Sample records for coriander coriandrum sativum

  1. Coriander (Coriandrum sativum L.) and its bioactive constituents.

    PubMed

    Laribi, Bochra; Kouki, Karima; M'Hamdi, Mahmoud; Bettaieb, Taoufik

    2015-06-01

    Coriander (Coriandrum sativum L.), a member of the Apiaceae family, is among most widely used medicinal plant, possessing nutritional as well as medicinal properties. Thus, the aim of this updated review is to highlight the importance of coriander as a potential source of bioactive constituents and to summarize their biological activities as well as their different applications from data obtained in recent literature, with critical analysis on the gaps and potential for future investigations. A literature review was carried out by searching on the electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies focusing on the biological and pharmacological activities of coriander seed and herb bioactive constituents. All recent English-language articles published between 2000 and 2014 were searched using the terms 'C. sativum', 'medicinal plant', 'bioactive constituents', and 'biological activities'. Subsequently, coriander seed and herb essential oils have been actively investigated for their chemical composition and biological activities including antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant and anti-cancer activities, among others. Although coriander has been reported to possess a wide range of traditional medicinal uses, no report is available in its effectiveness use in reactive airway diseases such as asthma and bronchiolitis. In brief, the information presented herein will be helpful to create more interest towards this medicinal species by defining novel pharmacological and clinical applications and hence, may be useful in developing new drug formulations in the future or by employing coriander bioactive constituents in combination with conventional drugs to enhance the treatment of diseases such as Alzheimer and cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of steam distillation on extraction, composition, and functional properties of coriander (Coriandrum sativum L.) proteins

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) is a summer annual plant commonly used as fresh green herb, spice, or for its essential oil. A newly-developed process combined steam distillation and mechanical pressing to recover the essential oil and edible oil, respectively, from dehulled coriander seeds. The c...

  3. Coriander (Coriandrum sativum): A promising functional food toward the well-being.

    PubMed

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2018-03-01

    Coriandrum sativum (C. sativum) or coriander is one of the most popularly used spices in culinary worldwide, and its medicinal values has been recognized since ancient time. C. sativum contains bioactive phytochemicals that are accounted for a wide range of biological activities including antioxidant, anticancer, neuroprotective, anxiolytic, anticonvulsant, analgesic, migraine-relieving, hypolipidemic, hypoglycemic, hypotensive, antimicrobial, and antiinflammatory activities. The major compound, linalool, abundantly found in seeds is remarked for its abilities to modulate many key pathogenesis pathways of diseases. Apart from the modulating effects, the potent antioxidant property of the C. sativum provides a key mechanism behind its protective effects against neurodegenerative diseases, cancer, and metabolic syndrome. This review shed light on comprehensive aspects regarding the therapeutic values of the C. sativum, which indicate its significance of being a promising functional food for promoting the well-being in the era of aging and lifestyle-related diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of steam distillation and screw-pressing on extraction, composition and functional properties of protein in dehulled coriander (Coriandrum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) is a summer annual plant commonly used as fresh green herb, spice, or for its essential oil. An integrated process combined steam distillation, dehulling, and screw pressing to recover the essential oil and edible oil from coriander fruit. The current work determine...

  5. Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum Sativum)

    NASA Astrophysics Data System (ADS)

    Kadiri, L.; Lebkiri, A.; Rifi, E. H.; Ouass, A.; Essaadaoui, Y.; Lebkiri, I.; Hamad, H.

    2018-05-01

    The adsorption of copper ions Cu2+ by Coriandrum Sativum seeds (CSS) from aqueous solution was studied in order to highlight the importance of coriander seeds as a potential tool in the treatment of wastewaters containing heavy metals. The kinetic studies of adsorption of Cu (II) were discussed using the spectroscopic technique "Inducting Coupled Plasma" (ICP). The effects of initial copper ion concentration and contact time were determined. All results show that coriander seeds have, over their culinary and medicinal benefits, a significant adsorbent power of copper ions.

  6. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats.

    PubMed

    Lakhera, Abhijeet; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen

    2015-06-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components.

  7. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats

    PubMed Central

    Lakhera, Abhijeet; Bansal, Divya; Dubey, Nazneen

    2015-01-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components. PMID:27486367

  8. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus).

    PubMed

    Kim, Junheon; Seo, Sun-Mi; Lee, Sang-Gil; Shin, Sang-Chul; Park, Il-Kwon

    2008-08-27

    Commercial essential oils from 28 plant species were tested for their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii). Analysis by gas chromatography-mass spectrometry led to the identification of 26, 11, and 4 major compounds from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) oils, respectively. Compounds from each plant essential oil were tested individually for their nematicidal activities against the pine wood nematode. Among the compounds, benzaldehyde, trans-cinnamyl alcohol, cis-asarone, octanal, nonanal, decanal, trans-2-decenal, undecanal, dodecanal, decanol, and trans-2-decen-1-ol showed strong nematicidal activity. The essential oils described herein merit further study as potential nematicides against the pine wood nematode.

  9. Two new aliphatic lactones from the fruits of Coriandrum sativum L.

    PubMed Central

    2012-01-01

    Background The present paper describes the isolation and characterization of two new aliphatic δ-lactones along with three glycerides and n-nonadecanyl cetoleate from the fruits of Coriandrum sativum L. (Apiaceae). The structures of all the isolated phytoconstituents have been established on the basis of spectral data analysis and chemical reactions. Results Phytochemical investigation of the methanolic extract of C. sativum L. (Apiaceae) fruits resulted in the isolation of two new aliphatic δ-lactones characterized as 2α-n-heptatriacont-(Z)-3-en-1,5-olide (1) (coriander lactone) and 2α-n-tetracont-(Z,Z)-3,26-dien-18α-ol-1,5-olide (2) (hydroxy coriander lactone) together with glyceryl-1,2-dioctadec-9,12-dienoate-3-octadec-9-enoate (3); glyceryl-1,2,3-trioctadecanoate (4); n-nonadecanyl-n-docos-11-enoate (5) and oleiyl glucoside (6). Conclusions Phytochemical investigation of the methanolic extract of C. sativum gave coriander lactone and hydroxy coriander lactone as the new phytoconstituents. PMID:22800677

  10. Identification of (E,E)-2,4-undecadienal from coriander (Coriandrum sativum L.) as a highly effective deodorant compound against the offensive odor of porcine large intestine.

    PubMed

    Ikeura, Hiromi; Kohara, Kaori; Li, Xin-Xian; Kobayashi, Fumiyuki; Hayata, Yasuyoshi

    2010-10-27

    The leaves of coriander ( Coriandrum sativum L.) exhibited a strong deodorizing effect against porcine internal organs (large intestine). The effective deodorizing compounds of coriander were identified by separating the volatile component of coriander, testing the effectiveness of each fraction against the offensive odor of porcine large intestine, and then identifying the compounds by GC-MS. The volatile component of coriander was first separated into six fractions (A-F) by preparative gas chromatography, and the deodorizing activity of each of these fractions against the offensive odor was measured. Fraction D, which showed the strongest deodorizing effect, was then separated into 12 subfractions by preparative GC. The deodorant activity of each subfraction was evaluated, and the deodorant compounds were identified by GC-MS. It was discovered that (E,E)-2,4-undecadienal was the most effective deodorizing compound. The deodorizing activity of (E,E)-2,4-undecadienal on the porcine large intestine increased as with concentration, reaching almost complete deodorizing ability at 10 ppb.

  11. The effect of hydroalcoholic extract of Coriandrum sativum on rat appetite

    PubMed Central

    Nematy, Mohsen; Kamgar, Maryam; Mohajeri, Seyed Mohammad Reza; Tabatabaei Zadeh, Seyed Amir; Jomezadeh, Mohammad Reza; Akbarieh Hasani, Omid; Kamali, Najmeh; Vojouhi, Shohreh; Baghban, Sara; Aghaei, Azita; Soukhtanloo, Mohammad; Hosseini, Mahmoud; Gholamnezhad, Zahra; Rakhshandeh, Hassan; Norouzy, Abdolreza; Esmaily, Habibollah; Ghayour-Mobarhan, Majid; Patterson, Michael

    2013-01-01

    Objective: Losing weight in consequence of appetite loss can be a sign of a serious underlying condition. Currently, the most widely prescribed medication for anorexia is cyproheptadine hydrochloride. However, the clinical use of cyproheptadine hydrochloride is limited by its side effects. In Iranian traditional medicine, Coriandrum sativum stimulates the appetite. Therefore, the effect of Coriandrum sativum (coriander) hydroalcoholic extract was investigated on food intake in rats. Material and Methods: Thirty male Wistar rats were randomly divided into five groups. Two control groups were used, one group received 0.5 ml water per day (vehicle group), and another group did not receive anything (control group). The other 3 groups were daily treated by 50, 100 or 150 mg/kg of coriander for 7 days, respectively. The daily amount of the food eaten by each rat was measured for 10 days. The amount of energy intake of each rat was also calculated for 7 days during the intervention. The difference in energy intake was calculated and compared between groups. Result: There was no significant change in energy intake between control and vehicle groups. The change in energy intake after treatment by 100 and 150 mg/kg of the extract was significantly higher than other groups (p=0.030 and p=0.007) Conclusion: This study indicated that coriander had positive effects on appetite of rats. Future studies are needed to evaluate the mechanisms of the effects of this plant on appetite. PMID:25050262

  12. Sedative effect of central administration of Coriandrum sativum essential oil and its major component linalool in neonatal chicks.

    PubMed

    Gastón, María Soledad; Cid, Mariana Paula; Vázquez, Ana María; Decarlini, María Florencia; Demmel, Gabriela I; Rossi, Laura I; Aimar, Mario Leandro; Salvatierra, Nancy Alicia

    2016-10-01

    Context Coriandrum sativum L. (Apiaceae) (coriander) is an herb grown throughout the world as a culinary, medicinal or essential crop. In traditional medicine, it is used for the relief of anxiety and insomnia. Systemic hydro-alcoholic and aqueous extract from aerial parts and seeds had anxiolytic and sedative action in rodents, but little is known about its central effect in chicks. Objective To study the effects of intracerebroventricular administration of essential oil from coriander seeds and its major component linalool on locomotor activity and emotionality of neonatal chicks. Materials and methods The chemical composition of coriander essential oil was determined by a gas-chromatographic analysis (> 80% linalool). Behavioural effects of central administration of coriander oil and linalool (both at doses of 0.86, 8.6 and 86 μg/chick) versus saline and a sedative diazepam dose (17.5 μg/chick, standard drug) in an open field test for 10 min were observed. Results Doses of 8.6 and 86 μg from coriander oil and linalool significantly decreased (p < 0.05) squares crossed number, attempted escapes, defecation number and distress calls, and significantly increased (p < 0.05) the sleeping posture on an open field compared with saline and were similar to the diazepam group. Discussion and conclusion The results indicate that intracerebroventricular injection of essential oil from Coriandrum sativum seeds induced a sedative effect at 8.6 and 86 μg doses. This effect may be due to monoterpene linalool, which also induced a similar sedative effect, and, therefore, could be considered as a potential therapeutic agent similar to diazepam.

  13. Quality control and in vitro antioxidant potential of Coriandrum sativum Linn.

    PubMed Central

    Singh, Mhaveer; Tamboli, E. T.; Kamal, Y. T.; Ahmad, Wasim; Ansari, S. H.; Ahmad, Sayeed

    2015-01-01

    Background: Coriandrum sativum Linn., commonly known as coriander, is a well-known spice and drug in India. It has various health-related benefits and used in various Unani formulations. In this present study, quality assessment of coriander fruits was carried out by studying anatomical characters, physicochemical tests, and chemoprofiling using high performance thin layer chromatography (HPTLC) and gas chromatography-mass spectroscopy (GC-MS) along with in vitro antioxidant potential. Materials and Methods: Standardization was carried out as per the pharmacopeial guidelines. Estimation of heavy metals, pesticides, and aflatoxins was carried out to ascertain the presence of any contaminant in the sample. Chemoprofiling was achieved by thin layer chromatography (TLC) by optimizing the mobile phase for different extracts. The most of the pharmacological activities of coriander are based on volatile oil constituents. Hence, GC-MS profiling was also carried out using hexane-soluble fraction of hydro-alcoholic extract. The total phenolic contents and in vitro antioxidant efficacy were determined using previously established methods. Results: The quality control and anatomical studies were very valuable for the identification whereas good antioxidant potential was observed when compared to ascorbic acid. The drug was found free of contaminant when analyzed for pesticides and aflatoxins whereas heavy metals were found under reported limits. Conclusion: The work embodied in this present research can be utilized for the identification and the quality control of the coriander fruit. PMID:26681883

  14. Dehulling of coriander fruit before oil extraction

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) is a summer annual traditionally grown for use as fresh green herb, spice or for its essential oil. The essential oil is obtained by steam distillation of crushed fruit and the residue is utilized as feed or processed further to recover the triglyceride. The triglyc...

  15. Processing of coriander fruits for the production of essential oil, triglyceride, and high protein seed meal

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) is a summer annual traditionally grown for use as a fresh green herb or as a spice. The essential oil extracted from coriander fruit is also widely used as flavoring in a variety of food products. The fatty oil (triglyceride) fraction in the seed is rich in petrosel...

  16. Coriandrum sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression

    PubMed Central

    Freires, Irlan de Almeida; Murata, Ramiro Mendonça; Furletti, Vivian Fernandes; Sartoratto, Adilson; de Alencar, Severino Matias; Figueira, Glyn Mara; de Oliveira Rodrigues, Janaina Aparecida; Duarte, Marta Cristina Teixeira; Rosalen, Pedro Luiz

    2014-01-01

    Oral candidiasis is an opportunistic fungal infection of the oral cavity with increasingly worldwide prevalence and incidence rates. Novel specifically-targeted strategies to manage this ailment have been proposed using essential oils (EO) known to have antifungal properties. In this study, we aim to investigate the antifungal activity and mode of action of the EO from Coriandrum sativum L. (coriander) leaves on Candida spp. In addition, we detected the molecular targets affected in whole-genome expression in human cells. The EO phytochemical profile indicates monoterpenes and sesquiterpenes as major components, which are likely to negatively impact the viability of yeast cells. There seems to be a synergistic activity of the EO chemical compounds as their isolation into fractions led to a decreased antimicrobial effect. C. sativum EO may bind to membrane ergosterol, increasing ionic permeability and causing membrane damage leading to cell death, but it does not act on cell wall biosynthesis-related pathways. This mode of action is illustrated by photomicrographs showing disruption in biofilm integrity caused by the EO at varied concentrations. The EO also inhibited Candida biofilm adherence to a polystyrene substrate at low concentrations, and decreased the proteolytic activity of Candida albicans at minimum inhibitory concentration. Finally, the EO and its selected active fraction had low cytotoxicity on human cells, with putative mechanisms affecting gene expression in pathways involving chemokines and MAP-kinase (proliferation/apoptosis), as well as adhesion proteins. These findings highlight the potential antifungal activity of the EO from C. sativum leaves and suggest avenues for future translational toxicological research. PMID:24901768

  17. In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum sativum against Haemonchus contortus.

    PubMed

    Eguale, T; Tilahun, G; Debella, A; Feleke, A; Makonnen, E

    2007-04-04

    In vitro anthelmintic activities of crude aqueous and hydro-alcoholic extracts of the seeds of Coriandrum sativum (Apiaceae) were investigated on the egg and adult nematode parasite Haemonchus contortus. The aqueous extract of Coriandrum sativum was also investigated for in vivo anthelmintic activity in sheep infected with Haemonchus contortus. Both extract types of Coriandrum sativum inhibited hatching of eggs completely at a concentration less than 0.5 mg/ml. ED(50) of aqueous extract of Coriandrum sativum was 0.12 mg/ml while that of hydro-alcoholic extract was 0.18 mg/ml. There was no statistically significant difference between aqueous and hydro-alcoholic extracts (p>0.05). The hydro-alcoholic extract showed better in vitro activity against adult parasites than the aqueous one. For the in vivo study, 24 sheep artificially infected with Haemonchus contortus were randomly divided into four groups of six animals each. The first two groups were treated with crude aqueous extract of Coriandrum sativum at 0.45 and 0.9 g/kg dose levels, the third group with albendazole at 3.8 mg/kg and the last group was left untreated. Efficacy was tested by faecal egg count reduction (FECR) and total worm count reduction (TWCR). On day 2 post treatment, significant FECR was detected in groups treated with higher dose of Coriandrum sativum (p<0.05) and albendazole (p<0.001). On days 7 and 14 post treatment, significant FECR was not detected for both doses of Coriandrum sativum (p>0.05). Significant (p<0.05) TWCR was detected only for higher dose of Coriandrum sativum compared to the untreated group. Reduction in male worms was higher than female worms. Treatment with both doses of Coriandrum sativum did not help the animals improve or maintain their PCV while those treated with albendazole showed significant increase in PCV (p<0.05).

  18. Effects of Coriandrum sativum Syrup on Migraine: A Randomized, Triple-Blind, Placebo-Controlled Trial

    PubMed Central

    Delavar Kasmaei, Hosein; Ghorbanifar, Zahra; Zayeri, Farid; Minaei, Bagher; Kamali, Seyed Hamid; Rezaeizadeh, Hossein; Amin, Gholamreza; Ghobadi, Ali; Mirzaei, Zohreh

    2016-01-01

    Background: Migraine is one of the most common and debilitating neurological problems. Although numerous preventive drugs are used to treat migraine, their complications are unavoidable. Application of herbal medicine, especially well-known medicinal plants, to treatment of chronic diseases, like migraine, could be effective. Coriandrum sativum L. (C. sativum) fruit is one of the most commonly prescribed herbs in Persian medicine, which has been used to treat headache. Objectives: This study was designed to evaluate the effects of C. sativum syrup on duration, severity and frequency of migraine. Patients and Methods: A total of 68 migraineurs, who had the eligibility criteria, according to international headache society diagnostic criteria, were randomly assigned to intervention group (n = 34) or control group (n = 34). In addition to 500 mg of sodium valproate per day, in intervention group, they received 15 mL of Coriander fruit syrup and 15 mL of placebo syrup, in control group, three times a day, during a month. The subjects were followed for clinical efficacy at weeks 1, 2, 3 and 4. The number of migraine attacks per week, as well as the duration and severity of attacks, were evaluated. Results: Of 68 patients randomized, 66 were included in analysis. The generalized estimating equations analysis showed that the Coriander fruit syrup decreased duration, severity and frequency of migraine, in the intervention group (P < 0.001). To be more precise, the mean migraine duration, severity and frequency, in the intervention group, were 5.7 hours, 3.65 units and about 50% less than control group, respectively. Conclusions: Results of this study showed that C. sativum fruit is efficient in reduction of the duration and frequency of migraine attacks and in diminishing pain degree. PMID:26889386

  19. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid- induced acute colitis in rats

    PubMed Central

    Heidari, Bahareh; Sajjadi, Seyed Ebrahim; Minaiyan, Mohsen

    2016-01-01

    Objective: The aim of this study was to determine the protective effects of Coriandrum sativum on acetic acid-inducedcolitis in rats. C. sativum (Coriander) has long been used in Iranian traditional medicine and its use as an anti-inflammatory agent is still common in some herbal formulations. Materials and Methods: Colitis was induced by intra-rectal administration of 2ml acetic acid 4% in fasted male Wistar rats. Treatment was carried out using three increasing doses of extract (250, 500, 1000 mg/kg) and essential oil (0.25, 0.5, 1 ml/kg) of coriander started 2 h before colitis induction and continued for a five-day period. Colon biopsies were taken for weighting, macroscopic scoring of injured tissue, histopathological examination and measuring myeloperoxidase (MPO) activity. Results: Colon weight was decreased in the groups treated with extract (500 and 1000 mg/kg) and essential oil (0.5 ml/kg) compared to the control group. Regarding MPO levels, ulcer severity and area as well as the total colitis index, same results indicating meaningful alleviation of colitis was achieved after treatment with oral extract and essential oil. Conclusion: Since the present experiment was made by oral fractions of coriander thus the resulting effects could be due to both the absorption of the active ingredients and/or the effect of non-absorbable materials on colitis after reaching the colon. In this regard, we propose more toxicological and clinical experiments to warranty its beneficial application in human inflammatory bowel diseases. PMID:27222834

  20. The effect of Coriandrum sativum seed extract on the learning of newborn mice by electric shock: interaction with caffeine and diazepam

    PubMed Central

    Zargar-Nattaj, Seyed Sadegh; Tayyebi, Pooya; Zangoori, Vahid; Moghadamnia, Yasaman; Roodgari, Hasan; Jorsaraei, Seyed Gholamali; Moghadamnia, Ali Akbar

    2011-01-01

    Coriander has been recommended for the relief of pain, anxiety, flatulence, and loss of appetite. In traditional medicine, it is believed that coriander can induce some degree of amnesia in a child when his/her mother uses coriander during the pregnancy. We evaluated the effect of Coriandrum sativum seed extract on learning in second-generation mice. Ethanolic extract (2%) of coriander (100 mg/kg intraperitoneal) was dissolved in sunflower oil (oil) as a vehicle and injected into the control group mother mice during breastfeeding for 25 days at 5-day intervals. After feeding the newborn mice, their learning was evaluated using a step-through passive avoidance task with 0.4 mA electric shock for 2 or 4 seconds. While coriander extract showed a negative effect in the short term (1 hour) after the training session, it potentiated the mice’s learning in later assessments (24 hours post-training [P = 0.022] and 1 week post-training [P = 0.002] by a 4-second shock). Low-dose caffeine (25 mg/kg ip after training) improved the learning after 1 hour (P = 0.024); while diazepam (1 mg/kg ip) suppressed learning at all time points after the 4-second shock training (1 hour, P = 0.022; 24 hours, P = 0.002; and 1 week, P = 0.008). No modification in the pain threshold was elicited by electric stimuli both in coriander and control groups. In conclusion, coriander does not improve learning within a short period of time after training; however, learning after coriander administration can be improved in the long term. PMID:22114531

  1. Assessment of phytoremediation ability of Coriander sativum for soil and water co-contaminated with lead and arsenic: a small-scale study.

    PubMed

    Gaur, Nisha; Kukreja, Aayush; Yadav, Mahavir; Tiwari, Archana

    2017-07-01

    A study was conducted to access the phytoremediation potential of Coriandrum sativum for lead (Pb) and Arsenic (As). Metal tolerance index and pot experiment were conducted. Viable seeds were spread on filter paper and planted in soil placed in pots. The amount of Pb and As in control and in tailing soil was 0.27, 0.141, 1.77, and 0.35 ppm. The study was carried out in triplicates for a period of 4 weeks under natural conditions. The physico-chemical properties of soil were determined using the standard methods. Germination of seeds of Coriander sativum was inhibited more rigorously in filter paper as compared to soil medium. Shoot height and root length were significantly reduced in filter paper medium under Pb and As stress. These were inhibited by 33 and 40%, respectively, from the first to fourth weeks. Seedling growth was less affected in soil medium while greatly reduced in filter paper medium. Soil sustained almost equal stress in the fourth week as compared to the third week in filter paper medium. Shoot height was enormously affected by Pb and As compared to root length in filter paper medium, whereas slight inhibition of growth was observed in soil medium. Coriander sativum grown in pots was effective in removing Pb and As from control and tailing soils in comparison with seeds grown on filter paper. On this basis, it could be used in restoring soil polluted with Pb and As.

  2. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants.

    PubMed

    Chakravarty, Disha; Erande, Manisha B; Late, Dattatray J

    2015-10-01

    We report investigations on the use of graphene quantum dots for growth enhancement in coriander (Coriandrum sativam L.) and garlic (Allium sativum) plants. The as-received seeds of coriander and garlic were treated with 0.2 mg mL(-1) of graphene quantum dots for 3 h before planting. Graphene quantum dots enhanced the growth rate in coriander and garlic plants, including leaves, roots, shoots, flowers and fruits, when the seeds were treated with graphene quantum dots. Our investigations open up the opportunity to use graphene quantum dots as plant growth regulators that can be used in a variety of other food plants for high yield. © 2015 Society of Chemical Industry.

  3. In vitro and in vivo anthelmintic activity of seed extract of Coriandrum sativum compared to Niclosamid against Hymenolepis nana infection.

    PubMed

    Hosseinzadeh, Samaneh; Ghalesefidi, Maryam Jamshidian; Azami, Mehdi; Mohaghegh, Mohammad Ali; Hejazi, Seyed Hossein; Ghomashlooyan, Mohsen

    2016-12-01

    Phytotherapy can be an alternative for the control of gastrointestinal parasites in human and animals. Coriander ( Coriandrum sativum L.) is a medicinal plant which grown as a spice crop all over the world. The seeds of this plant have been used to treat parasitic disease, indigestion, diabetes, rheumatism and pain in the joints. This study was carried out to compare the efficacy of Niclosamid and alcoholic seed extract of C. sativum on Hymenolepis nana infection, in vivo and vitro. For in vivo study, Balb/c mice were used, to compare the efficacy of 50 mg/kg body weight (B.W) of Niclosamid with different doses of alcoholic extracts of C. sativum (250, 500, and 750 mg/kg B.W). It was found that the efficacy of Niclosamid had reached 100 % after 11 days post treatment, while the efficacy of 500 and 750 mg/kg B.W of C. sativum reached to 100 % after 15 days after treatment. For in vitro study, special nutrient broth media was used. It was found that the addition of 1000 mg/ml of Niclosamid had paralyzed and killed worms within 5 min, while C. sativum killed them within 30 min. Our results showed that extract of C. sativum has good effect against H. nana and could be use in traditional medicine for treatment of parasitic disease.

  4. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation.

    PubMed

    Sourmaghi, Mohammad Hossein Salehi; Kiaee, Gita; Golfakhrabadi, Fereshteh; Jamalifar, Hossein; Khanavi, Mahnaz

    2015-04-01

    Coriander (Coriandrum sativum L.), is an annual herb in the Apiaceae family which disperses in Mediterranean and Middle Eastern regions. The Coriander essential oil has been used in food products, perfumes, cosmetics and pharmaceutical industries for its flavor and odor. In Iran, fruits of Coriander used in pickle, curry powders, sausages, cakes, pastries, biscuits and buns. The aim of this study was to investigate microwave radiation effects on quality, quantity and antimicrobial activity of essential oil of Coriander fruits. The essential oils were obtained from the Coriander fruits by hydrodistillation (HD) and Microwave-assisted hydrodistillation (MAHD) then, the oils were analyzed by GC and GC-MS. Antimicrobial activities of essential oils were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans by microdilution method. The results indicated that the HD and MAHD essential oils (EO) were dominated by monoterpenoids such as linalool, geranyl acetate and γ-terpinene. The major compound in both EO was linalool which its amount in HD and MAHD was 63 % and 66 %, respectively. The total amount of monoterpenes hydrocarbons in HD EO differ significantly with the amount in MAHD EO (12.56 % compare to 1.82 %). HD EO showed greater activity against Staphylococcus aureus and Candida albicans than MAHD EO. Moreover, their activities against Ecoli and P. aeruginosa were the same with Minimum Inhibitory Concentration (MIC) 0.781 and 6.25 μL mL(-1), respectively. By using MAHD method, it was superior in terms of saving energy and extraction time, although the oil yield and total composition decrease by using this method.

  5. ESR analysis of natural and gamma irradiated coriander (Coriandrum sativum L.) seeds

    NASA Astrophysics Data System (ADS)

    Sezer, M. Özgür; Kaplan, Necati; Sayin, Ulku

    2017-12-01

    Electron spin resonance (ESR) is a powerful technique to detect radicals trapped in cellulosic food products and has been suggested as a useful method for identification of irradiated herbal foodstuffs. Coriander spice which has important medicinal properties was investigated using ESR spectroscopy. Radicals in natural and irradiated coriander samples were determined at room temperature. ESR spectra of natural sample were characterized by a single central signal with ? value and gamma irradiation produced satellite peaks attributed to cellulose-like radical which is used as a marker for detection of irradiated cellulosic plant products. The spectroscopic splitting values of radicals were determined. Dose dependency and stability of this center were analyzed by dose response and kinetic measurements. The reported results about activation energy, thermal life time and dose response relationship of the cellulose-like radical accurately prove that ESR can be used for identification of irradiated coriander spice seeds.

  6. Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze.

    PubMed

    Emamghoreishi, Masoumeh; Khasaki, Mohammad; Aazam, Maryam Fath

    2005-01-15

    The clinical applications of benzodiazepines as anxiolytics are limited by their unwanted side effects. Therefore, the development of new pharmacological agents is well justified. Among medicinal plants, Coriandrum sativum L. has been recommended for relief of anxiety and insomnia in Iranian folk medicine. Nevertheless, no pharmacological studies have thus far evaluated its effects on central nervous system. Therefore, the aim of this study was to examine if the aqueous extract of Coriandrum sativum seed has anxiolytic effect in mice. Additionally, its effect on spontaneous activity and neuromuscular coordination were evaluated. The anxiolytic effect of aqueous extract (10, 25, 50, 100 mg/kg, i.p.) was examined in male albino mice using elevated plus-maze as an animal model of anxiety. The effects of the extract on spontaneous activity and neuromuscular coordination were assessed using Animex Activity Meter and rotarod, respectively. In the elevated plus-maze, aqueous extract at 100 mg/kg showed an anxiolytic effect by increasing the time spent on open arms and the percentage of open arm entries, compared to control group. Aqueous extract at 50, 100 and 500 mg/kg significantly reduced spontaneous activity and neuromuscular coordination, compared to control group. These results suggest that the aqueous extract of Coriandrum sativum seed has anxiolytic effect and may have potential sedative and muscle relaxant effects.

  7. Effects of Black Pepper (Piper Nigrum), Turmeric Powder (Curcuma Longa) and Coriander Seeds (Coriandrum Sativum) and Their Combinations as Feed Additives on Growth Performance, Carcass Traits, Some Blood Parameters and Humoral Immune Response of Broiler Chickens

    PubMed Central

    Abou-Elkhair, R.; Ahmed, H. A.; Selim, S.

    2014-01-01

    Different herbs and spices have been used as feed additives for various purposes in poultry production. This study was conducted to assess the effect of feed supplemented with black pepper (Piper nigrum), turmeric powder (Curcuma longa), coriander seeds (Coriandrum sativum) and their combinations on the performance of broilers. A total of 210 (Cobb) one-d-old chicks were divided into seven groups of 30 birds each. The treatments were: a control group received no supplement, 0.5% black pepper (T1), 0.5% turmeric powder (T2), 2% coriander seeds (T3), a mixture of 0.5% black pepper and 0.5% turmeric powder (T4), a mixture of 0.5% black pepper and 2% coriander seed (T5), and a mixture of 0.5% black pepper, 0.5% turmeric powder and 2% coriander seeds (T6). Higher significant values of body weight gain during the whole period of 5 weeks (p<0.001) were observed in broilers on T1, T3, T5, and T6 compared to control. Dietary supplements with T1, T2, T3, and T6 improved the cumulative G:F of broilers during the whole period of 5 weeks (p<0.001) compared with control. The dressing percentage and edible giblets were not influenced by dietary supplements, while higher values of relative weight of the liver (p<0.05) were obtained in T5 and T6 compared to control. The addition of feed supplements in T5 and T6 significantly increased serum total protein and decreased serum glucose, triglycerides and alkaline phosphatase concentrations compared with the control group (p<0.05). Broilers on T6 showed significant decrease in the serum glutamate pyruvate transaminase concentration (p<0.05) compared to control. The broilers having T5 and T6 supplemented feed had relatively greater antibody titre (p<0.001) at 35 d of age than control. It is concluded that dietary supplements with black pepper or coriander seeds or their combinations enhanced the performance and health status of broiler chickens. PMID:25050023

  8. Effects of black pepper (piper nigrum), turmeric powder (curcuma longa) and coriander seeds (coriandrum sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens.

    PubMed

    Abou-Elkhair, R; Ahmed, H A; Selim, S

    2014-06-01

    Different herbs and spices have been used as feed additives for various purposes in poultry production. This study was conducted to assess the effect of feed supplemented with black pepper (Piper nigrum), turmeric powder (Curcuma longa), coriander seeds (Coriandrum sativum) and their combinations on the performance of broilers. A total of 210 (Cobb) one-d-old chicks were divided into seven groups of 30 birds each. The treatments were: a control group received no supplement, 0.5% black pepper (T1), 0.5% turmeric powder (T2), 2% coriander seeds (T3), a mixture of 0.5% black pepper and 0.5% turmeric powder (T4), a mixture of 0.5% black pepper and 2% coriander seed (T5), and a mixture of 0.5% black pepper, 0.5% turmeric powder and 2% coriander seeds (T6). Higher significant values of body weight gain during the whole period of 5 weeks (p<0.001) were observed in broilers on T1, T3, T5, and T6 compared to control. Dietary supplements with T1, T2, T3, and T6 improved the cumulative G:F of broilers during the whole period of 5 weeks (p<0.001) compared with control. The dressing percentage and edible giblets were not influenced by dietary supplements, while higher values of relative weight of the liver (p<0.05) were obtained in T5 and T6 compared to control. The addition of feed supplements in T5 and T6 significantly increased serum total protein and decreased serum glucose, triglycerides and alkaline phosphatase concentrations compared with the control group (p<0.05). Broilers on T6 showed significant decrease in the serum glutamate pyruvate transaminase concentration (p<0.05) compared to control. The broilers having T5 and T6 supplemented feed had relatively greater antibody titre (p<0.001) at 35 d of age than control. It is concluded that dietary supplements with black pepper or coriander seeds or their combinations enhanced the performance and health status of broiler chickens.

  9. [Antioxidant properties of essential oils from lemon, grapefruit, coriander, clove, and their mixtures].

    PubMed

    Misharina, T A; Samusenko, A L

    2008-01-01

    Antioxidant properties of individual essential oils from lemon (Citrus limon L.), pink grapefruit (Citrus paradise L.), coriander (Coriandrum sativum L.), and clove (Caryophyllus aromaticus L.) buds and their mixtures were studied by capillary gas-liquid chromatography. Antioxidant activity was assessed by oxidation of the aliphatic aldehyde hexanal to the carboxylic acid. The lowest and highest antioxidant activities were exhibited by grapefruit and clove bud essential oils, respectively. Mixtures containing clove bud essential oil also strongly inhibited oxidation of hexanal. Changes in the composition of essential oils and their mixtures in the course of long-term storage in the light were studied. The stability of components of lemon and coriander essential oils in mixtures increased compared to individual essential oils.

  10. Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae).

    PubMed

    Benelli, Giovanni; Flamini, Guido; Fiore, Giulia; Cioni, Pier Luigi; Conti, Barbara

    2013-03-01

    The essential oils of many Apiaceae species have been already studied for their insecticidal and repellent properties against insect pests. In this research, the essential oil (EO) extracted from the fruits of Coriandrum sativum L. (Apiaceae) was evaluated for the first time for its larvicidal and repellent activities against the most invasive mosquito worldwide, Aedes albopictus Skuse (Diptera: Culicidae). The chemical composition of C. sativum EO was investigated by gas chromatography with electron impact mass spectrometry analysis. Coriander EO was mainly composed by monoterpene hydrocarbons and oxygenated monoterpenes, with linalool (83.6 %) as the major constituent. C. sativum EO exerted toxic activity against A. albopictus larvae: LC(50) was 421 ppm, while LC(90) was 531.7 ppm. Repellence trials highlighted that C. sativum EO was a good repellent against A. albopictus, also at lower dosages: RD(50) was 0.0001565 μL/cm(2) of skin, while RD(90) was 0.002004 μL/cm(2). At the highest dosage (0.2 μL/cm(2) of skin), the protection time achieved with C. sativum essential oil was higher than 60 min. This study adds knowledge about the chemical composition of C. sativum EO as well as to the larvicidal and repellent activity exerted by this EO against A. albopictus. On this basis, we believe that our findings could be useful for the development of new and safer products against the Asian tiger mosquito.

  11. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus

    PubMed Central

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1–7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC50 values (lethal concentration for 50% mortality) showed that C. maculatus (LC50 = 1.34 μL/L air) was more susceptible than T. confusum (LC50 = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides. PMID:23227365

  12. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus.

    PubMed

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1-7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC(50) values (lethal concentration for 50% mortality) showed that C. maculatus (LC(50) = 1.34 μL/L air) was more susceptible than T. confusum (LC(50) = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides.

  13. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum, and Dentol Drop with chlorhexidine on Streptococcus mutans.

    PubMed

    Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali

    2013-09-01

    Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries.

  14. EVALUATION OF THE CHELATING EFFECT OF METHANOLIC EXTRACT OF CORIANDRUM SATIVUM AND ITS FRACTIONS ON WISTAR RATS POISONED WITH LEAD ACETATE.

    PubMed

    Téllez-López, Miguel Ángel; Mora-Tovar, Gabriela; Ceniceros-Méndez, Iromi Marlen; García-Lujan, Concepción; Puente-Valenzuela, Cristo Omar; Vega-Menchaca, María Del Carmen; Serrano-Gallardo, Luis Benjamín; Garza, Rubén García; Morán-Martínez, Javier

    2017-01-01

    The rate of lead poisoning has decreased in recent years due to increased health control in industries that use this metal. However, it is still a public health problem worldwide. The use of various plants with chelating properties has been a topic of research today. In traditional medicine, it is said that Coriandrum sativum has chelating properties, but there is no scientific evidence to support this fact. The purpose of this research is to evaluate the chelating effect of methanol extract of coriander and its fractions on Wistar rats intoxicated with lead. In this research, male Wistar rats were poisoned with 50 mg/kg of lead acetate and treated with 50 mg/kg of methanol extract and its fractions. The extract and its fractions were administered to four treatment groups. Positive and negative controls were established. Hemoglobin, hematocrit and lead concentrations were analyzed; liver was evaluated histologically in control and treatment groups. The methanol extract of coriander presented a LD 50 >1000 mg/dL. The group administered with the methanol extract showed significant difference in the levels of hemoglobin and hematocrit compared to the negative control group. Lead concentration in treatment groups showed a decrease compared to the positive control. Histological evaluation of tissue showed less damage in groups administered with methanolic extract and its fractions compared to the positive control which presented structural alterations. Coriander extracts protect liver and lower lead concentration in rats intoxicated with lead in contrast to the positive control group.

  15. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum, and Dentol Drop with chlorhexidine on Streptococcus mutans

    PubMed Central

    Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali

    2013-01-01

    Background and objectives Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. Materials and Methods This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Results Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Conclusion Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries. PMID:24475330

  16. Pharmacological screening of Coriandrum sativum Linn. for hepatoprotective activity

    PubMed Central

    Pandey, A.; Bigoniya, P.; Raj, V.; Patel, K. K.

    2011-01-01

    Objective: Coriandrum sativum (Linn.), a glabrous, aromatic, herbaceous annual plant, is well known for its use in jaundice. Essential oil, flavonoids, fatty acids, and sterols have been isolated from different parts of C. sativum. The plant has a very effective antioxidant profile showing 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, lipoxygenase inhibition, phospholipid peroxidation inhibition, iron chelating activity, hydroxyl radical scavenging activity, superoxide dismutation, glutathione reduction and antilipid peroxidation due to its high total phenolic content with the presence of constituents like pyrogallol, caffeic acid, glycitin, etc. Materials and Methods: This study was aimed at investigating the hepatoprotective activity of C. sativum against carbon tetrachloride (CCl4), with estimation of serum serum glutamyl oxaloacetic acid transaminase (SGOT), serum glutamyl pyruvate transaminase (SGPT), alkaine phosphatase (ALP) and bilirubin, and with liver histopathology. Results: Ethanolic extract was found to be rich in alkaloids, phenolic compounds and flavonoids, and high performance liquid chromatography (HPLC) fingerprinting showed the presence of iso-quercetin and quercetin. C. sativum signifies hepatoprotection by reducing the liver weight, activities of SGOT, SGPT, and ALP, and direct bilirubin of CCl4 intoxicated animals. Administration of C. sativum extract at 300 mg/kg dose resulted in disappearance of fatty deposit, ballooning degeneration and necrosis, indicating antihepatotoxic activity. Conclusion: The results of this study have led to the conclusion that ethanolic extract of C. sativum possesses hepatoprotective activity which may be due to the antioxidant potential of phenolic compounds. PMID:21966166

  17. Antimicrobial activity of coriander oil and its effectiveness as food preservative.

    PubMed

    Silva, Filomena; Domingues, Fernanda C

    2017-01-02

    ABTRACT Foodborne illness represents a major economic burden worldwide and a serious public health threat, with around 48 million people affected and 3,000 death each year only in the USA. One of the possible strategies to reduce foodborne infections is the development of effective preservation strategies capable of eradicating microbial contamination of foods. Over the last years, new challenges for the food industry have arisen such as the increase of antimicrobial resistance of foodborne pathogens to common preservatives and consumers demand for naturally based products. In order to overcome this, new approaches using natural or bio-based products as food preservatives need to be investigated. Coriander (Coriandrum sativum L.) is a well-known herb widely used as spice, or in folk medicine, and in the pharmacy and food industries. Coriander seed oil is the world's second most relevant essential oil, exhibiting antimicrobial activity against Gram-positive and Gram-negative bacteria, some yeasts, dermatophytes and filamentous fungi. This review highlights coriander oil antimicrobial activity and possible mechanisms of action in microbial cells and discusses the ability of coriander oil usage as a food preservative, pointing out possible paths for the successful evolution for these strategies towards a successful development of a food preservation strategy using coriander oil.

  18. EVALUATION OF THE CHELATING EFFECT OF METHANOLIC EXTRACT OF CORIANDRUM SATIVUM AND ITS FRACTIONS ON WISTAR RATS POISONED WITH LEAD ACETATE

    PubMed Central

    Téllez-López, Miguel Ángel; Mora-Tovar, Gabriela; Ceniceros-Méndez, Iromi Marlen; García-Lujan, Concepción; Puente-Valenzuela, Cristo Omar; Vega-Menchaca, María del Carmen; Serrano-Gallardo, Luis Benjamín; Garza, Rubén García; Morán-Martínez, Javier

    2017-01-01

    Background: The rate of lead poisoning has decreased in recent years due to increased health control in industries that use this metal. However, it is still a public health problem worldwide. The use of various plants with chelating properties has been a topic of research today. In traditional medicine, it is said that Coriandrum sativum has chelating properties, but there is no scientific evidence to support this fact. The purpose of this research is to evaluate the chelating effect of methanol extract of coriander and its fractions on Wistar rats intoxicated with lead. Materials and Methods: In this research, male Wistar rats were poisoned with 50 mg/kg of lead acetate and treated with 50 mg/kg of methanol extract and its fractions. The extract and its fractions were administered to four treatment groups. Positive and negative controls were established. Hemoglobin, hematocrit and lead concentrations were analyzed; liver was evaluated histologically in control and treatment groups. Results: The methanol extract of coriander presented a LD50 >1000 mg/dL. The group administered with the methanol extract showed significant difference in the levels of hemoglobin and hematocrit compared to the negative control group. Lead concentration in treatment groups showed a decrease compared to the positive control. Histological evaluation of tissue showed less damage in groups administered with methanolic extract and its fractions compared to the positive control which presented structural alterations. Conclusion: Coriander extracts protect liver and lower lead concentration in rats intoxicated with lead in contrast to the positive control group. PMID:28573226

  19. Anti-granuloma activity of Coriandrum sativum in experimental models

    PubMed Central

    Nair, Vinod; Singh, Surender; Gupta, Yogendra Kumar

    2013-01-01

    Background: Coriandrum sativum has been used in the traditional systems of medicine for management of arthritis and other inflammatory disorders. Objectives: In this study, we have evaluated the anti-inflammatory and anti-granuloma activities of Coriandrum sativum hydroalcoholic extract (CSHE) in experimental models. Materials and Methods: The anti-inflammatory activity of CSHE was evaluated using carrageenan-induced paw edema model and the anti-granuloma activity of CSHE was evaluated using the subcutaneous cotton pellet implantation-induced granuloma formation and stimulation of peritoneal macrophages with complete Freund's adjuvant. Serum tumor necrosis factor-α (TNF-α), IL-6, IL-1 β levels, and peritoneal macrophage expression of TNF-R1 were evaluated as markers of global inflammation. Results: CSHE at the highest dose tested (32 mg/kg) produced a significant reduction (P < 0.05) in paw edema after carrageenan administration. CSHE treatment also reduced dry granuloma weight in all treated animals. Serum IL-6 and IL-1 β levels were significantly (P < 0.05) lower in the CSHE (32 mg/kg)-treated group as compared to control. Although there was an increase in serum TNF-α level in the CSHE-treated group as compared to control, TNF-R1 expression on peritoneal macrophages was found to be reduced. Conclusion: Thus, the result of this study demonstrates the anti-inflammatory and anti-granuloma activities of CSHE in experimental models, and validates its traditional use for the management of arthritis and other inflammatory disorders. PMID:23741156

  20. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats.

    PubMed

    Aissaoui, Abderrahmane; Zizi, Soumia; Israili, Zafar H; Lyoussi, Badiâa

    2011-09-01

    The use of an aqueous extract of coriander (Coriandrum sativum L.; Apiaceae, Umbelliferae) seeds (CS-extract) in Moroccan traditional treatment of diabetes remains to be experimentally validated. The study aim was to investigate potential hypoglycemic (and hypolipidemic) activity of CS-extract after a single oral dose and after daily dosing for 30 days (sub-chronic study) in normal and obese-hyperglycemic-hyperlipidemic (OHH) Meriones shawi rats. After a single oral dose of CS-extract (20mg/kg; predetermined as optimum), plasma glucose, insulin, total cholesterol (TC), and triglycerides (TG) were measured in normal and OHH rats (hypercaloric diet and forced limited physical activity); glibenclamide (GLB; 2.5mg/kg) was used as reference. In the sub-chronic study, the effect of CS-extract and GLB (at the above doses) on body weight (BW), plasma glucose, insulin, TC, LDL-cholesterol, HDL-cholesterol, TG, urea and creatinine was determined in normal and OHH rats; insulin resistance (IR as HOMA-IR), atherosclerotic and cardioprotective indices were calculated. A single dose of CS-extract or GLB suppressed hyperglycemia in OHH rats, and normo-glycemia was achieved at 6-h post-dose; there was no effect on lipids, TG or insulin, but IR decreased significantly. The hypoglycemic effect was lower in normal rats. In the sub-chronic study in OHH rats, the test substances (CS-extract>GLB) reduced plasma glucose (normoglycemia on Day 21), insulin and IR, TC, LDL-cholesterol, and TG. Atherosclerotic index decreased while cardioprotective indices increased only by CS-extract, with no effect on BW, urea or creatinine. Sub-chronic administration of CS-extract in OHH Meriones shawi rats normalized glycemia and decreased the elevated levels of insulin, IR, TC, LDL-cholesterol and TG. Since, the CS-extract decreased several components of the metabolic syndrome and decreased atherosclerotic and increased cardioprotective indices, CS-extract may have cardiovascular protective effect. The

  1. Antibacterial activity of Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus.

    PubMed

    Khan, Dawood Ali; Hassan, Fouzia; Ullah, Hanif; Karim, Sabiha; Baseer, Abdul; Abid, Mobasher Ali; Ubaidi, Muhammad; Khan, Shujaat Ali; Murtaza, Ghulam

    2013-01-01

    Present study deals with the demonstration of the antibacterial activity of very common medicinal plants of Pakistani origin i.e., Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. The extracts were prepared in crude form by the use of hydro-alcoholic solution and were screened for antibacterial activity against various bacterial species by disk diffusion method. Assay was performed using clinical isolates of B. cereus, S. aureus, P. aeruginosa and E. coli. Crude extract of Phyllantus emblica fruit exhibited strong activity against standard cultures of all studied bacteria. Lawsonia alba showed good activity against standard cultures of all the used microorganisms. Coriandrum sativum was effective only against Bacillus cereus, while Cucumis sativus and Culinaris medic showed poor activity against Pseudomonas aeruginosa only. Hence, Phyllantus emblica exhibited strong antibacterial activity against a wide range of bacteria it means that Phyllantus emblica extract contains some compounds which have broad spectrum of bactericidal activity.

  2. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils.

    PubMed

    Delaquis, Pascal J; Stanich, Kareen; Girard, Benoit; Mazza, G

    2002-03-25

    Essential oils from dill (Anethum graveolens L.), coriander (seeds of Coriandrum sativum L.), cilantro (leaves of immature C. sativum L.) and eucalyptus (Eucalyptus dives) were separated into heterogeneous mixtures of components by fractional distillation and were analyzed by gas chromatography-mass spectroscopy. Minimum inhibitory concentrations against gram-positive bacteria, gram-negative bacteria and Saccharomyces cerevisiae were determined for the crude oils and their fractions. Essential oil of cilantro was particularly effective against Listeria monocytogenes, likely due to the presence of long chain (C6-C10) alcohols and aldehydes. The strength and spectrum of inhibition for the fractions often exceeded those determined in the crude oils. Mixing of fractions resulted in additive, synergistic or antagonistic effects against individual test microorganisms.

  3. Alternative treatment of vaginal infections – in vitro antimicrobial and toxic effects of Coriandrum sativum L. and Thymus vulgaris L. essential oils.

    PubMed

    Bogavac, M; Karaman, M; Janjušević, Lj; Sudji, J; Radovanović, B; Novaković, Z; Simeunović, J; Božin, B

    2015-09-01

    The aims of study were to examine the antibacterial potential of two commercial essential oils (EOs) from coriander (Coriandrum sativum L.) and thyme (Thymus vulgaris L.) against vaginal clinical strains of bacteria and yeast and their chemical composition. Antimicrobial activities of commercial essential oils were determined using macro-diffusion (disc, well) and micro-dilution method in 96-well micro plates against twelve clinical strains of bacteria: Escherichia coli, Proteus mirabilis, Staphylococcus aureus and Enterococcus sp., Staph. aureus ATCC 25923, ATCC 6538 and E. coli 25922 and two clinical Candida albicans strains, including ATTC 10231. Spectrophotometric method was used for determination on C. albicans growth. An antimicrobial effect of EOs was strain specific. Bactericidal activity was higher for coriander EO (minimal inhibitory concentration (MICs) 0·4-45·4 μl ml(-1)) against almost all tested bacteria, except multiple resistant strains of Eneterococcus sp. and Proteus sp. Thyme EO showed slightly better fungicidal activity reaching MIC at 0·11 mg ml(-1) for all C. albicans strains. The effect of EOs on biofilm-forming ability was tested for two strains of Staph. aureus and E. coli, as well as on C. albicans filamentation ability. Brine shrimp lethality bioassay revealed thymus oil total toxicity and coriander oil intoxicity (LC50 = 2·25 mg ml(-1)). The chemical composition of oils was analysed by gas chromatography mass spectrometry showing oxygenated monoterepenes as dominant constituents. The results provide in-vitro scientific support for the safety possible use of Coriander EO against E. coli, Staph. aureus and C. albicans vaginal infections in alternative gynaecological treatment. To examine EOs as possible constituent of naturally based antimicrobial agents in vaginaletes for safety gynaecological application. © 2015 The Society for Applied Microbiology.

  4. Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models

    PubMed Central

    Mahendra, Poonam; Bisht, Shradha

    2011-01-01

    Interest in alternative medicine and plant-derived medications that affect the “mind” is growing. The aim of present study was to explore the anti-anxiety activity of hydroalcoholic extract of Coriandrum sativum (Linn.) using different animal models (elevated plus maze, open field test, light and dark test and social interaction test) of anxiety in mice. Diazepam (0.5 mg/kg) was used as the standard and dose of hydroalcoholic extract of C. sativum fruit (50, 100 and 200 mg/kg) was selected as per OECD guidelines. Results suggested that extract of C. sativum at 100 and 200 mg/kg dose produced anti-anxiety effects almost similar to diazepam, and at 50 mg/kg dose did not produce anti-anxiety activity on any of the paradigm used. Further studies are needed to identify the anxiolytic mechanism(s) and the phytoconstituents responsible for the observed central effects of the hydroalcoholic extract of C. sativum. PMID:22022003

  5. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki

    2014-01-01

    Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.

  6. Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish

    NASA Astrophysics Data System (ADS)

    Winarti, S.; Pertiwi, C. N.; Hanani, A. Z.; Mujamil, S. I.; Putra, K. A.; Herlambang, K. C.

    2018-01-01

    Contamination of heavy metals in certain levels of food can disrupt human health. Heavy metals have toxic properties, cannot be overhauled or destroyed by living organisms, can accumulate in the body of organisms including humans, either directly or indirectly. Heavy metal Hg, Cd, Cr is a very toxic metals (can result in death or health problems that are not recovered in a short time), while heavy metal Co, Pb, Cu toxicity is moderate (can lead to both recoverable and non-recoverable health problems in a relatively long time). Hence the heavy metal contaminating the food must be eliminated or reduced to a safe level. One effort was use coriander leaves to reduce the contamination of heavy metals in fish/shellfish. The objective of the research was to prove the extract of coriander leaves can reduce heavy metal contamination of Pb, Hg and Cu in rod shellfish (lorjuk). The treatment of this research was long soaking in coriander leaves extract that were 0, 30, 60 and 90 minutes. The results showed that the longer time of soaking can decrease Pb level from 4.4 ± 0.424 ppb to 1.7 ± 0.5 ppb, Hg level from 4.11± 0.07 to 1.12± 0.6 ppb, and Cu level from 433.7 ± 0.1 ppb to 117 ± 0.78 ppb. Protein content not significant decrease in rod shellfish (lorjuk) after 90 minutes soaking time, that was from 28.56 ± 0.403% to 26,625 ± 0.19%.

  7. Coriandrum sativum mediated synthesis of silver nanoparticles and evaluation of their biological characteristics

    NASA Astrophysics Data System (ADS)

    Senthilkumar, N.; Aravindhan, V.; Ruckmani, K.; Vetha Potheher, I.

    2018-05-01

    Silver (Ag) nanoparticles (NPs) were prepared by percolated green synthesis method using Coriandrum sativum leaf, root, seed and stem extracts and reported its antibacterial activity. The synthesized Ag NPs were confirmed by UV–visible Spectroscopy, Powder x-ray Diffraction (PXRD), Fourier Transform Infra Red (FT-IR) Spectroscopy analyzes. The Maximum absorbance observed around 400–450 nm reveal the characteristic absorbance of Ag NPs. The Dynamic Light Scattering (DLS) analysis shows the stability of synthesized NPs with average size varying from 35 to 53 nm and also zeta potential stability varying from ‑20 to ‑30 mV. The cubic structure, crystalline nature and purity of the material was confirmed by powder x-ray diffraction studies. FT-IR spectrum shows the presence of various functional groups in the resultant material. The Field Emission Scanning Electron Microscopy (FESEM) image shows the surface morphology of the synthesized NPs and the Energy Dispersive x-ray Analysis (EDAX) confirms the presence of silver metal ions. The Coriandrum sativum aqueous extract exhibited excellent antimicrobial activity against Klebsiella pneumoniae (Gram -ve) bacteria. Numerous studies have been made previously in our field of study but optimization has not been carried out by both extract (different parts like leaf, root, seed and stem) and without addition of any external source such as chemicals, heat etc.

  8. The Analgesic Effects of Different Extracts of Aerial Parts of Coriandrum Sativum in Mice

    PubMed Central

    Fatemeh Kazempor, Seyedeh; Vafadar langehbiz, Shabnam; Hosseini, Mahmoud; Naser Shafei, Mohammad; Ghorbani, Ahmad; Pourganji, Masoomeh

    2015-01-01

    Regarding the effects of Coriandrum sativum (C. sativum) on central nervous system, in the present study analgesic properties of different extracts of C. sativum aerial partswere investigated. The mice were treated by saline, morphine, three doses (20, 100 and 500 mg/kg) of aqueous, ethanolic, choloroformic extracts of C. sativum and one dose (100 mg/kg) of aqueous, two doses of ethanolic (100 and 500 mg/kg) and one dose of choloroformic (20 mg/kg) extracts of C. sativum pretreated by naloxone. Recording of the hot plate test was performed 10 min before injection of the drugs as a base and it was consequently repeated every 10 minutes after the extracts injection. The maximal percent effect (MPE) in the groups treated by three doses of aqueous, ethanolic and chloroformic extracts were significantly higher than saline group which were comparable to the effect of morphine. The effects of most effective doses of extracts were reversed by naloxone. The results of present study showed analgesic effect of aqueous, ethanolic and chloroformic extracts of C. sativum extract. These effects of the extracts may be mediated by opioid system. However, more investigations are needed to elucidate the exact responsible mechanism(s) and the effective compound(s).

  9. Drying and color characteristics of coriander foliage using convective thin-layer and microwave drying.

    PubMed

    Shaw, Mark; Meda, Venkatesh; Tabil, Lope; Opoku, Anthony

    2007-01-01

    Heat sensitive properties (aromatic, medicinal, color) provide herbs and spices with their high market value. In order to prevent extreme loss of heat sensitive properties when drying herbs, they are normally dried at low temperatures for longer periods of time to preserve these sensory properties. High energy consumption often results from drying herbs over a long period. Coriander (Coriandrum sativum L., Umbelliferae) was dehydrated in two different drying units (thin layer convection and microwave dryers) in order to compare the drying and final product quality (color) characteristics. Microwave drying of the coriander foliage was faster than convective drying. The entire drying process took place in the falling rate period for both microwave and convective dried samples. The drying rate for the microwave dried samples ranged from 42.3 to 48.2% db/min and that of the convective dried samples ranged from 7.1 to 12.5% db/min. The fresh sample color had the lowest L value at 26.83 with higher L values for all dried samples. The results show that convective thin layer dried coriander samples exhibited a significantly greater color change than microwave dried coriander samples. The color change index values for the microwave dried samples ranged from 2.67 to 3.27 and that of the convective dried samples varied from 4.59 to 6.58.

  10. Composition of the essential oil constituents from leaves and stems of Korean Coriandrum sativum and their immunotoxicity activity on the Aedes aegypti L.

    PubMed

    Chung, Ill-Min; Ahmad, Ateeque; Kim, Sun-Jin; Naik, Poornanand Madhava; Nagella, Praveen

    2012-02-01

    The leaves and stems of Coriandrum sativum were extracted and the essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography-mass spectroscopy (GC-MS), which revealed the essential oils of C. sativum leaves and stems. Thirty-nine components representing 99.62% of the total oil were identified from the leaves. The major components are cyclododecanol (23.11%), tetradecanal (17.86%), 2-dodecenal (9.93%), 1-decanol (7.24%), 13-tetradecenal (6.85%), 1-dodecanol (6.54%), dodecanal (5.16%), 1-undecanol (2.28%), and decanal (2.33%). Thirty-eight components representing 98.46% of the total oil were identified from the stems of the coriander. The major components are phytol (61.86%), 15-methyltricyclo[6.5.2(13,14),0(7,15)]-pentadeca-1,3,5,7,9,11,13-heptene (7.01%), dodecanal (3.18%), and 1-dodecanol (2.47%). The leaf oil had significant toxic effects against the larvae of Aedes aegypti with an LC₅₀ value of 26.93 ppm and an LC₉₀ value of 37.69 ppm and the stem oil has toxic effects against the larvae of A. aegypti with an LC₅₀ value of 29.39 ppm and an LC₉₀ value of 39.95 ppm. Also, the above data indicate that the major compounds may play an important role in the toxicity of essential oils.

  11. Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation.

    PubMed

    Furletti, V F; Teixeira, I P; Obando-Pereda, G; Mardegan, R C; Sartoratto, A; Figueira, G M; Duarte, R M T; Rehder, V L G; Duarte, M C T; Höfling, J F

    2011-01-01

    The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration-MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS). C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM). The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F(8-10) fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F(8-10) fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.

  12. Coriandrum sativum Suppresses Aβ42-Induced ROS Increases, Glial Cell Proliferation, and ERK Activation.

    PubMed

    Liu, Quan Feng; Jeong, Haemin; Lee, Jang Ho; Hong, Yoon Ki; Oh, Youngje; Kim, Young-Mi; Suh, Yoon Seok; Bang, Semin; Yun, Hye Sup; Lee, Kyungho; Cho, Sung Man; Lee, Sung Bae; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2016-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disease, has a complex and widespread pathology that is characterized by the accumulation of amyloid [Formula: see text]-peptide (A[Formula: see text]) in the brain and various cellular abnormalities, including increased oxidative damage, an amplified inflammatory response, and altered mitogen-activated protein kinase signaling. Based on the complex etiology of AD, traditional medicinal plants with multiple effective components are alternative treatments for patients with AD. In the present study, we investigated the neuroprotective effects of an ethanol extract of Coriandrum sativum (C. sativum) leaves on A[Formula: see text] cytotoxicity and examined the molecular mechanisms underlying the beneficial effects. Although recent studies have shown the benefits of the inhalation of C. sativum oil in an animal model of AD, the detailed molecular mechanisms by which C. sativum exerts its neuroprotective effects are unclear. Here, we found that treatment with C. sativum extract increased the survival of both A[Formula: see text]-treated mammalian cells and [Formula: see text]42-expressing flies. Moreover, C. sativum extract intake suppressed [Formula: see text]-induced cell death in the larval imaginal disc and brain without affecting A[Formula: see text]42 expression and accumulation. Interestingly, the increases in reactive oxygen species levels and glial cell number in AD model flies were reduced by C. sativum extract intake. Additionally, C. sativum extract inhibited the epidermal growth factor receptor- and A[Formula: see text]-induced phosphorylation of extracellular signal-regulated kinase (ERK). The constitutively active form of ERK abolished the protective function of C. sativum extract against the [Formula: see text]-induced eye defect phenotype in Drosophila. Taken together, these results suggest that C. sativum leaves have antioxidant, anti-inflammatory, and ERK signaling inhibitory properties that

  13. Preventive effect of Coriandrum sativum on neuronal damages in pentylentetrazole-induced seizure in rats

    PubMed Central

    Pourzaki, Mojtaba; Homayoun, Mansour; Sadeghi, Saeed; Seghatoleslam, Masoumeh; Hosseini, Mahmoud; Ebrahimzadeh Bideskan, Alireza

    2017-01-01

    Objective: Coriandrum sativum (C. sativum) as a medicinal plant has been pointed to have analgesic, hypnotic and anti-oxidant effects. In the current study, a possible preventive effect of the hydro-alcoholic extract of the plant on neuronal damages was examined in pentylenetetrazole (PTZ) rat model of seizure. Materials and Methods: Forty male rats were divided into five main groups and treated by (1) saline, (2) PTZ: 100 mg/kg PTZ (i.p) and (3-5) 50, 100 and 200 mg/kg of hydro-alcoholic extract of C. sativum during seven consecutive days before PTZ injection. After electrocorticography (ECoG), the brains were removed to use for histological examination. Results: All doses of the extract reduced duration, frequency and amplitude of the burst discharges while prolonged the latency of the seizure attacks (p<0.05, p<0.01, and p<0.001). Administration of all 3 doses of the extract significantly prevented from production of dark neurons (p<0.01, and p<0.001) and apoptotic cells (p<0.05, p<0.01, and p<0.001) in different areas of the hippocampus compared to PTZ group. Conclusion: The results of this study allow us to conclude that C. sativum, because of its antioxidant properties, prevents from neuronal damages in PTZ rat model of seizure. PMID:28348967

  14. Classification of specialty seed meals from NIR reflectance spectra

    USDA-ARS?s Scientific Manuscript database

    Near infrared reflectance spectroscopy was used to identify alternative seed meals proposed for food and feed formulations. Spectra were collected from cold pressed Camelina (Camelina sativa), Coriander (Coriandrum sativum), and Pennycress (Thlaspi arvense) meals. Additional spectra were collected ...

