Science.gov

Sample records for coregistered three-dimensional ultrasound

  1. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Guo, Puyun; Gamelin, John; Yan, Shikui; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2009-09-01

    Ovarian cancer has the highest mortality of all gynecologic cancers, with a five-year survival rate of only 30% or less. Current imaging techniques are limited in sensitivity and specificity in detecting early stage ovarian cancer prior to its widespread metastasis. New imaging techniques that can provide functional and molecular contrasts are needed to reduce the high mortality of this disease. One such promising technique is photoacoustic imaging. We develop a 1280-element coregistered 3-D ultrasound and photoacoustic imaging system based on a 1.75-D acoustic array. Volumetric images over a scan range of 80 deg in azimuth and 20 deg in elevation can be achieved in minutes. The system has been used to image normal porcine ovarian tissue. This is an important step toward better understanding of ovarian cancer optical properties obtained with photoacoustic techniques. To the best of our knowledge, such data are not available in the literature. We present characterization measurements of the system and compare coregistered ultrasound and photoacoustic images of ovarian tissue to histological images. The results show excellent coregistration of ultrasound and photoacoustic images. Strong optical absorption from vasculature, especially highly vascularized corpora lutea and low absorption from follicles, is demonstrated.

  2. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  3. Three-dimensional ultrasound imaging of the vasculature.

    PubMed

    Fenster, A; Lee, D; Sherebrin, S; Rankin, R; Downey, D

    1998-02-01

    With conventional ultrasonography, the diagnostician must view a series of two-dimensional images in order to form a mental impression of the three-dimensional anatomy, an efficient and time consuming practice prone to operator variability, which may cause variable or even incorrect diagnoses. Also, a conventional two-dimensional ultrasound image represents a thin slice of the patients anatomy at a single location and orientation, which is difficult to reproduce at a later time. These factors make conventional ultrasonography non-optimal for prospective or follow-up studies. Our efforts have focused on overcoming these deficiencies by developing three-dimensional ultrasound imaging techniques that are capable of acquiring B-mode, colour Doppler and power Doppler images of the vasculature, by using a conventional ultrasound system to acquire a series of two-dimensional images and then mathematically reconstructing them into a single three-dimensional image, which may then be viewed interactively on an inexpensive desktop computer. We report here on two approaches: (1) free-hand scanning, in which a magnetic positioning device is attached to the ultrasound transducer to record the position and orientation of each two-dimensional image needed for the three-dimensional image reconstruction; and (2) mechanical scanning, in which a motor-driven assembly is used to translate the transducer linearly across the neck, yielding a set of uniformly-spaced parallel two-dimensional images.

  4. Three-dimensional ultrasound evaluation of the placenta.

    PubMed

    Hata, T; Tanaka, H; Noguchi, J; Hata, K

    2011-02-01

    Conventional two-dimensional (2D) ultrasound has been widely used for the evaluation of the placenta during pregnancy. This 2D ultrasound evaluation includes the morphology, anatomy, location, implantation, anomaly, size, and color/power and pulsed Doppler sonographic assessment of the placenta. The introduction of three-dimensional (3D) ultrasound would facilitate the novel assessment of the placenta, such as surface-rendered imaging and volume measurement. With the recent advances in 3D power Doppler (3DPD) ultrasound as well as quantitative 3DPD histogram analysis, quantitative and qualitative assessments of the vascularization and blood flow of the placenta have become feasible. These novel techniques may assist in the evaluation of the feto-placental function, and offer potential advantages relative to conventional 2D sonographic assessments. 3D ultrasound may be an important modality in future placental research, in the evaluation of feto-placental insufficiency in clinical practice, and in the prediction of fetal growth restriction and pre-eclampsia, although some limitations regarding the assessment of the placenta employing 3D ultrasound still remain unresolved.

  5. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Erpelding, Todd N.; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V.

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.

  6. Three-dimensional laser optoacoustic and laser ultrasound imaging system for biomedical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Su, Richard; Conjusteau, Andre; Oruganti, Tanmayi; Wang, Kun; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2015-03-01

    In this work, we introduce an improved prototype of the imaging system that combines three-dimensional optoacoustic tomography (3D-OAT) and laser ultrasound tomography slicer (2D-LUT) to obtain coregistered maps of tissue optical absorption and speed of sound (SOS). The imaging scan is performed by a 360 degree rotation of a phantom/mouse with respect to a static arc-shaped array of ultrasonic transducers. A Q-switched laser system is used to establish optoacoustic illumination pattern appropriate for deep tissue imaging with a tunable (730-840 nm) output wavelengths operated at 10 Hz pulse repetition rate. For the LUT slicer scans, the array is pivoted by 90 degrees with respect to the central transducers providing accurate registration of optoacoustic and SOS maps, the latter being reconstructed using waveform inversion with source encoding (WISE) technique. The coregistered OAT-LUT modality is validated by imaging a phantom and a live mouse. SOS maps acquired in the imaging system can be employed by an iterative optoacoustic reconstruction algorithm capable of compensating for acoustic wavefield aberrations. The most promising applications of the imaging system include 3D angiography, cancer research, and longitudinal studies of biological distributions of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, fluorophores, etc.).

  7. Three-Dimensional Optoacoustic and Laser-Induced Ultrasound Tomography System for Preclinical Research in Mice: Design and Phantom Validation.

    PubMed

    Ermilov, S A; Su, R; Conjusteau, A; Anis, F; Nadvoretskiy, V; Anastasio, M A; Oraevsky, A A

    2016-01-01

    In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical and other type of biomedical research. The system (LOUIS-3DM) combines a multiwavelength optoacoustic tomography (OAT) and laser-induced ultrasound tomography (LUT) to obtain coregistered maps of tissue optical absorption and speed of sound, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distributions of optoacoustic contrast agents. PMID:26088582

  8. Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer

    NASA Astrophysics Data System (ADS)

    Erpelding, Todd N.; Wang, Yu; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Kim, Chulhong; Wang, Lihong V.

    2011-03-01

    Photoacoustic tomography provides both structural and functional imaging in vivo based on optical absorption contrast. A novel imaging system that incorporates a two-dimensional matrix ultrasound probe for combined photoacoustic and ultrasonic three-dimensional (3D) volumetric imaging is presented. The system consists of a tunable dye laser pumped by a Nd:YAG laser, a commercial ultrasound imaging system (Philips iU22) with a two-dimensional matrix transducer (Philips X7-2, 2500 elements, 2-7 MHz), and a multichannel data acquisition system which allows us to acquire RF channel data. Compared with alternative 3D techniques, this system is attractive because it can generate co-registered 3D photoacoustic and ultrasound images without mechanical scanning. Moreover, the lateral resolution along the azimuth and elevational directions are measured to be 0.77 +/- 0.06 mm and 0.96 +/- 0.06 mm, respectively, based on reconstructed photoacoustic images of phantoms containing individual human hairs. Finally, in vivo 3D photoacoustic sentinel lymph node mapping using methylene blue dye in a rat model is demonstrated.

  9. MRI Compatible Ultrasound Transducers for Simultaneous Acquisition of Coregistered Ultrasound to MRI Data

    NASA Astrophysics Data System (ADS)

    Speicher, Daniel; Bartscherer, T.; Becker, F. J.; Jenne, J. W.; Mrosk, K.; Degel, C.; Günther, M.; Tretbar, S.

    Magnetic resonance imaging has become an important part of radiological diagnostics as it shows high resolution volumes of human tissue without any radiation exposure. Beside the high costs for MR imaging the greatest disadvantage of this technology is that it is not real-time capable which leads to possible motion artifacts. Whereas Ultrasound is the most common diagnostic tool in radiology as it is real-time capable and cost effective. Therefore a combination of both modalities is obvious, not only to reduce motion artifacts in MR imaging but to save costs by reducing time in the MR scanner through coregistering ultrasound and MR images for deformation analysis. This work presents the manufacturing and measurement results of MR compatible ultrasound transducers for motion compensation and deformation analyses for clinical interventions under MRI conditions, based on ultrasound volumes acquired by a full MR compatible 180° rotating 8 MHz phased array.

  10. High resolution three-dimensional prostate ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Patil, Abhay; Hossack, John A.

    2006-03-01

    This work reports on the application of ultrasound elastography to prostate cancer detection using a high resolution three-dimensional (3D) ultrasound imaging system. The imaging was performed at a relatively high frequency (14 MHz), yielding very fine resolution that is optimal for prostate ultrasound imaging. The fine resolution achieved aids in locating smaller lesions than are normally detectable. Elasticity was measured with a quantitative and automatically controlled "Synthetic Digital Rectal Examination (SDRE)" wherein a smoothly increasing force was applied by injecting water, controlled by an electronic syringe pump, into a latex cover over the transrectal transducer. The lesion identified as stiffened tissue was visually enhanced by colorizing and superimposing it over the conventional B-mode image. Experimental results using a tissue-mimicking phantom demonstrated that the reconstruction accuracy of the I-Beam transducer resulted in less than 15% volumetric error. Thus, this high resolution 3D prostate elastography is possible and may provide reliable and accurate determination of the size and the location of cancers, which may result in improved specificity and sensitivity of cancer detection.

  11. Freehand three-dimensional ultrasound: implementation and applications

    NASA Astrophysics Data System (ADS)

    Sherebrin, S.; Fenster, Aaron; Rankin, Richard N.; Spence, David

    1996-04-01

    Three-dimensional ultrasound (3DUS) offers a valuable approach to many diagnostic imaging problems and provides a relatively low cost alternative to 3D imaging modalities such as MRI and CT. To obtain a 3DUS image, a clinical ultrasound scanner is used to produce a sequence of adjacent 'slices' of the region of interest, which are recorded and used to reconstruct a volume. The required location of each slice may be found either by a priori knowledge of the scan path (mechanized scanning) or by tracking the path of the transducer at scan time (freehand scanning). For some imaging applications the scan path is irregular, making mechanized scanning difficult or impossible. Some examples are: imaging vascular disease in the carotid arteries, joint imaging and obstetrics. We have developed a freehand 3DUS system that is capable of such imaging tasks. We used phantoms containing a wire and a 50% stenosed cylinder phantom to test our system for vascular applications. We found the mean error in locating any image plane to be less than 0.1 mm ((sigma) equals 0.05 mm), with minimal geometric distortion. The degree of stenosis of the phantom was measured from a reconstructed volume to be 52.6% ((sigma) equals 2%). We have started a clinical stenosis study and a pilot joint imaging study. Our clinical results indicate that measurement of stenosis in patients should be possible.

  12. Role of Three-Dimensional Ultrasound in Gynecology.

    PubMed

    Turkgeldi, Engin; Urman, Bulent; Ata, Baris

    2015-05-01

    Three-dimensional ultrasound (3D USG) is a fast-evolving imaging technique that holds a great potential for use in gynecology. Its sensitivity and specificity is reported to be close to 100 % for diagnosing congenital uterine anomalies, comparable with those of magnetic resonance imaging (MRI) and laparoscopy. With 3D USG, a coronal view of the uterus can be obtained, clearly outlining the external contour of the uterus and providing accurate information about the shape of the cavity. Although 3D USG may not perform well in thin endometria, combining it with saline infusion sonography (SIS) overcomes this problem. Research shows that 3D USG is more sensitive and specific than two-dimensional ultrasound (2D USG) in defining and mapping uterine lesions, such as fibroids, adenomyosis, and intrauterine synechia. In cases of suspected malignancy, 3D USG is mainly used in the initial evaluation of patients. Measuring various indices and mapping vascular architecture with 3D power Doppler have been proposed for evaluating adnexal masses. Although some studies raised hope, no consensus is reached about its use, success, and limitations. In urogynecology, translabial 3D USG is proved to be a valuable tool, as it provides instant access to the axial plane, which clearly depicts the relationship of the vagina, urethra, rectum, and the muscular pelvic floor. Studies report no significant differences between translabial 3D USG and MRI measurements for evaluation of the pelvic floor. In conclusion, adding 3D USG to routine gynecological workup can be beneficial for clinicians, as it provides fast and accurate results in a relatively cost-effective setting.

  13. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects. PMID:27158633

  14. Freehand three-dimensional ultrasound to assess semitendinosus muscle morphology.

    PubMed

    Haberfehlner, Helga; Maas, Huub; Harlaar, Jaap; Becher, Jules G; Buizer, Annemieke I; Jaspers, Richard T

    2016-10-01

    In several neurological disorders and muscle injuries, morphological changes of the m. semitendinosus (ST) are presumed to contribute to movement limitations around the knee. Freehand three-dimensional (3D) ultrasound (US), using position tracking of two-dimensional US images to reconstruct a 3D voxel array, can be used to assess muscle morphology in vivo. The aims of this study were: (i) to introduce a newly developed 3D US protocol for ST; and (ii) provide a first comparison of morphological characteristics determined by 3D US with those measured on dissected cadaveric muscles. Morphological characteristics of ST (e.g. muscle belly length, tendon length, fascicle length and whole muscle volume, and volumes of both compartments) were assessed in six cadavers using a 3D US protocol. Subsequently, ST muscles were removed from the body to measure the same morphological characteristics. Mean differences between morphological characteristics measured by 3D US and after dissection were smaller than 10%. Intra-class correlation coefficients (ICCs) were higher than 0.75 for all variables except for the lengths of proximal fascicles (ICC = 0.58). Measurement of the volume of proximal compartment by 3D US was not feasible, due to low US image quality proximally. We conclude that the presented 3D US protocol allows for reasonably accurate measurements of key morphological characteristics of ST muscle.

  15. A method for three-dimensional prostate imaging using transrectal ultrasound.

    PubMed

    Richard, W D; Grimmell, C K; Bedigian, K; Frank, K J

    1993-01-01

    This paper describes a method for forming three-dimensional images of the prostate using transrectal ultrasound. This method extracts three-dimensional images of the prostate from sets of two-dimensional ultrasound images obtained via a special-purpose transrectal ultrasound probe. Each two-dimensional image is segmented and the results used to form a three-dimensional image of the prostate. A method for segmenting two-dimensional images of the prostate based on the Laplacian-of-Gaussian edge operator is described. The three-dimensional imaging method described provides a new, noninvasive method for monitoring gland pathology during radiation therapy. PMID:8518996

  16. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Zemp, Roger J.

    2011-08-01

    Brachytherapy is a form of radiation therapy commonly used in the treatment of prostate cancer wherein sustained radiation doses can be precisely targeted to the tumor area by the implantation of small radioactive seeds around the treatment area. Ultrasound is a popular imaging mode for seed implantation, but the seeds are difficult to distinguish from the tissue structure. In this work, we demonstrate the feasibility of photoacoustic imaging for identifying brachytherapy seeds in a tissue phantom, comparing the received intensity to endogenous contrast. We have found that photoacoustic imaging at 1064 nm can identify brachytherapy seeds uniquely at laser penetration depths of 5 cm in biological tissue at the ANSI limit for human exposure with a contrast-to-noise ratio of 26.5 dB. Our realtime combined photoacoustic-ultrasound imaging approach may be suitable for brachytherapy seed placement and post-placement verification, potentially allowing for realtime dosimetry assessment during implantation.

  17. Three-dimensional assessment of scoliosis based on ultrasound data

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Li, Hongjian; Yu, Bo

    2015-12-01

    In this study, an approach was proposed to assess the 3D scoliotic deformity based on ultrasound data. The 3D spine model was reconstructed by using a freehand 3D ultrasound imaging system. The geometric torsion was then calculated from the reconstructed spine model. A thoracic spine phantom set at a given pose was used in the experiment. The geometric torsion of the spine phantom calculated from the freehand ultrasound imaging system was 0.041 mm-1 which was close to that calculated from the biplanar radiographs (0.025 mm-1). Therefore, ultrasound is a promising technique for the 3D assessment of scoliosis.

  18. Ultrasound specific similarity measures for three-dimensional mosaicing

    NASA Astrophysics Data System (ADS)

    Wachinger, Christian; Navab, Nassir

    2008-03-01

    The introduction of 2D array ultrasound transducers enables the instantaneous acquisition of ultrasound volumes in the clinical practice. The next step coming along is the combination of several scans to create compounded volumes that provide an extended field-of-view, so called mosaics. The correct alignment of multiple images, which is a complex task, forms the basis of mosaicing. Especially the simultaneous intensity-based registration has many properties making it a good choice for ultrasound mosaicing in comparison to the pairwise one. Fundamental for each registration approach is a suitable similarity measure. So far, only standard measures like SSD, NNC, CR, and MI were used for mosaicing, which implicitly assume an additive Gaussian distributed noise. For ultrasound images, which are degraded by speckle patterns, alternative noise models based on multiplicative Rayleigh distributed noise were proposed in the field of motion estimation. Setting these models into the maximum likelihood estimation framework, which enables the mathematical modeling of the registration process, led us to ultrasound specific bivariate similarity measures. Subsequently, we used an extension of the maximum likelihood estimation framework, which we developed in a previous work, to also derive multivariate measures. They allow us to perform ultrasound specific simultaneous registration for mosaicing. These measures have a higher potential than afore mentioned standard measures since they are specifically designed to cope with problems arising from the inherent contamination of ultrasound images by speckle patterns. The results of the experiments that we conducted on a typical mosaicing scenario with only partly overlapping images confirm this assumption.

  19. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  20. Simultaneous three-dimensional laser-ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wurzinger, Gerhild; Nuster, Robert; Schmitner, Nicole; Gratt, Sibylle; Paltauf, Günther

    2013-06-01

    A purely optical setup for simultaneous photoacoustic (PA) and laser-ultrasound (US) tomography is presented. It is shown that combined imaging can be achieved by using the same laser pulse for photoacoustic generation and for launching a broadband ultrasound pulse from an optically absorbing target. Detection of the laser-generated plane waves that have been scattered at the imaging object and of the photoacoustic signals emitted from the sample is done interferometrically. This way data for PA and US imaging are acquired within one single measurement. Distinction between the signals is possible due to their different times of flight. After data separation, image reconstruction is done using standard back-projection algorithms. The resolution of the setup was estimated and images of a zebra fish are shown, demonstrating the complementary information of the two imaging modalities.

  1. Three-dimensional ultrasound imaging for diagnosis of urethrovaginal fistula.

    PubMed

    Quiroz, Lieschen H; Shobeiri, S Abbas; Nihira, Mikio A

    2010-08-01

    We present a novel technique for visualization of a urethrovaginal fistula. A 52-year-old patient presented with persistent urinary incontinence, after having three mid-urethral sling procedures performed within the past year. The diagnosis of a urethrovaginal fistula was made by endovaginal 3-D endovaginal ultrasound and confirmed intraoperatively. We have described a novel technique that may benefit patients with urethrovaginal fistulas that are difficult to visualize.

  2. Three-dimensional tongue surfaces from ultrasound images

    NASA Astrophysics Data System (ADS)

    Stone, Maureen; Lundberg, Andrew

    1996-04-01

    This paper presents 3D tongue surfaces reconstructed from sixty cross-sectional slices of the tongue. Surfaces were reconstructed for sustained vocalizations of 18 American English sounds. Electropalatography (EPG) data also were collected for the sounds to compare tongue surface shape with tongue-palate contact patterns. The ultrasound data were grouped into four tongue shape categories. These classes were front raising, complete channel, back raising, two-point displacement. The first three categories contained both vowels and consonants, the last only consonants. The EPG data indicated three categories of tongue-palate contact: bilateral, cross-sectional, combination of the two. Vowels used only the first pattern, consonants used all three. The EPG data provided an observably distinction in contact pattern between consonants and vowels. The ultrasound tongue surface data did not. The conclusion was that the tongue actually has a limited repertoire of shapes, and positions them against the palate in different ways for consonants vs. vowels to create narrow channels, divert airflow and produce sound.

  3. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yin, Jiechen; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk; Chen, Zhongping

    2010-09-01

    We report an integrated ultrasound (US) and optical coherence tomography (OCT) probe and system for intravascular imaging. The dual-function probe is based on a 50 MHz focused ring US transducer, with a centric hole for mounting OCT probe. The coaxial US and light beams are steered by a 45° mirror to enable coregistered US/OCT imaging simultaneously. Lateral resolution of US is improved due to focused ultrasonic beam. Mirror effects on US were investigated and in vitro imaging of a rabbit aorta has been carried out. The combined US-OCT system demonstrated high resolution in visualizing superficial arterial structures while retaining deep penetration of ultrasonic imaging.

  4. Prenatal diagnosis of placenta and umbilical cord pathologies by three-dimensional ultrasound: pictorial essay.

    PubMed

    de Castro Rezende, Guilherme; Araujo Júnior, Edward

    2015-12-01

    The authors present their experience in prenatal diagnosis of placental and umbilical cord pathologies, using three-dimensional ultrasound (3DUS) in the rendering and tomography ultrasound imaging (TUI) modes, associated with color Doppler in some cases. Cases of placenta accreta/placenta previa, circumvallate placenta, succenturiate lobe, true knot of the umbilical cord, nuchal cord, and marginal/velamentous umbilical cord insertion are presented. 3DUS can contribute to improve the accuracy of prenatal diagnosis of placenta and umbilical cord pathologies.

  5. Measurement and Visualization of Three-Dimensional Vertebra Shape by Freehand Ultrasound Scanning

    NASA Astrophysics Data System (ADS)

    Kohyama, Kazuhiro; Yasumuro, Yoshihiro; Imura, Masataka; Manabe, Yoshitsugu; Oshiro, Osamu; Moroi, Keishichiro; Chihara, Kunihiro

    2005-06-01

    Paracentesis is a common operation for pain clinics and spinal anesthetics administration and requires empirical training and flexible skills to cope with the various cases of individual patients. We propose a method of measuring and visualizing three-dimensional vertebra shapes for assisting anesthesiologists, by an ultrasound imaging technique that is prevalent in many hospitals and has no harmful risks to the human body. The proposed system enables anesthesiologists to investigate vertebra shapes by freehand probing. Three-dimensional reconstruction and graphical rendering can be performed by monitoring the motion of the ultrasound probe and registering the scanned echography into the identical three-dimensional space. Considering the echography imaging features, volume rendering of hard tissue surfaces is achieved and interactive measurement is possible. This paper describes the practicability of the proposed method based on experimental measurement of both phantom and real lumbar vertebre and sacra.

  6. Evaluation of optical flow algorithms for tracking endocardial surfaces on three-dimensional ultrasound data

    NASA Astrophysics Data System (ADS)

    Duan, Qi; Angelini, Elsa D.; Herz, Susan L.; Ingrassia, Christopher M.; Gerard, Olivier; Costa, Kevin D.; Holmes, Jeffrey W.; Laine, Andrew F.

    2005-04-01

    With relatively high frame rates and the ability to acquire volume data sets with a stationary transducer, 3D ultrasound systems, based on matrix phased array transducers, provide valuable three-dimensional information, from which quantitative measures of cardiac function can be extracted. Such analyses require segmentation and visual tracking of the left ventricular endocardial border. Due to the large size of the volumetric data sets, manual tracing of the endocardial border is tedious and impractical for clinical applications. Therefore the development of automatic methods for tracking three-dimensional endocardial motion is essential. In this study, we evaluate a four-dimensional optical flow motion tracking algorithm to determine its capability to follow the endocardial border in three dimensional ultrasound data through time. The four-dimensional optical flow method was implemented using three-dimensional correlation. We tested the algorithm on an experimental open-chest dog data set and a clinical data set acquired with a Philips' iE33 three-dimensional ultrasound machine. Initialized with left ventricular endocardial data points obtained from manual tracing at end-diastole, the algorithm automatically tracked these points frame by frame through the whole cardiac cycle. A finite element surface was fitted through the data points obtained by both optical flow tracking and manual tracing by an experienced observer for quantitative comparison of the results. Parameterization of the finite element surfaces was performed and maps displaying relative differences between the manual and semi-automatic methods were compared. The results showed good consistency between manual tracing and optical flow estimation on 73% of the entire surface with fewer than 10% difference. In addition, the optical flow motion tracking algorithm greatly reduced processing time (about 94% reduction compared to human involvement per cardiac cycle) for analyzing cardiac function in three-dimensional

  7. Methodology for three-dimensional reconstruction of the tongue surface from ultrasound images

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Sonies, Barbara C.

    1995-05-01

    A three-dimensional ultrasound imaging system was developed for studying tongue configurations during speech and swallowing. A sequence of two-dimensional ultrasound B- mode images was acquired by moving the ultrasound transducer under the subject's chin. A six-degree-of-freedom electromagnetic position sensor was used in order to determine the spatial position and orientation of the ultrasound transducer during the scanning. Registration of image slices was achieved by using a time code generator to synchronize ultrasound images with the spatial information. Techniques were developed for 3D reconstruction of the tongue surface from multi-planar ultrasound scans using both commercial software and NIH- developed programs for PC and Macintosh computers. The system demonstrated its potential to quickly acquire and reconstruct 3D tongue images, and to assist speech pathologists and radiologists in speech and swallowing disorder diagnosis.

  8. Early diagnosis of conjoined twins using two-dimensional color Doppler and three-dimensional ultrasound.

    PubMed Central

    Bonilla-Musoles, F.; Raga, F.; Bonilla, F.; Blanes, J.; Osborne, N. G.

    1998-01-01

    Transvaginal three-dimensional (3-D) and color Doppler ultrasound were used to establish a first-trimester definitive diagnosis and classification of thoracoomphalopagus conjoined twins following two-dimensional (2-D) transabdominal and transvaginal scans that indicated twin gestation of uncertain classification. Color Doppler in combination with 3-D ultrasound can be a useful complement to 2-D ultrasound to confirm early diagnosis and determine the extent of organ sharing and definitive classification of conjoined twins. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9770956

  9. Three-Dimensional Simulation of Ultrasound-Induced Microalgal Cell Disruption.

    PubMed

    Wang, M; Yuan, W; Hale, Andy

    2016-03-01

    The three-dimensional distribution (x, y, and z) of ultrasound-induced microalgal cell disruption in a sonochemical reactor was predicted by solving the Helmholtz equation using a three-dimensional acoustic module in the COMSOL Multiphysics software. The simulated local ultrasound pressure at any given location (x, y, and z) was found to correlate with cell disruption of a freshwater alga, Scenedesmus dimorphus, represented by the change of algal cell particle/debris concentration, chlorophyll-a fluorescence density (CAFD), and Nile red stained lipid fluorescence density (LFD), which was also validated by the model reaction of potassium iodide oxidation (the Weissler reaction). Furthermore, the effect of ultrasound power intensity and processing duration on algal cell disruption was examined to address the limitation of the model. PMID:26660670

  10. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    NASA Astrophysics Data System (ADS)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  11. Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms.

    PubMed

    Mézière, F; Juskova, P; Woittequand, J; Muller, M; Bossy, E; Boistel, Renaud; Malaquin, L; Derode, A

    2016-02-01

    In this paper, ultrasound measurements of 1:1 scale three-dimensional (3D) printed trabecular bone phantoms are reported. The micro-structure of a trabecular horse bone sample was obtained via synchrotron x-ray microtomography, converted to a 3D binary data set, and successfully 3D-printed at scale 1:1. Ultrasound through-transmission experiments were also performed through a highly anisotropic version of this structure, obtained by elongating the digitized structure prior to 3D printing. As in real anisotropic trabecular bone, both the fast and slow waves were observed. This illustrates the potential of stereolithography and the relevance of such bone phantoms for the study of ultrasound propagation in bone.

  12. Three-dimensional ultrasound imaging of vessel wall for evaluating atherosclerosis risk and disease

    NASA Astrophysics Data System (ADS)

    Amin, Viren R.; Wang, Bo; Sonka, Milan; Lauer, Ronald M.

    2002-04-01

    This research aims at developing a three-dimensional (3D) ultrasound system for carotid and brachial artery scanning for evaluating vessel wall characteristics. In the long term, we seek to test hypothesis that the artery wall measurements of carotid intima-media-thickness and brachial flow mediated dilatation using 3D ultrasound data provide better repeatability than those derived from conventional 2D ultrasound scans. The approach is to implement a free-hand data acquisition scheme using conventional 2D medical ultrasound scanner, develop data processing algorithms for appropriately registering and displaying the volumetric ultrasound vessel scans, and develop techniques for measuring vessel wall characteristics. The system uses electromagnetic sensor mounted on the transducer to acquire position and orientation of each image slice as the transducer is moved freely to scan the area of interest. These non-parallel images are registered into a 3D dataset for reconstruction, segmentation, and measurements of the vessel wall structure. A simple calibration object is developed using a small stainless-steel sphere in a fixed position to perform coordinate transformations and pixel registration. A commercial 3D ultrasound tissue-mimicking phantom is used for assessment of freehand 3D data acquisition, calibration, registration, and visualization schemes. Early results of experimental carotid artery scans of volunteers are presented.

  13. Recognizing ovarian cancer from co-registered ultrasound and photoacoustic images

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Kumavor, Patrick; Aguirre, Andres; Zhu, Quing

    2013-03-01

    Unique features in co-registered ultrasound and photoacoustic images of ex vivo ovarian tissue are introduced, along with the hypotheses of how these features may relate to the physiology of tumors. The images are compressed with wavelet transform, after which the mean Radon transform of the photoacoustic image is computed and fitted with a Gaussian function to find the centroid of the suspicious area for shift-invariant recognition process. In the next step, 24 features are extracted from a training set of images by several methods; including features from the Fourier domain, image statistics, and the outputs of different composite filters constructed from the joint frequency response of different cancerous images. The features were chosen from more than 400 training images obtained from 33 ex vivo ovaries of 24 patients, and used to train a support vector machine (SVM) structure. The SVM classifier was able to exclusively separate the cancerous from the non-cancerous cases with 100% sensitivity and specificity. At the end, the classifier was used to test 95 new images, obtained from 37 ovaries of 20 additional patients. The SVM classifier achieved 76.92% sensitivity and 95.12% specificity. Furthermore, if we assume that recognizing one image as a cancerous case is sufficient to consider the ovary as malignant, then the SVM classifier achieves 100% sensitivity and 87.88% specificity.

  14. Coregistered photoacoustic and ultrasound imaging and classification of ovarian cancer: ex vivo and in vivo studies

    NASA Astrophysics Data System (ADS)

    Salehi, Hassan S.; Li, Hai; Merkulov, Alex; Kumavor, Patrick D.; Vavadi, Hamed; Sanders, Melinda; Kueck, Angela; Brewer, Molly A.; Zhu, Quing

    2016-04-01

    Most ovarian cancers are diagnosed at advanced stages due to the lack of efficacious screening techniques. Photoacoustic tomography (PAT) has a potential to image tumor angiogenesis and detect early neovascular changes of the ovary. We have developed a coregistered PAT and ultrasound (US) prototype system for real-time assessment of ovarian masses. Features extracted from PAT and US angular beams, envelopes, and images were input to a logistic classifier and a support vector machine (SVM) classifier to diagnose ovaries as benign or malignant. A total of 25 excised ovaries of 15 patients were studied and the logistic and SVM classifiers achieved sensitivities of 70.4 and 87.7%, and specificities of 95.6 and 97.9%, respectively. Furthermore, the ovaries of two patients were noninvasively imaged using the PAT/US system before surgical excision. By using five significant features and the logistic classifier, 12 out of 14 images (86% sensitivity) from a malignant ovarian mass and all 17 images (100% specificity) from a benign mass were accurately classified; the SVM correctly classified 10 out of 14 malignant images (71% sensitivity) and all 17 benign images (100% specificity). These initial results demonstrate the clinical potential of the PAT/US technique for ovarian cancer diagnosis.

  15. Classification algorithm of ovarian tissue based on co-registered ultrasound and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Hai; Kumavor, Patrick D.; Alqasemi, Umar; Zhu, Quing

    2014-03-01

    Human ovarian tissue features extracted from photoacoustic spectra data, beam envelopes and co-registered ultrasound and photoacoustic images are used to characterize cancerous vs. normal processes using a support vector machine (SVM) classifier. The centers of suspicious tumor areas are estimated from the Gaussian fitting of the mean Radon transforms of the photoacoustic image along 0 and 90 degrees. Normalized power spectra are calculated using the Fourier transform of the photoacoustic beamformed data across these suspicious areas, where the spectral slope and 0-MHz intercepts are extracted. Image statistics, envelope histogram fitting and maximum output of 6 composite filters of cancerous or normal patterns along with other previously used features are calculated to compose a total of 17 features. These features are extracted from 169 datasets of 19 ex vivo ovaries. Half of the cancerous and normal datasets are randomly chosen to train a SVM classifier with polynomial kernel and the remainder is used for testing. With 50 times data resampling, the SVM classifier, for the training group, gives 100% sensitivity and 100% specificity. For the testing group, it gives 89.68+/- 6.37% sensitivity and 93.16+/- 3.70% specificity. These results are superior to those obtained earlier by our group using features extracted from photoacoustic raw data or image statistics only.

  16. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    PubMed Central

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  17. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Pinton, Gianmarco

    2015-10-01

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  18. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    SciTech Connect

    Pinton, Gianmarco

    2015-10-28

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  19. Use of Three-Dimensional Ultrasound in the Detection of Breast Tumor Bed Displacement During Radiotherapy

    SciTech Connect

    Wong, Philip; Muanza, Thierry; Reynard, Eric; Robert, Karine; Barker, Jennifer; Sultanem, Khalil

    2011-01-01

    Purpose: To evaluate the feasibility and usefulness of a three-dimensional ultrasound (3D-US) image-guided system in identifying and tracking the tumor bed (TB) for planning and daily localization before radiation delivery for breast cancer. Methods and Materials: Twenty breast cancer patients underwent two CT scans at the time of simulation and just before their boost. Three-dimensional ultrasound images were acquired immediately after the CT scans, to which the images were automatically fused. Three-dimensional ultrasound images were also acquired immediately before treatment. Spatial and temporal TB differences between CT and US were evaluated. Results: The TB was not visible on US and CT in 1 subject who had and 1 subject who had not received chemotherapy before whole-breast radiotherapy. The mean (SD) TB volume overlap was 78% (14%). The mean centroid position of the TB on CT vs. US differed by 0.1, 0.2, and 0.4 mm in the anterior-posterior, left-right, and superior-inferior directions. The mean (SD) absolute radial displacement of the TB on each fraction from the treatment plan was 10.8 (6.3) mm. Conclusions: The TB was well visualized by US for the majority of patients. Clinically insignificant differences in the displacements calculated by paired CT vs. paired US demonstrate the feasibility of using 3D-US. The present study suggests that a 10-mm planning target volume margin could result in undercoverage of the clinical target volumes in 50% of treatments. Multimodality planning and image-guided radiotherapy with US potentially offers an accurate and non-ionizing solution for the daily definition of the TB position during partial-breast irradiation and boost treatments.

  20. Concurrent photoacoustic markers for direct three-dimensional ultrasound to video registration

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Guo, Xiaoyu; Kang, Hyun-Jae; Tavakoli, Behnoosh; Kang, Jin U.; Taylor, Russell H.; Boctor, Emad M.

