Andrzej; Zaorska-Rajca, Janina

    2006-01-01

    The aim of this study was to assess the changes in hemodynamic function and myocardial perfusion of the left ventricle occurring in patients with type 1 diabetes mellitus (DM1) 47-49 months after the first assessment. We have studied 20 asymptomatic patients, five females and 15 males, aged 22-46 y. The patients were under intensive insulin treatment and had normal electrocardiogram (ECG) at rest. In all patients gated single photon emission tomography (GSPET) was performed at rest and after exercise (examination I). After 47-49 months this test was repeated (examination II). GSPET was performed 60 min after the intravenous injection of 740 MBq of technetium-99m 2-methoxy-isobutyl-isonitrile ((99m)Tc-MIBI), using a dual-headed gamma-camera. Left ventricular ejection fraction (LVEF), end diastolic volume (EDV) and end systolic volume (ESV) were calculated using quantitative GSPET (QGS). The intensity of perfusion defects was also evaluated based on a four degree QGS scale. Our results were as follows: a) In examination I, performed at rest: LVEF was 56.1%+/-7.5%, EDV 96.9+/-25.8 ml and ESV 42.6+/-16.3 ml. b) In examination I at stress: LVEF was 57.2%+/-7.5%, EDV 94.1+/-24.0 ml and ESV 40.5+/-15.5. c) In examination II performed at rest: LVEF was 58.1%+/-6.5%, EDV 112.1+/-26.1 ml and ESV 46.6+/-14.9 ml and d) In examination II at stress: LVEF 57.8%+/-5.6%, EDV 107.9+/-27.4 ml and ESV 44.9+/-14.4 ml. Significant differences were found between examinations I and II, regarding: a) EDV at rest (P<0.001) and at stress (P<0.001) and b) ESV at rest (P<0.05) and at stress (P<0.005). Correlation analysis revealed significant correlation between LVEF at rest and at stress both in examination I (r=0.83; P<0.001) and also in examination II (r=-0.897; P<0.001). Intensity of myocardial perfusion defects in examination I at rest and at stress was: 1.68+/-0.5 and 2.2+/-0.6 degrees respectively. Intensity of myocardial perfusion defects in examination II at rest and at stress was: 1

  17. Advantages of gated silicon single photon detectors

    NASA Astrophysics Data System (ADS)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  18. Angle sensitive single photon avalanche diode

    NASA Astrophysics Data System (ADS)

    Lee, Changhyuk; Johnson, Ben; Molnar, Alyosha

    2015-06-01

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  19. Angle sensitive single photon avalanche diode

    SciTech Connect

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  20. Bright single-photon source based on an InAs quantum dot in a silver-embedded nanocone structure

    NASA Astrophysics Data System (ADS)

    Liu, X.; Asano, T.; Odashima, S.; Nakajima, H.; Kumano, H.; Suemune, I.

    2013-04-01

    High photon-extraction efficiency is strongly required for a practical single-photon source. We succeed in fabricating metal (sliver)-embedded nanocone structure incorporating an InAs quantum dot. Efficient photon emission of ˜200 000 photons per second is detected and single-photon emission is demonstrated using autocorrelation measurements. The photon-extraction efficiency as high as 24.6% is obtained from the structure.

  1. Statistical analysis of the temporal single-photon response of superconducting nanowire single photon detection

    NASA Astrophysics Data System (ADS)

    He, Yu-Hao; Chao-Lin, Lü; Zhang, Wei-Jun; Zhang, Lu; Wu, Jun-Jie; Chen, Si-Jing; You, Li-Xing; Wang, Zhen

    2015-06-01

    A new method to study the transient detection efficiency (DE) and pulse amplitude of superconducting nanowire single photon detectors (SNSPD) during the current recovery process is proposed — statistically analyzing the single photon response under photon illumination with a high repetition rate. The transient DE results match well with the DEs deduced from the static current dependence of DE combined with the waveform of a single-photon detection event. This proves that static measurement results can be used to analyze the transient current recovery process after a detection event. The results are relevant for understanding the current recovery process of SNSPDs after a detection event and for determining the counting rate of SNSPDs. Project supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04010200), the National Basic Research Program of China (Grant No. 2011CBA00202), and the National Natural Science Foundation of China (Grant No. 61401441).

  2. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation

    PubMed Central

    Ates, Serkan; Agha, Imad; Gulinatti, Angelo; Rech, Ivan; Badolato, Antonio; Srinivasan, Kartik

    2013-01-01

    Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit nonideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of systems based on single solid-state quantum emitters, which often suffer from excess dephasing and multi-photon background emission. PMID:23466520

  3. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures

    NASA Astrophysics Data System (ADS)

    Fedyanin, D. Yu; Agio, M.

    2016-07-01

    The recently demonstrated electroluminescence of color centers in diamond makes them one of the best candidates for room temperature single-photon sources. However, the reported emission rates are far off what can be achieved by state-of-the-art electrically driven epitaxial quantum dots. Since the electroluminescence mechanism has not yet been elucidated, it is not clear to what extent the emission rate can be increased. Here we develop a theoretical framework to study single-photon emission from color centers in diamond under electrical pumping. The proposed model comprises electron and hole trapping and releasing, transitions between the ground and excited states of the color center as well as structural transformations of the center due to carrier trapping. It provides the possibility to predict both the photon emission rate and the wavelength of emitted photons. Self-consistent numerical simulations of the single-photon emitting diode based on the proposed model show that the photon emission rate can be as high as 100 kcounts s-1 at standard conditions. In contrast to most optoelectronic devices, the emission rate steadily increases with the device temperature achieving of more than 100 Mcount s-1 at 500 K, which is highly advantageous for practical applications. These results demonstrate the potential of color centers in diamond as electrically driven non-classical light emitters and provide a foundation for the design and development of single-photon sources for optical quantum computation and quantum communication networks operating at room and higher temperatures.

  4. Non-blinking single-photon emitters in silica

    NASA Astrophysics Data System (ADS)

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; Stam, Ward Van Der; Vanmaekelbergh, Daniel; Koenderink, A. Femius; Krauss, Todd D.; Donega, Celso De Mello

    2016-02-01

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters, do not blink, and have photoluminescence lifetimes of a few nanoseconds. Photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.

  5. Non-blinking single-photon emitters in silica

    SciTech Connect

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; Stam, Ward van der; Vanmaekelbergh, Daniel; Koenderink, A. Femius; Krauss, Todd D.; Donega, Celso de Mello

    2016-02-19

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters, do not blink, and have photoluminescence lifetimes of a few nanoseconds. Furthermore, photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.

  6. Non-blinking single-photon emitters in silica

    DOE PAGES

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; ...

    2016-02-19

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters,more » do not blink, and have photoluminescence lifetimes of a few nanoseconds. Furthermore, photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.« less

  7. Non-blinking single-photon emitters in silica

    PubMed Central

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; Stam, Ward van der; Vanmaekelbergh, Daniel; Koenderink, A. Femius; Krauss, Todd D.; Donega, Celso de Mello

    2016-01-01

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters, do not blink, and have photoluminescence lifetimes of a few nanoseconds. Photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots. PMID:26892489

  8. Detecting single photons: a supramolecular matter?

    PubMed

    Cangiano, Lorenzo; Dell'Orco, Daniele

    2013-01-04

    Rod photoreceptors detect single photons through a tradeoff of light collecting ability, amplification and speed. Key roles are played by rhodopsin (Rh) and transducin (G(t)), whose complex supramolecular organization in outer segment disks begs for a functional interpretation. Here we review past and recent evidence of a temperature-dependence of photon detection by mammalian rods, and link this phenomenon with the putative oligomeric organization of Rh and new ideas on the dynamics of Rh-G(t) interaction. Identifying an electrophysiological correlate of the supramolecular organization of Rh and G(t) may shed light on the evolutionary advantage it confers to night vision.

  9. Discriminating orthogonal single-photon images

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.; Zerom, Petros; Shin, Heedeuk; Howell, John C.; Boyd, Robert W.

    2009-03-01

    We can encode an image from an orthogonal basis set onto a single photon from a downconverted pair via the use of an amplitude mask. We can then discriminate the image imprinted on the photon from other images in the set using holographic-matched filtering techniques. We demonstrate this procedure experimentally for an image space of two objects, and we discuss the possibility of applying this method to a much larger image space. This process could have important implications for the manipulation of images at the quantum level.

  10. A diamond nanowire single-photon source.

    PubMed

    Babinec, Thomas M; Hausmann, Birgit J M; Khan, Mughees; Zhang, Yinan; Maze, Jeronimo R; Hemmer, Philip R; Loncar, Marko

    2010-03-01

    The development of a robust light source that emits one photon at a time will allow new technologies such as secure communication through quantum cryptography. Devices based on fluorescent dye molecules, quantum dots and carbon nanotubes have been demonstrated, but none has combined a high single-photon flux with stable, room-temperature operation. Luminescent centres in diamond have recently emerged as a stable alternative, and, in the case of nitrogen-vacancy centres, offer spin quantum bits with optical readout. However, these luminescent centres in bulk diamond crystals have the disadvantage of low photon out-coupling. Here, we demonstrate a single-photon source composed of a nitrogen-vacancy centre in a diamond nanowire, which produces ten times greater flux than bulk diamond devices, while using ten times less power. This result enables a new class of devices for photonic and quantum information processing based on nanostructured diamond, and could have a broader impact in nanoelectromechanical systems, sensing and scanning probe microscopy.

  11. Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot.

    PubMed

    Zhang, Qiang; Dang, Cuong; Urabe, Hayato; Wang, Jing; Sun, Shouheng; Nurmikko, Arto

    2008-11-24

    In this paper, we developed a novel and efficient method of deterministically organizing colloidal particles on structured surfaces over macroscopic areas. Our approach utilizes integrated solution-based processes of dielectric encapsulation and electrostatic-force-mediated self-assembly, which allow precisely controlled placement of sub-10nm sized particles at single particle resolution. As a specific demonstration, motivated by application to single photon sources, highly ordered 2D arrays of single II-VI semiconductor colloidal quantum dots (QDs) were created by this method. Individually, the QDs display triggered single photon emission at room temperature with characteristic photon antibunching statistics, suggesting a pathway to scalable quantum optical radiative systems.

  12. Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk

    PubMed Central

    Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon

    2013-01-01

    A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region. PMID:23828558

  13. Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses

    NASA Astrophysics Data System (ADS)

    Schlehahn, A.; Schmidt, R.; Hopfmann, C.; Schulze, J.-H.; Strittmatter, A.; Heindel, T.; Gantz, L.; Schmidgall, E. R.; Gershoni, D.; Reitzenstein, S.

    2016-01-01

    We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.

  14. Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses

    SciTech Connect

    Schlehahn, A.; Schmidt, R.; Hopfmann, C.; Schulze, J.-H.; Strittmatter, A.; Heindel, T. Reitzenstein, S.; Gantz, L.; Schmidgall, E. R.; Gershoni, D.

    2016-01-11

    We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g{sup (2)}(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.

  15. Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond

    NASA Astrophysics Data System (ADS)

    Benedikter, Julia; Kaupp, Hanno; Hümmer, Thomas; Liang, Yuejiang; Bommer, Alexander; Becher, Christoph; Krueger, Anke; Smith, Jason M.; Hänsch, Theodor W.; Hunger, David

    2017-02-01

    Single-photon sources are an integral part of various quantum technologies, and solid-state quantum emitters at room temperature appear to be a promising implementation. We couple the fluorescence of individual silicon-vacancy centers in nanodiamonds to a tunable optical microcavity to demonstrate a single-photon source with high efficiency, increased emission rate, and improved spectral purity compared to the intrinsic emitter properties. We use a fiber-based microcavity with a mode volume as small as 3.4 λ3 and a quality factor of 1.9 ×1 04 and observe an effective Purcell factor of up to 9.2. Furthermore, we study modifications of the internal rate dynamics and propose a rate model that closely agrees with the measurements. We observe lifetime changes of up to 31%, limited by the finite quantum efficiency of the emitters studied here. With improved materials, our achieved parameters predict single-photon rates beyond 1 GHz.

  16. Purification of a single-photon nonlinearity

    NASA Astrophysics Data System (ADS)

    Snijders, H.; Frey, J. A.; Norman, J.; Bakker, M. P.; Langman, E. C.; Gossard, A.; Bowers, J. E.; van Exter, M. P.; Bouwmeester, D.; Löffler, W.

    2016-08-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates.

  17. Noiseless Conditional Teleportation of a Single Photon.

    PubMed

    Fuwa, Maria; Toba, Shunsuke; Takeda, Shuntaro; Marek, Petr; Mišta, Ladislav; Filip, Radim; van Loock, Peter; Yoshikawa, Jun-Ichi; Furusawa, Akira

    2014-11-28

    We experimentally demonstrate the noiseless teleportation of a single photon by conditioning on quadrature Bell measurement results near the origin in phase space and thereby circumventing the photon loss that otherwise occurs even in optimal gain-tuned continuous-variable quantum teleportation. In general, thanks to this loss suppression, the noiseless conditional teleportation can preserve the negativity of the Wigner function for an arbitrary pure input state and an arbitrary pure entangled resource state. In our experiment, the positive value of the Wigner function at the origin for the unconditional output state, W(0,0)=0.015±0.001, becomes clearly negative after conditioning, W(0,0)=-0.025±0.005, illustrating the advantage of noiseless conditional teleportation.

  18. Purification of a single-photon nonlinearity

    PubMed Central

    Snijders, H.; Frey, J. A.; Norman, J.; Bakker, M. P.; Langman, E. C.; Gossard, A.; Bowers, J. E.; van Exter, M. P.; Bouwmeester, D.; Löffler, W.

    2016-01-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates. PMID:27573361

  19. Cockroach optomotor responses below single photon level.

    PubMed

    Honkanen, Anna; Takalo, Jouni; Heimonen, Kyösti; Vähäsöyrinki, Mikko; Weckström, Matti

    2014-12-01

    Reliable vision in dim light depends on the efficient capture of photons. Moreover, visually guided behaviour requires reliable signals from the photoreceptors to generate appropriate motor reactions. Here, we show that at behavioural low-light threshold, cockroach photoreceptors respond to moving gratings with single-photon absorption events known as 'quantum bumps' at or below the rate of 0.1 s(-1). By performing behavioural experiments and intracellular recordings from photoreceptors under identical stimulus conditions, we demonstrate that continuous modulation of the photoreceptor membrane potential is not necessary to elicit visually guided behaviour. The results indicate that in cockroach motion detection, massive temporal and spatial pooling takes place throughout the eye under dim conditions, involving currently unknown neural processing algorithms. The extremely high night-vision capability of the cockroach visual system provides a roadmap for bio-mimetic imaging design.

  20. Circuit electromechanics with single photon strong coupling

    SciTech Connect

    Xue, Zheng-Yuan Yang, Li-Na; Zhou, Jian

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  1. Single-photon detection using magnesium diboride superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Shibata, H.; Takesue, H.; Honjo, T.; Akazaki, T.; Tokura, Y.

    2010-11-01

    We fabricated 10 nm thick MgB2 nanowires with a width down to 100 nm using the liftoff process. The I-V characteristics of the nanowire show hysteresis and a sharp voltage jump at Ic. Though a 150 nm wide nanowire exhibits the capacity for detecting a single photon at 405 nm wavelength, the nanowire is too wide to detect a single photon at 1560 nm. A 100 nm wide nanowire exhibits the capacity for detecting single photons in the 405-1560 nm wavelength range. This indicates a possible application of MgB2 as a high-performance superconducting nanowire single-photon detector.

  2. Spectral compression of single-photon-level laser pulse

    PubMed Central

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  3. Spectral compression of single-photon-level laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-02-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window.

  4. Solid-state single-photon detectors

    NASA Astrophysics Data System (ADS)

    Zappa, Franco; Lacaita, Andrea L.; Cova, Sergio D.; Lovati, Piergiorgio G.

    1996-04-01

    This paper reviews the state of the art of some new photon-counting detectors. We measured the performance of various commercial silicon, germanium, and InGaAs/InP single-photon avalanche diodes (SPADs) in the 0.8- to 1.55-micrometer wavelength range. Optimized silicon devices reach 70% quantum efficiency at 800 nm and can work up to 1.1 micrometer. However, germanium and InGaAs SPADs are sensitive up to 1.4 and 1.6 micrometers, respectively, with a few percent quantum efficiency. In all samples we measured noise equivalent powers less than 10-15 W/Hz1/2. Compared with vacuum tubes, SPADs have different advantages such as reliability, roughness, low voltage and simple electronic requirements. Furthermore, it is easy to arrange them in the form of arrays, which are required in astronomy and luminescence measurements. Moreover we investigated the performance of a SPAD germanium quad sensor. By using proper driving electronics we avoided optical cross-talk between pixels and we present here the preliminary results of our experiments.

  5. Dead Time of Single Photon Avalanche Diodes

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Musumeci, F.; Scordino, A.; Fallica, G.; Mazzillo, M.; Zimbone, M.

    2011-06-01

    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10 7cps using a device with 0.97μs total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  6. Generation of Fourier-transform-limited heralded single photons

    SciTech Connect

    U'Ren, Alfred B.; Jeronimo-Moreno, Yasser; Garcia-Gracia, Hipolito

    2007-02-15

    In this paper we study the spectral (temporal) properties of heralded single photon wave packets, triggered by the detection of an idler photon in the process of parametric down conversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier-transform-limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfillment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wave packets.

  7. Linearly polarized single photon antibunching from a site-controlled InGaN quantum dot

    SciTech Connect

    Jemsson, Tomas; Machhadani, Houssaine; Karlsson, K. Fredrik; Hsu, Chih-Wei; Holtz, Per-Olof

    2014-08-25

    We report on the observation of linearly polarized single photon antibunching in the excitonic emission from a site-controlled InGaN quantum dot. The measured second order coherence function exhibits a significant dip at zero time difference, corresponding to g{sub m}{sup 2}(0)=0.90 under continuous laser excitation. This relatively high value of g{sub m}{sup 2}(0) is well understood by a model as the combination of short exciton life time (320 ps), limited experimental timing resolution and the presence of an uncorrelated broadband background emission from the sample. Our result provides the first rigorous evidence of InGaN quantum dot formation on hexagonal GaN pyramids, and it highlights a great potential in these dots as fast polarized single photon emitters if the background emission can be eliminated.

  8. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors

    SciTech Connect

    Verma, V. B. Horansky, R.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsili, F.; Stern, J. A.; Shaw, M. D.

    2014-02-03

    We demonstrate a scalable readout scheme for an infrared single-photon pulse-position camera consisting of WSi superconducting nanowire single-photon detectors. For an N × N array, only 2 × N wires are required to obtain the position of a detection event. As a proof-of-principle, we show results from a 2 × 2 array.

  9. Single-Photon LIDAR for Vegetation Analysis

    NASA Astrophysics Data System (ADS)

    Rosette, J.; Field, C.; Nelson, R. F.; Decola, P.; Cook, B. D.; Degnan, J. J.