  15. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System.

    PubMed

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-11-30

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum , linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity.

  16. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System

    PubMed Central

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-01-01

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity. PMID:27916876

  17. Efficacy of combination of Viola odorata, Rosa damascena and Coriandrum sativum in prevention of migraine attacks: a randomized, double blind, placebo-controlled clinical trial

    PubMed Central

    Kamali, Mohadese; Seifadini, Rostam; Kamali, Hoda; Mehrabani, Mitra; Jahani, Yunes

    2018-01-01

    Background Migraine is the second most common type of headache after tension headaches. In Iranian traditional medicine several herbal drugs are used for the treatment of headache. Including, a product of Iranian traditional medicine, a combination of Viola odorata L. flowers, Rosa damascena L. flowers and Coriandrum sativum L. fruits. Objective To determine the effectiveness of a combination of Viola odorata flowers, Rosa damascene flowers and Coriandrum sativum fruits on severity, duration and frequency of migraine headaches. Methods This randomized, double blind, placebo-controlled clinical trial was performed on 88 patients who had migraine and visited Besat Neurology Clinic No. 4 at Kerman University of Medical Sciences, Kerman, Iran, from September 2016 to march 2017. Patients were randomly divided into the intervention (n=44) or placebo group (n=44). The intervention group received a product of Iranian traditional medicine, a combination of Viola odorata L. flowers, Rosa damascena L. flowers and Coriandrum sativum L. fruits in 500 mg capsules three times a day and propranolol 20mg tablet twice a day, and the control group received placebo capsules (500mg) three times a day and propranolol 20mg tablet twice a day for four weeks. Patients were asked to report the frequency, duration and severity of their headaches in designed forms at home. Then at the end of the 2nd and 4th weeks of treatment, patients were followed for clinical efficacy. Results In terms of duration, frequency and severity of headaches between the two groups of herbal medicine and placebo, the behavior of the two protocols was changed over time (p<0.001). During the 4 weeks, the time and drug interactions, were significant (p <0.001). In other words, the pattern of changes to the two protocols over time, was different. Also, at the end of the 4th week, there was a significant difference between the two groups (p<0.001). Conclusion The study findings suggest that the Iranian traditional

  18. Effects of different levels of coriander (Coriandrum sativum) seed powder and extract on serum biochemical parameters, microbiota, and immunity in broiler chicks.

    PubMed

    Hosseinzadeh, Hesam; Alaw Qotbi, Ali Ahmad; Seidavi, Alireza; Norris, David; Brown, David

    2014-01-01

    The use of herbs and spices has gained increasing interest as feed additives and possible alternative to antibiotics in poultry production. The effects of using different levels of coriander seed powder or extract on selected blood parameters, intestinal microflora, and immune response of broiler chickens were investigated in this study. A total of 420-day-old broiler chicks were randomly assigned to 7 treatments with 4 replicates and fed for 42 days. Results showed that inclusion of 2.0% coriander powder in broiler diets lowered total cholesterol while blood urea was significantly higher in birds on T4 compared to T1 and T2. Furthermore, there were no treatment effects on Lactobacillus bacteria; however, the population of E. coli was significantly higher in the ileum of chickens fed T0. Noticeable significant improvements of antibody titer against Newcastle, infectious bronchitis, and infectious bursal disease were observed in birds receiving coriander extract in water. Immunoglobulin G antibody against sheep red blood cells showed significant improvement in birds fed T3; likewise, immunoglobulin M was significantly higher in birds on T2 and T3 at 28 d of age. These results revealed that coriander extract or powder can be used as antibiotic alternative in broiler feeds.

  19. Effects of Different Levels of Coriander (Coriandrum sativum) Seed Powder and Extract on Serum Biochemical Parameters, Microbiota, and Immunity in Broiler Chicks

    PubMed Central

    Hosseinzadeh, Hesam; Alaw Qotbi, Ali Ahmad; Seidavi, Alireza; Norris, David; Brown, David

    2014-01-01

    The use of herbs and spices has gained increasing interest as feed additives and possible alternative to antibiotics in poultry production. The effects of using different levels of coriander seed powder or extract on selected blood parameters, intestinal microflora, and immune response of broiler chickens were investigated in this study. A total of 420-day-old broiler chicks were randomly assigned to 7 treatments with 4 replicates and fed for 42 days. Results showed that inclusion of 2.0% coriander powder in broiler diets lowered total cholesterol while blood urea was significantly higher in birds on T4 compared to T1 and T2. Furthermore, there were no treatment effects on Lactobacillus bacteria; however, the population of E. coli was significantly higher in the ileum of chickens fed T0. Noticeable significant improvements of antibody titer against Newcastle, infectious bronchitis, and infectious bursal disease were observed in birds receiving coriander extract in water. Immunoglobulin G antibody against sheep red blood cells showed significant improvement in birds fed T3; likewise, immunoglobulin M was significantly higher in birds on T2 and T3 at 28 d of age. These results revealed that coriander extract or powder can be used as antibiotic alternative in broiler feeds. PMID:25614892

  20. Quantitative Genetic Analysis Reveals Potential to Genetically Improve Fruit Yield and Drought Resistance Simultaneously in Coriander

    PubMed Central

    Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar

    2017-01-01

    Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836

  1. Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties.

    PubMed

    Duman, Ahmet D; Telci, Isa; Dayisoylu, Kenan S; Digrak, Metin; Demirtas, Ibrahim; Alma, Mehmet H

    2010-06-01

    Essential oils from Ocimum basilicum L. and Coriandrum sativum L. varieties originating from Turkey were investigated for their antimicrobial properties. The antimicrobial effects of the oil varieties were evaluated by the disc diffusion and minimum inhibitory concentration (MIC) methods against eight bacteria and three fungi. The compositions of the essential oils were analyzed and identified by GC and GC-MS. O. basilicum, C. sativum var. macrocarpum and var. microcarpum oils revealed the presence of linalool (54.4%), eugenol (9.6%), methyl eugenol (7.6%); linalool (78.8%), gamma-terpinene (6.0%), nerol acetate (3.5%); and linalool (90.6%), and nerol acetate (3.3%) as the major components, respectively. The oils exhibited antibacterial activity ranging from 1.25 to 10 microL disc(-1) against the test organisms with inhibition zones of 9.5-39.0 mm and minimal inhibitory concentrations values in the range 0.5- > or =1 microL/L. Linalool, eugenol, and methyl eugenol at 1.25 microL disc(-1) had antimicrobial effects on all microorganisms, giving inhibition zones ranging from 7 to 19 mm.

  2. Assessment of uptake and phytotoxicity of cyanobacterial extracts containing microcystins or cylindrospermopsin on parsley (Petroselinum crispum L.) and coriander (Coriandrum sativum L).

    PubMed

    Pereira, Ana L; Azevedo, Joana; Vasconcelos, Vitor

    2017-01-01

    Blooms of harmful cyanobacteria that synthesize cyanotoxins are increasing worldwide. Agronomic plants can uptake these cyanotoxins and given that plants are ultimately ingested by humans, this represents a public health problem. In this research, parsley and coriander grown in soil and watered through 7 days with crude extracts containing microcystins (MCs) or cylindrospermopsin (CYN) in 0.1-1 μg mL -1 concentration range were evaluated concerning their biomass, biochemical parameters and uptake of cyanotoxins. Although biomass, chlorophylls (a and b), carotenoids and glutathione-S-transferase of parsley and coriander exposed to the crude extracts containing MC or CYN had shown variations, these values were not statistically significantly different. Protein synthesis is not inhibited in coriander exposed to MC or CYN and in parsley exposed to MC. Also, glutathione reductase (GR) and glutathione peroxidase (GPx) in parsley and coriander was not affected by exposure to MC, and in coriander, the CYN did not induce statistically significant differences in these two antioxidative enzymes. Only parsley showed statistically significant increase in protein content exposed to 0.5 μg CYN mL -1 (3.981 ± 0.099 mg g -1 FW) compared to control (2.484 ± 0.145 mg g -1 FW), statistically significant decrease in GR exposed to 0.1 μg CYN mL -1 (0.684 ± 0.117 nmol min -1  mg -1 protein) compared to control (1.30 ± 0.06 nmol min -1  mg -1 protein) and statistically significant increase in GPx exposed to 1 μg CYN mL -1 (0.054 ± 0.026 nmol min -1  mg -1 protein) compared to 0.5 μg CYN mL -1 (0.003 ± 0.001 nmol min -1  mg -1 protein). These changes may be due to the induction of defensive mechanisms by plants by the presence of toxic compounds in the soil or probably to a low generation of reactive oxygen species. Furthermore, the parsley and coriander leaves and stems after 10 days of exposure did not accumulate microcystins or

  3. Hypnotic effect of Coriandrum sativum, Ziziphus jujuba, Lavandula angustifolia and Melissa officinalis extracts in mice

    PubMed Central

    Hajhashemi, Valiollah; Safaei, Azadeh

    2015-01-01

    The aim of the present study was to evaluate hypnotic effect of Coriandrum sativum, Ziziphus jujuba, Lavandula angustifolia and Melissa officinalis hydroalcoholic extracts in mice to select the most effective ones for a combination formula. Three doses of the extracts (250, 500 and 1000 mg/kg of C. sativum and Z. jujuba and 200, 400 and 800 mg/kg of L. angustifolia and M. officinalis) were orally administered to male Swiss mice (20-25 g) and one hour later pentobarbital (50 mg/kg, i.p.) was injected to induce sleep. Onset of sleep and its duration were measured and compared. Control animals and reference group received vehicle (10 ml/kg, p.o.) and diazepam (3 mg/kg, i.p.), respectively. C. sativum and Z. jujuba failed to change sleep parameters. L. angustifolia at doses of 200, 400 and 800 mg/kg shortened sleep onset by 7.6%, 50% and 51.5% and prolonged sleep duration by 9.9%, 43.1% and 80.2%, respectively. Compared with control group the same doses of M. officinalis also decreased sleep onset by 24.7%, 27.5% and 51.2% and prolonged sleep duration by 37.9%, 68.7% and 131.7% respectively. Combinations of L. angustifolia and M. officinalis extracts showed additive effect and it is suggested that a preparation containing both extracts may be useful for insomnia. PMID:26779267

  4. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats.

    PubMed

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  5. [Contributions to the chemical study of the essential oil isolated from coriander fruits (Sandra cultivar)].

    PubMed

    Trifan, Adriana; Aprotosoaie, Ana Clara; Spac, A; Hăncianu, Monica; Miron, Anca; Stănescu, Ursula

    2011-01-01

    Coriandrum sativum L. (Apiaceae) is a well known herb, native to the Mediterranean region, also intensively cultivated in Romania. The essential oil obtained from Coriandri fructus posseses antimicrobial, antioxidant and anxiolytic effects. Many parameters such as genetic and climatic factors or agronomical practices can influence the yield and composition of the volatile fraction. Plant density is an important factor for the microenvironment in coriander field. In order to study the effect of planting density on the yield of the essential oil and its composition, a bifactorial experiment was carried out on coriander plants (Sandra cultivar). The experiment was performed with three plant densities on the row (0, 15 and 20 cm); the distance between plant rows was 12.5, 25 and 50 cm, respectively. So, it resulted nine experimental variants. The essential oils obtained by hydrodistillation from fruits have been characterized using gas chromatography and mass spectroscopy analysis (GC-MS). The highest yield (7.9866 kg/ha) was obtained for the plants spaced at 20 cm in between and 25 cm row spacing. The highest content of monoterpene alcohols (50.96%) was obtained with 25 cm row spacing and plant spaced at 0 cm on the row. The main components in all oils were monoterpene alcohols (40.75% - 50.96%) and monoterpenes (32.43-38.44%). The essential oil of coriander fruits (Sandra cultivar) does not meet the requirements of the European Pharmacopoeia, especially concerning the content in linalool. Nevertheless, the high content in monoterpene alcohols and monoterpenes recommends the use of the essential oil as immunomodulatory, analgesic and antiinflammatory agent in rheumatology and also as an antibacterial and antiviral agent. Consequently, the changes in yield and composition of the essential oil of Sandra coriander should be assesed during several periods of vegetation in order to conclude on its pharmaceutical quality.

  6. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration.

    PubMed

    Tang, Esther L H; Rajarajeswaran, Jayakumar; Fung, Shin Yee; Kanthimathi, M S

    2013-12-09

    Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots. Powdered roots, leaves and stems of C. sativum were extracted through sequential extraction using hexane, dichloromethane, ethyl acetate, methanol and water. Total phenolic content, FRAP and DPPH radical scavenging activities were measured. Anti-proliferative activitiy on the breast cancer cell line, MCF-7, was assayed using the MTT assay. Activities of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and of the caspases-3, -8 and -9 were assayed on treatment with the extract. Cell cycle progression was analysed using flow cytometry. The scratch motility assay was used to assess inhibition of MCF-7 cell migration. DNA damage in 3 T3-L1 fibroblasts was evaluated by the comet assay. The components in the extract were identified by HPLC and GC-MS. The ethyl acetate extract of C. sativum roots showed the highest antiproliferative activity on MCF-7 cells (IC50 = 200.0 ± 2.6 μg/mL) and had the highest phenolic content, FRAP and DPPH scavenging activities among the extracts. C. sativum root inhibited DNA damage and prevented MCF-7 cell migration induced by H2O2, suggesting its potential in cancer prevention and inhibition of metastasis. The extract exhibited anticancer activity in MCF-7 cells by affecting antioxidant enzymes possibly leading to H2O2 accumulation, cell cycle arrest at the G2/M phase and apoptotic cell death by the death receptor and

  7. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration

    PubMed Central

    2013-01-01

    Background Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots. Methods Powdered roots, leaves and stems of C. sativum were extracted through sequential extraction using hexane, dichloromethane, ethyl acetate, methanol and water. Total phenolic content, FRAP and DPPH radical scavenging activities were measured. Anti-proliferative activitiy on the breast cancer cell line, MCF-7, was assayed using the MTT assay. Activities of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and of the caspases-3, -8 and -9 were assayed on treatment with the extract. Cell cycle progression was analysed using flow cytometry. The scratch motility assay was used to assess inhibition of MCF-7 cell migration. DNA damage in 3 T3-L1 fibroblasts was evaluated by the comet assay. The components in the extract were identified by HPLC and GC-MS. Results The ethyl acetate extract of C. sativum roots showed the highest antiproliferative activity on MCF-7 cells (IC50 = 200.0 ± 2.6 μg/mL) and had the highest phenolic content, FRAP and DPPH scavenging activities among the extracts. C. sativum root inhibited DNA damage and prevented MCF-7 cell migration induced by H2O2, suggesting its potential in cancer prevention and inhibition of metastasis. The extract exhibited anticancer activity in MCF-7 cells by affecting antioxidant enzymes possibly leading to H2O2 accumulation, cell cycle arrest at the G2/M phase and apoptotic cell death by

  8. In vitro effects of Coriandrum sativum, Tagetes minuta, Alpinia zerumbet and Lantana camara essential oils on Haemonchus contortus.

    PubMed

    Macedo, Iara Tersia Freitas; de Oliveira, Lorena Mayana Beserra; Camurça-Vasconcelos, Ana Lourdes Fernandes; Ribeiro, Wesley Lyeverton Correia; dos Santos, Jessica Maria Leite; de Morais, Selene Maia; de Paula, Haroldo Cesar Beserra; Bevilaqua, Claudia Maria Leal

    2013-01-01

    Phytotherapy can be an alternative for the control of gastrointestinal parasites of small ruminants. This study evaluated the efficacy of Alpinia zerumbet, Coriandrum sativum, Tagetes minuta and Lantana camara essential oils by two in vitro assays on Haemonchus contortus, an egg hatch test (EHT) and larval development test (LDT). No effect was observed for L. camara in the EHT. A. zerumbet, C. sativum and T. minuta essential oils exhibited a dose-dependent effect in the EHT, inhibiting 81.2, 99 and 98.1% of H. contortus larvae hatching, respectively, at a concentration of 2.5 mg mL-1. The effective concentration to inhibit 50% (EC50) of egg hatching was 0.94, 0.63 and 0.53 mg mL-1 for A. zerumbet, C. sativum and T. minuta essential oils, respectively. In LDT, L. camara, A. zerumbet, C. sativum and T. minuta at concentration of 10 mg mL-1 inhibited 54.9, 94.2, 97.8 and 99.5% of H. contortus larval development, presenting EC50 values of 6.32, 3.88, 2.89 and 1.67 mg mL-1, respectively. Based on the promising results presented in this in vitro model, it may be possible use of these essential oils to control gastrointestinal nematodes. However, their anthelmintic activity should be confirmed in vivo.

  9. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    PubMed Central

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). Results: The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). Conclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects. PMID:27222836

  10. Effects of hydroalcoholic extract of Coriandrum sativum on oxidative damage in pentylenetetrazole-induced seizures in rats

    PubMed Central

    Karami, Reza; Hosseini, Mahmoud; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza; Rakhshandeh, Hassan; Vafaee, Farzaneh; Esmaeilizadeh, Mahdi

    2015-01-01

    Background: An important role for oxidative stress, as a consequence of epileptic seizures, has been suggested. Coriandrum sativum has been shown that have antioxidant effects. Central nervous system depressant effects of C. sativum have also been reported. In this study, the effects of hydroalcoholic extract of aerial parts of the plants on brain tissues oxidative damages following seizures induced by pentylenetetrazole (PTZ) was investigated in rats. Methods: The rats were divided into five groups and treated: (1) Control (saline), (2) PTZ (90 mg/kg, i.p.), (3-5) three doses (100, 500 and 1000 mg/kg of C. sativum extract (CSE) before PTZ. Latencies to the first minimal clonic seizures (MCS) and the first generalized tonic-clonic seizures (GTCS) were recorded. The cortical and hippocampal tissues were then removed for biochemical measurements. Results: The extract significantly increased the MCS and GTCS latencies (P < 0.01, P < 0.001) following PTZ-induced seizures. The malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of the control animals (P < 0.001). Pretreatment with the extract prevented elevation of the MDA levels (P < 0.010–P < 0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in both cortical and hippocampal tissues (P < 0.050). Pre-treatment with the 500 mg/kg of the extract caused a significant prevention of decreased in total thiol concentration in the cortical tissues (P < 0.010). Conclusion: The present study showed that the hydroalcoholic extract of the aerial parts of C. sativum possess significant antioxidant and anticonvulsant activities. PMID:26056549

  11. Coriander alleviates 2,4-dinitrochlorobenzene-induced contact dermatitis-like skin lesions in mice.

    PubMed

    Park, Gunhyuk; Kim, Hyo Geun; Lim, Soonmin; Lee, Wonil; Sim, Yeomoon; Oh, Myung Sook

    2014-08-01

    Contact dermatitis (CD) is a pattern of inflammatory responses in the skin that occurs through contact with external factors. The clinical picture is a polymorphic pattern of skin inflammation characterized by a wide range of clinical features, including itching, redness, scaling, and erythema. Coriandrum sativum L. (CS), commonly known as coriander, is a member of the Apiaceae family and is cultivated throughout the world for its nutritional and culinary values. Linoleic acid and linolenic acid in CS have various pharmacological activities. However, no study of the inhibitory effects of CS on CD has been reported. In this study, we demonstrated the protective effect of CS against 2,4-dinitrochlorobenzene-induced CD-like skin lesions. CS, at doses of 0.5-1%, applied to the dorsal skin inhibited the development of CD-like skin lesions. Moreover, the Th2-mediated inflammatory cytokines, immunoglobulin E, tumor necrosis factor-α, interferon-γ, interleukin (IL)-1, IL-4, and IL-13, were significantly reduced. In addition, CS increased the levels of total glutathione and heme oxygenase-1 protein. Thus, CS can inhibit the development of CD-like skin lesions in mice by regulating immune mediators and may be an effective alternative therapy for contact diseases.

  12. Coriander Alleviates 2,4-Dinitrochlorobenzene-Induced Contact Dermatitis-Like Skin Lesions in Mice

    PubMed Central

    Park, Gunhyuk; Kim, Hyo Geun; Lim, Soonmin; Lee, Wonil; Sim, Yeomoon

    2014-01-01

    Abstract Contact dermatitis (CD) is a pattern of inflammatory responses in the skin that occurs through contact with external factors. The clinical picture is a polymorphic pattern of skin inflammation characterized by a wide range of clinical features, including itching, redness, scaling, and erythema. Coriandrum sativum L. (CS), commonly known as coriander, is a member of the Apiaceae family and is cultivated throughout the world for its nutritional and culinary values. Linoleic acid and linolenic acid in CS have various pharmacological activities. However, no study of the inhibitory effects of CS on CD has been reported. In this study, we demonstrated the protective effect of CS against 2,4-dinitrochlorobenzene-induced CD-like skin lesions. CS, at doses of 0.5–1%, applied to the dorsal skin inhibited the development of CD-like skin lesions. Moreover, the Th2-mediated inflammatory cytokines, immunoglobulin E, tumor necrosis factor-α, interferon-γ, interleukin (IL)-1, IL-4, and IL-13, were significantly reduced. In addition, CS increased the levels of total glutathione and heme oxygenase-1 protein. Thus, CS can inhibit the development of CD-like skin lesions in mice by regulating immune mediators and may be an effective alternative therapy for contact diseases. PMID:24963872

  13. Evaluation of disease modifying activity of Coriandrum sativum in experimental models

    PubMed Central

    Nair, Vinod; Singh, Surender; Gupta, Y.K.

    2012-01-01

    Background & objectives: Coriandrum sativum (CS), has been widely used in traditional systems of medicine for treatment of rheumatoid arthritis. However, the mechanism of action for its antiarthritic effects is not clearly known. Therefore, the present study was carried out to evaluate the antiarthritic activity of CS in rats in two experimental models. Methods: The antiarthritic activity of CS seed hydroalcoholic extract (CSHE) was evaluated in adult Wistar rats by using two experimental models, viz. formaldehyde and Complete Freund's adjuvant (CFA) induced arthritis. The expression of pro-inflammatory cytokines (predominantly contributed by macrophages) was also evaluated. TNF-α level was estimated in serum by ELISA method. TNF-R1, IL-1 β and IL-6 expression in the synovium was analysed by immunohistochemistry. Results: CSHE produced a dose dependent inhibition of joint swelling as compared to control animals in both, formaldehyde and CFA induced arthritis. Although there was a dose dependent increase in serum TNF-α levels in the CSHE treated groups as compared to control, the synovial expression of macrophage derived pro-inflammatory cytokines/cytokine receptor was found to be lower in the CSHE treated groups as compared to control. Interpretation & conclusions: Our results demonstrate that the antiarthritic activity of CSHE may be attributed to the modulation of pro-inflammatory cytokines in the synovium. In further studies CSHE could be explored to be developed as a disease modifying agent in the treatment of RA. PMID:22446868

  14. Opiate System Mediate the Antinociceptive Effects of Coriandrum sativum in Mice

    PubMed Central

    Taherian, Abbas Ali; Vafaei, Abbas Ali; Ameri, Javad

    2012-01-01

    Our previous study showed that Coriandrum sativum (CS) has antinociceptive effects, but the mechanisms that mediate this effect are not clear. The present study was designed to test the role of opiate system in the antinociceptive effects of CS on acute and chronic pain in mice using Hot Plate (HP), Tail Flick (TF) and Formalin (FT) tests and also to compare its effect with dexamethasone (DEX) and stress (ST). Young adult male albino mice (25-30 g) in 33 groups (n = 8 in each group) were used in this study. CS (125 250, 500 and 1000 mg/Kg IP), DEX (0.5, 1 and 2 mg/Kg IP), vehicle (VEH) or swim stress were used 30 min before the pain evaluation tests. Acute and chronic pain was assessed by HP, TF and FT models. In addition, Naloxone (NAL, 2 mg/Kg, IP) was injected 15 min before the CS extract administration in order to assess the role of opiate system in the antinociception of CS. Results indicated that CS, DEX and ST have analgesic effects (p < 0.01) in comparison with the control group and higher dose of CS was more effective (p < 0.001). Besides, pretreatment of NAL modulates the antinociceptive effects of CS in all models (p < 0.001). The above findings showed that CS, DEX and ST have modulator effects on pain. These findings further indicate that the CS extract has more analgesic effects than DEX and ST and also provides the evidence for the existence of an interaction between antinociceptive effects of CS and opiate system. PMID:24250493

  15. Acute and sub-chronic toxicological evaluation of hydro-methanolic extract of Coriandrum sativum L. seeds

    PubMed Central

    Patel, Dipak; Desai, Swati; Devkar, Ranjitsinh; Ramachandran, A.V.

    2012-01-01

    Coriandrum sativum L. (CS) seeds are known to possess therapeutic potentials against a variety of physiological disorders. This study assesses acute and sub-chronic toxicity profile of hydro-methanolic extract of CS seeds using OECD guidelines. In acute toxicity study, mice were once orally administered 1000, 3000 and 5000 mg/kg body weight of CS extract. There were no any behavioral alterations or mortality recorded in CS treated groups. The LD50 value was more than 5000 mg/kg body weight. In the sub-chronic oral toxicity study, the animals were orally administered with CS extract (1000, 2000 and 3000mg/kg body weight) daily for 28 days whereas; vehicle control group received 0.5 % carboxy methyl cellulose. There was significant reduction in food intake, body weight gain and plasma lipid profiles of CS2 and CS3 (2000 and 3000 mg/kg body weight respectively) groups as compared to the control group. However, there were no alterations in haematological profile, relative organ weights, histology and plasma markers of damage of vital organs (heart, liver and kidney). The overall finding of this study indicates that CS extract is non-toxic up to 3000 mg/kg body weight and can be considered as safe for consumption. PMID:27847445

  16. Effects of dietary mixture of garlic (Allium sativum), coriander (Coriandrum sativum) and probiotics on immune responses and caecal counts in young laying hens.

    PubMed

    Lee, J S; Kim, M J; Park, S H; Lee, S B; Wang, T; Jung, U S; Im, J; Kim, E J; Lee, K W; Lee, H G

    2017-10-01

    This study was conducted to evaluate the effects of a combined mixture of phytogenic extracts (garlic and coriander) and probiotics on growth performance and immune responses in laying hens based on the results of in vitro studies to screen for immunomodulatory potency of each ingredient. Several parameters of immunomodulatory potency were estimated using lamina propria leucocytes (LPLs) isolated from rat intestinal mucosa tissue. Results show that the combined mixture enhanced LPLs proliferation, increased LPL-mediated cytotoxicity against YAC-1 tumour cells, and decreased lipopolysaccharide (LPS)-induced cytokine production including tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in LPLs. For in vivo study, laying hens (n = 50/each diet group) were fed with control diet, a diet containing antibiotics (0.01% per kg feed) or the combined mixture (0.02% per kg feed) for 21 days. The dietary combined mixture improved egg production (p < 0.05) but not growth performance and carcass traits. Interestingly, the patterns of suppressing plasma IFN-γ productions during inflammation by LPS injection and decreasing caecal E. coli counts in the combined mixture group were comparable to those in the antibiotics group. Taken together, our results suggested that the 0.02% of combined mixture of phytogenic extracts and probiotics as ingredients has potential immunomodulatory effects in laying hens. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  17. Microbiological analysis of pre-packed sweet basil (Ocimum basilicum) and coriander (Coriandrum sativum) leaves for the presence of Salmonella spp. and Shiga toxin-producing E. coli.

    PubMed

    Delbeke, Stefanie; Ceuppens, Siele; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-09-02

    Enteric pathogens, such as Salmonella spp. and pathogenic Escherichia coli, have been detected and associated with food borne outbreaks from (imported) fresh leafy herbs. Screening on imported herbs from South East Asian countries has been described. However, limited information on prevalence of these pathogens is available from other sourcing regions. Therefore, fresh pre-packed basil and coriander leaves from a Belgian trading company were investigated for the presence of Salmonella spp., Shiga toxin-producing E. coli (STEC), generic E. coli and coliforms. In total 592 samples were collected originating from Belgium, Israel and Cyprus during 2013-2014. Multiplex PCR followed by further culture confirmation was used for the detection of Salmonella spp. and STEC, whereas the Petrifilm Select E. coli and VRBL-agar were used, respectively, for the enumeration of E. coli and coliforms. Salmonella was detected in 10 out of 592 samples (25g) (1.7%; 5 from basil and 5 from coriander), of which two samples were sourced from Israel and eight from Cyprus. The presence of STEC was suspected in 11 out of 592 samples (25g) (1.9%; 3 basil and 8 coriander), due to the detection of stx and eae genes, of which one sample originated from Belgium, four from Israel and six from Cyprus. No STEC was isolated by culture techniques, but in three samples a serotype (O26, O103 or O111) with its most likely associated eae-variant (β or θ) was detected by PCR. Generic E. coli was enumerated in 108 out of 592 samples, whereby 55, 32 and 13 samples respectively between 10-100, 100-1000 and 1000-10,000cfu/g and 8 samples exceeding 10,000cfu/g. Coliforms were enumerated in all herb samples at variable levels ranging from 1.6 to 7.5logcfu/g. Further statistics indicate that the E. coli class (categorized by level) was significantly correlated with the presence of Salmonella (p<0.001) or STEC (p=0.019), while coliform counts were significant correlated with Salmonella (p<0.001), but not with

  18. Impact of cerium oxide nanoparticles on cilantro ( Coriandrum sativum)

    NASA Astrophysics Data System (ADS)

    Morales, Maria Isabel

    Studies have shown that plants exposed to ENPs suffer different types of stress. Other studies have revealed that plants can take up and accumulate CeO2 NPs without modification. Thus, these NPs could enter the food chain through edible plants, posing a threat for human health. Cilantro (Coriandrum sativum) is a worldwide culinary and medicinal plant consumed either as a fresh herb or a spice. In this research, cilantro plants were germinated and cultivated for 30 days in organic soil treated with CeO2 NPs at concentrations varying from 0 to 500 mg kg -1. Subsequently, plant organs were analyzed by using spectroscopic techniques and biochemical assays. Results indicate that at 125 mg kg -1, the CeO2 NPs significantly increased the root size compared with the other treatments. The ICP-OES results showed that plants exposed to 500 mg kg-1 had significantly (p ≤ 0.05) more Ce in shoots and roots compared to the other treatments. Results from the biochemical assays showed that at 125 mg kg-1, catalese activity significantly increased in shoots and ascorbate peroxidase in roots (p ≤ 0.05). In addition, the FTIR analyses revealed that at 125 mg kg-1, the CeO2 NPs changed the chemical environment of the carbohydrates within the cilantro shoots, for which changes in the area of the stretching frequencies were observed. Moreover, analyses of antioxidant compounds showed a significant ( p ≤ 0.05) reduction on total phenolic content in shoots of cilantro plants treated with 500 mg CeO2 NPs kg-1 . This suggests that the CeO2 NPs have the potential to diminish the ability of cilantro plants to scavenge reactive oxygen species. The multi-elemental analysis showed that plants treated with CeO2 at the 500 mg kg-1 treatment had a significant ( p ≤ 0.05) reduction in shoots' sulfur, silicon, and zinc accumulation. The results of this research indicate that the CeO2 NPs at 500 mg CeO2 kg-1 concentration cause a reduction in the antioxidant ability and nutritional properties

  19. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum).

    PubMed

    Zuverza-Mena, Nubia; Medina-Velo, Illya A; Barrios, Ana C; Tan, Wenjuan; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-10-01

    The environmental impacts of Cu-based nanoparticles (NPs) are not well understood. In this study, cilantro (Coriandrum sativum) was germinated and grown in commercial potting mix soil amended with Cu(OH)2 (Kocide and CuPRO), nano-copper (nCu), micro-copper (μCu), nano-copper oxide (nCuO), micro-copper oxide (μCuO) and ionic Cu (CuCl2) at either 20 or 80 mg Cu per kg. In addition to seed germination and plant elongation, relative chlorophyll content and micro and macroelement concentrations were determined. At both concentrations, only nCuO, μCuO, and ionic Cu, showed statistically significant reductions in germination. Although compared with control, the relative germination was reduced by ∼50% with nCuO at both concentrations, and by ∼40% with μCuO, also at both concentrations, the difference among compounds was not statistically significant. Exposure to μCuO at both concentrations and nCu at 80 mg kg(-1) significantly reduced (p≤ 0.05) shoot elongation by 11% and 12.4%, respectively, compared with control. Only μCuO at 20 mg kg(-1) significantly reduced (26%) the relative chlorophyll content, compared with control. None of the treatments increased root Cu, but all of them, except μCuO at 20 mg kg(-1), significantly increased shoot Cu (p≤ 0.05). Micro and macro elements B, Zn, Mn, Ca, Mg, P, and S were significantly reduced in shoots (p≤ 0.05). Similar results were observed in roots. These results showed that Cu-based NPs/compounds depress nutrient element accumulation in cilantro, which could impact human nutrition.

  20. Evaluation of anxiolytic activity of aqueous extract of Coriandrum sativum Linn. in mice: A preliminary experimental study

    PubMed Central

    Latha, K.; Rammohan, B.; Sunanda, B. P. V.; Maheswari, M. S. Uma; Mohan, Surapaneni Krishna

    2015-01-01

    Objectives: To evaluate the anxiolytic effect of Coriandrum sativum (CS) aqueous extract in mice. To compare the antianxiety activity of CS against standard drug diazepam (3 mg/kg). Materials and Methods: After obtaining Institutional Animal Ethics Committee approval, Swiss albino mice (18–25 g) of either sex were randomly divided into five groups of six animals each. Dried powder of CS leaves was boiled with distilled water, cooled, filtered, placed on a hotplate for complete evaporation, finally weighed and stored. The control group, test group, and standard drugs group received saline, CS extract (50, 100, and 200 mg/kg), diazepam (3 mg/kg), respectively, by oral feeding. The antianxiety effect was assessed by elevated plus maze (EPM) in mice. Results: In EPM, it implied that CS 50 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) significantly (P < 0.001) increases the number of entries in open arms compared to control. The time spent in open arms also increased in all the doses of CS extract significantly. Conclusion: The current study demonstrates statistically significant dose-dependent antianxiety activity of CS leaves. PMID:26109787

  1. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract.

    PubMed

    Sathishkumar, Palanivel; Preethi, Johnson; Vijayan, Raji; Mohd Yusoff, Abdull Rahim; Ameen, Fuad; Suresh, Sadhasivam; Balagurunathan, Ramasamy; Palvannan, Thayumanavan

    2016-10-01

    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment. Copyright © 2016. Published by Elsevier B.V.

  2. Rutin-Enriched Extract from Coriandrum sativum L. Ameliorates Ionizing Radiation-Induced Hematopoietic Injury

    PubMed Central

    Han, Xiaodan; Xue, Xiaolei; Zhao, Yu; Li, Yuan; Liu, Weili; Zhang, Junling; Fan, Saijun

    2017-01-01

    Hematopoietic injury is a major cause of mortality in radiation accidents and a primary side effect in patients undergoing radiotherapy. Ionizing radiation (IR)-induced myelosuppression is largely attributed to the injury of hematopoietic stem and progenitor cells (HSPCs). Coriander is a culinary herb with multiple pharmacological effects and has been widely used in traditional medicine. In this study, flavonoids were identified as the main component of coriander extract with rutin being the leading compound (rutin-enriched coriander extract; RE-CE). We evaluated the radioprotective effect of RE-CE against IR-induced HSPCs injury. Results showed that RE-CE treatment markedly improved survival, ameliorated organ injuries and myelosuppression, elevated HSPCs frequency, and promoted differentiation and proliferation of HSPCs in irradiated mice. The protective role of RE-CE in hematopoietic injury is probably attributed to its anti-apoptotic and anti-DNA damage effect in irradiated HSPCs. Moreover, these changes were associated with reduced reactive oxygen species (ROS) and enhanced antioxidant enzymatic activities in irradiated HSPCs. Collectively, these findings demonstrate that RE-CE is able to ameliorate IR-induced hematopoietic injury partly by reducing IR-induced oxidative stress. PMID:28468251

  3. Antinociceptive and anti-edema properties of the ethyl acetate fraction obtained from extracts of Coriandrum sativum Linn. leaves.

    PubMed

    Begnami, Andreza Fabiana; Spindola, Humberto M; Ruiz, Ana Lucia T Gois; de Carvalho, João Ernesto; Groppo, Francisco Carlos; Rehder, Vera L Garcia

    2018-07-01

    This study evaluated the antinociceptive and anti-edema properties of fractions of Coriandrum sativum Linn. (Apiaceae/Umbelliferae) leaves in mice. Ethyl acetate fractions (FAc) were obtained from dichloromethane extracts prepared from dried C. sativum (CS) leaves and stems. The effects of different concentrations of FAc on mice were observed using the open-field test, formalin-, capsaicin-, and carrageenan-induced paw edema tests, and the acetic acid-induced abdominal writhing test. Results from the carrageenan-induced paw edema test were subjected to a linear regression analysis and data from other assays were subjected to the Kruskal-Wallis test (followed by the SNK post hoc test). Dihydrocoriandrin (34.5%), coriandrin (14.4%), vitamin E (4.6%), and stigmasterol (7.9%) were identified in FAc. The number of squares the mice crossed in the open field test was decreased by 100 mg/kg and 300 mg/kg FAc (i.p.). The administration of 30, 100, and 300 mg/kg FAc induced fewer abdominal writhes than the control. In the formalin test, neurogenic pain was reduced by 20 mg/kg morphine and 30 and 100 mg/kg FAc, but not 5 mg/kg dexamethasone or 10 mg/kg FAc. Formalin-induced inflammatory pain was decreased by morphine, dexamethasone, and 30 and 100 mg/kg FAc. Morphine and 30, 100, and 300 mg/kg FAc significantly decreased the reaction time during the capsaicin test. Dexamethasone reduced both early and later phases of carrageenan-induced edema. Both 30 and 300 mg/kg FAc induced less edema than the control throughout the experiment. FAc showed antinociceptive, anti-edema and anti-inflammatory properties and it may be considered as a potential phytotherapeutic agent in the future. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Coriander Leaf Extract Exerts Antioxidant Activity and Protects Against UVB-Induced Photoaging of Skin by Regulation of Procollagen Type I and MMP-1 Expression

    PubMed Central

    Hwang, Eunson; Lee, Do-Gyeong; Park, Sin Hee; Oh, Myung Sook

    2014-01-01

    Abstract Ultraviolet (UV) radiation causes photodamage to the skin, which, in turn, leads to depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkles are associated with collagen synthesis and matrix metalloproteinase-1 (MMP-1) activity. Coriandrum sativum L. (coriander leaf, cilantro; CS) has been used as a herbal medicine for the treatment of diabetes, hyperlipidemia, liver disease, and cancer. In this study, we examined whether CS ethanol extract (CSE) has protective effects against UVB-induced skin photoaging in normal human dermal fibroblasts (NHDF) in vitro and in the skin of hairless mice in vivo. The main component of CSE, linolenic acid, was determined by gas chromatography-mass spectroscopy. We measured the cellular levels of procollagen type I and MMP-1 using ELISA in NHDF cells after UVB irradiation. NHDF cells that were treated with CSE after UVB irradiation exhibited higher procollagen type I production and lower levels of MMP-1 than untreated cells. We found that the activity of transcription factor activator protein-1 (AP-1) was also inhibited by CSE treatment. We measured the epidermal thickness, dermal collagen fiber density, and procollagen type I and MMP-1 levels in photo-aged mouse skin in vivo using histological staining and western blot analysis. Our results showed that CSE-treated mice had thinner epidermal layers and denser dermal collagen fibers than untreated mice. On a molecular level, it was further confirmed that CSE-treated mice had lower MMP-1 levels and higher procollagen type I levels than untreated mice. Our results support the potential of C. sativum L. to prevent skin photoaging. PMID:25019675

  5. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression.

    PubMed

    Hwang, Eunson; Lee, Do-Gyeong; Park, Sin Hee; Oh, Myung Sook; Kim, Sun Yeou

    2014-09-01

    Ultraviolet (UV) radiation causes photodamage to the skin, which, in turn, leads to depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkles are associated with collagen synthesis and matrix metalloproteinase-1 (MMP-1) activity. Coriandrum sativum L. (coriander leaf, cilantro; CS) has been used as a herbal medicine for the treatment of diabetes, hyperlipidemia, liver disease, and cancer. In this study, we examined whether CS ethanol extract (CSE) has protective effects against UVB-induced skin photoaging in normal human dermal fibroblasts (NHDF) in vitro and in the skin of hairless mice in vivo. The main component of CSE, linolenic acid, was determined by gas chromatography-mass spectroscopy. We measured the cellular levels of procollagen type I and MMP-1 using ELISA in NHDF cells after UVB irradiation. NHDF cells that were treated with CSE after UVB irradiation exhibited higher procollagen type I production and lower levels of MMP-1 than untreated cells. We found that the activity of transcription factor activator protein-1 (AP-1) was also inhibited by CSE treatment. We measured the epidermal thickness, dermal collagen fiber density, and procollagen type I and MMP-1 levels in photo-aged mouse skin in vivo using histological staining and western blot analysis. Our results showed that CSE-treated mice had thinner epidermal layers and denser dermal collagen fibers than untreated mice. On a molecular level, it was further confirmed that CSE-treated mice had lower MMP-1 levels and higher procollagen type I levels than untreated mice. Our results support the potential of C. sativum L. to prevent skin photoaging.

  6. Whole body vibration exercise combined with an extract of Coriandrum sativum modify some biochemical/physiological parameters in rats.

    PubMed

    Frederico, Éric H F F; Cardoso, André L B D; Guimarães, Carlos A S; Almeida, Lívia P; Neves, Rosane F; Sá-Caputo, Danúbia C; Moreira-Marconi, Eloá; Dionello, Carla F; Morel, Danielle S; Paineiras-Domingos, Laisa L; Costa-Cavalcanti, Rebeca G; Sousa-Gonçalves, Cintia R; Arnóbio, Adriano; Asad, Nasser R; Bernardo-Filho, Mario

    2017-06-30

    The aim of the present study was to evaluate the effect of the association of whole body vibration (WBV) exercise with an aqueous extract of coriander on the biodistribution of the radiopharmaceutical sodium pertechnetate, on the concentration of some plasma biomarker, on the feed intake, on the body mass, and on the stool consistency in rats. Rats were divided in four groups and submitted to different treatments for 40 days. The control group (CON) received deionized water. The group treated with coriander (COR) received the extract of coriander. The rats that were exposed to WBV exercises (WBV-E) also received deionized water. A group of animals received coriander and was exposed to WBV (COR + WBV-E). We found in testis a decrease (0.13 ± 0.01 to 0.06 ± 0.03) of the percentages of injected radioactivity per gram (%ATI/g) in the WBV-E in comparison with the COR. There is no significant alteration on the concentrations of the plasma biomarkers. The feed intake showed a statistically significant increase in WBV-E. No significant difference on the body mass was found. The stool analysis showed a statistical difference on the consistency between COR (hard and dry, darker) and all the other groups (normal). In conclusion, it was verified that possible modifications in some biochemical/physiological parameters of the rats submitted to WBV exercise would be capable to increase the feed intake without changing the body mass, and normalizing the stool consistency altered by the coriander supplementation. Further studies are needed to try to understand better the biological effects involving the association of WBV exercise and coriander. © 2017 The Author(s).

  7. Whole body vibration exercise combined with an extract of Coriandrum sativum modify some biochemical/physiological parameters in rats

    PubMed Central

    Cardoso, André L.B.D.; Guimarães, Carlos A.S.; Almeida, Lívia P.; Neves, Rosane F.; Sá-Caputo, Danúbia C.; Moreira-Marconi, Eloá; Dionello, Carla F.; Morel, Danielle S.; Paineiras-Domingos, Laisa L.; Costa-Cavalcanti, Rebeca G.; Sousa-Gonçalves, Cintia R.; Arnóbio, Adriano; Asad, Nasser R.; Bernardo-Filho, Mario

    2017-01-01

    The aim of the present study was to evaluate the effect of the association of whole body vibration (WBV) exercise with an aqueous extract of coriander on the biodistribution of the radiopharmaceutical sodium pertechnetate, on the concentration of some plasma biomarker, on the feed intake, on the body mass, and on the stool consistency in rats. Rats were divided in four groups and submitted to different treatments for 40 days. The control group (CON) received deionized water. The group treated with coriander (COR) received the extract of coriander. The rats that were exposed to WBV exercises (WBV-E) also received deionized water. A group of animals received coriander and was exposed to WBV (COR + WBV-E). We found in testis a decrease (0.13 ± 0.01 to 0.06 ± 0.03) of the percentages of injected radioactivity per gram (%ATI/g) in the WBV-E in comparison with the COR. There is no significant alteration on the concentrations of the plasma biomarkers. The feed intake showed a statistically significant increase in WBV-E. No significant difference on the body mass was found. The stool analysis showed a statistical difference on the consistency between COR (hard and dry, darker) and all the other groups (normal). In conclusion, it was verified that possible modifications in some biochemical/physiological parameters of the rats submitted to WBV exercise would be capable to increase the feed intake without changing the body mass, and normalizing the stool consistency altered by the coriander supplementation. Further studies are needed to try to understand better the biological effects involving the association of WBV exercise and coriander. PMID:28507199

  8. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L.

    PubMed

    Oliveira, Rui S; Ma, Ying; Rocha, Inês; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The widespread use of agrochemicals is detrimental to the environment and may exert harmful effects on human health. The consumer demand for organic food plants has been increasing. There is thus a rising need for alternatives to agrochemicals that can foster sustainable plant production. The aim of this study was to evaluate the potential use of an arbuscular mycorrhizal (AM) fungus as an alternative to application of chemical fertilizer for improving growth performance of the medicinal and aromatic plant Coriandrum sativum. Plants were inoculated with the AM fungus Rhizophagus irregularis BEG163 and/or supplemented with a commercial chemical fertilizer (Plant Marvel, Nutriculture Bent Special) in agricultural soil. Plant growth, nutrition, and development of AM fungus were assessed. Plants inoculated with R. irregularis and those supplemented with chemical fertilizer displayed significantly improved growth performances when compared with controls. There were no significant differences in total fresh weight between plants inoculated with R. irregularis or those supplemented with chemical fertilizer. Leaf chlorophyll a + b (82%), shoot nitrogen (44%), phosphorus (254%), and potassium (27%) concentrations increased in plants inoculated with R. irregularis compared to controls. Application of chemical fertilizer inhibited root mycorrhizal colonization and the length of the extraradical mycelium of R. irregularis. Inoculation with R. irregularis was equally or more efficient than application of chemical fertilizer in promoting growth and nutrition of C. sativum. AM fungi may thus contribute to improve biologically based production of food plants and reduce the dependence on agrochemicals in agriculture.

  9. Efficacy of a local-drug delivery gel containing extracts of Quercus brantii and Coriandrum sativum as an adjunct to scaling and root planing in moderate chronic periodontitis patients

    PubMed Central

    Yaghini, Jaber; Shahabooei, Mohammad; Aslani, Abolfazl; Zadeh, Mozhgan Reza; Kiani, Sima; Naghsh, Narges

    2014-01-01

    Objective: Recent advances in the field of alternative medicine introduced various herbal products for the treatment of periodontitis. The purpose of this study was to evaluate the effects of combined extracts from Quercus brantii and Coriandrum sativum on periodontal indices in adult periodontitis patients. Methods: In this randomized, double-blinded clinical trial, performed in Isfahan Dental School in 2012, a new herbal medicament containing combined extracts from Q. brantii and C. sativum was formulated in the gel form for subgingival application. Following scaling and root planing (SRP), both herbal and placebo gels were delivered at the experimental and control sites, respectively. Periodontal pocket depth, clinical attachment level, papilla bleeding index, and plaque index were measured at baseline, 1 month and 3 months later. Both intra-and inter-groups changes were registered. The obtained data were analyzed by SPSS software, using repeated measure analysis of variance, paired t-test, Mann-Whitney, Friedman, and Wilcoxon tests. Differences with P < 0.05 were considered to be significant. Findings: Both groups indicated statistically significant improvements in the periodontal indices (P < 0.05), but there were no significant differences between two study groups with this regard. Conclusion: The herbal gel does not have considerable advantages over SRP alone as an adjunct in periodontal treatment. PMID:25114940

  10. Potassium permanganate cleansing is an effective sanitary method for the reduction of bacterial bioload on raw Coriandrum sativum.

    PubMed

    Subramanya, Supram Hosuru; Pai, Vasudha; Bairy, Indira; Nayak, Niranjan; Gokhale, Shishir; Sathian, Brijesh

    2018-02-13

    Raw vegetables including flowers, leaves, stems, and roots are important carriers of food borne pathogens. We evaluated the bacteriological contamination of unwashed coriander leaves, and effectiveness of cleansing with 0.1% potassium permanganate solution as decontamination method. Significant bacterial contamination including pathogens like Salmonella species and Aeromonas species were isolated from unwashed coriander leaves. Decontamination with 0.1% potassium permanganate was found to be more effective than three steps wash with sterile water.

  11. Study on beta-galactosidase enzymatic activity of herbal yogurt.

    PubMed

    Chowdhury, Banani Ray; Chakraborty, Runu; Raychaudhuri, Utpal

    2008-03-01

    Different types of herbal yogurts were developed by mixing standardized milk with pretreated herbs, namely tulsi leaf (Ocimum sanctum), pudina leaf (Mentha arvensis) and coriander leaf (Coriandrum sativum), with leaves separately and a 1:1 (v/v) mixture of the strains of lactic starter cultures---Lactobacillus acidophilus (NCIM 2903) and Lactobacillus plantarum (NCIM 2083)-followed by incubation at 40 degrees C for 6 h. The beta-galactosidase enzymatic activity of the abovementioned herbal yogurts was determined and interestingly noted to exhibit higher enzymatic activity compared with the control yogurt (without any herbs). Among all herbal yogurts, tulsi yogurt had the maximum beta-galactosidase activity.

  12. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh

    PubMed Central

    2011-01-01

    Background Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Methods Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. Results All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm). Conclusion Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary. PMID:21406097

  13. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh.

    PubMed

    Rahman, Shahedur; Parvez, Anowar Khasru; Islam, Rezuanul; Khan, Mahboob Hossain

    2011-03-15

    Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm). Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary.

  14. Musca domestica laboratory susceptibility to three ethnobotanical culinary plants.

    PubMed

    El Zayyat, Elham A; Soliman, Mohammed I; Elleboudy, Noha A; Ofaa, Shaimaa E

    2015-10-01

    Throughout history, synanthropic Musca domestica had remained a worldwide problem whenever poor sanitation and bad hygienic conditions exists. Houseflies growing resistance to chemical insecticides are a rising environmental problem that necessitates search for alternatives. Mentha cervina, Ocimum basilicum, and Coriandrum sativum were tested for bioactivity on M. domestica adults and larvae. They are culinary Mediterranean plants. In adulticidal bioassay, using both CDC bottles and fumigation techniques, basil was the most effective extract with LC50 1.074 and 34.996 g/L, respectively. Concerning larvicidal bioassay by fumigation technique, coriander had the highest toxicity index with LC50 29.521 g/L. In both dipping and feeding technique, basil had the highest toxicity with LC50 32.643 and 0.749 g/L, respectively. Basil showed the highest toxicity results in four out of the five models tested followed by coriander then mint; this result highlights the potentiality of basil as a green insecticide in management of flies and opens new insight in the industrialization of basil-based fly control products.

  15. Antifeedant compounds from three species of Apiaceae active against the field slug, Deroceras reticulatum (Muller).

    PubMed

    Birkett, Michael A; Dodds, Catherine J; Henderson, Ian F; Leake, Lucy D; Pickett, John A; Selby, Martin J; Watson, Peter

    2004-03-01

    Extracts of volatiles from foliage of three plants in the Apiaceae, Conium maculatum L. (hemlock), Coriandrum sativum L. (coriander), and Petroselinum crispum Mill. (Nym.) (parsley), previously shown to exhibit antifeedant activity in assays with the field slug, Deroceras reticulatum (Muller) (Limacidae: Pulmonata), were studied further to identify the active components. Coupled gas chromatography-mass spectrometry (GC-MS) and neurophysiological assays using tentacle nerve preparations resulted in the identification of 11 active compounds from the three extracts. Wheat flour feeding bioassays were used to determine which of these compounds had the highest antifeedant activity. One of the most active compounds was the alkaloid gamma-coniceine, from C. maculatum. The role of potentially toxic alkaloids as semiochemicals and the potential for using such compounds as crop protection agents to prevent slug feeding damage is discussed.

  16. Determination of Cadmium, Lead and Zinc in Vegetables in Jaipur (India).

    PubMed

    Kumar, Ashok; Verma, P S

    2014-01-01

    An atomic absorption spectroscopic method was used for the determination of Lead, Cadmium and Zinc in vegetables grown in and around Jaipur food stuffs irrigated with industrial waste water. Vegetable samples were collected after maturity, and analyzed, such as spinach (Spinacia oleracea), ladyfinger (Abelmoschus esulentus), pepper mint (Menthe pipereta), brinjal (Solanum melongena), coriander (Coriandrum sativum), cauliflower (Brassica oleracea), onion (Allium cepa), radish (Raphanus sativus), pointedgourd (Trichosanthes dioica), bottlegourd (Lagenaria siceraria), chilies (Capsicum annum), ribbedgourd (Luffa acutangula) and pumpkin (Curcurbites pepo). The concentration of Lead ranged between 1.40-71.06 ppm, Cadmium 0.61-34.48 ppm and Zinc 0.39-187.26 ppm in vegetable samples. The results reveal that urban consumers are at greater risk of purchasing fresh vegetables with high levels of heavy metal, beyond the permissible limits, as defined by the Indian Prevention of Food Adulteration Act, 1954 and WHO.

  17. Uptake and distribution of minerals and heavy metals in commonly grown leafy vegetable species irrigated with sewage water.

    PubMed

    Anwar, Sumera; Nawaz, Muhammad Farrakh; Gul, Sadaf; Rizwan, Muhammad; Ali, Shafaqat; Kareem, Arshaad

    2016-09-01

    Heavy metal uptake and accumulation behavior in dietary vegetables irrigated with sewage waters is an important issue worldwide. The main objective of this study was to examine and compare the physiological and growth responses of leafy vegetables irrigated with sewage water. A pot experiment was conducted in a wire house with three leafy vegetables, coriander (Coriandrum sativum), mint (Mentha arvensis), and fenugreek (Trigonella foenum), grown under ambient conditions. Plants were irrigated with different concentrations, 0, 50 (T 1), and 100 % (T 2), of sewage water. After harvesting, morphological and physiological parameters of plants were measured. Heavy metal (Cd, Cu, Pb, and Zn) concentrations in the sewage water were found much higher than safer limits. The results revealed that the highest plant biomass and lowest metal contents were observed in control treatments in all studied vegetables. The biomass of all the vegetables were negatively affected when irrigated with sewage water. In T 2, coriander accumulated maximum Cd (μg g(-1) DW) in shoots (4.97) as compared to other vegetables. The maximum Pb and Cu concentrations were accumulated in mint roots (44 and 3.9, respectively) as compared to coriander and fenugreek. Zinc was accumulated in the sequence of leaves > roots > shoots under polluted water irrigation. The concentrations of potassium increased in leaves, shoots, and roots in all vegetables, while phosphorous concentrations varied with species and plant parts with increasing sewage water concentration. It was found that the leafy vegetables grown with sewage water irrigation may cause severe human health problems.

  18. Radiation processing of minimally processed vegetables and aromatic plants

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Sousa, M. B.; Sapata, M. M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M. L.; Veloso, M. G.

    2009-07-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander ( Coriandrum sativum L .), mint ( Mentha spicata L.), parsley ( Petroselinum crispum Mill, (A.W. Hill)), lettuce ( Lactuca sativa L.) and watercress ( Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (⩾2 log). Based on the determined D10, the amount of radiation necessary to kill 10 5E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  19. Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder.

    PubMed

    Barnwal, P; Singh, K K; Sharma, Alka; Choudhary, A K; Saxena, S N

    2015-12-01

    In present study, influence of grinding (hammer and pin mills) and moisture content (range: 6.4-13.6 % dry basis) on the quality traits of coriander powder were investigated. These include grinding parameters, colour parameters, specific heat, thermal conductivity, thermal diffusivity, glass transition temperature, essential oil, total phenolic content, total flavonoid content and DPPH scavenging (%) of coriander powder. For coriander seed, the geometric properties such as major, medium, minor dimensions, geometric mean diameter, arithmetic mean diameter, sphericity, surface area and volume of coriander seeds increased significantly with increasing moisture (6.4-13.6 % db). For coriander powder, the grinding parameters such as average particle size, volume surface mean diameter and volume mean diameter increased significantly with increasing moisture (6.4-13.6 % db). With the grinding method, the colour attributes of coriander powder such as L-value, a-value, b-value, hue angle and browning index varied significantly. It was observed that the specific heat followed second order polynomial relationship with temperature and moisture whereas thermal conductivity varied linearly with temperature and moisture content. The variation of glass transition temperature with moisture can be best represented in quadratic manner. Total flavonoid content (mg QE/g crude seed extract) and DPPH scavenging % activity of coriander powder is significantly affected by grinding methods. A lower value of specific heat was observed for hammer ground coriander powder as compared to pin mill ground coriander powder. The thermal conductivity of hammer mill ground coriander powder was higher as compared to pin mill ground coriander. It was observed that hammer mill yields more fine coriander powder in comparison to pin mill. The browning index was more in hammer mill ground coriander powder.

  20. Chemical composition, rheological, quality characteristics and storage stability of buns enriched with coriander and curry leaves.

    PubMed

    Sudha, M L; Rajeswari, G; Venkateswara Rao, G

    2014-12-01

    Effect of addition of normal (NL) and dehydrated (DL) curry leaves (Murraya koeniggi) and coriander leaves (Corinadrum sativum) in the ratio of 1:1 to refined wheat flour (WF) or a blend of refined wheat flour-whole wheat flour (WF-WWF, 1:1) on the rheological, nutritional, storage and quality characteristics of the buns were studied. Water absorption increased on addition of increasing levels of DL from 0 to 7.5 % to WF-WWF when compared to WF. Dough weakening was greater when DL was added to WF-WWF as seen in decrease in dough stability and abscissa at rupture values. Addition of gluten and emulsifiers improved the quality characteristics of buns prepared using either 25 % NL or 5 % DL. Storage stability of buns with DL was better. The protein, dietary fiber, iron and carotenoids in buns prepared from WF-WWF were higher. The results indicate the utilization of leaves in dehydrated form in the preparation of nutritionally improved buns.

  1. Comparison of a novel distillation method versus a traditional distillation method in a model gin system using liquid/liquid extraction.

    PubMed

    Greer, Derek; Pfahl, Les; Rieck, Jim; Daniels, Tim; Garza, Oscar

    2008-10-08

    This research studied a novel form of distillation (high vacuum distillation) as a method for preserving volatile aroma chemicals important to the organoleptic attributes of a four botanical model gin as well as the degradation products generated during the heating required in traditional methods of gin distillation. A 2 (5) factorial experiment was conducted in a partially confounded incomplete block design and analyzed using the PROC MIXED procedure from SAS. A model gin was made of dried juniper berries (Juniperus communis), coriander seed (Coriandrum sativum), angelica root (Angelica archangelica), and dry lemon peel (Citrus limonum). This was distilled on a traditional still utilizing atmospheric pressure and a heating mantel to initiate phase separation as well as a novel still (high vacuum) utilizing high vacuum pressures below 0.1 mmHg and temperatures below -15 degrees C to initiate phase separation. The degradation products (alpha-pinene, alpha-phellandrene, E-caryophyllene, and beta-myrcene) were present at greater levels (approximately 10 times) in the traditional still-made gin as compared to the novel gin.

  2. Comparative study of lipophilic and hydrophilic antioxidants from in vivo and in vitro grown Coriandrum sativum.

    PubMed

    Dias, Maria Inês; Barros, Lillian; Sousa, Maria João; Ferreira, Isabel C F R

    2011-06-01

    Coriander is commonly used for medicinal purposes, food applications, cosmetics and perfumes. Herein, the production of antioxidants in vegetative parts (leaves and stems) of in vivo and in vitro grown samples was compared. In vitro samples were clone A- with notorious purple pigmentation in stems and leaves and clone B- green. Seeds were also studied as they are used to obtain in vivo and in vitro vegetative parts. Lipophilic (tocopherols, carotenoids and chlorophylls) and hydrophilic (sugars, ascorbic acid, phenolics, flavonols and anthocyanins) compounds were quantified. The antioxidant activity was evaluated by radical scavenging activity, reducing power and lipid peroxidation inhibition. The in vivo sample showed the highest antioxidant activity mainly due to its highest levels of hydrophilic compounds. Otherwise, in vitro samples, mainly clone A, gave the highest concentration in lipophilic compounds but a different profile when compared to the in vivo sample. Clones A and B revealed a lack of β-carotene, β- and δ-tocopherols, a decrease in α-tocopherol, and an increase in γ-tocopherol and clorophylls in comparison to the in vivo sample. In vitro culture might be useful to explore the plants potentialities for industrial applications, controlling environmental conditions to produce higher amounts of some bioactive products.