    2014-03-01

    Fusion of video and other imaging modalities is common in modern surgical procedures to provide surgeons with additional information that can provide precise surgical guidance. An example of such uses interventional guidance equipment and surgical navigation systems to register the tools and devices used in surgery with each other. In this work, we focus explicitly on registering three-dimensional ultrasound with a stereocamera system. These surgical navigation systems often use optical or electromagnetic trackers. However, both of these tracking systems have various drawbacks leading to target registration errors of approximately 3mm. Previous work has shown that photoacoustic markers can be used to register three-dimensional ultrasound with video resulting in target registration errors which are much lower than the current state of the art. This work extends this idea by generating multiple photoacoustic markers concurrently as opposed to the sequential method used in the previous work. This development greatly enhances the acquisition time by a factor equal to the number of concurrently generated photoacoustic markers. This work is demonstrated on a synthetic phantom and an ex vivo porcine kidney phantom. The resulting target registration errors for these experiments ranged from 840 to 1360 μm and standard deviations from 370 to 640 μm.

  1. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    PubMed

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  2. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique.

    PubMed

    Ni, Jie; Cozzi, Paul; Hung, Tzong-Tyng; Hao, Jingli; Graham, Peter; Li, Yong

    2016-02-01

    Prostate cancer (CaP) is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D) ultrasound system equipped with photoacoustic (PA) imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8). Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r(2) = 0.948, 0.955, and 0.953, respectively) and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001). The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.

  3. Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound

    NASA Astrophysics Data System (ADS)

    Wang, Q. X.; Manmi, K.

    2014-03-01

    Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning, and sonochemistry. Previous numerical studies on this phenomenon were for an axisymmetric configuration. In this paper, a computational model is developed to simulate the three dimensional dynamics of acoustic bubbles by using the boundary integral method. A bubble collapses much more violently subjected to high intensity ultrasound than when under normal constant ambient pressure. A few techniques are thus implemented to address the associated numerical challenge. In particular, a high quality mesh of the bubble surface is maintained by implementing a new hybrid approach of the Lagrangian method and elastic mesh technique. It avoids the numerical instabilities which occur at a sharp jet surface as well as generates a fine mesh needed at the jet surface. The model is validated against the Rayleigh-Plesset equation and an axisymmetric model. We then explore microbubble dynamics near a wall subjected to high intensity ultrasound propagating parallel to the wall, where the Bjerknes forces due to the ultrasound and the wall are perpendicular to each other. The bubble system absorbs the energy from the ultrasound and transforms the uniform momentum of the ultrasound parallel to the wall to the highly concentrated momentum of a high-speed liquid jet pointing to the wall. The liquid jet forms towards the end of the collapse phase with a significantly higher speed than without the presence of ultrasound. The jet direction depends mainly on the dimensionless standoff distance γ = s/Rmax of the bubble from the wall, where s is the distance between the wall and the bubble centre at inception and Rmax is the maximum bubble radius. The jet is approximately directed to the wall when γ is 1.5 or smaller and rotates to the direction of the ultrasound as γ increases. When γ is about 10 or larger, the wall effect is

  4. Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters

    NASA Astrophysics Data System (ADS)

    Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada

    2011-01-01

    We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.

  5. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces

    PubMed Central

    Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is performed for three-dimensional (3D) target localization and shape reconstruction. A controller based on implicit force control is developed to align the transducer with curved surfaces to assure the maximum contact area, and thus obtain an image of sufficient quality. We experimentally investigate the effect of needle insertion system parameters such as insertion speed, needle diameter and bevel angle on target motion to adjust the parameters that minimize the target motion during insertion. A fast sampling-based path planner is used to compute and periodically update a feasible path to the target that avoids obstacles. We present experimental results for target reconstruction and needle insertion procedures in gelatin-based phantoms and biological tissue. Mean targeting errors of 1.46 ± 0.37 mm, 1.29 ± 0.29 mm and 1.82 ± 0.58 mm are obtained for phantoms with inclined, curved and combined (inclined and curved) surfaces, respectively, for insertion distance of 86–103 mm. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3 mm radius that can be detected using clinical ultrasound imaging systems. PMID:25455165

  6. High resolution three-dimensional photoacoutic tomography with CCD-camera based ultrasound detection

    PubMed Central

    Nuster, Robert; Slezak, Paul; Paltauf, Guenther

    2014-01-01

    A photoacoustic tomograph based on optical ultrasound detection is demonstrated, which is capable of high resolution real-time projection imaging and fast three-dimensional (3D) imaging. Snapshots of the pressure field outside the imaged object are taken at defined delay times after photoacoustic excitation by use of a charge coupled device (CCD) camera in combination with an optical phase contrast method. From the obtained wave patterns photoacoustic projection images are reconstructed using a back propagation Fourier domain reconstruction algorithm. Applying the inverse Radon transform to a set of projections recorded over a half rotation of the sample provides 3D photoacoustic tomography images in less than one minute with a resolution below 100 µm. The sensitivity of the device was experimentally determined to be 5.1 kPa over a projection length of 1 mm. In vivo images of the vasculature of a mouse demonstrate the potential of the developed method for biomedical applications. PMID:25136491

  7. Image analysis of placental issues using three-dimensional ultrasound and color power doppler

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cheng, Qiong; Liu, J. G.

    2007-12-01

    With the development of birthing-process medical science, and insurance requirement of prepotency, the ultrasound technique is widely used in the application of obstetrics realm, especially on the monitoring of embryo's growth. In the recent decade, the introduction of high resolution three-dimensional ultrasonic and color power Doppler scanner provides a much more direct, sensitive, forerunner method for the monitoring of embryo and gravida's prediction. A novel method that depends on examining images of vasculature of placenta to determine the growth of embryo is introduced in this paper. First, get a set of placenta vascularity images of the pregnant woman, taken by Color Doppler Ultrasonic Scanner, then mark some points in these images, where we get a section image, thus we can observe the internal blood vessel distribution at those points. This method provides an efficient tool for doctors.

  8. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  9. Prenatal diagnosis of sirenomelia by two-dimensional and three-dimensional skeletal imaging ultrasound.

    PubMed

    Liu, Rong; Chen, Xin-lin; Yang, Xiao-hong; Ma, Hui-jing

    2015-12-01

    This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Between September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SUIS performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and 1 conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were determined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydramnios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, 10 cases of sacrococcygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia. PMID:26670448

  10. Three-dimensional ultrasound-based texture analysis of the effect of atorvastatin on carotid atherosclerosis

    NASA Astrophysics Data System (ADS)

    Awad, Joseph; Krasinski, Adam; Spence, David; Parraga, Grace; Fenster, Aaron

    2010-03-01

    Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of death and disability. This is driving the development of image analysis methods to quantitatively evaluate local arterial effects of potential treatments of carotid disease. Here we investigate the use of novel texture analysis tools to detect potential changes in the carotid arteries after statin therapy. Three-dimensional (3D) carotid ultrasound images were acquired from the left and right carotid arteries of 35 subjects (16 treated with 80 mg atorvastatin and 19 treated with placebo) at baseline and after 3 months of treatment. Two-hundred and seventy texture features were extracted from 3D ultrasound carotid artery images. These images previously had their vessel walls (VW) manually segmented. Highly ranked individual texture features were selected and compared to the VW volume (VWV) change using 3 measures: distance between classes, Wilcoxon rank sum test, and accuracy of the classifiers. Six classifiers were used. Using texture feature (L7R7) increases the average accuracy and area under the ROC curve to 74.4% and 0.72 respectively compared to 57.2% and 0.61 using VWV change. Thus, the results demonstrate that texture features are more sensitive in detecting drug effects on the carotid vessel wall than VWV change.

  11. Computational synthesis of ultrasound breast images from a three-dimensional anatomical model

    NASA Astrophysics Data System (ADS)

    Shen, Yi-Ting; Lacefield, James C.

    2005-04-01

    A three-dimensional breast anatomy model has been implemented using spline surfaces and fractal structures to represent the architecture of the lactiferous ducts, mammary fat lobules, skin, and supporting connective tissues. The model randomly varies user-specified structural parameters to provide an unlimited number of realizations of the gross anatomy. Cross-sectional views extracted by slicing through a realization of the model are input to a two-dimensional k-space (i.e., spatial frequency domain) ultrasound propagation simulator. The k-space simulator iterates pressure and particle velocity fields in 30-ns steps to compute scattering from the structures defined by the anatomical model and small random variations in compressibility that are added to generate speckle. A synthetic aperture method is employed to simulate B-mode imaging with a 5 MHz, 192-element linear array operated using multiple transmit focal zones and dynamic receive focusing. Simulated images of random-scattering phantoms possess approximately Rayleigh speckle statistics. The anatomical model is expected to yield images with speckle statistics comparable to clinical breast images. The long-term objectives of these simulations are to investigate sources of focus aberration in ultrasound breast imaging and the impact of aberration on cancer detection. [Work supported by an NSERC Discovery Grant.

  12. Antenatal diagnosis of anophthalmia by three-dimensional ultrasound: a novel application of the reverse face view.

    PubMed

    Wong, H S; Parker, S; Tait, J; Pringle, K C

    2008-07-01

    The prenatal diagnosis of anophthalmia can be made on the demonstration of absent eye globe and lens on the affected side(s) on two-dimensional ultrasound examination, but when the fetal head position is unfavorable three-dimensional (3D) ultrasound may reveal additional diagnostic sonographic features, including sunken eyelids and small or hypoplastic orbit on the affected side(s). We present two cases of isolated anophthalmia diagnosed on prenatal ultrasound examination in which 3D ultrasound provided additional diagnostic information. The reverse face view provides valuable information about the orbits and the eyeballs for prenatal diagnosis and assessment of anophthalmia.

  13. Three-Dimensional Ultrasound Measurement of Blood Volume Flow in the Umbilical Cord

    PubMed Central

    Pinter, Stephen Z.; Rubin, Jonathan M.; Kripfgans, Oliver D.; Treadwell, Marjorie C.; Romero, Vivian C.; Richards, Michael S.; Zhang, Man; Hall, Anne L.; Fowlkes, J. Brian

    2013-01-01

    Objectives Three-dimensional (3D) umbilical cord blood volume flow measurement with the intention of providing a straightforward, consistent, and accurate method that overcomes the limitations associated with traditional pulsed-wave Doppler flow measurement and provides a means by which to recognize and manage at-risk pregnancies. Methods The first study involved 3D ultrasound volume flow measurements in seven healthy ewes whose pregnancies ranged from 18 to 19 weeks’ gestation (7 singletons). Sonographic umbilical arterial and venous flow measurements from each fetus were compared to the corresponding average measured arterial/venous flow to assess feasibility of measurement in a static vessel. A second complementary study involved 3D ultrasound volume flow measurements in seven healthy women whose pregnancies ranged from 17.9 to 36.3 weeks’ gestation (6 singletons, 1 twin). Umbilical venous flow measurements were compared to similar flow measurements reported in the literature. Pregnancy outcomes were abstracted from the medical records of the recruited patients. Results In the fetal sheep model, arterial/venous flow comparisons yielded errors of 10% or less for eight out of the nine measurements. In the clinical study, venous flow measurements showed agreement with the literature over a range of gestational ages. Two of the seven patients in the clinical study demonstrated lower flow than anticipated for gestational age; one was subsequently diagnosed with intrauterine growth restriction and the other with preeclampsia. Conclusions Accurate measurements of umbilical blood volume flow can be performed with relative ease in both the sheep model and in humans using the proposed 3D ultrasound flow measurement technique. Results encourage further development of the method as a means for diagnosis and identification of at-risk pregnancies. PMID:23197545

  14. A phantom for visualization of three-dimensional drug release by ultrasound-induced mild hyperthermia

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin; Seo, Jai Woong; Kheirolomoom, Azadeh; Ferrara, Katherine W.

    2013-01-01

    Purpose: Ultrasound-induced mild hyperthermia has advantages for noninvasive, localized and controlled drug delivery. In this study, a tissue-mimicking agarose-based phantom with a thermally sensitive indicator was developed for studying the spatial drug delivery profile using ultrasound-induced mild hyperthermia. Methods: Agarose powder, regular evaporated milk, Dulbecco's phosphate-buffered saline (DPBS), n-propanol, and silicon carbide powder were homogeneously mixed with low temperature sensitive liposomes (LTSLs) loaded with a self-quenched near-infrared (NIR) fluorescent dye. A dual-mode linear array ultrasound transducer was used for insonation at 1.54 MHz with a total acoustic power and acoustic pressure of 2.0 W and 1.5 MPa, respectively. After insonation, the dye release pattern in the phantom was quantified based on optical images, and the three-dimensional release profile was reconstructed and analyzed. A finite-difference time-domain-based algorithm was developed to simulate both the temperature distribution and spatial dye diffusion as a function of time. Finally, the simulated dye diffusion patterns were compared to experimental measurements. Results: Self-quenching of the fluorescent dye in DPBS was substantial at a concentration of 6.25 × 10−2 mM or greater. The transition temperature of LTSLs in the phantom was 35 °C, and the release reached 90% at 37 °C. The simulated temperature for hyperthermia correlated with the thermocouple measurements with a mean error between 0.03 ± 0.01 and 0.06 ± 0.02 °C. The R2 value between the experimental and simulated spatial extent of the dye diffusion, defined by the half-peak level in the elevation, lateral and depth directions, was 0.99 (slope = 1.08), 0.95 (slope = 0.99), and 0.80 (slope = 1.04), respectively, indicating the experimental and simulated dye release profiles were similar. Conclusions: The combination of LTSLs encapsulating a fluorescent dye and an optically transparent phantom is

  15. Dynamic three-dimensional echocardiography: a new era in ultrasound technology.

    PubMed

    Pinto, F J; Veiga, F; Lopes, M G; de Pádua, F

    1997-10-01

    shape of mitral, aortic and tricuspid regurgitation jets, by examining them from a new perspective, it also has the potential to display the flow convergence zone and quantify the regurgitant volume). Recent studies have clearly demonstrated the feasibility of performing three-dimensional imaging in a variety of cardiac diseases, but continued development of ultrasound technology must be made to improve better image resolution. The prolonged acquisition time is the most important limiting factor that currently restricts the routine use of 3D echocardiography. The development of faster computers will shorten the time needed for image acquisition, postprocessing, and data analysis, contributing to the goal of easy access and wide use. With improvements in computer technology and production of interactive software, 3D echocardiography will provide a dynamic view of the surgical anatomy of the heart. Thus, the three-dimensional reconstruction concept has the potential to and diagnostic assessment of cardiac pathology in every facet. PMID:9436415

  16. Direct three-dimensional ultrasound-to-video registration using photoacoustic markers.

    PubMed

    Cheng, Alexis; Kang, Jin U; Taylor, Russell H; Boctor, Emad M

    2013-06-01

    Modern surgical procedures often have a fusion of video and other imaging modalities to provide the surgeon with information support. This requires interventional guidance equipment and surgical navigation systems to register different tools and devices together, such as stereoscopic endoscopes and ultrasound (US) transducers. In this work, the focus is specifically on the registration between these two devices. Electromagnetic and optical trackers are typically used to acquire this registration, but they have various drawbacks typically leading to target registration errors (TRE) of approximately 3 mm. We introduce photoacoustic markers for direct three-dimensional (3-D) US-to-video registration. The feasibility of this method was demonstrated on synthetic and ex vivo porcine liver, kidney, and fat phantoms with an air-coupled laser and a motorized 3-D US probe. The resulting TRE for each experiment ranged from 380 to 850 μm with standard deviations ranging from 150 to 450 μm. We also discuss a roadmap to bring this system into the surgical setting and possible challenges along the way.

  17. Direct three-dimensional ultrasound-to-video registration using photoacoustic markers

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Kang, Jin U.; Taylor, Russell H.; Boctor, Emad M.

    2013-06-01

    Modern surgical procedures often have a fusion of video and other imaging modalities to provide the surgeon with information support. This requires interventional guidance equipment and surgical navigation systems to register different tools and devices together, such as stereoscopic endoscopes and ultrasound (US) transducers. In this work, the focus is specifically on the registration between these two devices. Electromagnetic and optical trackers are typically used to acquire this registration, but they have various drawbacks typically leading to target registration errors (TRE) of approximately 3 mm. We introduce photoacoustic markers for direct three-dimensional (3-D) US-to-video registration. The feasibility of this method was demonstrated on synthetic and ex vivo porcine liver, kidney, and fat phantoms with an air-coupled laser and a motorized 3-D US probe. The resulting TRE for each experiment ranged from 380 to 850 μm with standard deviations ranging from 150 to 450 μm. We also discuss a roadmap to bring this system into the surgical setting and possible challenges along the way.

  18. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions.

    PubMed

    Raiteri, Brent J; Cresswell, Andrew G; Lichtwark, Glen A

    2016-01-01

    Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuring in vivo human muscle and aponeurosis deformations and (b) to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions. Methods. Participants (n = 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle. Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric

  19. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions

    PubMed Central

    Cresswell, Andrew G.; Lichtwark, Glen A.

    2016-01-01

    Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuring in vivo human muscle and aponeurosis deformations and (b) to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions. Methods. Participants (n = 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle. Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric

  20. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions.

    PubMed

    Raiteri, Brent J; Cresswell, Andrew G; Lichtwark, Glen A

    2016-01-01

    Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuring in vivo human muscle and aponeurosis deformations and (b) to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions. Methods. Participants (n = 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle. Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric

  1. Three-dimensional endoanal ultrasound for diagnosis of perianal fistulas: Reliable and objective technique

    PubMed Central

    Garcés-Albir, Marina; García-Botello, Stephanie Anne; Espi, Alejandro; Pla-Martí, Vicente; Martin-Arevalo, Jose; Moro-Valdezate, David; Ortega, Joaquin

    2016-01-01

    AIM: To evaluate accuracy of three-dimensional endoanal ultrasound (3D-EAUS) as compared to 2D-EAUS and physical examination (PE) in diagnosis of perianal fistulas and correlate with intraoperative findings. METHODS: A prospective observational consecutive study was performed with patients included over a two years period. All patients were studied and operated on by the Colorectal Unit surgeons. The inclusion criteria were patients over 18, diagnosed with a criptoglandular perianal fistula. The PE, 2D-EAUS and 3D-EAUS was performed preoperatively by the same colorectal surgeon at the outpatient clinic prior to surgery and the fistula anatomy was defined and they were classified in intersphincteric, high or low transsphincteric, suprasphincteric and extrasphincteric. Special attention was paid to the presence of a secondary tract, the location of the internal opening (IO) and the site of external opening. The results of these different examinations were compared to the intraoperative findings. Data regarding location of the IO, primary tract, secondary tract, and the presence of abscesses or cavities was analysed. RESULTS: Seventy patients with a mean age of 47 years (range 21-77), 51 male were included. Low transsphincteric fistulas were the most frequent type found (33, 47.1%) followed by high transsphincteric (24, 34.3%) and intersphincteric fistulas (13, 18.6%). There are no significant differences between the number of IO diagnosed by the different techniques employed and surgery (P > 0.05) and, there is a good concordance between intraoperative findings and the 2D-EAUS (k = 0.67) and 3D-EAUS (k = 0.75) for the diagnosis of the primary tract. The ROC curves for the diagnosis of transsphincteric fistulas show that both ultrasound techniques are adequate for the diagnosis of low transsphincteric fistulas, 3D-EAUS is superior for the diagnosis of high transsphincteric fistulas and PE is weak for the diagnosis of both types. CONCLUSION: 3D-EAUS shows a higher

  2. Manual planimetric measurement of carotid plaque volume using three-dimensional ultrasound imaging

    SciTech Connect

    Landry, Anthony; Ainsworth, Craig; Blake, Chris; Spence, J. David; Fenster, Aaron

    2007-04-15

    We investigated the utility of three manual planimetric methods to quantify carotid plaque volume. A single observer measured 15 individual plaques from 15 three-dimensional (3D) ultrasound (3D US) images of patients ten times each using three different planimetric approaches. Individual plaque volumes were measured (range: 32.6-597.1 mm{sup 3}) using a standard planimetric approach (M1) whereby a plaque end was identified and sequential contours were measured. The same plaques were measured using a second approach (M2), whereby plaque ends were first identified and the 3D US image of the plaque was then subdivided into equal intervals. A third method (M3) was used to measure total plaque burden (range: 165.1-1080.0 mm{sup 3}) in a region ({+-}1.5 cm) relative to the carotid bifurcation. M1 systematically underestimated individual plaque volume compared to M2 (V{sub 2}=V{sub 1}+14.0 mm{sup 3}, r=0.99, p=0.006) due to a difference in the mean plaque length measured. Coefficients of variance (CV) for M1 and M2 decrease with increasing plaque volume, with M2 results less than M1. Root mean square difference between experimental and theoretical CV for M2 was 3.2%. The standard deviation in the identification of the transverse location of the carotid bifurcation was 0.56 mm. CVs for plaque burden measured using M3 ranged from 1.2% to 7.6% and were less than CVs determined for individual plaque volumes of the same volume. The utility of M3 was demonstrated by measuring carotid plaque burden and volume change over a period of 3 months in three patients. In conclusion, M2 was determined to be a more superior measurement technique than M1 to measure individual plaque volume. Furthermore, we demonstrated the utility of M3 to quantify regional plaque burden and to quantify change in plaque volume.

  3. Co-registered Frequency-Domain Photoacoustic Radar and Ultrasound System for Subsurface Imaging in Turbid Media

    NASA Astrophysics Data System (ADS)

    Dovlo, Edem; Lashkari, Bahman; Mandelis, Andreas

    2016-03-01

    Frequency-domain photoacoustic radar (FD-PAR) imaging of absorbers in turbid media and their comparison and/or validation as well as co-registration with their corresponding ultrasound (US) images are demonstrated in this paper. Also presented are the FD-PAR tomography and the effects of reducing the number of scan lines (or angles) on image quality, resolution, and contrast. The FD-PAR modality uses intensity-modulated (coded) continuous wave laser sources driven by frequency-swept (chirp) waveforms. The spatial cross-correlation function between the PA response and the reference signal used for laser source modulation produces the reconstructed image. Live animal testing is demonstrated, and images of comparable signal-to-noise ratio, contrast, and spatial resolution were obtained. Various image improvement techniques to further reduce absorber spread and artifacts in the images such as normalization, filtering, and amplification were also investigated. The co-registered image produced from the combined US and PA images provides more information than both images independently. The significance of this work lies in the fact that achieving PA imaging functionality on a commercial ultrasound instrument could accelerate its clinical acceptance and use. This work is aimed at functional PA imaging of small animals in vivo.

  4. Photoacoustic radar phase-filtered spatial resolution and co-registered ultrasound image enhancement for tumor detection

    PubMed Central

    Dovlo, Edem; Lashkari, Bahman; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2015-01-01

    Co-registered ultrasound (US) and frequency-domain photoacoustic radar (FD-PAR) imaging is reported for the first time in this paper. The merits of ultrasound and cross-correlation (radar) frequency-domain photoacoustic imaging are leveraged for accurate tumor detection. Commercial US imagers possess sophisticated, optimized software for rapid image acquisition that could dramatically speed-up PA imaging. The PAR image generated from the amplitude of the cross-correlation between detected and input signals was filtered by the standard deviation (SD) of the phase of the correlation signal, resulting in strong improvement of image spatial resolution, signal-to-noise ratio (SNR) and contrast. Application of phase-mediated image improvement is illustrated by imaging a cancer cell-injected mouse. A 14–15 dB SNR gain was recorded for the phase-filtered image compared to the amplitude and phase independently, while ~340 μm spatial resolution was seen for the phase PAR image compared to ~840 μm for the amplitude image. PMID:25798321

  5. Real-time optoacoustic imaging of breast cancer using an interleaved two laser imaging system coregistered with ultrasound

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Fronheiser, Matthew P.; Nadvoretsky, Vyacheslav; Brecht, Hans-Peter; Su, Richard; Conjusteau, André; Mehta, Ketan; Otto, Pamela; Oraevsky, Alexander A.

    2010-02-01

    We present results from a clinical case study on imaging breast cancer using a real-time interleaved two laser optoacoustic imaging system co-registered with ultrasound. The present version of Laser Optoacoustic Ultrasonic Imaging System (LOUIS) utilizes a commercial linear ultrasonic transducer array, which has been modified to include two parallel rectangular optical bundles, to operate in both ultrasonic (US) and optoacoustic (OA) modes. In OA mode, the images from two optical wavelengths (755 nm and 1064 nm) that provide opposite contrasts for optical absorption of oxygenated vs deoxygenated blood can be displayed simultaneously at a maximum rate of 20 Hz. The real-time aspect of the system permits probe manipulations that can assist in the detection of the lesion. The results show the ability of LOUIS to co-register regions of high absorption seen in OA images with US images collected at the same location with the dual modality probe. The dual wavelength results demonstrate that LOUIS can potentially provide breast cancer diagnostics based on different intensities of OA images of the lesion obtained at 755 nm and 1064 nm. We also present new data processing based on deconvolution of the LOUIS impulse response that helps recover original optoacoustic pressure profiles. Finally, we demonstrate the image analysis tool that provides automatic detection of the tumor boundary and quantitative metrics of the optoacoustic image quality. Using a blood vessel phantom submerged in a tissue-like milky background solution we show that the image contrast is minimally affected by the phantom distance from the LOUIS probe until about 60-65 mm. We suggest using the image contrast for quantitative assessment of an OA image of a breast lesion, as a part of the breast cancer diagnostics procedure.

  6. Coregistered photoacoustic and ultrasound tomography of healthy and inflamed human interphalangeal joints

    NASA Astrophysics Data System (ADS)

    van Es, Peter; Vlieg, Redmar C.; Biswas, Samir K.; Hondebrink, Erwin; van Hespen, Johan C. G.; Moens, Hein B. J.; Steenbergen, Wiendelt; Manohar, Srirang

    2015-07-01

    Photoacoustic (PA) or optoacoustic (OA) imaging combines the high (blood) contrast to light with the high-resolution of ultrasound. The method can visualize vascularization deep inside tissue. Of late there is interest in PA imaging of synovial joints which are expected to be associated with increased vascularization in the event of rheumatoid arthritis (RA). We here describe our approach in investigating the application of the PA technique in arthritis. We are developing a CT-geometry version PA finger imager, intended for early clinical assessment of the method. The imager uses two curved array ultrasound detectors each with 64 elements with central frequencies 1.5 and 7.5 MHz respectively, stacked above each other. Both cover approximately 180 degrees of the circle. Illumination is provided with a multiple of optical fiber bundles coupled to a laser-OPO system. Ultrasound imaging is also possible with the system, since the curved arrays are each provided with 12 or 8 ultrasound pulsers. We have investigated systematically imaging of finger vasculature in healthy volunteers using an earlier laboratory prototype. In this paper we present finger imaging results of a patient diagnosed with rheumatoid arthritis.

  7. Virtual reality volumetric display techniques for three-dimensional medical ultrasound.

    PubMed

    Littlefield, R J; Heiland, R W; Macedonia, C R

    1996-01-01

    Ultrasound imaging offers a safe, inexpensive method for obtaining medical data. It is also desirable in that data can be acquired at real-time rates and the necessary hardware can be compact and portable. The work presented here documents our attempts at providing interactive 3-D visualization of ultrasound data. We have found two volume rendering visualization packages to be quite useful and have extended one to perform stereographic volume visualization. Using a relatively inexpensive pair of commercial stereo glasses, we believe we have found a combination of tools that offers a viable system for enhancing 3-D ultrasound visualization. PMID:10163779

  8. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  9. Three-Dimensional Dynamic Imaging by Spherical Pulsed Wave of Ultrasound

    NASA Astrophysics Data System (ADS)

    Tojo, Hirofumi; Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro; Asao, Masato; Furukawa, Toshiyuki

    1995-05-01

    We developed an ultrasonic dynamic imaging system to obtain a three-dimensional echogram in a blood vessel. The method makes it possible to detect the echo signal from objects instantaneously without scanning an ultrasonic beam using a ring array probe. First, we examined the spatial resolution. Second, we performed experiments using a butter block and a copper plate. The results show that this system has a spatial resolution below 1.0 mm, and also that a butter block in a plastic tube and a moving copper plate can be detected by this system.

  10. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  11. Registration-based segmentation of three-dimensional ultrasound images for quantitative measurement of fetal craniofacial structure.

    PubMed

    Chen, Hsin-Chen; Tsai, Pei-Yin; Huang, Hsiao-Han; Shih, Hui-Hsuan; Wang, Yi-Ying; Chang, Chiung-Hsin; Sun, Yung-Nien

    2012-05-01

    Segmentation of a fetal head from three-dimensional (3-D) ultrasound images is a critical step in the quantitative measurement of fetal craniofacial structure. However, two main issues complicate segmentation, including fuzzy boundaries and large variations in pose and shape among different ultrasound images. In this article, we propose a new registration-based method for automatically segmenting the fetal head from 3-D ultrasound images. The proposed method first detects the eyes based on Gabor features to identify the pose of the fetus image. Then, a reference model, which is constructed from a fetal phantom and contains prior knowledge of head shape, is aligned to the image via feature-based registration. Finally, 3-D snake deformation is utilized to improve the boundary fitness between the model and image. Four clinically useful parameters including inter-orbital diameter (IOD), bilateral orbital diameter (BOD), occipital frontal diameter (OFD) and bilateral parietal diameter (BPD) are measured based on the results of the eye detection and head segmentation. Ultrasound volumes from 11 subjects were used for validation of the method accuracy. Experimental results showed that the proposed method was able to overcome the aforementioned difficulties and achieve good agreement between automatic and manual measurements.

  12. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  13. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  14. Image analysis of placental issues using three-dimensional ultrasound and color power Doppler based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Diyun; Liu, Jianguo

    2009-10-01

    With the development of medical science, three-dimensional ultrasound and color power Doppler tomography shooting placenta is widely used. To determine whether the fetus's development is abnormal or not is mainly through the analysis of the capillary's distribution of the obtained images which are shot by the Doppler scanner. In this classification process, we will adopt Support Vector Machine classifier. SVM achieves substantial improvements over the statistical learning methods and behaves robustly over a variety of different learning tasks. Furthermore, it is fully automatic, eliminating the need for manual parameter tuning and can solve the small sample problem wonderfully well. So SVM classifier is valid and reliable in the identification of placentas and is more accurate with the lower error rate.

  15. Three-dimensional power Doppler ultrasound diagnosis and laparoscopic management of a pregancy in a previous cesarean scar.

    PubMed

    Wang, Chin-Jung; Yuen, Leung-To; Yen, Chih-Feng; Lee, Chyi-Long; Soong, Yung-Kuei

    2004-12-01

    An ectopic pregnancy developing in a previous Cesarean section scar is a rare event, and there is still a lack of information concerning the adequacy of management strategies. So far, no modality can guarantee the integrity of the uterus. We report the case of a 29-year-old woman with three Cesarean deliveries who was transferred to our hospital with a diagnosis of cervical pregnancy. Transvaginal three-dimensional power Doppler ultrasound revealed a well-encapsulated bulging mass displacing anteriorly over the lower anterior uterine wall sounding with an irregular course and branching vessels. The diagnosis of pregnancy in a previous Cesarean scar was made. Laparoscopic ligation of bilateral uterine arteries followed by excision of the ectopic pregnant mass was undertaken, and the patient's uterus was successfully preserved. Conservative management with the laparoscopic approach may be a safe and effective alternative to hysterectomy in patients with a pregnacy in a previous Cesarean scar.

  16. Image-based registration for two-dimensional and three-dimensional ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Krucker, Jochen

    Image based registration techniques were developed, evaluated, and applied to 2D and 3D ultrasound (US) imaging in the context of deformation and aberration detection and correction. The specific applications demonstrated here include 3D compounding, generation of extended fields of view, and sound speed estimation. Despite the enormous clinical importance that diagnostic US has gained over more than four decades, and despite the fact that advances in software development and computer technology have made image registration a widely studied and moderately applied technique in other medical imaging modalities, US and image registration have rarely been combined in research or clinical application. We will show that not only can some image registration methods be transferred from other imaging modalities and adjusted to operate on US images, but also that registration can overcome or greatly ameliorate some of the existing limitations of US imaging. A nonlinear registration algorithm developed specifically for ultrasound showed registration accuracy of 0.2 mm in volumes with synthetic deformations, 0.3 mm in phantom experiments, and 0.6 mm in vivo. Extended high-resolution ultrasound volumes with lateral extents of over 10 cm were created by fusing together 3 or 4 individual volumes, using image registration in the areas of overlap. 3D compounding in the out-of-plane direction was achieved by registration of US volumes obtained from different look directions. Examples of compounding in phantoms and in vivo show increased contrast/noise and better visualization of specular reflectors. Image-based estimates of the average sound speed in the field of view were obtained using registration of steered 2D US images. The accuracy of the estimates was improved by including simulations of the sound field generated by the array. Evaluated over a range of sound speeds from 1490 to 1560 m/s in a custom-made phantom, the simulation results reduced the RMS deviation between the

  17. Dynamic Three-Dimensional Ultrasound to Evaluate Scapular Movement Among Manual Wheelchair Users and Healthy Controls

    PubMed Central

    Lin, Yen-Sheng; Koontz, Alicia M.; Boninger, Michael L.

    2015-01-01

    Background: A large percentage of individuals with spinal cord injury (SCI) report shoulder pain that can limit independence and quality of life. The pain is likely related to the demands placed on the shoulder by transfers and propulsion. Shoulder pathology has been linked to altered scapular mechanics; however, current methods to evaluate scapular movement are invasive, require ionizing radiation, are subject to skin-based motion artifacts, or require static postures. Objective: To investigate the feasibility of applying 3-dimensional ultrasound methods, previously used to look at scapular position in static postures, to evaluate dynamic scapular movement. Method: This study evaluated the feasibility of the novel application of a method combining 2-dimensional ultrasound and a motion capture system to determine 3-dimensional scapular position during dynamic arm elevation in the scapular plane with and without loading. Results: Incremental increases in scapular rotations were noted for extracted angles of 30°, 45°, 60°, and 75° of humeral elevation. Group differences were evaluated between a group of 16 manual wheelchair users (MWUs) and a group of age- and gender-matched able-bodied controls. MWUs had greater scapular external rotation and baseline pathology on clinical exam. MWUs also had greater anterior tilting, with this difference further accentuated during loading. The relationship between demographics and scapular positioning was also investigated, revealing that increased age, pathology on clinical exam, years since injury, and body mass index were correlated with scapular rotations associated with impingement (internal rotation, downward rotation, and anterior tilting). Conclusion: Individuals with SCI, as well as other populations who are susceptible to shoulder pathology, may benefit from the application of this imaging modality to quantitatively evaluate scapular positioning and effectively target therapeutic interventions. PMID:26689695

  18. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images

    PubMed Central

    Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600

  19. Assessment of normal fetal upper arm volume by three-dimensional ultrasound.

    PubMed

    Chang, Chiung-Hsin; Yu, Chen-Hsiang; Chang, Fong-Ming; Ko, Huei-Chen; Chen, Hsi-Yao

    2002-07-01

    Fetal upper arm volume (UAV) is closely related to fetal growth and nutrition status. In the past, 2-D ultrasound (US) has shown limitations in assessing fetal UAV. With the recent advancement of 3-D US, the limitation in assessing fetal UAV by 2-D US can be overcome. To establish a reference chart of fetal UAV for clinical use, a prospective and cross-sectional study using 3-D US was undertaken to assess the fetal UAV in normal pregnancy. In total, 206 singleton fetuses ranging between 20 and 40 weeks of gestation that fit the criteria of normal pregnancies were enrolled in this study. Our results showed that fetal UAV is highly correlated with the gestational age. Furthermore, using gestational age (GA) as the independent variable and UAV as the dependent variable, the best-fit regression equation was UAV (mL) = 43.546 - 4.530 x GA + 0.133 x GA(2) (r = 0.913, n = 206, p < 0.0001). For further clinical use, a chart of normal growth centiles of fetal UAV in utero was then calculated based on this equation. In conclusion, we believe our data of fetal UAV assessed by 3-D US can serve as a useful reference in evaluating fetal growth and nutrition status during gestation.