    2011-12-01

    Lidar is now an established and recognised technology which has been widely applied to assist forest inventory, monitoring and management. Small footprint lidar systems produce dense 'point clouds' from intercepted surfaces which, after classification of ground and vegetation returns, can be related to important forest biophysical parameters such as biomass or carbon. Within the context of NASA's Carbon Monitoring System (CMS) initiative (NASA, 2010), the prototype 100 beam, single-photon, scanning lidar, developed by Sigma Space Corporation, USA, is tested to assess the potential of this sensor for vegetation analysis. This emerging lidar technology is currently generally operated at green wavelengths (532 nm) and, like more conventional discrete return NIR lidar sensors, produces point clouds of intercepted surfaces. However, the high pulse repetition rate (20 kHz) and multibeam approach produces an unprecedented measurement rate (up to 2 Million pixels per second) and a correspondingly high point density. Furthermore, the single photon sensitivity enables the technique to be more easily extended to high altitudes and therefore larger swath widths. Additionally, CW diode laser pumping and a low laser pulse energy (6 μJ at 532 nm) favour an extended laser lifetime while the much lower energy per beamlet (~50nJ) ensures eye safety despite operating at a visible wavelength. Furthermore, the short laser pulse duration (0.7ns) allows the surface to be located with high vertical precision. Although the 532 nm green wavelength lies near the peak of the solar output, the spatial and temporal coherence of the surface returns, combined with stringent instrument specifications (small detector field of view and narrow optical band-pass filter), allow solid surfaces to be distinguished from the solar background during daylight operations. However, for extended volumetric scatterers such as tree canopies, some amount of solar noise is likely to be mixed in with valid biomass

  10. Characterization of the nonclassical nature of conditionally prepared single photons

    SciTech Connect

    U'Ren, Alfred B.; Silberhorn, Christine; Ball, Jonathan L.; Banaszek, Konrad; Walmsley, Ian A.

    2005-08-15

    A reliable single photon source is a prerequisite for linear optical quantum computation and for secure quantum key distribution. A criterion yielding a conclusive test of the single photon character of a given source, attainable with realistic detectors, is therefore highly desirable. In the context of heralded single photon sources, such a criterion should be sensitive to the effects of higher photon number contributions, and to vacuum introduced through optical losses, which tend to degrade source performance. In this Rapid Communication we present, theoretically and experimentally, a criterion meeting the above requirements.

  11. On-demand superradiant conversion of atomic spin gratings into single photons with high efficiency.

    PubMed

    Black, Adam T; Thompson, James K; Vuletić, Vladan

    2005-09-23

    We create quantized spin gratings by single-photon detection and convert them on demand into photons with retrieval efficiencies exceeding 40% (80%) for single (a few) quanta. We show that the collective conversion process, proceeding via superradiant emission into a moderate-finesse optical resonator, requires phase matching. The storage time of 3 micros in the cold-atom sample, as well as the peak retrieval efficiency, are likely limited by Doppler decoherence of the entangled state.

  12. Design of diamond microcavities for single photon frequency down-conversion.

    PubMed

    Lin, Z; Johnson, S G; Rodriguez, A W; Loncar, M

    2015-09-21

    We propose monolithic diamond cavities that can be used to convert color-center Fock-state single photons from emission wavelengths to telecommunication bands. We present a detailed theoretical description of the conversion process, analyzing important practical concerns such as nonlinear phase shifts and frequency mismatch. Our analysis predicts sustainable power requirements (≲ 1 W) for a chipscale nonlinear device with high conversion efficiencies.

  13. Single-photon quantum router with multiple output ports.

    PubMed

    Yan, Wei-Bin; Fan, Heng

    2014-04-28

    The routing capability is a requisite in quantum network. Although the quantum routing of signals has been investigated in various systems both in theory and experiment, the general form of quantum routing with many output terminals still needs to be explored. Here we propose a scheme to achieve the multi-channel quantum routing of the single photons in a waveguide-emitter system. The channels are composed by the waveguides and are connected by intermediate two-level emitters. By adjusting the intermediate emitters, the output channels of the input single photons can be controlled. This is demonstrated in the cases of one output channel, two output channels and the generic N output channels. The results show that the multi-channel quantum routing of single photons can be well achieved in the proposed system. This offers a scheme for the experimental realization of general quantum routing of single photons.

  14. Direct detection of a single photon by humans

    PubMed Central

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  15. High-Performance Single-Photon Sources via Spatial Multiplexing

    DTIC Science & Technology

    2014-01-01

    ingredient for tasks such as quantum cryptography, quantum repeater, quantum teleportation , quantum computing, and truly-random number generation. Recently...SECURITY CLASSIFICATION OF: Single photons sources are desired for many potential quantum information applications. One common method to produce...photons sources are desired for many potential quantum information applications. One common method to produce single photons is based on a “heralding

  16. Room Temperature Source of Single Photons of Definite Polarization

    SciTech Connect

    Lukishova, S.G.; Schmid, A.W.; Knox, R.; Freivald, P.; Bissel, L.J.; Boyd, R.W.; Stroud, Jr., C.R.; Marshall, K.L.

    2007-02-12

    A definite polarization in fluorescence from single emitters (dye molecules) at room temperature is demonstrated. A planar-aligned, nematic liquid-crystal host provides definite alignment of single dye molecules in a preferred direction. Well-defined polarized fluorescence from single-emitters (single photon source) is important for applications in photonic quantum information. Polarized single-photon sources based on single-emitters, for example, are key hardware elements both for absolutely secure quantum communication and quantum computation systems.

  17. Single photon laser altimeter data processing, analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Peca, Marek; Michalek, Vojtech; Prochazka, Ivan

    2015-10-01

    Spaceborne laser altimeters are common instruments on-board the rendezvous spacecraft. This manuscript deals with the altimeters using a single photon approach, which belongs to the family of time-of-flight range measurements. Moreover, the single photon receiver part of the altimeter may be utilized as an Earth-to-spacecraft link enabling one-way ranging, time transfer and data transfer. The single photon altimeters evaluate actual altitude through the repetitive detections of single photons of the reflected laser pulses. We propose the single photon altimeter signal processing and data mining algorithm based on the Poisson statistic filter (histogram method) and the modified Kalman filter, providing all common altimetry products (altitude, slope, background photon flux and albedo). The Kalman filter is extended for the background noise filtering, the varying slope adaptation and the non-causal extension for an abrupt slope change. Moreover, the algorithm partially removes the major drawback of a single photon altitude reading, namely that the photon detection measurement statistics must be gathered. The developed algorithm deduces the actual altitude on the basis of a single photon detection; thus, being optimal in the sense that each detected signal photon carrying altitude information is tracked and no altitude information is lost. The algorithm was tested on the simulated datasets and partially cross-probed with the experimental data collected using the developed single photon altimeter breadboard based on the microchip laser with the pulse energy on the order of microjoule and the repetition rate of several kilohertz. We demonstrated that such an altimeter configuration may be utilized for landing or hovering a small body (asteroid, comet).

  18. Experimental generation of single photons via active multiplexing

    SciTech Connect

    Ma Xiaosong; Zotter, Stefan; Kofler, Johannes; Jennewein, Thomas; Zeilinger, Anton

    2011-04-15

    An on-demand single-photon source is a fundamental building block in quantum science and technology. We experimentally demonstrate the proof of concept for a scheme to generate on-demand single photons via actively multiplexing several heralded photons probabilistically produced from pulsed spontaneous parametric down-conversions (SPDCs). By utilizing a four-photon-pair source, an active feed-forward technique, and an ultrafast single-photon router, we show a fourfold enhancement of the output photon rate. Simultaneously, we maintain the quality of the output single-photon states, confirmed by correlation measurements. We also experimentally verify, via Hong-Ou-Mandel interference, that the router does not affect the indistinguishability of the single photons. Furthermore, we give numerical simulations, which indicate that photons based on multiplexing of four SPDC sources can outperform the heralding based on highly advanced photon-number-resolving detectors. Our results show a route for on-demand single-photon generation and the practical realization of scalable linear optical quantum-information processing.

  19. A Single-Photon Subtractor for Multimode Quantum States

    NASA Astrophysics Data System (ADS)

    Ra, Young-Sik; Jacquard, Clément; Averchenko, Valentin; Roslund, Jonathan; Cai, Yin; Dufour, Adrien; Fabre, Claude; Treps, Nicolas

    2016-05-01

    In the last decade, single-photon subtraction has proved to be key operations in optical quantum information processing and quantum state engineering. Implementation of the photon subtraction has been based on linear optics and single-photon detection on single-mode resources. This technique, however, becomes unsuitable with multimode resources such as spectrally multimode squeezed states or continuous variables cluster states. We implement a single-photon subtractor for such multimode resources based on sum-frequency generation and single-photon detection. An input multimode quantum state interacts with a bright control beam whose spectrum has been engineered through ultrafast pulse-shaping. The multimode quantum state resulting from the single-photon subtractor is analyzed with multimode homodyne detection whose local oscillator spectrum is independently engineered. We characterize the single-photon subtractor via coherent-state quantum process tomography, which provides its mode-selectivity and subtraction modes. The ability to simultaneously control the state engineering and its detection ensures both flexibility and scalability in the production of highly entangled non-Gaussian quantum states.

  20. Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime.

    PubMed

    Gerrits, Thomas; Calkins, Brice; Tomlin, Nathan; Lita, Adriana E; Migdall, Alan; Mirin, Richard; Nam, Sae Woo

    2012-10-08

    Typically, transition edge sensors resolve photon number of up to 10 or 20 photons, depending on the wavelength and TES design. We extend that dynamic range up to 1000 photons, while maintaining sub-shot noise detection process uncertainty of the number of detected photons and beyond that show a monotonic response up to ≈ 6 · 10(6) photons in a single light pulse. This mode of operation, which heats the sensor far beyond its transition edge into the normal conductive regime, offers a technique for connecting single-photon-counting measurements to radiant-power measurements at picowatt levels. Connecting these two usually incompatible operating regimes in a single detector offers significant potential for directly tying photon counting measurements to conventional cryogenic radiometric standards. In addition, our measurements highlight the advantages of a photon-number state source over a coherent pulse source as a tool for characterizing such a detector.

  1. The effects of the N atom collective Lamb shift on single photon superradiance

    NASA Astrophysics Data System (ADS)

    Scully, Marlan O.; Svidzinsky, Anatoly A.

    2009-03-01

    The problem of single photon collective spontaneous emission, a.k.a. superradiance, from N atoms prepared by a single photon pulse of wave vector k has been the subject of recent interest. It has been shown that a single photon absorbed uniformly by the N atoms will be followed by spontaneous emission in the same direction [M. Scully, E. Fry, C.H.R. Ooi, K. Wodkiewicz, Phys. Rev. Lett. 96 (2006) 010501; M. Scully, Laser Phys. 17 (2007) 635]; and in extensions of this work we have found a new kind of cavity QED in which the atomic cloud acts as a cavity containing the photon [A.A. Svidzinsky, J.T. Chang, M.O. Scully, Phys. Rev. Lett. 100 (2008) 160504]. In most of our studies, we have neglected virtual photon (“Lamb shift”) contributions. However, in a recent interesting paper, Friedberg and Mannassah [R. Friedberg, J.T. Manassah, Phys. Lett. A 372 (2008) 2514] study the effect of virtual photons investigating ways in which such effects can modify the time dependence and angular distributions of collective single photon emission. In the present Letter, we show that such virtual transitions play no essential role in our problem. The conclusions of [M. Scully, E. Fry, C.H.R. Ooi, K. Wodkiewicz, Phys. Rev. Lett. 96 (2006) 010501; M. Scully, Laser Phys. 17 (2007) 635; A.A. Svidzinsky, J.T. Chang, M.O. Scully, Phys. Rev. Lett. 100 (2008) 160504] stand as published. However, the N atom Lamb shift is an interesting problem in its own right and we here extend previous work both analytically and numerically.

  2. Generation of single photons with highly tunable wave shape from a cold atomic ensemble

    PubMed Central

    Farrera, Pau; Heinze, Georg; Albrecht, Boris; Ho, Melvyn; Chávez, Matías; Teo, Colin; Sangouard, Nicolas; de Riedmatten, Hugues

    2016-01-01

    The generation of ultra-narrowband, pure and storable single photons with widely tunable wave shape is an enabling step toward hybrid quantum networks requiring interconnection of remote disparate quantum systems. It allows interaction of quantum light with several material systems, including photonic quantum memories, single trapped ions and opto-mechanical systems. Previous approaches have offered a limited tuning range of the photon duration of at most one order of magnitude. Here we report on a heralded single photon source with controllable emission time based on a cold atomic ensemble, which can generate photons with temporal durations varying over three orders of magnitude up to 10 μs without a significant change of the readout efficiency. We prove the nonclassicality of the emitted photons, show that they are emitted in a pure state, and demonstrate that ultra-long photons with nonstandard wave shape can be generated, which are ideally suited for several quantum information tasks. PMID:27886166

  3. Simple and efficient absorption filter for single photons from a cold atom quantum memory.

    PubMed

    Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia

    2015-03-09

    The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.

  4. Generation of single photons with highly tunable wave shape from a cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Heinze, Georg; Albrecht, Boris; Ho, Melvyn; Chávez, Matías; Teo, Colin; Sangouard, Nicolas; de Riedmatten, Hugues

    2016-11-01

    The generation of ultra-narrowband, pure and storable single photons with widely tunable wave shape is an enabling step toward hybrid quantum networks requiring interconnection of remote disparate quantum systems. It allows interaction of quantum light with several material systems, including photonic quantum memories, single trapped ions and opto-mechanical systems. Previous approaches have offered a limited tuning range of the photon duration of at most one order of magnitude. Here we report on a heralded single photon source with controllable emission time based on a cold atomic ensemble, which can generate photons with temporal durations varying over three orders of magnitude up to 10 μs without a significant change of the readout efficiency. We prove the nonclassicality of the emitted photons, show that they are emitted in a pure state, and demonstrate that ultra-long photons with nonstandard wave shape can be generated, which are ideally suited for several quantum information tasks.

  5. Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter.

    PubMed

    Wang, Hui; Duan, Z-C; Li, Y-H; Chen, Si; Li, J-P; He, Y-M; Chen, M-C; He, Yu; Ding, X; Peng, Cheng-Zhi; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2016-05-27

    By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of 1000 near-transform-limited single photons with high mutual indistinguishability. The Hong-Ou-Mandel interference of two photons is measured as a function of their emission time separation varying from 13 ns to 14.7  μs, where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at a time scale of 0.7  μs. A temporal and spectral analysis reveals the pulsed resonance fluorescence single photons are close to the transform limit, which are readily useful for multiphoton entanglement and interferometry experiments.

  6. Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Duan, Z.-C.; Li, Y.-H.; Chen, Si; Li, J.-P.; He, Y.-M.; Chen, M.-C.; He, Yu; Ding, X.; Peng, Cheng-Zhi; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2016-05-01

    By pulsed s -shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of 1000 near-transform-limited single photons with high mutual indistinguishability. The Hong-Ou-Mandel interference of two photons is measured as a function of their emission time separation varying from 13 ns to 14.7 μ s , where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at a time scale of 0.7 μ s . A temporal and spectral analysis reveals the pulsed resonance fluorescence single photons are close to the transform limit, which are readily useful for multiphoton entanglement and interferometry experiments.

  7. Plasmonic nanoantenna based triggered single-photon source

    NASA Astrophysics Data System (ADS)

    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.

    2016-05-01

    Highly integrated single-photon sources are key components in future quantum-optical circuits. Whereas the probabilistic generation of single photons can routinely be done by now, their triggered generation is a much greater challenge. Here, we describe the triggered generation of single photons in a hybrid plasmonic device. It consists of a lambda-type quantum emitter coupled to a multimode optical nanoantenna. For moderate interaction strengths between the subsystems, the description of the quantum optical evolution can be simplified by an adiabatic elimination of the electromagnetic fields of the nanoantenna modes. This leads to an insightful analysis of the emitter's dynamics, entails the opportunity to understand the physics of the device, and to identify parameter regimes for a desired operation. Even though the approach presented in this work is general, we consider a simple exemplary design of a plasmonic nanoantenna, made of two silver nanorods, suitable for triggered generation of single photons. The investigated device realizes single photons, triggered, potentially at high rates, and using low device volumes.

  8. Single photon transport by a moving atom

    NASA Astrophysics Data System (ADS)

    Afanasiev, A. E.; Melentiev, P. N.; Kuzin, A. A.; Kalatskiy, A. Yu; Balykin, V. I.

    2017-01-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe’s model; 2) extra ordinary transmission because of surface-plasmon excitation.

  9. Video recording true single-photon double-slit interference

    NASA Astrophysics Data System (ADS)

    Aspden, Reuben S.; Padgett, Miles J.; Spalding, Gabriel C.

    2016-09-01

    Commercially available cameras do not have a low-enough dark noise to directly capture double-slit interference at the single photon level. In this work, camera noise levels are significantly reduced by activating the camera only when the presence of a photon has been detected by the independent detection of a time-correlated photon produced via parametric down-conversion. This triggering scheme provides the improvement required for direct video imaging of Young's double-slit experiment with single photons, allowing clarified versions of this foundational demonstration. We present video data of the evolving interference patterns. Also, we introduce variations on this experiment aimed at promoting discussion of the role spatial coherence plays in such a measurement, emphasizing complementary aspects of single-photon measurement and highlighting the roles of transverse position and momentum correlations between down-converted photons, including examples of "ghost" imaging and diffraction.

  10. Experimental investigation towards a periodically pumped single-photon source

    NASA Astrophysics Data System (ADS)

    Bödefeld, C.; Ebbecke, J.; Toivonen, J.; Sopanen, M.; Lipsanen, H.; Wixforth, A.

    2006-07-01

    Experiments towards a periodically pumped single-photon source are presented. The lateral piezoelectric field of a surface acoustic wave dissociates laser-generated two-dimensional excitons into electrons and holes. These carriers are separated by the wave potential and are transported over macroscopic length scales without recombining. When reaching a stress-induced quantum dot in the quantum well they periodically populate the zero-dimensional states and recombine, emitting single photons periodically in time according to the surface acoustic-wave frequency. We have successfully reduced the number of pumped quantum dots down to 100 and have detected a strong blinking photoluminescence signal. By further reducing the number of quantum dots down to 1 a periodically pumped single photon source could be realized.

  11. Quantum teleportation with a quantum dot single photon source.

    PubMed

    Fattal, D; Diamanti, E; Inoue, K; Yamamoto, Y

    2004-01-23

    We report the experimental demonstration of a quantum teleportation protocol with a semiconductor single photon source. Two qubits, a target and an ancilla, each defined by a single photon occupying two optical modes (dual-rail qubit), were generated independently by the single photon source. Upon measurement of two modes from different qubits and postselection, the state of the two remaining modes was found to reproduce the state of the target qubit. In particular, the coherence between the target qubit modes was transferred to the output modes to a large extent. The observed fidelity is 80%, in agreement with the residual distinguishability between consecutive photons from the source. An improved version of this teleportation scheme using more ancillas is the building block of the recent Knill, Laflamme, and Milburn proposal for efficient linear optics quantum computation.

  12. Quantum Probability Cancellation Due to a Single-Photon State

    NASA Technical Reports Server (NTRS)

    Ou, Z. Y.