  3. Effect of annatto seed and coriander leaves as natural antioxidants in fish meatballs during frozen storage.

    PubMed

    Sancho, Renata Aparecida Soriano; de Lima, Fabíola Aliaga; Costa, Gabriel Guerra; Mariutti, Lilian Regina Barros; Bragagnolo, Neura

    2011-08-01

    The effects of annatto (0.1 g/100g) and coriander (0.5 g/100g) were assessed against lipid oxidation in white hake meatballs cooked in boiling water (95 ± 1 °C) for 30 min and stored at -18 °C for 120 d. The fatty acids (FA) and the nutritional quality, cholesterol, cholesterol oxides, thiobarbituric acid reactive substances (TBARS) values, and conjugated dienes were analyzed to follow the course of oxidation. Annatto and coriander were efficient in the control of lipid oxidation, also preserving the essential FA. At 120 d of storage, the eicosapentaenoic acid (EPA) concentration decreased respectively by 43%, 32%, 12%, and 9% in the control, coriander, annatto, and annatto + coriander patties. For docosahexaenoic acid (DHA), these concentrations decreased, respectively, 44%, 30%, 11%, and 7%, revealing a probable synergistic effect among the antioxidant compounds present in both spices. On the other hand, annatto and coriander were not able to act protecting the meatballs against lipid oxidation when they were cooked, also not exerted any effect in the cholesterol oxidation. Spices, especially coriander and annatto, can be an alternative to substitute synthetic additives with antioxidants to prevent loss of important unsaturated fatty acids (UFA) in fish meatballs during frozen storage for 120 d. The maximum effect was observed when 0.5% coriander and 0.1% annatto were used in combination. Cooking did not induce the formation of cholesterol oxides, compounds that can cause more health damages than cholesterol itself; however, during storage the cholesterol oxides levels presented a little increase regardless of spice addition. © 2011 Institute of Food Technologists®

  4. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.

    PubMed

    Lixandru, Brînduşa-Elena; Drăcea, Nicoleta Olguţa; Dragomirescu, Cristiana Cerasella; Drăgulescu, Elena Carmina; Coldea, Ileana Luminiţa; Anton, Liliana; Dobre, Elena; Rovinaru, Camelia; Codiţă, Irina

    2010-01-01

    The currative properties of aromatic and medicinal plants have been recognized since ancient times and, more recently, the antimicrobial activity of plant essential oils has been used in several applications, including food preservation. The purpose of this study was to create directly comparable, quantitative data on the antimicrobial activity of some plant essential oils prepared in the National Institute of Research-Development for Chemistry and Petrochemistry, Bucharest to be used for the further development of food packaging technology, based on their antibacterial and antifungal activity. The essential oils extracted from thyme (Thymus vulgaris L.), basil (Ocimum basilicum L.), coriander (Coriandrum sativum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), fennel (Foeniculum vulgare L.), spearmint (Mentha spicata L.) and carraway (Carum carvi L.) were investigated for their antimicrobial activity against eleven different bacterial and three fungal strains belonging to species reported to be involved in food poisoning and/or food decay: S. aureus ATCC 25923, S. aureus ATCC 6538, S. aureus ATCC 25913, E. coli ATCC 25922, E. coli ATCC 35218, Salmonella enterica serovar Enteritidis Cantacuzino Institute Culture Collection (CICC) 10878, Listeria monocytogenes ATCC 19112, Bacillus cereus CIP 5127, Bacillus cereus ATCC 11778, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, Penicillium spp. CICC 251 and two E. coli and Salmonella enterica serovar Enteritidis clinical isolates. The majority of the tested essential oils exibited considerable inhibitory capacity against all the organisms tested, as supported by growth inhibition zone diameters, MICs and MBC's. Thyme, coriander and basil oils proved the best antibacterial activity, while thyme and spearmint oils better inhibited the fungal species.

  5. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    PubMed

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bioaccumulation of Antimony and Arsenic in Vegetables and Health Risk Assessment in the Superlarge Antimony-Mining Area, China

    PubMed Central

    Zeng, Defang; Zhou, Saijun; Ren, Bozhi; Chen, Tengshu

    2015-01-01

    Heavy metal pollution in soils caused by mining and smelting has attracted worldwide attention for its potential health risks to residents. This paper studies the concentrations and accumulations of Sb and As in both soils and vegetables and the human health risks of Sb and As in vegetables from Xikuangshan (XKS) Sb mine, Hunan, China. Results showed that the soils were severely polluted by Sb and As; Sb and As have significant positive correlation. Sb and As concentrations in vegetables were quite different: Coriandrum sativum L. was the highest in Sb, Allium fistulosum L. was the highest in As, and Brassica pekinensis L. was the lowest in both Sb and As; Daucus carota L. and Coriandrum sativum L. showed advantage in accumulating Sb and As; Coriandrum sativum L. had higher capacity of redistributing Sb and As within the plant. Health risk assessment results showed that the hazard quotient (HQ) values of Sb and As in vegetables were in the ranges of 1.61–3.33 and 0.09–0.39, respectively; the chronic daily intake (CDI) and hazard quotient (HQ) values of Sb were over the safe limit recommended by FAO and WHO, indicating that long-term consumption of vegetables from the surrounding soils of XKS mine may bring health risks to residents. PMID:26442167

  7. Topical treatment of tinea pedis using 6% coriander oil in unguentum leniens: a randomized, controlled, comparative pilot study.

    PubMed

    Beikert, F C; Anastasiadou, Z; Fritzen, B; Frank, U; Augustin, M

    2013-01-01

    The antifungal activity of coriander oil has already been demonstrated in vitro. Evaluation of the efficacy and tolerability of 6% coriander oil in unguentum leniens in the treatment of interdigital tinea pedis. Half-side comparative pilot study on subjects with symmetric, bilateral interdigital tinea pedis. Active drug and placebo control were applied twice daily on the affected areas, and follow-up visits were performed on days 14 and 28. 40 participants (mean age 52.5 years, 60% male) were included in the study. For 6% coriander oil in unguentum leniens, a highly significant improvement of the clinical signs (p < 0.0001) was observed during the entire observation period; the number of positive fungal cultures also tended to decrease (p = 0.0654). The tolerability of the tested substances was good. Coriander oil is effective and well tolerated in the treatment of interdigital tinea pedis. Copyright © 2013 S. Karger AG, Basel.

  8. Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the nutrient uptake, biomass production and yield of the major compounds in the essential oil of five genotypes of Coriandrum sativum L. The treatments were four accessions donated by the National Genetic Resources Advisory Council (NGRAC), U.S. Department...

  9. Ethnobotanics used in folk medicine of Tamil culture in Sri Lanka: a scientific review.

    PubMed

    Jesuthasan, Anternite Shanthi; Uluwaduge, Deepthi Inoka

    2017-01-01

    Tamil culture has recognized the potential use of plant herbs for prevention and treatment of different diseases. These folk remedies have been practiced by Sri Lankan Tamils even after modernization. This review focuses on frequently used medicinal plants among Sri Lankan Tamil communities, such as Cuminum cyminum, Azadirechta indica, Coriandrum sativum, Sesamum indicum, Zingiber officinale, Trigonella foenum-graecum, Moringa oleifera, Plectranthus amboinicus, Allium sativum and Curcuma longa, for their documented medicinal properties, which include antimicrobial, antioxidant, antitumor, anti-inflammatory, antihypertensive, hypocholesterolemic, antidiabetic and diuretic effects.

  10. The Influence of Scalded Flour, Fermentation, and Plants Belonging to Lamiaceae Family on the Wheat Bread Quality and Acrylamide Content.

    PubMed

    Bartkiene, Elena; Bartkevics, Vadims; Krungleviciute, Vita; Pugajeva, Iveta; Zadeike, Daiva; Juodeikiene, Grazina; Cizeikiene, Dalia

    2018-06-01

    The aim of this study was to investigate the influence of additives such as plants belonging to Lamiaceae family (Thymus vulgaris, Carum carvi, Origanum vulgare, Ocimum basilicum, and Coriandrum sativum), scalded flour (SF) or scalded flour fermented with Lactobacillus plantarum LUHS135 (SFFLp) on the quality and acrylamide formation in wheat bread. The formation of acrylamide and bread quality significantly depended on the king of plants used and the amount of SF and SFFLp used. The additives of T. vulgaris and SF increased the content of acrylamide by 3.4-fold in comparison with bread prepared without SF, whereas the addition of SFFLp significantly reduced the content of acrylamide in bread, especially using 5% of SFFLp supplemented with O. vulgare and 15% of SFFLp supplemented with C. sativum (respectively by 40% and 29.4%) therefore could be recommended for safer bread production. The addition of 5% (from total wheat flour content) of scalded wheat flour fermented with Lactobacillus plantarum LUHS135 strain (SFFLp) with Origanum vulgare addition, and 5% or 10% of SFFLp prepared with Ocimum basilicum, and 15% of SFFLp prepared with Coriandrum sativum significantly reduce the content of acrylamide in wheat bread, therefore could be recommended for safer bread production. © 2018 Institute of Food Technologists®.

  11. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    PubMed

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Physicochemical properties of honey from Marche, Central Italy: classification of unifloral and multifloral honeys by multivariate analysis.

    PubMed

    Truzzi, Cristina; Illuminati, Silvia; Annibaldia, Anna; Finale, Carolina; Rossetti, Monica; Scarponi, Giuseppe

    2014-11-01

    The purpose of this study was the physicochemical characterization and classification of Italian honey from Marche Region with a chemometric approach. A total of 135 honeys of different botanical origins [acacia (Robinia pseudoacacia L.), chestnut (Castanea sativa), coriander (Coriandrum sativum L.), lime (Tilia spp.), sunflower (Helianthus annuus L.), Metcalfa honeydew and multifloral honey] were considered. The average results of electrical conductivity (0.14-1.45 mS cm(-1)), pH (3.89-5.42), free acidity (10.9-39.0 meq(NaOH) kg(-1)), lactones (2.4-4.5 meq(NaOH) kg(-1)), total acidity (14.5-40.9 meq(NaOH) kg(-1)), proline (229-665 mg kg(-1)) and 5-(hydroxy-methyl)-2-furaldehyde (0.6-3.9 mg kg(-1)) content show wide variability among the analysed honey types, with statistically significant differences between the different honey types. Pattern recognition methods such as principal component analysis and discriminant analysis were performed in order to find a relationship between variables and types of honey and to classify honey on the basis of its physicochemical properties. The variables of electrical conductivity, acidity (free, lactones), pH and proline content exhibited higher discriminant power and provided enough information for the classification and distinction of unifloral honey types, but not for the classification of multifloral honey (100% and 85% of samples correctly classified, respectively).

  13. New Experimental Hosts of Tobacco streak virus and Absence of True Seed Transmission in Leguminous Hosts.

    PubMed

    Vemana, K; Jain, R K

    2010-10-01

    Of 70 plant species tested, 50 species were susceptible to Tobacco streak virus (TSV) on sap inoculation. Both localized (necrotic and chlorotic spots) and systemic (necrotic spots, axillary shoot proliferation, stunting, total necrosis and wilt) symptoms are observed by majority of plant species. Eleven new experimental hosts were identified viz., Amaranthus blitum var. oleracea (Chaulai sag), Celosia cristata (Cocks comb), Beta vulgaris var. bengalensis (Palak/Indian spinach), Calendula officinalis (Pot marigold), Chrysanthemum indicum, Cosmos sulphurens (Yellow cosmos), Citrullus lunatus (Watermelon), Lagenaria siceraria (Bottle gourd), Coriandrum sativum (Coriander), Hibiscus subderiffa var. subderiffa (Roselle) and Portulaca oleraceae (Little hogweed). Detected groundnut seed infection with TSV for the first time by Direct antigen coated immunosorbent assay (DAC-ELISA) using whole seed. The seed infection ranged from 18.9 to 28.9% among the seeds collected from naturally infected and sap inoculated groundnut varieties (JL 24, TMV 2, Prasuna, Kadiri 6, Kadiri 9, Anantha and Kadiri 7 Bold) belonging to spanish and virginia types. Further, TSV was detected both in pod shell and seed testa and none of the samples showed the presence of TSV either in cotyledon or embryo. Grow-out and bio-assay tests proved the absence of seed transmission in groundnut and other legume crops. Hence, TSV isolate was not a true seed transmission case under Indian conditions in legumes.

  14. Antiplatelet activity of Allium ursinum and Allium sativum.

    PubMed

    Hiyasat, Bahi; Sabha, Dina; Grotzinger, Kristina; Kempfert, Joerg; Rauwald, Johann-Wilhelm; Mohr, Friedrich-Wilhelm; Dhein, Stefan

    2009-01-01

    Garlic (Allium sativum) has a well-established reputation as a protective agent against cardiovascular disease, while nearly nothing is known about its cousin Allium ursinum. The aim of this study was to evaluate the antiaggregatory mechanism of garlic and to compare the effects of A. ursinum and A. sativum. In a prospective study, extracts were prepared from A. sativum powder made from fresh A. sativum bulbs and fresh A. ursinum leaves by maceration. The extracts were characterized by thin layer chromatography. Their in vitro effects on human platelet aggregation were examined by light transmission aggregometry after induction by adenosine diphosphate (ADP), collagen, A23187, epinephrine and arachidonic acid (ARA) in platelets from healthy volunteers. A. ursinum and A. sativum exert similar antiaggregatory effects: they inhibit platelet aggregation induced via the ADP pathway and to a lesser extent aggregation induced by epinephrine, whereas ARA-, collagen- and A23187-induced aggregation was not affected. It became clear that the alcoholic extract of A. ursinum is the potent form, while the aqueous extract exerted an unspecific activity. The effects were strictly dose related. A. ursinum and A. sativum extracts exhibited similar potencies. Both A. ursinum and A. sativum exert antiaggregatory effects. Garlic extracts are acting by inhibition of the ADP pathway; their mechanisms of action are comparable to that of the clinically used drug clopidogrel. The pharmacologically active component of the extracts appears to be lipophilic rather than hydrophilic, but the precise chemical substance is still unknown. This is the first report on the antiplatelet activity of A. ursinum. Copyright 2009 S. Karger AG, Basel.

  15. Spatial distribution of heavy metals in soil, water, and vegetables of farms in Sanandaj, Kurdistan, Iran.

    PubMed

    Maleki, Afshin; Amini, Hassan; Nazmara, Shahrokh; Zandi, Shiva; Mahvi, Amir Hossein

    2014-01-01

    Heavy metals are ubiquitous elsewhere in nature and their measurement in environment is necessary to develop health management strategies. In this study, we aimed to find out concentrations and spatial patterns of heavy metals in main farms of Sanandaj in Kurdistan, Iran. Over May to October 2012, six farms were selected to analyze concentrations and spatial patterns of several heavy metals, namely aluminum (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in their soil, irrigation water, and edible vegetables. Overall, 36 samples of soil and water and 72 samples of vegetables including coriander (Coriandrum sativum), dill (Anethum graveolens), radish (Raphanus sativus) root and radish leaf were collected. The concentrations of metals were determined by inductively coupled plasma optical emission spectrometry. The spatial surfaces of heavy metals were created using geospatial information system. The order of metals in soil was Al > Zn > Ni > Cu > Cr > Pb > Co > As > Cd while in water it was Cr > Co > Zn > Pb > Cu > Ni > Al = As = Cd. The order of heavy metals in vegetables was Al > Zn > Cu > Cr > Ni > Pb > Co > As > Cd. Totally, the minimum concentrations of Al, Cu, Pb, and Zn were found in radish root while the maximum of Al, Co, Cr, and Ni were found in radish leaf. The minimum concentrations of Cd and Cr and maximum concentrations of Cu and Zn were also deciphered in dill. Noteworthy, coriander had the minimum concentrations of Co and Ni. The concentrations of Cr and Pb in vegetables were more than maximum allowable limits of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). In summary, albeit the concentrations of heavy metals in soil and water samples were below FAO and the WHO standards, vegetables were contaminated by chromium and lead.

  16. In silico approaches and proportional odds model towards identifying selective ADAM17 inhibitors from anti-inflammatory natural molecules.

    PubMed

    Borah, Pallab Kumar; Chakraborty, Sourav; Jha, Anupam N; Rajkhowa, Sanchaita; Duary, Raj Kumar

    2016-11-01

    ADAM metallopeptidase domain 17 (ADAM17) is an attractive target for the development of new anti-inflammatory drugs. We aimed to identify selective inhibitors of ADAM17 against matrix metalloproteinase enzymes (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, and MMP-16) which have substantial structural similarity. Target proteins were docked with 29 anti-inflammatory natural molecule ligands and a known selective inhibitor IK682. The ligands were screened based on Lipinski rules, interaction with the ADAM17 active site cavity, and then ranked using the proportional odds model multinomial logistic regression. Silymarin was the most selective inhibitor of ADAM17 exhibiting H-bonding with Glu 406, Gly 349, Glu 398, Asn 447, Tyr 433, and Lys 432. Molecular dynamics simulations were carried out for 10ns. The root mean square deviation (RMSD), root mean squared fluctuations (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and H-bonding indicated the induced metastability. A comparison of the principal component analysis revealed that the silymarin complex also explored lesser region compared to IK682 complex. A control study on ADAM17 protein (2OI0) is included. These observations present silymarin (widely present in plants such as milk thistle (Silybum maianum), wild artichokes (Cynara cardunculus), turmeric (Curcuma longa) roots, coriander (Coriandrum sativum) seeds, etc.) as a promising natural template for development of ADAM17 selective drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds

    PubMed Central

    Luna, Carlos; Barriga-Castro, Enrique Díaz; Gómez-Treviño, Alberto; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2016-01-01

    Coriander leaves and seeds have been highly appreciated since ancient times, not only due to their pleasant flavors but also due to their inhibitory activity on food degradation and their beneficial properties for health, both ascribed to their strong antioxidant activity. Recently, it has been shown that coriander leaf extracts can mediate the synthesis of metallic nanoparticles through oxidation/reduction reactions. In the present study, extracts of coriander leaves and seeds have been used as reaction media for the wet chemical synthesis of ultrafine silver nanoparticles and nanoparticle clusters, with urchin- and tree-like shapes, coated by biomolecules (mainly, proteins and polyphenols). In this greener route of nanostructure preparation, the active biocompounds of coriander simultaneously play the roles of reducing and stabilizing agents. The morphological and microstructural studies of the resulting biosynthesized silver nanostructures revealed that the nanostructures prepared with a small concentration of the precursor Ag salt (AgNO3 =5 mM) exhibit an ultrafine size and a narrow size distribution, whereas particles synthesized with high concentrations of the precursor Ag salt (AgNO3 =0.5 M) are polydisperse and formation of supramolecular structures occurs. Fourier transform infrared and Raman spectroscopy studies indicated that the bioreduction of the Ag− ions takes place through their interactions with free amines, carboxylate ions, and hydroxyl groups. As a consequence of such interactions, residues of proteins and polyphenols cap the biosynthesized Ag nanoparticles providing them a hybrid core/shell structure. In addition, these biosynthesized Ag nanomaterials exhibited size-dependent plasmon extinction bands and enhanced bactericidal activities against both Gram-positive and Gram-negative bacteria, displaying minimal inhibitory Ag concentrations lower than typical values reported in the literature for Ag nanoparticles, probably due to the synergy of

  18. [Antiinflammatory potential of seven plant extracts in the ultraviolet erythema test. A randomized, placebo-controlled study].

    PubMed

    Beikert, F C; Schönfeld, B S; Frank, U; Augustin, M

    2013-01-01

    Phytotherapeutics are widely used in medicine. The aim of this study was the evaluation of the antiinflammatory potential of seven medical plant extracts using the ultraviolet- (UV)-erythema test. Randomized, placebo-controlled study on 40 healthy subjects. Test areas on the upper back were irradiated with the 1.5 fold UV-B minimal erythema dose (MED). Formulations of Aloe vera, Chamomilla recutita, Hamamelis virginiana, Melissa officinalis, Mentha arvensis, Melaleuca alternifolia, Coriandrum sativum as well as 1% hydrocortisone acetate and 0.1% betamethasone valerate as positive controls and unguentum leniens as vehicle control were applied under occlusion on the irradiated areas and on non-irradiated area on the contralateral side. Photometric assessment of the erythema was performed before the application of the substances (t0), at 24 h (t1) and at 48 h (t2). Aloe vera, Chamomilla recutita, Melissa officinalis, Melaleuca alternifolia and Coriandrum sativum showed an antiinflammatory effect compared to UV-control and unguentum leniens. However, the results were only statistically significant for Aloe vera. All tested plant extracts were well tolerated. Aloe vera possesses an antiinflammatory effect on UV-induced erythemas.

  19. On the shock response of pisum sativum and lepidium sativum

    NASA Astrophysics Data System (ADS)

    Leighs, James Allen; Hazell, Paul; Appleby-Thomas, Gareth James

    2012-03-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry to astrobiology. Consequently, knowledge of the damage mechanisms within, and the viability of shocked organic material are of significant importance. In this study, a single-stage gasgun has been employed to subject samples of Pisum sativum (common pea) and Lepidium sativum (curled cress) to planar shock loading. Impact pressures of up to ~11.5 GPa and ~0.5 GPa for pea and cress seed samples respectively have been reached. The development of the experimental approach is discussed and presented alongside results from modelled gauge traces showing the sample loading history. Viability of the shock-loaded pea and cress seeds was investigated via attempts at germination, which were unsuccessful with pea seeds but successful in all tests performed on cress seeds. This work suggests that organic structures could survive shockwaves that may be encountered during asteroid collisions.

  20. Effect of sanitizer washing on quality and shelf-life of fresh coriander during refrigerated storage

    USDA-ARS?s Scientific Manuscript database

    Fresh coriander leaves are highly perishable in nature and their sensory quality and nutritional value decreases without proper processing or preservation. In the present study, three aqueous solutions of sodium hypochlorite (SH, 100mg/L), chlorine dioxide (CD, 10 mg/L), and sodium butyl p-hydroxyb...

  1. Pea, Pisum sativum, and Its Anticancer Activity

    PubMed Central

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment. PMID:28503053

  2. 75 FR 34687 - Notice of Decision to Issue Permits for the Importation of Fresh False Coriander From Panama Into...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... coriander from Panama. EFFECTIVE DATE: June 18, 2010. FOR FURTHER INFORMATION CONTACT: Mr. David Lamb... or restricts the importation of fruits and vegetables into the United States from certain parts of...

  3. Domestication of Pea (Pisum sativum L.): The Case of the Abyssinian Pea

    PubMed Central

    Weeden, Norman F.

    2018-01-01

    Phylogenetic relationships of the Abyssinian pea (Pisum sativum ssp. abyssinicum) to other subspecies and species in the genus were investigated to test between different hypotheses regarding its origin and domestication. An extensive sample of the Pisum sativum ssp. sativum germplasm was investigated, including groups a-1, a-2, b, c, and d as identified by Kwon et al. (2012). A broad sample of P. fulvum but relatively few P. s. ssp. elatius accessions were analyzed. Partial sequences of 18 genes were compared and these results combined with comparisons of additional genes done by others and available in the literature. In total, 54 genes or gene fragment sequences were involved in the study. The observed affinities between alleles in P. ssp. sativum, P. s. ssp. abyssinicum, P. s. ssp. elatius, and P. fulvum clearly demonstrated a close relationship among the three P. sativum subspecies and rejected the hypothesis that the Abyssinian pea was formed by hybridization between one of the P. sativum subspecies and P. fulvum. If hybridization were involved in the generation of the Abyssinian pea, it must have been between P. s. ssp. sativum and P. s. ssp. elatius, although the Abyssinian pea possesses a considerable number of highly unique alleles, implying that the actual P. s. ssp. elatius germplasm involved in such a hybridization has yet to be tested or that the hybridization occurred much longer ago than the postulated 4000 years bp. Analysis of the P. s. ssp. abyssinicum alleles in genomic regions thought to contain genes critical for domestication indicated that the indehiscent pod trait was independently developed in the Abyssinian pea, whereas the loss of seed dormancy was either derived from P. s. ssp. sativum or at least partially developed before the P. s. ssp. abyssinicum lineage diverged from that leading to P. s. ssp. sativum. PMID:29720994

  4. Performance Evaluation of Membrane-Based Septic Tank and Its Reuse Potential for Irrigating Crops.

    PubMed

    Khalid, Mehwish; Hashmi, Imran; Khan, Sher Jamal

    2017-08-01

      Membrane technology, being the most emerging wastewater treatment option, has gained substantial importance with the massive objective of the reuse potential of wastewater. Keeping this in view, the present study was conducted with the rationale to evaluate the performance efficiency of membrane-based septic tank (MBST), and its reuse perspective for irrigating crops. The septic tank was designed by submerging a woven fiber microfiltration membrane module to treat domestic wastewater. Three crops Triticum aestivum (wheat), Coriandrum sativum (coriander), and Mentha arvensis (mint) were selected to be irrigated with treated MBST effluent, untreated wastewater, and tap water (as a control) for comparative growth analysis. Two pathogenic strains, Escherichia coli and Salmonella sp. were selected as reference microbes and their translocation rate was observed in root, shoot, and leaves. Upon maturity, the roots, shoots, and leaves of the above-mentioned plants were aseptically removed for microbiological analysis. Strains were analyzed, using analytical profile index and PCR analysis. Maximum removal efficiencies for MBST in terms of chemical oxygen demand (COD), turbidity, nutrients deduction (phosphorus), and indicator bacteria (Escherichia coli) were found to be 73, 96, 48, and 88%, respectively. Significant bacterial load reduction (p < 0.001) in terms of E. coli (3.8 log CFU/100 mL) and helminths (2 eggs/L) was observed in treated water. High plant yield was observed when irrigated with treated water as compared to tap water, as minimal nutrient removal (48%) was recorded in treated water, with the germination percentage of 88.8%.

  5. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    PubMed

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  6. A review on the effects of Allium sativum (Garlic) in metabolic syndrome.

    PubMed

    Hosseini, A; Hosseinzadeh, H

    2015-11-01

    The metabolic syndrome is a common problem world-wide and includes abdominal obesity, hypertension, dyslipidemia, and hyperglycemia disorders. It leads to insulin resistance and the development of diabetes mellitus or cardiovascular disease. Allium sativum (garlic) has been documented to exhibit anti-diabetic, hypotensive, and hypolipidemic properties. This suggests a potential role of A. sativum in the management of metabolic syndrome; however, more studies should be conducted to evaluate its effectiveness. In this review, we discussed the most relevant articles to find out the role of A. sativum in different components of metabolic syndrome and cardiovascular disease risk factors. Because human reports are rare, further studies are required to establish the clinical value of A. sativum in metabolic syndrome.

  7. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum.

    PubMed

    Meriga, Balaji; Mopuri, Ramgopal; MuraliKrishna, T

    2012-05-01

    To evaluate the insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum (A. sativum). Dried bulbs of A. sativum were extracted with different solvents and evaluated for insecticidal, antimicrobial and antioxidant activities. Aqueous and methanol extracts showed highest insecticidal activity (mortality rate of 81% and 64% respectively) against the larvae of Spodoptera litura (S. litura) at a concentration of 1 000 ppm. With regard to antimicrobial activity, aqueous extract exhibited antibacterial activity against gram positive (Bacillus subtilis, Staphylococcus aureu,) and gram negative (Escherichia coli and Klebsiella pneumonia) strains and antifungal activity against Candida albicans. While methanol extract showed antimicrobial activity against all the tested micro organisms except two (Staphylococcus aureus and Candida albicans), the extracts of hexane, chloroform and ethyl acetate did not show any anti microbial activity. Minimum inhibitory concentration of aqueous and methanol extracts against tested bacterial and fungal strains was 100-150 μg/mL. Antioxidant activity of the bulb extracts was evaluated in terms of inhibition of free radicals by 2, 2'-diphenly-1-picrylhydrazyl. Aqueous and methanol extracts exhibited strong antioxidant activity (80%-90% of the standard). Antioxidant and antimicrobial activity of A. sativum against the tested organisms therefore, provides scientific basis for its utilization in traditional and folk medicine. Also, our results demonstrated the insecticidal efficacy of A. sativum against S. litura, a polyphagous insect. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. Allium Sativum Methanolic Extract (garlic) Improve Therapeutic Efficacy of Albendazole Against Hydatid Cyst: In Vivo Study.

    PubMed

    Haji Mohammadi, K H; Heidarpour, M; Borji, H

    2018-04-25

    After gas chromatography and mass spectrometry of prepared methanolic extract of Allium sativum, 40 laboratory BALB/c mice were infected intraperitoneally by injection of 1,500 viable protoscoleces. Five months after infection, the infected mice were allocated into four treatment groups, including 1- Albendazole (100 mg/kg); 2- Allium sativum methanolic extract (10 mL/L); 3- A. sativum methanolic extract (10 mL/L) + Albendazole (50 mg /kg); and 4- untreated control group. After 30 days of daily treatment, total number and weight of cysts and size of the largest cyst as well as blood serum bilirubin and liver enzymes were compared between the mice of different groups. The total number and weight of cysts and size of the largest cyst were significantly lower in treated groups A. sativum 10 mL/L + Albendazole 50 and Albendazole 100 in comparison to those of the control group (p < 0.05). The activity of alanine aminotransferase (ALT) enzyme and bilirubin concentration were significantly lower in the mice treated with A. sativum 10 mL/L and A. sativum 10 mL/L + Albendazole 50, when compared to the control group. In addition, bilirubin concentration revealed significant decrease in A. sativum 10 mL/L and A. sativum 10 mL/L + Albendazole 50 groups, when compared to the Albendazole group. In conclusion, administration of A. sativum 10 mL/L improved the anti-hydatidosis activity of Albendazole 50 mg /kg, due to parasitological effects similar to Albendazole 100 mg /kg but less hepatotoxic effects.

  9. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.

    PubMed

    Cheng, Hao; Huang, Gangliang

    2018-07-15

    Extraction and antioxidant activity of polysaccharide from Allium sativum were investigated. The crude polysaccharide was obtained by the hot-water extraction method. The molecular weight of polysaccharide deproteinized with CaCl 2 was 7.35×10 3 . It indicated that polysaccharide from Allium sativum consisted of three monosaccharides, namely fructose, glucose, and galactose by HPLC. The polysaccharide had the β-glycosidic bond. Moreover, it was proved that the polysaccharide had the potential scavenging ability to superoxide anions and hydroxyl radicals. So, it should be a potential antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Studies on essential oils: part 10; antibacterial activity of volatile oils of some spices.

    PubMed

    Singh, G; Kapoor, I P S; Pandey, S K; Singh, U K; Singh, R K

    2002-11-01

    The essential oils extracted from the seeds of seven spices, Anethum graveolens, Carum capticum, Coriandrum sativum, Cuminum cyminum, Foeniculum vulgare, Pimpinella anisum and Seseli indicum have been studied for antibacterial activity against eight pathogenic bacteria, causing infections in the human body. It has been found that the oil of C. capticum is very effective against all tested bacteria. The oil of C. cyminum and A. graveolens also gave similar results. These oils are equally or more effective when compared with standard antibiotics, at a very low concentration. Copyright 2002 John Wiley & Sons, Ltd.

  11. The essential oil of Allium sativum as an alternative agent against Candida isolated from dental prostheses.

    PubMed

    Mendoza-Juache, Alejandro; Aranda-Romo, Saray; Bermeo-Escalona, Josué R; Gómez-Hernández, Araceli; Pozos-Guillén, Amaury; Sánchez-Vargas, Luis Octavio

    The colonization of the surfaces of dental prostheses by Candida albicans is associated with the development of denture stomatitis. In this context, the use of fluconazole has been proposed, but its disadvantage is microbial resistance. Meanwhile, the oil of Allium sativum has shown an effect in controlling biofilm formation by C. albicans. The objective of this study was to determine the antifungal activities of the essential oil of A. sativum and fluconazole against clinical isolates of Candida species obtained from rigid, acrylic-based partial or total dentures and to compare these agents' effects on both biofilm and planktonic cells. A total of 48 clinical isolates obtained from the acrylic surface of partial or complete dentures were examined, and the following species were identified: C. albicans, Candida glabrata, Candida tropicalis, and Candida krusei. For each isolate, the antifungal activities of the essential oil of A. sativum and fluconazole against both biofilm and planktonic cells were evaluated using the Clinical & Laboratory Standards Institute (CLSI) M27-A3 method. The isolates were also evaluated by semiquantitative XTT reduction. All planktonic Candida isolates were susceptible to the essential oil of A. sativum, whereas 4.2% were resistant to fluconazole. Regarding susceptibilities in biofilms, 43.8% of biofilms were resistant to A. sativum oil, and 91.7% were resistant to fluconazole. All planktonic cells of the different Candida species tested are susceptible to <1mg/ml A. sativum oil, and the majority are susceptible to fluconazole. Susceptibility decreases in biofilm cells, with increased resistance to fluconazole compared with A. sativum oil. The essential oil of A. sativum is thus active against clinical isolates of Candida species obtained from dentures, with effects on both biofilm and planktonic cells in vitro. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Antileishmanial activity of a mixture of Tridax procumbens and Allium sativum in mice

    PubMed Central

    Gamboa-Leon, Rubi; Vera-Ku, Marina; Peraza-Sanchez, Sergio R.; Ku-Chulim, Carlos; Horta-Baas, Aurelio; Rosado-Vallado, Miguel

    2014-01-01

    We tested a mixture of Tridax procumbens, known for its direct action against Leishmania mexicana, and Allium sativum, known for its immunomodulatory effect, as an alternative to treat cutaneous leishmaniasis. Acute oral toxicity was tested with the Up-and-Down Procedure (UDP) using a group of healthy mice administered with either T. procumbens or A. sativum extracts and compared with a control group. Liver injury and other parameters of toxicity were determined in mice at day 14. The in vivo assay was performed with mice infected with L. mexicana promastigotes and treated with either a mixture of T. procumbens and A. sativum or each extract separately. The thickness of the mice’s footpads was measured weekly. After the 12-week period of infection, blood samples were obtained by cardiac puncture to determine the total IgG, IgG1 and IgG2a immunoglobulins by a noncommercial indirect ELISA. We showed that the mixture of T. procumbens and A. sativum extracts was better at controlling L. mexicana infection while not being toxic when tested in the acute oral toxicity assay in mice. An increase in the ratio of IgG2a/IgG1 indicated a tendency to raise a Th1-type immune response in mice treated with the mixture. The mixture of T. procumbens and A. sativum extracts is a promising natural treatment for cutaneous leishmaniasis and its healing effects make it a good candidate for a possible new phytomedicine. PMID:24717526

  13. Isolation and characterization of novel EST-derived genic markers in Pisum sativum (Fabaceae)1

    PubMed Central

    Jain, Shalu; McPhee, Kevin E.

    2013-01-01

    • Premise of the study: Novel markers were developed for pea (Pisum sativum) from pea expressed sequence tags (ESTs) having significant homology to Medicago truncatula gene sequences to investigate genetic diversity, linkage mapping, and cross-species transferability. • Methods and Results: Seventy-seven EST-derived genic markers were developed through comparative mapping between M. truncatula and P. sativum in which 75 markers produced PCR products and 33 were polymorphic among 16 pea genotypes. • Conclusions: The novel markers described here will be useful for future genetic studies of P. sativum; their amplification in lentil (Lens culinaris) demonstrates their potential for use in closely related species. PMID:25202494

  14. Inhibitory activity of Asian spices on heterocyclic amines formation in cooked beef patties.

    PubMed

    Puangsombat, Kanithaporn; Jirapakkul, Wannee; Smith, J Scott

    2011-10-01

    Heterocyclic amines (HCAs) are mutagenic compounds formed when foods are cooked at high temperatures. Numerous reports have shown that natural antioxidants from spices, fruits, chocolate, and tea can inhibit formation. In this study, we evaluated HCA formation in the presence of 5 of Asian spices: galangal (Alpinia galangal), fingerroot (Boesenbergia pandurata), turmeric (Curcuma longa), cumin (Cuminum cyminum), and coriander seeds (Coriandrum sativum). HCA levels were compared to patties containing rosemary (Rosmarinus officinalis), of which the inhibitory effect is well documented. Inhibition of HCA formation by the spices was evaluated in beef patties cooked at 204 °C (400 °F) for 10 min. All spices were mixed into patties at 0.2% before cooking, and HCAs levels were measured in the final product. All patties, including the control, contained 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl -6-phenylimidazo [4,5-b]pyridine (PhIP). The average HCA content of the control patties was 7 ng/g MeIQx and 6.53 ng/g PhIP. Turmeric (39.2% inhibition), fingerroot (33.5% inhibition), and galangal (18.4% inhibition) significantly decreased HCAs compared with the control. But, only turmeric and fingerroot were as effective as rosemary in preventing HCA formation. The HCA inhibition in patties containing spices was significantly correlated to the total phenolic content (R(2) = 0.80) and the scavenging activity (R(2) = 0.84) of the spices as measured by the 2,2-diphenyl-β-picrylhydrazyl assay. Results of this study suggest that addition of Asian spices can be an important factor in decreasing the levels of HCAs in fried beef patties. © 2011 Institute of Food Technologists®

  15. Field study on the accumulation of trace elements by vegetables produced in the vicinity of abandoned pyrite mines.

    PubMed

    Alvarenga, Paula; Simões, Isabel; Palma, Patrícia; Amaral, Olga; Matos, João Xavier

    2014-02-01

    To evaluate the accumulation of trace elements (TE) by vegetables produced in the vicinity of abandoned pyrite mines, eighteen different small farms were selected near three mines from the Portuguese sector of the Iberian Pyrite Belt (São Domingos, Aljustrel and Lousal). Total and bioavailable As, Cu, Pb, and Zn concentrations were analyzed in the soils, and the same TE were analyzed in three different vegetables, lettuce (Lactuca sativa), coriander (Coriandrum sativum), and cabbage (Brassica oleracea), collected at the same locations. The soils were contaminated with As, Cu, Pb, and Zn, since their total concentrations exceeded the considered soil quality guideline values for plant production in the majority of the sampling sites. The maximum total concentrations for those TE were extremely high in some of the sampling sites (e.g. 1,851 mg As kg(-1) in São Domingos, 1,126 mg Cu kg(-1) in Aljustrel, 4,946 mg Pb kg(-1) in São Domingos, and 1,224 mg Zn kg(-1) in Aljustrel). However, the soils were mainly circumneutral, a factor that contributes to their low bioavailable fractions. As a result, generally, the plants contained levels of these elements characteristic of uncontaminated plants, and accumulation factors for all elements <1, typical of excluder plants. Furthermore, the estimated daily intake (EDI) for Cu and Zn, through the consumption of these vegetables, falls below the recommended upper limit for daily intake of these elements. The sampling site that stood out from the others was located at São João de Negrilhos (Aljustrel), where bioavailable Zn levels were higher, a consequence of the slight acidity of the soil. Therefore, the Zn content in vegetables was also higher, characteristic of contaminated plants, emphasizing the risk of Zn entering the human food chain via the consumption of crops produced on those soils. © 2013.

  16. Efficacy of soluble glycoprotein fraction from Allium sativum purified by size exclusion chromatography on murine Schistosomiasis mansoni.

    PubMed

    Aly, Ibrahim; Taher, Eman E; El-Sayed, Hoda; Mohammed, Faten A; ELnain, Gehan; Hamad, Rabab S; Bayoumy, Elsayed M

    2017-06-01

    In this work, the efficiency of crude MeOH extracts and soluble glycoprotein fraction of Allium sativum purified by size-exclusion chromatography (SEC) on parasitological, histopathological and some biochemical parameters in Schistosoma mansoni infected mice were investigated. Animals were infected by tail immersion with 100 cercariae/each mouse and divided into five groups in addition to the normal control. The results revealed a significant decrease in mean worm burden in all treated mice especially in the group treated with soluble glycoprotein fraction of A. sativum as compared to infected non-treated control with the disappearance of female worms. Administration of the studied extracts revealed remarkable amelioration in the levels of all the measured parameters in S. mansoni infected mice. In addition, treatment of mice with crude A. sativum MeOH extract and soluble glycoprotein fraction of A. sativum decreased significantly the activities of studied enzymes as compared to the infected untreated group. The highest degrees of enhancement in pathological changes was observed in the treated one with soluble glycoprotein fraction of A. sativum compared to the infected group represented by small sized, late fibro-cellular granuloma, the decrease in cellular constituents and degenerative changes in eggs. In conclusion, A. sativum treatment had effective schistosomicidal activities, through reduction of worm burden and tissue eggs, especially when it was given in purified glycoprotein fraction. Moreover, the soluble glycoprotein fraction of A. sativum largely modulates both the size and the number of granulomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Antileishmanial activity of a mixture of Tridax procumbens and Allium sativum in mice.

    PubMed

    Gamboa-Leon, Rubi; Vera-Ku, Marina; Peraza-Sanchez, Sergio R; Ku-Chulim, Carlos; Horta-Baas, Aurelio; Rosado-Vallado, Miguel

    2014-01-01

    We tested a mixture of Tridax procumbens, known for its direct action against Leishmania mexicana, and Allium sativum, known for its immunomodulatory effect, as an alternative to treat cutaneous leishmaniasis. Acute oral toxicity was tested with the Up-and-Down Procedure (UDP) using a group of healthy mice administered with either T. procumbens or A. sativum extracts and compared with a control group. Liver injury and other parameters of toxicity were determined in mice at day 14. The in vivo assay was performed with mice infected with L. mexicana promastigotes and treated with either a mixture of T. procumbens and A. sativum or each extract separately. The thickness of the mice's footpads was measured weekly. After the 12-week period of infection, blood samples were obtained by cardiac puncture to determine the total IgG, IgG1 and IgG2a immunoglobulins by a noncommercial indirect ELISA. We showed that the mixture of T. procumbens and A. sativum extracts was better at controlling L. mexicana infection while not being toxic when tested in the acute oral toxicity assay in mice. An increase in the ratio of IgG2a/IgG1 indicated a tendency to raise a Th1-type immune response in mice treated with the mixture. The mixture of T. procumbens and A. sativum extracts is a promising natural treatment for cutaneous leishmaniasis and its healing effects make it a good candidate for a possible new phytomedicine. © R. Gamboa-Leon et al., published by EDP Sciences, 2014.

  18. In vitro effectiveness of garlic (Allium sativum) extract on scolices of hydatid cyst.

    PubMed

    Moazeni, Mohammad; Nazer, Ali

    2010-11-01

    Surgery is still the main treatment for hydatid disease. Recurrence of the infection is one of the end points of surgery in treating the hydatid cyst which results from the dissemination of protoscolices-rich fluid. Installation of a scolicidal agent into the cyst is the most commonly employed measure to prevent recurrence. Many scolicidal agents have been used for inactivation of the cyst's content, but most of them are not safe due to their undesired side effects. In the present study, the scolicidal effect of methanolic extract of Allium sativum is investigated. Protoscolices were aseptically collected from sheep livers containing hydatid cysts. Two concentrations (25 and 50 mg ml(-1)) of garlic extract were used for 10, 20, 30, 40, 50, and 60 min. Viability of protoscolices was confirmed by 0.1% eosin staining. Allium sativum extract at the concentration of 25 mg ml(-1) killed 87.9, 95.6, 96.8, 98.7, 99.6, and 100% of protoscolices following 10, 20, 30, 40, 50, and 60 min of application, respectively. Moreover, the scolicidal activity of Allium sativum extract at the concentration of 50 mg ml(-1) was 100% after 10 min of application. Methanolic extract of Allium sativum had a high scolicidal activity in vitro and thus might be used as a scolicidal agent in the surgical treatment of the hydatid cyst. However, further investigation on the in vivo efficacy of Allium sativum extract and its possible side effects is proposed.

  19. Characterization of Essential Oils Obtained from Abruzzo Autochthonous Plants: Antioxidant and Antimicrobial Activities Assessment for Food Application

    PubMed Central

    Pellegrini, Marika; Chaves-López, Clemencia; Mazzarrino, Giovanni; D’Amato, Serena; Lo Sterzo, Claudio

    2018-01-01

    In the present study, the essential oils (EOs) of some officinal plants from Abruzzo territory (Italy) were evaluated for their antimicrobial and antioxidant activities and their volatile fraction chemical characterization. The EOs were extracted from Rosmarinus officinalis, Origanum vulgare, Salvia officinalis, Mentha piperita, Allium sativum, Foeniculum vulgare, Satureja montana, Thymus vulgaris and Coriandrum sativum seeds. The antimicrobial activity was screened against thirteen Gram-positive and Gram-negative strains to determine the Minimal Inhibitory Concentration (MIC). The total phenolic content (TPC) and the antioxidant capacity (AOC) were assessed by means of Folin-Ciocâlteu method, and Trolox Equivalent Antioxidant Capacity with 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (TEAC/ABTS), Ferric Reducing Antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays respectively. Among the nine EOs tested, T. vulgaris, S. montana, O. vulgare and C. sativum EOs showed MIC values ranging from 0.625 to 5 μL/mL. The AOC and TPC results for these species were also interesting. The major components for these EOs were thymol for T. vulgaris (44%) and O. vulgare (40%), linalool (77%) for C. sativum, and carvacrol for S. montana (54%). The results allowed the study to establish that these EOs are good candidates for potential application as biopreservatives in foods and/or food manufacture environments. PMID:29393893

  20. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.

    PubMed

    Zeković, Zoran; Vladić, Jelena; Vidović, Senka; Adamović, Dušan; Pavlić, Branimir

    2016-10-01

    Microwave-assisted extraction (MAE) of polyphenols from coriander seeds was optimized by simultaneous maximization of total phenolic (TP) and total flavonoid (TF) yields, as well as maximized antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl and reducing power assays. Box-Behnken experimental design with response surface methodology (RSM) was used for optimization of MAE. Extraction time (X1 , 15-35 min), ethanol concentration (X2 , 50-90% w/w) and irradiation power (X3 , 400-800 W) were investigated as independent variables. Experimentally obtained values of investigated responses were fitted to a second-order polynomial model, and multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions. The optimal MAE conditions for simultaneous maximization of polyphenol yield and increased antioxidant activity were an extraction time of 19 min, an ethanol concentration of 63% and an irradiation power of 570 W, while predicted values of TP, TF, IC50 and EC50 at optimal MAE conditions were 311.23 mg gallic acid equivalent per 100 g dry weight (DW), 213.66 mg catechin equivalent per 100 g DW, 0.0315 mg mL(-1) and 0.1311 mg mL(-1) respectively. RSM was successfully used for multi-response optimization of coriander seed polyphenols. Comparison of optimized MAE with conventional extraction techniques confirmed that MAE provides significantly higher polyphenol yields and extracts with increased antioxidant activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Allium sativum L.: the anti-immature leech (Limnatis nilotica) activity compared to Niclosomide.

    PubMed

    Bahmani, Mahmoud; Abbasi, Javad; Mohsenzadegan, Ava; Sadeghian, Sirous; Ahangaran, Majid Gholami

    2013-03-01

    This study was carried out to determine the effects of methanolic extracts of Allium sativum L. on Limnatis nilotica compared with Niclosomide. In this experimental study in September 2010, a number of leeches (70 in total) from the southern area of Ilam province were prepared, and the effects of methanolic extract of A. sativum L. with Niclosomide as the control drug were compared and distilled water was evaluated as the placebo group which investigated L. nilotica using anti-leech assay. The average time of paralysis and death of L. nilotica for Niclosomide (1,250 mg/kg) and the methanol extract of A. sativum L. (600 μg/ml) were 6.22 ± 2.94 and 68.44 ± 28.39 min, respectively. Distilled water and garlic tablets at a dose of 400 mg were determined as the inert group. In this research, the attraction time of the leeches' death among different treatments is significant. In this study, it was determined that Niclosomide, with an intensity of 4+, and methanolic extracts of A. sativum L., with an intensity of 3+, have a good anti-leech effect and can be shown to be effective in cases of leech biting, while distilled water was negative.

  2. Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil.

    PubMed

    Smolinska, Beata; Szczodrowska, Agnieszka

    2017-09-25

    In this study, Lepidium sativum L. was used in repeated phytoextraction processes to remove Hg from contaminated soil, assisted by combined use of compost and iodide (KI). L. sativum L. is sensitive to changes in environmental conditions and has been used in environmental tests. Its short vegetation period and ability to accumulate heavy metals make it suitable for use in repeated phytoextraction. The antioxidant enzymatic system of the plant (catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and glutathione S-transferase (GST)) was analysed, to understand the effects of increasing Hg accumulation and translocation. Phytoextraction was repeated six times to decrease Hg contamination in soil, and the efficiency of each step was assessed. The results indicate that L. sativum L. is able to take up and accumulate Hg from contaminated soil. A corresponding increase in enzymatic antioxidants shows that the plant defence system is activated in response to Hg stress. Using compost and KI increases total Hg accumulation and translocation to the above-ground parts of L. sativum L. Repeating the process decreases Hg contamination in pot experiments in all variants of the process. The combined use of compost and KI during repeated phytoextraction increases the efficiency of Hg removal from contaminated soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale)

    PubMed Central

    Satyal, Prabodh; Craft, Jonathan D.; Dosoky, Noura S.; Setzer, William N.

    2017-01-01

    Garlic, Allium sativum, is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale, has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum, cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species. PMID:28783070

  4. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale).

    PubMed

    Satyal, Prabodh; Craft, Jonathan D; Dosoky, Noura S; Setzer, William N

    2017-08-05

    Garlic, Allium sativum , is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale , has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum , cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species.

  5. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards.

    PubMed

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry; Evon, Philippe

    2017-07-17

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness.

  6. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards

    PubMed Central

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry

    2017-01-01

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness. PMID:28714928

  7. Physicochemical traits of Dekoko (Pisum sativum var. abyssinicum) seeds.

    PubMed

    Yemane, Asgedom; Skjelvåg, Arne O

    2003-01-01

    Dekoko (Pisum sativum var. abyssinicum) has high appreciation for its taste and obtains a premium price in local markets compared to Ater (Pisum sativum var. sativum). However, data on the physicochemical traits of Dekoko seeds were lacking. This paper reports on the physicochemical features of Dekoko and compares the results with that of Ater. Seed weight and seed volume were 36 and 30%, respectively, higher in Ater, while water absorption, percent seed swelling, and percent husk were higher in Dekoko. Cooking time was shorter for Dekoko than Ater seeds. Decortication reduced cooking time on average by 39 and 45 min in Dekoko and Ater, respectively. Cotyledon flour of Dekoko contained 251 g crude protein, 19 g fat, 31.7 g total sugars, 370 g starch, and 130 g neutral detergent fiber per kilogram DM. These traits were significantly higher in Dekoko than in Ater, except for starch, which was higher in the latter. Arginine, asparagine, and glutamine occurred in larger proportions, and collectively contributed about 39% to the total amino acids in both varieties. Lysine contributed about 7%, while sulfur containing amino acids constituted about 3.0 and 2.3% of the total amino acids in Dekoko and Ater, respectively. Ca and Mg were higher in Ater, while P was higher in Dekoko. Based on the observations it was concluded that Dekoko is a suitable supplementary protein source for a cereal-based diet.

  8. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria.

    PubMed

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-08-01

    Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms.

  9. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae.

    PubMed

    Bakkali, F; Averbeck, S; Averbeck, D; Zhiri, A; Idaomar, M

    2005-08-01

    In order to get an insight into the possible genotoxicity of essential oils (EOs) used in traditional pharmacological applications we tested five different oils extracted from the medicinal plants Origanum compactum, Coriandrum sativum, Artemisia herba alba, Cinnamomum camphora (Ravintsara aromatica) and Helichrysum italicum (Calendula officinalis) for genotoxic effects using the yeast Saccharomyces cerevisiae. Clear cytotoxic effects were observed in the diploid yeast strain D7, with the cells being more sensitive to EOs in exponential than in stationary growth phase. The cytotoxicity decreased in the following order: Origanum compactum>Coriandrum sativum>Artemisia herba alba>Cinnamomum camphora>Helichrysum italicum. In the same order, all EOs, except that derived from Helichrysum italicum, clearly induced cytoplasmic petite mutations indicating damage to mitochondrial DNA. However, no nuclear genetic events such as point mutations or mitotic intragenic or intergenic recombination were induced. The capacity of EOs to induce nuclear DNA damage-responsive genes was tested using suitable Lac-Z fusion strains for RNR3 and RAD51, which are genes involved in DNA metabolism and DNA repair, respectively. At equitoxic doses, all EOs demonstrated significant gene induction, approximately the same as that caused by hydrogen peroxide, but much lower than that caused by methyl methanesulfonate (MMS). EOs affect mitochondrial structure and function and can stimulate the transcriptional expression of DNA damage-responsive genes. The induction of mitochondrial damage by EOs appears to be closely linked to overall cellular cytotoxicity and appears to mask the occurrence of nuclear genetic events. EO-induced cytotoxicity involves oxidative stress, as is evident from the protection observed in the presence of ROS inhibitors such as glutathione, catalase or the iron-chelating agent deferoxamine.

  10. Total phenolic levels in diverse garlics (Allium sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Garlic (Allium sativum L.) is a specialty crop that is highly responsive to growth environment with respect to bulb size and coloration. Ten genetically diverse garlic cultivars were grown at twelve locations for two consecutive years. Soil characteristics and bulb phenotypic characters including ...

  11. Effect of Allium sativum and fish collagen on the proteolytic and angiotensin-I converting enzyme-inhibitory activities in cheese and yogurt.

    PubMed

    Shori, A B; Baba, A S; Keow, J N

    2012-12-15

    There is an increasing demand of functional foods in developed countries. Yogurt plays an important role in the management of blood pressure. Several bioactive peptides isolated from Allium sativum or fish collagen have shown antihypertensive activity. Thus, in the present study the effects of A. sativum and/or Fish Collagen (FC) on proteolysis and ACE inhibitory activity in yogurt (0, 7 and 14 day) and cheese (0, 14 and 28 day) were investigated. Proteolytic activities were the highest on day 7 of refrigerated storage in A. sativum-FC-yogurt (337.0 +/- 5.3 microg g(-1)) followed by FC-yogurt (275.3 +/- 2.0 microg g(-1)), A. sativum-yogurt (245.8 +/- 4.2 microg g(-1)) and plain-yogurt (40.4 +/- 1.2 microg g(-1)). On the other hand, proteolytic activities in cheese ripening were the highest (p < 0.05) on day 14 of storage for plain and A. sativum-cheeses (411.4 +/- 4.3 and 528.7 +/- 1.6 microg g(-1), respectively). However, the presence of FC increased the proteolysis to the highest level on day 28 of storage for FC- and A. sativum-FC cheeses (641.2 +/- 0.1 and 1128.4 +/- 4.5 microg g(-1), respectively). In addition, plain- and A. sativum-yogurts with or without FC showed maximal inhibition of ACE on day 7 of storage. Fresh plain- and A. sativum-cheeses showed ACE inhibition (72.3 +/- 7.8 and 50.4 +/- 1.6 % respectively), the presence of FC in both type of cheeses reduced the ACE inhibition to 62.9 +/- 0.8 and 44.5 +/- 5.0%, respectively. However, refrigerated storage increased ACE inhibition in cheeses (p < 0.05 on day 28) in the presence of FC more than in the absence. In conclusion, the presence of FC in A. sativum-yogurt or cheese enhanced the proteolytic activity. Thus, it has potential in the development of an effective dietary strategy for hypertension associated cardiovascular diseases.

  12. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Background: Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. Objectives: The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Materials and Methods: Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. Results: The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Conclusions: Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms. PMID:26464762

  13. Assessment of the potential of Allium sativum oil as a new medicament for non-vital pulpotomy of primary teeth

    PubMed Central

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    Objective: The objective of this study was to compare the clinical and radiographic effects of Allium sativum oil and formocresol in nonvital pulpotomy in primary teeth. Materials and Methods: Twenty children ranging in age from 4 to 8 years were included in the study. In every one of those children, pulpotomy was indicated for the primary molars. Pulpotomy procedure was performed and the radicular pulp tissue of one molar was capped with A. sativum oil in a cotton pellet while the other molar was capped with formocresol. The teeth were evaluated clinically and radiographically before and after 6 months using standard clinical and radiographic criteria. Statistically, these results revealed significant difference between the radiographic findings of nonvital pulpotomy in primary molars with the two medicaments. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. Results: A. sativum oil has potent antibacterial properties that enable it to combat intracanal microbes in the infected pulp of primary molars. Better results were obtained when A. sativum oil was used. Conclusion: A. sativum oil had more powerful effects than formocresol on the infected pulp of primary nonvital molars. PMID:26312232

  14. Assessment of the potential of Allium sativum oil as a new medicament for non-vital pulpotomy of primary teeth.

    PubMed

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    The objective of this study was to compare the clinical and radiographic effects of Allium sativum oil and formocresol in nonvital pulpotomy in primary teeth. Twenty children ranging in age from 4 to 8 years were included in the study. In every one of those children, pulpotomy was indicated for the primary molars. Pulpotomy procedure was performed and the radicular pulp tissue of one molar was capped with A. sativum oil in a cotton pellet while the other molar was capped with formocresol. The teeth were evaluated clinically and radiographically before and after 6 months using standard clinical and radiographic criteria. Statistically, these results revealed significant difference between the radiographic findings of nonvital pulpotomy in primary molars with the two medicaments. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. A. sativum oil has potent antibacterial properties that enable it to combat intracanal microbes in the infected pulp of primary molars. Better results were obtained when A. sativum oil was used. A. sativum oil had more powerful effects than formocresol on the infected pulp of primary nonvital molars.

  15. De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing.

    PubMed

    Sun, Xiudong; Zhou, Shumei; Meng, Fanlu; Liu, Shiqi

    2012-10-01

    Garlic is widely used as a spice throughout the world for the culinary value of its flavor and aroma, which are created by the chemical transformation of a series of organic sulfur compounds. To analyze the transcriptome of Allium sativum and discover the genes involved in sulfur metabolism, cDNAs derived from the total RNA of Allium sativum buds were analyzed by Illumina sequencing. Approximately 26.67 million 90 bp paired-end clean reads were achieved in two libraries. A total of 127,933 unigenes were generated by de novo assembly and were compared with the sequences in public databases. Of these, 45,286 unigenes had significant hits to the sequences in the Nr database, 29,514 showed significant similarity to known proteins in the Swiss-Prot database and, 20,706 and 21,952 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Moreover, genes involved in organic sulfur biosynthesis were identified. These unigenes data will provide the foundation for research on gene expression, genomics and functional genomics in Allium sativum. Key message The obtained unigenes will provide the foundation for research on functional genomics in Allium sativum and its closely related species, and fill the gap of the existing plant EST database.

  16. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba.

    PubMed

    Unyayar, Serpil; Celik, Ayla; Cekiç, F Ozlem; Gözel, Aysin

    2006-01-01

    Cadmium (Cd) is one of the most toxic environmental pollutants affecting cytogenetically the various organisms. The cytogenetic damage in root tip cells exposed to cadmium nitrate (CdNO3) solutions at four different concentrations (1, 10, 100 and 200 microM) was evaluated with biological tests based on micronucleus (MN) assay in two plant species, Allium sativum and Vicia faba. Additionally to the cytogenetic analysis, lipid peroxidation analyses were performed in both A.sativum and V.faba roots. Cd enhanced the MN frequency in both A.sativum and V.faba root tip cells, but no dose-dependent. Induction of MN is not depending on CdNO3 concentrations. Besides, high concentrations of Cd decreased the mitotic index and caused the delay in mitosis stages in both plants, mainly in V.faba. On the other hand, lipid peroxidation was significantly enhanced with external Cd in V.faba. The results clearly indicate that high concentrations of cadmium induce the lipid peroxidation resulting in oxidative stress that may contribute to the genotoxicity and cytotoxicity of Cd ions.

  17. In vitro and in vivo Nematocidal Activity of Allium sativum and Tagetes erecta Extracts Against Haemonchus contortus.

    PubMed

    Palacio- Landín, Josefina; Mendoza-de Gives, Pedro; Salinas-Sánchez, David Osvaldo; López-Arellano, María Eugenia; Liébano-Hernández, Enrique; Hernández-Velázquez, Victor Manuel; Valladares-Cisneros, María Guadalupe

    2015-12-01

    In the Mexican ethno-medicine, a number of plants have shown a successful anthelmintic activity. This fact could be crucial to identify possible green anti-parasitic strategies against nematodes affecting animal production. This research evaluated the in vitro and in vivo nematocidal effects of two single and combined plant extracts: bulbs of Allium sativum (n-hexane) and flowers of Tagetes erecta (acetone). The in vivo assay evaluated the administration of extracts either individually or combined against Haemonchus contortus in experimentally infected gerbils. The in vitro larvicidal activity percentage (LAP) of A. sativum and T. erecta extracts against H. contortus (L3) was determined by means of individual and combined usage of the extracts. Similarly, the extracts were evaluated in terms of reduction in the parasitic population in gerbils infected with H. contortus by individual and combined usage. The LAP at 40 mg/mL was 68% with A. sativum and 36.6% with T. erecta. The combination caused 83.3% mortality of parasites. The oral administration of A. sativum and T. erecta extracts at 40 mg/mL, caused 68.7% and 53.9% reduction of the parasitic burden, respectively. Meanwhile, the combined effect of both extracts shown 87.5% reduction. This study showed evidence about the effect of A. sativum and T. erecta plant extracts by means of individual and combined usage against H. contortus in in vitro and in vivo bioassays in artificially H. contortus-infected gerbils as a model.

  18. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test

    PubMed Central

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin—a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects. PMID:27379342

  19. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test.

    PubMed

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin-a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects.

  20. Histological Evaluation of Allium sativum Oil as a New Medicament for Pulp Treatment of Permanent Teeth.

    PubMed

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2015-02-01

    The objective of this study was to evaluate the histo pathology effects of two medicaments Allium sativum oil and formocresol on the remaining pulp tissue of the permanent teething children. A total of 18 premolars were included in this study. Two sound premolars were extracted and subjected to histological examination to show the normal pulp tissue. Pulpo tomy procedure was performed in the rest of the remaining 16 premolars; half of them using Allium sativum oil and the rest of the tested premolars were medicated using formocresol and all were sealed with suitable restoration. Then, premolars extracted at variable intervals (48 hours, 2 weeks, 1 month, 2 months), stained using hemotoxylin and eosin etain (H&E) and prepared for histopathology examination. Histological evaluation seemed far more promising for Allium sativum oil than formocresol. Histological evaluation revealed that teeth treated with Allium sativa oil showed infammatory changes that had been resolved in the end of the study. On the contrary, the severe chronic infammation of pulp tissue accompanied with formocresol eventually produced pulp necrosis with or without fibrosis. In addition, pulp calcification was evidenced in certain cases. Allium sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning.