  20. A multiscale algorithm for three-dimensional free-hand ultrasound.

    PubMed

    Sanches, João M; Marques, Jorge S

    2002-08-01

    This paper presents a multiscale algorithm for the reconstruction of human anatomy from a set of ultrasound (US) images. Reconstruction is formulated in a Bayesian framework as an optimization problem with a large number of unknown variables. Human tissues are represented by the interpolation of coefficients associated to the nodes of a 3-D cubic grid. The convergence of the Bayesian method is usually slow and initialization dependent. In this paper, a multiscale approach is proposed to increase the convergence rate of the iterative process of volume estimation. A coarse estimate of the volume is first obtained using a cubic grid with a small number of nodes initialized with a constant value computed from the observed data. The volume estimate is then recursively improved by refining the grid step. Experimental results are provided to show that multiscale method achieves faster convergence rates compared with a single-scale approach. This is the key improvement toward real-time implementations. Experimental results of 3-D reconstruction of human anatomy are presented to assess the performance of the algorithm and comparisons with the single-scale method are presented.

  1. Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array.

    PubMed

    O'Reilly, Meaghan A; Jones, Ryan M; Hynynen, Kullervo

    2014-04-01

    There is an increasing interest in bubble-mediated focused ultrasound (FUS) interventions in the brain. However, current technology lacks the ability to spatially monitor the interaction of the microbubbles with the applied acoustic field, something which is critical for safe clinical translation of these treatments. Passive acoustic mapping could offer a means for spatially monitoring microbubble emissions that relate to bubble activity and associated bioeffects. In this study, a hemispherical receiver array was integrated within an existing transcranial therapy array to create a device capable of both delivering therapy and monitoring the process via passive imaging of bubble clouds. A 128-element receiver array was constructed and characterized for varying bubble concentrations and source spacings. Initial in vivo feasibility testing was performed. The system was found to be capable of monitoring bubble emissions down to single bubble events through an ex vivo human skull. The lateral resolution of the system was found to be between 1.25 and 2 mm and the axial resolution between 2 and 3.5 mm, comparable to the resolution of MRI-based temperature monitoring during thermal FUS treatments in the brain. The results of initial in vivo experiments show that bubble activity can be mapped starting at pressure levels below the threshold for blood-brain barrier disruption. This study presents a feasible solution for imaging bubble activity during cavitation-mediated FUS treatments in the brain.

  2. Three-dimensional transvaginal tomographic ultrasound imaging for cervical cancer staging.

    PubMed

    Han, Xue-Song; Ning, Chun-Ping; Sun, Li-Tao; Li, Xiao-Ying; Peng, Yan-Qing; Dang, Mei-Zheng

    2015-09-01

    The objective of this study was to investigate the feasibility of using 3-D transvaginal tomographic ultrasound imaging (TUI) to stage patients with cervical carcinoma. Eighty women with cervical cancer who underwent transvaginal TUI examinations were enrolled. In all patients, cancer was confirmed pre-operatively by pathologic examination. Staging on the basis of clinical features, ultrasonography and magnetic resonance imaging was performed according to the International Federation of Gynecology and Obstetrics (FIGO) staging system. Clinical, TUI and magnetic resonance imaging staging was compared with that based on histology. Depth of invasion into the stroma was measured by TUI in 52 cases and compared with pathologic results. An interclass correlation coefficient was used to analyze reproducibility. In total, all 80 patients underwent surgical treatment. The accuracy of pre-operative staging, compared with histologic findings, was 92.50% for TUI, 82.50% for magnetic resonance imaging and 78.75% for clinical examination. The mean depth of lesions as measured with TUI was 12.5 ± 6.2 mm (range: 3.5-40.0 mm), and that measured on histology was 10.5 ± 8.0 mm (range: 3.0-40.0 mm). The interclass correlation coefficient of the two methods was 0.933 (95% confidence interval: 0.887-0.961). Pre-operative TUI is promising as a method for pre-operative staging of cervical carcinomas. TUI can also reliably assess lesion depth.

  3. Quantitative Three-Dimensional Ultrasound Analysis of Tongue Protrusion, Grooving and Symmetry: Data from 12 Normal Speakers and a Partial Glossectomee

    ERIC Educational Resources Information Center

    Bressmann, Tim; Thind, Parveen; Uy, Catherine; Bollig, Carmen; Gilbert, Ralph W.; Irish, Jonathan C.

    2005-01-01

    The functional determinants for a good speech outcome after a partial tongue resection and reconstruction are not well established. The purpose of the present study was to assess the protrusion, grooving and symmetry of the tongue during sustained speech sound production using three-dimensional ultrasound. The participants were twelve normal…

  4. Epithelial Thickness After Hyperopic LASIK: Three-dimensional Display With Artemis Very High-frequency Digital Ultrasound

    PubMed Central

    Reinstein, Dan Z.; Archer, Timothy J.; Gobbe, Marine; Silverman, Ronald H.; Coleman, D. Jackson

    2015-01-01

    PURPOSE To characterize the epithelial thickness profile in a population of eyes after LASIK for hyperopia or hyperopic astigmatism. METHODS The epithelial thickness profile was measured in vivo by Artemis very high-frequency (VHF) digital ultrasound scanning (ArcScan Inc) across the central 10-mm diameter of the cornea on 65 eyes at least 3 months after hyperopic LASIK using a 7-mm ablation zone with the MEL 80 excimer laser (Carl Zeiss Meditec). Maps of the average, standard deviation, minimum, maximum, and range of epithelial thickness were plotted. The cross-sectional hemi-meridional epithelial thickness profile was calculated using annular averaging. Linear regression analysis was performed to evaluate correlations between epithelial thickness, spherical equivalent refraction treated, and maximum simulated keratometry. RESULTS The mean thinnest epithelial thickness was 39.7±5.6 μm and the mean thickest epithelial thickness was 89.3±14.6 μm. The average epithelial thickness profile showed an epithelial doughnut pattern characterized by localized central thinning within the 4-mm diameter zone surrounded by an annulus of thick epithelium, with the thickest epithelium at the 3.4-mm radius. The epithelium was on average 10-μm thicker temporally than nasally at the 3.4-mm radius. Central epithelium was thinner and paracentral epithelium was thicker for higher hyperopic corrections and steeper maximum simulated keratometry. CONCLUSIONS Three-dimensional high-resolution ultrasound mapping of epithelial thickness profile after LASIK for hyperopia demonstrated thinner epithelium centrally and thicker epithelium paracentrally. Presumably, the paracentral epithelial thickening compensated in part for the stromal tissue removed by the hyperopic ablation, whereas the central epithelial thinning compensated for the localized increase in corneal curvature. PMID:19928697

  5. Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions.

    PubMed

    Cardinal, Marie-Hélène Roy; Meunier, Jean; Soulez, Gilles; Maurice, Roch L; Therasse, Eric; Cloutier, Guy

    2006-05-01

    Intravascular ultrasound (IVUS) is a catheter based medical imaging technique particularly useful for studying atherosclerotic disease. It produces cross-sectional images of blood vessels that provide quantitative assessment of the vascular wall, information about the nature of atherosclerotic lesions as well as plaque shape and size. Automatic processing of large IVUS data sets represents an important challenge due to ultrasound speckle, catheter artifacts or calcification shadows. A new three-dimensional (3-D) IVUS segmentation model, that is based on the fast-marching method and uses gray level probability density functions (PDFs) of the vessel wall structures, was developed. The gray level distribution of the whole IVUS pullback was modeled with a mixture of Rayleigh PDFs. With multiple interface fast-marching segmentation, the lumen, intima plus plaque structure, and media layers of the vessel wall were computed simultaneously. The PDF-based fast-marching was applied to 9 in vivo IVUS pullbacks of superficial femoral arteries and to a simulated IVUS pullback. Accurate results were obtained on simulated data with average point to point distances between detected vessel wall borders and ground truth <0.072 mm. On in vivo IVUS, a good overall performance was obtained with average distance between segmentation results and manually traced contours <0.16 mm. Moreover, the worst point to point variation between detected and manually traced contours stayed low with Hausdorff distances <0.40 mm, indicating a good performance in regions lacking information or containing artifacts. In conclusion, segmentation results demonstrated the potential of gray level PDF and fast-marching methods in 3-D IVUS image processing.

  6. Modeling the envelope statistics of three-dimensional high-frequency ultrasound echo signals from dissected human lymph nodes.

    PubMed

    Bui, Thanh Minh; Coron, Alain; Mamou, Jonathan; Saegusa-Beecroft, Emi; Yamaguchi, Tadashi; Yanagihara, Eugene; Machi, Junji; Bridal, S Lori; Feleppa, Ernest J

    2014-01-01

    This work investigates the statistics of the envelope of three-dimensional (3D) high-frequency ultrasound (HFU) data acquired from dissected human lymph nodes (LNs). Nine distributions were employed, and their parameters were estimated using the method of moments. The Kolmogorov Smirnov (KS) metric was used to quantitatively compare the fit of each candidate distribution to the experimental envelope distribution. The study indicates that the generalized gamma distribution best models the statistics of the envelope data of the three media encountered: LN parenchyma, fat and phosphate-buffered saline (PBS). Furthermore, the envelope statistics of the LN parenchyma satisfy the pre-Rayleigh condition. In terms of high fitting accuracy and computationally efficient parameter estimation, the gamma distribution is the best choice to model the envelope statistics of LN parenchyma, while, the Weibull distribution is the best choice to model the envelope statistics of fat and PBS. These results will contribute to the development of more-accurate and automatic 3D segmentation of LNs for ultrasonic detection of clinically significant LN metastases.

  7. Incorporating texture features in a computer-aided breast lesion diagnosis system for automated three-dimensional breast ultrasound

    PubMed Central

    Liu, Haixia; Tan, Tao; van Zelst, Jan; Mann, Ritse; Karssemeijer, Nico; Platel, Bram

    2014-01-01

    Abstract. We investigated the benefits of incorporating texture features into an existing computer-aided diagnosis (CAD) system for classifying benign and malignant lesions in automated three-dimensional breast ultrasound images. The existing system takes into account 11 different features, describing different lesion properties; however, it does not include texture features. In this work, we expand the system by including texture features based on local binary patterns, gray level co-occurrence matrices, and Gabor filters computed from each lesion to be diagnosed. To deal with the resulting large number of features, we proposed a combination of feature-oriented classifiers combining each group of texture features into a single likelihood, resulting in three additional features used for the final classification. The classification was performed using support vector machine classifiers, and the evaluation was done with 10-fold cross validation on a dataset containing 424 lesions (239 benign and 185 malignant lesions). We compared the classification performance of the CAD system with and without texture features. The area under the receiver operating characteristic curve increased from 0.90 to 0.91 after adding texture features (p<0.001). PMID:26158036

  8. Accuracy of three-dimensional transvaginal ultrasound in uterus volume measurements; comparison with two-dimensional ultrasound.

    PubMed

    Yaman, Cemil; Jesacher, Klaus; Pölz, Werner

    2003-12-01

    The purpose of this study was to document the accuracy of 3-D uterus volume and to compare it with 2-D measurements. Transvaginal ultrasound (US) examinations were performed in 48 consecutive patients before hysterectomy. The examinations were stored digitally on an internal disk drive for subsequent measurements in virtual organ computer-aided analysis (VOCAL) program. Immediately after the hysterectomy, the true volume was measured in a water bath. A total of 5 patients were excluded due to difficulty of identifying the borders of their uterus; 8 patients were excluded because of too large fibroids or diffuse hypertrophic enlargement of uterus (volume > 220 mL). Although the volumes estimated by the 3-D method were not significantly different (p = 0.126 first measurement, p = 0.561 second measurement), the volumes estimated by the 2-D method were significantly different (p = 0.005 first measurement, p = 0.012 second measurement). The mean error rates of the two 3-D volume measurements by the same observer were 7.4% and 7.9%, and they were 22.2% and 21.0% for the 2-D volume measurements. It may be concluded that the volume of the uterus can be measured more accurately by 3-D US than by 2-D US.

  9. Epithelial, Stromal, and Total Corneal Thickness in Keratoconus: Three-dimensional Display With Artemis Very-high Frequency Digital Ultrasound

    PubMed Central

    Gobbe, Marine; Archer, Timothy J.; Silverman, Ronald H.; Coleman, D. Jackson

    2010-01-01

    PURPOSE To characterize the epithelial, stromal, and total corneal thickness profile in a population of eyes with keratoconus. METHODS Epithelial, stromal, and total corneal thickness profiles were measured in vivo by Artemis very high-frequency (VHF) digital ultrasound scanning (ArcScan) across the central 6- to 10-mm diameter of the cornea on 54 keratoconic eyes. Maps of the average, standard deviation, minimum, maximum, and range of epithelial, stromal, and total corneal thickness were plotted. The average location of the thinnest epithelium, stroma, and total cornea were found. The cross-sectional semi-meridional stromal and total corneal thickness profiles were calculated using annular averaging. The absolute stromal and total corneal thickness progressions relative to the thinnest point were calculated using annular averaging as well as for 8 semi-meridians individually. RESULTS The mean corneal vertex epithelial, stromal, and total corneal thicknesses were 45.7 ± 5.9 µm, 426.4 ± 38.5 µm and 472.2 ± 41.4 µm respectively. The average epithelial thickness profile showed an epithelial doughnut pattern characterized by localized central thinning surrounded by an annulus of thick epithelium. The thinnest epithelium, stroma, and total cornea were displaced on average by 0.48 ± 0.66 mm temporally and 0.32 ± 0.67 mm inferiorly, 0.31 ± 0.45 mm temporally and 0.54 ± 0.37 mm inferiorly, and 0.31 ± 0.43 mm temporally and 0.50 ± 0.35 mm inferiorly, respectively, with reference to the corneal vertex. The increase in semi-meridional absolute stromal and total corneal thickness progressions was greatest inferiorly and lowest temporally. CONCLUSIONS Three-dimensional thickness mapping of the epithelial, stromal, and total corneal thickness profiles characterized thickness changes associated with keratoconus and may help in early diagnosis of keratoconus. PMID:20415322

  10. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.

    PubMed

    Hosseinkhah, N; Hynynen, K

    2012-02-01

    Ultrasound contrast agents inside a microvessel, when driven by ultrasound, oscillate and induce mechanical stresses on the vessel wall. These mechanical stresses can produce beneficial therapeutic effects but also induce vessel rupture if the stresses are too high. Therefore, it is important to use sufficiently low pressure amplitudes to avoid rupturing the vessels while still inducing the desired therapeutic effects. In this work, we developed a comprehensive three-dimensional model of a confined microbubble inside a vessel while considering the bubble shell properties, blood viscosity, vessel wall curvature and the mechanical properties of the vessel wall. Two bubble models with the assumption of a spherical symmetric bubble and a simple asymmetrical bubble were simulated. This work was validated with previous experimental results and enabled us to evaluate the microbubbles' behaviour and the resulting mechanical stresses induced on the vessel walls. In this study, the fluid shear and circumferential stresses were evaluated as indicators of the mechanical stresses. The effects of acoustical parameters, vessel viscoelasticity and rigidity, vessel/bubble size and off-centre bubbles on bubble behaviour and stresses on the vessel were investigated. The fluid shear and circumferential stresses acting on the vessel varied with time and location. As the frequency changed, the microbubble oscillated with the highest amplitude at its resonance frequency which was different from the resonance frequency of an unbound bubble. The bubble resonance frequency increased as the rigidity of a flexible vessel increased. The fluid shear and circumferential stresses peaked at frequencies above the bubble's resonance frequency. The more rigid the vessels were, the more damped the bubble oscillations. The synergistic effect of acoustic frequency and vessel elasticity had also been investigated since the circumferential stress showed either an increasing trend or a decreasing one

  11. Assessment of visual quality and spatial accuracy of fast anisotropic diffusion and scan conversion algorithms for real-time three-dimensional spherical ultrasound

    NASA Astrophysics Data System (ADS)

    Duan, Qi; Angelini, Elsa D.; Laine, Andrew

    2004-04-01

    Three-dimensional ultrasound machines based on matrix phased-array transducers are gaining predominance for real-time dynamic screening in cardiac and obstetric practice. These transducers array acquire three-dimensional data in spherical coordinates along lines tiled in azimuth and elevation angles at incremental depth. This study aims at evaluating fast filtering and scan conversion algorithms applied in the spherical domain prior to visualization into Cartesian coordinates for visual quality and spatial measurement accuracy. Fast 3d scan conversion algorithms were implemented and with different order interpolation kernels. Downsizing and smoothing of sampling artifacts were integrated in the scan conversion process. In addition, a denoising scheme for spherical coordinate data with 3d anisotropic diffusion was implemented and applied prior to scan conversion to improve image quality. Reconstruction results under different parameter settings, such as different interpolation kernels, scaling factor, smoothing options, and denoising, are reported. Image quality was evaluated on several data sets via visual inspections and measurements of cylinder objects dimensions. Error measurements of the cylinder's radius, reported in this paper, show that the proposed fast scan conversion algorithm can correctly reconstruct three-dimensional ultrasound in Cartesian coordinates under tuned parameter settings. Denoising via three-dimensional anisotropic diffusion was able to greatly improve the quality of resampled data without affecting the accuracy of spatial information after the modification of the introduction of a variable gradient threshold parameter.

  12. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    PubMed

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  13. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    PubMed

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  14. Pulsed low-intensity ultrasound increases proliferation and extracelluar matrix production by human dermal fibroblasts in three-dimensional culture

    PubMed Central

    Bohari, Siti PM; Grover, Liam M; Hukins, David WL

    2015-01-01

    This study evaluated the effect of pulsed low-intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by human dermal fibroblasts encapsulated in alginate. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content, dimethylmethylene blue assay for glycosaminoglycan content and scanning electron microscopy were performed on the encapsulated cells treated with pulsed low-intensity ultrasound and a control group that remained untreated. Pulsed low-intensity ultrasound showed a significant effect on cell proliferation and collagen deposition but no consistent pattern for glycosaminoglycan content. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both treated and control groups. These results suggest that pulsed low-intensity ultrasound alone shows a positive effect on cell proliferation and collagen deposition even without growth factor supplements. PMID:26668710

  15. Agnathia-otocephaly: prenatal diagnosis by two- and three-dimensional ultrasound and magnetic resonance imaging. Case report.

    PubMed

    Hisaba, Wagner Jou; Milani, Hérbene José Figuinha; Araujo Júnior, Edward; Passos, Jurandir Piassi; Barreto, Enoch Quinderé Sá; Carvalho, Natália Silva; Helfer, Talita Micheletti; Pares, David Batista Silva; Nardozza, Luciano Marcondes Machado; Moron, Antonio Fernandes

    2014-12-01

    A case of prenatally diagnosed otocephaly is reported. Otocephaly is an extremely rare malformation characterized by absence or hypoplasia of the mandible and abnormal horizontal position of the ears. 2D ultrasound performed at 25 weeks of gestation revealed agnathia, proboscis and hypotelorism. 3D ultrasound (rendering mode) and magnetic resonance imaging were used to evaluate the facial features, and were essential for characterization of facial malformations in otocephaly and for the demonstration and correct prenatal counseling of the couple. PMID:25463893

  16. A three-dimensional, extended field of view ultrasound method for estimating large strain mechanical properties of the cervix during pregnancy

    PubMed Central

    House, Michael; Feltovich, Helen; Hall, Timothy J; Stack, Trevor; Patel, Atur; Socrate, Simona

    2015-01-01

    Cervical shortening and cervical insufficiency contribute to a significant number of preterm births. However, the deformation mechanisms that control how the cervix changes its shape from long and closed to short and dilated are not clear. Investigation of the biomechanical problem is limited by 1) lack of thorough characterization of the three-dimensional anatomical changes associated with cervical deformation and 2) difficulty measuring cervical tissue properties in vivo. The objective of the present study was to explore the feasibility of using three-dimensional ultrasound and fundal pressure to obtain anatomically accurate numerical models of large-strain cervical deformation during pregnancy and enable non-invasive assessment of cervical tissue compliance. Healthy subjects (n=6) and one subject with acute cervical insufficiency in the midtrimester were studied. Extended field of view ultrasound images were obtained of the entire uterus and cervix. These images aided construction of anatomically accurate numerical models. Cervical loading was achieved with fundal pressure, which was quantified with a vaginal pressure catheter. In one subject, the anatomical response to fundal pressure was matched by a model-based simulation of the deformation response, thereby deriving the corresponding cervical mechanical properties and showing the feasibility of non-invasive assessment of compliance. The results of this pilot study demonstrate the feasibility of a biomechanical modeling framework for estimating cervical mechanical properties in vivo. An improved understanding of cervical biomechanical function will clarify the pathophysiology of cervical shortening. PMID:22655487

  17. Image reconstruction and system optimization for three-dimensional speed of sound tomography using laser-induced ultrasound

    NASA Astrophysics Data System (ADS)

    Anis, Fatima; Su, Richard; Nadvoretsky, Vyacheslav V.; Conjusteau, André; Ermilov, Sergey A.; Oraevsky, Alexander A.; Anastasio, Mark A.

    2013-03-01

    We developed the first prototype of dual-modality imager combining optoacoustic tomography (OAT) and laser ultrasound tomography (UST) using computer models followed by experimental validation. The system designed for preclinical biomedical research can concurrently yield images depicting both the absorbed optical energy density and acoustic properties (speed of sound) of an object. In our design of the UST imager, we seek to replace conventional electrical generation of ultrasound waves by laser-induced ultrasound (LU). While earlier studies yielded encouraging results [Manohar, et al., Appl. Phys. Lett, 131911, 2007], they were limited to two-dimensional (2D) geometries. In this work, we conduct computer-simulation studies to investigate different designs for the 3D LU UST imager. The number and location of the laser ultrasound emitters, which are constrained to reside on the cylindrical surface opposite to the arc of detectors, are optimized. In addition to the system parameters, an iterative image reconstruction algorithm was optimized. We demonstrate that high quality volumetric maps of the speed of sound can be reconstructed when only 32 emitters and 128 receiving transducers are employed to record time-of-flight data at 360 tomographic view angles. The implications of the proposed system for small animal and breast-cancer imaging are discussed.

  18. Three-dimensional noninvasive ultrasound Joule heat tomography based on the acousto-electric effect using unipolar pulses: a simulation study.

    PubMed

    Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

    2012-11-21

    Electrical properties of biological tissues are highly sensitive to their physiological and pathological status. Thus it is of importance to image electrical properties of biological tissues. However, spatial resolution of conventional electrical impedance tomography (EIT) is generally poor. Recently, hybrid imaging modalities combining electric conductivity contrast and ultrasonic resolution based on the acousto-electric effect has attracted considerable attention. In this study, we propose a novel three-dimensional (3D) noninvasive ultrasound Joule heat tomography (UJHT) approach based on the acousto-electric effect using unipolar ultrasound pulses. As the Joule heat density distribution is highly dependent on the conductivity distribution, an accurate and high-resolution mapping of the Joule heat density distribution is expected to give important information that is closely related to the conductivity contrast. The advantages of the proposed ultrasound Joule heat tomography using unipolar pulses include its simple inverse solution, better performance than UJHT using common bipolar pulses and its independence of a priori knowledge of the conductivity distribution of the imaging object. Computer simulation results show that using the proposed method, it is feasible to perform a high spatial resolution Joule heat imaging in an inhomogeneous conductive media. Application of this technique on tumor scanning is also investigated by a series of computer simulations. PMID:23123757

  19. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.

    PubMed

    Protopappas, Vasilios C; Kourtis, Iraklis C; Kourtis, Lampros C; Malizos, Konstantinos N; Massalas, Christos V; Fotiadis, Dimitrios I

    2007-06-01

    The use of guided waves has recently drawn significant interest in the ultrasonic characterization of bone aiming at supplementing the information provided by traditional velocity measurements. This work presents a three-dimensional finite element study of guided wave propagation in intact and healing bones. A model of the fracture callus was constructed and the healing course was simulated as a three-stage process. The dispersion of guided modes generated by a broadband 1-MHz excitation was represented in the time-frequency domain. Wave propagation in the intact bone model was first investigated and comparisons were then made with a simplified geometry using analytical dispersion curves of the tube modes. Then, the effect of callus consolidation on the propagation characteristics was examined. It was shown that the dispersion of guided waves was significantly influenced by the irregularity and anisotropy of the bone. Also, guided waves were sensitive to material and geometrical changes that take place during healing. Conversely, when the first-arriving signal at the receiver corresponded to a nondispersive lateral wave, its propagation velocity was almost unaffected by the elastic symmetry and geometry of the bone and also could not characterize the callus tissue throughout its thickness. In conclusion, guided waves can enhance the capabilities of ultrasonic evaluation.

  20. Three-dimensional printing (3DP) of neonatal head phantom for ultrasound: thermocouple embedding and simulation of bone.

    PubMed

    Gatto, Matteo; Memoli, Gianluca; Shaw, Adam; Sadhoo, Neelaksh; Gelat, Pierre; Harris, Russell A

    2012-09-01

    A neonatal head phantom, comprising of an ellipsoidal geometry and including a circular aperture for simulating the fontanel was designed and fabricated, in order to allow an objective assessment of thermal rise in tissues during trans-cranial ultrasonic scanning of pre-term neonates. The precise position of a series of thermocouples was determined on the basis of finite-element analysis, which identified crucial target points for the thermal monitoring within the phantom geometry. Three-Dimensional Printing (3DP) was employed for the manufacture of the skull phantom, which was subsequently filled with dedicated brain-mimic material. A novel 3DP material combination was found to be able to mimic the acoustic properties of neonatal skull bone. Similarly, variations of a standard recipe for tissue mimic were examined, until one was found to mimic the brain of an infant. A specific strategy was successfully pursued to embed a thermocouple within the 3DP skull phantom during the manufacturing process. An in-process machine vision system was used to assess the correct position of the deposited thermocouple inside the fabricated skull phantom. An external silicone-made skin-like covering completed the phantom and was manufactured through a Direct Rapid Tooling (DRT) technique.

  1. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image.

    PubMed

    Patch, S K; Kireeff Covo, M; Jackson, A; Qadadha, Y M; Campbell, K S; Albright, R A; Bloemhard, P; Donoghue, A P; Siero, C R; Gimpel, T L; Small, S M; Ninemire, B F; Johnson, M B; Phair, L

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in [Formula: see text]. The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm.

  2. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; Kireeff Covo, M.; Jackson, A.; Qadadha, Y. M.; Campbell, K. S.; Albright, R. A.; Bloemhard, P.; Donoghue, A. P.; Siero, C. R.; Gimpel, T. L.; Small, S. M.; Ninemire, B. F.; Johnson, M. B.; Phair, L.

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in 2 μ \\text{s} . The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm.

  3. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image.

    PubMed

    Patch, S K; Kireeff Covo, M; Jackson, A; Qadadha, Y M; Campbell, K S; Albright, R A; Bloemhard, P; Donoghue, A P; Siero, C R; Gimpel, T L; Small, S M; Ninemire, B F; Johnson, M B; Phair, L

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in [Formula: see text]. The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm. PMID:27385261

  4. To assess the reparative ability of differentiated mesenchymal stem cells in a rat critical size bone repair defect model using high frequency co-registered photoacoustic/ultrasound imaging and micro computed tomography

    NASA Astrophysics Data System (ADS)

    Zafar, Haroon; Gaynard, Sean; O'Flatharta, Cathal; Doroshenkova, Tatiana; Devine, Declan; Sharif, Faisal; Barry, Frank; Hayes, Jessica; Murphy, Mary; Leahy, Martin J.

    2016-03-01

    Stem cell based treatments hold great potential and promise to address many unmet clinical needs. The importance of non-invasive imaging techniques to monitor transplanted stem cells qualitatively and quantitatively is crucial. The objective of this study was to create a critical size bone defect in the rat femur and then assess the ability of the differentiated mesenchymal stem cells (MSCs) to repair the defect using high frequency co-registered photoacoustic(PA)/ultrasound(US) imaging and micro computed tomography (μCT) over an 8 week period. Combined PA and US imaging was performed using 256 elements, 21 MHz frequency linear-array transducer combined with multichannel collecting system. In vivo 3D PA and US images of the defect bone in the rat femur were acquired after 4 and 8 weeks of the surgery. 3D co-registered structural such as microvasculature and the functional images such as total concentration of haemoglobin (HbT) and the haemoglobin oxygen saturation (sO2) were obtained using PA and US imaging. Bone formation was assessed after 4 and 8 weeks of the surgery by μCT. High frequency linear-array based coregistered PA/US imaging has been found promising in terms of non-invasiveness, sensitivity, adaptability, high spatial and temporal resolution at sufficient depths for the assessment of the reparative ability of MSCs in a rat critical size bone repair defect model.

  5. Manual landmark identification and tracking during the medial rotation test of the shoulder: an accuracy study using three-dimensional ultrasound and motion analysis measures.

    PubMed

    Morrissey, D; Morrissey, M C; Driver, W; King, J B; Woledge, R C

    2008-12-01

    Palpation of movement is a common clinical tool for assessment of movement in patients with musculoskeletal symptoms. The purpose of this study was to measure the accuracy of palpation of shoulder girdle translation during the medial rotation test (MRT) of the shoulder. The translation of the gleno-humeral and scapulo-thoracic joints was measured using both three-dimensional ultrasound and palpation in order to determine the accuracy of translation tracking during the MRT of the shoulder. Two movements of 11 normal subjects (mean age 24 (SD=4), range 19-47 years) were measured. The agreement between measures was good for scapulo-thoracic translation (r=0.83). Gleno-humeral translation was systematically under estimated (p=0.03) although moderate correlation was found (r=0.65). These results indicate that translation of the measured joints can be tracked by palpation and further tests of the efficacy of palpation tracking during musculoskeletal assessment may be warranted. PMID:18359266

  6. Relationship between Plasma D-Dimer Concentration and Three-Dimensional Ultrasound Placental Volume in Women at Risk for Placental Vascular Diseases: A Monocentric Prospective Study

    PubMed Central

    Fanget, Cécile; Chauleur, Céline; Stadler, Amandine; Presles, Emilie; Varlet, Marie-Noëlle; Gris, Jean-Christophe

    2016-01-01

    Introduction The aim of this study was to correlate placental volumes deduced from three-dimensional ultrasound and virtual organ computer-aided analysis (VOCAL) software with systemic concentrations of D-dimer and soluble endothelial protein C receptor (sEPCR). Methods This was a monocentric experimental prospective study conducted from October 2008 to July 2009. Forty consecutive patients at risk of placental vascular pathology (PVP) recurrence or occurrence were included. Placental volumes were systematically measured three times (11–14, 16–18 and 20–22 weeks of gestation (WG)) by two independent sonographers. D-dimers and sEPCR plasma concentrations were measured using ELISA kits (Enzyme Linked ImmunoSorbent Assay). Results Eleven patients had a PVP. The plasma D-dimer level was positively correlated with placental volume (r = 0.45, p < 0.001). A smaller placental volume and placental quotient was evidenced in women who developed a PVP at the three gestational ages, and the difference was more pronounced during the third exam (20 WG). No obvious correlation could be demonstrated between the development of a PVP and the levels of D-dimer and sEPCR. There was no significant difference in the values of placental volumes measured by the two sonographers. Conclusion The placenta growth could be a major determinant of the elevation of D-dimer during pregnancy. Consideration of placental volume could allow for modulation of the D-dimer concentrations for restoring their clinical interest. PMID:27294274

  7. Three-dimensional Contrast-enhanced Ultrasound in Response Assessment for Breast Cancer: A Comparison with Dynamic Contrast-enhanced Magnetic Resonance Imaging and Pathology

    PubMed Central

    Jia, Wan-Ru; Tang, Lei; Wang, Deng-Bin; Chai, Wei-Min; Fei, Xiao-Chun; He, Jian-Rong; Chen, Man; Wang, Wen-Ping

    2016-01-01

    To compare the capabilities of three-dimensional contrast enhanced ultrasound (3D-CEUS) and dynamic contrast-enhanced magnetic resonance (DCE-MRI) in predicting the response to neoadjuvant chemotherapy (NAC) among breast cancer patients, 48 patients with unilateral breast cancer were recruited for 3D-CEUS and DCE-MRI examinations both before and after NAC; pathology was used to validate the results. This study was approved by the institutional review board, and written informed consent was obtained from each patient. Imaging feature changes and pathological vascularity response, including microvessel density (MVD) and vascular endothelial growth factor (VEGF), were calculated. Pathological complete response (pCR) and major histological response (MHR) were used as references. The 3D-CEUS score, DCE-MRI score, MVD and VEGF significantly decreased (P < 0.0001) after NAC. The correlations between Δ3D-CEUS and ΔDCE-MRI with pCR (r = 0.649, P < 0.0001; r = 0.639, P < 0.0001) and MHR (r = 0.863, P < 0.0001; r = 0.836, P < 0.0001) were significant. All scores showed significant differences between the pCR and non-pCR groups with folder changes of 0.1, 0.1, 2.4, and 2.3, respectively (P = 0.0001, <0.0001, <0.0001 and <0.0001). In conclusion, 3D-CEUS is effective in assessing the response of breast cancer patients undergoing NAC. PMID:27652518

  8. Fetal volume measurements with three dimensional ultrasound in the first trimester of pregnancy, related to pregnancy outcome, a prospective cohort study

    PubMed Central

    2012-01-01

    Background First trimester growth restriction is associated with an increased risk of adverse birth outcomes (preterm birth, low birth weight and small for gestational age at birth). The differences between normal and abnormal growth in early pregnancy are small if the fetal size is measured by the crown-rump-length. Three-dimensional ultrasound volume measurements might give more information about fetal development than two-dimensional ultrasound measurements. Detection of the fetus with a small fetal volume might result in earlier detection of high risk pregnancies and a better selection of high risk pregnancies. Methods A prospective cohort study, performed at the Máxima Medical Centre, in Eindhoven-Veldhoven, the Netherlands. During the routine first trimester scan with nuchal translucency measurement 500 fetal volumes will be obtained. The gestational age is based on the first day of the last menstrual period in a regular menstrual cycle and by the crown-rump-length. The acquired datasets are collected and stored on a hard disk for offline processing and volume calculation. The investigator who performs the volume measurements is blinded for the results of the first trimester scan. The manual mode will be used to outline the Region Of Interest, the fetal head and rump, in all cross sections. The fetal volumes are calculated with a rotational step of 9°. First, the relation between fetal volume and gestational age, for a set of participants with normal pregnancies (training set), will be assessed. This model will then be used to determine expected values of fetal volume for a normal pregnancy, which will be referred to as expected normal values. Secondly, for a new set of participants with normal pregnancies and a set of participants with complicated pregnancies (together defined as validation set), the observed fetal volumes (FVobserved) are compared with their expected normal values (FVexpected) and expressed as a percentage of the expected normal value

  9. Tissue ablation after 120W greenlight laser vaporization and bipolar plasma vaporization of the prostate: a comparison using transrectal three-dimensional ultrasound volumetry

    NASA Astrophysics Data System (ADS)

    Kranzbühler, Benedikt; Gross, Oliver; Fankhauser, Christian D.; Hefermehl, Lukas J.; Poyet, Cédric; Largo, Remo; Müntener, Michael; Seifert, Hans-Helge; Zimmermann, Matthias; Sulser, Tullio; Müller, Alexander; Hermanns, Thomas

    2012-02-01

    Introduction and objectives: Greenlight laser vaporization (LV) of the prostate is characterized by simultaneous vaporization and coagulation of prostatic tissue resulting in tissue ablation together with excellent hemostasis during the procedure. It has been reported that bipolar plasma vaporization (BPV) of the prostate might be an alternative for LV. So far, it has not been shown that BPV is as effective as LV in terms of tissue ablation or hemostasis. We performed transrectal three-dimensional ultrasound investigations to compare the efficiency of tissue ablation between LV and BPV. Methods: Between 11.2009 and 5.2011, 50 patients underwent pure BPV in our institution. These patients were matched with regard to the pre-operative prostate volume to 50 LV patients from our existing 3D-volumetry-database. Transrectal 3D ultrasound and planimetric volumetry of the prostate were performed pre-operatively, after catheter removal, 6 weeks and 6 months. Results: Median pre-operative prostate volume was not significantly different between the two groups (45.3ml vs. 45.4ml; p=1.0). After catheter removal, median absolute volume reduction (BPV 12.4ml, LV 6.55ml) as well as relative volume reduction (27.8% vs. 16.4%) were significantly higher in the BPV group (p<0.001). After six weeks (42.9% vs. 33.3%) and six months (47.2% vs. 39.7%), relative volume reduction remained significantly higher in the BPV group (p<0.001). Absolute volume reduction was non-significantly higher in the BPV group after six weeks (18.4ml, 13.8ml; p=0.051) and six months (20.8ml, 18ml; p=0.3). Clinical outcome parameters improved significantly in both groups without relevant differences between the groups. Conclusions: Both vaporization techniques result in efficient tissue ablation with initial prostatic swelling. BPV seems to be superior due to a higher relative volume reduction. This difference had no clinical impact after a follow-up of 6M.