    1996-01-01

    When an N-photon state enters a lossless symmetric beamsplitter from one input port, the photon distribution for the two output ports has the form of Bernouli Binormial, with highest probability at equal partition (N/2 at one outport and N/2 at the other). However, injection of a single photon state at the other input port can dramatically change the photon distribution at the outputs, resulting in zero probability at equal partition. Such a strong deviation from classical particle theory stems from quantum probability amplitude cancellation. The effect persists even if the N-photon state is replaced by an arbitrary state of light. A special case is the coherent state which corresponds to homodyne detection of a single photon state and can lead to the measurement of the wave function of a single photon state.

  13. Multi-photon absorption limits to heralded single photon sources

    NASA Astrophysics Data System (ADS)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; de Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-11-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources.

  14. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  15. Towards a quasi-deterministic single-photon source

    NASA Astrophysics Data System (ADS)

    Peters, N. A.; Arnold, K. J.; VanDevender, A. P.; Jeffrey, E. R.; Rangarajan, R.; Hosten, O.; Barreiro, J. T.; Altepeter, J. B.; Kwiat, P. G.

    2006-08-01

    A source of single photons allows secure quantum key distribution, in addition, to being a critical resource for linear optics quantum computing. We describe our progress on deterministically creating single photons from spontaneous parametric downconversion, an extension of the Pittman, Jacobs and Franson scheme [Phys. Rev A, v66, 042303 (2002)]. Their idea was to conditionally prepare single photons by measuring one member of a spontaneously emitted photon pair and storing the remaining conditionally prepared photon until a predetermined time, when it would be "deterministically" released from storage. Our approach attempts to improve upon this by recycling the pump pulse in order to decrease the possibility of multiple-pair generation, while maintaining a high probability of producing a single pair. Many of the challenges we discuss are central to other quantum information technologies, including the need for low-loss optical storage, switching and detection, and fast feed-forward control.

  16. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    PubMed Central

    Privitera, Simona; Tudisco, Salvatore; Lanzanò, Luca; Musumeci, Francesco; Pluchino, Alessandro; Scordino, Agata; Campisi, Angelo; Cosentino, Luigi; Finocchiaro, Paolo; Condorelli, Giovanni; Mazzillo, Massimo; Lombardo, Salvo; Sciacca, Emilio

    2008-01-01

    Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs). Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated. PMID:27873777

  17. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  18. CMOS-compatible photonic devices for single-photon generation

    NASA Astrophysics Data System (ADS)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  19. Investigation of Hamamatsu H8500 phototubes as single photon detectors

    NASA Astrophysics Data System (ADS)

    Montgomery, R. A.; Hoek, M.; Lucherini, V.; Mirazita, M.; Orlandi, A.; Anefalos Pereira, S.; Pisano, S.; Rossi, P.; Viticchiè, A.; Witchger, A.

    2015-08-01

    We have investigated the response of a significant sample of Hamamatsu H8500 MultiAnode PhotoMultiplier Tubes (MAPMTs) as single photon detectors, in view of their use in a ring imaging Cherenkov counter for the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility. For this, a laser working at 407.2 nm wavelength was employed. The sample is divided equally into standard window type, with a spectral response in the visible light region, and UV-enhanced window type MAPMTs. The studies confirm the suitability of these MAPMTs for single photon detection in such a Cherenkov imaging application.

  20. Single-photon transistor in circuit quantum electrodynamics.

    PubMed

    Neumeier, Lukas; Leib, Martin; Hartmann, Michael J

    2013-08-09

    We introduce a circuit quantum electrodynamical setup for a "single-photon" transistor. In our approach photons propagate in two open transmission lines that are coupled via two interacting transmon qubits. The interaction is such that no photons are exchanged between the two transmission lines but a single photon in one line can completely block or enable the propagation of photons in the other line. High on-off ratios can be achieved for feasible experimental parameters. Our approach is inherently scalable as all photon pulses can have the same pulse shape and carrier frequency such that output signals of one transistor can be input signals for a consecutive transistor.

  1. Single-photon interference experiment for high schools

    NASA Astrophysics Data System (ADS)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  2. Using single photons to improve fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Pinto, Armando N.; Silva, Nuno A.; Almeida, Álvaro J.; Muga, Nelson J.

    2014-08-01

    We show how to generate, encode, transmit and detect single photons. By using single photons we can address two of the more challenging problems that communication engineers face nowadays: capacity and security. Indeed, by decreasing the number of photons used to encode each bit, we can efficiently explore the full capacity to carry information of optical fibers, and we can guarantee privacy at the physical layer. We present results for single and entangled photon generation. We encode information in the photons polarization and after transmission we retrieve that information. We discuss the impact of fiber birefringence on the photons polarization.

  3. On-demand semiconductor single-photon source with near-unity indistinguishability.

    PubMed

    He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei

    2013-03-01

    Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.

  4. Generation of single photons with highly tunable wave shape from a cold atomic quantum memory

    NASA Astrophysics Data System (ADS)

    Heinze, Georg; Farrera, Pau; Albrecht, Boris; de Riedmatten, Hugues; Ho, Melvyn; Chavez, Matias; Teo, Colin; Sangouard, Nicolas

    2016-05-01

    We report on a single photon source with highly tunable photon shape based on a cold ensemble of Rubidium atoms. We follow the DLCZ scheme to implement an emissive quantum memory, which can be operated as a photon pair source with controllable delay. We find that the temporal wave shape of the emitted read photon can be precisely controlled by changing the shape of the driving read pulse. We generate photons with temporal durations varying over three orders of magnitude up to 10 μs without a significant change of the read-out efficiency. We prove the non-classicality of the emitted photons by measuring their antibunching, showing near single photon behavior at low excitation probabilities. We also show that the photons are emitted in a pure state by measuring unconditional autocorrelation functions. Finally, to demonstrate the usability of the source for realistic applications, we create ultra-long single photons with a rising exponential or doubly peaked time-bin wave shape which are important for several quantum information tasks. ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.

  5. Ordered arrays of InGaN/GaN dot-in-a-wire nanostructures as single photon emitters

    NASA Astrophysics Data System (ADS)

    Lazić, Snežana; Chernysheva, Ekaterina; Gačević, Žarko; García-Lepetit, Noemi; van der Meulen, Herko P.; Müller, Marcus; Bertram, Frank; Veit, Peter; Christen, Jürgen; Torres-Pardo, Almudena; González Calbet, José M.; Calleja, Enrique; Calleja, José M.

    2015-03-01

    The realization of reliable single photon emitters operating at high temperature and located at predetermined positions still presents a major challenge for the development of solid-state systems for quantum light applications. We demonstrate single-photon emission from two-dimensional ordered arrays of GaN nanowires containing InGaN nanodisks. The structures were fabricated by molecular beam epitaxy on (0001) GaN-on-sapphire templates patterned with nanohole masks prepared by colloidal lithography. Low-temperature cathodoluminescence measurements reveal the spatial distribution of light emitted from a single nanowire heterostructure. The emission originating from the topmost part of the InGaN regions covers the blue-to-green spectral range and shows intense and narrow quantum dot-like photoluminescence lines. These lines exhibit an average linear polarization ratio of 92%. Photon correlation measurements show photon antibunching with a g(2)(0) values well below the 0.5 threshold for single photon emission. The antibunching rate increases linearly with the optical excitation power, extrapolating to the exciton decay rate of ~1 ns-1 at vanishing pump power. This value is comparable with the exciton lifetime measured by time-resolved photoluminescence. Fast and efficient single photon emitters with controlled spatial position and strong linear polarization are an important step towards high-speed on-chip quantum information management.

  6. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing.

  7. Single photon emission computed tomography in cerebrovascular disease

    SciTech Connect

    Brass, L.M.; Rattner, Z.

    1991-12-31

    Every year, nearly half a million people in the United States have a stroke. Cerebrovascular disease is the third leading cause of death in the country, and it costs the economy approximately $25 billion annually. SPECT perfusion imaging is a sensitive indicator of stroke. Abnormal patterns of blood flow are recognized either as areas of hypoactivity (focal or diffused) or hyperactivity (hyperemia or luxury perfusion). Lesions are demonstrated earlier by SPECT than by CT or MRI, and the physiologic information from flow imaging is not available from such anatomic studies. Given the significance of stroke and the early sensitivity of SPECT, why do most neurologists not include SPECT in the evaluation of their patients? The authors feel that the answer is that most neurologists do not view SPECT flow imaging as providing additional information beyond the standard clinical and radiologic work-up. This article therefore concentrates on ways in which SPECT imaging can be useful in stroke, identifying the major concerns of clinicians, and demonstrating how some of these concerns can be addressed by SPECT. The goal is to expand the perspective of the nuclear-medicine physician and encourage investigations on urgent clinical problems in the diagnosis and management of patients with cerebrovascular diseases. Additional information may be obtained from several excellent reviews of SPECT imaging in stroke. 73 refs.

  8. SPECT (single photon emission computed tomography) in pediatrics.

    PubMed

    Chiron, Catherine

    2013-01-01

    Surgery of focal epilepsies in childhood has largely benefited from the recent advances of the noninvasive functional imaging techniques, particularly SPECT which presurgically contributes to the localization of the seizure onset zone, in order to select the patients, decide the optimal placement of intracranial electrodes, and plan the resection. Peri-ictal SPECT (ictal and postictal) proved especially useful when video-EEG is not contributory, when MRI looks normal or shows multiple abnormalities, or in cases of discrepant findings within the presurgery workup. Because of a poor temporal resolution, peri-ictal SPECT must be coupled with video-EEG. Multimodal imaging so-called SISCOM (peri-ictal - interictal SPECT subtraction image superimposed on MRI) increases the sensitivity of peri-ictal SPECT by about 70% and makes it a good predictor of seizure-free outcome after surgery. In addition, interictal SPECT occasionally provides some interesting results regarding functional cortical maturation and learning disorders in childhood.

  9. Emission tomography of the kidney

    SciTech Connect

    Teates, C.D.; Croft, B.Y.; Brenbridge, N.A.; Bray, S.T.; Williamson, B.R.

    1983-12-01

    Single photon emission computerized tomography (SPECT) was done on two patients with suspected renal masses. Nuclear scintigraphy was equivocal on two tumors readily identified by SPECT. Single photon tomography is cost effective and increases the reliability of nuclear scintigraphy.

  10. A silicon carbide room-temperature single-photon source

    NASA Astrophysics Data System (ADS)

    Castelletto, S.; Johnson, B. C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T.

    2014-02-01

    Over the past few years, single-photon generation has been realized in numerous systems: single molecules, quantum dots, diamond colour centres and others. The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics and measurement theory. An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing. Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2×106 counts s-1) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices.

  11. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  12. Single-Atom Single-Photon Quantum Interface

    NASA Astrophysics Data System (ADS)

    Moehring, David; Bochmann, Joerg; Muecke, Martin; Specht, Holger; Weber, Bernhard; Wilk, Tatjana; Rempe, Gerhard

    2008-05-01

    By combining atom trapping techniques and cavity cooling schemes we are able to trap a single neutral atom inside a high-finesse cavity for several tens of seconds. We show that our coupled atom-cavity system can be used to generate single photons in a controlled way. With our long trapping times and high single-photon production efficiency, the non-classical properties of the emitted light can be shown in the photon correlations of a single atom. In a similar atom-cavity setup, we investigate the interface between atoms and photons by entangling a single atom with a single photon emitted into the cavity and by further mapping the quantum state of the atom onto a second single photon. These schemes are intrinsically deterministic and establish the basic element required to realize a distributed quantum network with individual atoms at rest as quantum memories and single flying photons as quantum messengers. This work was supported by the Deutsche Forschungsgemeinschaft, and the European Union SCALA and CONQUEST programs. D. L. M. acknowledges support from the Alexander von Humboldt Foundation.

  13. Quantum interference of independently generated telecom-band single photons

    SciTech Connect

    Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N.; Kumar, Prem

    2014-12-04

    We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.

  14. High-speed single-photon signaling for daytime QKD

    NASA Astrophysics Data System (ADS)

    Bienfang, Joshua; Restelli, Alessandro; Clark, Charles

    2011-03-01

    The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).

  15. Design and characterization of single photon avalanche diodes arrays

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  16. Experimental quasi-single-photon transmission from satellite to earth.

    PubMed

    Yin, Juan; Cao, Yuan; Liu, Shu-Bin; Pan, Ge-Sheng; Wang, Jin-Hong; Yang, Tao; Zhang, Zhong-Ping; Yang, Fu-Min; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-08-26

    Free-space quantum communication with satellites opens a promising avenue for global secure quantum network and large-scale test of quantum foundations. Recently, numerous experimental efforts have been carried out towards this ambitious goal. However, one essential step--transmitting single photons from the satellite to the ground with high signal-to-noise ratio (SNR) at realistic environments--remains experimental challenging. Here, we report a direct experimental demonstration of the satellite-ground transmission of a quasi-single-photon source. In the experiment, single photons (~0.85 photon per pulse) are generated by reflecting weak laser pulses back to earth with a cube-corner retro-reflector on the satellite CHAMP, collected by a 600-mm diameter telescope at the ground station, and finally detected by single-photon counting modules after 400-km free-space link transmission. With the help of high accuracy time synchronization, narrow receiver field-of-view and high-repetition-rate pulses (76 MHz), a SNR of better than 16:1 is obtained, which is sufficient for a secure quantum key distribution. Our experimental results represent an important step towards satellite-ground quantum communication.

  17. Does Preoperative Measurement of Cerebral Blood Flow with Acetazolamide Challenge in Addition to Preoperative Measurement of Cerebral Blood Flow at the Resting State Increase the Predictive Accuracy of Development of Cerebral Hyperperfusion after Carotid Endarterectomy? Results from 500 Cases with Brain Perfusion Single-photon Emission Computed Tomography Study

    PubMed Central

    OSHIDA, Sotaro; OGASAWARA, Kuniaki; SAURA, Hiroaki; YOSHIDA, Koji; FUJIWARA, Shunro; KOJIMA, Daigo; KOBAYASHI, Masakazu; YOSHIDA, Kenji; KUBO, Yoshitaka; OGAWA, Akira

    2015-01-01

    The purpose of the present study was to determine whether preoperative measurement of cerebral blood flow (CBF) with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy (CEA). CBF at the resting state and cerebrovascular reactivity (CVR) to acetazolamide were quantitatively assessed using N-isopropyl-p-[123I]-iodoamphetamine (IMP)-autoradiography method with single-photon emission computed tomography (SPECT) before CEA in 500 patients with ipsilateral internal carotid artery stenosis (≥ 70%). CBF measurement using 123I-IMP SPECT was also performed immediately and 3 days after CEA. A region of interest (ROI) was automatically placed in the middle cerebral artery territory in the affected cerebral hemisphere using a three-dimensional stereotactic ROI template. Preoperative decreases in CBF at the resting state [95% confidence intervals (CIs), 0.855 to 0.967; P = 0.0023] and preoperative decreases in CVR to acetazolamide (95% CIs, 0.844 to 0.912; P < 0.0001) were significant independent predictors of post-CEA hyperperfusion. The area under the receiver operating characteristic curve for prediction of the development of post-CEA hyperperfusion was significantly greater for CVR to acetazolamide than for CBF at the resting state (difference between areas, 0.173; P < 0.0001). Sensitivity, specificity, and positive- and negative-predictive values for the prediction of the development of post-CEA hyperperfusion were significantly greater for CVR to acetazolamide than for CBF at the resting state (P < 0.05, respectively). The present study demonstrated that preoperative measurement of CBF with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of the development of post-CEA hyperperfusion. PMID:25746308

  18. Does preoperative measurement of cerebral blood flow with acetazolamide challenge in addition to preoperative measurement of cerebral blood flow at the resting state increase the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy? Results from 500 cases with brain perfusion single-photon emission computed tomography study.

    PubMed

    Oshida, Sotaro; Ogasawara, Kuniaki; Saura, Hiroaki; Yoshida, Koji; Fujiwara, Shunro; Kojima, Daigo; Kobayashi, Masakazu; Yoshida, Kenji; Kubo, Yoshitaka; Ogawa, Akira

    2015-01-01

    The purpose of the present study was to determine whether preoperative measurement of cerebral blood flow (CBF) with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy (CEA). CBF at the resting state and cerebrovascular reactivity (CVR) to acetazolamide were quantitatively assessed using N-isopropyl-p-[(123)I]-iodoamphetamine (IMP)-autoradiography method with single-photon emission computed tomography (SPECT) before CEA in 500 patients with ipsilateral internal carotid artery stenosis (≥ 70%). CBF measurement using (123)I-IMP SPECT was also performed immediately and 3 days after CEA. A region of interest (ROI) was automatically placed in the middle cerebral artery territory in the affected cerebral hemisphere using a three-dimensional stereotactic ROI template. Preoperative decreases in CBF at the resting state [95% confidence intervals (CIs), 0.855 to 0.967; P = 0.0023] and preoperative decreases in CVR to acetazolamide (95% CIs, 0.844 to 0.912; P < 0.0001) were significant independent predictors of post-CEA hyperperfusion. The area under the receiver operating characteristic curve for prediction of the development of post-CEA hyperperfusion was significantly greater for CVR to acetazolamide than for CBF at the resting state (difference between areas, 0.173; P < 0.0001). Sensitivity, specificity, and positive- and negative-predictive values for the prediction of the development of post-CEA hyperperfusion were significantly greater for CVR to acetazolamide than for CBF at the resting state (P < 0.05, respectively). The present study demonstrated that preoperative measurement of CBF with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of the development of post-CEA hyperperfusion.

  19. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage.

    PubMed

    Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2014-11-12

    Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.

  20. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  1. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    PubMed Central

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-01-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks. PMID:26404010

  2. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime

    NASA Astrophysics Data System (ADS)

    Jeantet, A.; Chassagneux, Y.; Raynaud, C.; Roussignol, Ph.; Lauret, J. S.; Besga, B.; Estève, J.; Reichel, J.; Voisin, C.

    2016-06-01

    The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands.

  3. Authenticated Quantum Key Distribution with Collective Detection using Single Photons

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Bing-Jie; Duan, Ji-Tong; Liu, Bin; Su, Qi; He, Yuan-Hang; Jia, Heng-Yue

    2016-10-01

    We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.

  4. Single photon, photon-jet and diphoton production at DO

    SciTech Connect

    Abachi, S.; DO Collaboration

    1995-07-01

    Results are described on the observation of isolated single photons by the DO detector at the Fermilab {anti p}p collider. The inclusive cross section has been measured for photons in the central rapidity region ({vert_bar} {eta} {vert_bar}< 0.9) above 10 GeV E{sub T}. Studies of jets recoiling against the single photon permit the measurement of the fundamental hard scattering cos{theta}* distribution. An analysis of the {eta} correlations between high-E{sub T} photons and the leading jet probes the gluon x distribution. Diphoton production measurements are used both as a test of QCD processes and as a search for resonant structure, including bosonic Higgs production.

  5. Quantum private query based on single-photon interference

    NASA Astrophysics Data System (ADS)

    Xu, Sheng-Wei; Sun, Ying; Lin, Song

    2016-08-01

    Quantum private query (QPQ) has become a research hotspot recently. Specially, the quantum key distribution (QKD)-based QPQ attracts lots of attention because of its practicality. Various such kind of QPQ protocols have been proposed based on different technologies of quantum communications. Single-photon interference is one of such technologies, on which the famous QKD protocol GV95 is just based. In this paper, we propose two QPQ protocols based on single-photon interference. The first one is simpler and easier to realize, and the second one is loss tolerant and flexible, and more practical than the first one. Furthermore, we analyze both the user privacy and the database privacy in the proposed protocols.