  1. Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2013-01-01

    Pharmacological and preventive properties of Petroselinum sativum seed extracts are well known, but the anticancer activity of alcoholic extracts and oil of Petroselinum sativum seeds on human breast cancer cells have not been explored so far. Therefore, the present study was designed to investigate the cytotoxic activities of these extracts against MCF-7 cells. Cells were exposed to 10 to 1000 μg/ml of alcoholic seed extract (PSA) and seed oil (PSO) of Petroselinum sativum for 24 h. Post-treatment, percent cell viability was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed that PSA and PSO significantly reduced cell viability, and altered the cellular morphology of MCF-7 cells in a concentration dependent manner. Concentrations of 50 μg/ml and above of PSA and 100 μg/ml and above of PSO were found to be cytotoxic in MCF-7 cells. Cell viability at 50, 100, 250, 500 and 1000 μg/ml of PSA was recorded as 81%, 57%, 33%, 8% and 5%, respectively, whereas at 100, 250, 500, and 1000 μg/ml of PSO values were 90%, 78%, 62%, and 8%, respectively by MTT assay. MCF-7 cells exposed to 250, 500 and 1000 μg/ml of PSA and PSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment with PSA and PSO of Petroselinum sativum induced cell death in MCF-7 cells.

  2. Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction.

    PubMed

    Smolinska, Beata; Leszczynska, Joanna

    2017-05-01

    The study was conducted to evaluate metabolic answer of Lepidium sativum L. on Hg, compost, and citric acid during assisted phytoextraction. The chlorophyll a and b contents, total carotenoids, and activity of peroxidase were determined in plants exposed to Hg and soil amendments. Hg accumulation in plant shoots was also investigated. The pot experiments were provided in soil artificially contaminated by Hg and/or supplemented with compost and citric acid. Hg concentration in plant shoots and soil substrates was determined by cold vapor atomic absorption spectroscopy (CV-AAS) method after acid mineralization. The plant photosynthetic pigments and peroxidase activity were measured by standard spectrophotometric methods. The study shows that L. sativum L. accumulated Hg in its aerial tissues. An increase in Hg accumulation was noticed when soil was supplemented with compost and citric acid. Increasing Hg concentration in plant shoots was correlated with enhanced activation of peroxidase activity and changes in total carotenoid concentration. Combined use of compost and citric acid also decreased the chlorophyll a and b contents in plant leaves. Presented study reveals that L. sativum L. is capable of tolerating Hg and its use during phytoextraction assisted by combined use of compost and citric acid lead to decreasing soil contamination by Hg.

  3. Protective effect of Allium sativum (garlic) aqueous extract against lead-induced oxidative stress in the rat brain, liver, and kidney.

    PubMed

    Manoj Kumar, V; Henley, A K; Nelson, C J; Indumati, O; Prabhakara Rao, Y; Rajanna, S; Rajanna, B

    2017-01-01

    The present investigation was undertaken to evaluate the ameliorative activity of Allium sativum against lead-induced oxidative stress in the brain, liver, and kidney of male rats. Four groups of male Wistar strain rats (100-120 g) were taken: group 1 received 1000 mg/L sodium acetate and group 2 was given 1000 mg/L lead acetate through drinking water for 2 weeks. Group 3 and 4 were treated with 250 mg/kg body weight/day of A. sativum and 500 mg/kg body weight/day of A. sativum, respectively, by oral intubation for a period of 2 weeks along with lead acetate. The rats were sacrificed after treatment and the brain, liver, and kidney were isolated on ice. In the brain, four important regions namely the hippocampus, cerebellum, cerebral cortex, and brain stem were separated and used for the present investigation. Blood was also drawn by cardiac puncture and preserved in heparinized vials at 4 °C for estimation of delta-aminolevulinic acid dehydratase (ALAD) activity. The results showed a significant (p < 0.05) increase in reactive oxygen species (ROS), lipid peroxidation products (LPP), total protein carbonyl content (TPCC), and lead in the selected brain regions, liver, and kidney of lead-exposed group compared with their respective controls. Blood delta-ALAD activity showed a significant (p < 0.05) decrease in the lead-exposed rats. However, the concomitant administration of A. sativum resulted in tissue-specific recovery of oxidative stress parameters namely ROS, LPP, and TPCC. A. sativum treatment also restored the blood delta-ALAD activity back to control. Overall, our results indicate that A. sativum administration could be an effective antioxidant treatment strategy for lead-induced oxidative insult.

  4. Clinical and Radiographic Evaluation of Allium sativum Oil as a New Medicament for Vital Pulp Treatment of Primary Teeth.

    PubMed

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2014-01-01

    The objective of this study was to compare between the clinical and radiographic effects of Allium sativum oil and those of formocresol in vital pulpotomy in primary teeth. A total of 20 children age ranged from 4 to 8 years were included in the study. In every one of those children, the primary molars indicated for pulpotomy. Pulpotomy procedure was performed, and the radicular pulp tissue of one molar capped with A. sativum oil in a cotton pellet, whereas the other molar capped with formocresol, the teeth evaluated clinically and radiographically before and after 6 months, using standard clinical and radiographical criteria. Statistically, these results revealed no significant difference between the radiographic findings of vital pulpotomy in primary molars with the two medicaments was found. A. sativum oil offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. Vital pulpotomy with allium sativa oil was given raise 90% success rate while that with formocresol was 85%. A. sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning.

  5. Histopathological, oxidative damage, biochemical, and genotoxicity alterations in hepatic rats exposed to deltamethrin: modulatory effects of garlic (Allium sativum).

    PubMed

    Ncir, Marwa; Ben Salah, Ghada; Kamoun, Hassen; Makni Ayadi, Fatma; Khabir, Abdelmajid; El Feki, Abdelfattah; Saoudi, Mongi

    2016-06-01

    Deltamethrin is a pesticide widely used as a synthetic pyrethroid. The aim of this study was undertaken to investigate the effects of deltamethrin to induce oxidative stress and changes in biochemical parameters, hepatotoxicity and genotoxicity in female rats following a short-term (30 days) oral exposure and attenuation of these effects by Allium sativum extract. Indeed, Allium sativum is known to be a good antioxidant food resource which helps destroy free radical particles. Our results showed that deltamethrin treatment caused an increase in liver enzyme activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH); and hepatic lipid peroxidation (LPO) level. However, it induced a decrease in activities of hepatic catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (p < 0.01). Allium sativum extract normalized significantly (p < 0.01) the mentioned parameters in deltamethrin-treated rats. For genotoxic evaluation, deltamethrin treatment showed a significant increase in frequencies of micronucleus in bone-marrow cells. Micronucleus formation is an indicator of chromosomal damage which has been increasingly used to detect the genotoxic potential of environmental pests. The present study showed that Allium sativum diminished the adverse effects induced by this synthetic pyrethroid insecticide.

  6. Clinical and Radiographic Evaluation of Allium sativum Oil as a New Medicament for Vital Pulp Treatment of Primary Teeth

    PubMed Central

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2014-01-01

    Background: The objective of this study was to compare between the clinical and radiographic effects of Allium sativum oil and those of formocresol in vital pulpotomy in primary teeth. Materials and Methods: A total of 20 children age ranged from 4 to 8 years were included in the study. In every one of those children, the primary molars indicated for pulpotomy. Pulpotomy procedure was performed, and the radicular pulp tissue of one molar capped with A. sativum oil in a cotton pellet, whereas the other molar capped with formocresol, the teeth evaluated clinically and radiographically before and after 6 months, using standard clinical and radiographical criteria. Statistically, these results revealed no significant difference between the radiographic findings of vital pulpotomy in primary molars with the two medicaments was found. Results: A. sativum oil offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. Vital pulpotomy with allium sativa oil was given raise 90% success rate while that with formocresol was 85%. Conclusion: A. sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. PMID:25628480

  7. Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs.

    PubMed

    Kumar, Suresh; Jitendra, Kumar; Singh, Kusum; Kapoor, Vaishali; Sinha, Mou; Xess, Immaculata; Das, Satya N; Sharma, Sujata; Singh, Tej P; Dey, Sharmistha

    2015-08-01

    Allium sativum is well known for its medicinal properties. The A. sativum lectin 50 (ASL50, 50 kDa) was isolated from aged A. sativum bulbs and purified by gel filtration chromatography on Sephacryl S-200 column. Agar well diffusion assay were used to evaluate the antimicrobial activity of ASL50 against Candida species and bacteria then minimal inhibitory concentration (MIC) was determined. The lipid A binding to ASL50 was determined by surface plasmon resonance (SPR) technology with varying concentrations. Electron microscopic studies were done to see the mode of action of ASL50 on microbes. It exerted antimicrobial activity against clinical Candida isolates with a MIC of 10-40 μg/ml and clinical Pseudomonas aeruginosa isolates with a MIC of 10-80 μg/ml. The electron microscopic study illustrates that it disrupts the cell membrane of the bacteria and cell wall of fungi. It exhibited antiproliferative activity on oral carcinoma KB cells with an IC50 of 36 μg/ml after treatment for 48 h and induces the apoptosis of cancer cells by inducing 2.5-fold higher caspase enzyme activity than untreated cells. However, it has no cytotoxic effects towards HEK 293 cells as well as human erythrocytes even at higher concentration of ASL50. Biological properties of ASL50 may have its therapeutic significance in aiding infection and cancer treatments.

  8. Kinetic features of gravicurvature of pea (Pisum sativum) and cress (Lepidium sativum) roots

    NASA Astrophysics Data System (ADS)

    Polishchuk, O. V.

    The upper sides of roots oriented horizontally grow more rapidly than the lower sides, causing the root ultimately to grow downward; this phenomenon is known as positive gravitropism. This ability is based on implicit mechanism which is being extensively investigated. Elaborate analysis of kinetic features of gravicurvature may complement the investigation. Pea and cress roots have positive gravitropism as roots of majority of higher plants. Mainly we investigated dependence of gravicurvature angle on time of gravistimulation. Two-day-old seedlings of cress (Lepidium sativum L. cv. P896) and four-day-old pea ones (Pisum sativum L. cv. Damir-2) were placed on 1% agar medium in Petri dishes and turned on angle of gravistimulation. Then they were photographed at the same position each hour of gravistimulation. Photographs were analyzed with the help of Image Tool software program. Both pea and cress roots showed two phases of gravitropic response during gravistimulation for 6 hours when the initial angle of gravistimulation was 135 degrees. Two peaks of the rate of bending were observed. In cress roots, the first peak was much lower and the distance between the two peaks was greater than in pea roots. Curves of gravitropic bending of cress roots grown in agar had one or two inflections while in the case of roots grown on filter paper curves had no inflections. These data are in agreement with the effect of the external medium on the gravitropic curvature of rice roots reported by Staves et al. (1997). Our results may reflect the fact that at least two systems that contribute to gravicurvature may exist in roots. These systems may be ligand-receptor complexes that may be formed with different kinetics in two different regions of the root. The most probable ligand is auxin and the regions appear to be central elongation zone (CEZ) and distal elongation zone (DEZ), that were reported to be centers of tropic bending in roots. Thus, dependence of rate of root bending on

  9. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis.

    PubMed

    Awan, Uzma Azeem; Ali, Shaukat; Shahnawaz, Amna Mir; Shafique, Irsa; Zafar, Atiya; Khan, Muhammad Abdul Rauf; Ghous, Tahseen; Saleem, Azhar; Andleeb, Saiqa

    2017-05-01

    The spread of bacterial infectious diseases is a major public threat. Herbs and spices have offered an excellent, important and useful source of antimicrobial agents against many pathological infections. In the current study, the antimicrobial potency of fresh, naturally and commercial dried Allium sativum and Zingiber officinale extracts had been investigated against seven local clinical bacterial isolates such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, and Serratia marcesnces by the agar disc diffusion method. All tested pathogens except P. aeruginosa and E. coli were most susceptible to ethanolic and methanolic extracts of A. sativum. Similarly, chloroform and diethyl ether extracts of Z. officinale showed a greater zone of inhibition of tested pathogens except for P. aeruginosa and E. coli. We found that all extracts of A. sativum and Z. officinale have a strong antibacterial effect compared to recommended standard antibiotics through activity index. All results were evaluated statistically and a significant difference was recorded at P< 0.05. Antioxidant activity of extracts showed that 10 out of 13 extracts have high scavenging potential. Thin layer chromatography profiling of all extracts of A. sativum and Z. officinale proposed the presence of various phytochemicals such as tannins, phenols, alkaloids, steroids and saponins. Retention factor of diverse phytochemicals provides a valuable clue regarding their polarity and the selection of solvents for separation of phytochemicals. Significant inhibition of S. aureus was also observed through TLC-Bioautography. FT-IR Spectrometry was also performed to characterize both natural and commercial extracts of A. sativum and Z. officinale to evaluate bioactive compounds. These findings provide new insights to use A. sativum and Z. officinale as potential plant sources for controlling pathogenic bacteria and potentially

  10. Genetic Diversity of Chinese and Global Pea (Pisum sativum L.) Collections.

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) is an important food and feed legume grown across many temperate regions of the world, especially from Asia to Europe and North America. The goal of this study was to use 30 informative pea microsatellite markers to compare genetic diversity in a global core from the USDA and ...

  11. Postharvest Processing and Benefits of Black Pepper, Coriander, Cinnamon, Fenugreek, and Turmeric Spices.

    PubMed

    Balasubramanian, S; Roselin, P; Singh, K K; Zachariah, John; Saxena, S N

    2016-07-26

    Spices are prime source for flavor, aroma, and taste in cuisines and play an active role as medicines due to their high antioxidant properties. As medicine or food, the importance of spices cannot be overemphasized. The medicinal values of spices are very well established in treating various ailments like cancer, fever, malaria, stomach offset, nausea, and many more. A spice may be available in several forms: fresh, whole dried, or pre-ground dried which requires further processing to be utilized in the form of value-added product. This review paper deals with the cultivation, postharvesting, chemical composition, uses, health, and medicinal benefits of the selected spice viz., black pepper, coriander, cinnamon, fenugreek, turmeric, and technological advances in processing of spices viz., super critical fluid extraction, cryogenic grinding, and microencapsulation etc. This paper also focuses on issues related to utilization of spices toward its high end-product development and characterization in pharmaceuticals and other medicinal purposes. The availability of different spices and their varietal differences and location have their pertinent characters, which are much demanding to refine postharvest and processing to assure its quality in the international market.

  12. Antioxidant and schistosomicidal effect of Allium sativum and Allium cepa against Schistosoma mansoni different stages.

    PubMed

    Mantawy, M M; Aly, H F; Zayed, N; Fahmy, Z H

    2012-07-01

    The schistosomicidal properties of garlic (Allium sativum) and onion (Allium cepa) powder were tested in vitro against Schistosoma mansoni miracidia, schistosomula, cercaria and adult worms. Results indicate their strong biocidal effects against all stages of the parasite and also show scavenging inhibitory effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO). In the present work, the in vivo effects of A. sativum and A. cepa on lipid peroxide and some antioxidant enzymes; thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) (as they have a crucial role in host protection against invading parasite) were also studied. The data demonstrate that, there was a significant inhibition in SOD, CAT, GR, TrxR and SDH in infected liver while, significant elevation was detected in lipid peroxide as compared to the normal control. The current resultS clearly revealed that, the used both edible plants enhance the host antioxidant system indicated by lowering in lipid peroxide and stimulation of SOD, CAT, GR, TrxR and SDH enzyme levels. Enhancement of such enzymes using A. sativum and A. cepa could in turn render the parasite vulnerable to damage by the host and may play a role in the antischistosomal potency of the used food ingredients.

  13. Bacteriological evaluation of Allium sativum oil as a new medicament for pulpotomy of primary teeth.

    PubMed

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    To compare the effects of Allium sativum oil and formocresol on the pulp tissue of the pulpotomized teeth. Twenty children were selected for this study. All children had a pair of non-vital primary molars. A sterile paper point was dipped in the root canals prior to the mortal pulpotomy. These paper points were collected in transfer media and immediately transported to the microbiological lab to be investigated microbiologically (for Streptococcus mutans and Lactobacillus acidophilus). Then the procedure of mortal pulpotomy was performed. After 2 weeks, the cotton pellets were removed and sterile paper points were dipped in the root canals for microbiological examination. Then comparison between the count of bacteria before and after treatment was conducted. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. After application of both medicaments, there was a marked decrease in S. mutans and L. acidophilus counts. The difference between the mean of log values of the count before and after the application was highly significant for both medicaments (P < 0.05); however, better results were obtained when A. sativum oil was used. A. sativum oil had more powerful antimicrobial effects than formocresol on the bacteria of the infected root canals.

  14. Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).

    PubMed

    Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru

    2012-11-01

    Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.

  15. Sulphur fertilization influences the sulphur species composition in Allium sativum: sulphomics using HPLC-ICPMS/MS-ESI-MS/MS.

    PubMed

    Raab, Andrea; Ronzan, Marilena; Feldmann, Joerg

    2017-10-18

    Garlic (A. sativum) contains a large number of small sulphur (S)-containing metabolites, which are important for its taste and smell and vary with A. sativum variety and growth conditions. This study was designed to investigate the influence of different sulphur-fertilization regimes on low molecular weight S-species by attempting the first sulphur mass balance in A. sativum roots and bulbs using HPLC-ICPMS/MS-ESI-MS/MS. Species unspecific quantification of acid soluble S-containing metabolites was achieved using HPLC-ICP-MS/MS. For identification of the compounds, high resolution ESI-MS (Orbitrap LTQ and q-TOF) was used. The plants contained up to 54 separated sulphur-containing compounds, which constitute about 80% of the total sulphur present in A. sativum. The roots and bulbs of A. sativum contained the same compounds, but not necessarily the same amounts and proportions. The S-containing metabolites in the roots reacted more sensitively to manipulations of sulphur fertilization than those compounds in the bulbs. In addition to known compounds (e.g. γ-glutamyl-S-1-propenylcysteine) we were able to identify and partially quantify 31 compounds. Three as yet undescribed S-containing compounds were also identified and quantified for the first time. Putative structures were assigned to the oxidised forms of S-1-propenylmercaptoglutathione, S-2-propenylmercaptoglutathione, S-allyl/propenyl-containing PC-2 and 2-amino-3-[(2-carboxypropyl)sulfanyl]propanoic acid. The parallel use of ICP-MS/MS as a sulphur-specific detector and ESI-MS as a molecular detector simplifies the identification and quantification of sulphur containing metabolites without species specific standards. This non-target analysis approach enables a mass balance approach and identifies the occurrence of the so far unidentified organosulphur compounds. The experiments showed that the sulphur-fertilization regime does not influence sulphur-speciation, but the concentration of some S

  16. Biosynthesis of the phytoalexin pisatin. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preisig, C.L.; Bell, J.N.; Matthews, D.E.

    1990-11-01

    NADPH-dependent reduction of 2{prime},7-dihydroxy-4{prime},5{prime}-methylenedioxyisoflavone to the isoflavanone sophorol, a proposed intermediate step in pisatin biosynthesis, was detected in extracts of Pisum sativum. This isoflavone reductase activity was inducible by treatment of pea seedlings with CuCl{sub 2}. The timing of induction coincided with that of the 6a-hydroxymaackiain 3-O-methyltransferase, which catalyzes the terminal biosynthetic step. Neither enzyme was light inducible. Further NADPH-dependent metabolism of sophorol by extracts of CuCl{sub 2}-treated seedlings was also observed; three products were radiolabeled when ({sup 3}H)sophorol was the substrate, one of which is tentatively identified as maackiain.

  17. Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against overwintering Cacopsylla chinensis (Hemiptera: Psyllidae).

    PubMed

    Zhao, Na Na; Zhang, Hang; Zhang, Xue Chang; Luan, Xiao Bing; Zhou, Cheng; Liu, Qi Zhi; Shi, Wang Peng; Liu, Zhi Long

    2013-06-01

    In our screening program for insecticidal activity of the essential oils/extracts derived from some Chinese medicinal herbs and spices, garlic (Allium sativum L.) essential oil was found to possess strong insecticidal activity against overwintering adults of Cacopsylla chinensis Yang et Li (Hemiptera: Psyllidae). The commercial essential oil of A. sativum was analyzed by gas chromatography-mass spectrometry. Sixteen compounds, accounting for 97.44% of the total oil, were identified, and the main components of the essential oil of A. sativum were diallyl trisulfide (50.43%), diallyl disulfide (25.30%), diallyl sulfide (6.25%), diallyl tetrasulfide (4.03%), 1,2-dithiolane (3.12%), allyl methyl disulfide (3.07%), 1,3-dithiane (2.12%), and allyl methyl trisulfide (2.08%). The essential oil of A. sativum possessed contact toxicity against overwintering C. chinensis, with an LC50 value of 1.42 microg per adult. The two main constituent compounds, diallyl trisulfide and diallyl disulfide, exhibited strong acute toxicity against the overwintering C. chinensis, with LC50 values of 0.64 and 11.04 /g per adult, respectively.

  18. Bacteriological evaluation of Allium sativum oil as a new medicament for pulpotomy of primary teeth

    PubMed Central

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    Objective: To compare the effects of Allium sativum oil and formocresol on the pulp tissue of the pulpotomized teeth. Materials and Methods: Twenty children were selected for this study. All children had a pair of non-vital primary molars. A sterile paper point was dipped in the root canals prior to the mortal pulpotomy. These paper points were collected in transfer media and immediately transported to the microbiological lab to be investigated microbiologically (for Streptococcus mutans and Lactobacillus acidophilus). Then the procedure of mortal pulpotomy was performed. After 2 weeks, the cotton pellets were removed and sterile paper points were dipped in the root canals for microbiological examination. Then comparison between the count of bacteria before and after treatment was conducted. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. Results: After application of both medicaments, there was a marked decrease in S. mutans and L. acidophilus counts. The difference between the mean of log values of the count before and after the application was highly significant for both medicaments (P < 0.05); however, better results were obtained when A. sativum oil was used. Conclusion: A. sativum oil had more powerful antimicrobial effects than formocresol on the bacteria of the infected root canals. PMID:25992338

  19. Pea (Pisum sativum) Seed Production as an Assay for Reproductive Effects Due to Herbicides.

    EPA Science Inventory

    Even though herbicide drift can affect plant reproduction, current plant testing protocols emphasize effects on vegetative growth. In this study, we determined whether a short–growing season plant can indicate potential effects of herbicides on seed production. Pea (Pisum sativum...

  20. New cyclic sulfides extracted from Allium sativum: garlicnins P, J2, and Q.

    PubMed

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    Two atypical cyclic-type sulfides, garlicnin P (1) and garlicnin J 2 (2), and one thiabicyclic-type sulfide, garlicnin Q (3), were isolated from the acetone extracts of garlic, Allium sativum, bulbs cultivated in the Kumamoto city area, and their structures characterized. Their production pathways are also discussed.

  1. Atypical Cyclic Sulfides, Garlicnins G, I, and J, Extracted from Allium sativum.

    PubMed

    Ono, Masateru; Fujiwara, Yukio; Ikeda, Tsuyoshi; Pan, Cheng; El-Aasr, Mona; Lee, Jong-Hyun; Nakano, Daisuke; Kinjo, Junei; Nohara, Toshihiro

    2017-01-01

    Newly characterized, atypical sulfides, garlicnins G (1), I (2), and J (3), were isolated from the acetone extracts of garlic bulbs, Allium sativum. Their production pathways are regarded as different from those of cyclic sulfoxides, 3,4-dimethyltetrahydrothiophene-S-oxide derivatives such as onionins A 1 -A 3 , garlicnins B 1 -B 4 and C 1 -C 3 .

  2. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L.

    PubMed

    Jiang, Wusheng; Liu, Donghua

    2010-03-02

    Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10(-5) to 10(-3) M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10(-3) to 10(-4) M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are

  3. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    PubMed Central

    2010-01-01

    Background Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb

  4. Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2012-12-01

    Lepidium sativum L. (garden cress) is a fast growing annual herb, native to Egypt and west Asia but widely cultivated in temperate climates throughout the world. L. sativum seed oil (LSO) extracted from plants grown in Tunisia was analyzed to determine whether it has potential as a raw material for biodiesel production. The oil content of the seeds was 26.77%, mainly composed of polyunsaturated (42.23%) and monounsaturated (39.62%) fatty acids. Methyl esters (LSOMEs) were prepared by base-catalyzed transesterification with a conversion rate of 96.8%. The kinematic viscosity (1.92 mm(2)/s), cetane number (49.23), gross heat value (40.45), and other fuel properties were within the limits for biodiesel specified by the ASTM (American Standard for Testing and Materials). This study showed that LSOMEs have the potential to supplement petroleum-based diesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. First Report of Garlic Rust Caused by Puccinia allii on Allium sativum in Minnesota

    USDA-ARS?s Scientific Manuscript database

    In July 2010, Allium sativum, cultivar German Extra Hardy Porcelain plants showing foliar symptoms typical of rust infection were brought to the Plant Disease Clinic at the University of Minnesota by a commercial grower from Fillmore county Minnesota. Infected leaves showed circular to oblong lesio...

  6. ANTI-QUORUM SENSING ACTIVITY OF SOME MEDICINAL PLANTS.

    PubMed

    Al-Haidari, Rwaida A; Shaaban, Mona I; Ibrahim, Sabrin R M; Mohamed, Gamal A

    2016-01-01

    Quorum sensing is the key regulator of virulence factors of Pseudomonas aeruginosa such as biofilm formation, motility, productions of proteases, hemolysin, pyocyanin, and toxins. The aim of this study was to explore the effect of the extracts from some medicinal plants on quorum sensing and related virulence factors of P. aeruginosa . Quorum sensing inhibitory (OSI) effect of the alcohol extracts of 20 medicinal plants was evaluated by Chromobacterium violaceum reporter using agar cup diffusion method. The efficient QSI extracts were tested for their activity against biofilm synthesis, motility, and synthesis of pyocyanin from P. aeruginosa PA14. The extracts of Citrus sinensis, Laurus nobilis, Elettaria cardamomum, Allium cepa , and Coriandrum sativum exhibited potent quorum quenching effect. On the other hand, Psidium guajava and Mentha longifolia extracts showed lower QSI activity. These extracts exhibited significant elimination of pyocyanin formation and biofilm development of Pseudomonas aeruginosa PA14. In addition, they significantly inhibited twitching and swimming motilities of P. aeruginosa PA14. This study illustrated, for the first time, the importance of C. sinensis, L. nobilis, E. cardamomum, A. cepa , and C. sativum as quorum sensing inhibitors and virulence suppressors of P. aeruginosa . Thus, these plants could provide a natural source for the elimination of Pseudomonas pathogenesis.

  7. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    PubMed Central

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  8. Protective effects of Allium sativum against defects of hypercholesterolemia on pregnant rats and their offspring.

    PubMed

    El-Sayyad, Hassan I; Abou-El-Naga, Amoura M; Gadallah, Abdelalim A; Bakr, Iman H

    2010-06-10

    Sixty fertile female and male albino rats of Wistar strain (I male/ 3 females) were used in the present study. The females were divided into four groups of ten rats each. Group 1 received water and standard feeds for thirty-four days. Group 2 was fed with a cholesterol-containing diet (1%) for two weeks prior to onset of gestation and maintained administration till parturition, produce atherosclerosis (34 days). Group 3 received intragastric administration of 100mg homogenate of garlic (Allium sativum)/kg body weight for three weeks prior to onset of gestation as well as throughout the gestation period. Group 4 intragastrically administered garlic for one week of group B and maintained with combined garlic-treatment for the mentioned period. At parturition, the pregnant were sacrificed and serum total cholesterol (TCL), triglycerides (TG), HDL, LDL and creatine kinase activity (CK) were determined. The total numbers of offspring were recorded and examined morphological for congenital abnormalities. Biopsies of heart and dorsal aorta of both pregnant and their offspring (1 day-age) were processed for investigation at light and transmission electron microscopy. The skeleton of the newborn of different experimental groups were stained with alizarin red s and mor-phometric assessment of mandibular and appendicular bone length. The study revealed that the myocardium of atherosclerotic mother exhibited leuhkocytic inflammatory cell infiltration associated with necrosis, eosinophilia of myocardiai fibers, and edema of blood vessels. Ultrastructural studies revealed swelling of mitochondria, disruption of cristae in the myocardiai muscle fibers. The dorsal aorta possessed accumulation of extra-cellular lipid in intima lining of endothelium. The collagenous fibrils in the tunica adventitia became fragile and loosely separated from each other. Numerous foamy lipid loaden cells were detected within the tunica intima causing deterioration of the elastic fibers, resulting in

  9. Protective effects of Allium sativum against defects of hypercholesterolemia on pregnant rats and their offspring

    PubMed Central

    El-Sayyad, Hassan I; Abou-El-Naga, Amoura M; Gadallah, Abdelalim A; Bakr, Iman H

    2010-01-01

    Sixty fertile female and male albino rats of Wistar strain (I male/ 3 females) were used in the present study. The females were divided into four groups of ten rats each. Group 1 received water and standard feeds for thirty-four days. Group 2 was fed with a cholesterol-containing diet (1%) for two weeks prior to onset of gestation and maintained administration till parturition, produce atherosclerosis (34 days). Group 3 received intragastric administration of 100mg homogenate of garlic (Allium sativum)/kg body weight for three weeks prior to onset of gestation as well as throughout the gestation period. Group 4 intragastrically administered garlic for one week of group B and maintained with combined garlic-treatment for the mentioned period. At parturition, the pregnant were sacrificed and serum total cholesterol (TCL), triglycerides (TG), HDL, LDL and creatine kinase activity (CK) were determined. The total numbers of offspring were recorded and examined morphological for congenital abnormalities. Biopsies of heart and dorsal aorta of both pregnant and their offspring (1 day-age) were processed for investigation at light and transmission electron microscopy. The skeleton of the newborn of different experimental groups were stained with alizarin red s and mor-phometric assessment of mandibular and appendicular bone length. The study revealed that the myocardium of atherosclerotic mother exhibited leuhkocytic inflammatory cell infiltration associated with necrosis, eosinophilia of myocardiai fibers, and edema of blood vessels. Ultrastructural studies revealed swelling of mitochondria, disruption of cristae in the myocardiai muscle fibers. The dorsal aorta possessed accumulation of extra-cellular lipid in intima lining of endothelium. The collagenous fibrils in the tunica adventitia became fragile and loosely separated from each other. Numerous foamy lipid loaden cells were detected within the tunica intima causing deterioration of the elastic fibers, resulting in

  10. Protein changes in Lepidium sativum L. exposed to Hg during soil phytoremediation.

    PubMed

    Smolinska, Beata; Szczodrowska, Agnieszka; Leszczynska, Joanna

    2017-08-03

    Some investigations have been carried out in this study to find the best technique of soil reclamation in mercurypolluted soil. In this study, we examined Lepidium sativum L. as a plant useful for Hg phytoextraction. The simultaneous application of compost and thiosulfate was explored as a possible method of enhancing the process of phytoextraction. The results of the investigations of plant protein changes during assisted Hg phytoextraction were also provided. The results of the study show that combined use of compost and thiosulfate significantly increased both the total Hg accumulation and its translocation to aerial plant tissues. Plant protein analysis showed that L. sativum L. has the ability to respond to environmental stress condition by the activation of additional proteins. The additional proteins, like homocysteine methyltransferase, ribulose bisphosphate carboxylases (long and short chains), 14-3-3-like protein, and biosynthesis-related 40S ribosomal protein S15, were activated in plant shoots only in experiments carried out in Hg-polluted soil. There were no protein changes observed in plants exposed to compost and thiosulfate. It suggests that the combined use of compost and thiosulfate decreased Hg toxicity.

  11. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahoon, E.B.; Shanklin, J.; Ohlrogge, J.B.

    1992-12-01

    Little is known about the metabolic origin of petroselinic acid (18:1[Delta][sup 6cis]), the principal fatty acid of the seed oil of most Umbelliferae, Araliaceae, and Garryaceae species. To examine the possibility that petroselinic acid is the product of an acyl-acyl carrier protein (ACP) desaturase, Western blots of coriander and other Umbelliferae seed extracts were probed with antibodies against the [Delta][sup 9]-stearoyl-ACP desaturase of avocado. In these extracts, proteins of 39 and 36 kDa were detected. Of these, only the 36-kDa peptide was specific to tissues which synthesize petroselinic acid. A cDNA encoding the 36-kDa peptide was isolated from a coriandermore » endosperm cDNA library, placed under control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Expression of this cDNA in transgenic tobacco callus was accompanied by the accumulation of petroselinic acid and [Delta][sup 4]-hexadecenoic acid, both of which were absent from control callus. These results demonstrate the involvement of a 36-kDa putative acyl-ACP desaturase in the biosynthetic pathway of petroselinic acid and the ability to produce fatty acids of unusual structure in transgenic plants by the expression of the gene for this desaturase. 27 refs., 5 figs.« less

  12. New cyclic sulfides, garlicnins I2, M, N, and O, from Allium sativum.

    PubMed

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    One atypical thiolane-type sulfide, garlicnin I 2 (1), two 3,4-dimethylthiolane-type sulfides, garlicnins M (2) and N (3), and one thiabicyclic-type sulfide, garlicnin O (4), were isolated from the acetone extracts of Chinese garlic bulbs, Allium sativum and their structures were characterized. Hypothetical pathways for the production of the respective sulfides were discussed.

  13. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum)

    USDA-ARS?s Scientific Manuscript database

    Because garlic (Allium sativum) is believed to have positive health effects on cardiovascular disease, the screening of isolated fractions from a garlic extract against cardiovascular disease related-processes should help identify active compounds. Both P-selectin expression suppressing activity ag...

  14. Allium sativum Compared to Cilostazol as an Inhibitor of Myointimal Hyperplasia.

    PubMed

    Lima, Paulo Roberto da Silva; Bandeira, Francisco Chavier Vieira; Rolim, Janio Cipriano; Nogueira, Manuel Ricardo Sena; Pordeus, Mizael Armando Abrantes; de Oliveira, Andressa Feitosa Bezerra; Pitta, Guilherme Benjamin Brandão

    2016-01-01

    Intimal hyperplasia is associated with graft failure and vascular sutures in the first year after surgery and in postangioplasty restenosis. Allium sativum (common garlic) lowers cholesterol and has antioxidant effects; it also has antiplatelet and antitumor properties and, therefore, has great potential to reduce or inhibit intimal hyperplasia of the arteries. Our objective is to determine if the garlic has an efficacy to inhibit myointimal hyperplasia compared to cilostazol. Female New Zealand rabbits were divided into the following groups (n=10 each) according to treatment: group A, garlic, 800 µg×kg-1×day-1, orally; group C, cilostazol, 50 mg.day-1, orally; group PS, 10 ml of 0.9% physiological saline solution, orally. Our primary is the difference of the mean of myointimal hyperplasia. Statistical analysis was performed by using ANOVA and Tukey tests, as well as the Chi-square test. We calculated the 95% confidence interval for each point estimate, and the P value was set as < 0.05. Group PS had a mean hyperplasia rate of 35.74% (95% CI, 31.76-39.71%); group C, 16.21% (95% CI, 13.36-19.05%); and group A, 21.12% (95% CI, 17.26-25.01%); P < 0.0001. We conclude that Allium sativum had the same efficacy in inhibiting myointimal hyperplasia when compared to the positive control, cilostazol.

  15. Assessment of in vitro and in vivo anthelminthic potential of extracts of Allium sativum bulb against naturally occurring ovine gastrointestinal nematodiosis.

    PubMed

    Kanojiya, Dharmendra; Shanker, Daya; Sudan, Vikrant; Jaiswal, Amit Kumar; Parashar, Rahul

    2015-01-01

    The rapid development of anthelminthic resistance has limited the success of traditional control programmes, thereby forcing researchers to search for ethno-veterinary alternatives. The objective is to assess the anthelminthic potential of various extracts of the bulb of Allium sativum in naturally infected sheep. In vitro anthelminthic activities of crude aqueous and methanolic extracts of the bulb of A. sativum were investigated against the egg (500 eggs/ml) and larvae of naturally infected sheep. The aqueous extract of A. sativum was also investigated for in vivo anthelminthic activity in three groups (n = 15 each) of naturally infected Chokla sheep with a negative control group receiving no treatment, a positive control group was given a single oral dose of albendazole at 7.5 mg/kg bodyweight, and a group administered a single oral dose of an aqueous extract at 5 g/animal. Data were analysed using the general linear model. Aqueous extract showed better efficacy in egg hatch assay and larval development test. However, in larval paralysis test, reverse trend was seen as methanolic extract was more potent than the aqueous counterpart. A significant amount of 57% faecal egg count reduction was observed in in vivo trail using the aqueous extract on day 21 post-treatment, although in initial stages it showed 30% and 83% effectiveness on days 7 and 14 post-treatment, respectively. No deleterious ill effect was found in any of the haematological and biochemical parameters. Bulb of A. sativum possesses good anthelminthic efficacy and further research is thereby warranted before recommending it for nematode control programme in ovines.

  16. Morphological characterization of pollens from three Apiaceae species and their ingestion by twelve-spotted lady beetle (Coleoptera: Coccinellidae).

    PubMed

    D'Ávila, V A; Aguiar-Menezes, E L; Gonçalves-Esteves, V; Mendonça, C B F; Pereira, R N; Santos, T M

    2016-04-19

    Larvae and adults of certain species of predator lady beetles feed on pollen, guaranteeing their survival, and at times, reproduction in the absence of preferred prey. Palynology, therefore, may contribute in the investigation of botanical families visited by these predators in order to obtain this floral resource. There are records of the visitation of Apiaceae flowers by Coleomegilla maculata DeGeer, 1775 (Coleoptera, Coccinellidae), but not the ingestion of their pollen grains by this lady beetle. The external morphology of pollen grains of three Apiaceae aromatic species (Anethum graveolens L., Coriandrum sativum L., Foeniculum vulgare Mill.) was characterized, and it was evaluated the ingestion of these pollens by fourth instar larvae and adults of C. maculata upon confinement along with flowers of these Apiaceae for 24 and 48 hours. The pollen grains of those species presented similar external morphology. In the two times of exposure, the larvae ingested the same amount of pollen from the three Apiaceae species, and the amount of C. sativum pollen ingested was the same between larvae and adults. The amount of A. graveolens pollen grains ingested by the adults was significantly greater than the pollens of C. sativum and F. vulgare, in 24 hours, with the opposite occurring in 48 hours. In the first 24 hours, the adults ingested more A. graveolens pollen than the larvae, with the opposite occurring with F. vulgare. There was no significant difference in the amount of Apiaceae pollen ingested between larvae and adults in 48 hours. The results suggest that the pollen-eating habits of certain aphidophagous lady beetles may be crucial in their preservation within agro-ecosystems.

  17. Phytochemical Profiles and Antimicrobial Activities of Allium cepa Red cv. and A. sativum Subjected to Different Drying Methods: A Comparative MS-Based Metabolomics.

    PubMed

    Farag, Mohamed A; Ali, Sara E; Hodaya, Rashad H; El-Seedi, Hesham R; Sultani, Haider N; Laub, Annegret; Eissa, Tarek F; Abou-Zaid, Fouad O F; Wessjohann, Ludger A

    2017-05-08

    Plants of the Allium genus produce sulphur compounds that give them a characteristic (alliaceous) flavour and mediate for their medicinal use. In this study, the chemical composition and antimicrobial properties of Allium cepa red cv. and A. sativum in the context of three different drying processes were assessed using metabolomics. Bulbs were dried using either microwave, air drying, or freeze drying and further subjected to chemical analysis of their composition of volatile and non-volatile metabolites. Volatiles were collected using solid phase micro-extraction (SPME) coupled to gas chromatography-mass spectrometry (GC/MS) with 42 identified volatiles including 30 sulphur compounds, four nitriles, three aromatics, and three esters. Profiling of the polar non-volatile metabolites via ultra-performance liquid chromatography coupled to high resolution MS (UPLC/MS) annotated 51 metabolites including dipeptides, flavonoids, phenolic acids, and fatty acids. Major peaks in GC/MS or UPLC/MS contributing to the discrimination between A. sativum and A. cepa red cv. were assigned to sulphur compounds and flavonoids. Whereas sulphur conjugates amounted to the major forms in A. sativum , flavonoids predominated in the chemical composition of A. cepa red cv. With regard to drying impact on Allium metabolites, notable and clear separations among specimens were revealed using principal component analysis (PCA). The PCA scores plot of the UPLC/MS dataset showed closer metabolite composition of microwave dried specimens to freeze dried ones, and distant from air dried bulbs, observed in both A. cepa and A. sativum . Compared to GC/MS, the UPLC/MS derived PCA model was more consistent and better in assessing the impact of drying on Allium metabolism. A phthalate derivative was found exclusively in a commercial garlic preparation via GC/MS, of yet unknown origin. The freeze dried samples of both Allium species exhibited stronger antimicrobial activities compared to dried specimens

  18. Allium sativum Compared to Cilostazol as an Inhibitor of Myointimal Hyperplasia

    PubMed Central

    Lima, Paulo Roberto da Silva; Bandeira, Francisco Chavier Vieira; Rolim, Janio Cipriano; Nogueira, Manuel Ricardo Sena; Pordeus, Mizael Armando Abrantes; de Oliveira, Andressa Feitosa Bezerra; Pitta, Guilherme Benjamin Brandão

    2016-01-01

    Objective Intimal hyperplasia is associated with graft failure and vascular sutures in the first year after surgery and in postangioplasty restenosis. Allium sativum (common garlic) lowers cholesterol and has antioxidant effects; it also has antiplatelet and antitumor properties and, therefore, has great potential to reduce or inhibit intimal hyperplasia of the arteries. Our objective is to determine if the garlic has an efficacy to inhibit myointimal hyperplasia compared to cilostazol. Methods Female New Zealand rabbits were divided into the following groups (n=10 each) according to treatment: group A, garlic, 800 µg×kg-1×day-1, orally; group C, cilostazol, 50 mg.day-1, orally; group PS, 10 ml of 0.9% physiological saline solution, orally. Our primary is the difference of the mean of myointimal hyperplasia. Statistical analysis was performed by using ANOVA and Tukey tests, as well as the Chi-square test. We calculated the 95% confidence interval for each point estimate, and the P value was set as < 0.05. Results Group PS had a mean hyperplasia rate of 35.74% (95% CI, 31.76–39.71%); group C, 16.21% (95% CI, 13.36–19.05%); and group A, 21.12% (95% CI, 17.26–25.01%); P<0.0001. Conclusion We conclude that Allium sativum had the same efficacy in inhibiting myointimal hyperplasia when compared to the positive control, cilostazol. PMID:27849301

  19. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development.

    PubMed

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-11-01

    CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far generally accepted. © The Author 2014. Published by

  20. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    PubMed Central

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-01-01

    Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far

  1. An antifungal protein from the pea Pisum sativum var. arvense Poir.

    PubMed

    Wang, H X; Ng, T B

    2006-07-01

    An antifungal protein with a molecular mass of 11 kDa and a lysine-rich N-terminal sequence was isolated from the seeds of the pea Pisum sativum var. arvense Poir. The antifungal protein was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. It exerted antifungal activity against Physalospora piricola with an IC50 of 0.62 microM, and also antifungal activity against Fusarium oxysporum and Mycosphaerella arachidicola. It inhibited human immunodeficiency virus type 1 reverse transcriptase with an IC50 of 4.7 microM.

  2. The in vitro effect of Ferula asafoetida and Allium sativum extracts on Strongylus spp.

    PubMed

    Tavassoli, Mousa; Jalilzadeh-Amin, Ghader; Fard, Vahid R. Besharati; Esfandiarpour, Rahim

    2018-01-01

    The high incidence of equine gastrointestinal worms and their increased resistance against anthelmintics has encouraged research into the effectiveness of rational phytotherapy. This study investigates the in vitro anti-parasitic effects of extracts of Ferula asafoetida and Allium sativum, two native plants that are widespread in Iran on Strongylus spp. larvae. Faecal samples were collected from horses, examined by routine parasitology methods and positive samples were used for future examination. After incubation, the third-stage larvae were harvested by the Baermann technique. A hydroalcoholic extract from the plants was used for the antiparasitic study, while tap water was used for controls. Trials for each concentration and control group were performed in three replicates. The results showed that that during the first day of exposure, the hydroalcoholic extract of F. asafoetida at concentration of 10, 50 and 100 mg/ml killed over the 90% of the larvae, and A. sativum extract at concentration of 50 and 100 mg/ml killed over the 95% of larvae (p<0.05). The results obtained from the bioassay showed that two plant extracts have a larvicidal effect on the Strongylus spp. larval stages compared with the control group.

  3. Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs.

    PubMed

    Ramkissoon, J S; Mahomoodally, M F; Ahmed, N; Subratty, A H

    2013-07-01

    To determine the contribution of total phenolic content (TPC) in glycation inhibitory activity of common tropical medicinal food and spices with potential antioxidative properties. In vitro glucose-bovine serum albumin (BSA) assay was used. Ethanolic extracts of ten common household condiments/herbs (Allium sativum, Zingiber officinale, Thymus vulgaris, Petroselinum crispum, Murraya koenigii Spreng, Mentha piperita L., Curcuma longa L., Allium cepa L., Allium fistulosum and Coriandrum sativum L.) were evaluated for antioxidative activity by 2,2-diphenyl-2-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) and the TPC, flavonoid and tannins content were determined. Findings showed good correlation between TPC/DPPH (r = 0.8), TPC/FRAP (r = 0.8), TPC/anti-glycation (r = 0.9), DPPH/anti-glycation (r = 0.6), FRAP/anti-glycation (r = 0.9), Flavonoid/anti-glycation (r = 0.7) and Tannins/anti-glycation (r = 0.8) and relatively fair correlation for TPC/Flavonoids (r = 0.5) and TPC/Tannins (r = 0.5). Results imply that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used for reducing oxidative stress. The positive glycation inhibitory and antioxidative activities of these tropical herbs suggest a possible role in targeting ageing, diabetic complications and oxidative stress related diseases. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  4. Tubulin cytoskeleton during microsporogenesis in the male-sterile genotype of Allium sativum and fertile Allium ampeloprasum L.

    PubMed

    Tchórzewska, Dorota; Deryło, Kamil; Błaszczyk, Lidia; Winiarczyk, Krystyna

    2015-12-01

    Microsporogenesis in garlic. The male-sterile Allium sativum (garlic) reproduces exclusively in the vegetative mode, and anthropogenic factors seem to be the cause of the loss of sexual reproduction capability. There are many different hypotheses concerning the causes of male sterility in A.sativum; however, the mechanisms underlying this phenomenon have not been comprehensively elucidated.Numerous attempts have been undertaken to understand the causes of male sterility, but the tubulin cytoskeleton in meiotically dividing cells during microsporogenesis has never been investigated in this species. Using sterile A.sativum genotype L13 and its fertile close relative A. ampeloprasum (leek), we have analysed the distribution of the tubulin cytoskeleton during microsporogenesis. We observed that during karyokinesis and cytokinesis, in both meiotic divisions I and II, the microtubular cytoskeleton in garlic L13 formed configurations that resembled tubulin arrangement typical of monocots. However, the tubulin cytoskeleton in garlic was distinctly poorer (composed of a few MT filaments) compared with that found in meiotically dividing cells in A. ampeloprasum. These differences did not affect the course of karyogenesis, chondriokinesis, and cytokinesis, which contributed to completion of microsporogenesis, but there was no further development of the male gametophyte. At the very beginning of the successive stage of development of fertile pollen grains, i.e. gametogenesis, there were disorders involving the absence of a normal cortical cytoskeleton and dramatically progressive degeneration of the cytoplasm in garlic. Therefore,we suggest that, due to disturbances in cortical cytoskeleton formation at the very beginning of gametogenesis, the intracellular transport governed by the cytoskeleton might be perturbed, leading to microspore decay in the male-sterile garlic genotype.

  5. Micropropagation and cryopreservation of garlic (Allium sativum L.).

    PubMed

    Keller, E R Joachim; Senula, Angelika

    2013-01-01

    Garlic (Allium sativum L.) is a very important medicinal and spice plant. It is conventionally propagated by daughter bulbs ("cloves") and bulbils from the flower head. Micropropagation is used for speeding up the vegetative propagation mainly using the advantage to produce higher numbers of healthy plants free of viruses, which have higher yield than infected material. Using primary explants from bulbs and/or bulbils (shoot tips) or unripe inflorescence bases, in vitro cultures are initiated on MS-based media containing auxins, e.g., naphthalene acetic acid, and cytokinins, e.g., 6-γ-γ-(dimethylallylaminopurine) (2iP). Rooting is accompanying leaf formation. It does not need special culture phases. The main micropropagation methods rely on growth of already formed meristems. Long-term storage of micropropagated material, cryopreservation, is well-developed to maintain germplasm. The main method is vitrification using the cryoprotectant mixture PVS3.

  6. Crop candidates for the bioregenerative life support systems in China

    NASA Astrophysics Data System (ADS)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  7. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis.

    PubMed

    Carro, Lorena; Spröer, Cathrin; Alonso, Pilar; Trujillo, Martha E

    2012-03-01

    It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic)

    PubMed Central

    Foroutan-Rad, Masoud; Tappeh, Khosrow Hazrati; Khademvatan, Shahram

    2015-01-01

    Leishmaniasis is caused by an obligate intracellular protozoa belonging to Leishmania genus. The current drugs for treatment of leishmaniasis possess many disadvantages; therefore, researchers are continuously looking for the more effective and safer drugs. The aim of this study is to review the effectiveness, toxicities, and possible mechanisms of pharmaceutical actions of different garlic extracts and organosulfur compounds isolated from garlic against Leishmania spp. in a variety of in vitro, in vivo and clinical trials reports. All relevant databases were searched using the terms “Allium sativum,” “Garlic,” “Allicin,” “Ajoene,” “Leishmania,” “in vitro,” “in vivo,” and “clinical trial,” alone or in combination from 5 English databases (Web of Science, PubMed, Science Direct, Scopus, Google Scholar) and 3 Persian databases (Scientific Information Database, Iran Medex, and Magiran) from 1990 to 2014. In summary, garlic with immunomodulatory effects and apoptosis induction contributes to the treatment of leishmaniasis. PMID:26721553

  9. Cardioprotective and Metabolomic Profiling of Selected Medicinal Plants against Oxidative Stress

    PubMed Central

    Afsheen, Nadia; Jahan, Nazish; Ijaz, Misbah; Manzoor, Asad; Khan, Khalid Mahmood; Hina, Saman

    2018-01-01

    In this research work, the antioxidant and metabolomic profiling of seven selected medicinally important herbs including Rauvolfia serpentina, Terminalia arjuna, Coriandrum sativum, Elettaria cardamom, Piper nigrum, Allium sativum, and Crataegus oxyacantha was performed. The in vivo cardioprotective potential of these medicinal plants was evaluated against surgically induced oxidative stress through left anterior descending coronary artery ligation (LADCA) in dogs. The antioxidant profiling of these plants was done through DPPH and DNA protection assay. The C. oxyacantha and T. arjuna showed maximum antioxidant potential, while the E. cardamom showed poor antioxidative strength even at its high concentration. Different concentrations of extracts of the said plants exhibited the protection of plasmid DNA against H2O2 damage as compared to the plasmid DNA merely treated with H2O2. The metabolomic profiling through LC-MS analysis of these antioxidants revealed the presence of active secondary metabolites responsible for their antioxidant potential. During in vivo analysis, blood samples of all treatment groups were drawn at different time intervals to analyze the cardiac and hemodynamic parameters. The results depicted that the group pretreated with HC4 significantly sustained the level of CK-MB, SGOT, and LDH as well as hemodynamic parameters near to normal. The histopathological examination also confirmed the cardioprotective potential of HC4. Thus, the HC4 being safe and inexpensive cardioprotective herbal combination could be considered as an alternate of synthetic drugs. PMID:29576858

  10. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents.

    PubMed

    Sachdev, Abhay; Gopinath, P

    2015-06-21

    In the present study, a facile one-step hydrothermal treatment of coriander leaves for preparing carbon dots (CDs) has been reported. Optical and structural properties of the CDs have been extensively studied by UV-visible and fluorescence spectroscopic, microscopic (transmission electron microscopy, scanning electron microscopy) and X-ray diffraction techniques. Surface functionality and composition of the CDs have been illustrated by elemental analysis and Fourier transform infrared spectroscopy (FTIR). Quenching of the fluorescence of the CDs in the presence of metal ions is of prime significance, hence CDs have been used as a fluorescence probe for sensitive and selective detection of Fe(3+) ions. Eventually, biocompatibility and bioimaging aspects of CDs have been evaluated on lung normal (L-132) and cancer (A549) cell lines. Qualitative analysis of cellular uptake of CDs has been pursued through fluorescence microscopy, while quantitative analysis using a flow cytometer provided an insight into the concentration and cell-type dependent uptake of CDs. The article further investigates the antioxidant activity of CDs. Therefore, we have validated the practicality of CDs obtained from a herbal carbon source for versatile applications.

  11. Clinical effectiveness of garlic (Allium sativum).

    PubMed

    Pittler, Max H; Ernst, Edzard

    2007-11-01

    The objective of this review is to update and assess the clinical evidence based on rigorous trials of the effectiveness of garlic (A. sativum). Systematic searches were carried out in Medline, Embase, Amed, the Cochrane Database of Systematic Reviews, Natural Standard, and the Natural Medicines Comprehensive Database (search date December 2006). Our own files, the bibliographies of relevant papers and the contents pages of all issues of the review journal FACT were searched for further studies. No language restrictions were imposed. To be included, trials were required to state that they were randomized and double blind. Systematic reviews and meta-analyses of garlic were included if based on the results of randomized, double-blind trials. The literature searches identified six relevant systematic reviews and meta-analysis and double-blind randomized trials (RCT) that were published subsequently. These relate to cancer, common cold, hypercholesterolemia, hypertension, peripheral arterial disease and pre-eclampsia. The evidence based on rigorous clinical trials of garlic is not convincing. For hypercholesterolemia, the reported effects are small and may therefore not be of clinical relevance. For reducing blood pressure, few studies are available and the reported effects are too small to be clinically meaningful. For all other conditions not enough data are available for clinical recommendations.

  12. Characterization of callase (β-1,3-D-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum.

    PubMed

    Winiarczyk, Krystyna; Jaroszuk-Ściseł, Jolanta; Kupisz, Kamila

    2012-06-01

    We examined callase activity in anthers of sterile Allium sativum (garlic) and fertile Allium atropurpureum. In A. sativum, a species that produces sterile pollen and propagates only vegetatively, callase was extracted from the thick walls of A. sativum microspore tetrads exhibited maximum activity at pH 4.8, and the corresponding in vivo values ranged from 4.5 to 5.0. Once microspores were released, in vitro callase activity peaked at three distinct pH values, reflecting the presence of three callase isoforms. One isoform, which was previously identified in the tetrad stage, displayed maximum activity at pH 4.8, and the remaining two isoforms, which were novel, were most active at pH 6.0 and 7.3. The corresponding in vivo values ranged from pH 4.75 to 6.0. In contrast, in A. atropurpureum, a sexually propagating species, three callase isoforms, active at pH 4.8-5.2, 6.1, and 7.3, were identified in samples of microsporangia that had released their microspores. The corresponding in vivo value for this plant was 5.9. The callose wall persists around A. sativum meiotic cells, whereas only one callase isoform, with an optimum activity of pH 4.8, is active in the acidic environment of the microsporangium. However, this isoform is degraded when the pH rises to 6.0 and two other callase isoforms, maximally active at pH 6.0 and 7.3, appear. Thus, factors that alter the pH of the microsporangium may indirectly affect the male gametophyte development by modulating the activity of callase and thereby regulating the degradation of the callose wall.

  13. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A

    PubMed Central

    2012-01-01

    Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA’s interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment. PMID:22821938

  14. Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin from Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier, E-mail: fjljara@ugr.es; Bernier-Villamor, Laura

    2006-07-01

    The isolation, purification, crystallization and molecular-replacement solution of mitochondrial type II peroxiredoxin from P. sativum is reported. A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 Å from a single crystal flash-cooledmore » at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 Å, α = 102.90, β = 104.40, γ = 99.07°, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress.« less

  15. High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    DOE PAGES

    Mazur, Andrzej; De Meyer, Sofie E.; Tian, Rui; ...

    2015-07-16

    We report that Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75more » RNA-only encoding genes, and is part of the GEBA-RNB project proposal.« less

  16. High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, Andrzej; De Meyer, Sofie E.; Tian, Rui

    We report that Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75more » RNA-only encoding genes, and is part of the GEBA-RNB project proposal.« less

  17. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, R.F.; Letcher, A.J.; Lander, D.J.

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  18. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    USDA-ARS?s Scientific Manuscript database

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  19. Biological safety assessment of mutant variant of Allium sativum leaf agglutinin (mASAL), a novel antifungal protein for future transgenic application.

    PubMed

    Ghosh, Prithwi; Roy, Amit; Chakraborty, Joydeep; Das, Sampa

    2013-12-04

    Genetic engineering has established itself to be an important tool for crop improvement. Despite the success, there is always a risk of food allergy induced by alien gene products. The present study assessed the biosafety of mutant Allium sativum leaf agglutinin (mASAL), a potent antifungal protein generated by site directed mutagenesis of Allium sativum leaf agglutinin (ASAL). mASAL was cloned in pET28a+ and expressed in E. coli, and the safety assessment was carried out according to the FAO/WHO guideline (2001). Bioinformatics analysis, pepsin digestion, and thermal stability assay showed the protein to be nonallergenic. Targeted sera screening revealed no significant IgE affinity of mASAL. Furthermore, mASAL sensitized Balb/c mice showed normal histopathology of lung and gut tissue. All results indicated the least possibility of mASAL being an allergen. Thus, mASAL appears to be a promising antifungal candidate protein suitable for agronomical biotechnology.

  20. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    PubMed

    Sun, Y-E; Wang, W-D

    2016-06-30

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration.

  1. Extraction, purification, kinetic and thermodynamic properties of urease from germinating Pisum Sativum L. seeds

    PubMed Central

    2014-01-01

    Background Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). Results The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, K m and V max , were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, E a , and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. Conclusions Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants. PMID:25065975

  2. Assessment of Anti-Influenza Activity and Hemagglutination Inhibition of Plumbago indica and Allium sativum Extracts

    PubMed Central

    Chavan, Rahul Dilip; Shinde, Pramod; Girkar, Kaustubh; Madage, Rajendra; Chowdhary, Abhay

    2016-01-01

    Background: Human influenza is a seasonal disease associated with significant morbidity and mortality. Anti-flu ayurvedic/herbal medicines have played a significant role in fighting the virus pandemic. Plumbagin and allicin are commonly used ingredients in many therapeutic remedies, either alone or in conjunction with other natural substances. Evidence suggests that these extracts are associated with a variety of pharmacological activities. Objective: To evaluate anti-influenza activity from Plumbago indica and Allium sativum extract against Influenza A (H1N1)pdm09. Materials and Methods: Different extraction procedures were used to isolate the active ingredient in the solvent system, and quantitative HPLTC confirms the presence of plumbagin and allicin. The cytotoxicity was carried out on Madin-Darby Canine kidney cells, and the 50% cytotoxic concentration (CC50) values were below 20 mg/mL for both plant extracts. To assess the anti-influenza activity, two assays were employed, simultaneous and posttreatment assay. Results: A. sativum methanolic and ethanolic extracts showed only 14% reduction in hemagglutination in contrast to P. indica which exhibited 100% reduction in both simultaneous and posttreatment assay at concentrations of 10 mg/mL, 5 mg/mL, and 1 mg/mL. Conclusions: Our results suggest that P. indica extracts are good candidates for anti-influenza therapy and should be used in medical treatment after further research. SUMMARY The search for natural antiviral compounds from plants is a promising approach in the development of new therapeutic agents. In the past century, several scientific efforts have been directed toward identifying phytochemicals capable of inhibiting virus. Knowledge of ethnopharmacology can lead to new bioactive plant compounds suitable for drug discovery and development. Macromolecular docking studies provides most detailed possible view of drug-receptor interaction where the structure of drug is designed based on its fit to three

  3. Assessment of Anti-Influenza Activity and Hemagglutination Inhibition of Plumbago indica and Allium sativum Extracts.

    PubMed

    Chavan, Rahul Dilip; Shinde, Pramod; Girkar, Kaustubh; Madage, Rajendra; Chowdhary, Abhay

    2016-01-01

    Human influenza is a seasonal disease associated with significant morbidity and mortality. Anti-flu ayurvedic/herbal medicines have played a significant role in fighting the virus pandemic. Plumbagin and allicin are commonly used ingredients in many therapeutic remedies, either alone or in conjunction with other natural substances. Evidence suggests that these extracts are associated with a variety of pharmacological activities. To evaluate anti-influenza activity from Plumbago indica and Allium sativum extract against Influenza A (H1N1)pdm09. Different extraction procedures were used to isolate the active ingredient in the solvent system, and quantitative HPLTC confirms the presence of plumbagin and allicin. The cytotoxicity was carried out on Madin-Darby Canine kidney cells, and the 50% cytotoxic concentration (CC50) values were below 20 mg/mL for both plant extracts. To assess the anti-influenza activity, two assays were employed, simultaneous and posttreatment assay. A. sativum methanolic and ethanolic extracts showed only 14% reduction in hemagglutination in contrast to P. indica which exhibited 100% reduction in both simultaneous and posttreatment assay at concentrations of 10 mg/mL, 5 mg/mL, and 1 mg/mL. Our results suggest that P. indica extracts are good candidates for anti-influenza therapy and should be used in medical treatment after further research. The search for natural antiviral compounds from plants is a promising approach in the development of new therapeutic agents. In the past century, several scientific efforts have been directed toward identifying phytochemicals capable of inhibiting virus. Knowledge of ethnopharmacology can lead to new bioactive plant compounds suitable for drug discovery and development. Macromolecular docking studies provides most detailed possible view of drug-receptor interaction where the structure of drug is designed based on its fit to three dimensional structures of receptor site rather than by analogy to other

  4. Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements.

    PubMed

    Kitaeva, Anna B; Demchenko, Kirill N; Tikhonovich, Igor A; Timmers, Antonius C J; Tsyganov, Viktor E

    2016-04-01

    In this study we analyzed and compared the organization of the tubulin cytoskeleton in nodules of Medicago truncatula and Pisum sativum. We combined antibody labeling and green fluorescent protein tagging with laser confocal microscopy to observe microtubules (MTs) in nodules of both wild-type (WT) plants and symbiotic plant mutants blocked at different steps of nodule development. The 3D MT organization of each histological nodule zone in both M. truncatula and P. sativum is correlated to specific developmental processes. Endoplasmic MTs appear to support infection thread growth, infection droplet formation and bacterial release into the host cytoplasm in nodules of both species. No differences in the organization of the MT cytoskeleton between WT and bacterial release mutants were apparent, suggesting both that the phenotype is not linked to a defect in MT organization and that the growth of hypertrophied infection threads is supported by MTs. Strikingly, bacterial release coincides with a change in the organization of cortical MTs from parallel arrays into an irregular, crisscross arrangement. After release, the organization of endoplasmic MTs is linked to the distribution of symbiosomes. The 3D MT organization of each nodule histological zone in M. truncatula and P. sativum was analyzed and linked to specific developmental processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Development and validation of breeder-friendly KASPar markers for er1, a powdery mildew resistance gene in pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea is caused by Erysiphe pisi DC and is a serious threat to pea (Pisum sativum L.) production throughout much of the world. Development and utilization of genetic resistance to powdery mildew is considered an effective and sustainable strategy to manage this disease. One gene, er1...