  10. Accuracy of Ultrasound-Based (BAT) Prostate-Repositioning: A Three-Dimensional On-Line Fiducial-Based Assessment With Cone-Beam Computed Tomography

    SciTech Connect

    Boda-Heggemann, Judit Koehler, Frederick Marc; Kuepper, Beate; Wolff, Dirk; Wertz, Hansjoerg; Mai, Sabine; Hesser, Juergen; Lohr, Frank; Wenz, Frederik

    2008-03-15

    Purpose: To assess the accuracy of ultrasound-based repositioning (BAT) before prostate radiation with fiducial-based three-dimensional matching with cone-beam computed tomography (CBCT). Patients and Methods: Fifty-four positionings in 8 patients with {sup 125}I seeds/intraprostatic calcifications as fiducials were evaluated. Patients were initially positioned according to skin marks and after this according to bony structures based on CBCT. Prostate position correction was then performed with BAT. Residual error after repositioning based on skin marks, bony anatomy, and BAT was estimated by a second CBCT based on user-independent automatic fiducial registration. Results: Overall mean value (MV {+-} SD) residual error after BAT based on fiducial registration by CBCT was 0.7 {+-} 1.7 mm in x (group systematic error [M] = 0.5 mm; SD of systematic error [{sigma}] = 0.8 mm; SD of random error [{sigma}] = 1.4 mm), 0.9 {+-} 3.3 mm in y (M = 0.5 mm, {sigma} = 2.2 mm, {sigma} = 2.8 mm), and -1.7 {+-} 3.4 mm in z (M = -1.7 mm, {sigma} = 2.3 mm, {sigma} = 3.0 mm) directions, whereas residual error relative to positioning based on skin marks was 2.1 {+-} 4.6 mm in x (M = 2.6 mm, {sigma} = 3.3 mm, {sigma} = 3.9 mm), -4.8 {+-} 8.5 mm in y (M = -4.4 mm, {sigma} = 3.7 mm, {sigma} = 6.7 mm), and -5.2 {+-} 3.6 mm in z (M = -4.8 mm, {sigma} = 1.7 mm, {sigma} = 3.5mm) directions and relative to positioning based on bony anatomy was 0 {+-} 1.8 mm in x (M = 0.2 mm, {sigma} = 0.9 mm, {sigma} = 1.1 mm), -3.5 {+-} 6.8 mm in y (M = -3.0 mm, {sigma} = 1.8 mm, {sigma} = 3.7 mm), and -1.9 {+-} 5.2 mm in z (M = -2.0 mm, {sigma} = 1.3 mm, {sigma} = 4.0 mm) directions. Conclusions: BAT improved the daily repositioning accuracy over skin marks or even bony anatomy. The results obtained with BAT are within the precision of extracranial stereotactic procedures and represent values that can be achieved with several users with different education levels. If sonographic visibility is insufficient

  11. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation

    NASA Astrophysics Data System (ADS)

    Huang, C. H.; Hsieh, C. H.; Lee, J. D.; Huang, W. C.; Lee, S. T.; Wu, C. T.; Sun, Y. N.; Wu, Y. T.

    2012-08-01

    With the combined view on the physical space and the medical imaging data, augmented reality (AR) visualization can provide perceptive advantages during image-guided surgery (IGS). However, the imaging data are usually captured before surgery and might be different from the up-to-date one due to natural shift of soft tissues. This study presents an AR-enhanced IGS system which is capable to correct the movement of soft tissues from the pre-operative CT images by using intra-operative ultrasound images. First, with reconstructing 2-D free-hand ultrasound images to 3-D volume data, the system applies a Mutual-Information based registration algorithm to estimate the deformation between pre-operative and intra-operative ultrasound images. The estimated deformation transform describes the movement of soft tissues and is then applied to the pre-operative CT images which provide high-resolution anatomical information. As a result, the system thus displays the fusion of the corrected CT images or the real-time 2-D ultrasound images with the patient in the physical space through a head mounted display device, providing an immersive augmented-reality environment. For the performance validation of the proposed system, a brain phantom was utilized to simulate brain-shift scenario. Experimental results reveal that when the shift of an artificial tumor is from 5mm ~ 12mm, the correction rates can be improved from 32% ~ 45% to 87% ~ 95% by using the proposed system.

  12. Dynamic Three-Dimensional Echocardiography

    NASA Astrophysics Data System (ADS)

    Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro

    2000-08-01

    Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.

  13. Three-dimensional photoacoustic and ultrasonic endoscopic imaging of two rabbit esophagi

    NASA Astrophysics Data System (ADS)

    Yang, Joon-Mo; Favazza, Christopher P.; Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K. K.; Wang, Lihong V.

    2015-03-01

    The addition of photoacoustic endoscopy to conventional endoscopic ultrasound offers imaging capabilities that may improve diagnosis and clinical care of gastrointestinal tract diseases. In this study, using a 3.8-mm diameter dual-mode photoacoustic and ultrasonic endoscopic probe, we investigated photoacoustic and ultrasonic image features of rabbit esophagi. Specifically, we performed ex vivo imaging of intact rabbit esophagi and correlated the acquired images with histology. Without motion artifact-based limitations, we were able to utilize the full resolving power of the endoscopic device and acquire the first three-dimensional vasculature map of the esophagus and mediastinum, along with coregistered tissue density information. Here, we present the experimental results and discuss potential clinical applications of the technique.

  14. Dynamic three-dimensional echocardiographic imaging of congenital heart defects in infants and children by computer-controlled tomographic parallel slicing using a single integrated ultrasound instrument.

    PubMed

    Fulton, D R; Marx, G R; Pandian, N G; Romero, B A; Mumm, B; Krauss, M; Wollschläger, H; Ludomirsky, A; Cao, Q L

    1994-03-01

    Three-dimensional cardiac reconstruction generated from transesophageal interrogation can be performed using an integrated unit that captures, processes, and postprocesses tomographic parallel slices of the heart. This probe was used for infants and young children in the transthoracic position to evaluate the feasibility of producing three-dimensional cardiac images with capability for real-time dynamic display. Twenty-two infants and children (range 1 day-3.5 years) underwent image acquisition using a 16 mm 5 MHz 64 element probe placed over the precordium. Two infants were also imaged from the subcostal position. Data was obtained and stored over a single cardiac cycle after acceptable cardiac and respiratory gating intervals were met. The transducer was advanced in 0.5-1 mm increments over the cardiac structures using identical acquisition criteria. The images were reconstructed from the stored digital cubic format and could be oriented in any desired plane. In 9 of the 22 infants the images obtained were of optimal quality. The images obtained displayed normal cardiac structures emphasizing depth relationships as well as visualization of planes not generally demonstrated by two-dimensional imaging. Several lesions were also depicted in a unique fashion using this technique. Though the method employed was limited by movement artifact and reconstruction time, the quality of the three-dimensional display was excellent and enhanced by real-time demonstration. The transthoracic approach was successful in capturing sufficient data to create three-dimensional images, which may have further application in more accurate diagnosis of complex cardiac abnormalities and generation of planes of view which could duplicate surgical visualization of a lesion. Further assessment of the technique in infants with congenital heart disease is warranted. PMID:10146717

  15. Three-dimensional photovoltaics

    NASA Astrophysics Data System (ADS)

    Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.

    2010-02-01

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D structures are not simple box-like shapes, and that design attributes such as reflectivity could be optimized using three-dimensionality.

  16. Three-dimensional photovoltaics

    NASA Astrophysics Data System (ADS)

    Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.

    2010-03-01

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D shapes are not simple box-like shapes, and that design attributes such as reflectivity can be optimized in new ways using three-dimensionality.

  17. Enhancement of Cell Ingrowth, Proliferation, and Early Differentiation in a Three-Dimensional Silicon Carbide Scaffold Using Low-Intensity Pulsed Ultrasound

    PubMed Central

    Lin, Liangjun

    2015-01-01

    Concerns over the use of autografts or allografts have necessitated the development of biomaterials for bone regeneration. Various studies have been performed to optimize the cultivation of osteogenic cells using osteoconductive porous scaffolds. The aim of this study was to evaluate the osteogenic efficiency of bone cell ingrowth, proliferation, and early differentiation in a silicon carbide (SiC) porous ceramic scaffold promoted with low-intensity pulsed ultrasound. MC3T3-E1 mouse preosteoblasts were seeded onto scaffolds and cultured for 4 and 7 days with daily of 20-min ultrasound treatment. The cells were evaluated for cell attachment, morphology, viability, ingrowth depth, volumetric proliferation, and early differentiation. After 4 and 7 days of culture and ultrasound exposure, the cell density was higher in the ultrasound-treated group compared with the sham-treated group on SiC scaffolds. The cell ingrowth depths inside the SiC scaffolds were 149.2±27.3 μm at 1 day, 310.1±12.6 μm for the ultrasound-treated group and 248.0±19.7 μm for the sham control at 4 days, and 359.6±18.5 μm for the ultrasound-treated group and 280.0±17.7 μm for the sham control at 7 days. They were significantly increased, that is, 25% (p=0.0029) and 28% (p=0.0008) increase, respectively, with ultrasound radiation force as compared with those in sham control at 4 and 7 days postseeding. The dsDNA contents were 583.5±19.1 ng/scaffold at 1 day, 2749.9±99.9 ng/scaffold for the ultrasound-treated group and 2514.9±114.7 ng/scaffold for the sham control at 4 days, and 3582.3±325.3 ng/scaffold for the ultrasound-treated group and 2825.7±134.3 ng/scaffold for the sham control at 7 days. There was a significant difference in the dsDNA content between the ultrasound- and sham-treated groups at 4 and 7 days. The ultrasound-treated group with the SiC construct showed a 9% (p=0.00029) and 27% (p=0.00017) increase in the average dsDNA content at 4 and 7 days over

  18. [Cesarean scar ectopic pregnancy: diagnosis with 2D, three-dimensional (3D) ultrasound and 3D power doppler of a case and review of the literature].

    PubMed

    Pavlova, E; Gunev, D; Diavolov, V; Slavchev, B

    2013-01-01

    Cesarean scar pregnancy is rare type of ectopic pregnancy. It is associated with severe complication if it is not diagnosed early in pregnancy. We present a case of difficult first-trimester diagnosis of Cesarean scar pregnancy. In this paper we discuss the incidence of this condition, the antenatal diagnosis, the prognosis and management and the importance of 2D and 3D ultrasound technique as a diagnostic tool. PMID:24501880

  19. Three-dimensional metamaterials

    DOEpatents

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  20. New Technology-Large-Area Three- Dimensional Surface Profiling Using Only Focused Air-Coupled Ultrasound-Given 1999 R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2000-01-01

    Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.

  1. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  2. Three-Dimensional Assessment of Automated Breast Volume Scanner Compared with Handheld Ultrasound in Pre-Operative Breast Invasive Ductal Carcinomas: A Pilot Study of 51 Cases.

    PubMed

    Xu, Chaoli; Wei, Shuping; Xie, Yingdong; Guan, Xiaoxiang; Yang, Bin

    2016-09-01

    The aim of the work described here was to compare the accuracy of conventional handheld ultrasound (HHUS) with that of an automated breast volume scanner (ABVS) in 3-D assessment of pre-operative invasive ductal carcinomas. HHUS and ABVS were used in 51 patients to obtain the largest tumor diameter, tumor volume and tumor surface area. The volumetric measurement was also obtained from ABVS data with medical software. With tumor size and volume on pathology as the gold standard, Bland-Altman analysis was used to compare variability. Correlation coefficients and receiver operating characteristic curves were established for all measurements for T2 classification. The correlation coefficients of all ABVS measurements were stronger than those of HHUS measurements, with the ABVS volumetric measurement significantly different with a higher accuracy of 88.24% (45/51) and predicting T-classification with higher area under the receiver operating characteristic curves (0.936). Therefore, 3-D measurements provide stronger correlations with pathology in tumor size measurement. However, more clinical trials are needed to confirm our findings.

  3. Three dimensional ultrasonic imaging

    SciTech Connect

    Thomas, G. H.; Benson, S.; Crawford, S.

    1993-03-01

    Ultrasonic nondestructive evaluation techniques interrogate components with high frequency acoustic energy. A transducer generates the acoustic energy and converts acoustic energy to electrical signals. The acoustic energy is reflected by abrupt changes in modulus and/or density which can be caused by a defect. Thus defects reflect the ultrasonic energy which is converted into electrical signals. Ultrasonic evaluation typically provides a two dimensional image of internal defects. These images are either planar views (C-scans) or cross-sectional views (B-scans). The planar view is generated by raster scanning an ultrasonic transducer over the component and capturing the amplitude of internal reflections. Depth information is generally ignored. The cross-sectional view is generated by scanning the transducer along a single line and capturing the amplitude and time of flight for each internal reflection. The amplitude and time of flight information is converted into an image of the cross section of the component where the scan was performed. By fusing the C-scan information with the B-scan information a three dimension image of the internal structure of the component can be produced. The three dimensional image can be manipulated by rotating and slicing to produce the optimal view of the internal structure. The high frequency ultrasonic energy requires a liquid coupling media and thus applications for imaging in liquid environments are well suited to ultrasonic techniques. Examples of potential ultrasonic imaging applications are: Inside liquid filled tanks, inside the human body, and underwater.

  4. The newly developed three-dimensional (3D) and two-dimensional (2D) thyroid ultrasound are strongly correlated, but 2D overestimates thyroid volume in the presence of nodules.

    PubMed

    Rago, T; Bencivelli, W; Scutari, M; Di Cosmo, C; Rizzo, C; Berti, P; Miccoli, P; Pinchera, A; Vitti, P

    2006-05-01

    The newly developed three-dimensional (3D) and two-dimensional (2D) thyroid ultrasound (US) were compared in assessing thyroid volume (TV) in 104 patients: 53 had an isolated thyroid nodule, 32 toxic diffuse goiter, 17 non-toxic multinodular goiter, 1 toxic multinodular goiter and 1 a toxic adenoma. A real-time Technos apparatus (Esaote SpA, Italy) with a 7,5 MHz linear transducer was used. The volume of thyroid lobes by 2D was calculated according to the ellipsoid formula. In the same session, TV by 3D US was calculated using a probe tracking system (in vivo ScanNT Esaote 3.4 MedCom. Darmasdt) and software to reconstruct 3D images, directly giving the lobe volume. There was a very good agreement between 2D and 3D, but in 94/208 lobes with nodular lesions 2D showed a 10% systematic overestimation compared to 3D, the percentage error being higher in lobes with lower volumes. A possible explanation for this result is the inadequacy of the ellipsoid formula in forecasting the correct lobe profile in the presence of nodules. This intrinsic defect of 2D US should be taken into account when evaluating TV in patients with nodular goiter.

  5. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  6. Three-dimensional silicon micromachining

    NASA Astrophysics Data System (ADS)

    Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.

    2012-11-01

    A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.

  7. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  8. The Three-Dimensional Universe.

    ERIC Educational Resources Information Center

    Banks, Dale A.; Powell, Harry D.

    1992-01-01

    Provides instructions for helping students construct a three-dimensional model of a constellation. Aluminum foil spheres with various diameters are used to represent stars with various apparent magnitudes. The positions of the stars in the model are determined from constellation maps and by converting actual star distances into millimeters. (PR)

  9. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  10. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  11. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  12. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  13. Clinical application of three-dimensional echocardiography.

    PubMed

    Morbach, Caroline; Lin, Ben A; Sugeng, Lissa

    2014-01-01

    Echocardiography is one of the most valuable diagnostic tools in cardiology. Technological advances in ultrasound, computer and electronics enables three-dimensional (3-D) imaging to be a clinically viable modality which has significant impact on diagnosis, management and interventional procedures. Since the inception of 3D fully-sampled matrix transthoracic and transesophageal technology it has enabled easier acquisition, immediate on-line display, and availability of on-line analysis for the left ventricle, right ventricle and mitral valve. The use of 3D TTE has mainly focused on mitral valve disease, left and right ventricular volume and functional analysis. As structural heart disease procedures become more prevalent, 3D TEE has become a requirement for preparation of the procedure, intra-procedural guidance as well as monitoring for complications and device function. We anticipate that there will be further software development, improvement in image quality and workflow.

  14. Facial three-dimensional morphometry.

    PubMed

    Ferrario, V F; Sforza, C; Poggio, C E; Serrao, G

    1996-01-01

    Three-dimensional facial morphometry was investigated in a sample of 40 men and 40 women, with a new noninvasive computerized method. Subjects ranged in age between 19 and 32 years, had sound dentitions, and no craniocervical disorders. For each subject, 16 cutaneous facial landmarks were automatically collected by a system consisting of two infrared camera coupled device (CCD) cameras, real time hardware for the recognition of markers, and software for the three-dimensional reconstruction of landmarks' x, y, z coordinates. From these landmarks, 15 linear and 10 angular measurements, and four linear distance ratios were computed and averaged for sex. For all angular values, both samples showed a narrow variability and no significant gender differences were demonstrated. Conversely, all the linear measurements were significantly higher in men than in women. The highest intersample variability was observed for the measurements of facial height (prevalent vertical dimension), and the lowest for the measurements of facial depth (prevalent horizontal dimension). The proportions of upper and lower face height relative to the anterior face height showed a significant sex difference. Mean values were in good agreement with literature data collected with traditional methods. The described method allowed the direct and noninvasive calculation of three-dimensional linear and angular measurements that would be usefully applied in clinics as a supplement to the classic x-ray cephalometric analyses. PMID:8540488

  15. Three-dimensional visual stimulator

    NASA Astrophysics Data System (ADS)

    Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki

    1995-02-01

    We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.

  16. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  17. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  18. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177

  19. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2014-08-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  20. Three dimensional magnetic abacus memory.

    PubMed

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-08-22

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  1. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  2. True three-dimensional camera

    NASA Astrophysics Data System (ADS)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  3. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  4. Three-Dimensional Schlieren Measurements

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Cochrane, Andrea

    2004-11-01

    Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.

  5. Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility

    ERIC Educational Resources Information Center

    Szállassy, Noémi; Gánóczy, Anita; Kriska, György

    2009-01-01

    The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…

  6. Three-dimensional laser window formation

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1992-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report discusses in detail the aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities associated with the formation of these windows. Included in this discussion are the design criteria, bonding mediums, and evaluation testing for three-dimensional laser windows.

  7. Comment on "Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones," [J. Acoust. Soc. Am. 121(6), 3907-3921 (2007)].

    PubMed

    Guo, Xiasheng; Zhang, Dong; Yang, Di; Gong, Xiufen; Wu, Junru

    2008-06-01

    Protopappas et al. performed finite element (FE) studies on the propagation of guided ultrasound waves in intact and healing long bones, and found that the dispersion of guided modes was significantly influenced by the irregularity and anisotropy of the bone. A time-frequency (t-f) method was applied to the obtained signals and several wave modes were identified. However, this technique was unable to quantify their observations and provide monitoring capabilities. One possible reason of this shortcoming may come from the inherent disadvantage of the t-f method. The objective of this comment is to demonstrate that it is necessary to combine other techniques with FE simulations for the extraction of significant quantitative ultrasonic features. Individual guided modes in an isotropic pipe have been theoretically examined using the normal mode expansion (NME) method, and many modes that are missed by the t-f analysis have been identified. It is concluded that in order to extract quantitative ultrasonic features, FE simulations should be supplemented by other techniques such as the NME.

  8. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  9. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  10. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    PubMed

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo.

  11. Three-Dimensional Icosahedral Phase Field Quasicrystal

    NASA Astrophysics Data System (ADS)

    Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.

    2016-08-01

    We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.

  12. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  13. Ultrasound

    MedlinePlus

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two- ... sound waves and appear dark or black. An ultrasound can supply vital information about a mother's pregnancy ...

  14. Vision in our three-dimensional world

    PubMed Central

    2016-01-01

    Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595

  15. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  16. Topology of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Peake, D. J.

    1981-01-01

    Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

  17. Three-Dimensional Robotic Vision System

    NASA Technical Reports Server (NTRS)

    Nguyen, Thinh V.

    1989-01-01

    Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.

  18. Three-Dimensional Extended Bargmann Supergravity

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric; Rosseel, Jan

    2016-06-01

    We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques.

  19. Three-Dimensional Extended Bargmann Supergravity.

    PubMed

    Bergshoeff, Eric; Rosseel, Jan

    2016-06-24

    We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques. PMID:27391712

  20. Three-Dimensional Icosahedral Phase Field Quasicrystal.

    PubMed

    Subramanian, P; Archer, A J; Knobloch, E; Rucklidge, A M

    2016-08-12

    We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation. PMID:27563973

  1. Three-Dimensional Printing Surgical Applications

    PubMed Central

    Griffin, Michelle F.; Butler, Peter E.

    2015-01-01

    Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002

  2. Three Dimensional Display Of Meteorological Scientific Data

    NASA Astrophysics Data System (ADS)

    Grotch, Stanley L.

    1988-01-01

    Even a cursory reading of any daily newspaper shows that we are in the midst of a dramatic revolution in computer graphics. Virtually every day some new piece of hardware or software is announced, adding to the tools available to the working scientist. Three dimensional graphics form a significant part of this revolution having become virtually commonplace in advertising and on television.

  3. Three-Dimensional Messages for Interstellar Communication

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  4. Three-Dimensional Visualization of Particle Tracks.

    ERIC Educational Resources Information Center

    Julian, Glenn M.

    1993-01-01

    Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)

  5. Three-dimensional RF structure calculations

    NASA Astrophysics Data System (ADS)

    Cooper, R. K.; Browman, M. J.; Weiland, T.

    1989-04-01

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.

  6. Three-dimensional rf structure calculations

    SciTech Connect

    Cooper, R.K.; Browman, M.J.; Weiland, T.

    1988-01-01

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.

  7. Three-dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichert, Anke

    2001-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  8. Three-Dimensional Ultrasound-Derived Physical Mitral Valve Modeling

    PubMed Central

    Witschey, Walter RT; Pouch, Alison M; McGarvey, Jeremy R; Ikeuchi, Kaori; Contijoch, Francisco; Levack, Melissa M; Yushkevick, Paul A; Sehgal, Chandra M; Jackson, Benjamin; Gorman, Robert C; Gorman, Joseph H

    2015-01-01

    Purpose Advances in mitral valve repair and adoption have been partly attributed to improvements in echocardiographic imaging technology. To further educate and guide repair surgery, we have developed a methodology to quickly produce physical models of the valve using novel 3D echocardiographic imaging software in combination with stereolithographic printing. Description Quantitative virtual mitral valve shape models were developed from 3D transesophageal echocardiographic images using software based on semi-automated image segmentation and continuous medial representation (cm-rep) algorithms. These quantitative virtual shape models were then used as input to a commercially available stereolithographic printer to generate a physical model of the each valve at end systole and end diastole. Evaluation Physical models of normal and diseased valves (ischemic mitral regurgitation and myxomatous degeneration) were constructed. There was good correspondence between the virtual shape models and physical models. Conclusions It was feasible to create a physical model of mitral valve geometry under normal, ischemic and myxomatous valve conditions using 3D printing of 3D echocardiographic data. Printed valves have the potential to guide surgical therapy for mitral valve disease. PMID:25087790

  9. Artifacts in three-dimensional transesophageal echocardiography.

    PubMed

    Faletra, Francesco Fulvio; Ramamurthi, Alamelu; Dequarti, Maria Cristina; Leo, Laura Anna; Moccetti, Tiziano; Pandian, Natesa

    2014-05-01

    Three-dimensional (3D) transesophageal echocardiography (TEE) is subject to the same types of artifacts encountered on two-dimensional TEE. However, when displayed in a 3D format, some of the artifacts appear more "realistic," whereas others are unique to image acquisition and postprocessing. Three-dimensional TEE is increasingly used in the setting of percutaneous catheter-based interventions and ablation procedures, and 3D artifacts caused by the metallic components of catheters and devices are particularly frequent. Knowledge of these artifacts is of paramount relevance to avoid misinterpretation of 3D images. Although artifacts and pitfalls on two-dimensional echocardiography are well described and classified, a systematic description of artifacts in 3D transesophageal echocardiographic images and how they affect 3D imaging is still absent. The aim of this review is to describe the most relevant artifacts on 3D TEE, with particular emphasis on those occurring during percutaneous interventions for structural heart disease and ablation procedures.

  10. Real time three dimensional sensing system

    DOEpatents

    Gordon, S.J.

    1996-12-31

    The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.

  11. Three-dimensional effects on airfoils

    NASA Technical Reports Server (NTRS)

    Chevallier, J. P.

    1983-01-01

    The effects of boundary layer flows along the walls of wind tunnels were studied to validate the transfer of two dimensional calculations to three dimensional transonic flowfield calculations. Results from trials in various wind tunnels were examind to determine the effects of the wall boundary flow on the control surfaces of an airfoil. Models sliding along a groove in the wall of a channel at sub- and transonic speeds were examined, with the finding that with either nonuniformities in the groove, or even if the channel walls are uniform, the lateral boundary layer can cause variations in the central flow region or alter the onset of shock at the transition point. Models for the effects in both turbulence and in the absence of turbulence are formulated, and it is noted that the characteristics of individual wind tunnels must be studied to quantify any existing three dimensional effects.

  12. Three-Dimensional Reconstruction of Helical Polymers

    PubMed Central

    Egelman, Edward H.

    2015-01-01

    The field of three-dimensional electron microscopy began more than 45 years ago with a reconstruction of a helical phage tail, and helical polymers continue to be important objects for three-dimensional reconstruction due to the centrality of helical protein and nucleoprotein polymers in all aspects of biology. We are now witnessing a fundamental revolution in this area, made possible by direct electron detectors, which has led to near-atomic resolution for a number of important helical structures. Most importantly, the possibility of achieving such resolution routinely for a vast number of helical samples is within our reach. One of the main problems in helical reconstruction, ambiguities in assigning the helical symmetry, is overcome when one reaches a resolution where secondary structure is clearly visible. However, obstacles still exist due to the intrinsic variability within many helical filaments. PMID:25912526

  13. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  14. Three dimensional contact/impact methodology

    SciTech Connect

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.

  15. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944

  16. Three-dimensional reconstruction of helical polymers.

    PubMed

    Egelman, Edward H

    2015-09-01

    The field of three-dimensional electron microscopy began more than 45years ago with a reconstruction of a helical phage tail, and helical polymers continue to be important objects for three-dimensional reconstruction due to the centrality of helical protein and nucleoprotein polymers in all aspects of biology. We are now witnessing a fundamental revolution in this area, made possible by direct electron detectors, which has led to near-atomic resolution for a number of important helical structures. Most importantly, the possibility of achieving such resolution routinely for a vast number of helical samples is within our reach. One of the main problems in helical reconstruction, ambiguities in assigning the helical symmetry, is overcome when one reaches a resolution where secondary structure is clearly visible. However, obstacles still exist due to the intrinsic variability within many helical filaments.

  17. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  18. Three-dimensional imaging modalities in endodontics

    PubMed Central

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  19. Real time three dimensional sensing system

    DOEpatents

    Gordon, Steven J.

    1996-01-01

    The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.

  20. Three-dimensional Allan fault plane analysis

    SciTech Connect

    Hoffman, K.S.; Taylor, D.R.; Schnell, R.T.

    1994-12-31

    Allan fault-plane analysis is a useful tool for determining hydrocarbon migration paths and the location of possible traps. While initially developed for Gulf coast deltaic and interdeltaic environments, fault-plane analysis has been successfully applied in many other geologic settings. Where the geology involves several intersecting faults and greater complexity, many two-dimensional displays are required in the investigation and it becomes increasingly difficult to accurately visualize both fault relationships and migration routes. Three-dimensional geospatial fault and structure modeling using computer techniques, however, facilitates both visualization and understanding and extends fault-plane analysis into much more complex situations. When a model is viewed in three dimensions, the strata on both sides of a fault can be seen simultaneously while the true structural character of one or more fault surfaces is preserved. Three-dimensional analysis improves the speed and accuracy of the fault plane methodology.

  1. Simulation of complex three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Diewert, G. S.; Rothmund, H. J.; Nakahashi, K.

    1985-01-01

    The concept of splitting is used extensively to simulate complex three dimensional flows on modern computer architectures. Used in all aspects, from initial grid generation to the determination of the final converged solution, splitting is used to enhance code vectorization, to permit solution driven grid adaption and grid enrichment, to permit the use of concurrent processing, and to enhance data flow through hierarchal memory systems. Three examples are used to illustrate these concepts to complex three dimensional flow fields: (1) interactive flow over a bump; (2) supersonic flow past a blunt based conical afterbody at incidence to a free stream and containing a centered propulsive jet; and (3) supersonic flow past a sharp leading edge delta wing at incidence to the free stream.

  2. Co-registered spectral photoacoustic tomography and ultrasonography of breast cancer

    NASA Astrophysics Data System (ADS)

    Ke, Haixin; Erpelding, Todd N.; Garcia-Uribe, Alejandro; Jacobs, Eileen; Holley, Susan; Monsees, Barbara; Wang, Lihong V.

    2014-03-01

    Many breast cancer patients receive neoadjuvant treatment to reduce tumor size and enable breast conserving therapy. Most imaging methods used to monitor response to neoadjuvant chemotherapy or hormone therapy depend on overall gross tumor morphology and size measurements, which may not be sensitive or specific, despite tumor response on a cellular level. A more sensitive and specific method of detecting response to therapy might allow earlier adjustments in treatment, and thus result in better outcomes while avoiding unnecessary morbidity. We developed an imaging system that combines spectral photoacoustic tomography and ultrasonography to predict breast neoadjuvant therapeutic response based on blood volume and blood oxygenation contrast. The system consists of a tunable dye laser pumped by a Nd:YAG laser, a commercial ultrasound imaging system (Philips iU22), and a multichannel data acquisition system which displays co-registered photoacoustic and ultrasound images in real time. Early studies demonstrate functional imaging capabilities, such as oxygen saturation and total concentration of hemoglobin, in addition to ultrasonography of tumor morphology. Further study is needed to determine if the co-registered photoacoustic tomography and ultrasonography system may provide an accurate tool to assess treatment efficacy by monitoring tumor response in vivo.

  3. Three-dimensional Lorentz-violating action

    NASA Astrophysics Data System (ADS)

    Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.

    2014-03-01

    We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.

  4. Three-dimensional ballistocardiography in weightlessness

    NASA Technical Reports Server (NTRS)

    Scano, A.

    1981-01-01

    An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.

  5. Stress tensor correlators in three dimensional gravity

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Grumiller, Daniel; Merbis, Wout

    2016-03-01

    We calculate holographically arbitrary n -point correlators of the boundary stress tensor in three-dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check of flat space holography in three dimensions.

  6. Three-Dimensional Dispaly Of Document Set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

    2003-06-24

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  7. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA

    2001-10-02

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  8. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

    2006-09-26

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  9. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy

    2009-06-30

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  10. Three-dimensional printing of scintillating materials.

    PubMed

    Mishnayot, Y; Layani, M; Cooperstein, I; Magdassi, S; Ron, G

    2014-08-01

    We demonstrate, for the first time, the applicability of three-dimensional printing techniques to the manufacture of scintillation detectors. We report on the development of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various applications.

  11. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions.

  12. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  13. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  14. Mineralized three-dimensional bone constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2011-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  15. Mineralized Three-Dimensional Bone Constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2013-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  16. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  17. Three-dimensional adjustment of trilateration data

    NASA Technical Reports Server (NTRS)

    Sung, L.-Y.; Jackson, D. D.

    1985-01-01

    The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.

  18. Three-dimensional photogrammetry for laboratory applications

    NASA Astrophysics Data System (ADS)

    Alem, Nabih M.

    1994-12-01

    The direct linear transformation (DLT) is a method that simplifies measurements of the three-dimensional coordinates of a point target in the laboratory using photographic two-dimensional imagery. This report describes a procedure to implement the DLT equations and gives the Fortran code of computer programs for the DLT calibration of multicamera system and 3-D reconstruction of a single point from several images.

  19. Three-Dimensional Audio Client Library

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2005-01-01

    The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.

  20. Three-dimensional Chiral Plasmonic Oligomers

    NASA Astrophysics Data System (ADS)

    Hentschel, Mario

    2013-03-01

    We demonstrate chiral optical response in stacked arrangements of plasmonic nanostructures. We show that three-dimensional arrangements of plasmonic ``meta-atoms'' only exhibit a chiral optical response if similar plasmonic ``atoms'' are arranged in a handed fashion as we require resonant plasmonic coupling. Moreover, we demonstrate that such particle groupings, similarly to molecular systems, possess the capability to encode their three-dimensional arrangement in unique and well-modulated spectra, making them ideal candidates for a three-dimensional chiral plasmon ruler. Furthermore, we discuss the onset of a broadband chiral optical response in the wavelength regime between 700 nm and 3500 nm upon charge transfer between the nanoparticles. We show in experiment and simulation that this response is due to the ohmic contact between adjacent particles which causes a strong red-shift of the fundamental mode. The geometrical shape of the resulting fused particles allows for efficient excitation of higher order modes. Calculated spectra and field distributions confirm our interpretation and show a number of interacting plasmonic modes. Finally, we will discuss plasmonic diastereomers which consist of multiple chiral centers. We find that the chiral optical response of the composite molecules can be traced back to the properties of the constituting building blocks. We demonstrate that the optical response of complex chiral plasmonic systems can be decomposed and understood in terms of fundamental building blocks, offering simple and straightforward design rules for future applications such as chiral optical elements and enantiomer sensors.