  6. Demonstration of quantum permutation algorithm with a single photon ququart.

    PubMed

    Wang, Feiran; Wang, Yunlong; Liu, Ruifeng; Chen, Dongxu; Zhang, Pei; Gao, Hong; Li, Fuli

    2015-06-05

    We report an experiment to demonstrate a quantum permutation determining algorithm with linear optical system. By employing photon's polarization and spatial mode, we realize the quantum ququart states and all the essential permutation transformations. The quantum permutation determining algorithm displays the speedup of quantum algorithm by determining the parity of the permutation in only one step of evaluation compared with two for classical algorithm. This experiment is accomplished in single photon level and the method exhibits universality in high-dimensional quantum computation.

  7. Single-Photon Generation With InAs Quantum Dots

    DTIC Science & Technology

    2007-11-02

    improved efficiencies [13] and photon state purities such that the mean wavepacket overlap between consecutive photons is as high as 0.8 [14]. The...shown schematically in figure 1(a). One or more InAs quantum dots, surrounded by a GaAs matrix , are embedded in a micropillar optical cavity. The...diagram of single-photon device, (b) scanning-electron microscope image of actual pillar structures; and (c) optical excitation scheme. density of

  8. Single photon detection with self-quenching multiplication

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  9. Single-photon ultrashort-lived radionuclides: symposium proceedings

    SciTech Connect

    Paras, P.; Thiessen, J.W.

    1985-01-01

    The purpose was to define the current role and state-of-the-art regarding the development, clinical applications, and usefulness of generator-produced single-photon ultrashort-lived radionuclides (SPUSLR's) and to predict their future impact on medicine. Special emphasis was placed on the generator production of iridium-191, gold-195, and krypton-81. This report contains expanded summaries of the included papers. (ACR)

  10. Single Photon Reflection and Transmission in Optomechanical System

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Hou, S. C.; Farooq, K.; Yi, X. X.

    2013-05-01

    Cavity Optomechanical system is speedily approaching the regime where the radiation pressure of a single photon displaces the moving mirror. In this paper, we consider a cavity optomechanical system where the cavity field is driven by an external field. In the limit of weak mirror-cavity couplings, we calculate analytically the reflection and transmission rates for cavity field and discuss the effects of mirror-cavity coupling on reflection and transmission.

  11. Advanced active quenching circuits for single-photon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  12. Heterodyne spectroscopy with superconducting single-photon detector

    NASA Astrophysics Data System (ADS)

    Lobanov, Yu. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.

    2016-12-01

    We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.

  13. Single Photon Holographic Qudit Elements for Linear Optical Quantum Computing

    DTIC Science & Technology

    2011-05-01

    in optical volume holography and designed and simulated practical single-photon, single-optical elements for qudit MUB-state quantum in- formation...Independent of the representation we use, the MUB states will ordinarily be modulated in both amplitude and phase. Recently a practical method has been...quantum computing with qudits (d ≥ 3) has been an efficient and practical quantum state sorter for photons whose complex fields are modulated in both

  14. Computational multi-depth single-photon imaging.

    PubMed

    Shin, Dongeek; Xu, Feihu; Wong, Franco N C; Shapiro, Jeffrey H; Goyal, Vivek K

    2016-02-08

    We present an imaging framework that is able to accurately reconstruct multiple depths at individual pixels from single-photon observations. Our active imaging method models the single-photon detection statistics from multiple reflectors within a pixel, and it also exploits the fact that a multi-depth profile at each pixel can be expressed as a sparse signal. We interpret the multi-depth reconstruction problem as a sparse deconvolution problem using single-photon observations, create a convex problem through discretization and relaxation, and use a modified iterative shrinkage-thresholding algorithm to efficiently solve for the optimal multi-depth solution. We experimentally demonstrate that the proposed framework is able to accurately reconstruct the depth features of an object that is behind a partially-reflecting scatterer and 4 m away from the imager with root mean-square error of 11 cm, using only 19 signal photon detections per pixel in the presence of moderate background light. In terms of root mean-square error, this is a factor of 4.2 improvement over the conventional method of Gaussian-mixture fitting for multi-depth recovery.

  15. Protecting single-photon entangled state from photon loss with noiseless linear amplification

    NASA Astrophysics Data System (ADS)

    Zhang, ShengLi; Yang, Song; Zou, XuBo; Shi, BaoSen; Guo, GuangCan

    2012-09-01

    Single-photon entanglement provides a valuable resource for quantum communication and quantum repeaters. However, single-photon entanglement is sensitive to photon loss. In this Brief Report, we show that a noiseless linear amplifier is an efficient tool for protecting single-photon entanglement. The performance of ideal noiseless linear amplification as well as the nonideal amplification with on-off detectors and heralded single photons are also investigated.

  16. A single-molecule approach to ZnO defect studies: Single photons and single defects

    NASA Astrophysics Data System (ADS)

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-01

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ˜560-720 nm and typically exhibits two broad spectral peaks separated by ˜150 meV. The excited state lifetimes range from 1 to 13 ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  17. A single-molecule approach to ZnO defect studies: Single photons and single defects

    SciTech Connect

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-28

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ∼560–720 nm and typically exhibits two broad spectral peaks separated by ∼150 meV. The excited state lifetimes range from 1 to 13 ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  18. An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K

    NASA Astrophysics Data System (ADS)

    Deshpande, Saniya; Bhattacharya, Pallab

    2013-12-01

    We demonstrate electrically pumped single photon emission up to 150 K from a single InGaN quantum dot embedded in a GaN nanowire junction diode. The InGaN dot-in-nanowire p-n junctions were grown on silicon by molecular beam epitaxy. The exciton electroluminescence from individual dot-in-nanowires is in the green spectral range (λ ˜ 520 nm) and is detectable up to 150 K. Second order autocorrelation measurements performed at the exciton energy at an ambient temperature of 125 K show a background corrected g(2)(0) equal to 0.35, indicating dominant single photon emission. The steady state nanowire temperature under these conditions is estimated to be 150 K due to Joule heating induced by the large nanowire series resistance. Time resolved photoluminescence measurements yield an exciton radiative lifetime of 1.1 ns.

  19. An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K

    SciTech Connect

    Deshpande, Saniya; Bhattacharya, Pallab

    2013-12-09

    We demonstrate electrically pumped single photon emission up to 150 K from a single InGaN quantum dot embedded in a GaN nanowire junction diode. The InGaN dot-in-nanowire p-n junctions were grown on silicon by molecular beam epitaxy. The exciton electroluminescence from individual dot-in-nanowires is in the green spectral range (λ ∼ 520 nm) and is detectable up to 150 K. Second order autocorrelation measurements performed at the exciton energy at an ambient temperature of 125 K show a background corrected g{sup (2)}(0) equal to 0.35, indicating dominant single photon emission. The steady state nanowire temperature under these conditions is estimated to be 150 K due to Joule heating induced by the large nanowire series resistance. Time resolved photoluminescence measurements yield an exciton radiative lifetime of 1.1 ns.

  20. Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature.

    PubMed

    Bidault, Sébastien; Devilez, Alexis; Maillard, Vincent; Lermusiaux, Laurent; Guigner, Jean-Michel; Bonod, Nicolas; Wenger, Jérôme

    2016-04-26

    Minimizing the luminescence lifetime while maintaining a high emission quantum yield is paramount in optimizing the excitation cross-section, radiative decay rate, and brightness of quantum solid-state light sources, particularly at room temperature, where nonradiative processes can dominate. We demonstrate here that DNA-templated 60 and 80 nm diameter gold nanoparticle dimers, featuring one fluorescent molecule, provide single-photon emission with lifetimes that can fall below 10 ps and typical quantum yields in a 45-70% range. Since these colloidal nanostructures are obtained as a purified aqueous suspension, fluorescence spectroscopy can be performed on both fixed and freely diffusing nanostructures to quantitatively estimate the distributions of decay rate and fluorescence intensity enhancements. These data are in excellent agreement with theoretical calculations and demonstrate that millions of bright fluorescent nanostructures, with radiative lifetimes below 100 ps, can be produced in parallel.

  1. Detection of single photons by toad and mouse rods.

    PubMed

    Reingruber, Jürgen; Pahlberg, Johan; Woodruff, Michael L; Sampath, Alapakkam P; Fain, Gordon L; Holcman, David

    2013-11-26

    Amphibian and mammalian rods can both detect single photons of light even though they differ greatly in physical dimensions, mammalian rods being much smaller in diameter than amphibian rods. To understand the changes in physiology and biochemistry required by such large differences in outer segment geometry, we developed a computational approach, taking into account the spatial organization of the outer segment divided into compartments, together with molecular dynamics simulations of the signaling cascade. We generated simulations of the single-photon response together with intrinsic background fluctuations in toad and mouse rods. Combining this computational approach with electrophysiological data from mouse rods, we determined key biochemical parameters. On average around one phosphodiesterase (PDE) molecule is spontaneously active per mouse compartment, similar to the value for toad, which is unexpected due to the much smaller diameter in mouse. A larger number of spontaneously active PDEs decreases dark noise, thereby improving detection of single photons; it also increases cGMP turnover, which accelerates the decay of the light response. These constraints explain the higher PDE density in mammalian compared with amphibian rods that compensates for the much smaller diameter of mammalian disks. We further find that the rate of cGMP hydrolysis by light-activated PDE is diffusion limited, which is not the case for spontaneously activated PDE. As a consequence, in the small outer segment of a mouse rod only a few activated PDEs are sufficient to generate a signal that overcomes noise, which permits a shorter lifetime of activated rhodopsin and greater temporal resolution.

  2. Reading boundless error-free bits using a single photon

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Shapiro, Jeffrey H.

    2013-06-01

    We address the problem of how efficiently information can be encoded into and read out reliably from a passive reflective surface that encodes classical data by modulating the amplitude and phase of incident light. We show that nature imposes no fundamental upper limit to the number of bits that can be read per expended probe photon and demonstrate the quantum-information-theoretic trade-offs between the photon efficiency (bits per photon) and the encoding efficiency (bits per pixel) of optical reading. We show that with a coherent-state (ideal laser) source, an on-off (amplitude-modulation) pixel encoding, and shot-noise-limited direct detection (an overly optimistic model for commercial CD and DVD drives), the highest photon efficiency achievable in principle is about 0.5 bits read per transmitted photon. We then show that a coherent-state probe can read unlimited bits per photon when the receiver is allowed to make joint (inseparable) measurements on the reflected light from a large block of phase-modulated memory pixels. Finally, we show an example of a spatially entangled nonclassical light probe and a receiver design—constructible using a single-photon source, beam splitters, and single-photon detectors—that can in principle read any number of error-free bits of information. The probe is a single photon prepared in a uniform coherent superposition of multiple orthogonal spatial modes, i.e., a W state. The code and joint-detection receiver complexity required by a coherent-state transmitter to achieve comparable photon efficiency performance is shown to be much higher in comparison to that required by the W-state transceiver, although this advantage rapidly disappears with increasing loss in the system.

  3. Efficient room-temperature source of polarized single photons

    DOEpatents

    Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.

    2007-08-07

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  4. Multichannel intensified photodiode for near infrared single photon detection

    NASA Astrophysics Data System (ADS)

    Aebi, Verle W.; Sykora, Derek F.; Jurkovic, Michael J.; Costello, Kenneth A.

    2011-05-01

    An overview of the Intensified Photodiode (IPD) is presented with an emphasis on IPDs optimized for use in the 950nm to 1350nm spectral range for single photon detection applications. The theory of operation of the IPD, two different electron optics designs, and device performance for a multichannel, 4x4 pixel array, low jitter IPD optimized for operation at 1060nm are presented in this paper. Key results include greater than 15% quantum efficiency, large active area, and less than 550ps impulse response.

  5. Total teleportation of a single-photon state

    SciTech Connect

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2008-01-01

    Recent demonstrations of teleportation have transferred quantum information encoded into either polarization or field-quadrature degrees of freedom (DOFs), but an outstanding question is how to simultaneously teleport quantum information encoded into multiple DOFs. We describe how the transverse-spatial, spectral and polarization states of a single photon can be simultaneously teleported using a pair of multimode, polarization-entangled photons derived from spontaneous parametric down-conversion. Furthermore, when the initial photon pair is maximally entangled in the spatial, spectral, and polarization DOFs then the photon s full quantum state can be reliably teleported using a Bell-state measurement based on sum-frequency generation.

  6. Ghosting phenomena in single photon counting imagers with Vernier anode.

    PubMed

    Yang, Hao; Zhao, Baosheng; Qiurong, Yan; Liu, Yong'an; Hu, Huijun

    2011-02-01

    We provide the ghosting theory of two-dimensional Vernier anode based imagers. The single photon counting detection system based on Vernier anode is constructed. The ghosting, which occurs during the decoding of two-dimensional Vernier anode, and its possible solutions are described in detail. On the basis of the discussion of the decoding algorithm, the ghosting theoretical model is established. Phase conditions on which imaging ghosting can be avoided and the probability distribution function are proposed; the root causes of ghosting of two-dimensional Vernier anode are also discussed.

  7. Operation of silicon single photon avalanche diodes at cryogenic temperature.

    PubMed

    Rech, Ivan; Labanca, Ivan; Armellini, Giacomo; Gulinatti, Angelo; Ghioni, Massimo; Cova, Sergio

    2007-06-01

    This article reports a complete characterization of single photon avalanche diodes (SPADs) at temperatures down to 120 K. We show that deep cooling of the device by means of a compact liquid-nitrogen Dewar brings several advantages, such as extremely low dark counting rates (down to 1 counts/s), better time resolution, and higher quantum efficiency in the visible range. By using a special current pick-off circuit, we achieved a time resolution of 20 ps full width at half maximum at 120 K for a 50 mum diameter SPAD. Afterpulsing effects are avoided by using a sufficiently long hold-off time (microseconds).

  8. Calibration of single-photon detectors using quantum statistics

    SciTech Connect

    Mogilevtsev, D.

    2010-08-15

    I show that calibration of the single-photon detector can be performed without knowledge of the signal parameters. Only partial information about the state statistics is sufficient for that. If one knows that the state is the squeezed one or the squeezed one mixed with the incoherent radiation, one can infer both the parameters of the state and the efficiency of the detector. For that one needs only to measure on/off statistics of detector clicks for the number of known absorbers placed before the detector. Thus, I suggest a scheme that performs a tomography of the signal and the measuring apparatus simultaneously.

  9. Collective lamb shift in single photon Dicke superradiance.

    PubMed

    Scully, Marlan O

    2009-04-10

    The collective Lamb shift and associated radiative decay of a large cloud of radius R containing N atoms uniformly excited by one photon of wavelength lambda is analyzed. It is shown that the time evolution of the symmetric state prepared by single photon absorption in the limit R>lambda is similar to that encountered in the Dicke limit of small sample (R

  10. Multi-group dynamic quantum secret sharing with single photons

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Ma, Haiqiang; Wei, Kejin; Yang, Xiuqing; Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu

    2016-07-01

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application.

  11. Optimised quantum hacking of superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.

    2014-03-01

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  12. Optimised quantum hacking of superconducting nanowire single-photon detectors.

    PubMed

    Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H

    2014-03-24

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  13. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  14. Single-photon sensitive light-in-fight imaging.

    PubMed

    Gariepy, Genevieve; Krstajić, Nikola; Henderson, Robert; Li, Chunyong; Thomson, Robert R; Buller, Gerald S; Heshmat, Barmak; Raskar, Ramesh; Leach, Jonathan; Faccio, Daniele

    2015-01-27

    The ability to record images with extreme temporal resolution enables a diverse range of applications, such as fluorescence lifetime imaging, time-of-flight depth imaging and characterization of ultrafast processes. Recently, ultrafast imaging schemes have emerged, which require either long acquisition times or raster scanning and have a requirement for sufficient signal that can only be achieved when light is reflected off an object or diffused by a strongly scattering medium. Here we present a demonstration of the potential of single-photon detector arrays for visualization and rapid characterization of events evolving on picosecond time scales. The single-photon sensitivity, temporal resolution and full-field imaging capability enables the observation of light-in-flight in air, as well as the measurement of laser-induced plasma formation and dynamics in its natural environment. The extreme sensitivity and short acquisition times pave the way for real-time imaging of ultrafast processes or visualization and tracking of objects hidden from view.

  15. Research on high-speed single photon detector

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Hao; Wang, Di; Ma, Haiqiang; Luo, Kaihong; Sun, Zhibin; Zhai, Guangjie

    2010-10-01

    Single-photon detector based on an InGaAs avalanche photodiode is one of hot research on the quantum photon, and is one of the key technologies on quantum communication and quantum image. It is widely used in applications as high sensitive photon spectrum, high speed optic measurement and so on. A suitable delay and comparator with latch function circuit are used to prevent positive and negative transient pulses from influencing the detection of true photon induced avalanches. A dead time modulation feedback control circuit decreases the after-pulse. Especially, ECL difference circuit is the key of high speed single photon detector. In addition, the detector uses the hot tube fan-cooling method. From the performance test, the lowest temperature reaches -62°C, the minimum gate pulse width is 2ns (Full-Width-Half-Max, FWHM) and the dark counter rate is 2.5×10-6 ns-1 with a detection rate of 10MHz when the quantum efficiency is more than 10%.

  16. Weak Value Amplification of a Post-Selected Single Photon

    NASA Astrophysics Data System (ADS)

    Hallaji, Matin

    Weak value amplification (WVA) is a measurement technique in which the effect of a pre- and post-selected system on a weakly interacting probe is magnified. In this thesis, I present the first experimental observation of WVA of a single photon. We observed that a signal photon --- sent through a polarization interferometer and post-selected by photodetection in the almost-dark port --- can act like eight photons. The effect of this single photon is measured as a nonlinear phase shift on a separate laser beam. The interaction between the two is mediated by a sample of laser- cooled 85Rb atoms. Electromagnetically induced transparency (EIT) is used to enhance the nonlinearity and overcome resonant absorption. I believe this work to be the first demonstration of WVA where a deterministic interaction is used to entangle two distinct optical systems. In WVA, the amplification is contingent on discarding a large portion of the original data set. While amplification increases measurement sensitivity, discarding data worsens it. Questioning whether these competing effects conspire to improve or diminish measurement accuracy has resulted recently in controversy. I address this question by calculating the maximum amount of information achievable with the WVA technique. By comparing this information to that achievable by the standard technique, where no post-selection is employed, I show that the WVA technique can be advantageous under a certain class of noise models. Finally, I propose a way to optimally apply the WVA technique.