  6. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camirand, A.; Brummell, D.; MacLachlan, G.

    1987-07-01

    Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-(/sup 14/C) fucose and UDP-(/sup 14/C)xylose to xyloglucan occurred mainly in dictyosome-enriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with (/sup 3/H)fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles.

  7. Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic): A Review.

    PubMed

    Foroutan-Rad, Masoud; Tappeh, Khosrow Hazrati; Khademvatan, Shahram

    2017-01-01

    Leishmaniasis is caused by an obligate intracellular protozoa belonging to Leishmania genus. The current drugs for treatment of leishmaniasis possess many disadvantages; therefore, researchers are continuously looking for the more effective and safer drugs. The aim of this study is to review the effectiveness, toxicities, and possible mechanisms of pharmaceutical actions of different garlic extracts and organosulfur compounds isolated from garlic against Leishmania spp. in a variety of in vitro, in vivo and clinical trials reports. All relevant databases were searched using the terms "Allium sativum," "Garlic," "Allicin," "Ajoene," "Leishmania," "in vitro," "in vivo," and "clinical trial," alone or in combination from 5 English databases (Web of Science, PubMed, Science Direct, Scopus, Google Scholar) and 3 Persian databases (Scientific Information Database, Iran Medex, and Magiran) from 1990 to 2014. In summary, garlic with immunomodulatory effects and apoptosis induction contributes to the treatment of leishmaniasis. © The Author(s) 2015.

  8. Acaricidal activities of apiol and its derivatives from Petroselinum sativum seeds against Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Tyrophagus putrescentiae.

    PubMed

    Song, Ha Yun; Yang, Ji Yeon; Suh, Joo Won; Lee, Hoi Seon

    2011-07-27

    The acaricidal effects of an active constituent derived from Petroselinum sativum seeds and its derivatives were determined using impregnated fabric disk bioassay against Dermatophagoides farinae , Dermatophagoides pteronyssinus , and Tyrophagus putrescentiae and compared with that of synthetic acaricide. The acaricidal constituent of P. sativum was isolated by various chromatographic techniques and identified as apiol. On the basis of LD(50) values against D. farinae and D. pteronyssinus, apiol (0.81 and 0.94 μg/cm(2)) was 12.4 and 10.2 times more toxic than benzyl benzoate (10.0 and 9.58 μg/cm(2)), respectively. In acaricidal studies of apiol derivatives, 3,4-methylenedioxybenzonitrile (0.04, 0.03, and 0.59 μg/cm(2)) was 250, 319, and 20.7 times more toxic than benzyl benzoate (10.0, 9.58, and 12.2 μg/cm(2)) against D. farinae, D. pteronyssinus, and T. putrescentiae. In structure-activity relationships, the acaricidal activities of apiol derivatives could be related to allyl (-C(3)H(5)) and methoxy (-OCH(3)) functional groups. Furthermore, apiol and its derivatives could be useful for natural acaricides against these three mite species.

  9. Identification of lesion and nodal resistance in pea (Pisum sativum L.) to Sclerotinia sclerotiorum using genome-wide association studies and RNA-Seq

    USDA-ARS?s Scientific Manuscript database

    Nodal resistance in plants is a phenomenon where a fungal infection is prevented from passing through a node and the infection is limited to an internode region. Nodal resistance has been observed in some pathosystems such as the pea (Pisum sativum L.)-white mold (WM) (Sclerotinia sclerotiorum (Lib....

  10. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    NASA Astrophysics Data System (ADS)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Truşcă, Roxana; Vasile, Eugeniu; Iordache, Florin; Chifiriuc, Mariana-Carmen; Holban, Alina Maria

    2015-05-01

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET-TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  11. 1H NMR based metabolic profiling of eleven Algerian aromatic plants and evaluation of their antioxidant and cytotoxic properties.

    PubMed

    Brahmi, Nabila; Scognamiglio, Monica; Pacifico, Severina; Mekhoukhe, Aida; Madani, Khodir; Fiorentino, Antonio; Monaco, Pietro

    2015-10-01

    Eleven Algerian medicinal and aromatic plants (Aloysia triphylla, Apium graveolens, Coriandrum sativum, Laurus nobilis, Lavandula officinalis, Marrubium vulgare, Mentha spicata, Inula viscosa, Petroselinum crispum, Salvia officinalis, and Thymus vulgaris) were selected and their hydroalcoholic extracts were screened for their antiradical and antioxidant properties in cell-free systems. In order to identify the main metabolites constituting the extracts, 1 H NMR-based metabolic profiling was applied. Data obtained emphasized the antiradical properties of T. vulgaris, M. spicata and L. nobilis extracts (RACI 1.37, 0.97 and 0.93, respectively), whereas parsley was the less active as antioxidant (RACI -1.26). When the cytotoxic effects of low and antioxidant doses of each extract were evaluated towards SK-N-BE(2)C neuronal and HepG2 hepatic cell lines, it was observed that all the extracts weakly affected the metabolic redox activity of the tested cell lines. Overall, data strongly plead in favor of the use of these plants as potential food additives in replacement of synthetic compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    PubMed

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Further characterization of ribosome binding to thylakoid membranes. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurewitz, J.; Jagendorf, A.T.

    1987-05-01

    Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo. With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation,more » and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of (/sup 3/H)leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins.« less

  14. Antimycobacterial and Antibacterial Activity of Allium sativum Bulbs

    PubMed Central

    Viswanathan, V.; Phadatare, A. G.; Mukne, Alka

    2014-01-01

    Tuberculosis is one of the major public health problems faced globally. Resistance of Mycobacterium tuberculosis to antitubercular agents has called for an urgent need to investigate newer drugs to combat tuberculosis. Garlic (Allium sativum) is an edible plant which has generated a lot of curiosity throughout human history as a medicinal plant. Garlic contains sulfur compounds like allicin, ajoene, allylmethyltrisulfide, diallyltrisulfide, diallyldisulphide and others which exhibit various biological properties like antimicrobial, anticancer, antioxidant, immunomodulatory, antiinflammatory, hypoglycemic, and cardiovascular effects. According to various traditional systems of medicine, garlic is one of the established remedies for tuberculosis. The objective of the current study was to investigate in vitro antimycobacterial activity as well as anti-bacterial activity of various extracts rich in specific phytoconstituents from garlic. Preparation of garlic extracts was done based on the chemistry of the constituents and their stability. The estimation of in vitro antimycobacterial activity of different garlic extracts was done using Resazurin microtire plate assay technique whereas activity of garlic oil was evaluated by colony count method. The antibacterial activity of extracts and oil was estimated by zone of inhibition method. Extracts of garlic rich in allicin and ajoene showed appreciable antimycobacterial activity as compared to standard drugs. Garlic oil demonstrated significant antibacterial activity, particularly against methicillin-resistant Staphylococcus aureus. PMID:25035540

  15. Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells.

    PubMed

    Moutia, Mouna; Seghrouchni, Fouad; Abouelazz, Omar; Elouaddari, Anass; Al Jahid, Abdellah; Elhou, Abdelhalim; Nadifi, Sellama; Jamal Eddine, Jamal; Habti, Norddine; Badou, Abdallah

    2016-09-29

    Allium sativum L. (A.S.) "garlic", one of the most interesting medicinal plants, has been suggested to contain compounds that could be beneficial in numerous pathological situations including cancer. In this work, we aimed to assess the immunomodulatory effect of A.S. preparation on human peripheral blood mononuclear cells from healthy individuals. Nontoxic doses of A.S. were identified using MTT assay. Effects on CD4+ or CD8+ T lymphocyte proliferation were studied using flow cytometry. The effect of A.S. on cytokine gene expression was studied using qRT-PCR. Finally, qualitative analysis of A.S. was performed by HPLC approach. Data were analyzed statistically by one-way ANOVA test. The nontoxic doses of A.S. preparation did not affect neither spontaneous nor TCR-mediated CD4+ or CD8+ T lymphocyte proliferation. Interestingly, A.S. exhibited a statistically significant regulation of IL-17 gene expression, a cytokine involved in several inflammatory and autoimmune diseases. In contrast, the expression of IL-4, an anti-inflammatory cytokine, was unaffected. Qualitative analysis of A.S. ethanol preparation indicated the presence of three polyphenol bioactive compounds, which are catechin, vanillic acid and ferulic acid. The specific inhibition of the pro-inflammatory cytokine, IL-17 without affecting cell proliferation in human PBMCs by the Allium sativum L. preparation suggests a potential valuable effect of the compounds present in this plant for the treatment of inflammatory diseases and cancer, where IL-17 is highly expressed. The individual contribution of these three compounds to this global effect will be assessed.

  16. Seed coat import and unloading in pisum. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grusak, M.A.; Minchin, P.E.H.

    1987-08-01

    Experiments were undertaken with empty, attached ovules of Pisum sativum to observe the effects of osmotic solution changes on seed coat import and unloading into the apoplast. Through the use of /sup 11/CO/sub 2/ pulse labelling along with collimated monitoring of plant sections, the authors were able to continuously and simultaneously measure total pod import, import into a single ovule, and washout from the ovule into a flow-through bathing solution. The authors results indicated that changes in bathing solution sucrose concentration had no immediate effect on tracer washout in Pisum, but did affect ovule import. Lowering the sucrose concentration decreasedmore » import and raising the concentration increased import. Furthermore, these import changes were only gradually reflected in the seed coat washout profile, suggesting a buffering capability of the non-phloem seed coat tissues. Additional results have also led them to propose that the terminal site of seed coat unloading in Pisum is the plasmalemma of an non-phloem seed coat cell type, that unloading from this site occurs via a passive membrane transport process, and that solutes move symplastically to this compartment from the phloem.« less

  17. Protein methylation in pea chloroplasts. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-07-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with ({sup 3}H-methyl)-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. Onemore » methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile ({sup 3}H)methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the ({sup 3}H)methyl group.« less

  18. Different patterns of vein loading of exogenous ( sup 14 C)sucrose in leaves of pisum sativum and coleus blumei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turgeon, R.; Wimmers, L.E.

    1988-05-01

    Vein loading of exogenous ({sup 14}C)sucrose was studied using short uptake and wash periods to distinguish between direct loading into veins and loading via mesophyll tissue. Mature leaf tissue of Pisum sativum L. cv Little Marvel, or Coleus blumei Benth. cv Candidum, was abraded and leaf discs were floated on ({sup 14}C)sucrose solution for 1 or 2 minutes. Discs were then washed for 1 to 30 min either at room temperature or in the cold and were frozen, lyophilized, and autoradiographed. In P. sativum, veins were clearly labeled after 1 minute uptake and 1 minute wash periods. Autoradiographic images didmore » not change appreciably with longer times of uptake or wash. Vein loading was inhibited by p-chloromercuribenzenesulfonic acid. These results indicate that uptake of exogenous sucrose occurs directly into the veins in this species. When C. blumei leaf discs were floated on ({sup 14}C)sucrose for 2 minutes and washed in the cold, the mesophyll was labeled but little, if any, minor vein loading occurred. When discs were labeled for 2 minutes and washed at room temperature, label was transferred from the mesophyll to the veins within minutes. These results indicate that there may be different patterns of phloem loading of photosynthetically derived sucrose in these two species.« less

  19. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins.

    PubMed

    Clement, Fatima; Pramod, Siddanakoppalu N; Venkatesh, Yeldur P

    2010-03-01

    Garlic (Allium sativum), an important medicinal spice, displays a plethora of biological effects including immunomodulation. Although some immunomodulatory proteins from garlic have been described, their identities are still unknown. The present study was envisaged to isolate immunomodulatory proteins from raw garlic, and examine their effects on certain cells of the immune system (lymphocytes, mast cells, and basophils) in relation to mitogenicity and hypersensitivity. Three protein components of approximately 13 kD (QR-1, QR-2, and QR-3 in the ratio 7:28:1) were separated by Q-Sepharose chromatography of 30 kD ultrafiltrate of raw garlic extract. All the 3 proteins exhibited mitogenic activity towards human peripheral blood lymphocytes, murine splenocytes and thymocytes. The mitogenicity of QR-2 was the highest among the three immunomodulatory proteins. QR-1 and QR-2 displayed hemagglutination and mannose-binding activities; QR-3 showed only mannose-binding activity. Immunoreactivity of rabbit anti-QR-1 and anti-QR-2 polyclonal antisera showed specificity for their respective antigens as well as mutual cross-reactivity; QR-3 was better recognized by anti-QR-2 (82%) than by anti-QR-1 (55%). QR-2 induced a 2-fold higher histamine release in vitro from leukocytes of atopic subjects compared to that of non-atopic subjects. In all functional studies, QR-2 was more potent compared to QR-1. Taken together, all these results indicate that the two major proteins QR-2 and QR-1 present in a ratio of 4:1 in raw garlic contribute to garlic's immunomodulatory activity, and their characteristics are markedly similar to the abundant Allium sativum agglutinins (ASA) I and II, respectively. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Characterization of pea (Pisum sativum) seed protein fractions.

    PubMed

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  1. Crystallization and preliminary X-ray analysis of eukaryotic initiation factor 4E from Pisum sativum

    PubMed Central

    Ashby, Jamie A.; Stevenson, Clare E. M.; Maule, Andrew J.; Lawson, David M.

    2009-01-01

    Crystals of an N-terminally truncated 20 kDa fragment of Pisum sativum eIF4E (ΔN-eIF4E) were grown by vapour diffusion. X-ray data were recorded to a resolution of 2.2 Å from a single crystal in-house. Indexing was consistent with primitive monoclinic symmetry and solvent-content estimations suggested that between four and nine copies of the eIF4E fragment were possible per crystallographic asymmetric unit. eIF4E is an essential component of the eukaryotic translation machinery and recent studies have shown that point mutations of plant eIF4Es can confer resistance to potyvirus infection. PMID:19652353

  2. Isolation of pisumin, a novel antifungal protein from legumes of the sugar snap pea Pisum sativum var macrocarpon.

    PubMed

    Ye, X Y; Ng, T B

    2003-02-01

    An antifungal protein with a novel N-terminal sequence GVGAAYGCFG and a molecular mass of 31 kDa was isolated from the legumes of the sugar snap pea Pisum sativum var. macrocarpon. The protein, designated pisumin, exhibited antifungal activity against Coprinus comatus and Pleurotus ostreatus and much weaker activity against Fusarium oxysporum and Rhizoctonia solani. Pisumin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC(50) of 6 microM. Pisumin was similar to other leguminous antifungal proteins in that it was adsorbed on Affi-gel blue gel and CM-Sepharose.

  3. Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum.

    PubMed

    Winnicki, Konrad; Żabka, Aneta; Bernasińska, Joanna; Matczak, Karolina; Maszewski, Janusz

    2015-06-01

    In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.

  4. Development of an indirect enzyme linked immunoassay for abscisic acid. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, G.S.; Elder, P.A.; McWha, J.A.

    1987-09-01

    AN INDIRECT METHOD OF ENZYME-LINKED-IMMUNOSORBENT-ASSAY (ELISA) IS REPORTED FOR ABSCISIC ACID (ABA), UTILIZING A THYROGLOBULIN-ABA CONJUGATE FOR COATING WELLS. THE ASSAY CAN USE COMMERCIALLY AVAILABLE MONOCLONAL ANTIBODIES, IS SENSITIVE TO AS LITTLE AS 20 PICOGRAMS ABA PER WELL, AND IS MUCH MORE CONSERVATIVE OF ANTIBODY THAN DIRECT METHODS. THE MOST DILUTE ABA STANDARDS DID NOT RETAIN THEIR ANTIGENICITY DURING STORAGE, SO ABA STANDARD SETS WERE DILUTED IMMEDIATELY PRIOR TO USE. THE INDIRECT ELISA WAS USED SUCCESSFULLY TO ESTIMATE ABA CONCENTRATIONS IN DEVELOPING COTYLEDONS OF PISUM SATIVUM L., AFTER ONLY LITTLE PRELIMINARY PURIFICATION. IT WAS VALIDATED FOR THIS TISSUE THROUGH THEmore » USE OF GAS CHROMATOGRAPHY-ELECTRON CAPTURE DETECTION (GC-EC), AND CAPILLARY GC-SELECTED ION MONITORING (GC-MS-SIM) USING LABELLED ABA AS AN INTERNAL STANDARD. FULL SPECTRUM GC-MASS SPECTROMETRY WAS ALSO USED TO VERIFY THAT ABA WAS PRESENT IN A SAMPLE ASSAYED QUANTITATIVELY BY BOTH ELISA AND GC-MS-SIM.« less

  5. Identification of the 64 kilodalton chloroplast stromal phosphoprotein as phosphoglucomutase. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvucci, M.E.; Drake, R.R.; Broadbent, K.P.

    1990-05-01

    Phosphorylation of the 64 kilodalton stromal phosphoprotein by incubation of pea (Pisum sativum) chloroplast extracts with ({gamma}-{sup 32}P)ATP decreased in the presence of Glc-6-P and Glc-1,6-P{sub 2}, but was stimulated by glucose. Two-dimensional gel electrophoresis following incubation of intact chloroplasts and stromal extracts with ({gamma}-{sup 32}P)ATP, or incubation of stromal extracts and partially purified phosphoglucomutase (EC 2.7.5.1) with ({sup 32}P)Glc-1-P showed that the identical 64 kilodalton polypeptide was labeled. A 62 kilodalton polypeptide was phosphorylated by incubation of tobacco (Nicotiana sylvestris) stromal extracts with either ({gamma}-{sup 32}P)ATP or ({sup 32}P)Glc-1-P. In contrast, an analogous polypeptide was not phosphorylated in extractsmore » from a tobacco mutant deficient in plastid phosphoglucomutase activity. The results indicate that the 64 (or 62) kilodalton chloroplast stromal phosphoprotein is phosphoglucomutase.« less

  6. Scolicidal effect of Allium sativum flowers on hydatid cyst protoscolices.

    PubMed

    Rahimi-Esboei, B; Ebrahimzadeh, M A; Fathi, H; Rezaei Anzahaei, F

    2016-01-01

    he s Because there is no effective and safe drug therapy for hydatid cyst, finding of some new agents especially from herbal origin with a desired scolicidal effect attracts great attention for treatment and pre-surgical use to prevent the hydatid cyst recurrence. In this study, the scolicidal effect of ultrasonic methanol extract of Garlic (Allium sativum) flower is investigated. Protoscolices were collected aseptically from sheep livers containing hydatid cyst and were exposed to different concentrations of extract for various exposure times. The viability of protoscolices was confirmed by 0.1% Eosin staining. The scolicidal activity of extract at a concentration of 50 mg ml-1 was 59, 76, 81 and 86% after 10, 30, 60, and 180 min of exposure respectively. The scolicidal effect at 100 mg ml-1 was 67, 78, 85 and 98% after various exposure times, respectively. The results of this study showed that the ultrasonic extract has high scolicidal activity and might be used as a natural scolicidal agent. Garlic flower extracts is a potent protoscolicid and might be used in hydatid cyst treatment and pre-surgery to prevent secondary cyst recurrence.

  7. Genetic control of floral zygomorphy in pea (Pisum sativum L.).

    PubMed

    Wang, Zheng; Luo, Yonghai; Li, Xin; Wang, Liping; Xu, Shilei; Yang, Jun; Weng, Lin; Sato, Shusei; Tabata, Satoshi; Ambrose, Mike; Rameau, Catherine; Feng, Xianzhong; Hu, Xiaohe; Luo, Da

    2008-07-29

    Floral zygomorphy (flowers with bilateral symmetry) has multiple origins and typically manifests two kinds of asymmetries, dorsoventral (DV) and organ internal (IN) asymmetries in floral and organ planes, respectively, revealing the underlying key regulators in plant genomes that generate and superimpose various mechanisms to build up complexity and different floral forms during plant development. In this study, we investigate the loci affecting these asymmetries during the development of floral zygomorphy in pea (Pisum sativum L.). Two genes, LOBED STANDARD 1 (LST1) and KEELED WINGS (K), were cloned that encode TCP transcription factors and have divergent functions to constitute the DV asymmetry. A previously undescribed regulator, SYMMETRIC PETALS 1 (SYP1), has been isolated as controlling IN asymmetry. Genetic analysis demonstrates that DV and IN asymmetries could be controlled independently by the two kinds of regulators in pea, and their interactions help to specify the type of zygomorphy. Based on the genetic analysis in pea, we suggest that variation in both the functions and interactions of these regulators could give rise to the wide spectrum of floral symmetries among legume species and other flowering plants.

  8. Therapeutic effects of aqueous extracts of Petroselinum sativum on ethylene glycol-induced kidney calculi in rats.

    PubMed

    Saeidi, Jafar; Bozorgi, Hadi; Zendehdel, Ahmad; Mehrzad, Jamshid

    2012-01-01

    To investigate the therapeutic effects of the aqueous extract of Petroselinum Sativum aerial parts and roots on kidney calculi. Thirty-six male Wistar rats were randomly assigned into 6 groups and treated for 30 days. Group A served as normal control and group B received 1% ethylene glycol in drinking water. Groups C, D, E, and F received 1% ethylene glycol from day 0 and were used as the treatment subjects. Rats in groups C and D received 200 and 600 mg/kg body weight of aerial parts aqueous extract, respectively, and those in groups E and F received 200 and 600 mg/kg body weight of root aqueous extract in drinking water, respectively, from the 14th day of the experiment. On the 14th and 30th days of the experiment, serum level of magnesium (1.71 ± 0.12 and 3.81 ± 0.25, respectively) decreased significantly while serum level of calcium (10.45 ± 0.26 and 11.33 ± 0.18, respectively) increased significantly in group B compared with the control group (14th day: magnesium = 2.87 ± 0.17 and calcium = 8.80 ± 0.00 and 30th day: magnesium = 6.01 ± 0.00 and calcium = 8.30 ± 0.22; P < .001). In the treatment groups of C, D, E, and F, the number of deposits decreased significantly compared with group B on the 30th day (P < .001). The weight of the kidneys increased significantly in group B (2.01 ± 0.17) compared with the control group (1.52 ± 0.07) and decreased significantly in treatment groups (P < .05). Petroselinum Sativum has a therapeutic effect on calcium oxalate stones in rats with nephrolithiasis and reduces the number of calcium oxalate deposits.

  9. Purification, crystallization and preliminary crystallographic study of a recombinant plant aminoaldehyde dehydrogenase from Pisum sativum

    PubMed Central

    Tylichová, Martina; Briozzo, Pierre; Kopečný, David; Ferrero, Julien; Moréra, Solange; Joly, Nathalie; Snégaroff, Jacques; Šebela, Marek

    2008-01-01

    Aminoaldehydes are products of polyamine degradation and are known to be reactive metabolites that are toxic to living cells at high concentrations. These compounds are catabolized by aminoaldehyde dehydrogenases, which are enzymes that contain a nicotinamide adenine dinucleotide coenzyme. Amino­aldehyde dehydrogenase from Pisum sativum was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop method. A complete data set was collected to 2.8 Å resolution at 100 K. Crystals belong to the monoclinic space group P21, with unit-cell parameters a = 86.4, b = 216.6, c = 205.4 Å, β = 98.1°. Molecular replacement was performed and led to the identification of six dimers per asymmetric unit. PMID:18259056

  10. Insecticidal activity and fungitoxicity of plant extracts and components of horseradish (Armoracia rusticana) and garlic (Allium sativum).

    PubMed

    Tedeschi, Paola; Leis, Marilena; Pezzi, Marco; Civolani, Stefano; Maietti, Annalisa; Brandolini, Vincenzo

    2011-01-01

    To avoid environmental pollution and health problems caused by the use of traditional synthetic pesticides, there is a trend to search for naturally occurring toxicants from plants. Among the compounds discussed for anti-fungal and insecticidal activity, the natural extracts from garlic and horseradish have attracted considerable attention. The objective of this study is to determine the insecticidal and anti-fungal activity of Armoracia rusticana and Allium sativum L. extracts against larvae of Aedes albopictus (Skuse) and some pathogenic fungi. For the insecticidal test, horseradish and garlic extracts were prepared from fresh plants (cultivated in Emilia Romagna region) in a solution of ethanol 80 % and the two different solutions were used at different concentrations (for the determination of the lethal dose) against the fourth instar mosquito's larvae. The fungicidal test was carried out by the agar plates technique using garlic and horseradish extracts in a 10 % ethanol solution against the following organisms: Sclerotium rolfsii Sacc., Trichoderma longibrachiatum, Botrytis cinerea Pers., Fusarium oxysporum Schlecht. and Fusarium culmorum (Wm. G. Sm.) Sacc. The first results demonstrated that the horseradish ethanol extracts present only a fungistatic activity against Sclerotium rolfsii Sacc., Fusarium oxysporum Schlecht. and F. culmorum (Wm.G. Sm) Sacc. while garlic extracts at the same concentration provided a good fungicidal activity above all against Botrytis cinerea Pers. and S. rolfsii. A. rusticana and A. sativum preparations showed also an interesting and significant insecticidal activity against larvae of A. albopictus, even if horseradish presented a higher efficacy (LC₅₀ value of 2.34 g/L), approximately two times higher than garlic one (LC₅₀ value of 4.48 g/L).

  11. On the shock response of Pisum Sativum (a.k.a the Common Pea)

    NASA Astrophysics Data System (ADS)

    Leighs, James; Hazell, Paul; Appleby-Thomas, Gareth

    2011-06-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry (dynamic pasteurisation) to astrobiology (e.g. the theory of panspermia, which suggests that planets could be `seeded' with life `piggy-backing' of interplanetary bodies). Consequently, knowledge of the damage mechanisms and viability of shocked organic material is of paramount importance. In this study a single-stage gas-gun has been employed to subject samples of Pisum Sativum (the Common Pea) to semi-planar shock loading, corresponding to impact pressures of up to c.3 GPa. The experimental approach adopted is discussed along with results from Manganin gauges embedded in the target capsule which show the loading history. Further, the viability of the shock-loaded peas was investigated via attempts at germination. Finally, microscopic examination of the impacted specimens allowed a qualitative assessment of damage mechanisms to be made.

  12. 40 CFR 180.442 - Bifenthrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cattle, meat 0.5 Coriander, dried leaves 25 Coriander, leaves 6.0 Coriander, seed 5.0 Corn, field, forage..., undelinted seed 0.5 Eggplant 0.05 Egg 0.05 Fruit, citrus, group 10 0.05 Goat, fat 1.0 Goat, meat byproducts 0....05 Poultry, meat 0.05 Radish, tops 4.5 Rapeseed, seed 0.05 Sheep, fat 1.0 Sheep, meat byproducts 0.1...

  13. 40 CFR 180.442 - Bifenthrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cattle, meat 0.5 Coriander, dried leaves 25 Coriander, leaves 6.0 Coriander, seed 5.0 Corn, field, forage..., undelinted seed 0.5 Eggplant 0.05 Egg 0.05 Fruit, citrus, group 10 0.05 Goat, fat 1.0 Goat, meat byproducts 0....05 Poultry, meat 0.05 Radish, tops 4.5 Rapeseed, seed 0.05 Sheep, fat 1.0 Sheep, meat byproducts 0.1...

  14. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms.

    PubMed

    Bersan, Salete M F; Galvão, Livia C C; Goes, Vivian F F; Sartoratto, Adilson; Figueira, Glyn M; Rehder, Vera L G; Alencar, Severino M; Duarte, Renata M T; Rosalen, Pedro L; Duarte, Marta C T

    2014-11-18

    Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.

  15. Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L.

    PubMed

    Liu, Donghua; Jiang, Wusheng; Meng, Qingmin; Zou, Jin; Gu, Jiegang; Zeng, Muai

    2009-04-01

    Different copper concentrations, as well as different exposure times, were applied to investigate both cytogenetical and ultrastructural alterations in garlic (Allium sativum L.) meristem cells. Results showed that the mitotic index decreased progressively when either copper concentration or exposure time increased. C-mitosis, anaphase bridges, chromosome stickiness and broken nuclei were observed in the copper treated root tip cells. Some particulates containing the argyrophilic NOR-associated proteins were distributed in the nucleus of the root-tip cells and the amount of this particulate material progressively increased with increasing exposure time. Finally, the nucleolar material was extruded from the nucleus into the cytoplasm. Also, increased dictyosome vesicles in number, formation of cytoplasmic vesicles containing electron dense granules, altered mitochondrial shape, disruption of nuclear membranes, condensation of chromatin material, disintegration of organelles were observed. The mechanisms of detoxification and tolerance of copper are briefly discussed.

  16. The Conformational Stability and Biophysical Properties of the Eukaryotic Thioredoxins of Pisum Sativum Are Not Family-Conserved

    PubMed Central

    Aguado-Llera, David; Martínez-Gómez, Ana Isabel; Prieto, Jesús; Marenchino, Marco; Traverso, José Angel; Gómez, Javier; Chueca, Ana; Neira, José L.

    2011-01-01

    Thioredoxins (TRXs) are ubiquitous proteins involved in redox processes. About forty genes encode TRX or TRX-related proteins in plants, grouped in different families according to their subcellular localization. For instance, the h-type TRXs are located in cytoplasm or mitochondria, whereas f-type TRXs have a plastidial origin, although both types of proteins have an eukaryotic origin as opposed to other TRXs. Herein, we study the conformational and the biophysical features of TRXh1, TRXh2 and TRXf from Pisum sativum. The modelled structures of the three proteins show the well-known TRX fold. While sharing similar pH-denaturations features, the chemical and thermal stabilities are different, being PsTRXh1 (Pisum sativum thioredoxin h1) the most stable isoform; moreover, the three proteins follow a three-state denaturation model, during the chemical-denaturations. These differences in the thermal- and chemical-denaturations result from changes, in a broad sense, of the several ASAs (accessible surface areas) of the proteins. Thus, although a strong relationship can be found between the primary amino acid sequence and the structure among TRXs, that between the residue sequence and the conformational stability and biophysical properties is not. We discuss how these differences in the biophysical properties of TRXs determine their unique functions in pea, and we show how residues involved in the biophysical features described (pH-titrations, dimerizations and chemical-denaturations) belong to regions involved in interaction with other proteins. Our results suggest that the sequence demands of protein-protein function are relatively rigid, with different protein-binding pockets (some in common) for each of the three proteins, but the demands of structure and conformational stability per se (as long as there is a maintained core), are less so. PMID:21364950

  17. Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers.

    PubMed

    Kumari, P; Basal, N; Singh, A K; Rai, V P; Srivastava, C P; Singh, P K

    2013-03-13

    The genetic diversity among 28 pea (Pisum sativum L.) genotypes was analyzed using 32 simple sequence repeat markers. A total of 44 polymorphic bands, with an average of 2.1 bands per primer, were obtained. The polymorphism information content ranged from 0.657 to 0.309 with an average of 0.493. The variation in genetic diversity among these cultivars ranged from 0.11 to 0.73. Cluster analysis based on Jaccard's similarity coefficient using the unweighted pair-group method with arithmetic mean (UPGMA) revealed 2 distinct clusters, I and II, comprising 6 and 22 genotypes, respectively. Cluster II was further differentiated into 2 subclusters, IIA and IIB, with 12 and 10 genotypes, respectively. Principal component (PC) analysis revealed results similar to those of UPGMA. The first, second, and third PCs contributed 21.6, 16.1, and 14.0% of the variation, respectively; cumulative variation of the first 3 PCs was 51.7%.

  18. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M.

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive againstmore » xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.« less

  19. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  20. A polygalacturonase localized in the Golgi apparatus in Pisum sativum.

    PubMed

    Ohashi, Takao; Jinno, Jun; Inoue, Yoshiyuki; Ito, Shoko; Fujiyama, Kazuhito; Ishimizu, Takeshi

    2017-09-01

    Pectin is a plant cell wall constituent that is mainly composed of polygalacturonic acid (PGA), a linear α1,4-d-galacturonic acid (GalUA) backbone. Polygalacturonase (PG) hydrolyzes the α1,4-linkages in PGA. Nearly all plant PGs identified thus far are secreted as soluble proteins. Here we describe the microsomal PG activity in pea (Pisum sativum) epicotyls and present biochemical evidence that it was localized to the Golgi apparatus, where pectins are biosynthesized. The microsomal PG was purified, and it was enzymatically characterized. The purified enzyme showed maximum activity towards pyridylaminated oligogalacturonic acids with six degrees of polymerization (PA-GalUA6), with a Km value of 11 μM for PA-GalUA6. The substrate preference of the enzyme was complementary to that of PGA synthase. The main PG activity in microsomes was detected in the Golgi fraction by sucrose density gradient ultracentrifugation. The activity of the microsomal PG was lower in rapidly growing epicotyls, in contrast to the high expression of PGA synthase. The role of this PG in the regulation of pectin biosynthesis or plant growth is discussed. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    PubMed

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  2. Photosynthetic carbon metabolism in leaflets, stipules and tendrils of Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, R.; Grodzinski, B.

    1990-05-01

    Gas exchange and photosynthetic carbon metabolism have been investigated for each of the dominant parts of the pea leaf (P. sativum) in a normal and a semi-leafless phenotype (cv. Improved Laxton's Progress, and cv. Curly, respectively). On a fresh weight basis, net photosynthesis of leaflets and stipules have similar rates, while in tendrils the rte is 40% lower. However, on a surface area basis, tendrils are only 5-10% less efficient photosynthetically when the area is corrected by a factor {pi}/2. Transpiration rates are similar for leaflets and stipules, but double for tendrils even though stomatal frequency on tendrils is reducedmore » by 50%. Dark respiration is higher in tendrils than leaflets and stipules. Gas exchange is comparable in both cultivars. The early {sup 14}C-labelled products of stipules, leaflets and tendrils are similar in both phenotypes, however the tendrils clearly partition about 2-3 times more of the newly fixed {sup 14}CO{sub 2} into the amino acid fraction. These data will be discussed in relation to the anatomy and function of pea tendrils.« less

  3. High-Throughput Development of SSR Markers from Pea (Pisum sativum L.) Based on Next Generation Sequencing of a Purified Chinese Commercial Variety

    PubMed Central

    Zhang, Xiaoyan; Hu, Jinguo; Bao, Shiying; Hao, Junjie; Li, Ling; He, Yuhua; Jiang, Junye; Wang, Fang; Tian, Shufang; Zong, Xuxiao

    2015-01-01

    Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lagged behind many other crops. Development of a large number of novel and reliable SSR (simple sequence repeat) or microsatellite markers will help both basic and applied genomics research of this crop. The Illumina HiSeq 2500 System was used to uncover 8,899 putative SSR containing sequences, and 3,275 non-redundant primers were designed to amplify these SSRs. Among the 1,644 SSRs that were randomly selected for primer validation, 841 yielded reliable amplifications of detectable polymorphisms among 24 genotypes of cultivated pea (Pisum sativum L.) and wild relatives (P. fulvum Sm.) originated from diverse geographical locations. The dataset indicated that the allele number per locus ranged from 2 to 10, and that the polymorphism information content (PIC) ranged from 0.08 to 0.82 with an average of 0.38. These 1,644 novel SSR markers were also tested for polymorphism between genotypes G0003973 and G0005527. Finally, 33 polymorphic SSR markers were anchored on the genetic linkage map of G0003973 × G0005527 F2 population. PMID:26440522

  4. Purification and characterization of ornithine transcarbamylase from pea (Pisum sativum L.)

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Richardson, D. P.

    1991-01-01

    Pea (Pisum sativum) ornithine transcarbamylase (OTC) was purified to homogeneity from leaf homogenates in a single-step procedure, using delta-N-(phosphonacetyl)-L-ornithine-Sepharose 6B affinity chromatography. The 1581-fold purified OTC enzyme exhibited a specific activity of 139 micromoles citrulline per minute per milligram of protein at 37 degrees C, pH 8.5. Pea OTC represents approximately 0.05% of the total soluble protein in the leaf. The molecular weight of the native enzyme was approximately 108,200, as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single molecular weight band of 36,500 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the pea OTC is a trimer of identical subunits. The overall amino acid composition of pea OTC is similar to that found in other eukaryotic and prokaryotic OTCs, but the number of arginine residues is approximately twofold higher. The increased number of arginine residues probably accounts for the observed isoelectric point of 7.6 for the pea enzyme, which is considerably more basic than isoelectric point values that have been reported for other OTCs.

  5. Biological changes of green pea (Pisum sativum L.) by selenium enrichment.

    PubMed

    Garousi, Farzaneh; Kovács, Béla; Domokos-Szabolcsy, Éva; Veres, Szilvia

    2017-03-01

    Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg -1 of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg -1 selenite and 1 mg kg -1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg -1 ) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (Ф PSII ) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.

  6. [Activity of agglutinin inhibitor of the kujavian pea (Pisum sativum L.) in mothers' blood and umbilical cord blood considering the course of pregnancy and delivery].

    PubMed

    Lange-Konior, K

    1999-01-01

    The aim of the paper was to evaluate the activity of inhibitor of the phytoagglutinin Pisum sativum (IfPs) in sera of mothers' and umbilical blood of their newborns in confrontation with the course of pregnancy and delivery. The investigations involved 152 tests of sera collected from women delivering at Department of Obstetrics and Perinatology in the Institute of Gynecology and Obstetrics PMU in Szczecin in the years 1992-1993, as well as 156 samples of sera stemming from their newborn infants and were taken from the umbilical cord vessels. The method of investigations being used in the paper was the reaction of inhibiting the phytohemagglutination, wherein the inhibiting action of sera in bearing women and of sera in umbilical blood exerted on agglutinating one was assessed in relation to human erythrocytes of the group 0 with Pisum sativum lectin properties. The accepted titer of inhibitor of the agglutinin Pisum sativum (IfPs) was expressed as the highest dilution of serum, at which complete inhibition of phytohemagglutination was still preserved. The performed investigations have disclosed statistically significant differences between the activity of IfPs occurring in sera of the mothers and the inhibiting factor in umbilical blood sera of the newborns (Tab. 1). No effect of the duration of pregnancy and the course of pregnancy on the IfPs activity in sera of mothers was disclosed. The absence of inhibitor of Pisum sativum lectin in umbilical blood sera was essentially frequently recorded in premature termination of pregnancy between 31-37 weeks of its duration as well as in sera of newborns born by cesarean section and newborns with birth mass being equal or lower than 2500 g in comparison to sera of full term newborns born by forces of nature (Tab. 2, 3, 5). The birth status of newborns according to Apgar scale did not have any influence of IfPs activity in their sera, however, IfPs activity in sera of umbilical blood was statistically significantly more

  7. The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil of garlic, Allium sativum L., and leek, Allium porrum L.

    PubMed

    Casella, Sergio; Leonardi, Michele; Melai, Bernardo; Fratini, Filippo; Pistelli, Luisa

    2013-03-01

    The in vitro antibacterial activity of essential oils (EOs) obtained from fresh bulbs of garlic, Allium sativum L., and leek, Allium porrum L. ( Alliaceae), was studied. A. sativum (garlic) EO showed a good antimicrobial activity against Staphylococcus aureus (inhibition zone 14.8 mm), Pseudomonas aeruginosa (inhibition zone 21.1 mm), and Escherichia coli (inhibition zone 11.0 mm), whereas the EO of A. porrum (leek) had no antimicrobial activity. The main constituents of the garlic EO were diallyl monosulfide, diallyl disulfide (DADS), diallyl trisulfide, and diallyl tetrasulfide. The EO of A. porrum was characterized by the presence of dipropyl disulfide (DPDS), dipropyl trisulfide, and dipropyl tetrasulfide. The antimicrobial activities of the DADS and DPDS were also studied. The results obtained suggest that the presence of the allyl group is fundamental for the antimicrobial activity of these sulfide derivatives when they are present in Allium or in other species (DADS inhibition zone on S. aureus 15.9 mm, P. aeruginosa 21.9 mm, E. coli 11.4 mm). Copyright © 2012 John Wiley & Sons, Ltd.

  8. Effect of Allium cepa and Allium sativum on some immunological cells in rats.

    PubMed

    Mirabeau, Tatfeng Y; Samson, Enitan S

    2012-01-01

    Extracts of some spices have been reported to play a contributory role in enhancing immune function. We evaluated and compared the effect(s) of single and combined oral administration of fresh aqueous onion (Allium cepa) and garlic (Allium sativum) extracts at different concentrations on some immunological determinants in rats. CD₄ cells of the rats were estimated using Partec flow cytometric technique, while total and differential white blood cell (WBC) counts were estimated using the Sysmsex® automated haematology analyzing technique. Our findings revealed that, CD4 and total WBC counts were significantly increased (P≤0.05) in a dose-dependent manner in both onion (250mg/Kg/d: 349±11cell/ul and 2.75±0.15X10³cell/l; 500mg/Kg/d: 389±10cells/µl and 3.05±0.05 X10³cell/l; 750mg/Kg/d: 600±11cell/µl and 3.25±0.05X10³cells/l) and garlic (250mg/Kg/d: 410±10cell/ul and 2.85±0.15X10³cell/l; 500mg/Kg/d: 494±32cells/µl and 3.30±0.10 X10³cell/l; 750mg/Kg/d: 684±11cell/µl and 3.55±0.05X10³cells/l) treated rats when compared to the zero control (200±11cells/µl and 1.55±0.05X10³cells/l, respectively). Extract of garlic at 750mg/Kg/d had significantly increased the CD4 cells and total white cell count when compared to other concentrations (P≤0.05). However, no significant effect was observed on these parameters when extracts were combined (250mg/Kg/d: 252±21cell/µl and 1.80±0.10X10³cells/l; 500mg/Kg/d: 315±21cells/ul and 2.10±0.10X10³cells/l; 750mg/Kg/d: 368±10cells/µl and 2.35±0.05X10³cells/l, respectively), the differential WBC count showed a significant increase in the proportion of cell types (lymphocytes, neutophils and monocytes) (P≤0.05). The results from this study revealed the immune boosting capabilities of Allium cepa and Allium sativum, but underscored their synergistic activities.

  9. Cell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum)

    PubMed Central

    Li, Xuewen; Li, Yalin; Qu, Mei; Xiao, Hongdong; Feng, Yingming; Liu, Jiayou; Wu, Lishu; Yu, Min

    2016-01-01

    The initial response of plants to aluminum (Al) is the inhibition of root elongation, while the transition zone is the most Al sensitive zone in the root apex, which may sense the presence of Al and regulate the responses of root to Al toxicity. In the present study, the effect of Al treatment (30 μM, 24 h) on root growth, Al accumulation, and properties of cell wall of two pea (Pisum sativum L.) cultivars, cv Onward (Al-resistant) and cv Sima (Al-sensitive), were studied to disclose whether the response of root transition zone to Al toxicity determines Al resistance in pea cultivars. The lower relative root elongation (RRE) and higher Al content were founded in cv Sima compared with cv Onward, which were related to Al-induced the increase of pectin in root segments of both cultivars. The increase of pectin is more prominent in Al-sensitive cultivar than in Al-resistant cultivar. Aluminum toxicity also induced the increase of pectin methylesterases (PME), which is 2.2 times in root transition zone in Al-sensitive cv Sima to that of Al resistant cv Onward, thus led to higher demethylesterified pectin content in root transition zone of Al-sensitive cv Sima. The higher demethylesterified pectin content in root transition zone resulted in more Al accumulation in the cell wall and cytosol in Al-sensitive cv Sima. Our results provide evidence that the increase of pectin content and PME activity under Al toxicity cooperates to determine Al sensitivity in root transition zone that confers Al resistance in cultivars of pea (Pisum sativum). PMID:26870060

  10. Spices: Therapeutic Potential in Cardiovascular Health.

    PubMed

    Rastogi, Subha; Pandey, Madan Mohan; Rawat, Ajay Kumar Singh

    2017-01-01

    Dietary factors play a key role in the development as well as prevention of certain human diseases, including cardiovascular diseases. Currently there has been an increase in global interest to identify medicinal plants that are pharmacologically effective and have low or no side effects for use in preventive medicine. Culinary herbs and spices are an important part of human nutrition in all the cultures of the world. There is a growing amount of literature concerning the potential benefits of these herbs and spices from a health perspective especially in conferring protection against cardiovascular diseases. The objective of this review is to provide information on the recent scientific findings on some common spices that have a distinct place in folk medicine in several of the Asian countries as well as on their traditional uses for the role they can play in the management of heart diseases and which may be useful in defining cost effective and inexpensive interventions for the prevention and control of CVDs. Systematic literature searches were carried out and the available information on various medicinal plants traditionally used for cardiovascular disorders was collected via electronic search (using Pubmed, SciFinder, Scirus, GoogleScholar, JCCC@INSTIRC and Web of Science) and a library search for articles published in peerreviewed journals. No restrictions regarding the language of publication were imposed. This article highlights the recent scientific findings on four common spices viz. Greater cardamom (Amomum subulatum Roxb.), Coriander (Coriandrum sativum L.), Turmeric (Curcuma longa L.) and Ginger (Zingiber officinale Roscoe), for the role they can play in the management of heart diseases. Although they have been used by many cultures since ancient times and have been known to exhibit several medicinal properties, current research shows that they can also be effectively used for the prevention and control of CVDs. Although scientific evidences supporting

  11. Allium sativum: facts and myths regarding human health.

    PubMed

    Majewski, Michał

    2014-01-01

    Garlic (Allium sativum L. fam. Alliaceae) is one of the most researched and best-selling herbal products on the market. For centuries it was used as a traditional remedy for most health-related disorders. Also, it is widely used as a food ingredient--spice and aphrodisiac. Garlic's properties result from a combination of variety biologically active substances which all together are responsible for its curative effect. The compounds contained in garlic synergistically influence each other so that they can have different effects. The active ingredients of garlic include enzymes (e.g. alliinase), sulfur-containing compounds such as alliin and compounds produced enzymatically from alliin (e.g. allicin). There is a lot of variation among garlic products sold for medicinal purposes. The concentration of Allicin (main active ingredient) and the source of garlic's distinctive odor depend on processing method. Allicin is unstable, and changes into a different chemicals rather quickly. It's documented that products obtained even without allicin such as aged garlic extract (AGE), have a clear and significant biological effect in immune system improvement, treatment of cardiovascular diseases, cancer, liver and other areas. Some products have a coating (enteric coating) to protect them against attack by stomach acids. Clinically, garlic has been evaluated for a number of purposes, including treatment of hypertension, hypercholesterolemia, diabetes, rheumatoid arthritis, cold or the prevention of atherosclerosis and the development of tumors. Many available publications indicates possible antibacterial, anti-hypertensive and anti-thrombotic properties of garlic. Due to the chemical complexity of garlic and the use of different processing methods we obtain formulations with varying degrees of efficacy and safety.

  12. Heat Inactivation of Garlic (Allium sativum) Extract Abrogates Growth Inhibition of HeLa Cells.

    PubMed

    Chintapalli, Renuka; Murray, Matthew J J; Murray, James T

    2016-07-01

    The potential anticancer properties of garlic (Allium sativum) may depend on the method of preparation and its storage. Storage of garlic has not been thoroughly investigated to determine whether anticancer properties are retained. Garlic was prepared and processed to mimic normal options for storage and preparation for consumption. Cytotoxicity was determined by crystal violet assay and mechanisms of cytotoxicity were established by microscopy, SDS-PAGE, and Western immunoblotting. Significant (P < 0.0001) cytotoxicity was observed in all preparations, except with boiled (cooked) garlic. Depending on the method of storage, garlic extract induced either type I or type II programmed cell death, detectable by caspase 9 cleavage, or Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage and LC3-II accumulation, respectively. The conflicting literature on the anticancer properties of garlic may be explained by differences in processing and storage. This study has highlighted that the potency of the antiproliferative properties of cooked garlic, compared to the uncooked form, is diminished in HeLa cells.

  13. Report - Screening of the Anti-hyperglycemic activity of some medicinal plants of Jordan.

    PubMed

    Alkofahi, Ahmad S; Abdul-Razzak, Khalid K; Alzoubi, Karem H; Khabour, Omar F

    2017-05-01

    Diabetes represents a group of common diseases that are characterized by dysregulation of blood glucose levels. Plants are traditionally used for management of diseases including diabetes. In this study, we screened the anti-diabetic effect of extracts of 21 plants grown in Jordan. Extracts of plants were screened for their antihyperglycemic activity. Diabetes was induced in Sprague Dawley rats using Alloxan. Plant extracts were dosed at 1gm/kg. Blood glucose was measured at baseline and at every hour for 3 hours. Results showed that five plants out of the 21 screened showed antihyperglycemic activity. These plants are Phoenix dactylifera L., Tecoma stans (L.) Kunth, Cichorium pumilum Jacq., Phaseolus vulgaris L., and Teucrium polium L. On the other hand, Sarcopoterium spinosum (L.) Spach. and Brassica oleracea L. var. capitata significantly increased blood glucose levels in diabetic rats. The following plant extracts showed neutral effect on blood glucose levels: Plantago major L., Taraxacum cyprium H. Lindb, Artemisia inculta Delile, Marrubium vulgare L., Inula viscosa (L.) Ai, Rubus sanguineus Friv, Coriandrum sativum L., Cucurbita pepo var ovefera, Cucumis sativus L., Hordeum vulgare L., Apium graveolens L., Avena sativa L., Helianthus annus L., and Anethum graveolens L. In conclusion, Jordanian medicinal plants might be useful for managements of blood glucose levels in patients with diabetes.

  14. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Assessment of the effect of Allium sativum on serum nitric oxide level and hepatic histopathology in experimental cystic echinococcosis in mice.

    PubMed

    Ali, Nehad Mahmoud; Ibrahim, Ayman Nabil; Ahmed, Naglaa Samier

    2016-09-01

    The current study was carried out to evaluate the prophylactic and therapeutic effects of Allium sativum on experimental cystic echinococcosis by measuring the serum nitric oxide level and studying hepatic histopathological changes. The experimental animals were divided into five groups, ten mice in each, group (I): prophylactic; group (II): therapeutic; group (III): prophylactic and therapeutic; group (IV): infected nontreated; group (V): non infected non treated. The results showed that serum nitric oxide was significantly increased as a result of infection in all infected groups compared to group V. Statistical significant difference was noted in serum nitrate level in group I at 1st and 8th week post infection compared to the same time interval in group IV. In group II, statistical significance was noticed only at the 1st week post infection. Statistical significant difference was noted in serum nitrate level in group III at 1st, 4th, 6th and 8th week post infection compared to same time interval in group IV. Hydatid cysts developed in livers of mice of group IV as early as 4 weeks of infection while no cysts were found in groups I,II and III. Histopathologically there were moderate pathological changes in group I and group II as hepatocytes showed moderate steatosis, moderate venous congestion and inflammatory cellular infiltrate with foci of degeneration and necrosis. While livers of mice of group III showed mild steatosis, mild venous congestion, mild inflammatory cellular infiltrate, no necrosis and no biliary hyperplasia. Accordingly, that garlic (Allium sativum) may be a promising phototherapeutic agent for cystic echinococcosis.

  16. Purification and characterization of a soluble glycoprotein from garlic (Allium sativum) and its in vitro bioactivity.

    PubMed

    Wang, Yan; Zou, Tingting; Xiang, Minghui; Jin, Chenzhong; Zhang, Xuejiao; Chen, Yong; Jiang, Qiuqing; Hu, Yihong

    2016-10-02

    A soluble glycoprotein was purified to homogeneity from ripe garlic (Allium sativum) bulbs using ammonium sulfate precipitation, Sephadex G-100 gel filtration, and diethylaminoethyl-52 cellulose anion-exchange chromatography. A native mass of 55.7 kDa estimated on gel permeation chromatography and a molecular weight of 13.2 kDa observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported that the glycoprotein is a homotetramer. β-Elimination reaction result suggested that the glycoprotein is an N-linked type. Fourier-transform infrared spectroscopy proved that it contains sugar. Gas chromatography-mass spectrometer analysis showed that its sugar component was galactose. The glycoprotein has 1,1-diphenyl-2-picrylhydrazil free radical scavenging activity and the peroxidation inhibition ability to polyunsaturated fatty acid. These results indicated that the glycoprotein has potential for food additives, functional foods, and even biotechnological and medical applications.

  17. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study.

    PubMed

    Shaymurat, Talgar; Gu, Jianxiu; Xu, Changshan; Yang, Zhikun; Zhao, Qing; Liu, Yuxue; Liu, Yichun

    2012-05-01

    The effects of zinc oxide nanoparticles (ZnO NPs) on the root growth, root apical meristem mitosis and mitotic aberrations of garlic (Allium sativum L.) were investigated. ZnO NPs caused a concentration-dependent inhibition of root length. When treated with 50 mg/L ZnO NPs for 24 h, the root growth of garlic was completely blocked. The 50% inhibitory concentration (IC(50)) was estimated to be 15 mg/L. The mitosis index was also decreased in a concentration- and time-dependent manner. ZnO NPs also induced several kinds of mitotic aberrations, mainly consisted of chromosome stickiness, bridges, breakages and laggings. The total percentage of abnormal cells increased with the increase of ZnO NPs concentration and the prolongation of treatment time. The investigation provided new information for the possible genotoxic effects of ZnO NPs on plants.

  18. Antimicrobial Activity of Two Garlic Species (Allium Sativum and A. Tuberosum) Against Staphylococci Infection. In Vivo Study in Rats.

    PubMed

    Venâncio, Paulo César; Raimundo Figueroba, Sidney; Dias Nani, Bruno; Eduardo Nunes Ferreira, Luiz; Vilela Muniz, Bruno; de Sá Del Fiol, Fernando; Sartoratto, Adilson; Antonio Ribeiro Rosa, Edvaldo; Carlos Groppo, Francisco

    2017-04-01

    Purpose: This study observed the effect of garlic extracts and amoxicillin against an induced staphylococcal infection model. MIC and MBC were also obtained for aqueous extracts of Allium sativum (Asa) and Allium tuberosum (Atu) against Staphylococcus aureus penicillin-sensitive (PSSA - ATCC 25923) and MRSA (ATCC 33592). Methods: Granulation tissues were induced in the back of 205 rats. After 14 days, 0.5 mL of 10 8 CFU/mL of PSSA or MRSA were injected inside tissues. After 24h, animals were divided: G1 (Control) - 0.5 mL of NaCl 0.9%; G2 - Asa 100 mg/kg or 400mg/kg; G3 - Atu 100 mg/kg or 400 mg/kg; G4 - amoxicillin suspension 50 mg/kg, considering PSSA infection; and G5 (Control) - 0.5 mL of NaCl 0.9%; G6 - Asa 400mg/kg; G7 - amoxicillin 50 mg/kg; and G8 - Asa 400 mg/kg + amoxicillin 50 mg/kg for MRSA. All treatments were administered P.O. every 6h. Animals were killed at 0, 6, 12 and 24h. Samples were spread on salt-mannitol agar. Colonies were counted after 18 h at 37 °C. Atu was not able to inhibit or kill PSSA and MRSA. Considering Asa, MIC and MBC against PSSA were 2 mg/mL and 4 mg/mL, respectively; and 16 mg/mL and 64 mg/mL against MRSA. Results: No effect was observed in vivo for control, Asa 100 mg/kg and Atu 100 mg/kg, while amoxicillin, Atu 400 mg/kg and Asa 400 mg/kg decreased PSSA counts in all-time points. No effect of any group against MRSA was observed at any time. Conclusion: Thus, A. sativum and A. tuberosum were able to reduce PSSA infection, but not MRSA infection.

  19. Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov. and Micromonospora vinacea sp. nov., isolated from Pisum sativum nodules.

    PubMed

    Carro, Lorena; Riesco, Raúl; Spröer, Cathrin; Trujillo, Martha E

    2016-09-01

    A diversity study on the presence of strains representing the genus Micromonospora in Pisum sativum nodules collected from Cañizal (Spain) has provided evidence of the high number of isolates that might represent novel species. In the present work, we have characterized three of these isolates: GUI23T, GUI43T and GUI63T. Phenotypic and genotypic analyses confirmed that all strains represent novel species of the genus Micromonospora with the following proposed names: Micromonospora ureilytica sp. nov., type strain GUI23T (=CECT 9022T=DSM 101692T), Micromonospora noduli sp. nov., type strain GUI43T (=CECT 9020T=DSM 101694T), and Micromonospora vinacea sp. nov., type strain GUI63T (=CECT 9019T=DSM 101695T).

  20. Review of the health benefits of peas (Pisum sativum L.).

    PubMed

    Dahl, Wendy J; Foster, Lauren M; Tyler, Robert T

    2012-08-01

    Pulses, including peas, have long been important components of the human diet due to their content of starch, protein and other nutrients. More recently, the health benefits other than nutrition associated with pulse consumption have attracted much interest. The focus of the present review paper is the demonstrated and potential health benefits associated with the consumption of peas, Pisum sativum L., specifically green and yellow cotyledon dry peas, also known as smooth peas or field peas. These health benefits derive mainly from the concentration and properties of starch, protein, fibre, vitamins, minerals and phytochemicals in peas. Fibre from the seed coat and the cell walls of the cotyledon contributes to gastrointestinal function and health, and reduces the digestibility of starch in peas. The intermediate amylose content of pea starch also contributes to its lower glycaemic index and reduced starch digestibility. Pea protein, when hydrolysed, may yield peptides with bioactivities, including angiotensin I-converting enzyme inhibitor activity and antioxidant activity. The vitamin and mineral contents of peas may play important roles in the prevention of deficiency-related diseases, specifically those related to deficiencies of Se or folate. Peas contain a variety of phytochemicals once thought of only as antinutritive factors. These include polyphenolics, in coloured seed coat types in particular, which may have antioxidant and anticarcinogenic activity, saponins which may exhibit hypocholesterolaemic and anticarcinogenic activity, and galactose oligosaccharides which may exert beneficial prebiotic effects in the large intestine.

  1. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.A.; Zilinskas, B.A.

    1991-08-01

    The authors now report the nucleotide sequence of the cytosolic Cu/Zn SOD cloned from a {lambda}gt11 cDNA library constructed from mRNA extracted from leaves of 7- to 10-d pea seedlings (Pisum sativum L.). The clone was isolated using a 22-base synthetic oligonucleotide complementary to the amino acid sequence CGIIGLQG. This sequence, found at the protein's carboxy terminus, is highly conserved among plant cytosolic Cu/Zn SODs but not chloroplastic Cu/Zn SODs. The 738-base pair sequence contains an open reading frame specifying 152 codons and a predicted M{sub r} of 18,024 D. The deduced amino acid sequence is highly homologous (79-82% identity)more » with the sequences of other known plant cytosolic Cu/Zn SODs but less highly conserved (63-65%) when compared with several chloroplastic Cu/Zn SODs including pea (10).« less

  2. Conserved thioredoxin fold is present in Pisum sativum L. sieve element occlusion-1 protein

    PubMed Central

    Umate, Pavan; Tuteja, Renu

    2010-01-01

    Homology-based three-dimensional model for Pisum sativum sieve element occlusion 1 (Ps.SEO1) (forisomes) protein was constructed. A stretch of amino acids (residues 320 to 456) which is well conserved in all known members of forisomes proteins was used to model the 3D structure of Ps.SEO1. The structural prediction was done using Protein Homology/analogY Recognition Engine (PHYRE) web server. Based on studies of local sequence alignment, the thioredoxin-fold containing protein [Structural Classification of Proteins (SCOP) code d1o73a_], a member of the glutathione peroxidase family was selected as a template for modeling the spatial structure of Ps.SEO1. Selection was based on comparison of primary sequence, higher match quality and alignment accuracy. Motif 1 (EVF) is conserved in Ps.SEO1, Vicia faba (Vf.For1) and Medicago truncatula (MT.SEO3); motif 2 (KKED) is well conserved across all forisomes proteins and motif 3 (IGYIGNP) is conserved in Ps.SEO1 and Vf.For1. PMID:20404566

  3. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum.

    PubMed

    Soni, Sumit K; Singh, Rakshapal; Singh, Mangal; Awasthi, Ashutosh; Wasnik, Kundan; Kalra, Alok

    2014-05-01

    Pot culture experiments were performed under controlled greenhouse conditions to investigate whether four Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) were able to decrease Cr toxicity to Pisum sativum plants in artificially Cr(VI)-contaminated soil. The effect of pretreatment of soil with chromate-reducing bacteria on plant growth, chromate uptake, bioaccumulation, nodulation, and population of Rhizobium was found to be directly influenced by the time interval between bacterial treatment and seed sowing. Pretreatment of soil with SUCR140 (Microbacterium sp.) 15 days before sowing (T+15) showed a maximum increase in growth and biomass in terms of root length (93 %), plant height (94 %), dry root biomass (99 %), and dry shoot biomass (99 %). Coinoculation of Rhizobium with SUCR140 further improved the aforementioned parameter. Compared with the control, coinoculation of SUCR140+R showed a 117, 116, 136, and 128 % increase, respectively, in root length, plant height, dry root biomass, and dry shoot biomass. The bioavailability of Cr(VI) decreased significantly in soil (61 %) and in uptake (36 %) in SUCR140-treated plants; the effects of Rhizobium, however, either alone or in the presence of SUCR140, were not significant. The populations of Rhizobium (126 %) in soil and nodulation (146 %) in P. sativum improved in the presence of SUCR140 resulting in greater nitrogen (54 %) concentration in the plants. This study shows the usefulness of efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through decreased Cr toxicity and improved symbiotic relationship of the plants with Rhizobium. Further decrease in the translocation of Cr(VI) through improved nodulation by Rhizobium in the presence of efficient Cr-reducing bacterial strains could also decrease the accumulation of Cr in shoots.

  4. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2).

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2014-01-01

    The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.

  5. Allium sativum L. Improves Visual Memory and Attention in Healthy Human Volunteers

    PubMed Central

    Tasnim, Sara; Haque, Parsa Sanjana; Bari, Md. Sazzadul; Hossain, Md. Monir; Islam, Sardar Mohd. Ashraful; Shahriar, Mohammad; Bhuiyan, Mohiuddin Ahmed; Bin Sayeed, Muhammad Shahdaat

    2015-01-01

    Studies have shown that Allium sativum L. (AS) protects amyloid-beta peptide-induced apoptosis, prevents oxidative insults to neurons and synapses, and thus prevent Alzheimer's disease progression in experimental animals. However, there is no experimental evidence in human regarding its putative role in memory and cognition. We have studied the effect of AS consumption by healthy human volunteers on visual memory, verbal memory, attention, and executive function in comparison to control subjects taking placebo. The study was conducted over five weeks and twenty volunteers of both genders were recruited and divided randomly into two groups: A (AS) and B (placebo). Both groups participated in the 6 computerized neuropsychological tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB) twice: at the beginning and after five weeks of the study. We found statistically significant difference (p < 0.05) in several parameters of visual memory and attention due to AS ingestion. We also found statistically nonsignificant (p > 0.05) beneficial effects on verbal memory and executive function within a short period of time among the volunteers. Study for a longer period of time with patients suffering from neurodegenerative diseases might yield more relevant results regarding the potential therapeutic role of AS. PMID:26351508

  6. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.).