  1. Reconfigurable, braced, three-dimensional DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Goodman, Russell P.; Heilemann, Mike; Doose, Sören; Erben, Christoph M.; Kapanidis, Achillefs N.; Turberfield, Andrew J.

    2008-02-01

    DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale. Although static structures may find applications in structural biology and computer science, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement. DNA architectures can span three dimensions and DNA devices are capable of movement, but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Förster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.

  2. Multiparallel Three-Dimensional Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  3. Three-dimensional printing of the retina

    PubMed Central

    Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.

    2016-01-01

    Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545

  4. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  5. Three-dimensional imaging characteristics and depth resolution in digital holographic three-dimensional imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Obara, Masaki; Yoshimori, Kyu

    2015-07-01

    A four-dimensional impulse response function for the digital holographic three-dimensional imaging spectrometry has been fully derived in closed form. Due to its factorizing nature of the mathematical expression of four-dimensional impulse response function, three-dimensional spatial part of impulse response function directly corresponds to threedimensional point spread function of in-line digital holography with rectangular aperture. Based on these mathematical results, this paper focuses on the investigation of spectral resolution and three-dimensional spatial resolution in digital holographic three-dimensional imaging spectrometry and digital holography. We found that the theoretical prediction agree well with the experimental results. This work suggests a new criterion and estimate method regarding threedimensional spatial resolution of in-line digital holography.

  6. Three-dimensional nanoscopy of colloidal crystals.

    PubMed

    Harke, Benjamin; Ullal, Chaitanya K; Keller, Jan; Hell, Stefan W

    2008-05-01

    We demonstrate the direct three-dimensional imaging of densely packed colloidal nanostructures using stimulated emission depletion microscopy. A combination of two de-excitation patterns yields a resolution of 43 nm in the lateral and 125 nm in the axial direction and an effective focal volume that is by 126-fold smaller than that of a corresponding confocal microscope. The mapping of a model system of spheres organized by confined convective assembly unambiguously identified face-centered cubic, hexagonal close-packed, random hexagonal close-packed, and body-centered cubic structures.

  7. High resolution three-dimensional doping profiler

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    1999-01-01

    A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

  8. Three dimensional digital holographic aperture synthesis.

    PubMed

    Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R

    2015-09-01

    Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474

  9. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. PMID:26558661

  10. Electrode With Porous Three-Dimensional Support

    DOEpatents

    Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier

    1999-07-27

    Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m

  11. Three dimensional model of the human mandible.

    PubMed

    Muftić, O; Milcić, D; Saucha, J; Carek, V

    2000-07-01

    A new biomechanical three-dimensional (3D) model for the human mandible is proposed. A simple two-dimensional model cannot explain the biomechanics of the human mandible, where muscular forces through occlusion and condylar surfaces are in a state of dynamical 3D equilibrium. All forces are resolved into components according to a selected coordinate system. The muscular forces, which during clenching act on the jaw, along with the necessary force level for chewing, also act as some kind of stabilizers of the mandibular condyles preventing dislocation and loading of nonarticular tissues.

  12. Three-dimensional ultrasonic colloidal crystals

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.

    2016-05-01

    Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications. xml:lang="fr"

  13. Three-dimensional echocardiography in valve disease

    PubMed Central

    COLOMBO, CHIARA; TAMBORINI, GLORIA; PEPI, MAURO; ALIMENTO, MARINA; FIORENTINI, CESARE

    2007-01-01

    This review covers the role of three-dimensional (3D) echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic) and quantitative advantages of this technique. PMID:21977273

  14. Three-dimensional flow about penguin wings

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  15. Three-dimensional television: a broadcaster's perspective

    NASA Astrophysics Data System (ADS)

    Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.

    2009-02-01

    The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.

  16. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  17. Three-dimensional flow in Kupffer's Vesicle.

    PubMed

    Montenegro-Johnson, T D; Baker, D I; Smith, D J; Lopes, S S

    2016-09-01

    Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus.

  18. Three-dimensional fluorescence lifetime tomography

    SciTech Connect

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-04-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.

  19. Three-dimensional head anthropometric analysis

    NASA Astrophysics Data System (ADS)

    Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James

    2003-05-01

    Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).

  20. In-lab three-dimensional printing

    PubMed Central

    Partridge, Roland; Conlisk, Noel; Davies, Jamie A.

    2012-01-01

    The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907

  1. Three-dimensional model of lignin structure

    SciTech Connect

    Jurasek, L.

    1995-12-01

    An attempt to build a three-dimensional model of lignin structure using a computer program is described. The program simulates the biosynthesis of spruce lignin by allowing coniferyl alcohol subunits to be added randomly by six different types of linkages, assumed to be most common. The simulated biosynthesis starts from a number of seed points within restricted space, corresponding to 50 mM initial concentration of coniferyl alcohol. Rules of three-dimensional packing of the subunits within the lignin macro-molecule are observed during the simulated biosynthetic process. Branched oligomeric structures thus generated form crosslinks at those positions where the chains grow close enough to form a link. Inter-chain crosslinking usually joins the oligomers into one macromolecule. Intra-chain crosslinks are also formed and result in closed loops. Typically, a macromolecule with molecular weight of approx. 2 x 105 is formed, with internal density of 1.35g/cm3. Various characteristics of the internal structure, such as branching, crosslinking, bond frequencies, and chain length distribution are described. Breakdown of the polymer was also simulated and the effect of closed loops on the weight average molecular weight is shown. The effect of the shape of the biosynthetic space on the degree of crosslinking is discussed and predictions of the overall molecular shape of lignin particles are made.

  2. Nanowired three-dimensional cardiac patches

    NASA Astrophysics Data System (ADS)

    Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.

    2011-11-01

    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.

  3. Two component-three dimensional catalysis

    DOEpatents

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2002-01-01

    This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.

  4. Three-dimensional strain analysis using Mathematica

    NASA Astrophysics Data System (ADS)

    Mookerjee, Matty; Nickleach, Scott

    2011-10-01

    A suite of geological computer programs written in Mathematica is currently available both within the online repository for the Journal of Structural Geology as well as on the first author's website ( http://www.sonoma.edu/users/m/mookerje/ProgramPage.htm). The majority of these programs focus on three-dimensional strain analysis (e.g., determining best-fit strain ellipsoids, plotting elliptical data on either a Flinn or Hsu diagram, and determining error bounds for three-dimensional strain data). This program suite also includes a ternary diagram plotting program, a rose diagram program, an equal area and equal angle projections program, and an instructional program for creating two-dimensional strain path animations. The bulk of this paper focuses on a new method for determining a best-fit ellipsoid from arbitrarily oriented sectional ellipses and methods for determining appropriate error bounds for strain parameters and orientation data. This best-fit ellipsoid method utilizes a least-squares approach and minimizes the error associated with the two-dimensional data-ellipse matrix elements with the corresponding matrix elements from sectional ellipses through a general ellipsoid. Furthermore, a kernel density estimator is utilized to yield reliable error margins for the strain parameters, octahedral shear strain, Flinn's k-value, and Lode's ratio. By assuming a gamma distribution for the simulated principal axes orientations, more realistic error bounds can be estimated for these axes orientations.

  5. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  6. Ultrasound

    MedlinePlus

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  7. Automatic three-dimensional underground mine mapping

    SciTech Connect

    Huber, D.F.; Vandapel, N.

    2006-01-15

    For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.

  8. Three-dimensional hologram display system

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  9. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  10. Numerical simulation of three dimensional transonic flows

    NASA Technical Reports Server (NTRS)

    Sahu, Jubaraj; Steger, Joseph L.

    1987-01-01

    The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.

  11. Three dimensional fabric evolution of sheared sand

    SciTech Connect

    Hasan, Alsidqi; Alshibli, Khalid

    2012-10-24

    Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

  12. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  13. Three dimensional thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  14. Three-dimensional comparative analysis of bitemarks.

    PubMed

    Lasser, Allan J; Warnick, Allan J; Berman, Gary M

    2009-05-01

    Historically, the inability to accurately represent bitemarks and other wound patterns has limited their evidentiary value. The development of the ABFO #2 scale by Krauss and Hyzer enabled forensic odontologists to correct for most photographic plane distortions. The technique presented here uses the ABFO #2 scale in conjunction with the evolving technologies of laser scanners and comparative software commonly used by the automobile industry for three-dimensional (3D) analysis. The 3D software comparison was performed in which measurements were analyzed of the normal distance for each point on the teeth relative to the bitemarks. It created a color-mapped display of the bitemark model, with the color indicating the deviation at each point. There was a correlation between the bitemark and the original teeth. PMID:19432742

  15. Three-dimensional tori and Arnold tongues

    SciTech Connect

    Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  16. Quantum interferometry with three-dimensional geometry

    PubMed Central

    Spagnolo, Nicolò; Aparo, Lorenzo; Vitelli, Chiara; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Mataloni, Paolo; Sciarrino, Fabio

    2012-01-01

    Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include “tritter” and “quarter” as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics. PMID:23181189

  17. Towards microscale electrohydrodynamic three-dimensional printing

    NASA Astrophysics Data System (ADS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  18. Steady inviscid three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Chang, S.-C.

    1985-01-01

    The present analysis combines some of the theoretical concepts suggested by Hawthorne (1955) with a numerical integration procedure suggested by Martin (1978). The resulting algorithm is for inviscid subsonic flows. Thus, it is restricted to high Reynolds number flows. Chang and Adamczyk (1983) have provided a detailed derivation of the present algorithm along with a discussion of its stability bounds. The present paper represents a summary of this work. The integration of the continuity equation is considered along with an evaluation of the entropy, total temperature, and vorticity field. Attention is given to the shear-flow algorithm construction, and an application to a shear flow in a turning channel. A description of numerical results is also provided. The discussed algorithm represents a new procedure for solving inviscid subsonic three-dimensional rotational flows.

  19. Three-dimensional printing physiology laboratory technology

    PubMed Central

    Sulkin, Matthew S.; Widder, Emily; Shao, Connie; Holzem, Katherine M.; Gloschat, Christopher; Gutbrod, Sarah R.

    2013-01-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254

  20. Three-dimensional modular electronic interconnection system

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary S. (Inventor); Cardone, John (Inventor)

    2001-01-01

    A three-dimensional connection system uses a plurality of printed wiring boards with connectors completely around the printed wiring boards, and connected by an elastomeric interface connector. The device includes internal space to allow room for circuitry. The device is formed by stacking an electronics module, an elastomeric interface board on the electronics module such that the interface board's exterior makes electrical connection with the connectors around the perimeter of the interface board, but the internal portion is open to allow room for the electrical devices on the printed wiring board. A plurality of these devices are stacked between a top stiffener and a bottom device, and held into place by alignment elements.

  1. Surface fitting three-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Ford, C. P., III

    1975-01-01

    The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points.

  2. Magneto Transport in Three Dimensional Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Datta, Timir; Wang, Lei; Jaroszynski, Jan; Yin, Ming; Alameri, Dheyaa

    Electrical properties of self-assembled three dimensional nanostructures are interesting topic. Here we report temperature dependence of magneto transport in such carbon nanostructures with periodic spherical voids. Specimens with different void diameters in the temperature range from 200 mK to 20 K were studied. Above 2 K, magnetoresistance, MR = [R(B) - R(0)] / R(0), crosses over from quadratic to a linear dependence with the increase of magnetic field [Wang et al., APL 2015; DOI:10.1063/1.4926606]. We observe MR to be non-saturating even up to 18 Tesla. Furthermore, MR demonstrates universality because all experimental data can be collapsed on to a single curve, as a universal function of B/T. Below 2 K, magnetoresistance saturates with increasing field. Quantum Hall like steps are also observed in this low temperature regime. Remarkably, MR of our sample displays orientation independence, an attractive feature for technological applications.

  3. Three-dimensional cultured glioma cell lines

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)

    1991-01-01

    Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.

  4. Masking in three-dimensional auditory displays.

    PubMed

    Doll, T J; Hanna, T E; Russotti, J S

    1992-06-01

    The extent to which simultaneous inputs in a three-dimensional (3D) auditory display mask one another was studied in a simulated sonar task. The minimum signal-to-noise ratio (SNR) required to detect an amplitude-modulated 500-Hz tone in a background of broadband noise was measured using a loudspeaker array in a free field. Three aspects of the 3D array were varied: angular separation of the sources, degree of correlation of the background noises, and listener head movement. Masking was substantially reduced when the sources were uncorrelated. The SNR needed for detection decreased with source separation, and the rate of decrease was significantly greater with uncorrelated sources than with partially or fully correlated sources. Head movement had no effect on the SNR required for detection. Implications for the design and application of 3D auditory displays are discussed.

  5. Three-dimensional tori and Arnold tongues

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki

    2014-03-01

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  6. Three-dimensional pancreas organogenesis models.

    PubMed

    Grapin-Botton, A

    2016-09-01

    A rediscovery of three-dimensional culture has led to the development of organ biogenesis, homeostasis and disease models applicable to human tissues. The so-called organoids that have recently flourished serve as valuable models bridging between cell lines or primary cells grown on the bottom of culture plates and experiments performed in vivo. Though not recapitulating all aspects of organ physiology, the miniature organs generated in a dish are useful models emerging for the pancreas, starting from embryonic progenitors, adult cells, tumour cells and stem cells. This review focusses on the currently available systems and their relevance to the study of the pancreas, of β-cells and of several pancreatic diseases including diabetes. We discuss the expected future developments for studying human pancreas development and function, for developing diabetes models and for producing therapeutic cells. PMID:27615129

  7. The Three-Dimensional EIT Wave

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.

  8. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  9. Multiscale modeling of three-dimensional genome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  10. Three dimensional fog forecasting in complex terrain

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Masbou, M.; Bott, A.

    2010-07-01

    Fog in complex terrain shows large temporal and spatial variations that can only be simulated with a three-dimensional model, but more modifications than increasing the resolution are needed. For a better representation of fog we present a second moment cloud water scheme with a parametrization of the Köhler theory which is combined with the mixed phase Ferrier microphysics scheme. The more detailed microphysics produce many differences to the first moment Ferrier scheme and are responsible for reproducing the typically low liquid water content of fog. With explicitly predicted droplet number concentrations, sedimentation of cloud water can be modeled without a prescribed fall speed, which mainly affects the vertical distribution of cloud water and the end of the fogs life cycle. The complex topography of the Swiss Alps and its surroundings are used for model testing. As the focus is on the models ability to forecast the spatial distribution of fog, cloud patterns derived from high resolution MSG satellite data, rather than few point observations from ground stations are used. In a continous five day period of anticyclonic conditions, the satellite observed fog patterns showed large day to day variations with almost no fog to large areas of fog. This variability was very well simulated in the three-dimensional fog forecast. The simulations also demonstrate the need for high horizontal resolutions between 1 and 3 km. For model initialization the complex topography is actually a simplifying factor, as cold air flow and pooling are dominating the more uncertain processes of evapotranspiration or errors in the soil moisture field.

  11. Three-dimensional image contrast using biospeckle

    NASA Astrophysics Data System (ADS)

    Godinho, Robson Pierangeli; Braga, Roberto A., Jr.

    2010-09-01

    The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.

  12. Primary and Secondary Three Dimensional Microbatteries

    NASA Astrophysics Data System (ADS)

    Cirigliano, Nicolas

    Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick

  13. Flow Fields Over Unsteady Three Dimensional Dunes

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.; Reesink, A.; Parsons, D. R.; Ashworth, P. J.; Best, J.

    2013-12-01

    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows, over a range of both spatial and temporal scales. This is primarily through adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and the increase in flow resistance. A series of experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239μm) mobile bed was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a Large Eddy Simulation (LES) model, which provided a three dimensional time dependent prediction of flow over the four static beds. The numerical predicted flow is analyzed through a series of approaches, and included: i) standard Reynolds decomposition to the flow fields; ii) Eulerian coherent structure detection methods based on the invariants of the velocity gradient tensor; iii) Lagrangian coherent structure identification methods based upon direct Lyapunov exponents (DLE). The results show that superimposed bed forms can cause changes in the nature of the classical separated flow region in particularly the number of locations where vortices are shed and the point of flow reattachment, which may be important for

  14. Three-dimensional visualization and analysis in prostate cancer.

    PubMed

    Robb, Richard A

    2002-03-01

    Current and emerging three- and four-dimensional medical imaging modalities, along with development of efficient 3-D computer rendering and modeling of multidimensional volume image data and image-guided navigation, are significantly advancing our capabilities for improved and minimally invasive diagnosis and treatment of prostate cancer, obviating the need for exploratory surgery, physical dissection, blind biopsies and mental reconstruction of anatomy and pathology. Currently, both diagnostic and therapeutic procedures require x-ray fluoroscopy, transrectal ultrasound, CT and/or MRI for assessing the condition of the prostate and/or the outcome of any therapeutic procedure. New imaging approaches based on three-dimensional ultrasound transducers placed on catheters for easy insertion into the urethra are demonstrating significant promise for improved diagnosis and treatment of prostate disease. Microwave thermal ablation shows promise for reduction of prostate size and tumor volume, and preliminary data from cryosurgery suggests improvements in tumor reduction and/or management while minimizing the risk of serious complications. Prostate brachytherapy is becoming a more popular and effective alternative to surgery. All of these methods, either independently or combined through image fusion, are providing an exciting and rapid evolution in capabilities for visualizing the prostate and its anatomic environment, extending from physical to functional forms and from macro to micro orders of scale. Traversing the scale distances between these imaged objects within the prostate and its environs will be made automatic and instantaneous in the near future with the expected advances in miniaturization of powerful computing and electronic sensing elements. Imaging devices will continue to improve in resolution, speed and affordability and will be deployed harmlessly within the body, as well as outside of it. Diagnosis and therapy of prostate disease will become fully

  15. Three-dimensional Printing in the Intestine.

    PubMed

    Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John

    2016-08-01

    Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913

  16. Three dimensional simulations of internal solitary waves

    NASA Astrophysics Data System (ADS)

    Li, Guotu; Rizzi, Francesco; Knio, Omar

    2014-11-01

    This study focuses on mass transport and mixing induced by mode-2 internal solitary waves (ISWs) propagating along a pycnocline between two continuously stratified fluid layers. A direct numerical simulation (DNS) model is developed for the incompressible three-dimensional Navier-Stokes equations in the Boussinesq limit. By using high order schemes in both space and time, the model is able to accurately capture the convection-dominated flow at high Reynolds and Schmidt numbers. Simulations both with and without background shear are conducted. The spatial frequency analysis of both density and vorticity fields reveals that no long range spanwise structures are present during the propagation of ISWs, which makes a relatively short spanwise depth sufficient to characterize the evolution of the flow. The growth of 3D structures during the propagation of ISWs is quantified using a spanwise roughness measure. The flow energy budget, dye transport, density mixing and vortex circulations are also analyzed. Work supported by the Office of Naval Research, Physical Oceanography Program.

  17. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  18. Three dimensional structures of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1986-01-01

    Three dimensional structure of an active region is determined from observations with the Very Large Array (VLA) at 2, 6, and 20 cm. This region exhibits a single magnetic loop of length approx. 10 to the 10th power cm. The 2 cm radiation is mostly thermal bremsstrahlung and originates from the footpoints of the loop. The 6 and 20 cm radiation is dominated by the low harmonic gyroresonance radiation and originates from the upper portion of the legs or the top of the loop. The loop broadens toward the apex. The top of the loop is not found to be the hottest point, but two temperature maxima on either side of the loop apex are observed, which is consistent with the model proposed for long loops. From 2 and 6 cm observations it can be concluded that the electron density and temperature cannot be uniform in a plane perpendicular to the axis of the loop; the density should decrease away from the axis of the loop.

  19. Three-dimensional landing zone ladar

    NASA Astrophysics Data System (ADS)

    Savage, James; Goodrich, Shawn; Burns, H. N.

    2016-05-01

    Three-Dimensional Landing Zone (3D-LZ) refers to a series of Air Force Research Laboratory (AFRL) programs to develop high-resolution, imaging ladar to address helicopter approach and landing in degraded visual environments with emphasis on brownout; cable warning and obstacle avoidance; and controlled flight into terrain. Initial efforts adapted ladar systems built for munition seekers, and success led to a the 3D-LZ Joint Capability Technology Demonstration (JCTD) , a 27-month program to develop and demonstrate a ladar subsystem that could be housed with the AN/AAQ-29 FLIR turret flown on US Air Force Combat Search and Rescue (CSAR) HH-60G Pave Hawk helicopters. Following the JCTD flight demonstration, further development focused on reducing size, weight, and power while continuing to refine the real-time geo-referencing, dust rejection, obstacle and cable avoidance, and Helicopter Terrain Awareness and Warning (HTAWS) capability demonstrated under the JCTD. This paper summarizes significant ladar technology development milestones to date, individual LADAR technologies within 3D-LZ, and results of the flight testing.

  20. Three-dimensional charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  1. Three-dimensional modeling of tsunami waves

    SciTech Connect

    Mader, C.L.

    1985-01-01

    Two- and three-dimensional, time-dependent, nonlinear, incompressible, viscous flow calculations of realistic models of tsunami wave formation and run up have been performed using the Los Alamos-developed SOLA-3D code. The results of the SOLA calculations are compared with shallow-water, long-wave calculations for the same problems using the SWAN code. Tsunami wave formation by a continental slope subsidence has been examined using the two numerical models. The SOLA waves were slower than the SWAN waves and the interaction with the shoreline was more complicated for the SOLA waves. In the SOLA calculation, the first wave was generated by the cavity being filled along the shoreline close to the source of motion. The second wave was generated by the cavity being filled from the deep water end. The two waves interacted along the shoreline resulting in the second wave being the largest wave with a velocity greater than the first wave. The second wave overtook the first wave at later times and greater distances from the source. In the SWAN calculation, the second wave was smaller than the first wave. 6 refs.

  2. Three-dimensional supersonic internal flows

    NASA Astrophysics Data System (ADS)

    Mohan, J. A.; Skews, B. W.

    2013-09-01

    In order to examine the transition between regular and Mach reflection in a three-dimensional flow, a range of special geometry test pieces, and inlets, were designed. The concept is to have a geometry consisting of two plane wedges which results in regular reflection between the incident waves off the top and bottom of the inlet capped by two curved end sections causing Mach reflection. The merging of these two reflection patterns and the resulting downstream flow are studied using laser vapor screen and shadowgraph imaging supported by numerical simulation. An angled Mach disc is formed which merges with the line of regular reflection. A complex wave pattern results with the generation of a bridging shock connecting the reflected wave from the Mach reflection with the reflected waves from the regular reflection. In order to experimentally access the flow within the duct, a number of tests were conducted with one end cap removed. This resulted in a modified flow due to the expansive flow at the open end the influence of which was also studied in more detail.

  3. Collimation and Stability of Three Dimensional Jets

    NASA Astrophysics Data System (ADS)

    Hardee, P. E.; Clarke, D. A.; Howell, D. A.

    1993-12-01

    Three-dimensional numerical simulations of cylindrical jets established in equilibrium with a surrounding uniform medium have been performed. Large scale structures such as helical twisting of the jet, elliptical distortion and bifurcation of the jet, and triangular distortion and trifurcation of the jet have been seen in the simulations. The grid resolution has been sufficient to allow the development of structures on smaller scales and has revealed higher order distortions of the jet surface and complex structure internal to the jet. However, smaller scale surface distortion and internal jet structure do not significantly modify the large scale dynamics. It is the large scale surface distortions and accompanying filamentation that dominate the jet dynamics. Decollimation occurs as the jet bifurcates or trifurcates. Jets with density less than the immediately surrounding medium rapidly decollimate and expand as the jet filaments into multiple streams leading to shock heating and mass entrainment. The resulting morphology resembles a turbulent plume and might be relevant to some FRI type radio sources. Jet densities higher than the immediately surrounding medium are required to produce FRII type radio source jet morphology and protostellar jet morphology. Thus, while jets may be denser or lighter than the external medium through which they propagate, it is the conditions in the cocoon or lobe around the jet that governs the dynamics far behind the jet front. This work was supported by NSF grant AST-8919180, EPSCoR grant EHR-9108761 and NSF-REU grant AST-9300413.

  4. Three-dimensional subband coding of video.

    PubMed

    Podilchuk, C I; Jayant, N S; Farvardin, N

    1995-01-01

    We describe and show the results of video coding based on a three-dimensional (3-D) spatio-temporal subband decomposition. The results include a 1-Mbps coder based on a new adaptive differential pulse code modulation scheme (ADPCM) and adaptive bit allocation. This rate is useful for video storage on CD-ROM. Coding results are also shown for a 384-kbps rate that are based on ADPCM for the lowest frequency band and a new form of vector quantization (geometric vector quantization (GVQ)) for the data in the higher frequency bands. GVQ takes advantage of the inherent structure and sparseness of the data in the higher bands. Results are also shown for a 128-kbps coder that is based on an unbalanced tree-structured vector quantizer (UTSVQ) for the lowest frequency band and GVQ for the higher frequency bands. The results are competitive with traditional video coding techniques and provide the motivation for investigating the 3-D subband framework for different coding schemes and various applications. PMID:18289965

  5. Survey Of Three-Dimensional Television

    NASA Astrophysics Data System (ADS)

    Butterfield, James F.

    1980-06-01

    Since the introduction of television, various types of three-dimensional video systems have been used for industrial, medical, educational and entertainment purposes. The systems can be divided into two classes: (1) Stereoscopic Video Systems, which require special glasses or viewing aids; (2) Autostereoscopic Video Systems, which do not require glasses and are viewed by free vision. The two or more images required for these displays are picked-up by stereo optics with a single camera and multiplexed on a single communi-cation channel or they are picked up by two or more cameras utilizing an individual channel for each camera. One or more CRT's with stereo optics are employed in the receiver. The stereoscopic display provides the viewer with added realism and spacial information not available in any other manner. For entertainment purposes, the 3D picture enhances almost any program, including sports, drama and news. Typical industrial applications are for: remote viewing in connection with the remote driving of vehicles or operating manipulators; educational studies of solid geometry and atomic structure; and medical studies of surgical procedures. Stereo video also is being used in connection with microscopic optics to provide a stereo video microscope which has numerous advantages over a conventional optical microscope.

  6. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-12-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.

  7. Three-dimensional null point reconnection regimes

    SciTech Connect

    Priest, E. R.; Pontin, D. I.

    2009-12-15

    Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.

  8. Three-Dimensional Optical Coherence Tomography

    NASA Technical Reports Server (NTRS)

    Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga

    2009-01-01

    Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.

  9. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-04-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.

  10. Lattice theory of three-dimensional cracks

    NASA Technical Reports Server (NTRS)

    Esterling, D. M.

    1976-01-01

    The problem of the stability of a three-dimensional crack is analyzed within a lattice-statics approximation. The consequence of introducing a jog into the crack face as well as the effects of various nonlinear-force laws are studied. The phenomenon of lattice trapping (upper and lower bounds on the applied stress for an equilibrium crack of given length) is again obtained. It is possible to obtain some physical insight into which aspects of the force law are critical for crack stability. In particular, the inadequacy of a thermodynamic approach - which relates the critical stress to a surface energy corresponding to the area under the cohesive-force-vs-displacement curve - is demonstrated. Surface energy is a global property of the cohesive-force law. Crack stability is sensitive to much more refined aspects of the cohesive-force law. Crack healing is sensitive to the long-range portion of the cohesive force. Crack expansion is sensitive to the position of the maximum in the cohesive-force relation.

  11. Surface fitting three-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1974-01-01

    The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.

  12. Magnetophotonic response of three-dimensional opals.

    PubMed

    Caicedo, José Manuel; Pascu, Oana; López-García, Martín; Canalejas, Víctor; Blanco, Alvaro; López, Cefe; Fontcuberta, Josep; Roig, Anna; Herranz, Gervasi

    2011-04-26

    Three-dimensional magnetophotonic crystals (3D-MPCs) are being postulated as appropriate platforms to tailor the magneto-optical spectral response of magnetic materials and to incorporate this functionality in a new generation of optical devices. By infiltrating self-assembled inverse opal structures with monodisperse nickel nanoparticles we have fabricated 3D-MPCs that show a sizable enhancement of the magneto-optical signal at frequencies around the stop-band edges of the photonic crystals. We have established a proper methodology to disentangle the intrinsic magneto-optical spectra from the nonmagnetic optical activity of the 3D-MPCs. The results of the optical and magneto-optical characterization are consistent with a homogeneous magnetic infiltration of the opal structure that gives rise to both a red-shift of the optical bandgap and a modification of the magneto-optical spectral response due to photonic bandgap effects. The results of our investigation demonstrate the potential of 3D-MPCs fabricated following the approach outlined here and offer opportunities to adapt the magneto-optical spectral response at optical frequencies by appropriate design of the opal structure or magnetic field strength.

  13. Two and three dimensional magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Booker, J. R.

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral, and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multidimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multidimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two-dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution, and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  14. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.R.

    1994-07-01

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  15. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.

    1993-01-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  16. A three-dimensional human walking model

    NASA Astrophysics Data System (ADS)

    Yang, Q. S.; Qin, J. W.; Law, S. S.

    2015-11-01

    A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.

  17. Antenatal Three-Dimensional Printing of Aberrant Facial Anatomy.

    PubMed

    VanKoevering, Kyle K; Morrison, Robert J; Prabhu, Sanjay P; Torres, Maria F Ladino; Mychaliska, George B; Treadwell, Marjorie C; Hollister, Scott J; Green, Glenn E

    2015-11-01

    Congenital airway obstruction poses a life-threatening challenge to the newborn. We present the first case of three-dimensional (3D) modeling and 3D printing of complex fetal maxillofacial anatomy after prenatal ultrasound indicated potential upper airway obstruction from a midline mass of the maxilla. Using fetal MRI and patient-specific computer-aided modeling, the craniofacial anatomy of the fetus was manufactured using a 3D printer. This model demonstrated the mass to be isolated to the upper lip and maxilla, suggesting the oral airway to be patent. The decision was made to deliver the infant without a planned ex utero intrapartum treatment procedure. The neonate was born with a protuberant cleft lip and palate deformity, without airway obstruction, as predicted by the patient-specific model. The delivery was uneventful, and the child was discharged without need for airway intervention. This case demonstrates that 3D modeling may improve prenatal evaluation of complex patient-specific fetal anatomy and facilitate the multidisciplinary approach to perinatal management of complex airway anomalies. PMID:26438708

  18. Antenatal Three-Dimensional Printing of Aberrant Facial Anatomy

    PubMed Central

    VanKoevering, Kyle K.; Morrison, Robert J.; Prabhu, Sanjay P.; Torres, Maria F. Ladino; Mychaliska, George B.; Treadwell, Marjorie C.; Hollister, Scott J.

    2015-01-01

    Congenital airway obstruction poses a life-threatening challenge to the newborn. We present the first case of three-dimensional (3D) modeling and 3D printing of complex fetal maxillofacial anatomy after prenatal ultrasound indicated potential upper airway obstruction from a midline mass of the maxilla. Using fetal MRI and patient-specific computer-aided modeling, the craniofacial anatomy of the fetus was manufactured using a 3D printer. This model demonstrated the mass to be isolated to the upper lip and maxilla, suggesting the oral airway to be patent. The decision was made to deliver the infant without a planned ex utero intrapartum treatment procedure. The neonate was born with a protuberant cleft lip and palate deformity, without airway obstruction, as predicted by the patient-specific model. The delivery was uneventful, and the child was discharged without need for airway intervention. This case demonstrates that 3D modeling may improve prenatal evaluation of complex patient-specific fetal anatomy and facilitate the multidisciplinary approach to perinatal management of complex airway anomalies. PMID:26438708

  19. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models.

  20. Three-Dimensional Photoacoustic Endoscopic Imaging of the Rabbit Esophagus

    PubMed Central

    Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy. PMID:25874640

  1. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.

    PubMed

    Yang, Joon Mo; Favazza, Christopher; Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.

  2. Ultrasonic three-dimensional reconstruction of the heart.

    PubMed

    Salustri, A; Roelandt, J R

    1995-01-01

    The recent advances in ultrasound equipment, digital image acquisition, and display techniques made three-dimensional (3D) echocardiography a clinically feasible and exciting technique which allows objective analysis of structure and pathological conditions of complex geometry. In this report, different image acquisition techniques are described and compared. In our experience, with rotational scanning the acquisition of cross-sections for 3D reconstruction becomes an integral part of a routine diagnostic study, both with a multiplane transesophageal imaging transducer, and in precordial echocardiography. After digital reformatting and image processing, a volumetric data set is obtained, which allows the display of synthetic cross-sections in various orientations independent from the point of origin of the sector scan [anyplane two-dimensional (2D) imaging]. This also offers the possibility of volume quantification, without the assumption of theoretical geometrical model of the cavity. Finally, dynamic volume rendered display can be applied for the objective display of the anatomy and the complex relationship among the different structures.

  3. Radial Stellar Pulsation and Three-dimensional Convection. IV. Full Amplitude Three-dimensional Solutions

    NASA Astrophysics Data System (ADS)

    Geroux, Christopher M.; Deupree, Robert G.

    2015-02-01

    Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.

  4. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. IV. FULL AMPLITUDE THREE-DIMENSIONAL SOLUTIONS

    SciTech Connect

    Geroux, Christopher M.; Deupree, Robert G.

    2015-02-10

    Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.

  5. Three-dimensional structure of Theiler virus.

    PubMed Central

    Grant, R A; Filman, D J; Fujinami, R S; Icenogle, J P; Hogle, J M

    1992-01-01

    Theiler murine encephalomyelitis virus strains are categorized into two groups, a neurovirulent group that rapidly kills the host, and a demyelinating group that causes a generally nonlethal infection of motor neurons followed by a persistent infection of the white matter with demyelinating lesions similar to those found in multiple sclerosis. The three-dimensional structure of the DA strain, a member of the demyelinating group, has been determined at 2.8 A resolution. As in other picornaviruses, the icosahedral capsid is formed by the packing of wedge-shaped eight-stranded antiparallel beta barrels. The surface of Theiler virus has large star-shaped plateaus at the fivefold axes and broad depressions spanning the twofold axes. Several unusual structural features are clustered near one edge of the depression. These include two finger-like loops projecting from the surface (one formed by residues 78-85 of VP1, and the other formed by residues 56-65 of VP3) and a third loop containing three cysteines (residues 87, 89, and 91 of VP3), which appear to be covalently modified. Most of the sequence differences between the demyelinating and neurovirulent groups that could play a role in determining pathogenesis map to the surface of the star-shaped plateau. The distribution of these sequence differences on the surface of the virion is consistent with models in which the differences in the pathogenesis of the two groups of Theiler viruses are the result of differences in immunological or receptor-mediated recognition processes. Images PMID:1549565

  6. Three-dimensional kinematics of hummingbird flight.

    PubMed

    Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A

    2007-07-01

    Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species.