  17. Single-photon imaging in complementary metal oxide semiconductor processes

    PubMed Central

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  18. Doped niobium superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Kang, Lin; Zhang, Labao; Zhao, Qingyuan; Gu, Min; Qiu, Jian; Chen, Jian; Jin, Biaobing

    2014-09-01

    We designed and fabricated a special doped niobium (Nb*) superconducting nanowire single-photon detector (SNSPD) on MgO substrate. The superconductivity of this ultra-thin Nb* film was further improved by depositing an ultra-thin aluminum nitride protective layer on top. Compared with traditional Nb films, Nb* films present higher T C and J C. We investigated the dependence of the characteristics of devices, such as cut-off wavelength, response bandwidth, and temperature, on their geometrical dimensions. Results indicate that reduction in both the width and thickness of Nb* nanowires extended the cut-off wavelength and improved the sensitivity. The Nb* SNSPD (50 nm width and 4.5 nm thickness) exhibited single-photon sensitivities at 1,310, 1,550, and 2,010 nm. We also demonstrated an enhancement in the detection efficiency by a factor of 10 in its count rate by lowering the working temperature from 2.26 K to 315 mK.

  19. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  20. Active temporal multiplexing of indistinguishable heralded single photons

    PubMed Central

    Xiong, C.; Zhang, X.; Liu, Z.; Collins, M. J.; Mahendra, A.; Helt, L. G.; Steel, M. J.; Choi, D. -Y.; Chae, C. J.; Leong, P. H. W.; Eggleton, B. J.

    2016-01-01

    It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong–Ou–Mandel quantum interference with a 91±16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies. PMID:26996317

  1. Active temporal multiplexing of indistinguishable heralded single photons

    NASA Astrophysics Data System (ADS)

    Xiong, C.; Zhang, X.; Liu, Z.; Collins, M. J.; Mahendra, A.; Helt, L. G.; Steel, M. J.; Choi, D.-Y.; Chae, C. J.; Leong, P. H. W.; Eggleton, B. J.

    2016-03-01

    It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong-Ou-Mandel quantum interference with a 91+/-16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies.

  2. Gravitationally induced phase shift on a single photon

    NASA Astrophysics Data System (ADS)

    Hilweg, Christopher; Massa, Francesco; Martynov, Denis; Mavalvala, Nergis; Chruściel, Piotr T.; Walther, Philip

    2017-03-01

    The effect of the Earth’s gravitational potential on a quantum wave function has only been observed for massive particles. In this paper we present a scheme to measure a gravitationally induced phase shift on a single photon traveling in a coherent superposition along different paths of an optical fiber interferometer. To create a measurable signal for the interaction between the static gravitational potential and the wave function of the photon, we propose a variant of a conventional Mach–Zehnder interferometer. We show that the predicted relative phase difference of 10‑5 rad is measurable even in the presence of fiber noise, provided additional stabilization techniques are implemented for each arm of a large-scale fiber interferometer. Effects arising from the rotation of the Earth and the material properties of the fibers are analysed. We conclude that optical fiber interferometry is a feasible way to measure the gravitationally induced phase shift on a single-photon wave function, and thus provides a means to corroborate the equivalence of the energy of the photon and its effective gravitational mass.

  3. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    NASA Astrophysics Data System (ADS)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  4. Producing high fidelity single photons with optimal brightness via waveguided parametric down-conversion.

    PubMed

    Laiho, K; Cassemiro, K N; Silberhorn, Ch

    2009-12-07

    Parametric down-conversion (PDC) offers the possibility to control the fabrication of non-Gaussian states such as Fock states. However, in conventional PDC sources energy and momentum conservation introduce strict frequency and photon number correlations, which impact the fidelity of the prepared state. In our work we optimize the preparation of single-photon Fock states from the emission of waveguided PDC via spectral filtering. We study the effect of correlations via photon number resolving detection and quantum interference. Our measurements show how the reduction of mixedness due to filtering can be evaluated. Interfering the prepared photon with a coherent state we establish an experimentally measured fidelity of the produced target state of 78%.

  5. Quantum Zeno switch for single-photon coherent transport

    SciTech Connect

    Zhou Lan; Yang, S.; Liu Yuxi; Sun, C. P.; Nori, Franco

    2009-12-15

    Using a dynamical quantum Zeno effect, we propose a general approach to control the coupling between a two-level system (TLS) and its surroundings, by modulating the energy-level spacing of the TLS with a high-frequency signal. We show that the TLS-surroundings interaction can be turned off when the ratio between the amplitude and the frequency of the modulating field is adjusted to be a zero of a Bessel function. The quantum Zeno effect of the TLS can also be observed by the vanishing of the photon reflection at these zeros. Based on these results, we propose a quantum switch to control the transport of a single photon in a one-dimensional waveguide. Our analytical results agree well with numerical results using Floquet theory.

  6. Mars laser altimeter based on a single photon ranging technique

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan; Hamal, Karel; Sopko, B.; Pershin, S.

    1993-01-01

    The Mars 94/96 Mission will carry, among others things, the balloon probe experiment. The balloon with the scientific cargo in the gondola underneath will drift in the Mars atmosphere, its altitude will range from zero, in the night, up to 5 km at noon. The accurate gondola altitude will be determined by an altimeter. As the Balloon gondola mass is strictly limited, the altimeter total mass and power consumption are critical; maximum allowed is a few hundred grams a few tens of mWatts of average power consumption. We did propose, design, and construct the laser altimeter based on the single photon ranging technique. Topics covered include the following: principle of operation, altimeter construction, and ground tests.

  7. SIMULTANEOUS TELEPORTATION OF MULTIPLE SINGLE-PHOTON DEGREES OF FREEDOM

    SciTech Connect

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2011-01-01

    We report how quantum information encoded into multiple photonic degrees of freedom may be simultaneously teleported using a single, common physical process. The application of teleportation to the complete quantum state of a photon, i.e., the spectral, spatial, and polarization component states, permits the full photonic Hilbert space to be used for encoding information while simultaneously enabling subspaces to be addressed individually, e.g., for quantum information processing. We analyze the feasibility of teleporting the full quantum state through numerical analysis of the fidelity under nominal experimental conditions and for different types of input states, e.g., single-photon states that are separable and entangled in the physical degrees of freedom.

  8. Spatially resolved single photon detection with a quantum sensor array

    PubMed Central

    Zagoskin, A. M.; Wilson, R. D.; Everitt, M.; Savel'ev, S.; Gulevich, D. R.; Allen, J.; Dubrovich, V. K.; Il'ichev, E.

    2013-01-01

    We propose a method of resolving a spatially coherent signal, which contains on average just a single photon, against the background of local noise at the same frequency. The method is based on detecting the signal simultaneously in several points more than a wavelength apart through the entangling interaction of the incoming photon with the quantum metamaterial sensor array. The interaction produces the spatially correlated quantum state of the sensor array, characterised by a collective observable (e.g., total magnetic moment), which is read out using a quantum nondemolition measurement. We show that the effects of local noise (e.g., fluctuations affecting the elements of the array) are suppressed relative to the signal from the spatially coherent field of the incoming photon as , where N is the number of array elements. The realisation of this approach in the microwave range would be especially useful and is within the reach of current experimental techniques. PMID:24322568

  9. Silicon technologies for arrays of Single Photon Avalanche Diodes

    PubMed Central

    Ceccarelli, Francesco; Rech, Ivan; Ghioni, Massimo

    2016-01-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency in the red/near-infrared spectrum (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we discuss the limitations of such Red-Enhanced (RE) technology from the point of view of the fabrication of small arrays of SPAD and we propose modifications to the structure aimed at overcoming these issues. We also report the first preliminary experimental results attained on devices fabricated adopting the improved structure. PMID:27761058

  10. Single photon energy dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Higginbotham, Andrew; Patel, Shamim; Hawreliak, James A.; Ciricosta, Orlando; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Suggit, Matthew J.; Tang, Henry; Wark, Justin S.

    2014-03-01

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  11. Single photon lidar demonstrator for asteroid rendezvous missions

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Djurovic, Goran

    2015-01-01

    We present compact single photon lidar demonstrator dedicated for asteroid rendezvous missions. The instrument provides crucial data on altitude and terrain profile for altitudes exceeding 5km with a precision of less than 10 cm fulfilling the Rayleigh criterion. Transmitter and receiver optics designs are discussed, control and processing electronics based on a single rad-hard compatible FPGA (Field Programmable Gate Array) is analyzed. The FPGA electronics subsystems are TDC (Time-to-Digit Converter), laser trigger pulse generator and gate generator. Indoor calibration procedures of the whole demonstrator chain are proposed and evaluated. The calibration covers positioning of receiver and transmitter optics related to detector and laser, aligning of transmitter and receiver optical common paths. The retrieving strategy of terrain elevation profile is proposed and via indoor tests validated. Theory for surface slope and scanning is established, simulation and measurement results are compared and discussed.

  12. Single-Photon Superradiance from a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tighineanu, Petru; Daveau, Raphaël S.; Lehmann, Tau B.; Beere, Harvey E.; Ritchie, David A.; Lodahl, Peter; Stobbe, Søren

    2016-04-01

    We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a fivefold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.

  13. Single photon time transfer link model for GNSS satellites

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef

    2015-05-01

    The importance of optical time transfer serving as a complement to traditional microwave links, has been attested for GNSSes and for scientific missions. Single photon time transfer (SPTT) is a process, allowing to compare (subtract) time readings of two distant clocks. Such a comparison may be then used to synchronize less accurate clock to a better reference, to perform clock characterization and calibration, to calculate mean time out of ensemble of several clocks, displaced in space. The single-photon time transfer is well established in field of space geodesy, being supported by passive retro-reflectors within space segment of five known GNSSes. A truly two-way, active terminals work aboard of Jason-2 (T2L2) - multiphoton operation, GNSS Beidou (Compass) - SPTT, and are going to be launched within recent ACES project (ELT) - SPTT, and GNSS GLONASS - multiphoton operation. However, there is still missing comprehensive theoretical model of two-way (using satellite receiver and retroreflector) SPTT link incorporating all crucial parameters of receiver (both ground and space segment receivers), transmitter, atmosphere effects on uplink and downlink path, influence of retroreflector. The input to calculation of SPTT link performance will be among others: link budget (distance, power, apertures, beam divergence, attenuation, scattering), propagating medium (atmosphere scintillation, beam wander, etc.), mutual Tx/Rx velocity, wavelength. The SPTT model will be evaluated without the properties of real components. These will be added in the further development. The ground-to-space SPTT link performance of typical scenarios are modeled. This work is a part of the ESA study "Comparison of optical time-transfer links."

  14. Single-photon events in the DELPHI experiment

    NASA Astrophysics Data System (ADS)

    Harris, Elisabeth Falk

    1998-08-01

    A series of studies pertaining to the STIC calorimeter at the DELPHI experiment at LEP is presented, and a new generation of fast wire scanners for emittance measurements at PS is described. The STIC studies are centered around a single-photon analysis, in which the reaction e+c/sp-/to/gamma + invisible particles was studied at center-of-mass energies of 161, 172 and 183 GeV. The cross section thus obtained was used to measure the number of neutrino families, and also to set limits on physics reactions occuring outside the framework of the Standard Model. The single-photon analysis is rendered difficult by an abundance of off-energy electron background. This type of background was examined in a separate series of Monte Carlo simulations, which are also reported. The STIC calorimeter modules have been equipped with a tracking device in the form of silicon-strip detectors, in order to improve the rejection of off-energy electrons in single-proton analyses. Results from a study of the performance of these detectors are presented. A method to reduce coherent noise in the silicon-strip detectors is also described. A new generation of fast wire scanners was installed at PS in 1994. The wire scanners are an important tool for measuring transverse beam profiles, from which transverse emittances are derived. An upgrade of a previous set of wire scanners was essential in order to obtain a reliable instrument that provides highly accurate emittance measurements, in particular in view of the future use of the PS accelerator complex as part of the injector chain for LHC. A presentation is given of the new instrument.

  15. Single photon imaging at ultra-high resolution

    NASA Astrophysics Data System (ADS)

    Bellazzini, R.; Spandre, G.; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgrò, C.; Bregeon, J.; Razzano, M.; Pinchera, M.; Tremsin, A.; McPhate, J.; Vallerga, J. V.; Siegmund, O.

    2008-06-01

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 μm for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 μm in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of <100 electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by ˜0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is ˜3 μm FWHM enabling detection resolution better than 6 μm for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of ˜130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  16. Single-photon multi-ports router based on the coupled cavity optomechanical system.

    PubMed

    Li, Xun; Zhang, Wen-Zhao; Xiong, Biao; Zhou, Ling

    2016-12-22

    A scheme of single-photon multi-port router is put forward by coupling two optomechanical cavities with waveguides. It is shown that the coupled two optomechanical cavities can exhibit photon blockade effect, which is generated from interference of three mode interaction. A single-photon travel along the system is calculated. The results show that the single photon can be controlled in the multi-port system because of the radiation pressure, which should be useful for constructing quantum network.

  17. Experimental studies of single-photon photodetachment of atomic anions

    NASA Astrophysics Data System (ADS)

    Duvvuri, Srividya S.

    Laser photodetachment electron spectroscopy (LPES) has been used to study the structure of the terbium anion. The data was analyzed assuming that the terbium anion forms in dysprosium-like states. Using this assumption, the electron affinity of Tb([Xe]4f96s 2 6 Ho15/2 ) equals 1.98 +/- 0.10 eV, and the ground state of the terbium anion is assigned to the Dy-like Tb-([Xe]4f 106s2 5I 8) electronic configuration. At lust two bound excited states of Tb - are also evident in the photoelectron kinetic energy spectra, with binding energies of 0.449 +/- 0.01 and 1.67 +/- 0.07 eV relative to the Tb(6 Ho15/2 ) ground state. The energy scale of each Tb- photoelectron spectrum way calibrated using reference photoelectron peaks from 12 C-, 16O- and 23Na-, which have well known binding energies [1]. Photoelectron angular distribution measurements following the single-photon photodetachment of the lanthanide anions Tb- and Lu - are also presented. The asymmetry parameters were determined from the non-linear least-square fits of the photoelectron yields as a function of the angle between the photon polarization vector and the photoelectron momentum vector of the collected photoelectrons. The measurements indicated the single-photon photodetachment process hnu + Tb -([Xe]4f106s 2 5I8) → Tb([Xe]4 f96s2 6) Ho15/2 + e - has beta values of 1.51 +/- 0.08 and 1.35 +/- 0.08 at wavelengths of 514.5 and 488 nm, respectively. For Lu -, the fine-structure resolved photodetachment process hnu +Lu-([Xe]4f146s 26p5d 1D 2) → Lu([Xe]4f145 d6s2 2D 3/2) + e-, has been measured at wavelength of 532 nm yielding beta = 0.8 +/- 0.1, supporting the assertion that Lu - forms via the attachment of a 6p-electron to the neutral Lu atom [2]. Finally, photodetachment cross sections and the angular distributions of photo-electrons produced by the single-photon detachment of the Fe - and Cu- have also been measured at discrete visible photon wavelengths. From the measured photodetachment cross sections, the

  18. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  19. Young's double-slit experiment with single photons and quantum eraser

    NASA Astrophysics Data System (ADS)

    Rueckner, Wolfgang; Peidle, Joseph

    2013-12-01

    An apparatus for a double-slit interference experiment in the single-photon regime is described. The apparatus includes a which-path marker that destroys the interference as well as a quantum eraser that restores it. We present data taken with several light sources, coherent and incoherent and discuss the efficacy of these as sources of single photons.

  20. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Hosny, Neveen A.; Lee, David A.; Knight, Martin M.

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)3]2+ characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  1. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  2. A Reanalysis of Single Photon Data at CERN SPS

    NASA Astrophysics Data System (ADS)

    Gale, Charles; Chatterjee, Rupa; Srivastava, Dinesh K.; Jeon, Sangyong

    2009-11-01

    We reanalyze the WA98 single photon data [M. M. Aggarwal et al. [WA98 Collaboration], Phys. Rev. Lett. 85, 3595 (2000)] at CERN SPS by incorporating several recent developments in the study of prompt and thermal photon production from relativistic heavy ion collisions [R. Chatterjee, D. K. Srivastava, and S. Jeon, Phys. Rev. C 79, 034906 (2009)]. Isospin and shadowing corrected NLO pQCD, along with an optimized scale for factorization, fragmentation and renormalization are considered for prompt photon production. Photons from thermal medium are estimated by considering a boost invariant azimuthally anisotropic hydrodynamic expansion of the plasma along with a well tested equation of state and initial conditions. A quantitative explanation of the data is obtained by combining κ× prompt with thermal photons, where κ is an overall scaling factor. We show that, elliptic flow of thermal photons can play a crucial role to distinguish between the ‘with’ and ‘without’ phase transition scenarios at SPS energy.

  3. Monitoring cellular mechanosensing using time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Tabouillot, Tristan; Gullapalli, Ramachandra; Butler, Peter J.

    2006-10-01

    Endothelial cells (ECs) convert mechanical stimuli into chemical signaling pathways to regulate their functions and properties. It is hypothesized that perturbation of cellular structures by force is accompanied by changes in molecular dynamics. In order to address these fundamental issues in mechanosensation and transduction, we have developed a hybrid multimodal microscopy - time-correlated single photon counting (TCSPC) spectroscopy system intended to determine time- and position dependent mechanically-induced changes in the dynamics of molecules in live cells as determined from fluorescence lifetimes and autocorrelation analysis (fluorescence correlation spectroscopy). Colocalization of cell-structures and mechanically-induced changes in molecular dynamics can be done in post-processing by comparing TCSPC data with 3-D models generated from total internal reflection fluorescence (TIRF), differential interference contrast (DIC), epifluorescence, and deconvolution. We present control experiments in which the precise location of the apical cell membrane with respect to a confocal probe is assessed using information obtainable only from TCSPC. Such positional accuracy of TCSPC measurements is essential to understanding the role of the membrane in mechanotransduction. We predict that TCSPC will become a useful method to obtain high temporal and spatial resolution information on localized mechanical phenomena in living endothelial cells. Such insight into mechanotransduction phenomenon may uncover the origins of mechanically-related diseases such as atherosclerosis.

  4. Lecture demonstrations of interference and quantum erasing with single photons

    NASA Astrophysics Data System (ADS)

    Dimitrova, T. L.; Weis, A.

    2009-07-01

    Single-photon interference is a beautiful manifestation of the wave-particle duality of light and the double-slit Gedankenexperiment is a standard lecture example for introducing quantum mechanical reality. Interference arises only if each photon can follow several (classical) paths from the source to the detector, and if one does not have the possibility to determine which specific path the photon has taken. Attaching a specific label to the photon traveling along a specific path destroys the interference. However, in some cases those labels can be erased from the photon between leaving the apparatus and being detected, by which interference can be restored, a phenomenon called quantum erasing. We present lecture demonstration experiments that illustrate the wave-particle duality of light and the phenomenon of quantum erasing. Both experiments are first shown with strong light and, in a second step, on a photon-by-photon basis. The smooth transition from the quantum to the classical case can be shown in real time by varying the incident light intensity.

  5. Performance limits of a single photon counting pixel system

    NASA Astrophysics Data System (ADS)

    Chmeissani, M.; Mikulec, B.