    PubMed

    Ortiz-Masia, Dolores; Perez-Amador, Miguel A; Carbonell, Pablo; Aniento, Fernando; Carbonell, Juan; Marcote, Maria J

    2008-05-01

    Mitogen-activated protein kinase (MAPK) cascades play a key role in plant growth and development as well as in biotic and abiotic stress responses. They are classified according to their sequence homology into four major groups (A-D). A large amount of information about MAPKs in groups A and B is available but few data of the C group have been reported. In this study, a C1 subgroup MAP kinase cDNA, PsMPK2, was isolated from Pisum sativum. PsMPK2 is expressed in vegetative (root and leaf) and reproductive (stamen, pistil and fruit) organs. Expression of PsMPK2 in Arabidopsis thaliana shows that mechanical injury and other stress signals as abscisic acid, jasmonic acid and hydrogen peroxide increase its kinase activity, extending previous results indicating that C1 subgroup MAPKs may be involved in the response to stress.

  7. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes.

    PubMed

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products.

  8. Therapeutic effects of Allium sativum and Allium cepa in Schistosoma mansoni experimental infection.

    PubMed

    Mantawy, Mona Mohamed; Ali, Hanan Farouk; Rizk, Maha Zaki

    2011-01-01

    The effects of both garlic (Allium sativum) and onion (Allium cepa) on some biochemical parameters in Schistosoma mansoni infected mice individually and mixed either with or without the currently used drug, praziquantel (PZQ) were investigated. These involved some immunological parameters, namely IgM, IgG, interleukins 2 and 6 (IL-2 and 6) and tumor necrosis factor (TNF-α), some antioxidant enzymes [catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPX)]. In addition, parasitological and histopathological investigations were performed. No changes were observed in the normal control mice treated with dry extract of onion or garlic, individually or mixed, with or without PZQ, compared to the normal healthy control group. Infection with S. mansoni showed an increase in IgG, IgM, IL-2, IL-6, TNF-α and catalase enzyme, accompanied with a decrease in GPX and SOD antioxidant enzyme activities. Remarkable amelioration was noticed in the levels of all the measured parameters in S. mansoni infected mice after administration of the studied extracts. Moreover a significant reduction in worm burden, hepatic and intestinal eggs and oogram count was noticed which was reflected in normalization of liver architecture.

  9. Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation.

    PubMed

    Gimenez, Magalí Diana; Yañez-Santos, Anahí Mara; Paz, Rosalía Cristina; Quiroga, Mariana Paola; Marfil, Carlos Federico; Conci, Vilma Cecilia; García-Lampasona, Sandra Claudia

    2016-01-01

    This is the first report assessing epigenetic variation in garlic. High genetic and epigenetic polymorphism during in vitro culture was detected.Sequencing of MSAP fragments revealed homology with ESTs. Garlic (Allium sativum) is a worldwide crop of economic importance susceptible to viral infections that can cause significant yield losses. Meristem tissue culture is the most employed method to sanitize elite cultivars.Often the virus-free garlic plants obtained are multiplied in vitro (micro propagation). However, it was reported that micro-propagation frequently produces somaclonal variation at the phenotypic level, which is an undesirable trait when breeders are seeking to maintain varietal stability. We employed amplification fragment length polymorphism and methylation sensitive amplified polymorphism (MSAP) methodologies to assess genetic and epigenetic modifications in two culture systems: virus-free plants obtained by meristem culture followed by in vitro multiplication and field culture. Our results suggest that garlic exhibits genetic and epigenetic polymorphism under field growing conditions. However, during in vitro culture system both kinds of polymorphisms intensify indicating that this system induces somaclonal variation. Furthermore, while genetic changes accumulated along the time of in vitro culture, epigenetic polymorphism reached the major variation at 6 months and then stabilize, being demethylation and CG methylation the principal conversions.Cloning and sequencing differentially methylated MSAP fragments allowed us to identify coding and unknown sequences of A. sativum, including sequences belonging to LTR Gypsy retrotransposons. Together, our results highlight that main changes occur in the initial 6 months of micro propagation. For the best of our knowledge, this is the first report on epigenetic assessment in garlic.

  10. A novel natural compound from garlic (Allium sativum L.) with therapeutic effects against experimental polymicrobial sepsis.

    PubMed

    Lee, Sung Kyun; Park, Yoo Jung; Ko, Min Jung; Wang, Ziyu; Lee, Ha Young; Choi, Young Whan; Bae, Yoe-Sik

    2015-08-28

    Sepsis is a serious, life-threatening, infectious disease. In this study, we demonstrate that sucrose methyl 3-formyl-4-methylpentanoate (SMFM), a novel natural compound isolated from garlic (Allium sativum L.), markedly enhances survival rates by inhibiting lung inflammation in a cecal ligation and puncture (CLP) experimental polymicrobial sepsis model. SMFM strongly reduced bacterial colony units from peritoneal fluid in CLP mice by stimulating the generation of reactive oxygen species. Lymphocyte apoptosis in spleens from CLP mice was also markedly decreased by SMFM administration. SMFM also significantly inhibited the production of proinflammatory cytokines, such as TNF-α, interleukin-1β (IL-1β) and IL-6, in CLP mice. Lipopolysaccharide-stimulated production of TNF-α and IL-6 were also strongly inhibited by SMFM in mouse bone marrow-derived macrophages. Taken together, our results indicate that SMFM has therapeutic effects against polymicrobial sepsis that are mediated by enhanced microbial killing and blockage of cytokine storm. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Examining food additives and spices for their anti-oxidant ability to counteract oxidative damage due to chronic exposure to free radicals from environmental pollutants

    NASA Astrophysics Data System (ADS)

    Martinez, Raul A., III

    The main objective of this work was to examine food additives and spices (from the Apiaceae family) to determine their antioxidant properties to counteract oxidative stress (damage) caused by Environmental pollutants. Environmental pollutants generate Reactive Oxygen species and Reactive Nitrogen species. Star anise essential oil showed lower antioxidant activity than extracts using DPPH scavenging. Dill Seed -- Anethum Graveolens -the monoterpene components of dill showed to activate the enzyme glutathione-S-transferase , which helped attach the antioxidant molecule glutathione to oxidized molecules that would otherwise do damage in the body. The antioxidant activity of extracts of dill was comparable with ascorbic acid, alpha-tocopherol, and quercetin in in-vitro systems. Black Cumin -- Nigella Sativa: was evaluated the method 1,1-diphenyl2-picrylhhydrazyl (DPPH) radical scavenging activity. Positive correlations were found between the total phenolic content in the black cumin extracts and their antioxidant activities. Caraway -- Carum Carvi: The antioxidant activity was evaluated by the scavenging effects of 1,1'-diphenyl-2-picrylhydrazyl (DPPH). Caraway showed strong antioxidant activity. Cumin -- Cuminum Cyminum - the major polyphenolic were extracted and separated by HPTLC. The antioxidant activity of the cumin extract was tested on 1,1'-diphenyl-2- picrylhydrazyl (DPPH) free radical scavenging. Coriander -- Coriandrum Sativum - the antioxidant and free-radical-scavenging property of the seeds was studied and also investigated whether the administration of seeds curtails oxidative stress. Coriander seed powder not only inhibited the process of Peroxidative damage, but also significantly reactivated the antioxidant enzymes and antioxidant levels. The seeds also showed scavenging activity against superoxides and hydroxyl radicals. The total polyphenolic content of the seeds was found to be 12.2 galic acid equivalents (GAE)/g while the total flavonoid content

  12. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests

    PubMed Central

    Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao

    2008-01-01

    Background Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which ~21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Results Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. Conclusion In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high

  13. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests.

    PubMed

    Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao

    2008-10-14

    Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which approximately 21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic

  14. Evaluation of antioxidant potential of essential oils of some commonly used Indian spices in in vitro models and in food supplements enriched with omega-6 and omega-3 fatty acids.

    PubMed

    Bag, Anwesa; Chattopadhyay, Rabi Ranjan

    2018-01-01

    The aim of this study was to evaluate and compare the antioxidant potential of essential oils of some commonly used Indian spices (black pepper, cinnamon, clove, coriander and cumin) in various in vitro models and in food supplements enriched with omega-6 and omega-3 fatty acids. In vitro antioxidant potential was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and Fe 2+ ion-chelating methods and lipid oxidation stabilisation potential was evaluated in bulk soybean oil-fish oil mixture and their oil-in-water emulsions using peroxide value (PV), p-anisidine value (p-AV) and total oxidation value as indicators of oxidation. Combination effects using DPPH radical scavenging and Briggs-Rauscher oscillating reaction methods were also evaluated. Test essential oils showed varying degrees of radical scavenging and Fe 2+ ion-chelating efficacy. Clove and coriander oils showed significantly higher (P < 0.05) radical scavenging and Fe 2+ ion-chelating potential over other tested essential oils as well as BHT and ∞-tocopherol. The anti-lipid peroxidative potential of test essential oils was found in the following decreasing order: clove > coriander > BHT > cinnamon > α-tocopherol > cumin > black pepper. Furthermore, clove and coriander oils showed synergistic antioxidant activity in combination both in DPPH radical scavenging and Briggs-Rauscher oscillating reaction methods whereas other possible combinations showed additive effects. Strong radical scavenging and Fe 2+ -chelating as well as anti-lipid peroxidative activities of clove and coriander oils provide evidence that clove and coriander oils may serve as a potential source of natural antioxidants for retarding lipid oxidation of food supplements enriched with omega-6 and omega-3 fatty acids.

  15. Differential changes in size distribution of xyloglucan in the cell walls of gravitropically responding Pisum sativum epicotyls

    NASA Technical Reports Server (NTRS)

    Talbott, L. D.; Pickard, B. G.

    1994-01-01

    Growth-related change in the size distribution of hemicellulosic wall polymers during the gravitropic curvature response of intact pea (Pisum sativum L. cv Alaska) epicotyls was examined by gel-filtration chromatography. The gravitropic response was characterized by the appearance of curvature 20 to 30 min after horizontal placement, with 35 degrees of curvature attained by 80 min. Correlated with the onset of curvature, on the upper side of the epicotyl, there was a conspicuous transient increase in the abundance of relatively large hemicellulosic xyloglucan polymers, similar to increases previously found under conditions where diminished wall extensibility was expected. On the lower side there was a moderate, slower, and longer-term increase in abundance of small xyloglucan, similar to changes previously found in connection with auxin-stimulated growth responses. Both shifts occurred primarily in the epidermis. They appear to represent two coordinated physiological mechanisms contributing to differential growth.

  16. Effect of olive leaf, Satureja khuzestanica, and Allium sativum extracts on Giardia lamblia cysts compared with metronidazole in vitro.

    PubMed

    Fallahi, Sh; Rostami, A; Delfan, B; Pournia, Y; Rashidipour, M

    2016-12-01

    Giardia lamblia is one of the common causes of worldwide diarrhea in children. Appropriate medicinal treatment for giardiasis is available but there are some evidences of drug resistance, insufficient efficacy, and unpleasant side effects. In order to reach a more natural drug with suitable efficacy and the lowest side effects, the effects of the hydroalcoholic extracts of olive leaf, Satureja khuzestanica , and Allium sativum on G. lamblia cysts were evaluated in vitro, as well as antigiardial effect of the extracts was compared with metronidazole as the drug of choice. 2 and 5 mg of the plants extracts and powder of metronidazole 250 mg pills were added to 1 ml of G. lamblia cysts suspension (containing 5,000 cyst/ml normal saline), and the percentages of bioavailability of G. lamblia cysts were examined at the 2nd and 4th h after exposure and in 4 and 37 °C temperatures using eosin 0.1 % and a haemocytometer. The data were analyzed by multiway ANOVA test, Tukey's test, and the SPSS software, version 18. The examinations demonstrated that olive leaf extract had the most fatality rate on G. lamblia cysts in vitro (37.90 ± 7.01 %), followed by the extract of S. khuzestanica (32.52 ± 9.07 %). Metronidazole 250 mg pills had relatively effective fatality rate on G. lamblia cysts in vitro (28.75 ± 10.30 %), whereas A. sativum (garlic) had the lowest fatality effect on G. lamblia cysts in vitro (22.65 ± 10.47 %). With respect to higher fatality effect of olive leaf and S. khuzestanica extracts compared with metronidazole in vitro, these plants can be used as suitable candidates to make new antigiardial drugs with low side effects and without drug resistance in the treatment of giardiasis in children.

  17. Antimicrobial Activity of Two Garlic Species (Allium Sativum and A. Tuberosum) Against Staphylococci Infection. In Vivo Study in Rats

    PubMed Central

    Venâncio, Paulo César; Raimundo Figueroba, Sidney; Dias Nani, Bruno; Eduardo Nunes Ferreira, Luiz; Vilela Muniz, Bruno; de Sá Del Fiol, Fernando; Sartoratto, Adilson; Antonio Ribeiro Rosa, Edvaldo; Carlos Groppo, Francisco

    2017-01-01

    Purpose: This study observed the effect of garlic extracts and amoxicillin against an induced staphylococcal infection model. MIC and MBC were also obtained for aqueous extracts of Allium sativum (Asa) and Allium tuberosum (Atu) against Staphylococcus aureus penicillin-sensitive (PSSA - ATCC 25923) and MRSA (ATCC 33592). Methods: Granulation tissues were induced in the back of 205 rats. After 14 days, 0.5 mL of 108 CFU/mL of PSSA or MRSA were injected inside tissues. After 24h, animals were divided: G1 (Control) – 0.5 mL of NaCl 0.9%; G2 – Asa 100 mg/kg or 400mg/kg; G3 – Atu 100 mg/kg or 400 mg/kg; G4 – amoxicillin suspension 50 mg/kg, considering PSSA infection; and G5 (Control) - 0.5 mL of NaCl 0.9%; G6 – Asa 400mg/kg; G7 – amoxicillin 50 mg/kg; and G8 - Asa 400 mg/kg + amoxicillin 50 mg/kg for MRSA. All treatments were administered P.O. every 6h. Animals were killed at 0, 6, 12 and 24h. Samples were spread on salt-mannitol agar. Colonies were counted after 18 h at 37 °C. Atu was not able to inhibit or kill PSSA and MRSA. Considering Asa, MIC and MBC against PSSA were 2 mg/mL and 4 mg/mL, respectively; and 16 mg/mL and 64 mg/mL against MRSA. Results: No effect was observed in vivo for control, Asa 100 mg/kg and Atu 100 mg/kg, while amoxicillin, Atu 400 mg/kg and Asa 400 mg/kg decreased PSSA counts in all-time points. No effect of any group against MRSA was observed at any time. Conclusion: Thus, A. sativum and A. tuberosum were able to reduce PSSA infection, but not MRSA infection. PMID:28507945

  18. Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum.

    PubMed

    Bernier-Villamor, Laura; Navarro, Eusebio; Sevilla, Francisca; Lázaro, Juan-José

    2004-10-01

    A cDNA sequence coding for a pea (Pisum sativum L.) 2-Cys peroxiredoxin (2-Cys Prx) has been cloned. The deduced amino acid sequence showed a high sequence homology to the 2-Cys Prx enzymes of Phaseolus vulgaris (86%), Arabidopsis thaliana (75%), and Spinacia oleracea (75%), and contained a chloroplast target sequence at its N-terminus. The mature enzyme, without the transit peptide, has a molecular mass of 22 kDa as well as two cysteine residues (Cys-53 and Cys-175) which are well conserved among proteins of this group. The protein was expressed in a heterologous system using the expression vector pET3d, and was purified to homogeneity by three sequential chromatographic steps. The enzyme exhibits peroxidase activity on hydrogen peroxide (H(2)O(2)) and t-butyl hydroperoxide (TBHP) with DTT as reducing agent. Although both pea Trxs f and m reduce oxidized 2-Cys Prx, Trx m is more efficient. The precise conditions for oligomerization of 2-Cys Prx through extensive gel filtration studies are also reported. The transition dimer-decamer produced in vitro between pH 7.5 and 8.0 and the influence of DTT suggest that a great change in the enzyme quaternary structure of 2-Cys Prx may take place in the chloroplast during the dark-light transition. In addition, the cyclophilin-dependent reduction of chloroplast 2-Cys Prx is shown.

  19. Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate

    NASA Astrophysics Data System (ADS)

    Coman, Cristina; Leopold, Loredana Florina; Rugină, Olivia Dumitriţa; Barbu-Tudoran, Lucian; Leopold, Nicolae; Tofană, Maria; Socaciu, Carmen

    2014-01-01

    A green synthesis was used for preparing stable colloidal gold nanoparticles by using Allium sativum aqueous extract both as reducing and capping agent. The obtained nanoparticles were characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy. Moreover, their potential to be used as surface-enhanced Raman scattering (SERS) substrate was investigated. The obtained gold nanoparticles have spherical shape with mean diameters of 9-15 nm (depending on the amount of reducing agent used under boiling conditions) and are stable up to several months. FTIR spectroscopy shows that the nanoparticles are capped by protein molecules from the extract. The protein shell offers a protective coating, relatively impervious to external molecules, thus, rendering the nanoparticles stable and quite inert. These nanoparticles have the potential to be used as SERS substrates, both in solution and inside human fetal lung fibroblast HFL-1 living cells. We were able to demonstrate both the internalization of the nanoparticles inside HFL-1 cells and their ability to preserve the SERS signal after cellular internalization.

  20. Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).

    PubMed

    Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho

    2015-11-01

    Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.

  1. PsPMEP, a pollen-specific pectin methylesterase of pea (Pisum sativum L.).

    PubMed

    Gómez, María Dolores; Renau-Morata, Begoña; Roque, Edelín; Polaina, Julio; Beltrán, José Pío; Cañas, Luis A

    2013-09-01

    Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes such as pollen development and pollen tube growth. We have isolated and characterized PsPMEP, a pea (Pisum sativum L.) pollen-specific gene that encodes a protein with homology to PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are characterized by the presence of a processable amino-terminal PME inhibitor domain followed by the catalytic PME domain. Moreover, PsPMEP contains several motifs highly conserved among PMEs with the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter region, we have identified several conserved cis-regulatory elements that have been associated with gene pollen-specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression was detected in mature pollen grains, during pollen germination, during pollen tube elongation along the transmitting tract, and when the pollen tube reaches the embryo sac in the ovule.

  2. Rapid wall relaxation in elongating tissues. [Glycine max (L. ); Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Maruyama, S.; Boyer, J.S.

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max (L.) Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, the authors investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. The authors found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached tomore » the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species.« less

  3. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sukheung; Roberts, D.M.

    1990-07-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less

  4. Physiology of Movements in the Stems of Seedling Pisum sativum L. cv Alaska 1

    PubMed Central

    Britz, Steven J.; Galston, Arthur W.

    1983-01-01

    Phototropic response in etiolated pea (Pisum sativum L. cv Alaska) seedlings is poor. However, the curvature induced by unilateral blue light can be hastened and increased in magnitude by a previously administered red light pulse followed by several hours of darkness. Phytochrome is involved in the red light effect. Phototropic response was almost completely inhibited by removal of the apical bud and hook, but it was restored if exogenous indole-3-acetic acid was applied apically to the cut stump. Therefore, the stem contains both the phototropic photoreceptor and response mechanism. Perception of gravity and gravitropic response were also localized in the stem, but gravitropism was scarcely inhibited by decapitation. It was also observed that the kinetics and curvature pattern of gravitropism differed greatly from those of phototropism. Like phototropism, stem nutation required auxin and was promoted by red light. Unlike phototropism, photoenhanced nutational curvature required the apical hook and was propagated as a wave down the stem. Naphthylphthalamic acid inhibited, in order of decreasing effect, nutation, phototropism/gravitropism, and growth. Phototropism, gravitropism, and nutation appear to represent distinct forms of stem movement with fundamental differences in the mechanisms of curvature development. Images Fig. 3 PMID:16662824

  5. Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmers, L.E.; Turgeon, R.

    1987-04-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 ..mu..mol photons m/sup -2/ sec/sup -1/) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on /sup 14/C-sucrose (10 mM). There is a positive correlation betweenmore » uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged.« less

  6. Auxin effects on in vitro and in vivo protein phosphorylation in pea. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, S.R.; Ray, P.M.

    1987-04-01

    Terminal 8mm sections from the third internode of dark grown 7 day old Pisum sativum cv Alaska seedlings were separated into membrane and soluble fractions. SDS gradient PAGE identified approximately 50 in vivo phosphorylated proteins and proved superior to 2-D SDS PAGE in terms of resolution and repeatability. Addition of indoleacetic acid (IAA), fusicoccin, or 2,4 dichlorophenoxyacetic acid to membranes resulted in no detectable change in the number or phosphorylation level of the labeled proteins during in vitro phosphorylation in the presence of submicromolar concentrations of calcium. Similar results were obtained with soluble proteins. In the absence of calcium, themore » level of in vitro protein phosphorylation was much less, but not auxin effects could be identified. Furthermore, treatment of the sections with IAA in vivo followed by cell fractionation and in vitro phosphorylation failed to identify auxin responsive proteins. Lastly, when sections were labeled with /sup 32/P inorganic phosphate in the presence of 17 uM IAA, no auxin specific changes were found in the level of phosphorylation or in the number of phosphorylated proteins. Auxin effects on phosphorylation are thus slight or below their detection limit.« less

  7. Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes

    PubMed Central

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products. PMID:21614186

  8. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development.

    PubMed Central

    Lobreaux, S; Briat, J F

    1991-01-01

    Iron concentration and ferritin distribution have been determined in different organs of pea (Pisum sativum) during development under conditions of continuous iron supply from hydroponic cultures. No ferritin was detected in total protein extracts from roots or leaves. However, a transient iron accumulation in the roots, which corresponds to an increase in iron uptake, was observed when young fruits started to develop. Ferritin was detectable in total protein extracts of flowers and pods, and it accumulated in seeds. In seeds, the same relative amount of ferritin was detected in cotyledons and in the embryo axis. In cotyledons, ferritin and iron concentration decrease progressively during the first week of germination. Ferritin in the embryo axis was processed, and disappeared, during germination, within the first 4 days of radicle and epicotyl growth. This degradation of ferritin in vivo was marked by a shortening of a 28 kDa subunit, giving 26.5 and 25 kDa polypeptides, reminiscent of the radical damage occurring in pea seed ferritin during iron exchange in vitro [Laulhere, Laboure & Briat (1989) J. Biol. Chem. 264, 3629-3635]. Developmental control of iron concentration and ferritin distribution in different organs of pea is discussed. Images Fig. 4. Fig. 6. Fig. 7. PMID:2006922

  9. Optimization of the new formulation of ice cream with native Iranian seed gums (Lepidium perfoliatum and Lepidium sativum) using response surface methodology (RSM).

    PubMed

    Azari-Anpar, M; Soltani Tehrani, N; Aghajani, N; Khomeiri, M

    2017-01-01

    In this study, effect of Qodume shahri ( Lepidium perfoliatum ) and cress ( Lepidium sativum ) on rheological properties of ice cream were investigated. The gums were added to the ice cream formulation and different quality attributes including pH, acidity, melting characteristics, viscosity, overrun, texture analysis and sensory evaluation were determined. Results showed that ice cream formulations containing both the gums had improved overrun, melting rate, first dripping time, viscosity, hardness and adhesiveness. The gum concentrations beyond 0.2% level led to a negative effect on gumminess and chewiness of ice cream. Both the gums addition to improved quality attributes and textural properties of ice cream.

  10. Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose

    NASA Technical Reports Server (NTRS)

    Jaffe, M. J.; Leopold, A. C.

    1984-01-01

    In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.

  11. Diallyl Polysulfides from Allium sativum as Immunomodulators, Hepatoprotectors, and Antimycobacterial Agents.

    PubMed

    Oosthuizen, Carel; Arbach, Miriam; Meyer, Debra; Hamilton, Chris; Lall, Namrita

    2017-07-01

    Mycobacterium tuberculosis remains one of the world's deadliest killers, with an annual death rate of ∼1.5 million. The medicinal effects of garlic have been well documented, and natural products have been shown to have antimycobacterial activity. The current study evaluated the efficacy of six Allium sativum L. polysulfide mixtures as antimycobacterial agents together with their cytotoxic, immunomodulatory, and hepatoprotective activities. The microtitre PrestoBlue assay was used to determine the minimum inhibitory concentrations (MIC). Cytotoxicity was evaluated by using peripheral blood mononuclear cells (PBMC). Excreted cytokine levels were determined by utilizing an enzyme-linked immunosorbent assay (ELISA), by exposing isolated PBMCs to varying concentrations of polysulfide mixtures. Human C3A liver cells were utilized in the hepatoprotective study, to assess the protective effect against the toxicity induced by acetaminophen. Samples with higher amounts of diallyl trisulfide (Sample G4) showed the highest antimycobacterial activity, exhibiting an MIC of 2.5 μg/mL against M. tuberculosis H37Rv. Five samples showed moderate toxicity in PBMC, with G1 showing no toxicity. The selective index of G4 was the highest, with a selectivity index close to one. Two samples, G3 and G6 containing higher amounts of diallyl tetrasulfide and lower amounts of diallyl trisulfide, showed >50% hepatoprotection. This is comparable to a hepatoprotective agent, Silymarin, which showed a hepatoprotective effect of 30% at the tested concentration. Diallyl tetrasulfide showed significant antimycobacterial activity. A combination of higher diallyl tetrasulfide and lower diallyl trisulfide was indicative of hepatoprotective activity.

  12. Systemic production of IFN-alpha by garlic (Allium sativum) in humans.

    PubMed

    Bhattacharyya, Mau; Girish, G V; Karmohapatra, Soumendra K; Samad, S A; Sinha, Asru K

    2007-05-01

    The effect of foods on the production of interferon-alpha (IFN-alpha) is currently unknown. Garlic (Allium sativum) used as a folk medicine is reported to stimulate nitric oxide (NO) production. We investigated the systemic increase of NO due to the ingestion of garlic on the plasma IFN-alpha level in normal volunteers. Normal volunteers (10 groups, 10 in each group) ate 2 g fresh garlic, and plasma NO and IFN-alpha levels were determined after 2 and 4 h. The participants were also asked to eat garlic for various periods of time, and plasma NO and IFN-alpha were similarly assayed. Ingestion of 2 g fresh, but not boiled, garlic was found to increase the basal plasma level of NO from 2.7 +/- 0.1 microM to 8.76 +/- 0.21 microM at 2 and 4 h, respectively. The basal plasma IFN-alpha level increased from 9.51 +/- 0.26 nM to 46.3 +/- 1.2 nM in normal volunteers (n = 10) at the same time. The chronic eating of garlic was found to maintain IFN-alpha at high levels for at least 7 days. The exposure of neutrophils to garlic in vivo or in vitro, which also stimulated synthesis of NO in these cells, was found to stimulate IFN-alpha synthesis as measured by the stimulation of IFN-alpha mRNA synthesis. Thus, consumption of garlic resulted in stimulated synthesis of NO and, in turn, IFN-alpha in humans, which could be beneficial in viral or proliferative diseases.

  13. Optimization of Water Content for the Cryopreservation Of Allium sativum In Vitro Cultures by Encapsulation-Dehydration.

    PubMed

    Lynch, P T; Souch, G R; Zamecnik, J; Harding, K

    There is a general requirement to determine and correlate water content to viability for the standardization of conservation protocols to facilitate effective cryostorage of plant germplasm. This study examined water content as a critical factor to optimize the cryostorage of Allium sativum. Stem discs were excised from post-harvest, stored bulbs prior to cryopreservation by encapsulation-dehydration and water content was determined gravimetrically. Survival of cryopreserved stem discs was 42.5 %, with 22.5 % exhibiting shoot regrowth following 6 h desiccation. Gravimetric data demonstrated a correlation between water content corresponding with survival / regrowth from desiccated, cryopreserved stem discs. For encapsulated stem discs a 25 % residual moisture and corresponding water content of 0.36 g H2O g -1 d.wt correlated with maximal survival following ~6.5 h of desiccation. The data concurs with the literature suggesting the formation of a stable vitrified state and a 'window' for optimal survival and regrowth that is between 6 - 10 h desiccation. Further studies using differential scanning calorimetry (DSC) are suggested to substantiate these findings.

  14. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens.

    PubMed

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-08-01

    To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary.

  15. Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin from Pisum sativum.

    PubMed

    Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan José

    2006-07-01

    A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 angstroms from a single crystal flash-cooled at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 angstroms, alpha = 102.90, beta = 104.40, gamma = 99.07 degrees, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress.

  16. Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum.

    PubMed

    Oleszczuk, Patryk; Rycaj, Marcin; Lehmann, Johannes; Cornelissen, Gerard

    2012-06-01

    The goal of the research was to determine the phytotoxicity (using Lepidium sativum) of two activated carbon/biochar-amended sewage sludges. Apart from the impact of the AC/biochar dose, the influence of biochar particle diameter (<300, 300-500 and >500 μm) and the influence of the contact time (7, 60, 90 days) between AC/biochar and sewage sludges on their phytotoxicity was also assessed. No negative impact of sewage sludges on seed germination was observed (P>0.05). The application of AC or biochar to the sludges positively affected root growth by reducing the harmful effect by 7.8 to 42% depending on the material used. Furthermore, the reduction range clearly depended on the type of sewage sludge. No differences were observed in the inhibition of the toxic effect between both biochar types used and the biochar particle size. The extension of the contact time between AC/biochar and sewage sludges had a negative impact on root growth. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. 78 FR 60709 - Methoxyfenozide; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... sunflower subgroup 20B at 1.0 ppm, and to amend the tolerance for herb and spice, group 19, except coriander, leaves at 4.5 ppm to spice subgroup 19B at 4.5 ppm. Upon approval of the proposed tolerances listed under... established tolerance for indirect or inadvertent residues in or on herb and spice, group 19, except coriander...

  18. Micromonospora halotolerans sp. nov., isolated from the rhizosphere of a Pisum sativum plant.

    PubMed

    Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E

    2013-06-01

    A filamentous actinomycete strain designated CR18(T) was isolated on humic acid agar from the rhizosphere of a Pisum sativum plant collected in Spain. This isolate was observed to grow optimally at 28 °C, pH 7.0 and in the presence of 5 % NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence indicated a close relationship with the type strains of Micromonospora chersina and Micromonospora endolithica. A further analysis based on a concatenated DNA sequence stretch of 4,523 bp that included partial sequences of the atpD, gyrB, recA, rpoB and 16S rRNA genes clearly differentiated the new strain from recognized Micromonospora species compared. DNA-DNA hybridization studies further supported the taxonomic position of strain CR18(T) as a novel genomic species. Chemotaxonomic analyses which included whole cell sugars, polar lipids, fatty acid profiles and menaquinone composition confirmed the affiliation of the new strain to the genus Micromonospora and also highlighted differences at the species level. These studies were finally complemented with an array of physiological tests to help differentiate between the new strain and its phylogenetic neighbours. Consequently, strain CR18(T) (= CECT 7890(T) = DSM 45598(T)) is proposed as the type strain of a novel species, Micromonospora halotolerans sp. nov.

  19. Amelioration of lead-induced hepatotoxicity by Allium sativum extracts in Swiss albino mice

    PubMed Central

    Sharma, Arti; Sharma, Veena; Kansal, Leena

    2010-01-01

    Lead is a blue–gray and highly toxic divalent metal that occurs naturally in the earth's crust and is spread throughout the environment by various human activities. The efficacy of garlic (Allium sativum) to reduce hepatotoxicity induced by lead nitrate was evaluated experimentally in male mice. Oral treatment with lead nitrate at a dose of 50 mg/kg body weight daily for 40 days (1/45 of LD50) induced a significant increase in the levels of hepatic aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, acid phosphatase, cholesterol, lipid peroxidation, and lead nitrate. In parallel, hepatic protein levels in lead-exposed mice were significantly depleted. Lead nitrate exposure also produced detrimental effects on the redox status of the liver indicated by a significant decline in the levels of liver antioxidants such as superoxide dismutase, catalase, and glutathione. After exposure to lead nitrate (50 mg/kg body weight for 10 days), the animals received aqueous garlic extract (250 mg/kg body weight and 500 mg/kg body weight) and ethanolic garlic extract (100 mg/kg body weight and 250 mg/kg body weight), and partially restored the deranged parameters significantly. Histological examination of the liver also revealed pathophysiological changes in lead nitrate-exposed group and treatment with garlic improved liver histology. Our data suggest that garlic is a phytoantioxidant that can counteract the deleterious effects of lead nitrate. PMID:21483544

  20. Control of storage-protein synthesis during seed development in pea (Pisum sativum L.).

    PubMed Central

    Gatehouse, J A; Evans, I M; Bown, D; Croy, R R; Boulter, D

    1982-01-01

    The tissue-specific syntheses of seed storage proteins in the cotyledons of developing pea (Pisum sativum L.) seeds have been demonstrated by estimates of their qualitative and quantitative accumulation by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and rocket immunoelectrophoresis respectively. Vicilin-fraction proteins initially accumulated faster than legumin, but whereas legumin was accumulated throughout development, different components of the vicilin fraction had their predominant periods of synthesis at different stages of development. The translation products in vitro of polysomes isolated from cotyledons at different stages of development reflected the synthesis in vivo of storage-protein polypeptides at corresponding times. The levels of storage-protein mRNA species during development were estimated by 'Northern' hybridization using cloned complementary-DNA probes. This technique showed that the levels of legumin and vicilin (47000-Mr precursors) mRNA species increased and decreased in agreement with estimated rates of synthesis of the respective polypeptides. The relative amounts of these messages, estimated by kinetic hybridization were also consistent. Legumin mRNA was present in leaf poly(A)+ RNA at less than one-thousandth of the level in cotyledon poly(A)+ (polyadenylated) RNA, demonstrating tissue-specific expression. Evidence is presented that storage-protein mRNA species are relatively long-lived, and it is suggested that storage-protein synthesis is regulated primarily at the transcriptional level. Images Fig. 2. Fig. 3. PMID:6897609

  1. Allium sativum Protease Inhibitor: A Novel Kunitz Trypsin Inhibitor from Garlic Is a New Comrade of the Serpin Family.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Amir, Mohd; Baig, Mohd Affan; Qureshi, M Irfan; Ali, Sher; Fatima, Sadaf

    2016-01-01

    This study was aimed to purify and characterize the Protease inhibitor (PI) from a plant Allium sativum (garlic) with strong medicinal properties and to explore its phytodrug potentials. Allium sativum Protease Inhibitor (ASPI) was purified using ammonium sulphate fractionation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column. The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties and stability under extreme conditions of pH, temperature and chemical denaturants. Secondary structure was determined by Circular Dichorism (CD) spectroscopy. ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine max)" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH 2-12 showing a decline in the activity around pH 4-5 suggesting that the pI value of the protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temperature (10-80°C) but declined beyond 80°C. Further, detergents, oxidizing agents and reducing agents demonstrated change in ASPI activity under varying concentrations. The kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration with Vmax 240.8 (μM/min) and Km value of 0.12 μM. ASPI showed uncompetitive inhibition with a Ki of 0.08±0.01 nM). The Far UV CD depicted 2.0% α -helices and 51% β -sheets at native pH. To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and temperature Overall, there was an increase in purification fold with remarkable yield. Chemical modification studies suggested the presence of lysine and tryptophan residues as lead amino acids present in the reactive sites. Therefore, ASPI

  2. Allium sativum Protease Inhibitor: A Novel Kunitz Trypsin Inhibitor from Garlic Is a New Comrade of the Serpin Family

    PubMed Central

    Shamsi, Tooba Naz; Parveen, Romana; Amir, Mohd.; Baig, Mohd. Affan; Qureshi, M. Irfan; Ali, Sher; Fatima, Sadaf

    2016-01-01

    Purpose This study was aimed to purify and characterize the Protease inhibitor (PI) from a plant Allium sativum (garlic) with strong medicinal properties and to explore its phytodrug potentials. Methods Allium sativum Protease Inhibitor (ASPI) was purified using ammonium sulphate fractionation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column. The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties and stability under extreme conditions of pH, temperature and chemical denaturants. Secondary structure was determined by Circular Dichorism (CD) spectroscopy. Results ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine max)" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH 2–12 showing a decline in the activity around pH 4–5 suggesting that the pI value of the protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temperature (10–80°C) but declined beyond 80°C. Further, detergents, oxidizing agents and reducing agents demonstrated change in ASPI activity under varying concentrations. The kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration with Vmax 240.8 (μM/min) and Km value of 0.12 μM. ASPI showed uncompetitive inhibition with a Ki of 0.08±0.01 nM). The Far UV CD depicted 2.0% α -helices and 51% β -sheets at native pH. Conclusions To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and temperature Overall, there was an increase in purification fold with remarkable yield. Chemical modification studies suggested the presence of lysine and tryptophan residues as lead amino acids

  3. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R.

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({supmore » 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.« less

  4. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars.

    PubMed

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lyon, David; Geilfus, Christoph-Martin; Lüthje, Sabine

    2016-05-17

    Iron deficiency (-Fe) is one of the major problems in crop production. Dicots, like pea (Pisum sativum L.), are Strategy I plants, which induce a group of specific enzymes such as Fe(III)-chelate reductase (FRO), Fe responsive transporter (IRT) and H(+)-ATPase (HA) at the root plasma membrane under -Fe. Different species and cultivars have been shown to react diversely to -Fe. Furthermore, different kinds of experimental set-ups for -Fe have to be distinguished: i) short-term vs. long-term, ii) constant vs. acute alteration and iii) buffered vs. unbuffered systems. The presented work compares the effects of constant long-term -Fe in an unbuffered system on roots of four different pea cultivars in a timely manner (12, 19 and 25days). To differentiate the effects of -Fe and plant development, control plants (+Fe) were analyzed in comparison to -Fe plants. Besides physiological measurements, an integrative study was conducted using a comprehensive proteome analysis. Proteins, related to stress adaptation (e.g. HSP), reactive oxygen species related proteins and proteins of the mitochondrial electron transport were identified to be changed in their abundance. Regulations and possible functions of identified proteins are discussed. Pea (Pisum sativum L.) belongs to the legume family (Fabaceae) and is an important crop plant due to high Fe, starch and protein contents. According to FAOSTAT data (September 2015), world production of the garden pea quadrupled from 1970 to 2012. Since the initial studies by Gregor Mendel, the garden pea became the most-characterized legume and has been used in numerous investigations in plant biochemistry and physiology, but is not well represented in the "omics"-related fields. A major limitation in pea production is the Fe availability from soils. Adaption mechanisms to Fe deficiency vary between species, and even cultivars have been shown to react diversely. A label-free proteomic approach, in combination with physiological measurements

  5. Influence of s-Triazines on Some Enzymes of Carbohydrates and Nitrogen Metabolism in Leaves of Pea (Pisum sativum L.) and Sweet Corn (Zea mays L.)

    PubMed Central

    Wu, M. T.; Singh, B.; Salunkhe, D. K.

    1971-01-01

    Foliar applications of 2 milligrams per liter of 2-chloro-4,6-bis (ethylamino)-s-triazine, 2-methylmercapto-4-ethylamino-6-isobutylamino-s-triazine, and 2-methoxy-4-isopropylamino-6-butylamino-s-triazine caused increases in the activities of starch phosphorylase, pyruvate kinase, cytochrome oxidase, and glutamate dehydrogenase 5, 10, and 15 days after treatment in the leaves of 3-week-old seedlings of pea (Pisum sativum L.) and sweet corn (Zea mays L.). The results indicate that sublethal concentrations of s-triazine compounds affect the physiological and biochemical events in plants which favor more utilization of carbohydrates for nitrate reduction and synthesis of amino acids and proteins. PMID:16657830

  6. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.

    PubMed

    Muniyan, Rajiniraja; Gurunathan, Jayaraman

    2016-12-01

    The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.

  7. Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum.

    PubMed

    Puli, Mallikarjuna Rao; Rajsheel, Pidakala; Aswani, Vetcha; Agurla, Srinivas; Kuchitsu, Kazuyuki; Raghavendra, Agepati S

    2016-10-01

    Phyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells. Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs). Although phyto-S1P and S1P are known to be signaling components in higher plants, their ability to induce stomatal closure has been ambiguous. We evaluated in detail the effects of phyto-S1P, S1P and SPHK inhibitors on signaling events leading to stomatal closure in the epidermis of Pisum sativum. Phyto-S1P or S1P induced stomatal closure, along with a marked rise in nitric oxide (NO) and cytoplasmic pH of guard cells, as in case of ABA. Two SPHK inhibitors, DL-threo dihydrosphingosine and N',N'-dimethylsphingosine, restricted ABA-induced stomatal closure and prevented the increase of NO or pH by ABA. Modulators of NO or pH impaired both stomatal closure and increase in NO or pH by phyto-S1P/S1P. The stomatal closure by phyto-S1P/S1P was mediated by phospholipase D and phosphatidic acid (PA). When present, PA elevated the levels of pH, but not NO of guard cells. Our results demonstrate that stomatal closure induced by phyto-S1P and S1P depends on rise in pH as well as NO of guard cells. A scheme of signaling events initiated by phyto-S1P/S1P, and converging to cause stomatal closure, is proposed.

  8. Compatibility of garlic (Allium sativum L.) leaf agglutinin and Cry1Ac δ-endotoxin for gene pyramiding.

    PubMed

    Upadhyay, Santosh Kumar; Singh, Seema; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna Kumar

    2012-03-01

    δ-Endotoxins produced by Bacillus thuringiensis (Bt) have been used as bio-pesticides for the control of lepidopteran insect pests. Garlic (Allium sativum L.) leaf agglutinin (ASAL), being toxic to several sap-sucking pests and some lepidopteran pests, may be a good candidate for pyramiding with δ-endotoxins in transgenic plants for enhancing the range of resistance to insect pests. Since ASAL shares the midgut receptors with Cry1Ac in Helicoverpa armigera, there is possibility of antagonism in their toxicity. Our study demonstrated that ASAL increased the toxicity of Cry1Ac against H. armigera while Cry1Ac did not alter the toxicity of ASAL against cotton aphids. The two toxins interacted and increased binding of each other to brush border membrane vesicle (BBMV) proteins and to the two important receptors, alkaline phosphatase (ALP) and aminopeptidase N (APN). The results indicated that the toxins had different binding sites on the ALP and APN but influenced mutual binding. We conclude that ASAL can be safely employed with Cry1Ac for developing transgenic crops for wider insect resistance.

  9. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection.

    PubMed

    Desalegn, G; Turetschek, R; Kaul, H-P; Wienkoop, S

    2016-06-30

    The long cultivation of field pea led to an enormous diversity which, however, seems to hold just little resistance against the ascochyta blight disease complex. The potential of below ground microbial symbiosis to prime the immune system of Pisum for an upcoming pathogen attack has hitherto received little attention. This study investigates the effect of beneficial microbes on the leaf proteome and metabolome as well as phenotype characteristics of plants in various symbiont interactions (mycorrhiza, rhizobia, co-inoculation, non-symbiotic) after infestation by Didymella pinodes. In healthy plants, mycorrhiza and rhizobia induced changes in RNA metabolism and protein synthesis. Furthermore, metal handling and ROS dampening was affected in all mycorrhiza treatments. The co-inoculation caused the synthesis of stress related proteins with concomitant adjustment of proteins involved in lipid biosynthesis. The plant's disease infection response included hormonal adjustment, ROS scavenging as well as synthesis of proteins related to secondary metabolism. The regulation of the TCA, amino acid and secondary metabolism including the pisatin pathway, was most pronounced in rhizobia associated plants which had the lowest infection rate and the slowest disease progression. A most comprehensive study of the Pisum sativum proteome and metabolome infection response to Didymella pinodes is provided. Several distinct patterns of microbial symbioses on the plant metabolism are presented for the first time. Upon D. pinodes infection, rhizobial symbiosis revealed induced systemic resistance e.g. by an enhanced level of proteins involved in pisatin biosynthesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Biochemical Characterization and Antimicrobial and Antifungal Activity of Two Endemic Varieties of Garlic (Allium sativum L.) of the Campania Region, Southern Italy.

    PubMed

    Fratianni, Florinda; Riccardi, Riccardo; Spigno, Patrizia; Ombra, Maria Neve; Cozzolino, Autilia; Tremonte, Patrizio; Coppola, Raffaele; Nazzaro, Filomena

    2016-07-01

    Extracts of the bulbs of the two endemic varieties "Rosato" and "Caposele" of Allium sativum of the Campania region, Southern Italy, were analyzed. The phenolic content, ascorbic acid, allicin content, and in vitro antimicrobial and antifungal activity were determined. Ultra performance liquid chromatography with diode array detector performed polyphenol profile. The polyphenolic extracts showed antioxidant activity (EC50) lower than 120 mg. The amount of ascorbic acid and allicin in the two extracts was similar. Polyphenol extract exhibited antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and (only by the extract of Rosato) against Bacillus cereus. The extract of Caposele was more effective in inhibiting the growth of Aspergillus versicolor and Penicillum citrinum. On the other hand, the extract of Rosato was effective against Penicillium expansum.

  11. In vitro and in vivo studies of Allium sativum extract against deltamethrin-induced oxidative stress in rats brain and kidney.

    PubMed

    Ncir, Marwa; Saoudi, Mongi; Sellami, Hanen; Rahmouni, Fatma; Lahyani, Amina; Makni Ayadi, Fatma; El Feki, Abdelfattah; Allagui, Mohamed Salah

    2017-09-18

    The present study investigated the in vitro and the in vivo antioxidant capacities of Allium sativum (garlic) extract against deltamethrin-induced oxidative damage in rat's brain and kidney. The in vitro result showed that highest extraction yield was achieved with methanol (20.08%). Among the tested extracts, the methanol extract exhibited the highest total phenolic, flavonoids contents and antioxidant activity. The in vivo results showed that deltamethrin treatment caused an increase of the acetylcholinesterase level (AChE) in brain and plasma, the brain and kidney conjugated dienes and lipid peroxidation (LPO) levels as compared to control group. The antioxidant enzymes results showed that deltamethrin treatment induced a significantly decrease (p < 0.01) in brain and kidney antioxidant enzymes as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) to control group. The co-administration of garlic extract reduced the toxic effects in brain and kidney tissues induced by deltamethrin.

  12. The relaxant effect induced by Allium sativum L. bulb aqueous extract on rat isolated trachea

    PubMed Central

    Fehri, Badreddine; Ahmed, Mueen K.K.; Aiache, Jean-Marc

    2011-01-01

    Background: Garlic plays an important role in complementary and alternative medicine. Most people believe in and use herbal products even when they have not been as thoroughly researched as garlic. Garlic is also known for its beneficial effects on the cardiovascular system. Materials and Methods: The relaxant effect of Allium sativum L. bulb aqueous extract (ASBAE) containing 0.06%-0.10% of allicin was studied on isolated smooth muscle of trachea of rats precontracted using acetylcholine (10−5 M). Results: It was found that ASBAE induced a dose-dependent relaxation with recorded EC 50 values of 71.87 ± 5.90 µg/mL (n = 7). Pretreatments with mepyramine (10−7 M), methysergide (10−7 M), caffeine (10−6 M), theophylline (10−6 M), nifedipine (10−6 M), and dipyridamole (10−6 M) did not alter ASBAE concentration-response curves. In turn, concentration-response curves to ASBAE were significantly shifted toward right in the presence of aspirin (3.10−3 M), indomethacin (10−6 M), prazosin (10−6 M), and propranolol (10−7 M). Conclusion: It is suggested that the recorded relaxation results are due to the release of prostaglandins E 1 and E 2 consecutively to α- and β-adrenoreceptor stimulation. PMID:21472073

  13. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells.

    PubMed

    Han, Xuesheng; Beaumont, Cody; Stevens, Nicole

    2017-12-01

    Research on the biological effects of essential oils on human skin cells is scarce. In the current study, we primarily explored the biological activities of 10 essential oils (nine single and one blend) in a pre-inflamed human dermal fibroblast system that simulated chronic inflammation. We measured levels of proteins critical for inflammation, immune responses, and tissue-remodeling processes. The nine single oils were distilled from Citrus bergamia (bergamot), Coriandrum sativum (cilantro), Pelargonium graveolens (geranium), Helichrysum italicum (helichrysum), Pogostemon cablin (patchouli), Citrus aurantium (petitgrain), Santalum album (sandalwood), Nardostachys jatamansi (spikenard), and Cananga odorata (ylang ylang). The essential oil blend (commercial name Immortelle) is composed of oils from frankincense, Hawaiian sandalwood, lavender, myrrh, helichrysum, and rose. All the studied oils were significantly anti-proliferative against these cells. Furthermore, bergamot, cilantro, and spikenard essential oils primarily inhibited protein molecules related to inflammation, immune responses, and tissue-remodeling processes, suggesting they have anti-inflammatory and wound healing properties. Helichrysum and ylang ylang essential oils, as well as Immortelle primarily inhibited tissue remodeling-related proteins, suggesting a wound healing property. The data are consistent with the results of existing studies examining these oils in other models and suggest that the studied oils may be promising therapeutic candidates. Further research into their biological mechanisms of action is recommended. The differential effects of these essential oils suggest that they exert activities by different mechanisms or pathways, warranting further investigation. The chemical composition of these oils was analyzed using gas chromatography-mass spectrometry.

  14. In Vivo Screening of Traditional Medicinal Plants for Neuroprotective Activity against Aβ42 Cytotoxicity by Using Drosophila Models of Alzheimer's Disease.

    PubMed

    Liu, Quan Feng; Lee, Jang Ho; Kim, Young-Mi; Lee, Soojin; Hong, Yoon Ki; Hwang, Soojin; Oh, Youngje; Lee, Kyungho; Yun, Hye Sup; Lee, Im-Soon; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive neuronal loss with amyloid β-peptide (Aβ) plaques. Despite several drugs currently used to treat AD, their beneficial effects on AD progress remains under debate. Here, we established a rapid in vivo screening system using Drosophila AD models to assess the neuroprotective activities of medicinal plants that have been used in traditional Chinese medicine. Among 23 medicinal plants tested, the extracts from five plants, Coriandrum sativum, Nardostachys jatamansi, Polygonum multiflorum (P. multiflorum), Rehmannia glutinosa, and Sorbus commixta (S. commixta), showed protective effects against the Aβ42 neurotoxicity. We further characterized the neuroprotective activity of ethanol extracts from P. multiflorum and S. commixta. Aβ42-expressing flies that we used showed AD neurological phenotypes, such as decreased survival and motility and increased cell death and reactive oxygen species level. However, feeding these flies extracts from P. multiflorum or S. commixta showed strong suppression of such phenotypes. Similar results were observed in human cells, so that the treatment of P. multiflorum and S. commixta extracts increased the viability of Aβ-treated SH-SY5Y cells. Moreover, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, one of the main constituents of P. multiflorum, also showed similar protective activity against Aβ42 cytotoxicity in both Drosophila and human cells. Taken together, our results suggest that both P. multiflorum and S. commixta have therapeutic potential for the treatment of neurodegenerative diseases, such as AD.

  15. Plant extracts as phytogenic additives considering intake, digestibility, and feeding behavior of sheep.

    PubMed

    da Silva, Camila Sousa; de Souza, Evaristo Jorge Oliveira; Pereira, Gerfesson Felipe Cavalcanti; Cavalcante, Edwilka Oliveira; de Lima, Ewerton Ivo Martins; Torres, Thaysa Rodrigues; da Silva, José Ricardo Coelho; da Silva, Daniel Cézar

    2017-02-01

    The objective was to evaluate the intake, digestibility, and ingestive sheep behavior with feeding phytogenic additives derived from plant extracts. Five non-emasculated sheep without defined breed at 28 ± 1.81 kg initial body weight and 6 months age were used. Treatments consisted of administering four phytogenic additives from the garlic extracts, coriander seed, oregano, and pods of mesquite, plus a control treatment (without additive). The ration was composed of Tifton 85 hay grass, corn, soybean meal, and mineral salt. As experimental design, we used a 5 × 5 Latin square design (five treatments and five periods). The data were analyzed through the mixed model through the procedure PROC MIXED of software Systems Statistical Analysis version 9.1, with comparation analysis between the treatment without additive (control) with phytogenic additives produced from vegetable extracts of mesquite pod, of coriander seed, the bulb of garlic, and the oregano leaves. There were no significant differences for the nutrient intake and ingestive behavior patterns. However, the additive intake derived from mesquite pods and coriander extracts provided an increase in digestibility. Extracts from garlic, coriander, and mesquite pods can be used as phytogenic additives in feeding sheep.

  16. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    PubMed

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons, Ltd.

  17. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of Bajaur Agency, Federally Administrated Tribal Areas, Pakistan.

    PubMed

    Aziz, Muhammad Abdul; Khan, Amir Hasan; Adnan, Muhammad; Izatullah, Izatullah

    2017-02-23

    In the study area, knowledge related to the traditional uses of medicinal plants is totally in the custody of elder community members and local herbalists. The younger generation is unaware of the traditional knowledge, however with only few exceptions. Therefore, this study was planned with objective to document the medicinal importance of plants, conserve this precious indigenous knowledge, and share it among other communities through published literature. Data was collected through semi-structured interviews from the community members and local herbalists. The reported plants were collected post interviews and later on pressed on herbarium vouchers for reference. Afterwards, the data was analyzed through Use value (UV) and Relative Frequency of Citation (RFC). In total, 79 medicinal plant species were used for the treatment of different ailments in the study region. Out of the total plant species, 28 species were not reported from any other mountainous communities across the country. In this study, the ethno-medicinal value of Opuntia littoralis (Engelm.) Cockerell and Viola indica W.Becker was reported for the first time, which have moderate confidential level in terms of their medicinal uses in the study area. Important medicinal plants of the region with high UV are Berberis lycium Royle (0.94), V. indica (0.90), Isodon rugosus (Wall. ex Benth.) Codd (0.88), Foeniculum vulgare Mill. (0.87), Peganum harmala L (0.86), Solanum virginianum L. (0.85), and Cassia fistula L. (0.79). Medicinal plants with higher RFC values are Calotropis procera (Aiton) Dryand. (0.86), Cannabis sativa L. (0.82), Mentha piperita L. (0.82), Mentha longifolia (L.) Huds. (0.76), Allium sativum L. (0.73), Coriandrum sativum L. (0.73), and F. vulgare (0.72). Traditional knowledge on folk medicines is directly linked to the local culture, faith and perception. This knowledge is gaining high threat of extinction because of its limitation to a small portion of the society in the region

  18. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.

    PubMed

    Martins, Natália; Petropoulos, Spyridon; Ferreira, Isabel C F R

    2016-11-15

    Garlic (Allium sativum L.) is considered one of the twenty most important vegetables, with various uses throughout the world, either as a raw vegetable for culinary purposes, or as an ingredient of traditional and modern medicine. Furthermore, it has also been proposed as one of the richest sources of total phenolic compounds, among the usually consumed vegetables, and has been highly ranked regarding its contribution of phenolic compounds to human diet. This review aims to examine all the aspects related with garlic chemical composition and quality, focusing on its bioactive properties. A particular emphasis is given on the organosulfur compounds content, since they highly contribute to the effective bioactive properties of garlic, including its derived products. The important effects of pre-harvest (genotype and various cultivation practices) and post-harvest conditions (storage conditions and processing treatments) on chemical composition and, consequently, bioactive potency of garlic are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Molecular characterization of a distinct monopartite begomovirus associated with betasatellites and alphasatellites infecting Pisum sativum in Nepal.

    PubMed

    Shahid, M S; Pudashini, B J; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T

    2017-04-01

    Pea (Pisum sativum) plants exhibiting leaf distortion, yellowing, stunted growth and reduction in leaf size from Rampur, Nepal were shown to be infected by a begomovirus in association with betasatellites and alphasatellites. The begomovirus associated with the disease showed only low levels of nucleotide sequence identity (<91%) to previously characterized begomoviruses. This finding indicates that the pea samples were infected with an as yet undescribed begomovirus for which the name Pea leaf distortion virus (PLDV) is proposed. Two species of betasatellite were identified in association with PLDV. One group of sequences had high (>78%) nucleotide sequence identity to isolates of Ludwigia leaf distortion betasatellite (LuLDB), and the second group had less than 78% to all other betasatellite sequences. This showed PLDV to be associated with either LuLDB or a previously undescribed betasatellite for which the name Pea leaf distortion betasatellite is proposed. Two types of alphasatellites were identified in the PLDV-infected pea plants. The first type showed high levels of sequence identity to Ageratum yellow vein alphasatellite, and the second type showed high levels of identity to isolates of Sida yellow vein China alphasatellite. These are the first begomovirus, betasatellites and alphasatellites isolated from pea.

  20. SGRL can regulate chlorophyll metabolism and contributes to normal plant growth and development in Pisum sativum L.

    PubMed

    Bell, Andrew; Moreau, Carol; Chinoy, Catherine; Spanner, Rebecca; Dalmais, Marion; Le Signor, Christine; Bendahmane, Abdel; Klenell, Markus; Domoney, Claire

    2015-12-01

    Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.

  1. Products of dark CO sub 2 fixation in pea root nodules support bacteroid metabolism. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosendahl, L.; Pedersen, W.B.; Vance, C.P.

    1990-05-01

    Products of the nodule cytosol in vivo dark ({sup 14}C)CO{sub 2} fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv Bodil) nodules. The distribution of the metabolites of the dark CO{sub 2} fixation products was compared in effective (fix{sup +}) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix{sup {minus}}) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The {sup 14}C incorporation from ({sup 14}C)CO{sub 2} was about threefold greater in themore » wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the {sup 14}C label in the cytosol was found in organic acids in both symbioses. The results indicate a central role for nodule cytosol dark CO{sub 2} fixation in the supply of the bacteroids with dicarboxylic acids.« less

  2. Comparison of the antibacterial activity of essential oils and extracts of medicinal and culinary herbs to investigate potential new treatments for irritable bowel syndrome

    PubMed Central

    2013-01-01

    Background Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which may result from alteration of the gastrointestinal microbiota following gastrointestinal infection, or with intestinal dysbiosis or small intestinal bacterial overgrowth. This may be treated with antibiotics, but there is concern that widespread antibiotic use might lead to antibiotic resistance. Some herbal medicines have been shown to be beneficial, but their mechanism(s) of action remain incompletely understood. To try to understand whether antibacterial properties might be involved in the efficacy of these herbal medicines, and to investigate potential new treatments for IBS, we have conducted a preliminary study in vitro to compare the antibacterial activity of the essential oils of culinary and medicinal herbs against the bacterium, Esherichia coli. Methods Essential oils were tested for their ability to inhibit E. coli growth in disc diffusion assays and in liquid culture, and to kill E. coli in a zone of clearance assay. Extracts of coriander, lemon balm and spearmint leaves were tested for their antibacterial activity in the disc diffusion assay. Disc diffusion and zone of clearance assays were analysed by two-tailed t tests whereas ANOVA was performed for the turbidometric assays. Results Most of the oils exhibited antibacterial activity in all three assays, however peppermint, lemon balm and coriander seed oils were most potent, with peppermint and coriander seed oils being more potent than the antibiotic rifaximin in the disc diffusion assay. The compounds present in these oils were identified by gas chromatography mass spectrometry. Finally, extracts were made of spearmint, lemon balm and coriander leaves with various solvents and these were tested for their antibacterial activity against E. coli in the disc diffusion assay. In each case, extracts made with ethanol and methanol exhibited potent antibacterial activity. Conclusions Many of the essential oils

  3. Comparison of the antibacterial activity of essential oils and extracts of medicinal and culinary herbs to investigate potential new treatments for irritable bowel syndrome.

    PubMed

    Thompson, Aiysha; Meah, Dilruba; Ahmed, Nadia; Conniff-Jenkins, Rebecca; Chileshe, Emma; Phillips, Chris O; Claypole, Tim C; Forman, Dan W; Row, Paula E

    2013-11-28

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which may result from alteration of the gastrointestinal microbiota following gastrointestinal infection, or with intestinal dysbiosis or small intestinal bacterial overgrowth. This may be treated with antibiotics, but there is concern that widespread antibiotic use might lead to antibiotic resistance. Some herbal medicines have been shown to be beneficial, but their mechanism(s) of action remain incompletely understood. To try to understand whether antibacterial properties might be involved in the efficacy of these herbal medicines, and to investigate potential new treatments for IBS, we have conducted a preliminary study in vitro to compare the antibacterial activity of the essential oils of culinary and medicinal herbs against the bacterium, Esherichia coli. Essential oils were tested for their ability to inhibit E. coli growth in disc diffusion assays and in liquid culture, and to kill E. coli in a zone of clearance assay. Extracts of coriander, lemon balm and spearmint leaves were tested for their antibacterial activity in the disc diffusion assay. Disc diffusion and zone of clearance assays were analysed by two-tailed t tests whereas ANOVA was performed for the turbidometric assays. Most of the oils exhibited antibacterial activity in all three assays, however peppermint, lemon balm and coriander seed oils were most potent, with peppermint and coriander seed oils being more potent than the antibiotic rifaximin in the disc diffusion assay. The compounds present in these oils were identified by gas chromatography mass spectrometry. Finally, extracts were made of spearmint, lemon balm and coriander leaves with various solvents and these were tested for their antibacterial activity against E. coli in the disc diffusion assay. In each case, extracts made with ethanol and methanol exhibited potent antibacterial activity. Many of the essential oils had antibacterial activity in the

  4. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Musgrave, M. E.