  7. Three dimensional study of Lutetia lineaments network

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Aboudan, Alessio; Bistacchi, Andrea; Barbieri, Cesare

    2014-05-01

    The Scientific Imaging System for Rosetta, OSIRIS, acquired an imaging sequence of the Lutetia asteroid, allowing detection of a large number of lineaments distributed over most of its surface (Thomas et al., 2012, Planet. Space Sci., 66, 96-124; Massironi et al., 2012, Planet. Space Sci., 66, 125-136). In general these lineaments can be interpreted as the surface expression of discontinuities such as faults or fractures. Several categories of features has been observed, like troughs, scarps, faults, and ridges. These lineaments are generally more than 50 km long and up to 1.2 km in width, and seem to be arranged in systems (e.g. with common orientation). Moreover, in different geological regions of the asteroid a preferred orientation of lineaments can be recognized, but in all regions there are also lineaments which cross the local preferred trend. Noteworthy, lineaments radial to impact craters, that are common on other asteroidal bodies, are mostly absent on Lutetia (Thomas et al., 2012, Planet. Space Sci., 66, 96-124). However, on a non-spherical body it is not obvious to reconstruct the relationships occurring between the different lineaments. Indeed, lineations that appear to be similarly oriented on different asteroid facets could have no correlation at all (Buczkowski et al., 2007, Icarus, 193, 39-52). In this context, the 3D mapping of lineaments, that we performed directly on the Lutetia shape model, allowed us to obtain a three-dimensional model of these structures that have been reconstructed as planes cutting through the asteroid. This innovative methodology allowed us to detect several structures concentric with respect to the North Pole Crater Cluster, suggesting that these lineaments were originated by these impact events. However most lineaments can be reasonably grouped in different systems of lineaments with no obvious correlation with any impact event detected on the imaged surface. This opens new questions on the origin of these structures and

  8. Three-dimensional ring current decay model

    NASA Astrophysics Data System (ADS)

    Fok, Mei Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-06-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L=2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion diifferential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (<10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j0(1+Ayn), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (<30 keV), both drift dispersion and charge exchange are important in determining n. ©American Geophysical 1995

  9. Three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  10. Three-dimensional carbon nanotube based photovoltaics

    NASA Astrophysics Data System (ADS)

    Flicker, Jack

    2011-12-01

    Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values

  11. Structured image reconstruction for three-dimensional ghost imaging lidar.

    PubMed

    Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng

    2015-06-01

    A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814

  12. Advanced Three-Dimensional Display System

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2005-01-01

    A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the

  13. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  14. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly

  15. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper

  16. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional

  17. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on

  18. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  19. Real-time three dimensional sonographic features of an early third trimester fetus with achondrogenesis.

    PubMed

    Wataganara, Tuangsit; Sutanthavibool, Anuwat; Limwongse, Chanin

    2006-10-01

    Generalized shortening of fetal long bones detected from prenatal sonographic examination usually raise a tentative diagnosis of skeletal dysplasia. Information obtained from grey-scale scan is frequently not sufficient to provide a definite diagnosis, and the images are not readily comprehensible for the parents-to-be. Lately, three-dimensional sonography has become increasing available in obstetric practice. The authors report here a rare case of fetal achondrogenesis, which is a lethal form of skeletal dysplasia, in a 30-week-old fetus using real-time three-dimensional ultrasound. The prenatal findings of fetal achondrogenesis from this technique were thoroughly described, along with postnatal radiography and autopsy results. Sonographic features from this imaging technique allow for an accurate diagnosis and better understanding of the parents. This facilitates the genetic counseling process, as well as the parental options for further care. PMID:17128855

  20. Three-dimensional image reconstruction for electrical impedance tomography.

    PubMed

    Kleinermann, F; Avis, N J; Judah, S K; Barber, D C

    1996-11-01

    Very little work has been conducted on three-dimensional aspects of electrical impedance tomography (EIT), partly due to the increased computational complexity over the two-dimensional aspects of EIT. Nevertheless, extending EIT to three-dimensional data acquisition and image reconstruction may afford significant advantages such as an increase in the size of the independent data set and improved spatial resolution. However, considerable challenges are associated with the software aspects of three-dimensional EIT systems due to the requirement for accurate three-dimensional forward problem modelling and the derivation of three-dimensional image reconstruction algorithms. This paper outlines the work performed to date to derive a three-dimensional image reconstruction algorithm for EIT based on the inversion of the sensitivity matrix approach for a finite right circular cylinder. A comparison in terms of the singular-value spectra and the singular vectors between the sensitivity matrices for a three-dimensional cylinder and a two-dimensional disc has been performed. This comparison shows that the three-dimensional image reconstruction algorithm recruits more central information at lower condition numbers than the two-dimensional image reconstruction algorithm.

  1. Three-dimensional plasma equilibrium near a separatrix

    SciTech Connect

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in ..beta.. or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs.

  2. Three-dimensional imaging of the myocardium with isotopes

    NASA Technical Reports Server (NTRS)

    Budinger, T. F.

    1975-01-01

    Three methods of imaging the three-dimensional distribution of isotopes in the myocardium are discussed. Three-dimensional imaging was examined using multiple Anger-camera views. Longitudinal tomographic images with compensation for blurring were studied. Transverse-section reconstruction using coincidence detection of annihilation gammas from positron emitting isotopes was investigated.

  3. Pathogen propagation in cultured three-dimensional tissue mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  4. Secondary instability in three-dimensional magnetic reconnection

    NASA Technical Reports Server (NTRS)

    Dahlburg, R. B.; Antiochos, S. K.; Zang, T. A.

    1992-01-01

    We consider the transition to turbulence in three-dimensional reconnection of a magnetic neutral sheet. We find that the transition can occur via a three-step process. First, the sheet undergoes the usual tearing instability. Second, the tearing mode saturates to form a two-dimensional quasi-steady state. Third, this secondary equilibrium is itself unstable when it is perturbed by three-dimensional disturbances. Most of this paper is devoted to the analysis and simulation of the three-dimensional linear stability properties of the two-dimensional saturated tearing layer. The numerical simulations are performed with a semi-implicit, pseudospectral-Fourier collocation algorithm. We identify a three-dimensional secondary linear stability which grows on the ideal timescale. An examination of the modal energetics reveals that the largest energy transfer is from the mean field to the three-dimensional field, with the two-dimensional field acting as a catalyst.

  5. Occlusion-free monocular three-dimensional vision system

    NASA Astrophysics Data System (ADS)

    Theodoracatos, Vassilios E.

    1994-10-01

    This paper describes a new, occlusion-free, monocular three-dimensional vision system. A matrix of light beams (lasers, fiber optics, etc.), substantially parallel to the optic axis of the lens of a video camera, is projected onto a scene. The corresponding coordinates of the perspective image generated on the video-camera sensor, the focal length of the camera lens, and the lateral position of the projected beams of light are used to determine the 'perspective depth' z* of the three-dimensional real image in the space between the lens and the image plane. Direct inverse perspective transformations are used to reconstruct the three- dimensional real-world scene. This system can lead to the development of three-dimensional real-image sensing devices for manufacturing, medical, and defense-related applications. If combined with existing technology, it has high potential for the development of three- dimensional television.

  6. Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera

    NASA Astrophysics Data System (ADS)

    Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.

    2004-01-01

    We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.

  7. Three-Dimensional Mid-Air Acoustic Manipulation by Ultrasonic Phased Arrays

    PubMed Central

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method. PMID:24849371

  8. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.

    PubMed

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.

  9. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.

    PubMed

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method. PMID:24849371

  10. Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Burgreen, Gregory W.

    1995-01-01

    An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.

  11. Three-dimensional imaging of the uterus: The value of the coronal plane

    PubMed Central

    Wong, Lufee; White, Nikki; Ramkrishna, Jayshree; Júnior, Edward Araujo; Meagher, Simon; Costa, Fabricio Da Silva

    2015-01-01

    Advent in three-dimensional (3D) imaging technology has seen 3D ultrasound establish itself as a useful adjunct complementary to traditional two-dimensional imaging of the female pelvis. This advantage largely arises from its ability to reconstruct the coronal plane of the uterus, which allows further delineation of many gynecological disorders. 3D imaging of the uterus is now the preferred imaging modality for assessing congenital uterine anomalies and intrauterine device localization. Newer indications include the diagnosis of adenomyosis. It can also add invaluable information to delineate other endometrial and myometrial pathology such as fibroids and endometrial polyps. PMID:26753063

  12. In vitro validation of right ventricular volume measurement by three dimensional echocardiography.

    PubMed Central

    Vogel, M.; White, P. A.; Redington, A. N.

    1995-01-01

    OBJECTIVE--Evaluation of ability of three dimensional echocardiography to accurately assess right ventricular volumes in vitro. METHODS--Silicone casts of normal human right ventricles were examined. Each was filled with three different volumes of water to yield 15 different measurements. The casts were examined in a waterbath with three dimensional echocardiography using a 7.5 MHz ultrasound probe mounted in a scan frame. It was steered by a stepper motor, which moved the probe in steps of 0.25 mm over a distance of 5.9 cm inside the frame, acquiring an image at each step. 236 parallel slices of the cast were thus obtained, forming the three dimensional dataset. The longest axis of the right ventricular volume was defined and the area of perpendicular 1 mm thick slices was outlined manually to calculate the area of each slice. This was multiplied by the slice thickness to obtain the volume of each slice; the respective volumes were added to obtain the volume of the whole cast. RESULTS--The casts had a median volume of 31.1 (23) ml (range 15-100); three dimensional echocardiography gave a median volume of 29.0 (21.7) ml (15.7-91.7). Interobserver variability was 4.5% (0.4%-13.6%) and intraobserver variability 4.3% (0.2%-9.3%). Correlation between real cast volumes and volumes measured by three dimensional echocardiography was 0.99 (y = 1.08 x -0.16) with an SEE of 2.7 ml. Limits for agreement between methods ranged from -3.1 ml to 8.3 ml. In 14 of the 15 measurements, volume by three dimensional echocardiography was smaller than real volume, with the mean difference being 7.4% (2.8%-19.5%). This may be due to the thickening of surfaces of structures when imaged by ultrasonography. CONCLUSION--Right ventricular volumes can accurately be determined by three dimensional echocardiography. Images PMID:7488465

  13. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Klyen, Blake R.; Shavlakadze, Thea; Radley-Crabb, Hannah G.; Grounds, Miranda D.; Sampson, David D.

    2011-07-01

    Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

  14. Three-dimensional X-ray micro-velocimetry

    PubMed Central

    Lee, Wah-Keat; Fezzaa, Kamel; Uemura, Tomomasa

    2011-01-01

    A direct measurement of three-dimensional X-ray velocimetry with micrometer spatial resolution is presented. The key to this development is the use of a Laue crystal as an X-ray beam splitter and mirror. Three-dimensional flow velocities in a 0.4 mm-diameter tubing were recorded, with <5 µm spatial resolution and speeds of 0.7 mm s−1. This development paves the way for three-dimensional velocimetry in many cases where visible-light techniques are not effective, such as multiphase flow or flow of optically opaque liquids. PMID:21335921

  15. Three-dimensional localization of cortical electrodes in deep brain stimulation surgery from intraoperative fluoroscopy.

    PubMed

    Randazzo, Michael J; Kondylis, Efstathios D; Alhourani, Ahmad; Wozny, Thomas A; Lipski, Witold J; Crammond, Donald J; Richardson, R Mark

    2016-01-15

    Electrophysiological recordings from subdural electrocorticography (ECoG) electrodes implanted temporarily during deep brain stimulation (DBS) surgeries offer a unique opportunity to record cortical activity for research purposes. The optimal utilization of this important research method relies on accurate and robust localization of ECoG electrodes, and intraoperative fluoroscopy is often the only imaging modality available to visualize electrode locations. However, the localization of a three-dimensional electrode position using a two-dimensional fluoroscopic image is problematic due to the lost dimension orthogonal to the fluoroscopic image, a parallax distortion implicit to fluoroscopy, and variability of visible skull contour among fluoroscopic images. Here, we present a method to project electrodes visible on the fluoroscopic image onto a reconstructed cortical surface by leveraging numerous common landmarks to translate, rotate, and scale coregistered computed tomography (CT) and magnetic resonance imaging (MRI) reconstructed surfaces in order to recreate the coordinate framework in which the fluoroscopic image was acquired, while accounting for parallax distortion. Validation of this approach demonstrated high precision with an average total Euclidian distance between three independent reviewers of 1.65±0.68mm across 8 patients and 82 electrodes. Spatial accuracy was confirmed by correspondence between recorded neural activity over sensorimotor cortex during hand movement. This semi-automated interface reliably estimates the location of temporarily implanted subdural ECoG electrodes visible on intraoperative fluoroscopy to a cortical surface. PMID:26520771

  16. Three-dimensional localization of cortical electrodes in deep brain stimulation surgery from intraoperative fluoroscopy.

    PubMed

    Randazzo, Michael J; Kondylis, Efstathios D; Alhourani, Ahmad; Wozny, Thomas A; Lipski, Witold J; Crammond, Donald J; Richardson, R Mark

    2016-01-15

    Electrophysiological recordings from subdural electrocorticography (ECoG) electrodes implanted temporarily during deep brain stimulation (DBS) surgeries offer a unique opportunity to record cortical activity for research purposes. The optimal utilization of this important research method relies on accurate and robust localization of ECoG electrodes, and intraoperative fluoroscopy is often the only imaging modality available to visualize electrode locations. However, the localization of a three-dimensional electrode position using a two-dimensional fluoroscopic image is problematic due to the lost dimension orthogonal to the fluoroscopic image, a parallax distortion implicit to fluoroscopy, and variability of visible skull contour among fluoroscopic images. Here, we present a method to project electrodes visible on the fluoroscopic image onto a reconstructed cortical surface by leveraging numerous common landmarks to translate, rotate, and scale coregistered computed tomography (CT) and magnetic resonance imaging (MRI) reconstructed surfaces in order to recreate the coordinate framework in which the fluoroscopic image was acquired, while accounting for parallax distortion. Validation of this approach demonstrated high precision with an average total Euclidian distance between three independent reviewers of 1.65±0.68mm across 8 patients and 82 electrodes. Spatial accuracy was confirmed by correspondence between recorded neural activity over sensorimotor cortex during hand movement. This semi-automated interface reliably estimates the location of temporarily implanted subdural ECoG electrodes visible on intraoperative fluoroscopy to a cortical surface.

  17. A Three-dimensional Camera: Development and Applications of a Three-dimensional Image Measurement System

    NASA Astrophysics Data System (ADS)

    Lu, Cunwei; Kamitomo, Hiroya; Sun, Ke; Tsujino, Kazuhiro; Cho, Genki

    Three-dimensional (3-D) image measurement is a technique that uses a digital camera to determine the shape and dimensions of the surface of an object. Although it has been studied for a long time, various problems still remain to be solved for practical applications. The goal of our research is to solve these problems and to develop a 3-D camera that can be used for practical 3-D image measurements. This paper analyzes the problems associated with the conventional technology and introduces development goals for the new 3-D camera. The key techniques of this 3-D camera are explained, including techniques for optimizing the intensity-modulation pattern projection, controlling the projection pattern intensity, determining the projection position, and controlling the stripe period. The system is evaluated and some examples of applications are given. The proposed 3-D camera can automatically adjust for variations in an object's size, form, surface color, and reflection characteristics and it can measure non-stationary objects. Consequently, it has the potential to be used in a wide range of applications including product quality control, human measurement, and face recognition.

  18. Improving Students' Sense of Three-Dimensional Shapes.

    ERIC Educational Resources Information Center

    Leeson, Neville J.

    1994-01-01

    Describes activities to be used with fifth and sixth graders to improve students' spatial sense with respect to three-dimensional shapes. Includes the use of cubes, triangular prisms, tetrahedrons, and square pyramids. (MKR)

  19. Three-dimensional Simulation of Backward Raman Amplification

    SciTech Connect

    A.A. Balakin; G.M. Fraiman; N.J. Fisch

    2005-11-12

    Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization.

  20. Visual Chemistry: Three-Dimensional Perception of Chemical Structures.

    ERIC Educational Resources Information Center

    Balaban, Alexandru T.

    1999-01-01

    Discusses in great detail aspects connected with the visual and mental processing of chemical images. Presents various types of conventions for translating three-dimensional objects into two-dimensional representations. (Author/CCM)

  1. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect

    Kim, G. H.; Smith, K.

    2008-05-01

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  2. Construction of Three Dimensional Solutions for the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Yefet, A.; Turkel, E.

    1998-01-01

    We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

  3. Three-dimensional reconstructions of solid surfaces using conventional microscopes.

    PubMed

    Ficker, Tomáš; Martišek, Dalibor

    2016-01-01

    The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures.

  4. Three-dimensional reconstructions of solid surfaces using conventional microscopes.

    PubMed

    Ficker, Tomáš; Martišek, Dalibor

    2016-01-01

    The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. PMID:26381761

  5. Analysis and validation of carbohydrate three-dimensional structures

    SciTech Connect

    Lütteke, Thomas

    2009-02-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures.

  6. Direct Linear Transformation Method for Three-Dimensional Cinematography

    ERIC Educational Resources Information Center

    Shapiro, Robert

    1978-01-01

    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  7. Effect of three-dimensionality on compressible mixing

    SciTech Connect

    Papamoschou, D. )

    1992-02-01

    Existing experimental data and hypotheses on the growth rates of compressible and incompressible turbulent shear layers are used to estimate the effect of three-dimensionality in the turbulent mixing enhancement in compressible shear flows that is critically important to the efficiency of scramjet powerplants. The general trend is found to be a decrease in growth rate with increasing three-dimensionality, excepting only the restricted regime, where the growth-rate increase is modest. 9 refs.

  8. Alignment-free three-dimensional optical metamaterials.

    PubMed

    Zhao, Yang; Shi, Jinwei; Sun, Liuyang; Li, Xiaoqin; Alù, Andrea

    2014-03-01

    Three-dimensional optical metamaterials based on multilayers typically rely on critical vertical alignment to achieve the desired functionality. Here the conditions under which three-dimensional metamaterials with different functionalities may be realized without constraints on alignment are analyzed and demonstrated experimentally. This study demonstrates that the release of alignment constraints for multilayered metamaterials is allowed, while their anomalous interaction with light is preserved.

  9. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  10. Three-dimensional study of the multi-cavity FEL

    SciTech Connect

    Krishnagopal, S.; Kumar, V.

    1995-12-31

    The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.

  11. Three dimensional separation effects on a simplified wind turbine blade

    SciTech Connect

    Soerensen, N.N.; Michelsen, J.A.

    1996-10-01

    A qualitative investigation of the three dimensional effects on a twisted non-rotating wing without tapering is performed, using a general purpose Navier-Stokes solver. Different location of twist center as well as different twist ratios are examined for fully attached flow. The case of a partially separated blade is investigated as well. The three dimensional effects are primarily identified by comparing the lift and C{sub p} distribution of the blade with the two dimensional counterpart.

  12. Three-dimensional scanning microscopy through thin turbid media.

    PubMed

    Yang, Xin; Hsieh, Chia-Lung; Pu, Ye; Psaltis, Demetri

    2012-01-30

    We demonstrate three-dimensional imaging through a thin turbid medium using digital phase conjugation of the second harmonic signal emitted from a beacon nanoparticle. The digitally phase-conjugated focus scans the volume in the vicinity of its initial position through numerically manipulated phase patterns projected onto the spatial light modulator. Accurate three dimensional images of a fluorescent sample placed behind a turbid medium are obtained.

  13. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  14. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  15. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    PubMed Central

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  16. Three-dimensional ultrasonographic visualization of fetal chromosome abnormalities: a preliminary experience report of 4 cases.

    PubMed

    Komwilaisak, Ratana; Ratanasiri, Thawalwong; Kleebkaow, Pilaiwan

    2004-10-01

    The accurate diagnosis of fetal malformations in utero can provide both heath care providers and parents a number of management options. Three-dimensional ultrasonography is a new technique of diagnosis which has several potential advantages to allow for evaluation of specific anomalies by permitting high-quality views of body surface. We report 4 cases of fetal chromosomal abnormalities including 2 cases of trisomy 21, 1 case of trisomy 13 and 1 case of 48, XXY/+18. All cases were proved to have abnormal chromosomes by amniocentesis or percutaneous umbilical cord blood sampling. After 3D reconstruction, we can identify specific facial abnormalities which can not be visualized by conventional two-dimensional ultrasound such as low set ear Mongolian's slant eyes, facial dysmorphism of trisomy 13 and trisomy 18. We also clearly visualized abnormalities of digits such as overlapping fingers, club hands and sandal gap. Three-dimensional reconstruction of the fetal body surface improves the antenatal diagnosis of chromosomal abnormalities characterized by a particular dysmorphism. Our report suggests that three-dimensional ultrasonography has the potential to provide novel informations on the fetal anatomy and be useful in visualization and identification of chromosomal abnormalities in utero.

  17. Three Dimensional Probability Distributions of the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.

    2014-12-01

    Empirical probability density functions (PDFs) of the interplanetary magnetic field (IMF) have been derived from spacecraft data since the early years of the space age. A survey of the literature shows that past studies have investigated the separate Cartesian components of the magnetic field, the vector magnitude, and the direction of the IMF by means of one-dimensional or two-dimensional PDFs. But, to my knowledge, there exist no studies which investigate the three dimensional nature of the IMF by means of three dimensional PDFs, either in (Bx,By,Bz)(B_x,B_y,B_z)-coordinates or (BR,BT,BN)(B_R,B_T,B_N)-coordinates or some other appropriate system of coordinates. Likewise, there exist no studies which investigate three dimensional PDFs of magnetic field fluctuations, that is, vector differences bmB(t+τ)-bmB(t)bm{B}(t+tau)-bm{B}(t). In this talk, I shall present examples of three dimensional PDFs obtained from spacecraft data that demonstrate the solar wind magnetic field possesses a very interesting spatial structure that, to my knowledge, has not previously been identified. Perhaps because of the well known model of Barnes (1981) in which the magnitude of the IMF remains constant, it may be commonly believed that there is nothing new to learn from a full three dimensional PDF. To the contrary, there is much to learn from the investigation of three dimensional PDFs of the solar wind plasma velocity and the magnetic field, as well as three dimensional PDFs of their fluctuations. Knowledge of these PDFs will not only improve understanding of solar wind physics, it is an essential prerequisite for the construction of realistic models of the stochastic time series measured by a single spacecraft, one of the longstanding goals of space physics research. In addition, three dimensional PDFs contain valuable information about the anisotropy of solar wind fluctuations in three dimensional physical space, information that may help identify the reason why the three

  18. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    PubMed Central

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  19. A moving observer in a three-dimensional world

    PubMed Central

    2016-01-01

    For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269608

  20. Biodynamic profiling of three-dimensional tissue growth techniques

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Merrill, Dan; Turek, John; Nolte, David

    2016-03-01

    Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.

  1. A moving observer in a three-dimensional world.

    PubMed

    Glennerster, Andrew

    2016-06-19

    For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer.This article is part of the themed issue 'Vision in our three-dimensional world'.

  2. A moving observer in a three-dimensional world.

    PubMed

    Glennerster, Andrew

    2016-06-19

    For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269608

  3. Three-dimensional calculation of windmill surface pressures

    NASA Astrophysics Data System (ADS)

    Valarezo, W. O.; Liebeck, R. H.

    A three-dimensional panel method capable of computing the flow about propellers is applied to the prediction of blade surface pressures for windmill configurations. Computed surface pressures at various conditions are compared to experimental data and to predictions based on Blade Element Theory (BET). The panel method is used to compute flows about complex three-dimensional geometries and to numerically predict trends not easily obtainable from experimental efforts due to the difficulty and expense of the required instrumentation. These new three-dimensional computations exhibit better agreement with experimental data than standard BET-based predictions. Also, the reported increment in lift carrying capability of rotating lifting surfaces over surfaces in rectilinear translational motion is captured by the panel method and is shown to be an inviscid effect.

  4. Three-dimensional, three-component wall-PIV

    NASA Astrophysics Data System (ADS)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich

    2010-06-01

    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  5. Coupled particle dispersion by three-dimensional vortex structures

    SciTech Connect

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  6. Imaging protein three-dimensional nanocrystals with cryo-EM.

    PubMed

    Nederlof, Igor; Li, Yao Wang; van Heel, Marin; Abrahams, Jan Pieter

    2013-05-01

    Flash-cooled three-dimensional crystals of the small protein lysozyme with a thickness of the order of 100 nm were imaged by 300 kV cryo-EM on a Falcon direct electron detector. The images were taken close to focus and to the eye appeared devoid of contrast. Fourier transforms of the images revealed the reciprocal lattice up to 3 Å resolution in favourable cases and up to 4 Å resolution for about half the crystals. The reciprocal-lattice spots showed structure, indicating that the ordering of the crystals was not uniform. Data processing revealed details at higher than 2 Å resolution and indicated the presence of multiple mosaic blocks within the crystal which could be separately processed. The prospects for full three-dimensional structure determination by electron imaging of protein three-dimensional nanocrystals are discussed. PMID:23633595

  7. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  8. Time of Closest Approach in Three-Dimensional Airspace

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Narkawicz, Anthony J.

    2010-01-01

    In air traffic management, the aircraft separation requirement is defined by a minimum horizontal distance and a minimum vertical distance that the aircraft have to maintain. Since this requirement defines a cylinder around each aircraft rather than a sphere, the three-dimensional Euclidean distance does not provide an appropriate basis for the definition of time of closest approach. For instance, conflicting aircraft are not necessarily in loss of separation at the time of closest three-dimensional Euclidean distance. This paper proposes a definition of time of closest approach that characterizes conflicts in a three-dimensional airspace. The proposed time is defined as the time that minimizes a distance metric called cylindrical norm. An algorithm that computes the time of closest approach between two aircraft is provided and the formal verification of its main properties is reported.

  9. Ray tracing a three dimensional scene using a grid

    DOEpatents

    Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron

    2013-02-26

    Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.

  10. Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows

    PubMed Central

    Liang, Litao; Zhu, Junjie; Xuan, Xiangchun

    2011-01-01

    Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle’s relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model. PMID:22662037

  11. Three-dimensional epithelial morphogenesis in the developing Drosophila egg

    PubMed Central

    Osterfield, Miriam; Du, XinXin; Schüpbach, Trudi; Wieschaus, Eric; Shvartsman, Stanislav Y.

    2013-01-01

    Morphogenesis of the respiratory appendages on eggshells of Drosophila species provides a powerful experimental system for studying how cell sheets give rise to complex three-dimensional structures. In Drosophila melanogaster, each of the two tubular eggshell appendages is derived from a primordium comprising two distinct cell types. Using live imaging and three-dimensional image reconstruction, we demonstrate that the transformation of this two-dimensional primordium into a tube involves out-of-plane bending followed by a sequence of spatially ordered cell intercalations. These morphological transformations correlate with the appearance of complementary distributions of myosin and Bazooka in the primordium. These distributions suggest that a two-dimensional pattern of line tensions along cell-cell edges on the apical side of the epithelium is sufficient to produce the observed changes in morphology. Computational modeling shows that this mechanism could explain the main features of tissue deformation and cell rearrangements observed during three-dimensional morphogenesis. PMID:23449472

  12. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  13. Numerical simulation of three-dimensional boattail afterbody flow fields

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.

    1980-01-01

    The thin shear layer approximations of the three-dimensional, compressible Navier-Stokes equations are solved for subsonic, transonic, and supersonic flow over axisymmetric boattail bodies at moderate angles of attack. The plume is modeled by a solid body configuration identical to those used in experimental tests. An implicit algorithm of second-order accuracy is used to solve the equations on the ILLIAC IV computer. The turbulence is expressed by an algebraic model applicable to three-dimensional flow fields with moderate separation. The computed results compare favorably with three different sets of experimental data reported by Reubush, Shrewsbury, and Benek, respectively

  14. Hydrodynamic stability of three-dimensional homogeneous flow topologies.

    PubMed

    Mishra, Aashwin A; Girimaji, Sharath S

    2015-11-01

    This article examines the hydrodynamic stability of various homogeneous three-dimensional flow topologies. The influence of inertial and pressure effects on the stability of flows undergoing strain, rotation, convergence, divergence, and swirl are isolated. In marked contrast to two-dimensional topologies, for three-dimensional flows the inertial effects are always destabilizing, whereas pressure effects are always stabilizing. In streamline topologies with a negative velocity-gradient third invariant, inertial effects prevail leading to instability. Vortex-stretching is identified as the underlying instability mechanism. In flows with positive velocity-gradient third derivative, pressure overcomes inertial effects to stabilize the flow. PMID:26651773

  15. Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry

    SciTech Connect

    Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert

    2014-05-28

    We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.

  16. Flow shaping using three-dimensional microscale gas discharge

    SciTech Connect

    Wang, C.-C.; Roy, Subrata

    2009-08-24

    We introduce a flow shaping mechanism using surface compliant microscale gas discharge. A three-dimensional finite element-based multiscale ionized gas flow code is utilized to analyze charge separation, potential distribution, and flow inducement mechanism. For the case of quiescent flow, a horseshoe-shaped plasma generator is introduced. Due to its unusual shape, the three-dimensional electric force excites a pinching effect on the fluid inside selectively powered electrode arc. Such effect is capable of tripping the flow-ejecting fluid normal to the plane of the actuator and thus can be very useful for many applications.

  17. Microperiodic structures: Direct writing of three-dimensional webs

    NASA Astrophysics Data System (ADS)

    Gratson, Gregory M.; Xu, Mingjie; Lewis, Jennifer A.

    2004-03-01

    Applications are emerging that require the creation of fine-scale structures in three dimensions - examples include scaffolds for tissue engineering, micro-fluidic devices and photonic materials that control light propagation over a range of frequencies. But writing methods such as dip-pen nanolithography and ink-jet printing are either confined to two dimensions or beset by wetting and spreading problems. Here we use concentrated polyelectrolyte inks to write three-dimensional microperiodic structures directly without using masks. Our technique enables us to write arbitrary three-dimensional patterns whose features are nearly two orders of magnitude smaller than those attained with other multilayer printing techniques.

  18. Visualization of three-dimensional liquid flow on sieve trays

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling

    2004-03-01

    This paper presents the simulated result of three-dimensional liquid velocity profile on sieve trays by using a computational flow dynamics (CFD) model with considerations of volume fraction of gas and liquid and the interfacial forces. The Κ-ɛ equation is used for the closure of basic equations. For the first time the three-dimensional liquid flow on a distillation column with ten trays under total reflux is visualized. The simulation was carried out with an Origin 200 Server Workstation of SGI Company using Star-CD V3.1 program. Simulation provides the detailed information of the distribution of 3D liquid velocity on the distillation column.

  19. Binary Colloidal Alloy Test-5: Three-Dimensional Melt

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.

    2008-01-01

    Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.

  20. Angled Exposure Method for Pattering on Three-Dimensional Structures

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Kumar; Sasaki, Minoru; Hane, Kazuhiro

    2007-09-01

    Photolithography on three-dimensional structures is becoming a key process for realizing new micromechanical devices. Patterning on three-dimensional structures using the conventional mask aligner is a difficult task. In this paper, we present an approach for transferring patterns on cavities prepared by anisotropic etching. A new method of angled exposing is introduced for improving the uniformity of the incident-light-power density transmitted into the resist film deposited on the cavities. This method also reduces the number of reflections coming from the sidewalls of the cavities. Polarized light is used for realizing a pattern on the narrow cavities with a high aspect ratio.

  1. Three-dimensional analysis of partially open butterfly valve flows

    SciTech Connect

    Huang, C.; Kim, R.H.

    1996-09-01

    A numerical simulation of butterfly valve flows is a useful technique to investigate the physical phenomena of the flow field. A three-dimensional numerical analysis was carried out on incompressible fluid flows in a butterfly valve by using FLUENT, which solves difference equations. Characteristics of the butterfly valve flows at different valve disk angles with a uniform incoming velocity were investigated. Comparisons of FLUENT results with other results, i.e., experimental results, were made to determine the accuracy of the employed method. Results of the three-dimensional analysis may be useful in the valve design.

  2. Three-dimensional echocardiography of the mitral valve: lessons learned.

    PubMed

    Maffessanti, Francesco; Mirea, Oana; Tamborini, Gloria; Pepi, Mauro

    2013-07-01

    Three-dimensional echocardiography has markedly improved our understanding of normal and pathologic mitral valve (MV) mechanics. Qualitative and quantitative analysis of three-dimensional (3D) data on the mitral valve could have a clinical impact on diagnosis, patient referral, surgical strategies, annuloplasty ring design and evaluation of the immediate and long-term surgical outcome. This review covers the contribution of 3D echocardiography in the diagnosis of MV disease, its role in selecting and monitoring surgical procedures, and in the assessment of surgical outcomes. Moreover, advantages of this technique versus the standard 2D modality, as well as future applications of advanced analysis techniques, will be reviewed. PMID:23686753

  3. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  4. Three-dimensional boron particle loaded thermal neutron detector

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  5. A system of three-dimensional complex variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1986-01-01

    Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

  6. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.

    PubMed

    Nakayama, Yu

    2016-04-01

    Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.

  7. Development of Three-Dimensional Object Completion in Infancy

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Johnson, Scott P.

    2008-01-01

    Three-dimensional (3D) object completion was investigated by habituating 4- and 6-month-old infants (n = 24 total) with a computer-generated wedge stimulus that pivoted 15[degrees], providing only a limited view. Two displays, rotating 360[degrees], were then shown: a complete, solid volume and an incomplete, hollow form composed only of the sides…

  8. Development of Three-Dimensional Completion of Complex Objects

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Johnson, Scott P.

    2013-01-01

    Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…

  9. Optimal eavesdropping in cryptography with three-dimensional quantum states.

    PubMed

    Bruss, D; Macchiavello, C

    2002-03-25

    We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.

  10. Assembly of Viral Hydrogels for Three-Dimensional Conducting Nanocomposites

    PubMed Central

    Chen, Po-Yen; Hyder, Md Nasim; Mackanic, David; Courchesne, Noémie-Manuelle Dorval; Qi, Jifa

    2014-01-01

    M13 bacteriophages act as versatile scaffolds capable of organizing single-walled carbon nanotubes and fabricating three-dimensional conducting nanocomposites. The morphological, electrical, and electrochemical properties of the nanocomposites are presented, as well as its ability to disperse and utilize single-walled carbon nanotubes effectively. PMID:24782428

  11. Three-dimensionally assembled gold nanostructures for plasmonic biosensors.

    PubMed

    Guo, Longhua; Chen, Guonan; Kim, Dong-Hwan

    2010-06-15

    Three-dimensional gold nanoarchitecture was fabricated by layer-by-layer (LbL) deposition of gold nanoparticles (AuNPs) and multiwalled carbon nanotubes (MWCNTs) on a glass substrate for a highly sensitive plasmonic biosensor using a conventional UV-vis instrument. Carboxyl-functionalized MWCNTs were reacted with 3-mercaptopropyltriethoxysilane (MPTES) to introduce multiple thiol groups onto MWCNTs. A self-assembled monolayer (SAM) of AuNPs on a glass chip was sequentially dipped into MPTES-functionalized MWCNTs (MWCNT-Si-SH) and AuNPs to form multilayers of AuNPs on MWCNTs. Such three-dimensionally assembled AuNPs provided a large surface area and multiple binding sites within a few steps of modification and microporous structures of multilayered MWCNTs to allow a high accessibility of target molecules. It was shown that the bulk refractive index (RI) sensitivity of these multilayered AuNPs (three-dimensional chip) appeared to be 5.6 times better than that of a monolayer of AuNPs on a glass chip (two-dimensional chip). The three-dimensional chips were further used for a biomolecular binding study, showing a detection limit as low as 0.5 nM for streptavidin and 3.33 nM for anti-human serum albumin (HSA), both of which were approximately 20 times higher than the sensitivity of the two-dimensional chips.