    2001-03-01

    X-ray imaging using hybrid pixel detectors in single photon counting mode is a relatively recent and exciting development. The photon counting mode implies that each pixel has a threshold in energy above which a hit is recorded. Sharing of charge between adjacent pixels would therefore lead to a loss of registered hits and for medical imaging applications to a higher patient dose. This explains why the demand for high spatial resolution and consequently small pixel sizes (<100 μm) motivates the Medipix2 collaboration to study the effects of charge sharing between pixels on system performance. Two different simulation codes are used to simulate the energy loss inside the detector and the charge transport towards the pixel electrodes. The largest contribution to the lateral spreading of charge comes from diffusion and can result in a considerable loss of detection efficiency in photon counting systems for small pixel sizes. The Medipix2 collaboration consists of groups from Barcelona, Cagliari, CEA/Leti DEIN, CERN, Freiburg, Glasgow, Mitthögskolan, Napoli, NIKHEF, MRC lab Cambridge, Pisa, Prague and Sassari.

  6. Photon-efficient imaging with a single-photon camera

    PubMed Central

    Shin, Dongeek; Xu, Feihu; Venkatraman, Dheera; Lussana, Rudi; Villa, Federica; Zappa, Franco; Goyal, Vivek K.; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2016-01-01

    Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ∼1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ∼10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ∼ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time. PMID:27338821

  7. Signal acquisition via polarization modulation in single photon sources

    NASA Astrophysics Data System (ADS)

    McDonnell, Mark D.; Flitney, Adrian P.

    2009-12-01

    A simple model system is introduced for demonstrating how a single photon source might be used to transduce classical analog information. The theoretical scheme results in measurements of analog source samples that are (i) quantized in the sense of analog-to-digital conversion and (ii) corrupted by random noise that is solely due to the quantum uncertainty in detecting the polarization state of each photon. This noise is unavoidable if more than 1 bit per sample is to be transmitted and we show how it may be exploited in a manner inspired by suprathreshold stochastic resonance. The system is analyzed information theoretically, as it can be modeled as a noisy optical communication channel, although unlike classical Poisson channels, the detector’s photon statistics are binomial. Previous results on binomial channels are adapted to demonstrate numerically that the classical information capacity, and thus the accuracy of the transduction, increases logarithmically with the square root of the number of photons, N . Although the capacity is shown to be reduced when an additional detector nonideality is present, the logarithmic increase with N remains.

  8. Signal acquisition via polarization modulation in single photon sources.

    PubMed

    McDonnell, Mark D; Flitney, Adrian P

    2009-12-01

    A simple model system is introduced for demonstrating how a single photon source might be used to transduce classical analog information. The theoretical scheme results in measurements of analog source samples that are (i) quantized in the sense of analog-to-digital conversion and (ii) corrupted by random noise that is solely due to the quantum uncertainty in detecting the polarization state of each photon. This noise is unavoidable if more than 1 bit per sample is to be transmitted and we show how it may be exploited in a manner inspired by suprathreshold stochastic resonance. The system is analyzed information theoretically, as it can be modeled as a noisy optical communication channel, although unlike classical Poisson channels, the detector's photon statistics are binomial. Previous results on binomial channels are adapted to demonstrate numerically that the classical information capacity, and thus the accuracy of the transduction, increases logarithmically with the square root of the number of photons, N. Although the capacity is shown to be reduced when an additional detector nonideality is present, the logarithmic increase with N remains.

  9. Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms

    SciTech Connect

    Nawar Rahman, Samia Hall, David; Lo, Yu-Hwa

    2014-05-07

    A new type of single photon detector, Multiple Amplification Gain with Internal Control (MAGIC), is proposed and analyzed using Monte Carlo simulations based on a physical model of the device. The MAGIC detector has two coupled amplification mechanisms, avalanche multiplication and bipolar gain, and the net gain is regulated by a built-in feedback mechanism. Compared to conventional Geiger mode single photon avalanche detectors (SPADs), the MAGIC detector produces a much greater single photon detection efficiency of nearly 100%, low bit-error-ratio for single photon signals, and a large dynamic range. All these properties are highly desirable for applications that require single photon sensitivity and are absent for conventional Geiger-mode SPADs.

  10. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    SciTech Connect

    Ahn, Byeong-Hyeon Lee, Chang-Min; Lim, Hee-Jin; Schlereth, Thomas W.; Kamp, Martin; Höfling, Sven; Lee, Yong-Hee

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  11. Single photon radioluminescence. II. Signal detection and biological applications.

    PubMed

    Shahrokh, Z; Bicknese, S; Shohet, S B; Verkman, A S

    1992-11-01

    A quantitative theory for excitation of fluorescent molecules by beta decay electrons is reported in the accompanying manuscript; experimental detection methods and biological applications are reported here. The single photon signals produced by an excited fluorophore (single photon radioluminescence, SPR) provide quantitative information about the distance between radioisotope and fluorophore. Instrumentation was constructed for SPR signal detection. Photons produced in a 0.5-ml sample volume were detected by a cooled photomultiplier and photon counting electronics. To minimize electronic noise and drift for detection of very small SPR signals, a mechanical light chopper was used for gated-signal detection, and a pulse height analyzer for noise rejection. SPR signals of approximately 1 cps were reproducibly measurable. The influence of inner filter effect, sample turbidity, and fluorophore environment (lipid, protein, and carbohydrate) on SPR signals were evaluated experimentally. SPR was then applied to measure lipid exchange kinetics, ligand binding, and membrane transport, and to determine an intermolecular distance in an intact membrane. (a. Lipid exchange kinetics.) Transfer of 12-anthroyloxystearic acid (12-AS) from sonicated lipid vesicles and micelles to vesicles containing 3H-cholesterol was measured from the time course of increasing SPR signal. At 22 degrees C, the half-times for 12-AS transfer from vesicles and micelles were 3.3 and 1.1 min, respectively. (b. Ligand binding.) Binding of 3H-oleic acid to albumin in solution, and 3H-2,2'-dihydro-4,4'-diisothiocyanodisulfonic stilbene (3H-H2DIDS) to band 3 on the erythrocyte membranes were detected by the radioluminescence of the intrinsic tryptophans. The SPR signal from 5 microCi 3H-oleic acid bound to 0.3 mM albumin decreased from 13 +/- 2 cps to 3 +/- 2 cps upon addition of nonradioactive oleic acid, giving 2.7 high affinity oleic acid binding sites per albumin. The SPR signal from 1 microCi 3H-H2DIDS

  12. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    SciTech Connect

    Scarcella, Carmelo; Tosi, Alberto Villa, Federica; Tisa, Simone; Zappa, Franco

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  13. Single-photon transport and mechanical NOON-state generation in microcavity optomechanics

    NASA Astrophysics Data System (ADS)

    Ren, Xue-Xin; Li, Hao-Kun; Yan, Meng-Yuan; Liu, Yong-Chun; Xiao, Yun-Feng; Gong, Qihuang

    2013-03-01

    We investigate the single-photon transport in a single-mode optical fiber coupled to an optomechanical system in the single-photon strong-coupling regime. The single-photon transmission amplitude is analytically obtained with a real-space approach and the effects of cavity and mechanical dissipations are studied via master-equation simulations. Based on the theoretical framework, we further propose a heralded probabilistic scheme to generate mechanical NOON states with arbitrary phonon numbers by measuring the sideband photons. The efficiency and fidelity of the scheme are discussed finally.

  14. Single-photon multi-ports router based on the coupled cavity optomechanical system

    PubMed Central

    Li, Xun; Zhang, Wen-Zhao; Xiong, Biao; Zhou, Ling

    2016-01-01

    A scheme of single-photon multi-port router is put forward by coupling two optomechanical cavities with waveguides. It is shown that the coupled two optomechanical cavities can exhibit photon blockade effect, which is generated from interference of three mode interaction. A single-photon travel along the system is calculated. The results show that the single photon can be controlled in the multi-port system because of the radiation pressure, which should be useful for constructing quantum network. PMID:28004773

  15. Quantum routing of single photons with a cyclic three-level system.

    PubMed

    Zhou, Lan; Yang, Li-Ping; Li, Yong; Sun, C P

    2013-09-06

    We propose an experimentally accessible single-photon routing scheme using a △-type three-level atom embedded in quantum multichannels composed of coupled-resonator waveguides. Via the on-demand classical field being applied to the atom, the router can extract a single photon from the incident channel, and then redirect it into another. The efficient function of the perfect reflection of the single-photon signal in the incident channel is rooted in the coherent resonance and the existence of photonic bound states.

  16. Wiring up pre-characterized single-photon emitters by laser lithography

    PubMed Central

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-01-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time. PMID:27507165

  17. Storing single photons emitted by a quantum memory on a highly excited Rydberg state

    PubMed Central

    Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues

    2017-01-01

    Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon–photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories. PMID:28102203

  18. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  19. Pseudo-random single photon counting: a high-speed implementation

    PubMed Central

    Zhang, Qiang; Chen, Ling; Chen, Nanguang

    2010-01-01

    Pseudo-random single photon counting (PRSPC) is a new time-resolved optical measurement method which combines the spread spectrum time-resolved method with single photon counting. A pseudo-random bit sequence is used to modulate a continuous wave laser diode, while single photon counting is used to build up the optical signal in response to the modulated excitation. Periodic cross-correlation is performed to obtain the temporal profile of the subject of interest. Compared with conventional time-correlated single photon counting (TCSPC), PRSPC enjoys many advantages such as low cost and high count rate without compromising the sensitivity and time-resolution. In this paper, we report a PRSPC system that can be used for high-speed acquisition of the temporal point spread function of diffuse photons. It can reach a photon count rate as high as 3 Mcps (counts per second). Phantom experiments have been conducted to demonstrate the system performance. PMID:21258444

  20. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    NASA Astrophysics Data System (ADS)

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  1. Design of near-infrared single photon detector at 1550nm wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Jiali

    2016-09-01

    Technology of near-infrared single photon detection is used in quantum communication, laser ranging and weak light detection. Present single photon detectors are usually expensive and bulky. To overcome their disadvantages, a hand-held single photon detector based on InGaAs/InP avalanche photo diode (APD) is developed. A circuit program for temperature control and bias voltage is offered. The gating signal is generated and the avalanche signal is extracted by FPGA. Experiment results show that, the single photon detector yields only 8.2×10-6/ns dark count rate (DCR) when photon detection efficiency is 12%, and the maximum photon detection efficiency of 16% is obtained at temperature of -55°C.

  2. Storing single photons emitted by a quantum memory on a highly excited Rydberg state

    NASA Astrophysics Data System (ADS)

    Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues

    2017-01-01

    Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon-photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories.

  3. Method for characterizing single photon detectors in saturation regime by cw laser.

    PubMed

    Oh, Jungmi; Antonelli, Cristian; Tur, Moshe; Brodsky, Misha

    2010-03-15

    We derive an analytical expression for the count probability of a single photon detector for a wide range of input optical power that includes afterpulsing effects. We confirm the validity of the expression by fitting it to the data obtained from a saturated commercial Single Photon Detector by illuminating it with a cw laser. Detector efficiency and afterpulsing probability extracted from the fits agree with the manufacture specs for low repetition frequencies.

  4. Derivation of the density matrix of a single photon produced in parametric down-conversion

    SciTech Connect

    Kolenderski, Piotr; Wasilewski, Wojciech

    2009-07-15

    We discuss an effective numerical method of density matrix determination of fiber coupled single photon generated in process of spontaneous parametric down conversion in type I noncollinear configuration. The presented theory has been successfully applied in case of source utilized to demonstrate the experimental characterization of spectral state of single photon, what was reported in Wasilewski, Kolenderski, and Frankowski [Phys. Rev. Lett. 99, 123601 (2007)].

  5. Continuous all-optical deceleration and single-photon cooling of molecular beams

    NASA Astrophysics Data System (ADS)

    Jayich, A. M.; Vutha, A. C.; Hummon, M. T.; Porto, J. V.; Campbell, W. C.

    2014-02-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multilevel numerical simulations of strontium monohydride. These techniques are applicable to a large number of molecular species and atoms with the only requirement being an electric dipole transition that can be accessed with an ultrafast laser.

  6. Single-photon tomographic determination of regional cerebral blood flow in psychiatric disorders

    SciTech Connect

    Devous, M.D. Sr.; Rush, A.J.; Schlesser, M.A.; Debus, J.; Raese, J.D.; Chehabi, H.H.; Bonte, F.J.

    1984-01-01

    Regional cerebral blood flow (rCBF) was measured by single-photon emission computed tomography (SPECT) of 133-Xe washout in 29 normal volunteers, 22 unipolar endogenous depressives (UPE), 9 unipolar nonendogenous depressives (UPNE), 13 bipolar depressed patients (BPD), and 14 schizophrenic patients (SCHZ). RCBF was measured 2 and 6 cm above and parallel to the cantho-meatal line and quantitated in 14 gray matter regions. Most subjects were drug-free for 4-14 days. Diagnoses were made by experienced clinicians employing the Research Diagnostic Criteria, the Hamilton Rating Scale, and the dexamethasone suppression test. SCHZ were rated with the Brief Psychiatric Rating Scale. UPE had reduced flow compared to normals in the right parietal and temporal lobes and a nonsignificant trend toward left temporal flow reductions. UPNE were not different from normal or other patient groups. BPD had significant flow elevations in the left hemisphere relative to normal, and in both hemispheres relative to UPE. SCHZ were not significantly different from normal or other patient groups. Anterior-posterior flow shifts were evaluated by subtracting parietal or temporal flows from frontal flows. SCHZ demonstrated a greater posterior shift (lower relative frontal lobe flow) in comparison to both UPE and UPNE. The most significant regional flow abnormalities were observed as frontal flow reductions in individual SCHZ, although these were not significant in the whole group in comparison to normal.

  7. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z. Y.; Chen, J. F.; Zhang, Weiping

    2016-07-01

    The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.

  8. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range.

    PubMed

    Winden, A; Mikulics, M; Grützmacher, D; Hardtdegen, H

    2013-10-11

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range.

  9. Wigner spectrum and coherent feedback control of continuous-mode single-photon Fock states

    NASA Astrophysics Data System (ADS)

    Dong, Zhiyuan; Cui, Lei; Zhang, Guofeng; Fu, Hongchen

    2016-10-01

    Single photons are very useful resources in quantum information science. In real applications it is often required that the photons have a well-defined spectral (or equivalently temporal) modal structure. For example, a rising exponential pulse is able to fully excite a two-level atom while a Gaussian pulse cannot. This motivates the study of continuous-mode single-photon Fock states. Such states are characterized by a spectral (or temporal) pulse shape. In this paper we investigate the statistical property of continuous-mode single-photon Fock states. Instead of the commonly used normal ordering (Wick order), the tool we proposed is the Wigner spectrum. The Wigner spectrum has two advantages: (1) it allows to study continuous-mode single-photon Fock states in the time domain and frequency domain simultaneously; (2) because it can deal with the Dirac delta function directly, it has the potential to provide more information than the normal ordering where the Dirac delta function is always discarded. We also show how various control methods in particular coherent feedback control can be used to manipulate the pulse shapes of continuous-mode single-photon Fock states.

  10. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  11. Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors

    NASA Astrophysics Data System (ADS)

    Hu, C. Y.

    2016-12-01

    The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT proposals which are based on single-photon nonlinearities, here I present a design for a high-gain and high-speed (up to THz) SPT based on a linear optical effect: giant circular birefringence induced by a single spin in a double-sided optical microcavity. A gate photon sets the spin state via projective measurement and controls the light propagation in the optical channel. This spin-cavity transistor can be directly configured as diodes, routers, DRAM units, switches, modulators, etc. Due to the duality as quantum gate and transistor, the spin-cavity unit provides a solid-state platform ideal for future Internet: a mixture of all-optical Internet with quantum Internet.

  12. Temporal pure single photons generated from time-frequency entangled biphotons

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Gu, Zhejie; Chen, J. F.; Zhang, Weiping

    2016-11-01

    Narrow-band time-frequency entangled biphotons are generated from spontaneous four-wave mixing in cold atom clouds. The coherence time of the entangled biphotons can be extended to sub-microseconds by the slow light effect. The temporal wavefunction of the biphotons can be manipulated through modulating the spectral or spatial mode of the controlling laser beams. Concerning a pair of entangled biphoton and the resulting heralded single photon, it was commonly believed that, time-frequency entanglement damages the temporal purity of the single photon. However, the case is totally different for biphotons with long coherence time which is far beyond the time resolution of single-photondetectors. We demonstrate that, the single photon heralded from these time-frequency entangled biphotons is in a pure temporal state. Therefore, single photons are able to be shaped through the time-frequency entanglement with their partner photons, while the single photons could be found to be still in a pure state and thus useful for quantum information processing and communication technology.

  13. Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources

    NASA Astrophysics Data System (ADS)

    Jöns, Klaus D.; Rengstl, Ulrich; Oster, Markus; Hargart, Fabian; Heldmaier, Matthias; Bounouar, Samir; Ulrich, Sven M.; Jetter, Michael; Michler, Peter

    2015-03-01

    The implementation of fully integrated single-photon sources and detectors into waveguide structures such as photonic crystals or a slab and ridge waveguide is currently one of the major goals in the linear optics quantum computation and communication community. Here, we present an implementation of a single-photon on-chip experiment based on a III-V semiconductor platform. Individual semiconductor quantum dots were used as pulsed single-photon sources integrated in ridge waveguides, and the on-chip waveguide-beamsplitter operation is verified on the single-photon level by performing off-chip photon cross-correlation measurements between the two output ports of the beamsplitter. A degree of polarization of the emitted photons above 90% is observed and a careful characterization of the waveguide propagation losses in straight (< 1.5 dB mm-1) and bent (˜ (8.5 ± 2.2) dB mm-1) sections documents the applicability of such GaAs-based waveguide structures in more complex photonic integrated circuits. The presented work marks an important step towards the realization of fully integrated photonic quantum circuits including on-demand single-photon emitters.

  14. Collective Lamb shift in single-photon superradiance.

    PubMed

    Röhlsberger, Ralf; Schlage, Kai; Sahoo, Balaram; Couet, Sebastien; Rüffer, Rudolf

    2010-06-04

    Superradiance, the cooperative spontaneous emission of photons from an ensemble of identical atoms, provides valuable insights into the many-body physics of photons and atoms. We show that an ensemble of resonant atoms embedded in the center of a planar cavity can be collectively excited by synchrotron radiation into a purely superradiant state. The collective coupling of the atoms via the radiation field leads to a substantial radiative shift of the transition energy, the collective Lamb shift. We simultaneously measured the temporal evolution of the superradiant decay and the collective Lamb shift of resonant 57Fe nuclei excited with 14.4-kilo-electron volt synchrotron radiation. Our experimental technique provides a simple method for spectroscopic analysis of the superradiant emission.

  15. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector

    PubMed Central

    Boso, Gianluca; Ke, Damei; Korzh, Boris; Bouilloux, Jordan; Lange, Norbert; Zbinden, Hugo

    2015-01-01

    In clinical applications, such as PhotoDynamic Therapy, direct singlet-oxygen detection through its luminescence in the near-infrared range (1270 nm) has been a challenging task due to its low emission probability and the lack of suitable single-photon detectors. Here, we propose a practical setup based on a negative-feedback avalanche diode detector that is a viable alternative to the current state-of-the art for different clinical scenarios, especially where geometric collection efficiency is limited (e.g. fiber-based systems, confocal microscopy, scanning systems etc.). The proposed setup is characterized with Rose Bengal as a standard photosensitizer and it is used to measure the singlet-oxygen quantum yield of a new set of photosensitizers for site-selective photodynamic therapy. PMID:26819830

  16. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zagorodskikh, S.; Zhaunerchyk, V.; Mucke, M.; Eland, J. H. D.; Squibb, R. J.; Karlsson, L.; Linusson, P.; Feifel, R.