    1998-01-01

    Plant roots are known to orient growth through the soil by gravitropism, hydrotropism, and thigmotropism. Recent observations of plant roots that developed in a microgravity environment in space suggested that plant roots may also orient their growth toward oxygen (oxytropism). Using garden pea (Pisum sativum L. cv. Weibul's Apollo) and an agravitropic mutant (cv. Ageotropum), root oxytropism was studied in the controlled environment of a microrhizotron. A series of channels in the microrhizotron allowed establishment of an oxygen gradient of 0.8 mmol mol-1 mm-1. Curvature of seedling roots was determined prior to freezing the roots for subsequent spectrophotometric determinations of alcohol dehydrogenase activity. Oxytropic curvature was observed all along the gradient in both cultivars of pea. The normal gravitropic cultivar showed a maximal curvature of 45 degrees after 48 h, while the agravitropic mutant curved to 90 degrees. In each cultivar, the amount of curvature declined as the oxygen concentration decreased, and was linearly related to the root elongation rate. Since oxytropic curvature occurred in roots exposed to oxygen concentrations that were not low enough to induce the hypoxically responsive protein alcohol dehydrogenase, we suspect that the oxygen sensor associated with oxytropism does not control the induction of hypoxic metabolism. Our results indicate that oxygen can play a critical role in determining root orientation as well as impacting root metabolic status. Oxytropism allows roots to avoid oxygen-deprived soil strata and may also be the basis of an auto-avoidance mechanism, decreasing the competition between roots for water and nutrients as well as oxygen.

  5. Effect of Raw Crushed Garlic (Allium sativum L.) on Components of Metabolic Syndrome.

    PubMed

    Choudhary, Prema Ram; Jani, Rameshchandra D; Sharma, Megh Shyam

    2017-09-28

    Metabolic syndrome consists of a group of risk factors characterized by abdominal obesity, hypertension, atherogenic dyslipidemia, hyperglycemia, and prothrombotic and proinflammatory conditions. Raw garlic homogenate has been reported to reduce serum lipid levels in animal model; however, no precise studies have been performed to evaluate the effect of raw crushed garlic (Allium sativum L.) on components of metabolic syndrome. Therefore, the present study was designed to investigate the effect of raw crushed garlic on components of metabolic syndrome. A total of 40 metabolic syndrome patients were randomly selected from the diabetic center of SP Medical College, Bikaner, Rajasthan, India. They underwent treatment with 100 mg/kg body weight raw crushed garlic 2 times a day with standard diet for 4 weeks; their anthropometric and serum biochemical variables were measured at both the beginning and the end of the study. Statistical analysis was performed using IBM SPSS version 20, and Student's paired "t" test was used to compare variables before and after treatment with garlic preparation. Raw crushed garlic significantly reduced components of metabolic syndrome including waist circumference (p < .05), systolic and diastolic blood pressure (p < .001), triglycerides (p < .01), fasting blood glucose (p < .0001) and significantly increased serum high-density lipoprotein cholesterol (p < .0001). There was no significant difference found in body mass index (p > .05) of patients with metabolic syndrome after consumption of raw crushed garlic for 4 weeks. Raw crushed garlic has beneficial effects on components of metabolic syndrome; therefore, it can be used as an accompanying remedy for prevention and treatment of patients with metabolic syndrome.

  6. Identification and immunologic characterization of an allergen, alliin lyase, from garlic (Allium sativum).

    PubMed

    Kao, Shao-Hsuan; Hsu, Ching-Hsian; Su, Song-Nan; Hor, Wei-Ting; Chang T, Wen-Hong; Chow, Lu-Ping

    2004-01-01

    Garlic (Allium sativum) is one of the most common relishes used in cooking worldwide. Very few garlic allergens have been reported, and garlic allergy has been rarely studied. The aim of the study was to identify allergenic proteins in garlic and to investigate their importance in allergies to other Allium species (leek, shallot, and onion). A crude extract of garlic proteins was separated by SDS-PAGE and 2-dimensional electrophoresis; immunoblotting was then performed with the use of individual and pooled sera from patients with garlic allergy, and the major IgE-binding proteins were analyzed by amino acid sequencing and mass spectrometry. The putative allergens were further purified by chromatography; the antigenicity, allergenicity, and IgE-binding cross-reactivity of the purified protein were then studied by immunoblotting, periodate oxidation, skin tests, and IgE-binding inhibition assays. A major allergen, alliin lyase, was identified by mass spectrometry and Edman sequencing and purified to homogeneity through the use of a simple 2-step chromatographic method. Skin tests showed that the purified protein elicited IgE-mediated hypersensitive responses in patients with garlic allergy. Periodate oxidation showed that carbohydrate groups were involved in the antigenicity, allergenicity, and cross-reactivity. Garlic alliin lyase showed strong cross-reactivity with alliin lyases from other Allium species, namely leek, shallot, and onion. Alliin lyase was found to be a major garlic allergen in a garlic-allergic group of patients in Taiwan. The wide distribution of alliin lyase in Allium suggests it may be a new cross-reactive allergen.

  7. Uptake and phytotoxic effect of benzalkonium chlorides in Lepidium sativum and Lactuca sativa.

    PubMed

    Khan, Adnan Hossain; Libby, Mark; Winnick, Daniel; Palmer, John; Sumarah, Mark; Ray, Madhumita B; Macfie, Sheila M

    2018-01-15

    Cationic surfactants such as benzalkonium chlorides (BACs) are used extensively as biocides in hospitals, food processing industries, and personal care products. BACs have the potential to reach the rooting zone of crop plants and BACs might thereby enter the food chain. The two most commonly used BACs, benzyl dimethyl dodecyl ammonium chloride (BDDA) and benzyl dimethyl tetradecyl ammonium chloride (BDTA), were tested in a hydroponic system to assess the uptake by and phytotoxicity to lettuce (Lactuca sativa L.) and garden cress (Lepidium sativum L.). Individually and in mixture, BACs at concentrations up to 100 mg L -1 did not affect germination; however, emergent seedlings were sensitive at 1 mg L -1 for lettuce and 5 mg L -1 for garden cress. After 12 d exposure to 0.25 mg L -1 BACs, plant dry weight was reduced by 68% for lettuce and 75% for garden cress, and symptoms of toxicity (necrosis, chlorosis, wilting, etc.) were visible. High performance liquid chromatography-mass spectroscopy analysis showed the presence of BACs in the roots and shoots of both plant species. Although no conclusive relationship was established between the concentrations of six macro- or six micro-nutrients, growth inhibition or BAC uptake, N and Mg concentrations in BAC-treated lettuce were 50% lower than that of control, indicating that BACs might induce nutrient deficiency. Although bioavailability of a compound in hydroponics is significantly higher than that in soil, these results confirm the potential of BACs to harm vascular plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Garlic (Allium sativum) feeding impairs Sertoli cell junctional proteins in male Wistar rat testis: microscopy study.

    PubMed

    Hammami, I; Nahdi, A; Atig, F; El May, A; El May, M V

    2016-12-01

    Sertoli cell junctions, such as adhesion junction (AJ), gap junction (GJ) and tight junction (TJ), are important for maintaining spermatogenesis. In previous studies, we showed the inhibitory effect of crude garlic (Allium sativum, As) on spermatogenesis and steroidogenesis. The aim of this work was to complete our investigation on the impact of this plant, especially on Sertoli cell junctional proteins (SCJPs). During 1 month, 24 male rats were divided into groups: group control (0% of As) and treated groups fed 5%, 10% and 15% of As. Light and electron microscopy observations were performed to localise junctional proteins: connexin-43, Zona Occluding-1 and N-cadherin (immunohistochemistry) and to describe junctions. We showed that the specific cells involved in the localisation of the SCJP were similar in both control and treated groups, but with different immunoreactivity intensity between them. The electron microscopy observation focused on TJs between Sertoli cells, constituting the blood-testis barrier, showed ultrastructural changes such as fragmentation of TJs between adjacent Sertoli cell membranes and dilatation of rough endoplasmic reticulum saccules giving an aspect of scale to these junctions. We concluded that crude garlic consumption during 1 month induces perturbations on Sertoli cell junctions. These alterations can explain apoptosis in testicular germ cells previously showed. © 2016 Blackwell Verlag GmbH.

  9. Monitoring the efficacy of mutated Allium sativum leaf lectin in transgenic rice against Rhizoctonia solani.

    PubMed

    Ghosh, Prithwi; Sen, Senjuti; Chakraborty, Joydeep; Das, Sampa

    2016-03-01

    Rice sheath blight, caused by Rhizoctonia solani is one of the most devastating diseases of rice. It is associated with significant reduction in rice productivity worldwide. A mutant variant of mannose binding Allium sativum leaf agglutinin (mASAL) was previously reported to exhibit strong antifungal activity against R. solani. In this study, the mASAL gene has been evaluated for its in planta antifungal activity in rice plants. mASAL was cloned into pCAMBIA1301 binary vector under the control of CaMV35S promoter. It was expressed in an elite indica rice cv. IR64 by employing Agrobacterium tumefaciens-mediated transformation. Molecular analyses of transgenic plants confirmed the presence and stable integration of mASAL gene. Immunohistofluorescence analysis of various tissue sections of plant parts clearly indicated the constitutive expression of mASAL. The segregation pattern of mASAL transgene was observed in T1 progenies in a 3:1 Mendelian ratio. The expression of mASAL was confirmed in T0 and T1 plants through western blot analysis followed by ELISA. In planta bioassay of transgenic lines against R. solani exhibited an average of 55 % reduction in sheath blight percentage disease index (PDI). The present study opens up the possibility of engineering rice plants with the antifungal gene mASAL, conferring resistance to sheath blight.

  10. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants 1

    PubMed Central

    Sodek, Ladaslav; Lea, Peter J.; Miflin, Benjamin J.

    1980-01-01

    Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase activity developed initially in the testa, with maximum activity (3.6 micromoles per hour per seed) being present 13 days after flowering. Maximum activity (1.2 micromoles per hour per seed) did not develop in the cotyledon until 21 days after flowering. Glutamine synthetase and glutamate dehydrogenase were also present in the testae and cotyledons but maximum activity developed later than that of asparaginase. Potassium-dependent asparaginase activity was also detected in the developing seeds of Vicia faba, Phaseolus multiflorus, Zea mays, Hordeum vulgare, and two Lupinus varieties. No stimulation of activity was detected with the enzyme isolated from Lupinus polyphyllus, which has previously been shown to contain a K+-independent enzyme. PMID:16661136

  11. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.

    PubMed

    Ferraro, Kiva; Jin, Alena L; Nguyen, Trinh-Don; Reinecke, Dennis M; Ozga, Jocelyn A; Ro, Dae-Kyun

    2014-09-16

    Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. 'Courier' and 'Solido' PAs were primarily prodelphinidin-types, whereas the PAs from 'LAN3017' were mainly the procyanidin-type. The mean degree of polymerization of 'LAN3017' PAs was also higher than those from 'Courier' and 'Solido'. Next-generation sequencing of 'Courier' seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in

  12. Allium sativum (garlic) treatment for murine transitional cell carcinoma.

    PubMed

    Riggs, D R; DeHaven, J I; Lamm, D L

    1997-05-15

    Currently, immunotherapy with Bacillus Calmette-Guerin (BCG) is the most effective treatment for superficial bladder carcinoma, but treatment-related toxicity may limit its use in some patients. Alternative treatments are needed for patients who fail to respond to BCG immunotherapy. Allium sativum (AS), or garlic, is known to have a broad range of biologic activities, including immune stimulation and reported antitumor activity. For these reasons, the authors conducted a series of experiments designed to explore the possible therapeutic effects of AS in the MBT2 murine bladder carcinoma model. C3H/HeN mice were randomized prior to initiation of each experimental protocol. Mice received 1 x 10(3) MBT2 cells in 0.1 mL RPMI-1640, administered subcutaneously into the right thigh, on Day 0 of the experiment. AS was injected at the site of tumor transplantation on Day 1 and at 2- to 7-day intervals up to Day 28. To evaluate the effects of oral AS in this model, treatment was initiated 30 days prior to tumor inoculation and continued for 30 days after tumor inoculation. Animals in all experiments were followed for tumor incidence, tumor growth, and survival. In the initial experiments, subcutaneous AS significantly reduced tumor volume compared with the saline control (P < 0.05). Unfortunately, treatment-related death was also observed, requiring reduction in the total dose of AS. Animals that received 5 weekly immunizations of AS (5 mg, 5 mg, 1 mg, 1 mg, and 1 mg; cumulative dose = 13 mg) had significantly reduced tumor incidence, tumor growth, and increased survival when compared with animals that received the saline control. No treatment-related deaths were observed with this treatment schedule. To determine whether systemic AS administration might be effective, orally administered AS was tested at doses of 5 mg, 50 mg, and 500 mg per 100 mL of drinking water. Mice that received 50 mg oral AS had significant reductions in tumor volume (P < 0.05) when compared with

  13. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    PubMed

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-11-01

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.

    PubMed

    Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan

    2015-12-01

    Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of

  15. Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L.

    PubMed

    Martin, D N; Proebsting, W M; Parks, T D; Dougherty, W G; Lange, T; Lewis, M J; Gaskin, P; Hedden, P

    1996-01-01

    Treatment of tall and dwarf (3 beta-hydroxylase impaired) genotypes of pea (Pisum sativum L.) with the synthetic, highly active gibberellin (GA), 2,2-dimethyl GA4, reduced the shoot contents of C19-GAs, including GA1, and increased the concentration of the C20-GA, GA19. In shoots of the slender (la crys) mutant, the content of C19-GAs was lower and GA19 content was higher than in those of the tall line. Metabolism of GA19 and GA20 in leaves of a severe (na) GA-deficient dwarf mutant was reduced by GA treatment. The results suggest feed-back regulation of the 20-oxidation and 3 beta-hydroxylation reactions. Feed-back regulation of GA 20-oxidation was studied further using a cloned GA 20-oxidase cDNA from pea. The cDNA, Ps074, was isolated using polymerase chain reaction with degenerate oligonucleotide primers based on pumpkin and Arabidopsis 20-oxidase sequences. After expression of this cDNA clone in Escherichia coli, the product oxidized GA12 to GA15, GA24 and the C19-GA, GA9, which was the major product. The 13-hydroxylated substrate GA53 was similarly oxidized, but less effectively than GA12, giving mainly GA44 with low yields of GA19 and GA20. Ps074 hybridized to polyadenylated RNA from expanding shoots of pea. Amounts of this transcript were less in the slender genotype than in the tall line and were reduced in GA-deficient genotypes by treatment with GA3, suggesting that there is feed-back regulation of GA 20-oxidase gene expression.

  16. A comparative profile of methanol extracts of Allium cepa and Allium sativum in diabetic neuropathy in mice

    PubMed Central

    Bhanot, Abhishek; Shri, Richa

    2010-01-01

    Introduction: Diabetic Neuropathy (DN) is a major microvascular complication of uncontrolled diabetes. This may result from increased oxidative stress that accompanies diabetes. Hence plants with antioxidant action play an important role in management of diabetes and its complications. Materials and Methods: This study was designed to evaluate preventive as well as curative effect of methanol extracts of outer scales and edible portions of two plants with established antioxidant action - Allium cepa and Allium sativum, in induced DN in albino mice. Mice were divided into control, diabetic and test extracts treated groups. Test extracts were administered daily at a dose of 200 mg/kg p.o. for 21 days, in the preventive group prior to onset of DN, and in the curative group after the onset of DN. Hyperalgesia and oxidative stress markers were assessed. STZ-diabetic mice showed a significant thermal hyperalgesia (as assessed by the tail-flick test), indicating development of DN. Results: Treatment with test extracts prevented loss in body weight, decreased plasma glucose level, and significantly ameliorated the hyperalgesia, TBARS, serum nitrite and GSH levels in diabetic mice. Conclusion: Methanol extract of outer scales of onion has shown most significant improvement; may be due to higher content of phenolic compounds in outer scales of A. cepa. PMID:21713142

  17. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform.

    PubMed

    Ruffet, M L; Lebrun, M; Droux, M; Douce, R

    1995-01-15

    The intracellular compartmentation of serine acetyltransferase, a key enzyme in the L-cysteine biosynthesis pathway, has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in mitochondria (approximately 76% of total cellular activity). Significant activity was also identified in both the cytosol (14% of total activity) and chloroplasts (10% of total activity). Three enzyme forms were separated by anion-exchange chromatography, and each form was found to be specific for a given intracellular compartment. To obtain cDNA encoding the isoforms, functional complementation experiments were performed using an Arabidopsis thaliana expression library and an Escherichia coli mutant devoid of serine acetyltransferase activity. This strategy allowed isolation of three distinct cDNAs encoding serine acetyltransferase isoforms, as confirmed by enzyme activity measurements, genomic hybridizations, and nucleotide sequencing. The cDNA and related gene for one of the three isoforms have been characterized. The predicted amino acid sequence shows that it encodes a polypeptide of M(r) 34,330 exhibiting 41% amino acid identity with the E. coli serine acetyltransferase. Since none of the general features of transit peptides could be observed in the N-terminal region of this isoform, we assume that it is a cytosolic form.

  18. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling

    PubMed Central

    Müller, Kerstin; Linkies, Ada; Kermode, Allison R.

    2012-01-01

    Reactive oxygen species are increasingly perceived as players in plant development and plant hormone signalling pathways. One of these species, superoxide, is produced in the apoplast by respiratory burst oxidase homologues (rbohs), a family of proteins that is conserved throughout the plant kingdom. Because of the availability of mutants, the focus of research into plant rbohs has been on Arabidopsis thaliana, mainly on AtrbohD and AtrbohF. This study investigates: (i) a different member of the Atrboh family, AtrbohB, and (ii) several rbohs from the close relative of A. thaliana, Lepidium sativum (‘cress’). Five cress rbohs (Lesarbohs) were sequenced and it was found that their expression patterns were similar to their Arabidopsis orthologues throughout the life cycle. Cress plants in which LesarbohB expression was knocked down showed a strong seedling root phenotype that resembles phenotypes associated with defective auxin-related genes. These transgenic plants further displayed altered expression of auxin marker genes including those encoding the auxin responsive proteins 14 and 5 (IAA14 and IAA5), and LBD16 (LATERAL ORGAN BOUNDARIES DOMAIN16), an auxin-responsive protein implicated in lateral root initiation. It is speculated that ROS produced by rbohs play a role in root development via auxin signalling. PMID:23095998

  19. Phytotoxicity of glyphosate in the germination of Pisum sativum and its effect on germinated seedlings

    PubMed Central

    2017-01-01

    The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L) was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates) were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v). But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings. PMID:28728354

  20. Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme. I. Isolation and characterization. [Spinacia oleracea L. ; Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Steup, M.

    1990-11-01

    From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction withmore » the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by {sup 14}C-labeling experiments in which the glucosyl transfer from ({sup 14}C)glucose 1-phosphate to the polysaccharide preparation was monitored.« less

  1. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination

    PubMed Central

    Bag, Anwesa; Chattopadhyay, Rabi Ranjan

    2015-01-01

    The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf), cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity –guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative) of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50) and antioxidant (CI : 0.79) activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 – 0.917) as well as antioxidant capacity (R2 = 0.828) was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69%) and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was identified

  2. Control of Colletotrichum gloeosporioides (penz.) Sacc. In yellow passion fruit using Cymbopogon citratus essential oil

    PubMed Central

    Anaruma, Nina Duarte; Schmidt, Flávio Luís; Duarte, Marta Cristina Teixeira; Figueira, Glyn Mara; Delarmelina, Camila; Benato, liane Aparecida; Sartoratto, Adilson

    2010-01-01

    The use of antibiotics in agriculture is limited when compared to their applications in human and veterinary medicine. On the other hand, the use of antimicrobials in agriculture contributes to the drug resistance of human pathogens and has stimulated the search for new antibiotics from natural products. Essential oils have been shown to exert several biological activities including antibacterial and antifungal actions. The aim of this study was to determine the activity of 28 essential oils from medicinal plants cultivated at CPMA (Medicinal and Aromatic Plants Collection), CPQBA/UNICAMP, against Colletotrichum gloeosporioides (Penz.) Sacc., the anthracnose agent in yellow passion fruit (Passiflora edulis Sims f. flavicarpa Deg), as well as evaluating their effect in the control of post-harvest decay. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentrations (MIC) determined by the micro-dilution method. According to the results, 15 of the 28 essential oils presented activity against Colletotrichum gloeosporioides, and the following four oils presented MIC values between 0.25 and 0.3 mg/mL: Coriandrum sativum, Cymbopogon citratus, Cymbopogon flexuosus and Lippia alba. The evaluation of Cymbopogon citratus essential oil in the control of post-harvest decay in yellow passion fruit showed that the disease index of the samples treated with the essential oil did not differ (P ≤ 0.05) from that of the samples treated with fungicide. The present study shows the potential of Cymbopogon citratus essential oil in the control of the anthracnose agent in yellow passion fruit. PMID:24031465

  3. Control of Colletotrichum gloeosporioides (penz.) Sacc. In yellow passion fruit using Cymbopogon citratus essential oil.

    PubMed

    Anaruma, Nina Duarte; Schmidt, Flávio Luís; Duarte, Marta Cristina Teixeira; Figueira, Glyn Mara; Delarmelina, Camila; Benato, Liane Aparecida; Sartoratto, Adilson

    2010-01-01

    The use of antibiotics in agriculture is limited when compared to their applications in human and veterinary medicine. On the other hand, the use of antimicrobials in agriculture contributes to the drug resistance of human pathogens and has stimulated the search for new antibiotics from natural products. Essential oils have been shown to exert several biological activities including antibacterial and antifungal actions. The aim of this study was to determine the activity of 28 essential oils from medicinal plants cultivated at CPMA (Medicinal and Aromatic Plants Collection), CPQBA/UNICAMP, against Colletotrichum gloeosporioides (Penz.) Sacc., the anthracnose agent in yellow passion fruit (Passiflora edulis Sims f. flavicarpa Deg), as well as evaluating their effect in the control of post-harvest decay. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentrations (MIC) determined by the micro-dilution method. According to the results, 15 of the 28 essential oils presented activity against Colletotrichum gloeosporioides, and the following four oils presented MIC values between 0.25 and 0.3 mg/mL: Coriandrum sativum, Cymbopogon citratus, Cymbopogon flexuosus and Lippia alba. The evaluation of Cymbopogon citratus essential oil in the control of post-harvest decay in yellow passion fruit showed that the disease index of the samples treated with the essential oil did not differ (P ≤ 0.05) from that of the samples treated with fungicide. The present study shows the potential of Cymbopogon citratus essential oil in the control of the anthracnose agent in yellow passion fruit.

  4. Occurrence of N-phenylpropenoyl-L-amino acid amides in different herbal drugs and their influence on human keratinocytes, on human liver cells and on adhesion of Helicobacter pylori to the human stomach.

    PubMed

    Hensel, A; Deters, A M; Müller, G; Stark, T; Wittschier, N; Hofmann, T

    2007-02-01

    Thirty commonly used medicinal plants were screened by a selective and specific LC-MS/MS method for the occurrence of N-phenylpropenoyl- L-amino acid amides, a new homologous class of secondary products. In 15 plants, one or more of the respective derivatives (1 to 12) were found and quantitated. Especially roots from Angelica archangelica, fruits of Cassia angustifolia, C. senna, Coriandrum sativum, leaves from Hedera helix, flowers from Lavandula spec. and from Sambucus nigra contained high amounts (1 to 11 microg/g) of mixtures of the different amides 1 to 12. For functional investigations on potential activity in cellular physiology, two amides with an aliphatic (8) and an aromatic amino acid residue (5) were used. N-(E)-Caffeic acid L-aspartic acid amide (8) and N-(E)-caffeic acid L-tryptophan amide (5) stimulated mitochondrial activity as well as the proliferation rate of human liver cells (HepG2) at 10 microg/mL significantly. When monitoring the influence of selected phase I and II metabolizing enzymes, both compounds did not influence CYP3A4 gene expression, but stimulated CYP1A2 gene expression and inhibited GST expression. Also, the proliferation of human keratinocytes (NHK) was increased up to 150% by both amides 5 and 8; this stimulation was also detectable on the level of gene expression by an up-regulation of the transcription factor STAT6. The aliphatic aspartic compound 8 showed strong antiadhesive properties on the adhesion of Helicobacter pylori to human stomach tissue.

  5. Antidiabetic and Antioxidant Impacts of Desert Date (Balanites aegyptiaca) and Parsley (Petroselinum sativum) Aqueous Extracts: Lessons from Experimental Rats.

    PubMed

    Abou Khalil, Nasser S; Abou-Elhamd, Alaa S; Wasfy, Salwa I A; El Mileegy, Ibtisam M H; Hamed, Mohamed Y; Ageely, Hussein M

    2016-01-01

    Medicinal plants are effective in controlling plasma glucose level with minimal side effects and are commonly used in developing countries as an alternative therapy for the treatment of type 1 diabetes mellitus. The aim of this study is to evaluate the potential antidiabetic and antioxidant impacts of Balanites aegyptiaca and Petroselinum sativum extracts on streptozotocin-induced diabetic and normal rats. The influences of these extracts on body weight, plasma glucose, insulin, total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and liver-pyruvate kinase (L-PK) levels were assessed. Furthermore, the weight and histomorphological changes of the pancreas were studied in the different experimental groups. The herbal preparations significantly reduced the mean plasma glucose and MDA levels and significantly increased the mean plasma insulin, L-PK, and TAC levels in the treated diabetic groups compared to the diabetic control group. An obvious increase in the weight of the pancreas and the size of the islets of Langerhans and improvement in the histoarchitecture were evident in the treated groups compared to untreated ones. In conclusion, the present study provides a scientific evidence for the traditional use of these extracts as antidiabetic and antioxidant agents in type 1 diabetes mellitus.

  6. Antidiabetic and Antioxidant Impacts of Desert Date (Balanites aegyptiaca) and Parsley (Petroselinum sativum) Aqueous Extracts: Lessons from Experimental Rats

    PubMed Central

    Abou Khalil, Nasser S.; Abou-Elhamd, Alaa S.; Wasfy, Salwa I. A.; El Mileegy, Ibtisam M. H.; Hamed, Mohamed Y.; Ageely, Hussein M.

    2016-01-01

    Medicinal plants are effective in controlling plasma glucose level with minimal side effects and are commonly used in developing countries as an alternative therapy for the treatment of type 1 diabetes mellitus. The aim of this study is to evaluate the potential antidiabetic and antioxidant impacts of Balanites aegyptiaca and Petroselinum sativum extracts on streptozotocin-induced diabetic and normal rats. The influences of these extracts on body weight, plasma glucose, insulin, total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and liver-pyruvate kinase (L-PK) levels were assessed. Furthermore, the weight and histomorphological changes of the pancreas were studied in the different experimental groups. The herbal preparations significantly reduced the mean plasma glucose and MDA levels and significantly increased the mean plasma insulin, L-PK, and TAC levels in the treated diabetic groups compared to the diabetic control group. An obvious increase in the weight of the pancreas and the size of the islets of Langerhans and improvement in the histoarchitecture were evident in the treated groups compared to untreated ones. In conclusion, the present study provides a scientific evidence for the traditional use of these extracts as antidiabetic and antioxidant agents in type 1 diabetes mellitus. PMID:27019854

  7. Allergenicity Assessment of Allium sativum Leaf Agglutinin, a Potential Candidate Protein for Developing Sap Sucking Insect Resistant Food Crops

    PubMed Central

    Mondal, Hossain Ali; Chakraborti, Dipankar; Majumder, Pralay; Roy, Pampa; Roy, Amit; Bhattacharya, Swati Gupta; Das, Sampa

    2011-01-01

    Background Mannose-binding Allium sativum leaf agglutinin (ASAL) is highly antinutritional and toxic to various phloem-feeding hemipteran insects. ASAL has been expressed in a number of agriculturally important crops to develop resistance against those insects. Awareness of the safety aspect of ASAL is absolutely essential for developing ASAL transgenic plants. Methodology/Principal Findings Following the guidelines framed by the Food and Agriculture Organization/World Health Organization, the source of the gene, its sequence homology with potent allergens, clinical tests on mammalian systems, and the pepsin resistance and thermostability of the protein were considered to address the issue. No significant homology to the ASAL sequence was detected when compared to known allergenic proteins. The ELISA of blood sera collected from known allergy patients also failed to show significant evidence of cross-reactivity. In vitro and in vivo assays both indicated the digestibility of ASAL in the presence of pepsin in a minimum time period. Conclusions/Significance With these experiments, we concluded that ASAL does not possess any apparent features of an allergen. This is the first report regarding the monitoring of the allergenicity of any mannose-binding monocot lectin having insecticidal efficacy against hemipteran insects. PMID:22110739

  8. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  9. Effect of red pepper Capsicum annuum var. conoides and garlic Allium sativum on plasma lipid levels and cecal microflora in mice fed beef tallow.

    PubMed

    Kuda, Takashi; Iwai, Akiko; Yano, Toshihiro

    2004-10-01

    Antihyperlipidemia or hypocholesterolaemic and antibacterial activities of red hot pepper and garlic are well known. To determine the effect of the dietary spices ingested to suppress blood lipids on the intestinal condition, we examined plasma lipid levels and cecal microflora in mice that were fed diets containing 19% (w/w) beef tallow and 2% red pepper Capsicum annuum var. conoides 'Takanotume' (RP) or garlic Allium sativum 'White' (GP) for 4-weeks. Plasma triacylglyceride level was suppressed by the spices. RP lowered cecal bacteroidaceae, a predominant bacterial group (from 9.4 to 9.0 log CFU/g), bifidobacteria (from 8.7 to 7.6 log CFU/g), and staphylococci. Although GP increased the cecal weight including their contents, significant differences were not shown in the cecal microflora. These results suggest that RP can affect the intestinal condition and host health through the disturbance of intestinal microflora. Copyright 2004 Elsevier Ltd.

  10. Modulatory effects of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity and oxidative stress in rats.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu; Owoloye, Tosin R; Agbebi, Oluwaseun J

    2013-06-01

    To investigate the ameliorative effect of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity in rats. Adult male rats were randomly divided into four groups with six animals in each group. Groups 1 and 2 were fed basal diet while Groups 3 and 4 were fed diets containing 2% and 4% garlic respectively for 27 d prior to gentamycin administration. Hepatotoxicity was induced by the intraperitoneal administration of gentamycin (100 mg/kg body weight) for 3 d. The liver and plasma were studied for hepatotoxicity and antioxidant indices. Gentamycin induces hepatic damage as revealed by significant (P<0.05) elevation of liver damage marker enzymes (aspartate transaminase and alanine aminotransferase) and reduction in plasma albumin level. Gentamycin also caused a significant (P<0.05) alteration in plasma and liver enzymatic (catalase, glutathione and super oxygen dehydrogenises) and non-enzymatic (glutathione and vitamin C) antioxidant indices with concomitant increase in the malondialdehyde content; however, there was a significant (P<0.05) restoration of the antioxidant status coupled with significant (P<0.05) decrease in the tissues' malondialdehyde content, following consumption of diets containing garlic. These results suggest that dietary inclusion of garlic powder could protect against gentamycin-induced hepatotoxicity, improve antioxidant status and modulate oxidative stress; a function attributed to their phenolic constituents.

  11. Isolation and characterization of a dual function protein from Allium sativum bulbs which exhibits proteolytic and hemagglutinating activities.

    PubMed

    Parisi, Mónica G; Moreno, Silvia; Fernández, Graciela

    2008-04-01

    A dual function protein was isolated from Allium sativum bulbs and was characterized. The protein had a molecular mass of 25-26 kDa under non-reducing conditions, whereas two polypeptide chains of 12.5+/-0.5 kDa were observed under reducing conditions. E-64 and leupeptin inhibited the proteolytic activity of the protein, which exhibited characteristics similar to cysteine peptidase. The enzyme exhibited substrate specificity and hydrolyzed natural substrates such as alpha-casein (K(m): 23.0 microM), azocasein, haemoglobin and gelatin. It also showed a high affinity for synthetic peptides such as Cbz-Ala-Arg-Arg-OMe-beta-Nam (K(m): 55.24 microM, k(cat): 0.92 s(-1)). The cysteine peptidase activity showed a remarkable stability after incubation at moderate temperatures (40-50 degrees C) over a pH range of 5.5-6.5. The N-terminus of the protein displayed a 100% sequence similarity to the sequences of a mannose-binding lectin isolated from garlic bulbs. Moreover, the purified protein was retained in the chromatographic column when Con-A Sepharose affinity chromatography was performed and the protein was able to agglutinate trypsin-treated rabbit red cells. Therefore, our results indicate the presence of an additional cysteine peptidase activity on a lectin previously described.

  12. Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L. , Pisum sativum L. , and Vigna unguiculata (L. ) Walp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becana, M.; Paris, F.J.; Sandalio, L.M.

    1989-08-01

    The activity and isozymic composition of superoxide dismutase were determined in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. A Mn-SOD was present in Rhizobium and two in Bradyrhizobium and bacteroids. Nodule mitochondria from all three legume species had a single Mn-SOD with similar relative mobility, whereas the cytosol contained several CuZn-SODs: two in Phaseolus and Pisum, and four in Vigna. In the cytoplasm of V. unguiculata nodules, a Fe-containing SOD was also present, with an electrophoretic mobility between those of CuZn- and Mn-SODs, and an estimated molecular weight of 57,000. Total SOD activity ofmore » the soluble fraction of host cells, expressed on a nodule fresh weight basis, exceeded markedly that of bacteroids. Likewise, specific SOD activities of free-living bacteria were superior or equal to those of their symbiotic forms. Soluble extracts of bacteria and bacteroids did not show peroxidase activity, but the nodule cell cytoplasm contained diverse peroxidase isozymes which were readily distinguishable from leghemoglobin components by electrophoresis. Data indicated that peroxidases and leghemoglobins did not significantly interfere with SOD localization on gels. Treatment with chloroform-ethanol scarcely affected the isozymic pattern of SODs and peroxidases, and had limited success in the removal of leghemoglobin.« less

  13. Influence of Honey on the Suppression of Human Low Density Lipoprotein (LDL) Peroxidation (In vitro)

    PubMed Central

    Abd El-Hady, Faten K.

    2009-01-01

    The antioxidant activity of four honey samples from different floral sources (Acacia, Coriander, Sider and Palm) were evaluated with three different assays; DPPH free radical scavenging assay, superoxide anion generated in xanthine–xanthine oxidase (XOD) system and low density lipoprotein (LDL) peroxidation assay. The dark Palm and Sider honeys had the highest antioxidant activity in the DPPH assay. But all the honey samples exhibited more or less the same highly significant antioxidant activity within the concentration of 1mg honey/1 ml in XOD system and LDL peroxidation assays. The chemical composition of these samples was investigated by GC/MS and HPLC analysis, 11 compounds being new to honey. The GC/MS revealed the presence of 90 compounds, mainly aliphatic acids (37 compounds), which represent 54.73, 8.72, 22.87 and 64.10% and phenolic acids (15 compound) 2.3, 1.02, 2.07 and 11.68% for Acacia, Coriander, Sider and Palm honeys. In HPLC analysis, 19 flavonoids were identified. Coriander and Sider honeys were characterized by the presence of large amounts of flavonoids. PMID:18955249

  14. Influence of Honey on the Suppression of Human Low Density Lipoprotein (LDL) Peroxidation (In vitro).

    PubMed

    Hegazi, Ahmed G; Abd El-Hady, Faten K

    2009-03-01

    The antioxidant activity of four honey samples from different floral sources (Acacia, Coriander, Sider and Palm) were evaluated with three different assays; DPPH free radical scavenging assay, superoxide anion generated in xanthine-xanthine oxidase (XOD) system and low density lipoprotein (LDL) peroxidation assay. The dark Palm and Sider honeys had the highest antioxidant activity in the DPPH assay. But all the honey samples exhibited more or less the same highly significant antioxidant activity within the concentration of 1mg honey/1 ml in XOD system and LDL peroxidation assays. The chemical composition of these samples was investigated by GC/MS and HPLC analysis, 11 compounds being new to honey. The GC/MS revealed the presence of 90 compounds, mainly aliphatic acids (37 compounds), which represent 54.73, 8.72, 22.87 and 64.10% and phenolic acids (15 compound) 2.3, 1.02, 2.07 and 11.68% for Acacia, Coriander, Sider and Palm honeys. In HPLC analysis, 19 flavonoids were identified. Coriander and Sider honeys were characterized by the presence of large amounts of flavonoids.

  15. Insight into the biochemical, kinetic and spectroscopic characterization of garlic (Allium sativum) phytocystatin: Implication for cardiovascular disease.

    PubMed

    Siddiqui, Mohd Faizan; Ahmed, Azaj; Bano, Bilqees

    2017-02-01

    Phytocystatins are cysteine proteinase inhibitors present in plants. They play crucial role in maintaining protease-anti protease balance and are involved in various endogenous processes. Thus, they are suitable and convenient targets for genetic engineering which makes their isolation and characterisation from different sources the need of the hour. In the present study a phytocystatin has been isolated from garlic (Allium sativum) by a simple two-step process using ammonium sulphate fractionation and gel filtration chromatography on Sephacryl S-100HR with a fold purification of 152.6 and yield 48.9%. A single band on native gel electrophoresis confirms the homogeneity of the purified inhibitor. The molecular weight of the purified inhibitor was found to be 12.5kDa as determined by SDS-PAGE and gel filtration chromatography. The garlic phytocystatin was found to be stable under broad range of pH (6-8) and temperature (30°C-60°C). Kinetic studies suggests that garlic phytocystatins are reversible and non-competitive inhibitors having highest affinity for papain followed by ficin and bromelain. UV and fluorescence spectroscopy revealed significant conformational change upon garlic phytocystatin-papain complex formation. Secondary structure analysis was performed using CD and FTIR. Garlic phytocystatin possesses 33.9% alpha-helical content as assessed by CD spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests.

    PubMed

    Saha, Prasenjit; Majumder, Pralay; Dutta, Indrajit; Ray, Tui; Roy, S C; Das, Sampa

    2006-05-01

    Mannose binding Allium sativum leaf agglutinin (ASAL) has been shown to be antifeedant and insecticidal against sap-sucking insects. In the present investigation, ASAL coding sequence was expressed under the control of CaMV35S promoter in a chimeric gene cassette containing plant selection marker, hpt and gusA reporter gene of pCAMBIA1301 binary vector in an elite indica rice cv. IR64. Many fertile transgenic plants were generated using scutellar calli as initial explants through Agrobacterium-mediated transformation technology. GUS activity was observed in selected calli and in mature plants. Transformation frequency was calculated to be approximately 12.1%+/-0.351 (mean +/- SE). Southern blot analyses revealed the integration of ASAL gene into rice genome with a predominant single copy insertion. Transgene localization was detected on chromosomes of transformed plants using PRINS and C-PRINS techniques. Northern and western blot analyses determined the expression of transgene in transformed lines. ELISA analyses estimated ASAL expression up to 0.72 and 0.67% of total soluble protein in T0 and T1 plants, respectively. Survival and fecundity of brown planthopper and green leafhopper were reduced to 36% (P < 0.01), 32% (P < 0.05) and 40.5, 29.5% (P < 0.001), respectively, when tested on selected plants in comparison to control plants. Specific binding of expressed ASAL to receptor proteins of insect gut was analysed. Analysis of T1 progenies confirmed the inheritance of the transgenes. Thus, ASAL promises to be a potential component in insect resistance rice breeding programme.

  17. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae.

    PubMed

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-04-21

    Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods: Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites.

  18. Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum.

    PubMed

    Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E

    2012-12-01

    Three actinobacterial strains, CR30(T), CR36 and CR38(T), were isolated from rhizosphere soil of Pisum sativum plants collected in Spain. The strains were filamentous, Gram-stain-positive and produced single spores. Phylogenetic, chemotaxonomic and morphological analyses confirmed that the three strains belonged to the genus Micromonospora. 16S rRNA gene sequence analysis of strains CR30(T) and CR36 showed a close relationship to Micromonospora coriariae NAR01(T) (99.3% similarity) while strain CR38(T) had a similarity of 99.0% with Micromonospora saelicesensis Lupac 09(T). In addition, gyrB gene phylogeny clearly differentiated the novel isolates from recognized Micromonospora species. DNA-DNA hybridization, BOX-PCR and ARDRA profiles confirmed that these strains represent novel genomic species. The cell-wall peptidoglycan of strains CR30(T) and CR38(T) contained meso-diaminopimelic acid. Both strains had MK-10(H(4)) as the main menaquinone and a phospholipid type II pattern. An array of physiological tests also differentiated the isolates from their closest neighbours. Considering all the data obtained, it is proposed that strains CR30(T) and CR36 represent a novel species under the name Micromonospora cremea sp. nov. (type strain CR30(T) = CECT 7891(T) = DSM 45599(T)), whereas CR38(T) represents a second novel species, for which the name Micromonospora zamorensis sp. nov. is proposed, with CR38(T) ( = CECT 7892(T) = DSM 45600(T)) as the type strain.

  19. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis.

    PubMed

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G

    1994-08-01

    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.

  20. Larvicidal and repellent activity of medicinal plant extracts from Eastern Ghats of South India against malaria and filariasis vectors.

    PubMed

    Kamaraj, Chinnaperumal; Rahuman, Abdul Abdul; Bagavan, Asokan; Elango, Gandhi; Zahir, Abdul Abduz; Santhoshkumar, Thirunavukkarasu

    2011-09-01

    To evaluate the larvicidal and repellent activities of ethyl acetate and methanol extracts of Acacia concinna (A. concinna), Cassia siamea (C. siamea), Coriandrum sativum (C. sativum),Cuminum cyminum (C. cyminum), Lantana camara (L. camara), Nelumbo nucifera (N. nucifera) Phyllanthus amarus (P. amarus), Piper nigrum (P. nigrum) and Trachyspermum ammi (T. ammi) against Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus). The larvicidal activity of medicinal plant extracts were tested against early fourth-instar larvae of malaria and filariasis vectors. The mortality was observed 24 h and 48 h after treatment, data were subjected to probit analysis to determine the lethal concentrations (LC(50) and LC(90)) to kill 50 and 90 per cent of the treated larvae of the tested species. The repellent efficacy was determined against two mosquito species at five concentrations (31.25, 62.50, 125.00, 250.00, and 500.00 ppm) under the laboratory conditions. All plant extracts showed moderate effects after 24 h and 48 h of exposure; however, the highest activity was observed after 24 h in the leaf methanol extract of N. nucifera, seed ethyl acetate and methanol extract of P. nigrum against the larvae of An. stephensi (LC(50) = 34.76, 24.54 and 30.20 ppm) and against Cx. quinquefasciatus (LC(50) = 37.49, 43.94 and 57.39 ppm), respectively. The toxic effect of leaf methanol extract of C. siamea, seed methanol extract of C. cyminum, leaf ethyl acetate extract of N. nucifera, leaf ethyl acetate and methanol extract of P. amarus and seed methanol extract of T. ammi were showed 100% mortality against An. stephensi and Cx. quinquefasciatus after 48 h exposer. The maximum repellent activity was observed at 500 ppm in methanol extracts of N. nucifera, ethyl acetate and methanol extract of P. nigrum and methanol extract of T. ammi and the mean complete protection time ranged from 30 to 150 min with the different extracts tested. These results suggest that

  1. Combined proteomic and molecular approaches for cloning and characterization of copper-zinc superoxide dismutase (Cu, Zn-SOD2) from garlic (Allium sativum).

    PubMed

    Hadji Sfaxi, Imen; Ezzine, Aymen; Coquet, Laurent; Cosette, Pascal; Jouenne, Thierry; Marzouki, M Nejib

    2012-09-01

    Superoxide dismutases (SODs; EC 1.15.1.1) are key enzymes in the cells protection against oxidant agents. Thus, SODs play a major role in the protection of aerobic organisms against oxygen-mediated damages. Three SOD isoforms were previously identified by zymogram staining from Allium sativum bulbs. The purified Cu, Zn-SOD2 shows an antagonist effect to an anticancer drug and alleviate cytotoxicity inside tumor cells lines B16F0 (mouse melanoma cells) and PAE (porcine aortic endothelial cells). To extend the characterization of Allium SODs and their corresponding genes, a proteomic approach was applied involving two-dimensional gel electrophoresis and LC-MS/MS analyses. From peptide sequence data obtained by mass spectrometry and sequences homologies, primers were defined and a cDNA fragment of 456 bp was amplified by RT-PCR. The cDNA nucleotide sequence analysis revealed an open reading frame coding for 152 residues. The deduced amino acid sequence showed high identity (82-87%) with sequences of Cu, Zn-SODs from other plant species. Molecular analysis was achieved by a protein 3D structural model.

  2. Expression of PsGRP1, a novel glycine rich protein gene of Pisum sativum, is induced in developing fruit and seed and by ABA in pistil and root.

    PubMed

    Urbez, Cristina; Cercós, Manuel; Perez-Amador, Miguel A; Carbonell, Juan

    2006-05-01

    A novel glycine-rich protein gene, PsGRP1, has been identified in Pisum sativum L. Accumulation of PsGRP1 transcripts was observed in reproductive organs and vegetative tissues. They were localized in endocarp sclerenchyma during fruit development in cells that will lignify. PsGRP1 expression was also detected in senescent pistils and developing seeds and induced by ABA treatment in presenescent pistils. A raise in the expression was also observed in roots after treatment with ABA or mannitol but not under cold stress. A mannitol treatment induced a rise in ABA levels and fluridone treatment counteracted the mannitol induction of PsGRP1 expression. The results suggest a possible role for PsGRP1 in differentiation of the endocarp sclerenchyma and during seed development, pistil senescence and osmotic stress under ABA control.

  3. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.

    PubMed

    Seneviratne, Herana Kamal; Dalisay, Doralyn S; Kim, Kye-Won; Moinuddin, Syed G A; Yang, Hong; Hartshorn, Christopher M; Davin, Laurence B; Lewis, Norman G

    2015-05-01

    Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats.

    PubMed

    Naderi, R; Mohaddes, G; Mohammadi, M; Alihemmati, A; Badalzadeh, R; Ghaznavi, R; Ghyasi, R; Mohammadi, Sh

    2015-12-01

    Since some complications of diabetes mellitus may be caused or exacerbated by an oxidative stress, the protective effects of garlic (Allium sativum) were investigated in the blood and heart of streptozotocin-induced diabetic rats. Twenty-eight male Wistar rats were randomly divided into four groups: control, garlic, diabetic, and diabetic+garlic. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (50 mg/kg) in male rats. Rats were fed with raw fresh garlic homogenate (250 mg/kg) six days a week by gavage for a period of 6 weeks. At the end of the 6th week blood samples and heart tissues were collected and used for determination of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and histological evaluation. Induction of diabetes increased MDA levels in blood and homogenates of heart. In diabetic rats treated with garlic, MDA levels decreased in blood and heart homogenates. Treatment of diabetic rats with garlic increased SOD, GPX and CAT in blood and heart homogenates. Histopathological finding of the myocardial tissue confirmed a protective role for garlic in diabetic rats. Thus, the present study reveals that garlic may effectively modulate antioxidants status in the blood and heart of streptozotocin induced-diabetic rats.

  5. Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum).

    PubMed

    Kimbaris, Athanasios C; Siatis, Nikolaos G; Daferera, Dimitra J; Tarantilis, Petros A; Pappas, Christos S; Polissiou, Moschos G

    2006-01-01

    A comparative study of traditional simultaneous distillation extraction (SDE), microwave assisted hydrodistillation extraction (MWHD) and ultrasound-assisted extraction (USE) is presented, for the extraction of essential oils from fresh garlic (Allium sativum) cloves. Each method is evaluated in terms of qualitative and quantitative composition of the isolated essential oil. The highly reactive sulfur molecules of the garlic volatile fraction show variable response to the different isolation methods. The application of ultrasound for the extraction of the essential oil is considered to cause a lesser damage of thermal-sensitive molecules, thus, providing a better approach of the compounds primarily responsible for the characteristic odor and taste of freshly chopped garlic. All heat-involving isolation procedures have been shown to differentiate the volatile-fraction profile as analyzed by GC-MS. Especially when grouping the compounds into cyclic and acyclic, the percentage concentrations drop from 77.4% to 8.7% for the acyclic while that of the cyclic compounds increase from 4.7% to 70.8%. The observed fact may be attributed to the effect of the heat applied, which changes from harsh thermal treatment (SDE) to short time thermal (MWHD) and room-temperature isolation (USE). The use of USE proves to be crucial in order to provide reliable insight into garlic's chemistry.

  6. Identification of candidate amino acids involved in the formation of blue pigments in crushed garlic cloves (Allium sativum L.).

    PubMed

    Cho, Jungeun; Lee, Eun Jin; Yoo, Kil Sun; Lee, Seung Koo; Patil, Bhimanagouda S

    2009-01-01

    The color-forming ability of amino acids with thiosulfinate in crushed garlic was investigated. We developed reaction systems for generating pure blue pigments using extracted thiosulfinate from crushed garlic and onion and all 22 amino acids. Each amino acid was reacted with thiosulfinate solution and was then incubated at 60 degrees C for 3 h to generate pigments. Unknown blue pigments, responsible for discoloration in crushed garlic cloves (Allium sativum L.), were separated and tentatively characterized using high-performance liquid chromatography (HPLC) and a diode array detector ranging between 200 and 700 nm. Blue pigment solutions exhibited 2 maximal absorbance peaks at 440 nm and 580 nm, corresponding to yellow and blue, respectively, with different retention times. Our findings indicated that green discoloration is created by the combination of yellow and blue pigments. Eight naturally occurring blue pigments were separated from discolored garlic extracts using HPLC at 580 nm. This suggests that garlic discoloration is not caused by only 1 blue pigment, as reported earlier, but by as many as 8 pigments. Overall, free amino acids that formed blue pigment when reacted with thiosulfinate were glycine, arginine, lysine, serine, alanine, aspartic acid, asparagine, glutamic acid, and tyrosine. Arginine, asparagine, and glutamine had spectra that were more similar to naturally greened garlic extract.

  7. SPME determination of volatile aldehydes for evaluation of in-vitro antioxidant activity.

    PubMed

    Stashenko, Elena E; Puertas, Miguel A; Martínez, Jairo R

    2002-05-01

    The in-vitro antioxidant activity of natural (essential oils, vitamin E) or synthetic substances ( tert-butyl hydroxy anisole (BHA), Trolox) has been evaluated by monitoring volatile carbonyl compounds released in model lipid systems subjected to peroxidation. The procedure employed methodology previously developed for the determination of carbonyl compounds as their pentafluorophenylhydrazine derivatives which were quantified, with high sensitivity, by means of capillary gas chromatography with electron-capture detection. Linoleic acid and sunflower oil were used as model lipid systems. Lipid peroxidation was induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 degrees C, 12 h) and in sunflower oil by heating in the presence of O2 (220 degrees C, 2 h). The change in hexanal (the main lipoxidation product) concentration found in the lipid matrix subjected to oxidation with and without the substance being tested was used to calculate the antioxidant protection effect. These procedures were employed to evaluate the antioxidant activity of the essential oils of cilantro ( Coriander sativum L.), fennel ( Foeniculum vulgare Mill.), rosemary ( Rosmarinus officinalis L.), "salvia negra" ( Lepechinia schiedeana), and oregano ( Origanum vulgare L.), and the well-known antioxidants BHA, vitamin E, and Trolox, its water-soluble analog. In the sunflower oil system, the essential oils had a stronger protective effect against lipid peroxidation than BHA, vitamin E, and Trolox within the range of concentrations examined (1-20 g L-1). The highest protecting effect, corresponding to a 90% drop in hexanal release, was observed for cilantro oil at 10 g L-1.

  8. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  9. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil.

    PubMed

    Mukherjee, Arnab; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Rico, Cyren M; Zhao, Lijuan; Gardea-Torresdey, Jorge L

    2014-01-01

    The toxicological effects of zinc oxide nanoparticles (ZnO NPs) in plants are still largely unknown. In the present study, green pea (Pisum sativum L.) plants were treated with 0, 125, 250, and 500 mg kg(-1) of either ZnO NPs or bulk ZnO in organic matter enriched soil. Corresponding toxicological effects were measured on the basis of plant growth, chlorophyll production, Zn bioaccumulation, H2O2 generation, stress enzyme activity, and lipid peroxidation using different cellular, molecular, and biochemical approaches. Compared to control, all ZnO NP concentrations significantly increased (p ≤ 0.05) root elongation but no effects were observed in the stem. Whereas all bulk ZnO treatments significantly increased both root and stem length. After 25 days, chlorophyll in leaves decreased, compared to control, by ~61%, 67%, and 77% in plants treated with 125, 250, and 500 mg kg(-1) ZnO NPs, respectively. Similar results were found in bulk ZnO treated plants. At all ZnO NP concentrations CAT was significantly reduced in leaves (p ≤ 0.05), while APOX was reduced in both roots and leaves. In the case of bulk ZnO, APOX activity was down-regulated in the root and leaf and CAT was unaffected. At 500 mg kg(-1) treatment, the H2O2 in leaves increased by 61% with a twofold lipid peroxidation, which would be a predictive biomarker of nanotoxicity. This study could be pioneering in evaluating the phytotoxicity of ZnO NPs to green peas and can serve as a good indicator for measuring the effects on ZnO NPs in plants grown in organic matter enriched soil.

  10. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread

    PubMed Central

    Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-01-01

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230

  11. [Pea (Pisum sativum) genes, participating in symbiosis with nitrogen-fixing bacteria. III. Study of the structure of the ENOD12 early nodulin gene for various types of peas using the polymerase chain reaction (PCR)].

    PubMed

    Kozik, A V; Matvienko, M A; Men', A E; Zalenskiĭ, A O; Tikhonovich, I A

    1992-01-01

    We have determined the length of early noduline gene ENOD12 in various varieties and lines of pea (Pisum sativum) using the polymerase chain reaction (PCR). It was demonstrated that promoter regions of ENOD12A and ENOD12B genes in line 2150 (Afghanistan) are longer than these in variety "Feltham first". The disparity is 14 bp. When studying these genes in 7 different lines and varieties of pea it was found that ENOD12A gene is more variable in size than the ENOD12B gene. We showed the possibility to analyze the heritage of ENOD12 gene's alleles by using the PCR method.

  12. Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests.

    PubMed

    Bharathi, Y; Vijaya Kumar, S; Pasalu, I C; Balachandran, S M; Reddy, V D; Rao, K V

    2011-03-20

    We have developed transgene pyramided rice lines, endowed with enhanced resistance to major sap-sucking insects, through sexual crosses made between two stable transgenic rice lines containing Allium sativum (asal) and Galanthus nivalis (gna) lectin genes. Presence and expression of asal and gna genes in pyramided lines were confirmed by PCR and western blot analyses. Segregation analysis of F₂ progenies disclosed digenic (9:3:3:1) inheritance of the transgenes. Homozygous F₃ plants carrying asal and gna genes were identified employing genetic and molecular methods besides insect bioassays. Pyramided lines, infested with brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH), proved more effective in reducing insect survival, fecundity, feeding ability besides delayed development of insects as compared to the parental transgenics. Under infested conditions, pyramided lines were found superior to the parental transgenics in their seed yield potential. This study represents first report on pyramiding of two lectin genes into rice exhibiting enhanced resistance against major sucking pests. The pyramided lines appear promising and might serve as a novel genetic resource in rice breeding aimed at durable and broad based resistance against hoppers. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.).

    PubMed

    Fichtner, Franziska; Barbier, Francois F; Feil, Regina; Watanabe, Mutsumi; Annunziata, Maria Grazia; Chabikwa, Tinashe G; Höfgen, Rainer; Stitt, Mark; Beveridge, Christine A; Lunn, John E

    2017-11-01

    Trehalose 6-phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2-oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration-dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  14. Increase in the permeability of tonoplast of garlic (Allium sativum) by monocarboxylic acids.

    PubMed

    Bai, Bing; Li, Lei; Hu, Xiaosong; Wang, Zhengfu; Zhao, Guanghua

    2006-10-18

    Immersion of intact aged garlic (Allium sativum) cloves in a series of 5% weak organic monocarboxylate solutions (pH 2.0) resulted in green color formation. No color was formed upon treatment with other weak organic acids, such as citric and malic acids, and the inorganic hydrochloric acid under the same conditions. To understand the significance of monocarboxylic acids and their differing function from that of other acids, acetic acid was compared with organic acids citric and malic and the inorganic hydrochloric acid. The effects of these acids on the permeability of plasma and intracellular membrane of garlic cells were measured by conductivity, light microscopy, and transmission electron microscopy. Except for hydrochloric acid, treatment of garlic with all three organic acids greatly increased the relative conductivity of their respective pickling solutions, indicating that all tested organic acids increased the permeability of plasma membrane. Moreover, a pickling solution containing acetic acid exhibited 1.5-fold higher relative conductivity (approximately 90%) as compared to those (approximately 60%) of both citric and malic acids, implying that exposure of garlic cloves to acetic acid not only changed the permeability of the plasma membrane but also increased the permeability of intracellular membrane. Exposure of garlic to acetic acid led to the production of precipitate along the tonoplast, but no precipitate was formed by citric and malic acids. This indicates that the structure of the tonoplast was damaged by this treatment. Further support for this conclusion comes from results showing that the concentration of thiosulfinates [which are produced only by catalytic conversion of S-alk(en)yl-l-cysteine sulfoxides in cytosol by alliinase located in the vacuole] in the acetic acid pickling solution is 1.3 mg/mL, but almost no thiosulfinates were detected in the pickling solution of citric and malic acids. Thus, all present results suggest that damage of

  15. Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L. ) seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, T.W.; Briggs, W.R.

    1990-01-01

    When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with {gamma}-({sup 32}P)ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of the reactionsmore » described. However, the fluence-response relationships for the change in detectable phosphorylation match quite closely those reported for phototropism but not those for growth inhibition. Blue light has also been found to regulate the capacity for in vitro phosphorylation of a second protein. It has an apparent molecular mass of 84 kilodaltons and is localized primarily in basal stem sections.« less

  16. Prospects of Apicultural Entrepreneurship in Coastal Districts of Eastern India: A Melissopalynological Evaluation

    PubMed Central

    Upadhyay, Debasis; Bhattacharya, Swapan; Ferguson, David K.; Bera, Subir

    2014-01-01

    A melissopalynological analysis of fifty-one natural honey samples (twenty four spring, fifteen summer and twelve winter) collected during 2010–2011 from two east-coastal districts (20020/ to 22011/ N, 82039/ to 87001/ E) of Orissa, India was performed. Out of 37 unifloral samples found 25 were contributed by Apis cerana indica, seven by A. dorsata and the remaining five by A. florea. Out of 14 multifloral samples five were contributed by A. cerana indica, five by A. dorsata and the remaining four by A. florea. Principal component analysis confirmed the palynological classification of the unifloral honey samples. Eighty-two bee-plant taxa belonging to forty four families were recovered. The predominant nectariferous taxa of the spring season were Acanthus ilicifolius, Avicennia marina, Bruguiera gymnorrhiza, Cocos nucifera, Eucalyptus globulus, Phoenix paludosa, Pongamia pinnata, Prosopis juliflora, Sonneratia apetala and Syzygium cumini. In the summer the predominant nectariferous taxa were Borassus flabellifer, C. nucifera, E. globulus, Syzygium cumini, Terminalia arjuna, Aegiceras corniculatum, P. paludosa and Sonneratia apetala while those of the winter were Brassica nigra, Coriandrum sativum, Zizyphus jujuba, Alstonia scholaris, E. globulus and Bruguiera gymnorrhiza. Very low (<0.09) HDE/P for 98% of the samples and absence of toxic palynotaxa assure that these honeys are suitable for human consumption. Quite extended honey flow period with spring and summer as best forage seasons for the honeybees and occurrence of 82% of these honeys with APC Group II, III and IV justify the sustainability of the present study area for establishing moderate to large-scale apicultural entrepreneurship. This should improve the socio-economic status of the people of this region. PMID:24740144

  17. Prospects of apicultural entrepreneurship in coastal districts of eastern India: a melissopalynological evaluation.

    PubMed

    Upadhyay, Debasis; Bhattacharya, Swapan; Ferguson, David K; Bera, Subir

    2014-01-01

    A melissopalynological analysis of fifty-one natural honey samples (twenty four spring, fifteen summer and twelve winter) collected during 2010-2011 from two east-coastal districts (20(0)20/ to 22(0)11/ N, 82(0)39/ to 87(0)01/ E) of Orissa, India was performed. Out of 37 unifloral samples found 25 were contributed by Apis cerana indica, seven by A. dorsata and the remaining five by A. florea. Out of 14 multifloral samples five were contributed by A. cerana indica, five by A. dorsata and the remaining four by A. florea. Principal component analysis confirmed the palynological classification of the unifloral honey samples. Eighty-two bee-plant taxa belonging to forty four families were recovered. The predominant nectariferous taxa of the spring season were Acanthus ilicifolius, Avicennia marina, Bruguiera gymnorrhiza, Cocos nucifera, Eucalyptus globulus, Phoenix paludosa, Pongamia pinnata, Prosopis juliflora, Sonneratia apetala and Syzygium cumini. In the summer the predominant nectariferous taxa were Borassus flabellifer, C. nucifera, E. globulus, Syzygium cumini, Terminalia arjuna, Aegiceras corniculatum, P. paludosa and Sonneratia apetala while those of the winter were Brassica nigra, Coriandrum sativum, Zizyphus jujuba, Alstonia scholaris, E. globulus and Bruguiera gymnorrhiza. Very low (<0.09) HDE/P for 98% of the samples and absence of toxic palynotaxa assure that these honeys are suitable for human consumption. Quite extended honey flow period with spring and summer as best forage seasons for the honeybees and occurrence of 82% of these honeys with APC Group II, III and IV justify the sustainability of the present study area for establishing moderate to large-scale apicultural entrepreneurship. This should improve the socio-economic status of the people of this region.

  18. Development of an Efficient Agrobacterium-Mediated Transformation System and Production of Herbicide-Resistant Transgenic Plants in Garlic (Allium sativum L.)

    PubMed Central

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-01-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst non-transgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764

  19. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.).

    PubMed

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-08-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.

  20. Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds

    PubMed Central

    2011-01-01

    Background For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. Results By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. Conclusions Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product. PMID:21548923

  1. Diversity evaluation based on morphological, physiological and isozyme variation in genetic resources of garlic (Allium sativum L.) collected worldwide.

    PubMed

    Hirata, Sho; Abdelrahman, Mostafa; Yamauchi, Naoki; Shigyo, Masayoshi

    2016-11-26

    The aim of this study was to obtain primary information about the global diversity of garlic (Allium sativum L.) by evaluating morphological, physiological and isozyme variation. A total of 107 garlic accessions collected worldwide were grown in Yamaguchi, Japan. Five morphological traits (bulb weight, bulb diameter, number of cloves per bulb, number of bulbils and scape length) and one physiological trait (bolting period) of the collected garlic showed wide variation. Meanwhile, a total of 140 garlic accessions, including the 107 mentioned above, were characterized by leucine aminopeptidase (LAP) and phosphoglucoisomerase (PGI) isozyme analyses; they clearly showed polymorphisms in putative isozyme loci (Lap-1, Lap-2 and Pgi-1). Allelic frequencies were estimated in each group of accessions categorized by their geographical origin, and the observed (H o ) and expected (H e ) heterozygosities were calculated. The allelic frequencies differed between groups. A principal component analysis based on morpho-physiological data indicated a grouping of the garlic accessions into Central Asian and Northern Mediterranean groups as well as others. We discuss the roles of artificial and natural selection that may have caused differentiation in these traits, on the assumption that ancestral domesticated garlic populations have adapted in various regions using standing variation or mutations that accumulated during expansion, and have evolved along with human-preferred traits over a long history of cultivation.