  12. Three-dimensional cell to tissue development process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2008-01-01

    An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.

  13. Exciton condensation in microcavities under three-dimensional quantization conditions

    SciTech Connect

    Kochereshko, V. P. Platonov, A. V.; Savvidis, P.; Kavokin, A. V.; Bleuse, J.; Mariette, H.

    2013-11-15

    The dependence of the spectra of the polarized photoluminescence of excitons in microcavities under conditions of three-dimensional quantization on the optical-excitation intensity is investigated. The cascade relaxation of polaritons between quantized states of a polariton Bose condensate is observed.

  14. A three dimensional calculation of elastic equilibrium for composite materials

    NASA Technical Reports Server (NTRS)

    Lustman, Liviu R.; Rose, Milton E.

    1986-01-01

    A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.

  15. A three dimensional calculation of elastic equilibrium for composite materials

    NASA Technical Reports Server (NTRS)

    Lustman, Liviu R.; Rose, Milton E.

    1988-01-01

    A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.

  16. Interactive Multimedia and Concrete Three-Dimensional Modelling.

    ERIC Educational Resources Information Center

    Baxter, J. H.; Preece, Peter F. W.

    1999-01-01

    Compares a multimedia package for teaching about the phases of the moon to grade 8 (12-year-old) students with a conventional three-dimensional modeling approach. Results show both methods were equally effective in terms of student learning, for male and female students, and prior computer experience was not a factor in multimedia use. (Author/LRW)

  17. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.

    PubMed

    Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang

    2010-11-01

    A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.

  18. Three-dimensional superdiffusive chemical waves in a precipitation system.

    PubMed

    Ayass, M M; Lagzi, I; Al-Ghoul, M

    2014-12-01

    We report novel results on self-organized three-dimensional spiral and target patterns exhibiting anomalous superdiffusive behaviour in a reaction-diffusion system with simultaneous precipitation and polymorphic transformation of mercuric iodide without external forcing. The superdiffusive dynamics of propagation of the targets/spirals and their breakup are presented. PMID:25219662

  19. Two- and three-dimensional blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, F.; Liu, N.-S; Briley, W. R.; Buggeln, R. C.; Shamroth, S. J.

    1990-01-01

    A three-dimensional time dependent Navier-Stokes analysis was applied to the rotor blade vortex interaction (BVI) problem. The numerical procedure is an iterative implicit procedure using three point central differences to represent spatial derivatives. A series of calculations were made to determine the time steps, pseudo-time steps, iterations, artificial dissipation level, etc. required to maintain a nondissipative vortex. Results show the chosen method to have excellent non-dissipative properties provided the correct parameters are chosen. This study was used to set parameters for both two- and three-dimensional blade vortex interaction studies. The two-dimensional study considered the interaction between a vortex and a NACA0012 airfoil. The results showed the detailed physics during the interaction including the pressure pulse propagating from the blade. The simulated flow physics was qualitatively similar to that experimentally observed. The 2-D BVI phenomena is the result of the buildup and violent collapse of the shock waves and local supersonic pockets on the blade surfaces. The resulting pressure pulse build-up appears to be centered at the blade leading edge. The three-dimensional interaction study considered the case of a vortex at 20 deg incidence to the blade leading edge. Although the qualitative results were similar to that of the two-dimensional interaction, details clearly showed the three-dimensional nature of the interaction process.

  20. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

    SciTech Connect

    Goluoglu, S.; Bentley, C.; Demeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H. L.

    1998-01-14

    A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems.

  1. A deterministic method for transient, three-dimensional neutron transport

    SciTech Connect

    Goluoglu, S.; Bentley, C.; DeMeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H.L.

    1998-05-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multi-dimensional neutronic systems.

  2. Modern cosmology and the origin of our three dimensionality.

    PubMed

    Woodbury, M A; Woodbury, M F

    1998-01-01

    We are three dimensional egocentric beings existing within a specific space/time continuum and dimensionality which we assume wrongly is the same for all times and places throughout the entire universe. Physicists name Omnipoint the origin of the universe at Dimension zero, which exploded as a Big Bang of energy proceeding at enormous speed along one dimension which eventually curled up into matter: particles, atoms, molecules and Galaxies which exist in two dimensional space. Finally from matter spread throughout the cosmos evolved life generating eventually the DNA molecules which control the construction of brains complex enough to construct our three dimensional Body Representation from which is extrapolated what we perceive as a 3-D universe. The whole interconnected structures which conjure up our three dimensionality are as fragile as Humpty Dumpty, capable of breaking apart with terrifying effects for the individual patient during a psychotic panic, revealing our three dimensionality to be but "maya", an illusion, which we psychiatrists work at putting back together.

  3. THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL

    EPA Science Inventory

    We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...

  4. Three dimensional boundary layers on submarine conning towers and rudders

    NASA Astrophysics Data System (ADS)

    Gleyzes, C.

    1988-01-01

    Solutions for the definition of grids adapted to the calculation of three-dimensional boundary layers on submarine conning towers and on submarine rudders and fins are described. The particular geometry of such bodies (oblique shaped hull, curved fins) required special adaptations. The grids were verified on examples from a test basin.

  5. Direct Three-Dimensional Measurement With The Reflex Instruments

    NASA Astrophysics Data System (ADS)

    Scott, P. J.

    1986-07-01

    Two instruments are described which are used for three dimensional measurement of stationary objects. Available computer software for the equipment is discussed. It is designed to run on an IBM Personal Computer and allows the user to specify his own measuring requirements from a library of standard routines. Applications to research in dentistry, medicine and anthropology are also discussed.

  6. Three-dimensional AOTV flowfields in chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.; Mccandless, R. S.

    1986-01-01

    A technique for upwind differencing of the three-dimensional species continuity equations is presented which permits computation of steady flows in chemical equilibrium and nonequilibrium. The capabilities and shortcomings of the present approach for equilibrium and nonequilibrium flows is discussed. Modifications now being investigated to improve computational time are outlined.

  7. Studies of origin of three-dimensionality in laminar wakes

    NASA Astrophysics Data System (ADS)

    Gharib, Morteza

    1993-02-01

    Wind tunnel experiments, using hot-wire anemometry and smoke-wire flow visualization, were conducted to study the process of transition from laminar to turbulent flow of parallel and oblique vortex streets from circular cylinders. It was found that the origin and scale of three-dimensionality which appears at Reynolds numbers just below the transition from laminar to turbulent flow are dependent on the vortex shedding geometry in the near-wake. Oblique vortex streets develop large scale three-dimensional structures and undergo an early transition, i.e. at lower Reynolds numbers, when compared to parallel vortex streets. This is due to the presence of three-dimensionality in oblique wakes at pretransition Reynolds numbers, whereas parallel wakes remain laminar until the vortices themselves develop three-dimensional features. The downstream evolution of these two wake geometries from the primary Karman vortices to the far-wake vortical structures was also investigated. The far-wake structures are parallel to the cylinder axis for parallel shedding. For oblique shedding, these structures are initially parallel to the cylinder axis, but further downstream they develop a strong spanwise modulation whose wavelength is the spanwise distance between two consecutive Karman vortices of the same sign of vorticity.

  8. Three-dimensional analysis of condylar hyperplasia with computed tomography.

    PubMed

    Mutoh, Y; Ohashi, Y; Uchiyama, N; Terada, K; Hanada, K; Sasaki, F

    1991-02-01

    Three-dimensional surface reconstruction imaging from CT scans was used to study the deformity of the mandible in six patients with mandibular asymmetry. High-resolution axial CT scans of the mandible were obtained using Somatom-DR3 (Siemens). COSMOZONE-2SA (Nikon) with PC-9801VX21 (NEC) was used to reconstruct the three-dimensional images. The six patients were divided into two groups. One group was classified as unilateral hybrid forms and the other group was classified hemimandibular elongation on the diagnostic criteria of Obwegeser and Makek (1986). In the three-dimensional surface reconstruction, exact location and the degree of the deformity in the region from the ascending ramus to the condylar head and the lingual aspect from the ascending ramus to the mandibular body were accurately represented. In addition, the three-dimensional images could be easily rotated arbitrarily, precise evaluation could be done at every part of the mandible. On diagnosis, the mandibular morphology classified into the unilateral hybrid forms was presumed to vary from case to case even in the same classification. PMID:2037691

  9. A Three-Dimensional Extension to Zatrikean Pregeometry

    NASA Astrophysics Data System (ADS)

    Geroyannis, V. S.; Dallas, T. G.

    2006-08-01

    The zatrikean abacus was originally defined as a two-dimensional chessboard-like lattice with square geobits. In this paper we generalize the zatrikean abacus in three dimensions by using a three-dimensional lattice with cubic geobits. We then calculate the values of certain interesting pregeometric quantities for the solar system.

  10. KOBRA3-three dimensional raytracing including space-charge effects

    SciTech Connect

    Spadtke, P.

    1985-10-01

    Using the three-dimensional computer code KOBRA3, we have simulated the behaviour of the space charge compensating electrons within the potential of ion beams and magnetic fields. Measured field maps of a solenoid and a quadrupole have been used for these simulations. The predictions of the code are compared with measurements.

  11. Real-time construction of three-dimensional occupancy maps

    SciTech Connect

    Jones, J.P.

    1992-01-01

    This paper describes a preliminary sensory system for real-time sensor-based navigation in a three-dimensional, dynamic environment. Data from a laser range camera are processed on an iWarp parallel computer to create a 3D occupancy map. This map is rendered using raytracing. The construction and rendering consume less than 800 milliseconds.

  12. Real-time construction of three-dimensional occupancy maps

    SciTech Connect

    Jones, J.P.

    1992-12-01

    This paper describes a preliminary sensory system for real-time sensor-based navigation in a three-dimensional, dynamic environment. Data from a laser range camera are processed on an iWarp parallel computer to create a 3D occupancy map. This map is rendered using raytracing. The construction and rendering consume less than 800 milliseconds.

  13. Three-dimensional Stress Analysis Using the Boundary Element Method

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1984-01-01

    The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.

  14. A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy

    ERIC Educational Resources Information Center

    Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.

    2010-01-01

    Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented…

  15. Three-Dimensional Extension of a Digital Library Service System

    ERIC Educational Resources Information Center

    Xiao, Long

    2010-01-01

    Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…

  16. Three-Dimensional Printing Using a Photoinitiated Polymer

    ERIC Educational Resources Information Center

    Muskin, Joseph; Ragusa, Matthew; Gelsthorpe, Thomas

    2010-01-01

    Printers capable of producing three-dimensional objects are becoming more common. Most of these printers are impractical for use in the chemistry classroom because of the expense incurred in fabricating a print head that must be controlled in three dimensions. We propose a simpler solution to this problem that allows the emerging technology of…

  17. Three-Dimensional Printing: A Journey in Visualization

    ERIC Educational Resources Information Center

    Poetzel, Adam; Muskin, Joseph; Munroe, Anne; Russell, Craig

    2012-01-01

    Imagine high school students glued to computer screens--not playing video games but applying their mathematical knowledge of functions to the design of three-dimensional sculptures. Imagine these students engaging in rich discourse as they transform functions of their choosing to design unique creations. Now, imagine these students using…

  18. The Mediation of Three-Dimensional Visualization for Isolinal Graphics.

    ERIC Educational Resources Information Center

    Dutton, Ronald

    1978-01-01

    A school-based experimental investigation concerned with contour maps is described. The results, together with those of some other related investigations, point to probable value of models, stereograms, anaglyphs, and other stereoscopic presentations in the teaching of three-dimensional subjects. (Author)

  19. Nonaffine behavior of three-dimensional semiflexible polymer networks

    NASA Astrophysics Data System (ADS)

    Hatami-Marbini, Hamed

    2016-04-01

    Three-dimensional semiflexible polymer networks are the structural building blocks of various biological and structural materials. Previous studies have primarily used two-dimensional models for understanding the behavior of these networks. In this paper, we develop a three-dimensional nonaffinity measure capable of providing direct comparison with continuum level homogenized quantities, i.e., strain field. The proposed nonaffinity measure is capable of capturing possible anisotropic microstructures of the filamentous networks. This strain-based nonaffinity measure is used to probe the mechanical behavior at different length scales and investigate the effects of network mechanical and microstructural properties. Specifically, it is found that although all nonaffinity measure components have a power-law variation with the probing length scale, the degree of nonaffinity decreases with increasing the length scale of observation. Furthermore, the amount of nonaffinity is a function of network fiber density, bending stiffness of the constituent filaments, and the network architecture. Finally, it is found that the two power-law scaling regimes previously reported for two-dimensional systems do not appear in three-dimensional networks. Also, unlike two-dimensional models, the exponent of the power-law relation depends weakly on the density of the three-dimensional networks.

  20. Pupils' Perceptions of Three-Dimensional Structures in Biology Lessons.

    ERIC Educational Resources Information Center

    Russell-Gebbett, Jean

    1984-01-01

    Investigated 11 to 15 year olds' abilities to understand three-dimensional structures (including sectional views of eggs, cells, stems, and fish) studies in biology. Results indicate two skills needed for success: abstracting sectional shapes and appreciating spatial relationships of internal parts. Gives examples of students "talking through"…

  1. A Three-Dimensional Haptic Matrix Test of Nonverbal Reasoning

    ERIC Educational Resources Information Center

    Miller, Joseph C.; Skillman, Gemma D.; Benedetto, Joanne M.; Holtz, Ann M.; Nassif, Carrie L.; Weber, Anh D.

    2007-01-01

    Three-dimensional haptic matrices were pilot-tested as a nonvisual measure of cognitive ability. The results indicated that they correlated with convergent measures, with emphasis on spatial processing and that the participants who described items "visually" completed them more quickly and accurately and tended to have become visually impaired…

  2. Binocular three-dimensional measurement system using a Dammann grating

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Zhou, Changhe; Wei, Shengbin; Wang, Shaoqing; Li, Shubin; Li, Yanyang; Wang, Jin; Lu, Yancong

    2014-11-01

    In this paper, we develop a binocular three-dimensional measurement system using a Dammann grating. A laser diode and a Dammann grating are employed to generate a regular and square laser spot array. Dammann array illuminator is placed between two cameras and narrowband-pass filters are embedded in the project lens to eliminate the interference of background light. During the measurement, a series of laser spot arrays are projected toward the target object and captured by two cameras simultaneously. Similar to stereo vision of human eyes, stereo matching will be performed to search the homologous spot which is a pair of image points resulting from the same object point. At first, the sub-pixel coordinates of the laser spots are extracted from the stereo images. Then stereo matching is easily performed based on a fact that laser spots with the same diffraction order are homologous ones. Because the system has been calibrated before measurement, single frame three-dimensional point cloud can be obtained using the disparity of homologous points by triangulation methods. Finally, three-dimensional point clouds belong to different frame which represent different view of the object will be registered to build up an integral three-dimensional object using ICP algorithm. On one hand, this setup is small enough to meet the portable outdoor applications. On the other hand, measurement accuracy of this system is better than 0.3 mm which can meet the measurement accuracy requirements in most situations.

  3. Three-dimensional acousto-optic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Metscher, Brian; Lesh, James R.

    1990-01-01

    A three-dimensional acoustooptic spectrum analyzer with subhertz resolution is demonstrated experimentally. The first and second dimensions are the two spatial dimensions of the output detector array, and the third dimension is time as sampled by the detector array frame rate. A superfine resolution of 0.12 Hz has been achieved.

  4. Three-dimensional phase matching in four-wave mixing

    NASA Astrophysics Data System (ADS)

    Prior, Y.

    1980-06-01

    Three-dimensional phase matching is considered for the case of coherent anti-Stokes Raman scattering (CARS), which can be readily generalized to any other four-wave mixing processes. Attention is given to an alignment procedure, and the fact that only two frequencies are required for this technique is emphasized.

  5. Three-dimensional measurements of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Ray, S. K.; Grandt, A. F., Jr.

    1984-01-01

    Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.

  6. View Factor Calculation for Three-Dimensional Geometries.

    1989-06-20

    Version 00 MCVIEW calculates the radiation geometric view factor between surfaces for three dimensional geometries with and without interposed third surface obstructions. It was developed to calculate view factors for input data to heat transfer analysis programs such as SCA-03/TRUMP, SCA-01/HEATING-5 and PSR-199/HEATING-6.

  7. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  8. Quantum field between moving mirrors: A three dimensional example

    NASA Technical Reports Server (NTRS)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  9. Three-dimensional evolution of early solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1991-01-01

    The progress is reported toward the goal of a complete theory of solar nebula formation, with an emphasis on three spatial dimension models of solar nebular formation and evolution. The following subject areas are covered: (1) initial conditions for protostellar collapse; (2) single versus binary star formation; (3) angular momentum transport mechanisms; (4) three dimensional solar nebula models; and (5) implications for planetary formation.

  10. Constructing Mental Representations of Complex Three-Dimensional Objects.

    ERIC Educational Resources Information Center

    Aust, Ronald

    This exploratory study investigated whether there are differences between males and females in the strategies used to construct mental representations from three-dimensional objects in a dimensional travel display. A Silicon Graphics IRIS computer was used to create the travel displays and mathematical models were created for each of the objects…

  11. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    PubMed

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents.

  12. Three-dimensional display of human fetus image by holographic stereogram

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Akiyama, Iwaki; Ishizuka, Takao; Odani, Makoto; Itoh, Koichi; Ishikawa, Jun

    1993-03-01

    Three-dimensional image display technique is becoming very important in the field of diagnosis of human fetus by ultrasound B-mode image. We apply the technique of holographic stereogram (HS) to the ultrasound B-mode human fetus images and display a 3-D image which is the real stereoscopic image. In this case each sectional diagram of the human body is measured by the ultrasound B-mode method and the human fetus image is extracted and then a 3-D surface image is reconstructed with the digital image processing. Then the 3-D image is projected to a plane and films which are composed of the various viewpoints are taken. Next, HS is constructed using these films. Then we make clear the condition of making HS. The rainbow hologram is made using the HS as the master hologram and we consider the characteristics of the reconstructed image. Also, the special image reconstructing lamp house is developed for medical application, and we discuss the possibility of this method for the medical diagnosis.

  13. Real-time and three-dimensional MRI for diagnosis of pharyngoceles.

    PubMed

    Traser, Louisa; Spahn, Claudia; Richter, Bernhard; Baumann, Tobias; Schumacher, Martin; Echternach, Matthias

    2014-07-01

    In the evaluation of patients with local pathologic dilatation inside the upper airway a pressure-related testing seems important for understanding its pathophysiology and for developing a concept of intra-individually adjusted therapy. Commonly used diagnostic techniques like endoscopy or medical imaging including ultrasound, barium swallow or computer-assisted tomography (CT) have shown limitations either in evaluating a dynamic process or assessing the entirety of cervical structures. This article presents a case report of a professional trumpet player with bilateral pharyngoceles, introducing real-time and three-dimensional (3D) MRI as a helpful tool in the diagnosis of pressure dependent pathologies in the upper airway. With the use of MRI the complete sub- and supraglottic airway can be viewed simultaneously, avoiding the distortion which can occur with endoscopy. Thus, it was possible to evaluate the pharyngoceles pressure-related pathophysiology, from which a successful therapy could be conceived which included modifying the musician's blowing technique. PMID:24395345

  14. Three-dimensional simulations of Nova capsule implosion experiments

    SciTech Connect

    Marinak, M.M.; Tipton, R.E.; Landen, O.L.

    1995-11-01

    Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values.

  15. Video-rate three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Laubscher, Markus; Ducros, Mathieu; Karamata, Boris; Lasser, Theo; Salathe, Rene

    2002-05-01

    Most current optical coherence tomography systems provide two-dimensional cross-sectional or en face images. Successive adjacent images have to be acquired to reconstruct three-dimensional objects, which can be time consuming. Here we demonstrate three-dimensional optical coherence tomography (3D OCT) at video rate. A 58 by 58 smart-pixel detector array was employed. A sample volume of 210x210x80 m3 (corresponding to 58x58x58 voxels) was imaged at 25 Hz. The longitudinal and transverse resolutions are 3 m and 9 m respectively. The sensitivity of the system was 76 dB. Video rate 3D OCT is illustrated by movies of a strand of hair undergoing fast thermal damage.

  16. Numerical Simulation of Three-Dimensional Boattail Afterbody Flowfields

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.

    1981-01-01

    The thin shear-layer approximations of the three-dimensional, compressible Navier-Stokes equations are solved for subsonic, transonic, and supersonic now over axisymmetric boattail bodies at moderate angles of attack. The plume is simulated by a solid body configuration identical to those used In experimental tests. An implicit algorithm of second-order accuracy is used to solve the equations on the ILLIAC 4 computer. The turbulence is expressed by an algebraic model applicable to three-dimensional flowfields with moderate separation. The formulation used is attractive in its independence of boundary-layer parameters. Such a simple model, however, is incapable of supporting detailed quantitative descriptions of complex shear flows. Never-the-less, good qualitative comparisons are found with three different sets of experimental date. Quantitative improvement will depend on improved turbulence transport descriptions.

  17. Identification of Jiangxi wines by three-dimensional fluorescence fingerprints

    NASA Astrophysics Data System (ADS)

    Wan, Yiqun; Pan, Fengqin; Shen, Mingyue

    2012-10-01

    A new assay of identifying wines was developed based on fingerprints of three-dimensional fluorescence spectra, and 30 samples from different manufacturers were analyzed. The techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to differentiate and evaluate the character parameters of wines' three-dimensional fluorescence spectra. At the same time, the back-propagation network (BPN) was applied to predict the attribution of unknown samples. The results of PCA and HCA showed that there was definite different information among the wine samples from different manufacturers. It was promising that the method could be applied to distinguish wine samples produced by different manufacturers. The proposed method could provide the criterion for the quality control of wines.

  18. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  19. Three-dimensional potential energy surface of Ar–CO

    SciTech Connect

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  20. Three-dimensional mapping of single-atom magnetic anisotropy.

    PubMed

    Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Loth, Sebastian

    2015-03-11

    Magnetic anisotropy plays a key role in the magnetic stability and spin-related quantum phenomena of surface adatoms. It manifests as angular variations of the atom's magnetic properties. We measure the spin excitations of individual Fe atoms on a copper nitride surface with inelastic electron tunneling spectroscopy. Using a three-axis vector magnet we rotate the magnetic field and map out the resulting variations of the spin excitations. We quantitatively determine the three-dimensional distribution of the magnetic anisotropy of single Fe atoms by fitting the spin excitation spectra with a spin Hamiltonian. This experiment demonstrates the feasibility of fully mapping the vector magnetic properties of individual spins and characterizing complex three-dimensional magnetic systems.

  1. Influence of stable stratification on three-dimensional isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Metais, O.

    The influence of a stable stratification on three-dimensional homogeneous turbulence is investigated by performing large eddy simulations with the subgrid scales procedure developed by Chollet and Lesieur for isotropic turbulence. Computational initial conditions close to those of the experiments performed by Itsweire, Helland and Van Atta allow the comparison of the experimental and numerical evolutions of density-stratified turbulent flows. Theoretical works by Riley, Metcalfe and Weisman and by Lilly suggest that low Froude number stably-stratified turbulence may be a nearly noninteracting superposition of wave and quasi-horizontal turbulent vortex motions. For our computations the stably-stratified turbulence seems to be a decaying three-dimensional turbulence pulsed by internal gravity waves. However some tendencies towards two-dimensional turbulence are observed.

  2. Viscous three-dimensional analyses for nozzles for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Reddy, D. R.; Lai, H. T.

    1990-01-01

    A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement.

  3. COMOC: Three dimensional boundary region variant, programmer's manual

    NASA Technical Reports Server (NTRS)

    Orzechowski, J. A.; Baker, A. J.

    1974-01-01

    The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.

  4. Three dimensional graphics in the statistical analysis of scientific data

    SciTech Connect

    Grotch, S.L.

    1986-05-01

    In scientific data analysis, the two-dimensional plot has become an indispensable tool. As the scientist more commonly encounters multivariate data, three dimensional graphics will form the natural extension of these more traditional representations. There can be little doubt that as the accessibility to ever more powerful graphics tools increases, their use will expand dramatically. In using three dimensional graphics in routine data analysis for nearly a decade, they have proved to be a powerful means for obtaining insights into data simply not available with traditional 2D methods. Examples of this work, taken primarily from chemistry and meteorology, are presented to illustrate a variety of 3D graphics found to be practically useful. Some approaches for improving these presentations are also highlighted.

  5. Covalently interconnected three-dimensional graphene oxide solids.

    PubMed

    Sudeep, Parambath M; Narayanan, Tharangattu N; Ganesan, Aswathi; Shaijumon, Manikoth M; Yang, Hyunseung; Ozden, Sehmus; Patra, Prabir K; Pasquali, Matteo; Vajtai, Robert; Ganguli, Sabyasachi; Roy, Ajit K; Anantharaman, Maliemadom R; Ajayan, Pulickel M

    2013-08-27

    The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds. These 3D architectures show promise for potential applications such as gas storage; CO2 gas adsorption measurements carried out under ambient conditions show high sorption capacity, demonstrating the possibility of creating new functional carbon solids starting with two-dimensional carbon layers.

  6. Three-dimensional optical encryption based on ptychography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Tuo; Wang, Yali; Qiao, Liang; Yang, Xiubo; Shi, Yishi

    2015-10-01

    We propose a novel optical encryption system for three-dimension imaging combined with three-dimension Ptychography. Employing the proposed cryptosystem, a 3D object can be encrypted and decrypted successfully. Compared with the conventional three-dimensional cryptosystem, not only encrypting the pure amplitude 3D object is available, but also the encryption of complex amplitude 3D object is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Varies of simulation results demonstrate that the feasibility and robust of the cryptosystem. Furthermore, the proposed system could also be used for other potential applications, such as three-dimensional information hiding and multiple images encryption.

  7. Three dimensional calculation of flux of low energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Lee, H.; Bludman, S. A.

    1985-01-01

    Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.

  8. Electroencephalographic (EEG) control of three-dimensional movement

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Sarnacki, William A.; Wolpaw, Jonathan R.

    2010-06-01

    Brain-computer interfaces (BCIs) can use brain signals from the scalp (EEG), the cortical surface (ECoG), or within the cortex to restore movement control to people who are paralyzed. Like muscle-based skills, BCIs' use requires activity-dependent adaptations in the brain that maintain stable relationships between the person's intent and the signals that convey it. This study shows that humans can learn over a series of training sessions to use EEG for three-dimensional control. The responsible EEG features are focused topographically on the scalp and spectrally in specific frequency bands. People acquire simultaneous control of three independent signals (one for each dimension) and reach targets in a virtual three-dimensional space. Such BCI control in humans has not been reported previously. The results suggest that with further development noninvasive EEG-based BCIs might control the complex movements of robotic arms or neuroprostheses.

  9. Three-dimensional collagen architecture in bovine articular cartilage.

    PubMed

    Jeffery, A K; Blunn, G W; Archer, C W; Bentley, G

    1991-09-01

    The three-dimensional architecture of bovine articular cartilage collagen and its relationship to split lines has been studied with scanning electron microscopy. In the middle and superficial zones, collagen was organised in a layered or leaf-like manner. The orientation was vertical in the intermediate zone, curving to become horizontal and parallel to the articular surface in the superficial zone. Each leaf consisted of a fine network of collagen fibrils. Adjacent leaves merged or were closely linked by bridging fibrils and were arranged according to the split-line pattern. The surface layer (lamina splendens) was morphologically distinct. Although ordered, the overall collagen structure was different in each plane (anisotropic) a property described in previous morphological and biophysical studies. As all components of the articular cartilage matrix interact closely, the three-dimensional organisation of collagen is important when considering cartilage function and the processes of cartilage growth, injury and repair. PMID:1894669

  10. Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis

    NASA Astrophysics Data System (ADS)

    Hyung Kim, Dal; Seung Soo Kim, Paul; Agung Julius, Anak; Jun Kim, Min

    2012-01-01

    We demonstrate three-dimensional control with the eukaryotic cell Tetrahymena pyriformis (T. pyriformis) using two sets of Helmholtz coils for xy-plane motion and a single electromagnet for z-direction motion. T. pyriformis is modified to have artificial magnetotaxis with internalized magnetite. To track the cell's z-axis position, intensity profiles of non-motile cells at varying distances from the focal plane are used. During vertical motion along the z-axis, the intensity difference is used to determine the position of the cell. The three-dimensional control of the live microorganism T. pyriformis as a cellular robot shows great potential for practical applications in microscale tasks, such as target transport and cell therapy.

  11. Slightly two- or three-dimensional self-similar solutions

    NASA Astrophysics Data System (ADS)

    Sari, Re'em; Bode, Nate; Yalinewich, Almog; MacFadyen, Andrew

    2012-08-01

    Self-similarity allows for analytic or semi-analytic solutions to many hydrodynamics problems. Most of these solutions are one-dimensional. Using linear perturbation theory, expanded around such a one-dimensional solution, we find self-similar hydrodynamic solutions that are two- or three-dimensional. Since the deviation from a one-dimensional solution is small, we call these slightly two-dimensional and slightly three-dimensional self-similar solutions, respectively. As an example, we treat strong spherical explosions of the second type. A strong explosion propagates into an ideal gas with negligible temperature and density profile of the form ρ(r, θ, ϕ) = r-ω[1 + σF(θ, ϕ)], where ω > 3 and σ ≪ 1. Analytical solutions are obtained by expanding the arbitrary function F(θ, ϕ) in spherical harmonics. We compare our results with two-dimensional numerical simulations, and find good agreement.

  12. Three-dimensional modelling in magnetotelluric and magnetic variational sounding

    NASA Technical Reports Server (NTRS)

    Reddy, I. K.; Phillips, R. J.; Rankin, D.

    1977-01-01

    The Galerkin finite-element method is used to obtain approximate solutions for the three-dimensional induction problem. A rectangular conductive prism is considered as an example, and solutions are obtained for linear and circularly polarized incident plane-wave fields. Magnetotelluric tensor impedances and magnetic transfer functions are computed. Polar diagrams of the tensor impedances and magnetic transfer functions along with their amplitude contour maps are presented. The dimensionality parameter, skew, is contoured at the surface of the earth. It is shown that the relative amplitudes and shapes of the additional and principal impedance polar diagrams can be used to determine the dimensionality of geoelectrical structures. Stations with skew values greater than 0.2 are significantly influenced by the three-dimensionality of the geoelectric structure. The amplitudes of the magnetic transfer function and the orientations of its polar diagrams exhibit large anomalies in the vicinity of the intersection of the lateral contacts.

  13. Three-dimensional radiation transfer modeling in a dicotyledon leaf

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.

    1996-11-01

    The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

  14. Granular temperature profiles in three-dimensional vibrofluidized granular beds

    SciTech Connect

    Wildman, R. D.; Huntley, J. M.; Parker, D. J.

    2001-06-01

    The motion of grains in a three-dimensional vibrofluidized granular bed has been measured using the technique of positron emission particle tracking, to provide three-dimensional packing fraction and granular temperature distributions. The mean square fluctuation velocity about the mean was calculated through analysis of the short time mean squared displacement behavior, allowing measurement of the granular temperature at packing fractions of up to {eta}{similar_to}0.15. The scaling relationship between the granular temperature, the number of layers of grains, and the base velocity was determined. Deviations between the observed scaling exponents and those predicted by recent theories are attributed to the influence of dissipative grain-sidewall collisions.

  15. Three Dimensional Iterative Reconstruction Techniques in Positron Tomography.

    NASA Astrophysics Data System (ADS)

    Sloka, Scott

    The acquisition of positron tomographic data in three dimensions is an improvement over the two dimensional acquisition of data because the greater the number of measurements taken of a stochastic process, the more accurately determined the desired parameter may be. This research pursues the goal of three dimensional image reconstruction in Positron Tomography using an iterative approach. This thesis has followed a systematic approach to the exploration of a system for three dimensional iterative reconstruction. System design parameters were discussed such as the advantages and disadvantages of iterative vs analytic methods, the implementation of two, three dimensional iterative algorithms, the selection of a ray passing method, and the choice of an analytic method for comparison to the iterative methods. Several qualitative and quantitative tests were used/developed and performed to analyse and compare the results. Three dimensional reconstruction in Positron Tomography using two iterative techniques (ART and ML-EM) was demonstrated. The ML-EM algorithm was adapted to satisfy the objective of equalizing the estimates with the measurements via division of the sampling density. A new multi-objective function methodology was developed for two dimensions and its extension to three dimensions discussed. A smoothly-varying Gaussian phantom was created for comparing artifacts from different ray passing methods. The analysis of voxel trends over many iterations was used. The use of the output from a two dimensional filtered backprojection algorithm as the seed for three dimensional algorithms to accelerate the reconstruction the was explored. The importance of the selection of a good ray ordering in ART and its effects on the total squared error were explored. For the phantoms studied in this thesis, the ML -EM algorithm tended to perform better under most conditions. This algorithm is slower than ART to achieve both a low total squared error and good contrast, but the

  16. Three-dimensional tissue culture based on magnetic cell levitation.

    PubMed

    Souza, Glauco R; Molina, Jennifer R; Raphael, Robert M; Ozawa, Michael G; Stark, Daniel J; Levin, Carly S; Bronk, Lawrence F; Ananta, Jeyarama S; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A; Gelovani, Juri G; Killian, T C; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies. PMID:20228788

  17. Three-dimensional transport with variational nodal methods

    SciTech Connect

    Lewis, E.E.; Palmiotti, G.; Shalil, H.S.; Laurin-Kovitz, K.; Fanning, T.; Hanebutte, U.R.

    1996-12-31

    The development of the variational nodal method contained in the three-dimensional transport code VARIANT is reviewed. This Argonne National Laboratory code treats two- and three- dimensional multigroup problems with anisotropic scattering in hexagonal and Cartesian geometries. The methodology couples hybrid finite elements in space, which enforce nodal balance, with spherical harmonics expansions in angle. The resulting response matrix equations are solved by red-black or four-color iterations. Several enhancements to VARIANT are discussed: The simplified spherical harmonics option provides near spherical harmonic accuracy for many problems at a fraction of the cost. Adjoint and perturbation calculations are performed without the physical- and mathematical adjoint dichotomy appearing in other nodal methods. Heterogeneous node methods extend the problem classes to which the method may be applied. Computational strategies and trade-offs are discussed and possible future research directions are outlined.