    2015-12-01

    Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  17. Tuning the growth for a selective nucleation of chains of Quantum Dots behaving as single photon emitters

    NASA Astrophysics Data System (ADS)

    Latini, V.; Tisbi, E.; Placidi, E.; Patella, F.; Biccari, F.; Gurioli, M.; Vinattieri, A.; Arciprete, F.

    2017-01-01

    Single and two-layer InAs/GaAs(001) samples were grown in a Molecular Beam Epitaxy chamber under critical conditions, leading to the selective growth of self-assembled InAs Quantum Dot chains over mounded GaAs surfaces. Changing the thickness of the spacer layer and the InAs deposition made it possible to tune the nucleation of 2-fold or single chains in the second layer. Finite Element Method simulations evidenced the major role of the strain field in favoring the formation of single stacked chains. On the other hand, tuning properly the As4/In flux ratio contributed to improving the QD ordering along the chains. Microphotoluminescence experiments demonstrated single photon emission properties of the observed QDs. Our growth approach did not degrade the optical quality of the InAs QDs, allowing a significant spatial correlation between the QDs aligned along the chain.

  18. Frequency Conversion of Single Photons: Physics, Devices, and Applications

    DTIC Science & Technology

    2012-07-01

    that are involved in CHAPTER 4. NOISE PROCESSES IN QFC DEVICES 45 Signal Laser 633 nm Pump Laser 1064 nm PBS RPE PPLN Waveguide L1 L2 Power Meter DM...signal we used a HeNe laser at 632.8 nm in which the power was adjusted using a variable attenuator. The pump laser was a Nd:YAG nonplanar ring oscillator...and spontaneous emission must be filtered. Previous work on upconversion using Tm laser systems used fiber -optic WDMs as filters [32]. Here, we use a

  19. Time-resolved scattering of a single photon by a single atom

    PubMed Central

    Leong, Victor; Seidler, Mathias Alexander; Steiner, Matthias; Cerè, Alessandro; Kurtsiefer, Christian

    2016-01-01

    Scattering of light by matter has been studied extensively in the past. Yet, the most fundamental process, the scattering of a single photon by a single atom, is largely unexplored. One prominent prediction of quantum optics is the deterministic absorption of a travelling photon by a single atom, provided the photon waveform matches spatially and temporally the time-reversed version of a spontaneously emitted photon. Here we experimentally address this prediction and investigate the influence of the photon's temporal profile on the scattering dynamics using a single trapped atom and heralded single photons. In a time-resolved measurement of atomic excitation we find a 56(11)% increase of the peak excitation by photons with an exponentially rising profile compared with a decaying one. However, the overall scattering probability remains unchanged within the experimental uncertainties. Our results demonstrate that envelope tailoring of single photons enables precise control of the photon–atom interaction. PMID:27897173

  20. Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm.

    PubMed

    McMillan, A R; Fulconis, J; Halder, M; Xiong, C; Rarity, J G; Wadsworth, W J

    2009-04-13

    An all-fibre heralded single photon source operating at 1570 nm has been demonstrated. The device generates correlated photon pairs, widely spaced in frequency, through four-wave mixing in a photonic crystal fibre. Separation of the pair photons and narrowband filtering is all achieved in fibre. The output heralded single photon rate was 9.2 x 10(4) per second, with a counts-to-accidentals ratio of 10.4 and a heralding fidelity of 52 %. Furthermore, narrowband filtering ensured that the output single photon state was near time-bandwidth limited with a coherence length of 4 ps. Such a source is well suited to quantum information processing applications.

  1. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

    NASA Astrophysics Data System (ADS)

    Kyriienko, Oleksandr; Sørensen, Anders S.

    2016-09-01

    We propose a microwave frequency single-photon transistor which can operate under continuous wave probing and represents an efficient single microwave photon detector. It can be realized using an impedance matched system of a three level artificial ladder-type atom coupled to two microwave cavities connected to input-output waveguides. Using a classical drive on the upper transition, we find parameter space where a single photon control pulse incident on one of the cavities can be fully absorbed into hybridized excited states. This subsequently leads to series of quantum jumps in the upper manifold and the appearance of a photon flux leaving the second cavity through a separate input-output port. The proposal does not require time variation of the probe signals, thus corresponding to a passive version of a single-photon transistor. The resulting device is robust to qubit dephasing processes, possesses low dark count rate for large anharmonicity, and can be readily implemented using current technology.

  2. cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses

    PubMed Central

    Pugh Jr., Edward N.; Burns, Marie E.

    2015-01-01

    Vertebrate vision begins when retinal photoreceptors transduce photons into electrical signals that are then relayed to other neurons in the eye, and ultimately to the brain. In rod photoreceptors, transduction of single photons is achieved by a well-understood G-protein cascade that modulates cGMP levels, and in turn, cGMP-sensitive inward current. The spatial extent and depth of the decline in cGMP during the single photon response (SPR) have been major issues in phototransduction research since the discovery that single photons elicit substantial and reproducible changes in membrane current. The spatial profile of cGMP decline during the SPR affects signal gain, and thus may contribute to reduction of trial-to-trial fluctuations in the SPR. Here we summarize the general principles of rod phototransduction, emphasizing recent advances in resolving the spatiotemporal dynamics of cGMP during the SPR. PMID:25788876

  3. A universal setup for active control of a single-photon detector.

    PubMed

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  4. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    PubMed Central

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E

    2017-01-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes. PMID:28294155

  5. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E.

    2017-03-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes.

  6. Tunable-correlation phenomenon of single photons emitted from a self-assembled quantum dot

    NASA Astrophysics Data System (ADS)

    Yu, Shang; Wang, Yi-Tao; Tang, Jian-Shun; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2017-02-01

    Deterministic single-photon source plays a key role in the quantum information technology. Thus, research on various properties of such kind of light source becomes a quite necessary task. In this work, we experimentally observe that the second-order correlation properties of single photons can be continuously tuned from pulsed excitation configuration to continuous-wave excitation configuration under the near resonant photoluminescence excitation. By increasing the power of pulsed excitation laser, the effective excitation time of quantum dot can be extended with assistance of the defect states, and more continuous-wave excitation characteristics will gradually appear in the second-order correlation functions. This abnormal power-induced tunable-correlation mechanism can affect the temporal property of the single-photon source but maintain its antibunching property.

  7. Special properties of single-photon optical fiber sensor for security needs

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Szustakowski, M.; Karol, M.; Markowski, Piotr; Napierala, M. S.

    2014-10-01

    The rules of quantum physics are now fairly well understood and indisputable. On the basis of these principles are built safety systems to guarantee unconditional security of data transmission. This is possible due to the random behavior of the measured photon. Theorems of quantum mechanics are used currently in Quantum Key Distribution systems to determine the encryption key of cryptographic systems. Sending the single photons through the interferometer it is possible to determine the probability distribution of a photon detection at a given output depending on the interferometer imbalance. The use of single photon interference allows reduce the probability of detection of the transmission line protection. Additionally it provides high safety of transmitted information and minor disturbances. The quantum sensor can be a device which allows effectively protect transmission lines. In this paper we demonstrate measurement results of the using single-photon interferometers in security systems and potential capabilities use of such sensors.

  8. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  9. Optimization of periodic single-photon sources based on combined multiplexing

    NASA Astrophysics Data System (ADS)

    Bodog, Ferenc; Adam, Peter; Mechler, Matyas; Santa, Imre; Koniorczyk, Mátyás

    2016-09-01

    We consider periodic single-photon sources with combined multiplexing in which the outputs of several time-multiplexed sources are spatially multiplexed. We give a full statistical description of such systems in order to optimize them with respect to maximal single-photon probability. We carry out the optimization for a particular scenario which can be realized in bulk optics and its expected performance is extremely good at the present state of the art. We find that combined multiplexing outperforms purely spatially or time-multiplexed sources for certain parameters only, and we characterize these cases. Combined multiplexing can have the advantages of possibly using less nonlinear sources, achieving higher repetition rates, and the potential applicability for continuous pumping. We estimate an achievable single-photon probability between 85% and 89%.

  10. Time-resolved scattering of a single photon by a single atom

    NASA Astrophysics Data System (ADS)

    Leong, Victor; Seidler, Mathias Alexander; Steiner, Matthias; Cerè, Alessandro; Kurtsiefer, Christian

    2016-11-01

    Scattering of light by matter has been studied extensively in the past. Yet, the most fundamental process, the scattering of a single photon by a single atom, is largely unexplored. One prominent prediction of quantum optics is the deterministic absorption of a travelling photon by a single atom, provided the photon waveform matches spatially and temporally the time-reversed version of a spontaneously emitted photon. Here we experimentally address this prediction and investigate the influence of the photon's temporal profile on the scattering dynamics using a single trapped atom and heralded single photons. In a time-resolved measurement of atomic excitation we find a 56(11)% increase of the peak excitation by photons with an exponentially rising profile compared with a decaying one. However, the overall scattering probability remains unchanged within the experimental uncertainties. Our results demonstrate that envelope tailoring of single photons enables precise control of the photon-atom interaction.

  11. A universal setup for active control of a single-photon detector

    SciTech Connect

    Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía; Kurtsiefer, Christian; Makarov, Vadim; Gerhardt, Ilja

    2014-01-15

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  12. A universal setup for active control of a single-photon detector

    NASA Astrophysics Data System (ADS)

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  13. Rigid motion correction of dual opposed planar projections in single photon imaging.

    PubMed

    Angelis, Georgios I; Ryder, William; Gillam, John; Boisson, Frederic; Kyme, Andre; Fulton, Roger; Meikle, Steven; Kench, Peter

    2017-03-23

    Awake and/or freely moving small animal single photon emission imaging allows the continuous study of molecules exhibiting slow kinetics without the need to restrain or anaesthetise the animals. Estimating motion free projections in freely moving small animal planar imaging can be considered as a limited angle tomography problem, except that we wish to estimate the 2D planar projections rather than the 3D volume, where the angular sampling in all three axes depends on the rotational motion of the animal. In this study, we hypothesise that the motion corrected planar projections estimated by reconstructing an estimate of the 3D volume using an iterative motion compensating reconstruction algorithm and integrating it along the projection path, will closely match the true, motion-less, planar distribution regardless of the object motion. We tested this hypothesis for the case of rigid motion using Monte- Carlo simulations and experimental phantom data based on a dual opposed detector system, where object motion was modelled with 6 degrees of freedom. In addition, we investigated the quantitative accuracy of the regional activity extracted from the geometric mean of opposing motion corrected planar projections. Results showed that it is feasible to estimate qualitatively accurate motion-corrected projections for a wide range of motions around all 3 axes. Errors in the geometric mean estimates of regional activity were relatively small and within 10% of expected true values. In addition, quantitative regional errors were dependent on the observed motion, as well as on the surrounding activity of overlapping organs. We conclude that both qualitatively and quantitatively accurate motion-free projections of the tracer distribution in a freely moving animal can be estimated from dual opposed detectors using a rigid-motion correction approach within an iterative reconstruction framework and we expect this approach can be extended to the case of non-rigid motion.

  14. Fluorescence measurement by a streak camera in a single-photon-counting mode.

    PubMed

    Komura, Masayuki; Itoh, Shigeru

    2009-01-01

    We describe here a recently developed fluorescence measurement system that uses a streak camera to detect fluorescence decay in a single photon-counting mode. This system allows for easy measurements of various samples and provides 2D images of fluorescence in the wavelength and time domains. The great advantage of the system is that the data can be handled with ease; furthermore, the data are amenable to detailed analysis. We describe the picosecond kinetics of fluorescence in spinach Photosystem (PS) II particles at 4-77 K as a typical experimental example. Through the global analysis of the data, we have identified a new fluorescence band (F689) in addition to the already established F680, F685, and F695 emission bands. The blue shift of the steady-state fluorescence spectrum upon cooling below 77 K can be interpreted as an increase of the shorter-wavelength fluorescence, especially F689, due to the slowdown of the excitation energy transfer process. The F685 and F695 bands seem to be thermally equilibrated at 77 K but not at 4 K. The simple and efficient photon accumulation feature of the system allows us to measure fluorescence from leaves, solutions, single colonies, and even single cells. The 2D fluorescence images obtained by this system are presented for isolated spinach PS II particles, intact leaves of Arabidopsis thaliana, the PS I super-complex of a marine centric diatom, Chaetoceros gracilis, isolated membranes of a purple photosynthetic bacterium, Acidiphilium rubrum, which contains Zn-BChl a, and a coral that contains a green fluorescent protein and an algal endosymbiont, Zooxanthella.

  15. Experimental optimal maximum-confidence discrimination and optimal unambiguous discrimination of two mixed single-photon states

    SciTech Connect

    Steudle, Gesine A.; Knauer, Sebastian; Herzog, Ulrike; Benson, Oliver; Stock, Erik; Bimberg, Dieter; Haisler, Vladimir A.

    2011-05-15

    We present an experimental implementation of optimum measurements for quantum state discrimination. Optimum maximum-confidence discrimination and optimum unambiguous discrimination of two mixed single-photon polarization states were performed. For the latter the states of rank 2 in a four-dimensional Hilbert space are prepared using both path and polarization encoding. Linear optics and single photons from a true single-photon source based on a semiconductor quantum dot are utilized.

  16. Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov-Bohm effect.

    PubMed

    Yuan, Luqi; Xu, Shanshan; Fan, Shanhui

    2015-11-15

    We show that nonreciprocal unidirectional single-photon quantum transport can be achieved with the photonic Aharonov-Bohm effect. The system consists of a 1D waveguide coupling to two three-level atoms of the V-type. The two atoms, in addition, are each driven by an external coherent field. We show that the phase of the external coherent field provides a gauge potential for the photon states. With a proper choice of the phase difference between the two coherent fields, the transport of a single photon can exhibit unity contrast in its transmissions for the two propagation directions.

  17. Differential-phase-shift quantum key distribution using heralded narrow-band single photons.

    PubMed

    Liu, Chang; Zhang, Shanchao; Zhao, Luwei; Chen, Peng; Fung, C-H F; Chau, H F; Loy, M M T; Du, Shengwang

    2013-04-22

    We demonstrate the first proof of principle differential phase shift (DPS) quantum key distribution (QKD) using narrow-band heralded single photons with amplitude-phase modulations. In the 3-pulse case, we obtain a quantum bit error rate (QBER) as low as 3.06% which meets the unconditional security requirement. As we increase the pulse number up to 15, the key creation efficiency approaches 93.4%, but with a cost of increasing the QBER. Our result suggests that narrow-band single photons maybe a promising source for the DPS-QKD protocol.

  18. Time-gating scheme based on a photodiode for single-photon counting

    PubMed Central

    Kumavor, Patrick D.; Tavakoli, Behnoosh; Donkor, Eric; Zhu, Quing

    2012-01-01

    A fast, simple, and low-cost optical time-gating scheme for counting single photons is presented. Its construction consists of a silicon photodiode connected in series with a 50 Ω resistor and that operates in the photoconductive mode. The temporal resolution at the FWHM of the photon counting system was measured to be 62 ps. The profile of a single-photon pulse measured with the counting system agreed well with analytical results. The system was also used to successfully resolve a pair of targets with 4 mm separation inside a highly scattering medium by the use of time-gated early-arriving photons. PMID:21725458

  19. Improving the timing jitter of a superconducting nanowire single-photon detection system.

    PubMed

    Wu, Junjie; You, Lixing; Chen, Sijing; Li, Hao; He, Yuhao; Lv, Chaolin; Wang, Zhen; Xie, Xiaoming

    2017-03-10

    Low timing jitter is a unique merit of superconducting nanowire single-photon detectors (SNSPDs) for time-correlated applications. Quantitative analysis was performed for the SNSPD system. Aided by an oscilloscope with an optimal signal amplitude, we were able to measure a full width at half-maximum system timing jitter as low as 14.2 ps for a high-switching-current SNSPD using a room-temperature low-noise amplifier. When using a time-correlated single-photon counting module, the system timing jitter was 17.3 ps. The detector's intrinsic timing jitter was estimated at ∼12.0  ps.

  20. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  1. Quantum teleportation through an entangled state composed of displaced vacuum and single-photon states

    SciTech Connect

    Podoshvedov, S. A.

    2008-03-15

    We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state.

  2. Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.

    PubMed

    Carmele, Alexander; Kabuss, Julia; Schulze, Franz; Reitzenstein, Stephan; Knorr, Andreas

    2013-01-04

    We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity quantum electrodynamics, we treat the quantum correlation of external and internal light modes dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed feedback. Our theoretical approach proposes a way to experimentally feedback control quantum correlations in the single photon limit.

  3. Efficient routing of single photons by one atom and a microtoroidal cavity.

    PubMed

    Aoki, Takao; Parkins, A S; Alton, D J; Regal, C A; Dayan, Barak; Ostby, E; Vahala, K J; Kimble, H J

    2009-02-27

    Single photons from a coherent input are efficiently redirected to a separate output by way of a fiber-coupled microtoroidal cavity interacting with individual cesium atoms. By operating in an overcoupled regime for the input-output to a tapered fiber, our system functions as a quantum router with high efficiency for photon sorting. Single photons are reflected and excess photons transmitted, as confirmed by observations of photon antibunching (bunching) for the reflected (transmitted) light. Our photon router is robust against large variations of atomic position and input power, with the observed photon antibunching persisting for intracavity photon number 0.03 < or approximately similar n < or approximately similar 0.7.

  4. Single photon transport in two waveguides chirally coupled by a quantum emitter.

    PubMed

    Cheng, Mu-Tian; Ma, Xiao-San; Zhang, Jia-Yan; Wang, Bing

    2016-08-22

    We investigate single photon transport in two waveguides coupled to a two-level quantum emitter (QE). With the deduced analytical scattering amplitudes, we show that under condition of the chiral coupling between the QE and the photon in the two waveguides, the QE can play the role of ideal quantum router to redirect a single photon incident from one waveguide into the other waveguide with a probability of 100% in the ideal condition. The influences of cross coupling between two waveguides and dissipations on the routing are also shown.

  5. Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production

    SciTech Connect

    Major, Kyle D. Lien, Yu-Hung; Polisseni, Claudio; Grandi, Samuele; Kho, Kiang Wei; Clark, Alex S.; Hwang, J.; Hinds, E. A.

    2015-08-15

    Dibenzoterrylene (DBT) molecules within a crystalline anthracene matrix show promise as quantum emitters for controlled, single photon production. We present the design and construction of a chamber in which we reproducibly grow doped anthracene crystals of optical quality that are several mm across and a few μm thick. We demonstrate control of the DBT concentration over the range 6–300 parts per trillion and show that these DBT molecules are stable single-photon emitters. We interpret our data with a simple model that provides some information on the vapour pressure of DBT.