  18. Three-dimensional theory of the magneto-optical trap

    SciTech Connect

    Prudnikov, O. N. Taichenachev, A. V.; Yudin, V. I.

    2015-04-15

    The kinetics of atoms in a three-dimensional magneto-optical trap (MOT) is considered. A three-dimensional MOT model has been constructed for an atom with the optical transition J{sub g} = 0 → J{sub e} = 1 (J{sub g,} {sub e} is the total angular momentum in the ground and excited states) in the semiclassical approximation by taking into account the influence of the relative phases of light fields on the kinetics of atoms. We show that the influence of the relative phases can be neglected only in the limit of low light field intensities. Generally, the choice of relative phases can have a strong influence on the kinetics of atoms in a MOT.

  19. Three-dimensional optical holography using a plasmonic metasurface

    PubMed Central

    Huang, Lingling; Chen, Xianzhong; Mühlenbernd, Holger; Zhang, Hao; Chen, Shumei; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Cheah, Kok-Wai; Qiu, Cheng-Wei; Li, Jensen; Zentgraf, Thomas; Zhang, Shuang

    2013-01-01

    Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a monolayer of photonic artificial atoms, has offered attractive functionalities for shaping wave fronts of light by introducing an abrupt interfacial phase discontinuity. Here we realize three-dimensional holography by using metasurfaces made of subwavelength metallic nanorods with spatially varying orientations. The phase discontinuity takes place when the helicity of incident circularly polarized light is reversed. As the phase can be continuously controlled in each subwavelength unit cell by the rod orientation, metasurfaces represent a new route towards high-resolution on-axis three-dimensional holograms with a wide field of view. In addition, the undesired effect of multiple diffraction orders usually accompanying holography is eliminated.

  20. Collective modes in three-dimensional magnonic vortex crystals

    PubMed Central

    Hänze, Max; Adolff, Christian F.; Schulte, Benedikt; Möller, Jan; Weigand, Markus; Meier, Guido

    2016-01-01

    Collective modes in three-dimensional crystals of stacked permalloy disks with magnetic vortices are investigated by ferromagnetic resonance spectroscopy and scanning transmission X-ray microscopy. The size of the arrangements is increased step by step to identify the different contributions to the interaction between the vortices. These contributions are the key requirement to understand complex dynamics of three dimensional vortex crystals. Both vertical and horizontal coupling determine the collective modes. In-plane dipoles strongly influence the interaction between the disks in the stacks and lead to polarity-dependent resonance frequencies. Weaker contributions discern arrangements with different polarities and circularities that result from the lateral coupling of the stacks and the interaction of the core regions inside a stack. All three contributions are identified in the experiments and are explained in a rigid particle model. PMID:26932833

  1. Recent developments in three-dimensional numerical estuarine models

    USGS Publications Warehouse

    Cheng, Ralph T.; Smith, Peter E.; Casulli, Vincenzo

    1993-01-01

    For a fixed cost, computing power increases 5 to 10 times every five years. The readily available computing resources have inspired new modal formulations and innovative model applications. Significant progress has been advanced in three-dimensional numerical estuarine modeling within the past three or four years. This paper attempts to review and summarize properties of new 3-D estuarine hydrodynamic models. The emphasis of the review is placed on the formulation, numerical methods. The emphasis of the review is placed on the formulation, numerical methods, spatial and temporal resolution, computational efficiency, and turbulence closure of new models. Recent research has provided guidelines for the proper use of 3-D models involving in the σ-transformation. Other models resort to a fixed level discretization in the vertical. The semi-implicit treatment in time-stepping models appears to have gained momentum. Future research in three-dimensional numerical modeling remains to be on computational efficiency and turbulent closure.

  2. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  3. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  4. Three-dimensional vibrations of cantilevered right triangular plates

    NASA Astrophysics Data System (ADS)

    McGee, O. G.; Giaimo, G. T.

    1992-12-01

    The first known three-dimensional continuum vibration solutions for cantilevered right triangular plates with variable thickness are obtained using the Ritz method. Assumed displacement functions are in the form of algebraic polynomials, which satisfy the fixed face conditions exactly, and which are mathematically complete. Reasonably accurate natural frequencies are calculated for low aspect ratio, right triangular thin plates having arbitrary values of thickness taper ratios in the spanwise direction. Detailed numerical studies show that a three-dimensional analysis is essential to monitoring coupled-mode sensitivities in the variation of non-dimensional natural frequencies with increasing thickness taper ratio. Upper bound results, obtained using the present method, are compared with those obtained by other investigators using ordinary beam theories, two-dimensional finite element and finite difference procedures, and experimental methods. This unified comparison of upper and lower bound solutions is presented here with the aim of 'bracketing' the exact analytical solution of the subject problem.

  5. Surface reconstruction of a three-dimensional ultrasonic flaw

    SciTech Connect

    Koo, Lat S.

    1992-08-01

    In three-dimensional inverse scattering problems, the reconstruction of a solid scatterter is often difficult, if not impossible, and computationally expensive due to the dimensionality. To obtain only the geometrical information, a surface reconstruction algorithm is naturally more desirable since no additional knowledge can be gained from doing the solid reconstruction and the computation is reduced to two dimensions. With the application of the first Born approximation, this paper proposes a simple surfaces reconstruction technique for a three-dimensional target. In general, this method is ill-posed. However, the numerical instability part of the ill-posedness is removable when the surface has a two-fold symmetry with respect to a plane. To demonstrate this approach, three analytical examples are shown. 10 refs.

  6. Surface reconstruction of a three-dimensional ultrasonic flaw

    SciTech Connect

    Koo, Lat S.

    1992-01-01

    In three-dimensional inverse scattering problems, the reconstruction of a solid scatterter is often difficult, if not impossible, and computationally expensive due to the dimensionality. To obtain only the geometrical information, a surface reconstruction algorithm is naturally more desirable since no additional knowledge can be gained from doing the solid reconstruction and the computation is reduced to two dimensions. With the application of the first Born approximation, this paper proposes a simple surfaces reconstruction technique for a three-dimensional target. In general, this method is ill-posed. However, the numerical instability part of the ill-posedness is removable when the surface has a two-fold symmetry with respect to a plane. To demonstrate this approach, three analytical examples are shown. 10 refs.

  7. Dimer problem for some three dimensional lattice graphs

    NASA Astrophysics Data System (ADS)

    Lin, Fenggen; Chen, Ailian; Lai, Jiangzhou

    2016-02-01

    Dimer problem for three dimensional lattice is an unsolved problem in statistical mechanics and solid-state chemistry. In this paper, we obtain asymptotical expressions of the number of close-packed dimers (perfect matchings) for two types of three dimensional lattice graphs. Let M(G) denote the number of perfect matchings of G. Then log(M(K2 ×C4 ×Pn)) ≈(- 1.171 ṡn-1.1223 + 3.146) n, and log(M(K2 ×P4 ×Pn)) ≈(- 1.164 ṡn-1.196 + 2.804) n, where log() denotes the natural logarithm. Furthermore, we obtain a sufficient condition under which the lattices with multiple cylindrical and multiple toroidal boundary conditions have the same entropy.

  8. THREE-DIMENSIONAL STRUCTURE OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Wicks, R. T.

    2012-10-20

    We present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy varying from large to small scales. At the outer scale, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the proton gyroscale, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped in the solar wind.

  9. Nonisentropic unsteady three dimensional small disturbance potential theory

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.

    1986-01-01

    Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.

  10. Three-dimensional Analysis of Nanomaterials by Scanning Probe Nanotomography

    NASA Astrophysics Data System (ADS)

    Efimov, Anton E.; Agapova, Olga I.; Mochalov, Konstantin E.; Agapov, Igor I.

    Micro and nanostructure of scaffolds made from fibroin of Bombyx mori silkworm by salt leaching technique was studied by scanning probe nanotomography. Nanopores with dimensions in range from 30 to 180 nm are observed in the scaffold volume. Three - dimensional analysis of obtained data shows that degree of scaffold nanoporosity is 0.5% and nanopores are not interconnected with each other. Usage of scanning probe nanotomography technique enables to obtain unique nanoscale information of 3D structure of biopolymer nanomaterials.

  11. Analysis of autostereoscopic three-dimensional images using multiview wavelets.

    PubMed

    Saveljev, Vladimir; Palchikova, Irina

    2016-08-10

    We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images. PMID:27534470

  12. Fully Three-Dimensional Virtual-Reality System

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1994-01-01

    Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.

  13. Three-dimensional optical trapping of partially silvered silica microparticles.

    PubMed

    Jordan, P; Cooper, J; McNay, G; Docherty, F T; Smith, W E; Sinclair, G; Padgett, M J

    2004-11-01

    We demonstrate three-dimensional trapping of micrometer-diameter silica particles, partially coated with silver, within conventional optical tweezers. Although metallic particles are usually repelled from the beam focus by the scattering force, we show that transparent spheres partially coated with silver can be trapped with efficiencies comparable with dielectric particles. The trapping characteristics of these particles are examined as a function of metallic coverage, and the application of these particles to surface-enhanced resonance Raman scattering is investigated.

  14. Linear stability theory and three-dimensional boundary layer transition

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Malik, Mujeeb R.

    1992-01-01

    The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.

  15. Three-dimensional image reconstruction in object space

    SciTech Connect

    Kinahan, P.E.; Rogers, J.G.; Harrop, R.; Johnson, R.R.

    1988-02-01

    An analytic three-dimensional image reconstruction algorithm which can utilize the cross-plane gamma rays detected by a wide solid-angle PET system is presented. Unlike current analytic algorithms it does not use Fourier transform methods, although mathematical equivalence to Fourier transform methods is proven. Results of implementing the algorithm are briefly discussed. An extension of the algorithm to utilize all measured cross-plane gamma rays is discussed.

  16. Hydrothermal fabrication of three-dimensional secondary battery anodes.

    PubMed

    Liu, Jinyun; Zhang, Hui Gang; Wang, Junjie; Cho, Jiung; Pikul, James H; Epstein, Eric S; Huang, Xingjiu; Liu, Jinhuai; King, William P; Braun, Paul V

    2014-11-01

    A generalized hydrothermal strategy for fabricating three-dimensional (3D) battery electrodes is presented. The hydrothermal growth deposits electrochemically active nanomaterials uniformly throughout the complex 3D mesostructure of the scaffold. Ni inverse opals coated with SnO2 nanoparticles or Co3O4 nanoplatelets, and SiO2 inverse opals coated with Fe3O4 are fabricated, all of which show attractive properties including good capacity retention and C-rate performances. PMID:25195592

  17. Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT

    SciTech Connect

    Onishi, Yasuo; Bao, Jie; Glass, Kevin A.; Eyler, L. L.; Okumura, Masahiko

    2015-03-28

    The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.

  18. Three dimensional mesh generation by triangulation of arbitrary point sets

    NASA Technical Reports Server (NTRS)

    Baker, Timothy J.

    1987-01-01

    A method for generating an unstructured mesh is described. The approach is quite general and joins an arbitrary set of points to produce a covering of three dimensional space by tetrahedra. After removing the tetrahedra that connect surface points, a mesh suitable for a finite element based flow solver is obtained. Details of the triangulation algorithm are provided together with an analysis of the algorithm efficiency and validity.

  19. Coherent states on horospheric three-dimensional Lobachevsky space

    NASA Astrophysics Data System (ADS)

    Kurochkin, Yu.; Rybak, I.; Shoukavy, Dz.

    2016-08-01

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard ("conventional" according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  20. Three-dimensional models. [For orbital celestial mechanics

    SciTech Connect

    Hunter, C. )

    1990-06-01

    The Schwarzschild (1979) approach to the analysis of three-dimensional galactic models is reviewed. An analysis of triaxial Staeckel models is discussed which shows that such models have a wide variety of possible distribution functions. The uniqueness that Schwarzschild first encountered in his discrete formulation of the problem of finding a three-integral distribution function for a triaxial density is real and not an artifact of the finite cell approximation. 27 refs.

  1. Three-dimensional range imaging apparatus and method

    NASA Technical Reports Server (NTRS)

    Scott, Vibart Stan (Inventor); Blair, James Bryan (Inventor); Izquierdo, Luis R. (Inventor)

    2011-01-01

    A three-dimensional range imager includes a light source for providing a modulated light signal, a multiplexer, an optical fiber connecting the light source to the multiplexer, a plurality of optical fibers connected at first ends to the multiplexer and at second ends to a first fiber array, and a transmitter optic disposed adjacent the first fiber array for projecting a pixel pattern of the array onto a target.

  2. Time-Domain Simulation of Three Dimensional Quantum Wires.

    PubMed

    Sullivan, Dennis M; Mossman, Sean; Kuzyk, Mark G

    2016-01-01

    A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603

  3. Simulating Photons and Plasmons in a Three-dimensional Lattice

    SciTech Connect

    Pletzer, A.; Shvets, G.

    2002-09-03

    Three-dimensional metallic photonic structures are studied using a newly developed mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD discretization scheme ensures rapid numerical convergence of the eigenvalue and allows the code to run at low resolution. Plasmon and photonic band structure calculations are presented.

  4. Four-Dimensional Entropy from Three-Dimensional Gravity.

    PubMed

    Carlip, S

    2015-08-14

    At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space. PMID:26317707

  5. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    SciTech Connect

    Evans, Thomas M; Joubert, Wayne; Hamilton, Steven P; Johnson, Seth R; Turner, John A; Davidson, Gregory G; Pandya, Tara M

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  6. High-Speed Three-Dimensional Nodal Diffusion Code System.

    2001-03-21

    Version 00 MOSRA-Light is a three-dimensional diffusion calculation code for X-Y-Z geometry. It can be used in: validation of discontinuity factor for adjoint problem; benchmark on discontinuity factor (forward & adjoint cal.); DVP BWR Benchmark (2D,2G calculation); and void reactivity effect benchmark; etc. A utility code called More-MOSRA provides many useful functions with the file produced by MOSRA-Light.

  7. Rapid measurement of three-dimensional diffusion tensor

    NASA Astrophysics Data System (ADS)

    Cho, H.; Ren, X.-H.; Sigmund, E. E.; Song, Y.-Q.

    2007-04-01

    In this article, the authors demonstrate a rapid NMR method to measure a full three-dimensional diffusion tensor. This method is based on a multiple modulation multiple echo sequence and utilizes static and pulsed magnetic field gradients to measure diffusion along multiple directions simultaneously. The pulse sequence was optimized using a well-known linear inversion metric (condition number) and successfully tested on both isotropic (water) and anisotropic (asparagus) diffusion systems.

  8. Three dimensional flow computations in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Ghantous, C. A.

    1982-01-01

    The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.

  9. Three-dimensional nonparaxial beams in parabolic rotational coordinates.

    PubMed

    Deng, Dongmei; Gao, Yuanmei; Zhao, Juanying; Zhang, Peng; Chen, Zhigang

    2013-10-01

    We introduce a class of three-dimensional nonparaxial optical beams found in a parabolic rotational coordinate system. These beams, representing exact solutions of the nonparaxial Helmholtz equation, have inherent parabolic symmetries. Assisted with a computer-generated holography, we experimentally demonstrate the generation of different modes of these beams. The observed transverse beam patterns along the propagation direction agree well with those from our theoretical predication.

  10. Convection Effects in Three-dimensional Dendritic Growth

    NASA Technical Reports Server (NTRS)

    Lu, Yili; Beckermann, C.; Karma, A.

    2003-01-01

    A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.

  11. Multi-cellular, three-dimensional living mammalian tissue

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor)

    1994-01-01

    The present invention relates to a multicellular, three-dimensional, living mammalian tissue. The tissue is produced by a co-culture process wherein two distinct types of mammalian cells are co-cultured in a rotating bioreactor which is completely filled with culture media and cell attachment substrates. As the size of the tissue assemblies formed on the attachment substrates changes, the rotation of the bioreactor is adjusted accordingly.

  12. Three-dimensional finite element modeling of liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Vanbrabant, Pieter J. M.; James, Richard; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal

    2011-03-01

    A finite element framework is presented to combine advanced three-dimensional liquid crystal director calculations with a full-vector beam propagation analysis. This approach becomes especially valuable to analyze and design structures in which disclinations or diffraction effects play an important role. The wide applicability of the approach is illustrated in our overview from several examples including small pixel LCOS microdisplays with homeotropic alignment.

  13. Three-dimensional source reconstruction with a scanned pinhole camera.

    PubMed

    Marks, D L; Brady, D J

    1998-06-01

    We present a simple reconstruction algorithm for three-dimensional (3D) incoherent source distributions imaged by a laterally scanned pinhole camera. We consider digital sampling of multiple pinhole images for 3D reconstruction and implement an experimental demonstration with lateral resolution of 2x10(-3) rad and longitudinal resolution of approximately 0.14z(2) m , where z is the object-to-pinhole distance in meters.

  14. Three-dimensional chiral skyrmions with attractive interparticle interactions

    NASA Astrophysics Data System (ADS)

    Leonov, A. O.; Monchesky, T. L.; Loudon, J. C.; Bogdanov, A. N.

    2016-09-01

    We introduce a new class of isolated three-dimensional skyrmion that can occur within the cone phase of chiral magnetic materials. These novel solitonic states consist of an axisymmetric core separated from the host phase by an asymmetric shell. These skyrmions attract one another. We derive regular solutions for isolated skyrmions arising in the cone phase of cubic helimagnets and investigate their bound states.

  15. A Flow Solver for Three-Dimensional DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Zheng, Yao

    2002-01-01

    DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.

  16. Code System for Three-Dimensional Hydraulic Reactor Core Analysis.

    2001-03-05

    Version 00 SCORE-EVET was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code contains a one-dimensional steady state solution scheme to initialize the flow field,more » steady state and transient fuel rod conduction models, and comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions, such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage. The basic volume-averaged transient three-dimensional equations for flow in porous media are solved in their general form with constitutive relationships and boundary conditions tailored to define the porous medium as a matrix of fuel rods. By retaining generality in the form of the conservation equations, a wide range of fluid flow problem configurations, from computational regions representing a single fuel rod subchannel to multichannels, or even regions without a fuel rod, can be modeled without restrictive assumptions. The completeness of the conservation equations has allowed SCORE-EVET to be used, with modification to the constitutive relationships, to calculate three-dimensional laminar boundary layer development, flow fields in large bodies of water, and, with the addition of a turbulence model, turbulent flow in pipe expansions and tees.« less

  17. Three-dimensional stiffness of the carpal arch.

    PubMed

    Gabra, Joseph N; Li, Zong-Ming

    2016-01-01

    The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n=8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4±4.6N/mm that was significantly larger than the other principal components of 3.1±0.9 and 2.6±0.5N/mm (p<0.001). The principal direction of the maximum stiffness was pronated within the cross section of the carpal tunnel which is accounted for by the stiff transverse ligaments that tightly bind distal carpal arch. The minimal principal stiffness is attributed to the less constraining articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist׳s three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function.

  18. A new three-dimensional general-relativistic hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Baiotti, L.; Hawke, I.; Montero, P. J.; Rezzolla, L.

    We present a new three-dimensional general relativistic hydrodynamics code, the Whisky code. This code incorporates the expertise developed over the past years in the numerical solution of Einstein equations and of the hydrodynamics equations in a curved spacetime, and is the result of a collaboration of several European Institutes. We here discuss the ability of the code to carry out long-term accurate evolutions of the linear and nonlinear dynamics of isolated relativistic stars.

  19. Three-dimensional electromagnetic articulography: a measurement principle.

    PubMed

    Kaburagi, Tokihiko; Wakamiya, Kohei; Honda, Masaaki

    2005-07-01

    A measurement principle of the three-dimensional electromagnetic articulographic device is presented. The state of the miniature receiver coil is described by five variables representing the position in the three-dimensional coordinate system and the rotation angles relative to it. When the receiver coil is placed in the magnetic field produced from the distributed transmitter coils, its state can be optimally estimated by minimizing the difference between the measured strength of the received signal and the predicted one using the known spatial pattern of the magnetic field. Therefore, the design and calibration of the field function inherently determine the accuracy in estimating the state of the receiver coil. The field function in our method is expressed in the form of a multivariate B spline as a function of position in the three-dimensional space. Because of the piecewise property of the basis function and the freedom in the selection of the rank and the number of basis functions, the spline field function has a superior ability to flexibly and accurately represent the actual magnetic field. Given a set of calibration data, the spline function is designed to form a smooth curved surface interpolating all of these data samples. Then, an iterative procedure is employed to solve the nonlinear estimation problem of the receiver state variables. Because the spline basis function is a polynomial, it is also shown that the calculation of the Jacobian or Hessian required to obtain updated quantities for the state variables can be efficiently performed. Finally, experimental results reveal that the measurement accuracy is about 0.2 mm for a preliminary condition, indicating that the method can achieve the degree of precision required for observing articulatory movements in a three-dimensional space. It is also experimentally shown that the Marquardt method is a better nonlinear programming technique than the Gauss-Newton or Newton-Raphson method for solving the

  20. Four-Dimensional Entropy from Three-Dimensional Gravity.

    PubMed

    Carlip, S

    2015-08-14

    At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space.

  1. Transverse confinement of waves in three-dimensional random media.

    PubMed

    Cherroret, N; Skipetrov, S E; van Tiggelen, B A

    2010-11-01

    We study the transmission of a tightly focused beam through a thick slab of three-dimensional disordered medium in the Anderson localized regime. We show that the transverse profile of the transmitted beam exhibits clear signatures of Anderson localization and that its mean square width provides a direct measure of the localization length. For a short incident pulse, the width is independent of absorption.

  2. Time-Domain Simulation of Three Dimensional Quantum Wires

    PubMed Central

    Mossman, Sean; Kuzyk, Mark G.

    2016-01-01

    A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603

  3. Three-dimensional strong Langmuir turbulence and wave collapse

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Newman, D. L.; Goldman, M. V.

    1988-01-01

    Results from the first fully three-dimensional simulations of driven damped strong Langmuir turbulence and wave collapse are presented. Key results are that turbulence is maintained at least in part by nucleation, the cores of most collapsing objects are pancake shaped in form, and the power spectrum falls off approximately as the product of a power law and an exponential at large wave number.

  4. On a three-dimensional implementation of the baker's transformation

    NASA Astrophysics Data System (ADS)

    Carrière, Philippe

    2007-11-01

    A three-dimensional, steady flow configuration intended to mimic the baker's map is studied by means of numerical simulation. The Poincaré sections computed from a finite element solution of the velocity field show that the behavior is dominated by chaotic advection. The value obtained for the Lyapunov exponent is very close to the theoretical value of ln2 predicted by the baker's map.

  5. Three-dimensional compressible and stretchable conductive composites.

    PubMed

    Yu, You; Zeng, Jifang; Chen, Chaojian; Xie, Zhuang; Guo, Ruisheng; Liu, Zhilu; Zhou, Xuechang; Yang, Yong; Zheng, Zijian

    2014-02-01

    Three-dimensional (3D) conductive composites with remarkable flexibility, compressibility, and stretchability are fabricated by solution deposition of thin metal coatings on chemically modified, macroscopically continuous, 3D polyurethane sponges, followed by infiltration of the metallic sponges with polydimethylsiloxane (PDMS). These low-cost conductive composites are used as high-performance interconnects for flexible and stretchable light-emitting diode (LED) arrays, even with severe surface abrasion or cutting. PMID:24307070

  6. Can Three-Dimensional Instabilities Enable Fast Reconnection?

    NASA Astrophysics Data System (ADS)

    McClymont, Alexander N.

    1997-05-01

    Most studies of magnetic reconnection have assumed a two-dimensional geometry. Gas swept into the current sheet halts the collapse to the near-singularity required to effectively dissipate magnetic energy. The gas is squeezed out of the current sheet along the separatrices at the local sound speed (McClymont and Craig, 1996, Ap. J. 466, 487). Although this allows collapse to proceed (at a slower pace) it is not yet clear whether all the gas can be removed, particularly in a closed system. Therefore it is of interest to examine how relaxing invariance along the third dimension might allow escape of gas from the current sheet and reconnection to proceed at an explosive rate. Uchida and Sakurai (1977, Solar Phys. 51, 413) have examined the possibility of reconnection rate enhancement by the three-dimensional interchange instability. Some three-dimensional analyses (e.g. Craig and Fabling, 1995, Ap. J. 462, 969) have assumed analytic forms of solution which preclude many outcomes. Another three dimensional simulation (Strauss, 1993, Geophys. Res. Lett., 20, 325) assumes a strong magnetic field along the current sheet. We discuss ideal instabilities and other phenomena which might allow gas to escape more effectively from the current sheet, and enhance the reconnection rate.

  7. Three-dimensional fluorescence characteristics of white chrysanthemum flowers.

    PubMed

    Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun

    2014-09-15

    White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.

  8. Three dimensional modelling of ICRF launchers for fusion devices

    NASA Astrophysics Data System (ADS)

    Carter, M. D.; Rasmussen, D. A.; Ryan, P. M.; Hanson, G. R.; Stallings, D. C.; Batchelor, D. B.; Bigelow, T. S.; England, A. C.; Hoffman, D. J.; Murakami, M.; Wang, C. Y.; Wilgen, J. B.; Rogers, J. H.; Wilson, J. R.; Majeski, R.; Schilling, G.

    1996-02-01

    The three dimensional (3-D) nature of antennas for fusion applications in the ion cyclotron range of frequencies (ICRF) requires accurate modelling to design and analyse new antennas. In this article, analysis and design tools for radiofrequency (RF) antennas are successfully benchmarked with experiment, and the 3-D physics of the launched waves is explored. The systematic analysis combines measured density profiles from a reflectometer system, transmission line circuit modelling, detailed 3-D magnetostatics modelling and a new 3-D electromagnetic antenna model including plasma. This analysis gives very good agreement with measured loading data from the Tokamak Fusion Test Reactor (TFTR) Bay-M antenna, thus demonstrating the validity of the analysis for the design of new RF antennas. The 3-D modelling is contrasted with 2-D models, and significant deficiencies are found in the latter. The 2-D models are in error by as much as a factor of 2 in real and reactive loading, even after they are corrected for the most obvious 3-D effects. Three dimensional effects play the most significant role at low parallel wavenumbers, where the launched power spectrum can be quite different from the predictions of 2-D models. Three dimensional effects should not be ignored for many RF designs, especially those intended for fast wave current drive

  9. Three-dimensional jamming and flows of soft glassy materials.

    PubMed

    Ovarlez, G; Barral, Q; Coussot, P

    2010-02-01

    Various disordered dense systems, such as foams, gels, emulsions and colloidal suspensions, undergo a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, which has been thoroughly studied with powerful means of three-dimensional characterization, shows some analogy with that of glasses, which led to them being named soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behaviour, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple three-dimensional continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The three-dimensional jamming criterion seems to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity to the structural relaxations driven by temperature and density in other glassy systems. PMID:20062046

  10. Three-dimensional laser window formation for industrial application

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Kowalski, David

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.

  11. Three-dimensional magnetic recording using ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Kanao, Taro; Mizushima, Koichi; Sato, Rie

    2016-07-01

    To meet the ever-increasing demand for data storage, future magnetic recording devices will need to be made three-dimensional by implementing multilayer recording. In this article, we present methods of detecting and manipulating the magnetization direction of a specific layer selectively in a vertically stacked multilayer magnetic system, which enable layer-selective read and write operations in three-dimensional magnetic recording devices. The principle behind the methods is ferromagnetic resonance excitation in a microwave magnetic field. By designing each magnetic recording layer to have a different ferromagnetic resonance frequency, magnetization excitation can be induced individually in each layer by tuning the frequency of an applied microwave magnetic field, and this selective magnetization excitation can be utilized for the layer-selective operations. Regarding media for three-dimensional recording, when layers of a perpendicular magnetic material are vertically stacked, dipolar interaction between multiple recording layers arises and is expected to cause problems, such as degradation of thermal stability and switching field distribution. To solve these problems, we propose the use of an antiferromagnetically coupled structure consisting of hard and soft magnetic layers. Because the stray fields from these two layers cancel each other, antiferromagnetically coupled media can reduce the dipolar interaction.

  12. Three-dimensional unsteady viscous flow analysis over airfoil sections

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Shamroth, S. J.

    1984-01-01

    A three-dimensional solution procedure for the approximate form of the Navier-Stokes equation was exercised in the two- and three-dimensional modes to compute the unsteady turbulent boundary layer on a flat plate corresponding to the data of Karlsson. The procedure is based on the use of a consistently split Linearized Block Implicit technique in conjunction with a QR operator scheme. New time-dependent upstream boundary conditions were developed that yielded realistic solutions for the interior in the vicinity of the upstream boundary. Comparisons of the computation employing these boundary conditions with the data indicate that both qualitative and quantitative agreement was obtained for the mean velocity and the in phase and out of phase components of the first harmonic of the velocity. In addition, the calculation gave results for the skin friction phase angle that had expected physical behavior for large distances downstream of the inflow boundary. For the three-dimensional case, the two-dimensional data of Karlsson was considered, but in a coordinate system skewed at 45 deg to the free stream direction. The results of the calculations were in excellent agreement with the data and the two-dimensional computations.

  13. Three dimensional self-assembly at the nanoscale

    NASA Astrophysics Data System (ADS)

    Gracias, D. H.

    2013-05-01

    At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost prohibitive. Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D selfassembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined three dimensional patterns.

  14. Three-dimensional fluorescence characteristics of white chrysanthemum flowers

    NASA Astrophysics Data System (ADS)

    Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun

    2014-09-01

    White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.

  15. Joint Torque Reduction of a Three Dimensional Redundant Planar Manipulator

    PubMed Central

    Yahya, Samer; Moghavvemi, Mahmoud; Almurib, Haider Abbas F.

    2012-01-01

    Research on joint torque reduction in robot manipulators has received considerable attention in recent years. Minimizing the computational complexity of torque optimization and the ability to calculate the magnitude of the joint torque accurately will result in a safe operation without overloading the joint actuators. This paper presents a mechanical design for a three dimensional planar redundant manipulator with the advantage of the reduction in the number of motors needed to control the joint angle, leading to a decrease in the weight of the manipulator. Many efforts have been focused on decreasing the weight of manipulators, such as using lightweight joints design or setting the actuators at the base of the manipulator and using tendons for the transmission of power to these joints. By using the design of this paper, only three motors are needed to control any n degrees of freedom in a three dimensional planar redundant manipulator instead of n motors. Therefore this design is very effective to decrease the weight of the manipulator as well as the number of motors needed to control the manipulator. In this paper, the torque of all the joints are calculated for the proposed manipulator (with three motors) and the conventional three dimensional planar manipulator (with one motor for each degree of freedom) to show the effectiveness of the proposed manipulator for decreasing the weight of the manipulator and minimizing driving joint torques. PMID:22969326

  16. Cardiac 4D Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    D'hooge, Jan

    Volumetric cardiac ultrasound imaging has steadily evolved over the last 20 years from an electrocardiography (ECC) gated imaging technique to a true real-time imaging modality. Although the clinical use of echocardiography is still to a large extent based on conventional 2D ultrasound imaging it can be anticipated that the further developments in image quality, data visualization and interaction and image quantification of three-dimensional cardiac ultrasound will gradually make volumetric ultrasound the modality of choice. In this chapter, an overview is given of the technological developments that allow for volumetric imaging of the beating heart by ultrasound.

  17. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; Placenta previa - ultrasound; Multiple ...

  18. Three-dimensional reconstruction of multiplane transesophageal rotational scanning echocardiography

    NASA Astrophysics Data System (ADS)

    He, Aijun; Wang, Tianfu; Zheng, Changqiong; Li, Deyu; Yin, Lixue; Zheng, Yi

    2001-09-01

    The present paper studies the method of 3D reconstruction of multiplane transesophageal rotational scanning echocardiography. According to the characteristic of rotational scanning echocardiography, a direct matching interpolation method is exploited to reconstruct regular volume data from distributed ultrasound scanning points. The whole system is developed and clinical ultrasound data is tested for this method. The volume rendering results show that the proposed method is valid and effective. At last, the possibility of functional reconstruction based on tissue Doppler imaging is explored.

  19. Three-dimensional, geological representation of Quaternary deposits, Goettingen, Germany

    NASA Astrophysics Data System (ADS)

    Thomas, Katrin; Wagner, Bianca

    2010-05-01

    The Quaternary unconsolidated rock in north-eastern Goettingen was newly interpreted according to current scientific expertise. Especially the deposits of the Lutter River, a tributary to the Leine River, were examined using 253 drillings previously undertaken to create 24 two-dimensional cross-sections and a three-dimensional model of the geologic underground in the study area. The interpretation of the included data (drillings, previous studies, two-dimensional cross-sections) resulted in a stratigraphic sequence with 17 Quaternary model units, which was depicted three-dimensionally. During the investigation period, open pits were limited in the entire working area. Natural outcrops of Quaternary subsurfaces are absent. For the creation of a two-dimensional and three-dimensional representation of the geologic structure, it was necessary to fall back on available information of drillings. The spatial distribution of the drilling information in the scope of work is very heterogeneous. In addition, numerous engineer-geologic surveys were used for the interpretation and interpolation within areas where no other information could be obtained by drilling within this study. The production of a three-dimensional illustration of the unconsolidated rock first required an exact investigation and homogenisation of all available information. The choice of the drillings used in the scope of work were chosen with priority according to their depth with the aid of ArcMap. Two-dimensional cross-sections of the profiles of these drillings were produced with the help of the computer program GeoDin. Using the two-dimensional cross sections, the drillings were correlated with each other and compared and discussed extensively. The sequence of the geologic unities thereby presented itself more clearly and more exactly than in linear consideration. A geologic unity could be assigned to every examined layer of each drilling. Additionally, a top and a base were assigned to each geologic

  20. Lyapunov Schmidt reduction algorithm for three-dimensional discrete vortices

    NASA Astrophysics Data System (ADS)

    Lukas, Mike; Pelinovsky, Dmitry; Kevrekidis, P. G.

    2008-03-01

    We address the persistence and stability of three-dimensional vortex configurations in the discrete nonlinear Schrödinger equation and develop a symbolic package based on Wolfram’s MATHEMATICA for computations of the Lyapunov-Schmidt reduction method. The Lyapunov-Schmidt reduction method is a theoretical tool which enables us to study continuations and terminations of the discrete vortices for small coupling between lattice nodes as well as the spectral stability of the persistent configurations. The method was developed earlier in the context of the two-dimensional lattice and applied to the onsite and offsite configurations (called the vortex cross and the vortex cell) by using semianalytical computations [D.E. Pelinovsky, P.G. Kevrekidis, D. Frantzeskakis, Physica D 212 (2005) 20-53; P.G. Kevrekidis, D.E. Pelinovsky, Proc. R. Soc. A 462 (2006) 2671-2694]. The present treatment develops a full symbolic computational package which takes a desired waveform at the anticontinuum limit of uncoupled sites, performs a required number of Lyapunov-Schmidt reductions and outputs the predictions on whether the configuration persists, for finite coupling, in the three-dimensional lattice and whether it is stable or unstable. It also provides approximations for the eigenvalues of the linearized stability problem. We report a number of applications of the algorithm to important multisite three-dimensional configurations, such as the simple cube, the double cross and the diamond. For each configuration, we identify exactly one solution, which is stable for small coupling between lattice nodes.