  6. Single-photon pulsed-light indirect time-of-flight 3D ranging.

    PubMed

    Bellisai, S; Bronzi, D; Villa, F A; Tisa, S; Tosi, A; Zappa, F

    2013-02-25

    "Indirect" time-of-flight is one technique to obtain depth-resolved images through active illumination that is becoming more popular in the recent years. Several methods and light timing patterns are used nowadays, aimed at improving measurement precision with smarter algorithms, while using less and less light power. Purpose of this work is to present an indirect time-of-flight imaging camera based on pulsed-light active illumination and a 32 × 32 single-photon avalanche diode array with an improved illumination timing pattern, able to increase depth resolution and to reach single-photon level sensitivity.

  7. Heralded single-photon source in a III-V photonic crystal.

    PubMed

    Clark, Alex S; Husko, Chad; Collins, Matthew J; Lehoucq, Gaelle; Xavier, Stéphane; De Rossi, Alfredo; Combrié, Sylvain; Xiong, Chunle; Eggleton, Benjamin J

    2013-03-01

    In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

  8. Controlling the interference of single photons emitted by independent atomic sources

    NASA Astrophysics Data System (ADS)

    Cerè, Alessandro; Leong, Victor; Kosen, Sandoko; Srivathsan, Bharath; Gulati, Gurpreet K.; Kurtsiefer, Christian

    2015-09-01

    Hong-Ou-Mandel interference between independent sources is a fundamental primitive of many quantum communication and computation protocols. We present a study of the Hong-Ou-Mandel interference of single photons generated via two different physical processes by two independent atomic systems: scattering by a single atom, and parametric generation via four-wave mixing in a cloud of cold atoms. By controlling the coherence time and central frequency of the heralded single photons generated by four-wave mixing we observe quantum beat and a varying degree of interference.

  9. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  10. Nonlinear Quantum Optics in a Waveguide: Distinct Single Photons Strongly Interacting at the Single Atom Level

    SciTech Connect

    Kolchin, Pavel; Oulton, Rupert F.; Zhang Xiang

    2011-03-18

    We propose a waveguide-QED system where two single photons of distinct frequency or polarization interact strongly. The system consists of a single ladder-type three level atom coupled to a waveguide. When both optical transitions are coupled strongly to the waveguide's mode, we show that a control photon tuned to the upper transition induces a {pi} phase shift and tunneling of a probe photon tuned to the otherwise reflective lower transition. Furthermore, the system exhibits single photon scattering by a classical control beam. Waveguide-QED schemes could be an alternative to high quality cavities or dense atomic ensembles in quantum information processing.

  11. Single photon self-interference via inelastic two-wave mixing in a coherently prepared cold medium

    NASA Astrophysics Data System (ADS)

    Payne, M. G.; Deng, L.

    2007-03-01

    We investigate a coherently prepared cold medium for efficient single-photon inelastic two-wave mixing (ITWM), maximum Fock state entanglement and single photon self-interference. We show the possibility of generating maximally entangled single-photon state, and near 100% conversion efficiency for generating a frequency shifted TWM photon by proper choice of medium length and concentration. In addition, we demonstrate a new type of transparency effect produced by an efficient single photon self-interference, a transparency effect that is very different from the conventional electromagnetically induced transparency (EIT) process.

  12. Single photon avalanche detectors: prospects of new quenching and gain mechanisms

    NASA Astrophysics Data System (ADS)

    Hall, David; Liu, Yu-Hsin; Lo, Yu-Hwa

    2015-11-01

    While silicon single-photon avalanche diodes (SPAD) have reached very high detection efficiency and timing resolution, their use in fibre-optic communications, optical free space communications, and infrared sensing and imaging remains limited. III-V compounds including InGaAs and InP are the prevalent materials for 1550 nm light detection. However, even the most sensitive 1550 nm photoreceivers in optical communication have a sensitivity limit of a few hundred photons. Today, the only viable approach to achieve single-photon sensitivity at 1550 nm wavelength from semiconductor devices is to operate the avalanche detectors in Geiger mode, essentially trading dynamic range and speed for sensitivity. As material properties limit the performance of Ge and III-V detectors, new conceptual insight with regard to novel quenching and gain mechanisms could potentially address the performance limitations of III-V SPADs. Novel designs that utilise internal self-quenching and negative feedback can be used to harness the sensitivity of single-photon detectors,while drastically reducing the device complexity and increasing the level of integration. Incorporation of multiple gain mechanisms, together with self-quenching and built-in negative feedback, into a single device also hold promise for a new type of detector with single-photon sensitivity and large dynamic range.

  13. Revisiting single photon avalanche diode current-voltage modeling and transient characteristics

    SciTech Connect

    Javitt, M.; Savuskan, V. Merhav, T.; Nemirovsky, Y.

    2014-05-28

    A model for the current-voltage and transient behavior of Single Photon Avalanche Diodes (SPADs) based on device physics is presented. The results of the model are compared to actual measurements and a reasonable fit is seen. Additionally, the model provides a useful tool for designing quenching circuitry and determining optimal operation conditions of the SPAD.

  14. Single-photon transport through an atomic chain coupled to a one-dimensional nanophotonic waveguide

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zeng, Xiaodong; Zhu, Shi-Yao; Zubairy, M. Suhail

    2015-08-01

    We study the dynamics of a single-photon pulse traveling through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single-photon pulse with finite bandwidth can even approach 100 % . The spectrum of the reflected and transmitted photon can also be significantly different from the single-atom case. Many interesting physical phenomena can occur in this system such as the photonic band-gap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single-photon frequency filter, single-photon modulation, and may find important applications in quantum information.

  15. Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting

    NASA Astrophysics Data System (ADS)

    Buller, Gerald S.; Harkins, Ross D.; McCarthy, Aongus; Hiskett, Philip A.; MacKinnon, Gordon R.; Smith, George R.; Sung, Raymond; Wallace, Andrew M.; Lamb, Robert A.; Ridley, Kevin D.; Rarity, John G.

    2005-08-01

    This article describes a time-of-flight sensor based on multiple pulsed laser sources which utilizes time-correlated single-photon counting. The sensor has demonstrated good performance at ranges of up to 17 km in daylight conditions. Analysis techniques were developed to examine the returns from targets containing more than one scattering surface.

  16. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  17. Quantum teleportation of the angular spectrum of a single-photon field

    SciTech Connect

    Walborn, S. P.; Ether, D. S.; Matos Filho, R. L. de; Zagury, N.

    2007-09-15

    We propose a quantum teleportation scheme for the angular spectrum of a single-photon field, which allows for the transmission of a large amount of information. Our proposal also provides a method to tune the frequencies of spatially entangled fields, which is useful for interactions with stationary qubits.

  18. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  19. 32-channel single photon counting module for ultrasensitive detection of DNA sequences

    NASA Astrophysics Data System (ADS)

    Gudkov, Georgiy; Dhulla, Vinit; Borodin, Anatoly; Gavrilov, Dmitri; Stepukhovich, Andrey; Tsupryk, Andrey; Gorbovitski, Boris; Gorfinkel, Vera

    2006-10-01

    We continue our work on the design and implementation of multi-channel single photon detection systems for highly sensitive detection of ultra-weak fluorescence signals, for high-performance, multi-lane DNA sequencing instruments. A fiberized, 32-channel single photon detection (SPD) module based on single photon avalanche diode (SPAD), model C30902S-DTC, from Perkin Elmer Optoelectronics (PKI) has been designed and implemented. Unavailability of high performance, large area SPAD arrays and our desire to design high performance photon counting systems drives us to use individual diodes. Slight modifications in our quenching circuit has doubled the linear range of our system from 1MHz to 2MHz, which is the upper limit for these devices and the maximum saturation count rate has increased to 14 MHz. The detector module comprises of a single board computer PC-104 that enables data visualization, recording, processing, and transfer. Very low dark count (300-1000 counts/s), robust, efficient, simple data collection and processing, ease of connectivity to any other application demanding similar requirements and similar performance results to the best commercially available single photon counting module (SPCM from PKI) are some of the features of this system.

  20. Bi-dimensional arrays of SPAD for time-resolved single photon imaging

    NASA Astrophysics Data System (ADS)

    Tudisco, S.; Lanzanò, L.; Musumeci, F.; Neri, L.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2009-10-01

    Many scientific areas like astronomy, biophysics, biomedicine, nuclear and plasma science, etc. are interested in the development of a new time-resolved single photon imaging device. Such a device represents today one of the most challenging goals in the field of photonics. In collaboration with Catania R&D staff of ST-Microelectronics (STM) we created, during the last few years, a new avalanche photosensor—Single Photon Avalanche Diode (SPAD) able to detect and count, with excellent performance, single photons. Further we will discuss the possible realization of a single photon imaging device through the many elements integration (bi-dimensional arrays) of SPADs. In order to achieve the goal, it is also important to develop an appropriate readout strategy able to address the time information of each individual sensor and in order to read a great number of elements easily. First prototypes were designed and manufactured by STM and the results are reported here. In the paper we will discuss in particular: (i) sensor performance (gain, photodetection efficiency, timing, after-pulsing, etc.); (ii) array performance (layout, cross-talk, etc.); (iii) readout strategy (quenching, electronics), and (iv) first imaging results (general performance).

  1. Hong-Ou-Mandel Interference Between Triggered And Heralded Single Photons From Separate Atomic Systems

    NASA Astrophysics Data System (ADS)

    Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian

    2015-05-01

    The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.

  2. An on-chip coupled resonator optical waveguide single-photon buffer

    PubMed Central

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422

  3. Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications

    NASA Astrophysics Data System (ADS)

    Jiang, Qianqing; Li, Wuxia; Tang, Chengchun; Chang, Yanchun; Hao, Tingting; Pan, Xinyu; Ye, Haitao; Li, Junjie; Gu, Changzhi

    2016-11-01

    Some color centers in diamond can serve as quantum bits which can be manipulated with microwave pulses and read out with laser, even at room temperature. However, the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, we fabricated arrays of diamond nanostructures, differing in both diameter and top end shape, with HSQ and Cr as the etching mask materials, aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy (NV) embedded diamond. With a mixture of O2 and CHF3 gas plasma, diamond pillars with diameters down to 45 nm were obtained. The top end shape evolution has been represented with a simple model. The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement, larger than tenfold, and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected. These results provide useful information for future applications of nanostructured diamond as a single-photon source. Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0200402), the National Natural Science Foundation of China (Grants Nos. 11574369, 11574368, 91323304, 11174362, and 51272278), and the FP7 Marie Curie Action (project No. 295208) sponsored by the European Commission.

  4. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  5. UCD-SPI: Un-Collimated Detector Single-Photon Imaging System for Small Animal and Plant Imaging

    NASA Astrophysics Data System (ADS)

    Walker, Katherine Leigh

    Medical imaging systems using single gamma-ray emitting radioisotopes implement collimators in order to form images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in "thin" objects such as mice, small plants, and well plates used for in vitro experiments. This flexible geometry un-collimated detector single-photon imaging (UCD-SPI) system consists of two large (5 cm x 10 cm), thin (3 mm and 5 mm), closely spaced, pixelated scintillation detectors of either NaI(Tl), CsI(Na), or BGO. The detectors are read out by two adjacent Hamamatsu H8500 multichannel photomultiplier tubes. The detector heads enable the interchange of scintillation detectors of different materials and thicknesses to optimize performance for a wide range of gamma-ray energies and imaging subjects. The detectors are horizontally oriented for animal imaging, and for plant imaging the system is rotated on its side to orient the detectors vertically. While this un-collimated detector system is unable to approach the sub-mm spatial resolution obtained by the most advanced preclinical pinhole SPECT systems, the high sensitivity could enable significant and new use in molecular imaging applications which do not require good spatial resolution- for example, screening applications for drug development (small animals), for material transport and sequestration studies for phytoremediation (plants), or for counting radiolabeled cells in vitro (well plates).

  6. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography.

    PubMed

    Pahlevaninezhad, Hamid; Lee, Anthony M D; Shaipanich, Tawimas; Raizada, Rashika; Cahill, Lucas; Hohert, Geoffrey; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-09-01

    We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.

  7. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    SciTech Connect

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  8. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-04-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious.

  9. Single-photon non-linear optics with a quantum dot in a waveguide.

    PubMed

    Javadi, A; Söllner, I; Arcari, M; Hansen, S Lindskov; Midolo, L; Mahmoodian, S; Kiršanskė, G; Pregnolato, T; Lee, E H; Song, J D; Stobbe, S; Lodahl, P

    2015-10-23

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  10. Quantum witness of high-speed low-noise single-photon detection.

    PubMed

    Zhao, Lin; Huang, Kun; Liang, Yan; Chen, Jie; Shi, Xueshun; Wu, E; Zeng, Heping

    2015-12-14

    We demonstrate high-speed and low-noise near-infrared single-photon detection by using a capacitance balancing circuit to achieve a high spike noise suppression for an InGaAs/InP avalanche photodiode. The single-photon detector could operate at a tunable gate repetition rate from 10 to 60 MHz. A peak detection efficiency of 34% has been achieved with a dark count rate of 9 × 10⁻³ per gate when the detection window was set to 1 ns. Additionally, quantum detector tomography has also been performed at 60 MHz of repetition rate and for the detection window of 1 ns, enabling to witness the quantum features of the detector with the help of a negative Wigner function. By varying the bias voltage of the detector, we further demonstrated a transition from the full-quantum to semi-classical regime.

  11. An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies

    NASA Astrophysics Data System (ADS)

    Brida, G.; Degiovanni, I. P.; Genovese, M.; Piacentini, F.; Traina, P.; Della Frera, A.; Tosi, A.; Bahgat Shehata, A.; Scarcella, C.; Gulinatti, A.; Ghioni, M.; Polyakov, S. V.; Migdall, A.; Giudice, A.

    2012-11-01

    Low noise single-photon sources are a critical element for quantum technologies. We present a heralded single-photon source with an extremely low level of residual background photons, by implementing low-jitter detectors and electronics and a fast custom-made pulse generator controlling an optical shutter (a LiNbO3 waveguide optical switch) on the output of the source. This source has a second-order autocorrelation g(2)(0)=0.005(7), and an output noise factor (defined as the ratio of the number of noise photons to total photons at the source output channel) of 0.25(1)%. These are the best performance characteristics reported to date.

  12. Single-photon emitters based on NIR color centers in diamond coupled with solid immersion lenses

    NASA Astrophysics Data System (ADS)

    Monticone, D. Gatto; Forneris, J.; Levi, M.; Battiato, A.; Picollo, F.; Olivero, P.; Traina, P.; Moreva, E.; Enrico, E.; Brida, G.; Degiovanni, I. P.; Genovese, M.; Amato, G.; Boarino, L.

    2014-12-01

    Single-photon sources represent a key enabling technology in quantum optics, and single color centers in diamond are a promising platform to serve this purpose, due to their high quantum efficiency and photostability at room temperature. The widely studied nitrogen-vacancy (NV) centers are characterized by several limitations, thus other defects have recently been considered, with a specific focus of centers emitting in the near-infra red (NIR). In the present work, we report on the coupling of native NIR-emitting centers in high-quality single-crystal diamond with solid immersion lens (SIL) structures fabricated by focused ion beam (FIB) lithography. The reported improvements in terms of light collection efficiency make the proposed system an ideal platform for the development of single-photon emitters with appealing photophysical and spectral properties.

  13. Time-Correlated Single-Photon Counting Range Profiling of Moving Objects

    NASA Astrophysics Data System (ADS)

    Hedborg, Julia; Jonsson, Per; Henriksson, Markus; Sjöqvist, Lars

    2016-06-01

    Time-correlated single-photon counting (TCSPC) is a laser radar technique that can provide range profiling with very high resolution. Range profiles of multiple surface objects and geometrical shapes are revealed using multiple laser pulses with very low pulse energy. The method relies on accurate time measurements between a laser pulse sync signal and the registration of a single-photon event of reflected photons from a target. TCSPC is a statistic method that requires an acquisition time and therefore the range profile of a non-stationary object (target) may be corrupted. Here, we present results showing that it is possible to reconstruct the range profile of a moving target and calculate the velocity of the target.

  14. Analysis of a distributed fiber-optic temperature sensor using single-photon detectors.

    PubMed

    Dyer, Shellee D; Tanner, Michael G; Baek, Burm; Hadfield, Robert H; Nam, Sae Woo

    2012-02-13

    We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunications wavelengths as the sensing fiber, which enables extremely low-loss experiments and compatibility with existing fiber networks. We show that the uncertainty of the temperature measurement decreases with longer integration periods, but is ultimately limited by the calibration uncertainty. Temperature uncertainty on the order of 3 K is possible with spatial resolution of the order of 1 cm and integration period as small as 60 seconds. Also, we show that the measurement is subject to systematic uncertainties, such as polarization fading, which can be reduced with a polarization diversity receiver.

  15. Conversion from Single Photon to Single Electron Spin Using Electrically Controllable Quantum Dots

    NASA Astrophysics Data System (ADS)

    Oiwa, Akira; Fujita, Takafumi; Kiyama, Haruki; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2017-01-01

    Polarization is a fundamental property of light and could provide various solutions to the development of secure optical communications with high capacity and high speed. In particular, the coherent quantum state conversion between single photons and single electron spins is a prerequisite for long-distance quantum communications and distributed quantum computation. Electrically defined quantum dots have already been proven to be suitable for scalable solid state qubits by demonstrations of single-spin coherent manipulations and two-qubit gate operations. Thus, their capacity for quantum information technologies would be considerably extended by the achievement of entanglement between an electron spin in the quantum dots and a photon. In this review paper, we show the basic technologies for trapping single electrons generated by single photons in quantum dots and for detecting their spins using the Pauli effect with sensitive charge sensors.

  16. Single-photon non-linear optics with a quantum dot in a waveguide

    PubMed Central

    Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.

    2015-01-01

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon–photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures. PMID:26492951

  17. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  18. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    PubMed Central

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584

  19. Quantum interference between a single-photon Fock state and a coherent state

    NASA Astrophysics Data System (ADS)

    Windhager, A.; Suda, M.; Pacher, C.; Peev, M.; Poppe, A.

    2011-04-01

    We derive analytical expressions for the single mode quantum field state at the individual output ports of a beam splitter when a single-photon Fock state and a coherent state are incident on the input ports. The output states turn out to be a statistical mixture between a displaced Fock state and a coherent state. Consequently we are able to find an analytical expression for the corresponding Wigner function. Because of the generality of our calculations the obtained results are valid for all passive and lossless optical four port devices. We show further how the results can be adapted to the case of the Mach-Zehnder interferometer. In addition we consider the case for which the single-photon Fock state is replaced with a general input state: a coherent input state displaces each general quantum state at the output port of a beam splitter with the displacement parameter being the amplitude of the coherent state.

  20. Stabilization of a long-armed fiber-optic single-photon interferometer.

    PubMed

    Cho, Seok-Beom; Noh, Tae-Gon

    2009-10-12

    We report on single-photon interference experiments in a Michelson-type interferometer built with two 6-km-long fiber spools, as well as on the active stabilization of the interferometer. A weak coherent light signal was (de-) multiplexed with a strong reference light using wavelength-division multiplexing technique, and real-time feedback control technique was applied for the reference light to actively stabilize the phase fluctuation in the long-armed fiber interferometer. The stabilized interferometer showed phase stability of 0.06 rad, which corresponds to an optical path length fluctuation of 15 nm between the 6-km-long interfering arms. The raw visibility obtained without subtracting noise counts in the single-photon interference experiment was more than 98% for stabilized conditions.