  2. [Research progress on the cloning of Mendel's gene in pea (Pisum sativum L.) and its application in genetics teaching].

    PubMed

    He, Feng-Hua; Zhu, Bi-Yan; Gao, Feng; Li, Shao-Shan; Li, Niang-Hui

    2013-07-01

    One hundred and fifty years ago, Gregor Mendel investigated the segregation of seven traits in pea (Pisum sativum) and established the law of segregation and the law of independent assortment in genetics. After the two laws of genetics were rediscovered in 1900, the seven traits have been extensively investigated in the fields of plant physiology and biochemistry as well as in the cell and molecular levels. Recently, with the development of molecular technology in genetics, four genes for seed shape (R), stem length (Le), cotyledon colour (I), and flower colour (A) have been cloned and sequenced; and another three genes for immature pod colour (Gp), fasciation (Fa) and pod form (V) have been located in the linkage groups, respectively. The identification and cloning of the four Mendel's genes will help deeply understand the basic concept of gene in many respects: like the diversity of gene function, the different origins for gene mutation in molecular level, and the molecular nature of a dominant gene or a recessive gene. In teaching of genetics, the introduction of most recent research advancements of cloning of Mendel's genes to the students and the interpretation of the Mendel's laws in molecular level will help students promote their learning interests in genetics and help students grasp the whole content from classical genetics to molecular genetics and the developmental direction of this subject.

  3. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet.

    PubMed

    Kim, Inhye; Kim, Haeng-Ran; Kim, Jae-Hyun; Om, Ae-Son

    2013-08-30

    This study was designed to examine the potential health benefits of Allium sativum L. (garlic) stem extract (ASSE) on obesity and related disorders in high-fat diet-induced obese mice. Obese mice were orally administered ASSE at doses of 100, 250 and 500 mg kg(-1) body weight day(-1) for 4 weeks. Consumption of ASSE significantly suppressed body weight gain and white adipose tissue (WAT) weight regardless of daily food intake. Obese mice fed ASSE also exhibited a significant decrease in WAT cell size. The decreased level of adiponectin and increased level of leptin in obese mice reverted to near normal mice levels in ASSE-treated mice. ASSE administration significantly improved lipid parameters of the serum and liver and inhibited fat accumulation in the liver by modulating the activities of hepatic lipid-regulating enzymes in obese mice. Administration of ASSE also led to significant increases in antioxidant enzymes and suppressed glutathione depletion and lipid peroxidation in hepatic tissue. These results suggest that ASSE may ameliorate obesity, insulin resistance and oxidative damage in high-fat diet-induced obese mice. © 2013 Society of Chemical Industry.

  4. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.

    PubMed

    Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus

    2013-05-01

    The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.

  5. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages.

    PubMed

    Serova, Tatiana A; Tsyganova, Anna V; Tsyganov, Viktor E

    2018-04-03

    Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix - -1 (sym40), SGEFix - -3 (sym26), and SGEFix - -7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix - -2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.

  6. Synergistic antiosteoporotic effect of Lepidium sativum and alendronate in glucocorticoid-induced osteoporosis in Wistar rats.

    PubMed

    Elshal, Mohamed F; Almalki, Abdulrahman L; Hussein, Hussein K; Khan, Jalal A

    2013-01-01

    Alendronate belongs to a class of drugs called bisphosphonates. Bisphosphonates (BP) therapy is a vital option to reduce the risk of bone fracture in people who suffer from osteoporosis. Yet, bisphosphonate have displayed several side effects. Lepidium sativum (LS) seeds have been used in traditional folk medicine to heal fractured bones. However, there is a dearth of information on the impact of LS on bone metabolism especially in cases of glucocorticoids induced osteoporosis. Therefore, the aim of the study was to compare the biochemical bone markers and histological responses of LS alone (6 g of LS seeds in diet daily, n=8), ALD (alendronate, 70 mg/kg s.c.; n=8) alone, or LS and ALD combined in a rat model of glucocorticoid-induced osteoporosis (GIO) by injecting rats with methylprednisolone 3.5 mg/kg per day for 4 weeks. Serum calcium (Ca), albumin, phosphorus (P), bone-specific alkaline phosphatase (b-ALP), and tartrate-resistant acid phosphatase (TRAP) were measured 4 weeks after induction of GIO. GIO-group showed significantly increased serum TRAP and decreased b-ALP. GIO-group also showed significantly decreased serum P and unaltered Ca concentrations. Histological examination of GIO-group tibia bones indicated an osteoporotic change and a concomitant decrease in percentage of trabecular area or bone marrow area (PTB) in the proximal femoral epiphysis. Treatment with either LS and/or ALD ameliorated the above mentioned changes with variable degrees, with a net results of enhanced serum calcium, bone architecture, PTB, b-ALP and decreased TRAP in LS and LS+ALD groups compared to that of animals treated with alendronate alone. In conclusion, our findings present evidence supporting the potential benefits of LS in reducing the burden of GCs on bone health.

  7. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread.

    PubMed

    Rizzello, Carlo Giuseppe; Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-06-15

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Mobile organic compounds in biochar - a potential source of contamination - phytotoxic effects on cress seed (Lepidium sativum) germination.

    PubMed

    Buss, Wolfram; Mašek, Ondřej

    2014-05-01

    Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum.

    PubMed

    Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing

    2016-12-01

    Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.

  10. Aqueous Extract of Allium sativum (Linn.) Bulbs Ameliorated Pituitary-Testicular Injury and Dysfunction in Wistar Rats with Pb-Induced Reproductive Disturbances.

    PubMed

    Ayoka, Abiodun O; Ademoye, Aderonke K; Imafidon, Christian E; Ojo, Esther O; Oladele, Ayowole A

    2016-06-15

    To determine the effects of aqueous extract of Allium sativum bulbs (AEASAB) on pituitary-testicular injury and dysfunction in Wistar rats with lead-induced reproductive disturbances. Male Wistar rats were divided into 7 groups such that the control group received propylene glycol at 0.2 ml/100 g intraperitoneally for 10 consecutive days, the toxic group received lead (Pb) alone at 15 mg/kg/day via intraperitoneal route for 10 days while the treatment groups were pretreated with lead as the toxic group after which they received graded doses of the extract at 50, 100 and 200 mg/kg/day via oral route for 28 days. Pb administration induced significant deleterious alterations in the antioxidant status of the brain and testis, sperm characterization (counts, motility and viability) as well as reproductive hormones (FSH, LH and testosterone) of exposed rats (p < 0.05). These were significantly reversed in the AEASAB-treated groups (p < 0.05). Also, there was marked improvement in the Pb-induced vascular congestion and cellular loss in the pituitary while the observed Pb-induced severe testicular vacuolation was significantly reversed in the representative photomicrographs, following administration of the extract. AEASAB treatment ameliorated the pituitary-testicular injury and dysfunction in Wistar rats with Pb-Induced reproductive disturbances.

  11. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features.

    PubMed

    McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.

  12. Acclimatization of Pisum sativum L., grown in soil contaminated with veterinary antibiotics, an attribute of dose hormetic response of root metabolites.

    PubMed

    Tasho, R P; Shin, W T; Cho, J Y

    2018-09-01

    Plant-veterinary antibiotic interaction has been widely studied, however, to the best of our knowledge acclimatization studies with regard to changes in plant root metabolites has not been reported so far. The purpose of this study was to examine the changes in the metabolome of pea roots under antibiotic stress and their role in acclimatization. Pisum sativum L. was grown in soil contaminated with three commonly used veterinary antibiotics - kanamycin (KA), sulfamethazine (SA), and tetracycline (TC). In response to antibiotic stress, plants accumulated different types of low molecular weight compounds that provided protection from stress by contributing to ROS detoxification, protection of membrane integrity, efficient signaling, cell wall function, and cellular osmotic adjustment (glucose, galactose, myo-inositol, stigmasterol, octadecadienoic acid, l-proline). The concentration of amino acid, sugar, and triglyceride metabolites in KA and TC samples showed a dose-dependent biphasic (hormesis) fluctuation. This was mirrored in the metabolite abundance as well as the physiological attributes (mycorrhizal colonization, GST function, nutrient assimilation), which helped in the acclimatization without the loss of normal plant function. SA, on the other hand, had progressive toxic effects with increasing concentration. PCA revealed the differences to be due to SA treatments and in sterol and terpenoid metabolites. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features

    PubMed Central

    McDonald, Linda S.; Panozzo, Joseph F.; Salisbury, Phillip A.; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective. PMID:27176469

  14. Novel rod-shaped viruses isolated from garlic, Allium sativum, possessing a unique genome organization.

    PubMed

    Sumi, S; Tsuneyoshi, T; Furutani, H

    1993-09-01

    Rod-shaped flexuous viruses were partially purified from garlic plants (Allium sativum) showing typical mosaic symptoms. The genome was shown to be composed of RNA with a poly(A) tail of an estimated size of 10 kb as shown by denaturing agarose gel electrophoresis. We constructed cDNA libraries and screened four independent clones, which were designated GV-A, GV-B, GV-C and GV-D, using Northern and Southern blot hybridization. Nucleotide sequence determination of the cDNAs, two of which correspond to nearly one-third of the virus genomic RNA, shows that all of these viruses possess an identical genomic structure and that also at least four proteins are encoded in the viral cDNA, their M(r)s being estimated to be 15K, 27K, 40K and 11K. The 15K open reading frame (ORF) encodes the core-like sequence of a zinc finger protein preceded by a cluster of basic amino acid residues. The 27K ORF probably encodes the viral coat protein (CP), based on both the existence of some conserved sequences observed in many other rod-shaped or flexuous virus CPs and an overall amino acid sequence similarity to potexvirus and carlavirus CPs. The 11K ORF shows significant amino acid sequence similarities to the corresponding 12K proteins of the potexviruses and carlaviruses. On the other hand, the 40K ORF product does not resemble any other plant virus gene products reported so far. The genomic organization in the 3' region of the garlic viruses resembles, but clearly differs from, that of carlaviruses. Phylogenetic analysis based upon the amino acid sequence of the viral capsid protein also indicates that the garlic viruses have a unique and distinct domain different from those of the potexvirus and carlavirus groups. The results suggest that the garlic viruses described here belong to an unclassified and new virus group closely related to the carlaviruses.

  15. Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies

    NASA Astrophysics Data System (ADS)

    Prasad, Cheera; Yuvaraja, Gutha; Venkateswarlu, Ponneri

    2017-02-01

    We have been developed facile and ecofriendly method for the synthesis of Fe3O4 magnetic nanoparticles (MNPs) using an aqueous extract of Pisum sativum peels (PS) is used as reducing and capping agent. The as synthesized PS-Fe3O4 MNPs are characterized by diverse techniques such as FTIR, powder XRD, TEM, BET and Raman spectroscopy measurements. The results show that the obtained Fe3O4 nanoparticles exhibits high specific surface area (∼17.6 m2/g) and agglomerated spherical in shape with the size range of 20-30 nm. The magnetic properties of PS-Fe3O4 MNPs sample clearly exhibits ferromagnetic nature with a saturation magnetization of 64.2 emu/g. Further, the catalytic properties of PS-Fe3O4 MNPs for degradation of Methyl orange (MO) dye in aqueous solution have been investigated by UV-visible spectroscopy. The results show that PS-Fe3O4 MNPs is an efficient catalyst for degradation of Methyl orange dye than previously reported ones.

  16. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor.

    PubMed

    Reiter, Jana; Levina, Natalja; van der Linden, Mark; Gruhlke, Martin; Martin, Christian; Slusarenko, Alan J

    2017-10-12

    Garlic ( Allium sativum ) has potent antimicrobial activity due to allicin (diallylthiosulfinate) synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure) by oxidation of diallyl disulfide by H₂O₂ using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas , Streptococcus , and Staphylococcus , including multi-drug resistant (MDR) strains, was demonstrated. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH). Similarly, the sensitivity of rat precision-cut lung slices (PCLS) to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  17. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...

  18. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...

  19. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...

  20. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...

  1. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., eucalyptus oil, ginger (Jamaica), lemon oil (terpeneless), licorice root extract, lobeline (in the form of... such OTC drug product containing cloves, coriander, eucalyptus oil, ginger (Jamaica), lemon oil...

  2. Potentiation of anti-cholelithogenic influence of dietary tender cluster beans (Cyamopsis tetragonoloba) by garlic (Allium sativum) in experimental mice

    PubMed Central

    Raghavendra, Chikkanna K.; Srinivasan, Krishnapura

    2015-01-01

    Background & objectives: Dietary fibre-rich tender cluster beans (Cyamopsis tetragonoloba; CB) are known to exert beneficial cholesterol lowering influence. We examined the influence of a combination of dietary tender CB and garlic (Allium sativum) in reducing the cholesterol gallstone formation in mice. Methods: Cholesterol gallstones were induced in Swiss mice by feeding a high-cholesterol diet (HCD) for 10 wk. Dietary interventions were made with 10 per cent CB and 1 per cent garlic included individually or together along with HCD. A total of 100 mice were divided into five groups of 20 mice each. Results: Dietary CB, garlic and CB+garlic reduced the formation of cholesterol gallstones by 44, 25 and 56 per cent, respectively, lowered cholesterol by 23-48, 16-24, and 24-58 in bile, serum, and liver, respectively. Cholesterol saturation index in bile and cholesterol: phospholipid ratio in circulation and hepatic tissue were significantly lowered by these dietary interventions, with highest beneficial effect from CB+garlic. Activities of hepatic cholesterol metabolizing enzymes were modulated by CB, garlic and CB+garlic. Elevation in lipid peroxides caused by HCD was also countered by these dietary interventions, the combination producing the highest effect. Interpretation & conclusions: The results showed that the prevention of experimentally induced formation of cholesterol gallstones by dietary CB and garlic was due to decreased biliary cholesterol secretion and increased cholesterol saturation index. In addition of anti-lithogenic effect, dietary CB and garlic in combination had a beneficial antioxidant effect. PMID:26609039

  3. Potentiation of anti-cholelithogenic influence of dietary tender cluster beans (Cyamopsis tetragonoloba) by garlic (Allium sativum) in experimental mice.

    PubMed

    Raghavendra, Chikkanna K; Srinivasan, Krishnapura

    2015-10-01

    Dietary fibre-rich tender cluster beans (Cyamopsis tetragonoloba; CB) are known to exert beneficial cholesterol lowering influence. We examined the influence of a combination of dietary tender CB and garlic (Allium sativum) in reducing the cholesterol gallstone formation in mice. Cholesterol gallstones were induced in Swiss mice by feeding a high-cholesterol diet (HCD) for 10 wk. Dietary interventions were made with 10 per cent CB and 1 per cent garlic included individually or together along with HCD. A total of 100 mice were divided into five groups of 20 mice each. Dietary CB, garlic and CB+garlic reduced the formation of cholesterol gallstones by 44, 25 and 56 per cent, respectively, lowered cholesterol by 23-48, 16-24, and 24-58 in bile, serum, and liver, respectively. Cholesterol saturation index in bile and cholesterol: phospholipid ratio in circulation and hepatic tissue were significantly lowered by these dietary interventions, with highest beneficial effect from CB+garlic. Activities of hepatic cholesterol metabolizing enzymes were modulated by CB, garlic and CB+garlic. Elevation in lipid peroxides caused by HCD was also countered by these dietary interventions, the combination producing the highest effect. The results showed that the prevention of experimentally induced formation of cholesterol gallstones by dietary CB and garlic was due to decreased biliary cholesterol secretion and increased cholesterol saturation index. In addition of anti-lithogenic effect, dietary CB and garlic in combination had a beneficial antioxidant effect.

  4. Boron Supply Enhances Aluminum Tolerance in Root Border Cells of Pea (Pisum sativum) by Interacting with Cell Wall Pectins

    PubMed Central

    Fang, Jing; Tao, Lin; Shen, Ren Fang; Li, Ya Lin; Xiao, Hong Dong; Feng, Ying Ming; Wen, Hai Xiang; Guan, Jia Hua; Wu, Li Shu; He, Yong Ming; Goldbach, Heiner E.; Yu, Min

    2017-01-01

    Aluminum (Al) toxicity is the primary factor limiting crop growth in acidic soils. Boron (B) alleviates Al toxicity in plants, which is mainly considered to be due to the formation of Rhamnogalacturonan II-B (RGII-B) complexes, which helps to stabilize the cytoskeleton. It is unclear yet whether this is due to the increasing of net negative charges and/or further mechanisms. Kinetics of Al accumulation and adsorption were investigated using entire cells, cell wall and pectin of root border cells (RBCs) of pea (Pisum sativum), to reveal the mechanism of B in interacting with alkali-soluble and chelator-soluble pectin for an increased Al tolerance in RBCs. The results show that B could rescue RBCs from Al-induced cell death by accumulating more Al in the cell wall, predominately in alkali-soluble pectin. Boron also promotes Al3+ adsorption and inhibits Al3+ desorption from alkali-soluble pectin. Thus, more Al3+ is immobilized within the alkali-soluble pectin fraction and less in the chelator-soluble pectin, rendering Al3+ less mobile. Boron induces an increase of RG-II (KDO,2-keto-3-deoxyoctonic acid) content for forming more borate-RGII complexes, and the decrease of pectin methyl-esterification, thus creates more negative charges to immobilize Al3+ in cell wall pectin. The study provides evidence that abundant B supply enhances the immobilization of Al in alkali-soluble pectin, thus most likely reducing the entry of Al3+ into the symplast from the surroundings. PMID:28533794

  5. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    NASA Technical Reports Server (NTRS)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  6. Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests.

    PubMed

    Vajhala, Chakravarthy S K; Sadumpati, Vijaya Kumar; Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.

  7. Development of Transgenic Cotton Lines Expressing Allium sativum Agglutinin (ASAL) for Enhanced Resistance against Major Sap-Sucking Pests

    PubMed Central

    Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1–2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects. PMID:24023750

  8. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E; El-Sherbiny, Ibrahim M

    2016-03-01

    Two natural extracts were loaded within fabricated honey, poly(vinyl alcohol), chitosan nanofibers (HPCS) to develop biocompatible antimicrobial nanofibrous wound dressing. The dried aqueous extract of Cleome droserifolia (CE) and Allium sativum aqueous extract (AE) and their combination were loaded within the HPCS nanofibers in the HPCS-CE, HPCS-AE, and HPCS-AE/CE nanofiber mats, respectively. It was observed that the addition of AE resulted in the least fiber diameter (145 nm), whereas the addition of the AE and CE combination resulted in the least swelling ability and the highest weight loss. In vitro antibacterial testing against Staphylococcus aureus, Escherichia coli, Methicillin-resistant S. aureus (MRSA), and multidrug-resistant Pseudomonas aeruginosa was performed in comparison with the commercial dressing AquacelAg and revealed that the HPCS-AE and HPCS-AE/CE nanofiber mats allowed complete inhibition of S. aureus and the HPCS-AE/CE exhibited mild antibacterial activity against MRSA. A preliminary in vivo study revealed that the developed nanofiber mats enhanced the wound healing process as compared to the untreated control as proved by the enhanced wound closure rates in mice and by the histological examination of the wounds. Moreover, comparison with the commercial dressing Aquacel Ag, the HPCS, and HPCS-AE/CE demonstrated similar effects on the wound healing process, whereas the HPCS/AE allowed an enhanced wound closure rate. Cell culture studies proved the biocompatibility of the developed nanofiber mats in comparison with the commercial Aquacel Ag, which exhibited noticeable cytotoxicity. The developed natural nanofiber mats hold potential as promising biocompatible antibacterial wound dressing.

  9. Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: the ligand interactions and dynamics.

    PubMed

    Konidala, Praveen; Niemeyer, Bernd

    2007-07-01

    The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.

  10. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings.

    PubMed

    Iqbal, Amjad; Fry, Stephen C

    2012-04-01

    Many plants exude allelochemicals--compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots--effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ~25 and ~450 μg ml(-1) respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants.

  11. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings

    PubMed Central

    Iqbal, Amjad; Fry, Stephen C.

    2012-01-01

    Many plants exude allelochemicals – compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots – effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ∼25 and ∼450 μg ml−1 respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants. PMID:22268144

  12. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses.

    PubMed

    Cieslarová, Jaroslava; Hanáček, Pavel; Fialová, Eva; Hýbl, Miroslav; Smýkal, Petr

    2011-11-01

    Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.

  13. Metabolism of inositol(1,4,5)trisphosphate by a soluble enzyme fraction from pea (Pisum sativum) roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drobak, B.K.; Watkins, P.A.C.; Roberts, K.

    1991-02-01

    Metabolism of the putative messenger molecule D-myo-inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) in plant cells has been studied using a soluble fraction from pea (pisum sativum) roots as enzyme source and (5-{sup 32}P)Ins(1,4,5)P{sub 3} and (2-{sup 3}H)Ins(1,4,5)P{sub 3} as tracers. Ins(1,4,5)P{sub 3} was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol (4,5) bisphosphate (Ins(4,5)P{sub 2}) whereas inositol(1,4)bisphosphate (Ins(1,4)P{sub 2}) was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P{sub 4}. Dephosphorylation of Ins(1,4,5)P{sub 3} to Ins(4,5)P{submore » 2} was dependent on Ins(1,4,5)P{sub 3} concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P{sub 3} to Ins(4,5)P{sub 2} and Ins(1,4,5,X)P{sub 4} was inhibited by 55 micromolar Ca{sup 2+}. This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P{sub 3} and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom.« less

  14. Copper oxide nanoparticles and bulk copper oxide, combined with indole-3-acetic acid, alter aluminum, boron, and iron in Pisum sativum seeds.

    PubMed

    Ochoa, Loren; Zuverza-Mena, Nubia; Medina-Velo, Illya A; Flores-Margez, Juan Pedro; Peralta-Videa, José R; Gardea-Torresdey, Jorge L

    2018-09-01

    The interaction of CuO nanoparticles (nCuO), a potential nanopesticide, with the growth hormone indole-3-acetic acid (IAA) is not well understood. This study aimed to evaluate the nutritional components in seeds of green pea (Pisum sativum) cultivated in soil amended with nCuO at 50 or 100mgkg -1 , with/without IAA at 10 or 100μM. Similar treatments including bulk CuO (bCuO) and CuCl 2 were set as controls. Bulk CuO at 50mgkg -1 reduced seed yield (52%), compared with control. Bulk CuO at 50mgkg -1 and nCuO at 100mgkg -1 , plus IAA at 100μM, increased iron in seeds (41 and 42%, respectively), while nCuO at 50mgkg -1 , plus IAA at 100μM reduced boron (80%, respect to control and 63%, respect to IAA at 100μM). IAA, at 10μM increased seed protein (33%), compared with control (p≤0.05). At both concentrations IAA increased sugar in seeds (20%). Overall, nCuO, plus IAA at 10μM, does not affect the production or nutritional quality of green pea seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification.

    PubMed

    Metzger, J O; Bornscheuer, U

    2006-06-01

    Oils and fats are the most important renewable raw materials of the chemical industry. They make available fatty acids in such purity that they may be used for chemical conversions and for the synthesis of chemically pure compounds. Oleic acid (1) from "new sunflower," linoleic acid (2) from soybean, linolenic acid (3) from linseed, erucic acid (4) from rape seed, and ricinoleic acid (5) from castor oil are most important for chemical transformations offering in addition to the carboxy group one or more C-C-double bonds. New plant oils containing fatty acids with new and interesting functionalities such as petroselinic acid (6) from Coriandrum sativum, calendic acid (7) from Calendula officinalis, alpha-eleostearic acid (8) from tung oil, santalbic acid (9) from Santalum album (Linn.), and vernolic acid (10) from Vernonia galamensis are becoming industrially available. The basic oleochemicals are free fatty acids, methyl esters, fatty alcohols, and fatty amines as well as glycerol as a by-product. Their interesting new industrial applications are the usage as environmentally friendly industrial fluids and lubricants, insulating fluid for electric utilities such as transformers and additive to asphalt. Modern methods of synthetic organic chemistry including enzymatic and microbial transformations were applied extensively to fatty compounds for the selective functionalization of the alkyl chain. Syntheses of long-chain diacids, omega-hydroxy fatty acids, and omega-unsaturated fatty acids as base chemicals derived from vegetable oils were developed. Interesting applications were opened by the epoxidation of C-C-double bonds giving the possibility of photochemically initiated cationic curing and access to polyetherpolyols. Enantiomerically pure fatty acids as part of the chiral pool of nature can be used for the synthesis of nonracemic building blocks.

  16. Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat

    PubMed Central

    2013-01-01

    Background In the last years essential oils from different plants were used in the prevention of fungi and mycotoxins accumulation in cereals. The most attractive aspect derived from using of essential oils as seed grains protectants is due to their non-toxicity. This study was focused on assessment the inhibitory effect of some essential oils: Melissa officinalis (O1), Salvia officinalis (O2), Coriandrum sativum (O3), Thymus vulgaris (O4) Mentha piperita (O5) and Cinnamomum zeylanicum (O6) against natural mycoflora and Fusarium mycotoxins production correlated with their antioxidants properties. Results All essential oils showed inhibitory effect on fungal contamination of wheat seeds. This ability was dose-dependent. The highest inhibitory effect on Fusarium and Aspergillus fungi was recorded after 5 days of treatment. Fungi such as yeast (Pichia, Saccharomyces and Hyphopichia) were predominantly on seeds mycoflora after 22 days. Each treatment had a selective inhibitory effect on frequency of fungus genera. After 5 days of treatment the most fungicidal effect was recorder for O4, followed by O1. In terms of essential oils effect on mycotoxins development, the best control on fumonisins (FUMO) production was recorded for O6. The antioxidant properties of essential oils decreased in order: O4 > O1 > O6 > O5 > O2 > O3. Also, our data suggested that there is a significant negative correlation between antioxidant properties and seed contamination index (SCI), but there was not recorded a good correlation between antioxidant properties and FUMO content. Conclusions Based on proven antifungal and antimycotoxin effects as well as their antioxidant properties, the essential oils could be recommended as natural preservatives for stored cereals. The highest inhibition of fungal growth was noted after 5 days of treatment and decreased after 22 days. PMID:23409841

  17. Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat.

    PubMed

    Sumalan, Renata-Maria; Alexa, Ersilia; Poiana, Mariana-Atena

    2013-02-14

    In the last years essential oils from different plants were used in the prevention of fungi and mycotoxins accumulation in cereals. The most attractive aspect derived from using of essential oils as seed grains protectants is due to their non-toxicity. This study was focused on assessment the inhibitory effect of some essential oils: Melissa officinalis (O1), Salvia officinalis (O2), Coriandrum sativum (O3), Thymus vulgaris (O4) Mentha piperita (O5) and Cinnamomum zeylanicum (O6) against natural mycoflora and Fusarium mycotoxins production correlated with their antioxidants properties. All essential oils showed inhibitory effect on fungal contamination of wheat seeds. This ability was dose-dependent. The highest inhibitory effect on Fusarium and Aspergillus fungi was recorded after 5 days of treatment. Fungi such as yeast (Pichia, Saccharomyces and Hyphopichia) were predominantly on seeds mycoflora after 22 days. Each treatment had a selective inhibitory effect on frequency of fungus genera. After 5 days of treatment the most fungicidal effect was recorder for O4, followed by O1. In terms of essential oils effect on mycotoxins development, the best control on fumonisins (FUMO) production was recorded for O6. The antioxidant properties of essential oils decreased in order: O4 > O1 > O6 > O5 > O2 > O3. Also, our data suggested that there is a significant negative correlation between antioxidant properties and seed contamination index (SCI), but there was not recorded a good correlation between antioxidant properties and FUMO content. Based on proven antifungal and antimycotoxin effects as well as their antioxidant properties, the essential oils could be recommended as natural preservatives for stored cereals. The highest inhibition of fungal growth was noted after 5 days of treatment and decreased after 22 days.

  18. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    PubMed

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  19. Plant-based medicines for anxiety disorders, Part 1: a review of preclinical studies.

    PubMed

    Sarris, Jerome; McIntyre, Erica; Camfield, David A

    2013-03-01

    Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. This article (part 1) reviews herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In part 2, we review herbal medicines for which there have been clinical investigations for anxiolytic activity. An open-ended, language-restricted (English) search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) using specific search criteria to identify herbal medicines that have been investigated for anxiolytic activity. This search of the literature revealed 1,525 papers, from which 53 herbal medicines were included in the full review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed in part 2), with another 32 having solely preclinical studies (reviewed here in part 1). Preclinical evidence of anxiolytic activity (without human clinical trials) was found for Albizia julibrissin, Sonchus oleraceus, Uncaria rhynchophylla, Stachys lavandulifolia, Cecropia glazioui, Magnolia spp., Eschscholzia californica, Erythrina spp., Annona spp., Rubus brasiliensis, Apocynum venetum, Nauclea latifolia, Equisetum arvense, Tilia spp., Securidaca longepedunculata, Achillea millefolium, Leea indica, Juncus effusus, Coriandrum sativum, Eurycoma longifolia, Turnera diffusa, Euphorbia hirta, Justicia spp., Crocus sativus, Aloysia polystachya, Albies pindrow, Casimiroa edulis, Davilla rugosa, Gastrodia elata, Sphaerathus indicus, Zizyphus jujuba and Panax ginseng. Common mechanisms of action for the majority of botanicals reviewed primarily involve GABA, either via direct receptor binding or ionic channel or cell membrane modulation; GABA transaminase

  20. Aqueous Extract of Allium sativum (Linn.) Bulbs Ameliorated Pituitary-Testicular Injury and Dysfunction in Wistar Rats with Pb-Induced Reproductive Disturbances

    PubMed Central

    Ayoka, Abiodun O.; Ademoye, Aderonke K.; Imafidon, Christian E.; Ojo, Esther O.; Oladele, Ayowole A.

    2016-01-01

    AIM: To determine the effects of aqueous extract of Allium sativum bulbs (AEASAB) on pituitary-testicular injury and dysfunction in Wistar rats with lead-induced reproductive disturbances. MATERIALS AND METHODS: Male Wistar rats were divided into 7 groups such that the control group received propylene glycol at 0.2 ml/100 g intraperitoneally for 10 consecutive days, the toxic group received lead (Pb) alone at 15 mg/kg/day via intraperitoneal route for 10 days while the treatment groups were pretreated with lead as the toxic group after which they received graded doses of the extract at 50, 100 and 200 mg/kg/day via oral route for 28 days. RESULTS: Pb administration induced significant deleterious alterations in the antioxidant status of the brain and testis, sperm characterization (counts, motility and viability) as well as reproductive hormones (FSH, LH and testosterone) of exposed rats (p < 0.05). These were significantly reversed in the AEASAB-treated groups (p < 0.05). Also, there was marked improvement in the Pb-induced vascular congestion and cellular loss in the pituitary while the observed Pb-induced severe testicular vacuolation was significantly reversed in the representative photomicrographs, following administration of the extract. CONCLUSION: AEASAB treatment ameliorated the pituitary-testicular injury and dysfunction in Wistar rats with Pb-Induced reproductive disturbances. PMID:27335588

  1. Quantification of Pea enation mosaic virus 1 and 2 during infection of Pisum sativum by one step real-time RT-PCR.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2017-02-01

    Pea enation mosaic virus 1 (PEMV1) and Pea enation mosaic virus 2 (PEMV2) are two viruses in an obligate symbiosis that cause pea enation mosaic disease mainly in plants in the Fabaceae family. This virus system is a valuable model to investigate plant virus replication, movement and vector transmission. Thus, here we describe growth conditions, virus detection methods, and virus accumulation behavior. To measure the accumulation and movement of PEMV1 and PEMV2 in plants during the course of infection, we developed a quantitative real-time one-step reverse transcription PCR procedure using the SYBR-green ® technology. Viral primers were designed that anneal to conserved but distinct regions in the RNA-dependent RNA polymerase gene of each virus. Moreover, the normalization of viral accumulation was performed to correct for sample-to-sample variation by designing primers to two different Pisum sativum housekeeping genes: actin and β-tubulin. Transcript levels for these housekeeping genes did not change significantly in response to PEMV infection. Conditions were established for maximum PCR efficiency for each gene, and quantification using QuBit ® technology. Both viruses reached maximum accumulation around 21days post-inoculation of pea plants. These results provide valuable tools and knowledge to allow reproducible studies of this emerging model virus system virus complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    PubMed

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fungal infection control by garlic extracts (Allium sativum L.) and modulation of peritoneal macrophages activity in murine model of sporotrichosis.

    PubMed

    Burian, J P; Sacramento, L V S; Carlos, I Z

    2017-11-01

    Garlic (Allium sativum L.) is grown all over the world as seasoning and medicinal vegetable since 3,000 BC. Allicin is the main component of garlic, being attributed to it the most of its biological activities, such as bactericidal, antifungal and antiviral actions. However, other compounds of garlic present antioxidant, hypocholesterolemic, vasodilator activities, protective action against different types of cancer, and immunomodulatory. Fungal infections are important causes of morbidity and mortality in people mainly in immunosuppressed ones. Sporothrix schenckii, the causing agent of Sporotrichosis (most common subcutaneous mycosis in Latin America), is dimorphic fungus, of saprophytic life in soil or plants, infecting people and animals mainly through skin injuries and bruises. The main of this work was to evaluate the influence of garlic consuming on immune modulation of healthy and infected Swiss mice in induced way by S. schenckii, since these animals functioning of peritoneal macrophages as well as the nitric oxide and cytokines' production (IL-1β, IL-10 and IL-12) and to evaluate the antifungal potential of garlic with S. schenckii through minimum inhibitory concentration test and colony-forming units. The results showed that garlic offers antifungal potential with S. schenckii. The oral taking of garlic extracts influences the releasing of cytokines by macrophages, regular consuming shows anti-inflammatory effect, and its acute use may take to an inflammatory response. Mice that consumed garlic responded more effectively to fight against the infection.

  4. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver.

    PubMed

    Nencini, Cristina; Franchi, Gian Gabriele; Cavallo, Federica; Micheli, Lucia

    2010-04-01

    This study investigated the protective effect of Allium neapolitanum Cyr., a spontaneous species of the Italian flora, compared with garlic (Allium sativum L.) on liver injury induced by ethanol in rats. Male albino Wistar rats were orally treated with fresh Allium homogenates (leaves or bulbs, 250 mg/kg) daily for 5 days, whereas controls received vehicle only. At the end of the experimental 5-day period, the animals received an acute ethanol dose (6 mL/kg, i.p.) 2 hours before the last Allium administration and were sacrificed 6 hours after ethanol administration. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) and the levels of malondialdehyde (MDA), ascorbic acid (AA), and reduced (GSH) and oxidized glutathione in liver tissue were determined. Administration of both Allium species for 5 days (leaves or bulbs) led to no statistical variation of nonenzymatic parameters versus the control group; otherwise Allium treatment caused an increase of GSH and AA levels compared with the ethanol group and a diminution of MDA levels, showing in addition that A. neapolitanum bulb had the best protective effect. Regarding to enzymatic parameters, GR and CAT activities were enhanced significantly compared with the ethanol group, whereas SOD activity showed a trend different from other parameters estimated. However, the treatment with both Allium species followed by acute ethanol administration reestablished the nonenzymatic parameters similar to control values and enhanced the activities of the enzymes measured. These results suggest that fresh Allium homogenates (leaves or bulbs) possess antioxidant properties and provide protection against ethanol-induced liver injury.

  5. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDougall, G.J.; Fry, S.C.

    1990-07-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{submore » 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).« less

  6. Expression of the le Mutation in Young Ovaries of Pisum sativum and Its Effect on Fruit Development.

    PubMed Central

    Santes, C. M.; Hedden, P.; Sponsel, V. M.; Reid, J. B.; Garcia-Martinez, J. L.

    1993-01-01

    The effect of the le mutation on the growth and gibberellin (GA) content of developing fruits was investigated using the near-isogenic lines of Pisum sativum L. 205+ (LeLe) and 205- (lele). Although stem elongation is known to be reduced in 205- plants by approximately 65%, the growth of pods and seeds was unaffected by the le mutation. GA1, GA3, and GA20 stimulated parthenocarpic development of unpollinated ovaries on both 205+ and 205- plants. GA20 was less active on 205- ovaries than on 205+, whereas GA1 had similar, high activity in both lines. The activity of GA3 was even higher than that of GA1 in both lines. Decapitation of 205+ plants induced parthenocarpic development of unpollinated ovaries, but this treatment was much less effective on 205- plants. The contents of GA1 and GA8 in entire ovaries 6 d after anthesis, as well as in the pod and fertilized ovules, were substantially lower in 205- than in 205+ plants, whereas the reverse was true for the levels of GA20 and GA29. These results suggest that 3[beta]-hydroxylation of GA20 to GA1 is reduced in ovaries as well as in vegetative tissues. Thus, the le mutation appears to be expressed in young reproductive organs of the 205- line, even though it does not affect the fruit phenotype. Because the content of GA3 in the ovary was similar in the two lines, one explanation for the normal fruit size in the 205- line is that GA3 is the native regulator of pod growth. Alternatively, sufficient GA1 may still be produced in 205- fruits to maintain normal pod growth. PMID:12231727

  7. Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.

    PubMed

    Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta

    2014-01-01

    Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric

  8. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  9. Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding.

    PubMed

    Ezhuthupurakkal, Preedia Babu; Polaki, Lokeswara Rao; Suyavaran, Arumugam; Subastri, Ariraman; Sujatha, Venugopal; Thirunavukkarasu, Chinnasamy

    2017-05-01

    Biomedical application of selenium nanoparticles (SeNPs) demands the eco-friendly composite for synthesis of SeNPs. The present study reports an aqueous extract of Allium sativum (AqEAS) plug-up the current need. Modern spectroscopic, microscopic and gravimetric techniques were employed to characterize the synthesized nanoparticles. Characterization studies revealed the formation of crystalline spherical shaped SeNPs. FTIR spectrum brings out the presence of different functional groups in AqEAS, which influence the SeNPs formation and stabilization. Furthermore the different aspects of the interaction between SeNPs and CT-DNA were scrutinized by various spectroscopic and cyclic voltametric studies. The results reveals the intercalation and groove binding mode of interaction of SeNPs with stacked base pair of CT-DNA. The Stern-Volmer quenching constant (K SV ) were found to be 7.02×10 6 M- 1 (ethidium bromide), 4.22×10 6 M- 1 (acridine orange) and 7.6×10 6 M- 1 (Hoechst) indicating strong binding of SeNPs with CT-DNA. The SeNPs - CT-DNA interactions were directly visualized by atomic force microscopy. The present study unveils the cost effective, innocuous, highly stable SeNPs intricate mechanism of DNA interaction, which will be a milestone in DNA targeted chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).

    PubMed

    Ntuli, Tobias M; Pammenter, Norman W; Berjak, Patricia

    2013-01-01

    Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.

  11. Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury

    PubMed Central

    Sharma, Ashish Kumar; Munajjam, Arshee; Vaishnav, Bhawna; Sharma, Richa; Sharma, Ashok; Kishore, Kunal; Sharma, Akash; Sharma, Divya; Kumari, Rita; Tiwari, Ashish; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh; Srinivasan, Barthu Parthi; Agarwal, Shyam Sunder

    2012-01-01

    The present study investigated the effect of garlic (Allium sativum Linn.) aqueous extracts on ischemic preconditioning and ischemia-reperfusion induced cardiac injury, as well as adenosine involvement in ischemic preconditioning and garlic extract induced cardioprotection. A model of ischemia-reperfusion injury was established using Langendorff apparatus. Aqueous extract of garlic dose was standardized (0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.03%, 0.01%), and the 0.05% dose was found to be the most effective. Higher doses (more than 0.05%) were highly toxic, causing arrhythmia and cardiodepression, whereas the lower doses were ineffective. Garlic exaggerated the cardioprotective effect of ischemic preconditioning. The cardioprotective effect of ischemic preconditioning and garlic cardioprotection was significantly attenuated by theophylline (1,000 µmol/L) and 8-SPT (10 mg/kg, i.p.) and expressed by increased myocardial infarct size, increased LDH level, and reduced nitrite and adenosine levels. These findings suggest that adenosine is involved in the pharmacological and molecular mechanism of garlic induced cardioprotection and mediated by the modulation of nitric oxide. PMID:23554727

  12. Genetic Changes Accompanying the Domestication of Pisum sativum: Is there a Common Genetic Basis to the ‘Domestication Syndrome’ for Legumes?

    PubMed Central

    Weeden, Norman F.

    2007-01-01

    Background and Aims The changes that occur during the domestication of crops such as maize and common bean appear to be controlled by relatively few genes. This study investigates the genetic basis of domestication in pea (Pisum sativum) and compares the genes involved with those determined to be important in common bean domestication. Methods Quantitative trait loci and classical genetic analysis are used to investigate and identify the genes modified at three stages of the domestication process. Five recombinant inbred populations involving crosses between different lines representing different stages are examined. Key Results A minimum of 15 known genes, in addition to a relatively few major quantitative trait loci, are identified as being critical to the domestication process. These genes control traits such as pod dehiscence, seed dormancy, seed size and other seed quality characters, stem height, root mass, and harvest index. Several of the genes have pleiotropic effects that in species possessing a more rudimentary genetic characterization might have been interpreted as clusters of genes. Very little evidence for gene clustering was found in pea. When compared with common bean, pea has used a different set of genes to produce the same or similar phenotypic changes. Conclusions Similar to results for common bean, relatively few genes appear to have been modified during the domestication of pea. However, the genes involved are different, and there does not appear to be a common genetic basis to ‘domestication syndrome’ in the Fabaceae. PMID:17660515

  13. Systemic Induction of the Defensin and Phytoalexin Pisatin Pathways in Pea (Pisum sativum) against Aphanomyces euteiches by Acetylated and Nonacetylated Oligogalacturonides.

    PubMed

    Selim, Sameh; Sanssené, Jean; Rossard, Stéphanie; Courtois, Josiane

    2017-06-19

    Oligogalacturonides (OGs) are known for their powerful ability to stimulate the plant immune system but little is known about their mode of action in pea ( Pisum sativum ). In the present study, we investigated the elicitor activity of two fractions of OGs, with polymerization degrees (DPs) of 2-25, in pea against Aphanomyces euteiches . One fraction was nonacetylated (OGs - Ac) whereas the second one was 30% acetylated (OGs + Ac). OGs were applied by injecting the upper two rachises of the plants at three- and/or four-weeks-old. Five-week-old roots were inoculated with 10⁵ zoospores of A. euteiches . The root infection level was determined at 7, 10 and 14 days after inoculation using the quantitative real-time polymerase chain reaction (qPCR). Results showed significant root infection reductions namely 58, 45 and 48% in the plants treated with 80 µg OGs + Ac and 59, 56 and 65% with 200 µg of OGs - Ac. Gene expression results showed the upregulation of genes involved in the antifungal defensins, lignans and the phytoalexin pisatin pathways and a priming effect in the basal defense, SA and ROS gene markers as a response to OGs. The reduction of the efficient dose in OGs + Ac is suggesting that acetylation is necessary for some specific responses. Our work provides the first evidence for the potential of OGs in the defense induction in pea against Aphanomyces root rot.

  14. The Influence of pH of Extracting Water on the Composition of Seaweed Extracts and Their Beneficial Properties on Lepidium sativum.

    PubMed

    Godlewska, Katarzyna; Michalak, Izabela; Tuhy, Łukasz; Chojnacka, Katarzyna

    2017-01-01

    Baltic seaweeds were used to obtain aqueous extracts (E) through changing initial pH of deionised water added to algal biomass (EpH3·H 2 O, EpH7·H 2 O, and EpH10·H 2 O) and through changing pH of the mixture of algae and deionised water (EpH3, EpH7, and EpH10). Algal extracts were characterized in terms of the concentration of polyphenols and micro- and macroelements. The highest concentration of polyphenols was determined in extract EpH3 and the lowest in extract EpH10·H 2 O. It was found that the obtained extracts had similar concentrations of elements (except EpH3). The phytotoxicity of algal extracts (0.5, 2.5, and 10%) was examined in the germination tests on Lepidium sativum . No phytotoxic effects were observed. It was found that they had beneficial effects on the cultivated plants (length and weight). The best biostimulant effect was observed in the groups treated with EpH3 (2.5%), EpH7 (2.5%), and EpH7 (10%). The dry weight of plants was similar in all the groups. Algal extract also improved the multielemental composition of plant. The greatest concentration of total chlorophyll in plants was obtained by using extract EpH10·H 2 O, 0.5%. These results proved that algal extracts have high potential to be applied in cultivation of plants.

  15. The Influence of pH of Extracting Water on the Composition of Seaweed Extracts and Their Beneficial Properties on Lepidium sativum

    PubMed Central

    Tuhy, Łukasz; Chojnacka, Katarzyna

    2017-01-01

    Baltic seaweeds were used to obtain aqueous extracts (E) through changing initial pH of deionised water added to algal biomass (EpH3·H2O, EpH7·H2O, and EpH10·H2O) and through changing pH of the mixture of algae and deionised water (EpH3, EpH7, and EpH10). Algal extracts were characterized in terms of the concentration of polyphenols and micro- and macroelements. The highest concentration of polyphenols was determined in extract EpH3 and the lowest in extract EpH10·H2O. It was found that the obtained extracts had similar concentrations of elements (except EpH3). The phytotoxicity of algal extracts (0.5, 2.5, and 10%) was examined in the germination tests on Lepidium sativum. No phytotoxic effects were observed. It was found that they had beneficial effects on the cultivated plants (length and weight). The best biostimulant effect was observed in the groups treated with EpH3 (2.5%), EpH7 (2.5%), and EpH7 (10%). The dry weight of plants was similar in all the groups. Algal extract also improved the multielemental composition of plant. The greatest concentration of total chlorophyll in plants was obtained by using extract EpH10·H2O, 0.5%. These results proved that algal extracts have high potential to be applied in cultivation of plants. PMID:28480222

  16. Effects of onion (Allium cepa L.) and garlic (Allium sativum L.) essential oils on the Aspergillus versicolor growth and sterigmatocystin production.

    PubMed

    Kocić-Tanackov, Sunčica; Dimić, Gordana; Lević, Jelena; Tanackov, Ilija; Tepić, Aleksandra; Vujičić, Biserka; Gvozdanović-Varga, Jelica

    2012-05-01

    In the present study the effects of individual and combined essential oils (EOs) extracted from onion (Allium cepa L.) bulb and garlic (Allium sativum L.) clove on the growth of Aspergillus versicolor and sterigmatocystin (STC) production were investigated. The EOs obtained by hydrodistillation were analyzed by GC/MS. Twenty one compounds were identified in onion EO. The major components were: dimethyl-trisulfide (16.64%), methyl-propyl-trisulfide (14.21%), dietil-1,2,4-tritiolan (3R,5S-, 3S,5S- and 3R,5R- isomers) (13.71%), methyl-(1-propenyl)-disulfide (13.14%), and methyl-(1-propenyl)-trisulfide (13.02%). The major components of garlic EO were diallyl-trisulfide (33.55%), and diallyl-disulfide (28.05%). The mycelial growth and the STC production were recorded after 7, 14, and 21 d of the A. versicolor growth in Yeast extract sucrose (YES) broth containing different EOs concentrations. Compared to the garlic EO, the onion EO showed a stronger inhibitory effect on the A. versicolor mycelial growth and STC production. After a 21-d incubation of fungi 0.05 and 0.11 μg/mL of onion EO and 0.11 μg/mL of garlic EO completely inhibited the A. versicolor mycelial growth and mycotoxins biosynthesis. The combination of EOs of onion (75%) and garlic (25%) had a synergistic effect on growth inhibition of A. versicolor and STC production. © 2012 Institute of Food Technologists®

  17. Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L).

    PubMed

    Chand, Subodh K; Nanda, Satyabrata; Joshi, Raj K

    2016-01-01

    MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars.

  18. Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum

    NASA Astrophysics Data System (ADS)

    Kern, Jürgen; Mukhina, Irina; Dicke, Christiane; Lanza, Giacomo; Kalderis, Dimitrios

    2015-04-01

    Currently, char substrates gain a lot of interest, since they are being discussed as a component in growing media, which may become one option for the replacement of peat. Among different thermal conversion processes of biomass hydrothermal carbonization (HTC) has been found to produce chars with similar acidic pH values like peat. The question however is, if these hydrochars, which may contain toxic phenolic compounds are suitable to be introduced as a new substitute for peat in horticulture. In this study rice husk were hydrothermally carbonized at 200° C for 6 hours, yielding in hydrochars containing organic contaminants such as phenols and furfurals, which may affect plants and soil organisms. We investigated potential toxic effects on the germination rate and the root length of cress salad (Lepidium sativum) in four fractions: i) soil control, ii) raw rice husk + soil, iii) unwashed rice char + soil and iv) acetone/water washed rice char + soil. It could be shown that phenols and furfurals, which were removed from the hydrochar after washing by 80 to 96% did not affect the germination rate and the root length of the cress plants. The lowest germination rate and root length were found in the soil control, the highest in the non-washed hydrochar treatment, indicating a fertilization effect and growth stimulation of cress salad by hydrochar. If this result can be confirmed for other target and non-target organisms in future studies, a new strategy for the production of growing media may be developed.

  19. Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology.

    PubMed

    Voisin, A S; Salon, C; Jeudy, C; Warembourg, F R

    2003-12-01

    The relationships between symbiotic nitrogen fixation (SNF) activity and C fluxes were investigated in pea plants (Pisum sativum L. cv. Baccara) using simultaneous 13C and 15N labelling. Analysis of the dynamics of labelled CO2 efflux from the nodulated roots allowed the different components associated with SNF activity to be calculated, together with root and nodule synthetic and maintenance processes. The carbon costs for the synthesis of roots and nodules were similar and decreased with time. Carbon lost by turnover, associated with maintenance processes, decreased with time for nodules while it increased in the roots. Nodule turnover remained higher than root turnover until flowering. The effect of the N source on SNF was investigated using plants supplied with nitrate or plants only fixing N2. SNF per unit nodule biomass (nodule specific activity) was linearly related to the amount of carbon allocated to the nodulated roots regardless of the N source, with regression slopes decreasing across the growth cycle. These regression slopes permitted potential values of SNF specific activity to be defined. SNF activity decreased as the plants aged, presumably because of the combined effects of both increasing C costs of SNF (from 4.0 to 6.7 g C g-1 N) and the limitation of C supply to the nodules. SNF activity competed for C against synthesis and maintenance processes within the nodulated roots. Synthesis was the main limiting factor of SNF, but its importance decreased as the plant aged. At seed-filling, SNF was probably more limited by nodule age than by C supply to the nodulated roots.

  20. Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L)

    PubMed Central

    Chand, Subodh K.; Nanda, Satyabrata; Joshi, Raj K.

    2016-01-01

    MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5′ RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars. PMID:26973694

  1. The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco.

    PubMed

    Dutta, Indrajit; Saha, Prasenjit; Majumder, Pralay; Sarkar, Anindya; Chakraborti, Dipankar; Banerjee, Santanu; Das, Sampa

    2005-11-01

    The homopteran group of polyphagous sucking insect pests causes severe damage to many economically important plants including tobacco. Allium sativum leaf lectin (ASAL), a mannose-binding 25-kDa homodimeric protein, has recently been found to be antagonistic to various sucking insects in the homopteran group through artificial diet bioassay experiments. The present study describes, for the first time, the expression of the ASAL coding sequence under the control of the cauliflower mosaic virus (CaMV) 35S promoter in tobacco by Agrobacterium-mediated transformation technology. Molecular analyses demonstrated the integration of the chimeric ASAL gene in tobacco and its inheritance in the progeny plants. Western blot analysis followed by enzyme-linked immunosorbent assay (ELISA) determined the level of ASAL expression in different lines to be in the range of approximately 0.68%-2% of total soluble plant protein. An in planta bioassay conducted with Myzus persicae, peach potato aphid (a devastating pest of tobacco and many other important plants), revealed that the percentage of insect survival decreased significantly to 16%-20% in T0 plants and T1 progeny, whilst approximately 75% of insects survived on untransformed tobacco plants after 144 h of incubation. Ligand analyses of insect brush border membrane vesicle receptors and expressed ASAL in transgenic tobacco showed that the expressed ASAL binds to the aphid gut receptor in the same manner as native ASAL, pointing to the fact that ASAL maintains the biochemical characteristics even in the transgenic situation. These findings in a model plant open up the possibility of expressing the novel ASAL gene in a wide range of crop plants susceptible to various sap-sucking insects.

  2. Repellent activities of dichloromethane extract of Allium sativum (garlic) (Liliaceae) against Hyalomma rufipes (Acari).

    PubMed

    Nchu, Felix; Magano, Solomon R; Eloff, Jacobus N

    2016-12-02

    Dichloromethane (DCM) extract of garlic (Allium sativum Linn.) bulbs was assessed for its repellent effect against the hard tick, Hyalomma rufipes (Acari: Ixodidae) using two tick behavioural bioassays; Type A and Type B repellency bioassays, under laboratory conditions. These bioassays exploit the questing behaviour of H. rufipes, a tick that in nature displays ambush strategy, seeking its host by climbing up on vegetation and attaching to a passing host. One hundred microlitres (100 µL) of the test solution containing DCM extract of garlic bulbs and DCM at concentrations of 0.35%, 0.7% or 1.4% w/v were evaluated. DCM only was used for control. Tick repellency increased significantly (R2 = 0.98) with increasing concentration (40.03% - 86.96%) yielding an EC50 of 0.45% w/v in Type B repellency bioassay. At concentration of 1.4% w/v, the DCM extract of garlic bulbs produced high repellency index of 87% (male ticks) and 87.5% (female ticks) in the Type A repellency bioassay. Only 4% avoidance of male ticks or female ticks was recorded in the Type B repellency bioassay. In the corresponding controls, the mean numbers of non-repelled male or female ticks were 80% and 41 males or 38 females of 50 ticks in the Type A and Type B repellency bioassays, respectively. The variations in the results could be attributed to the difference in tick repellent behaviours that were assessed by the two repellency bioassays; the Type A repellency bioassay assessed repellent effect of garlic extracts without discriminating between deterrence and avoidance whereas the Type B repellency bioassay only assessed avoidance response. Generally, DCM extract of garlic was repellent against H. rufipes, albeit weak tick repellency was obtained in the Type B repellency bioassay. Furthermore, this study established that the tick repellent activity of garlic extracts is predominantly by deterrence.

  3. Chemical characterization and effects on Lepidium sativum of the native and bioremediated components of dry olive mill residue.

    PubMed

    Aranda, E; García-Romera, I; Ocampo, J A; Carbone, V; Mari, A; Malorni, A; Sannino, F; De Martino, A; Capasso, R

    2007-09-01

    Dry olive mill residue (DOR) from the olive oil production by two phase centrifugation system was fractionated by a consecutive continuous solid-liquid extraction obtaining the EAF, PF, MF and WF fractions with ethyl acetate, n-propanol, methanol and water, respectively. The chemical, chromatographic and mass spectrometric analyses showed EAF, PF and MF to be mainly composed of simple phenols, phenolic acids, flavonoids and glycosilated phenols (glycosides of phenols, secoiridoids and flavonoids), whereas WF was mainly consisting of polymerin, the metal organic polymeric mixture previously identified in olive oil mill waste waters and composed of carbohydrates, melanin, proteins and metals (K, Na, Ca, Mg and Fe). The identification in DOR of oleoside, 6'-beta-glucopyranosyl-oleoside and 6'-beta-rhamnopyranosyl-oleoside, and of its organic polymeric component, known as polymerin, are reported for the first time in this paper. The inoculation of the previously mentioned fractions with saprobe fungi Coriolopsis rigida, Pycnoporus cynnabarinus or Trametes versicolor indicated these fungi to be able to metabolize both the phenols and glycosilated phenols, but not polymerin. In correspondence, EAF, PF, MF and WF, which proved to be toxic on Lepidium sativum, decreased their toxicity after incubation with the selected fungi, WF showing to be also able to stimulate the growth of the selected seeds. The phytotoxicity appeared mainly correlated to the monomeric phenols and, to a lesser extent, to the glycosilated phenols, whereas polymerin proved to be non toxic. However, the laccase activity was not associated with the decrease of phytotoxicity. The valorization of DOR as a producer of high added value substances of industrial and agricultural interest in native form and after their bioremediation for a final objective of the total DOR recycling is also discussed.

  4. The perspective crops for the bioregenerative human life support systems

    NASA Astrophysics Data System (ADS)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  5. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  6. Garlic (Allium sativum) Fresh Juice Induces Apoptosis in Human Oral Squamous Cell Carcinoma: The Involvement of Caspase-3, Bax and Bcl-2

    PubMed Central

    Farhadi, Farrokh; Jahanpour, Salar; Hazem, Kameliya; Aghbali, Amirala; Baradran, Behzad; Vahid Pakdel, Seyyed Mahdi

    2015-01-01

    Background and aims. There is no report on the apoptotic impact of Allium sativum L.(Garlic) on the oral squamous cell carcinoma (KB); hence, this study was designed to survey the apoptotic effects of garlic fresh juice (GFJ) on the KB cells. Materials and methods. MTTassay (MicrocultureTetrazolium Assay) was carried out to evaluate the cytotoxicity of GFJ on KB cells. Furthermore, TUNEL(Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)and DNA fragmentation tests were performed to determine if GFJ is able to induce apoptosis in KB cells. Also a standard kit was used to assess caspase-3 activity in KB cells. Also western blotting was employed to evaluate the effect of GFJ on Bax:Bcl-2 ratio. Results. Significant cytotoxic effects were observed for the minimum used concentration (1μg/mL) as calculated to be 77.97±2.3% for 24 h and 818±3.1% for 36h of incubation (P < 0.001). Furthermore, TUNEL and DNA fragmentation tests corroborated the apoptosis inducing activity of GFJ. Consistently, after treating KB cells with GFJ(1μg/mL), caspase-3 activity and Bax:Bcl-2 ratio were raised by 7.3±0.6 and (P <0.001) folds, respectively. Conclusion. The results of this study advanced that GFJ induces apoptosis in the KB cells through increasing caspase-3 activity and Bax:Bcl2 ratio which could be attributed to its organo-sulfurcomponents. PMID:26889365

  7. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers.

    PubMed

    Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A

    2017-01-01

    Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.

  8. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium.

    PubMed

    Tsyganov, Viktor E; Belimov, Andrei A; Borisov, Alexey Y; Safronova, Vera I; Georgi, Manfred; Dietz, Karl-Josef; Tikhonovich, Igor A

    2007-02-01

    To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M2 generation was performed using hydroponics in the presence of 6 microm CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 microm CdCl2, and elemental analysis was conducted. The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La(+3) and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels, it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT)-(GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.

  9. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions

    PubMed Central

    Morton, Roger L.; Schroeder, Hart E.; Bateman, Kaye S.; Chrispeels, Maarten J.; Armstrong, Eric; Higgins, Thomas J. V.

    2000-01-01

    Two α-amylase inhibitors, called αAI-1 and αAI-2, that share 78% amino acid sequence identity and have a differential specificity toward mammalian and insect α-amylases are present in different accessions of the common bean (Phaseolus vulgaris). Using greenhouse-grown transgenic peas (Pisum sativum), we have shown previously that expression of αAI-1 in pea seeds can provide complete protection against the pea weevil (Bruchus pisorum). Here, we report that αAI-1 also protects peas from the weevil under field conditions. The high degree of protection is explained by our finding that αAI-1 inhibits pea bruchid α-amylase by 80% over a broad pH range (pH 4.5–6.5). αAI-2, on the other hand, is a much less effective inhibitor of pea bruchid α-amylase, inhibiting the enzyme by only 40%, and only in the pH 4.0–4.5 range. Nevertheless, this inhibitor was still partially effective in protecting field-grown transgenic peas against pea weevils. The primary effect of αAI-2 appeared to be a delay in the maturation of the larvae. This contrasts with the effect of αAI-1, which results in larval mortality at the first or second instar. These results are discussed in relationship to the use of amylase inhibitors with different specificities to bring about protection of crops from their insect pests or to decrease insect pest populations below the economic injury level. PMID:10759552

  10. Regulation of Seed Germination in the Close Arabidopsis Relative Lepidium sativum: A Global Tissue-Specific Transcript Analysis1[C][W][OA

    PubMed Central

    Morris, Karl; Linkies, Ada; Müller, Kerstin; Oracz, Krystyna; Wang, Xiaofeng; Lynn, James R.; Leubner-Metzger, Gerhard; Finch-Savage, William E.

    2011-01-01

    The completion of germination in Lepidium sativum and other endospermic seeds (e.g. Arabidopsis [Arabidopsis thaliana]) is regulated by two opposing forces, the growth potential of the radicle (RAD) and the resistance to this growth from the micropylar endosperm cap (CAP) surrounding it. We show by puncture force measurement that the CAP progressively weakens during germination, and we have conducted a time-course transcript analysis of RAD and CAP tissues throughout this process. We have also used specific inhibitors to investigate the importance of transcription, translation, and posttranslation levels of regulation of endosperm weakening in isolated CAPs. Although the impact of inhibiting translation is greater, both transcription and translation are required for the completion of endosperm weakening in the whole seed population. The majority of genes expressed during this process occur in both tissues, but where they are uniquely expressed, or significantly differentially expressed between tissues, this relates to the functions of the RAD as growing tissue and the CAP as a regulator of germination through weakening. More detailed analysis showed that putative orthologs of cell wall-remodeling genes are expressed in a complex manner during CAP weakening, suggesting distinct roles in the RAD and CAP. Expression patterns are also consistent with the CAP being a receptor for environmental signals influencing germination. Inhibitors of the aspartic, serine, and cysteine proteases reduced the number of isolated CAPs in which weakening developed, and inhibition of the 26S proteasome resulted in its complete cessation. This indicates that targeted protein degradation is a major control point for endosperm weakening. PMID:21321254

  11. Das Lektin aus der Erbse Pisum sativum : Bindungsstudien, Monomer-Dimer-Gleichgewicht und Rückfaltung aus Fragmenten

    NASA Astrophysics Data System (ADS)

    Küster, Frank

    2002-11-01

    Das Lektin aus Pisum sativum, der Gartenerbse, ist Teil der Familie der Leguminosenlektine. Diese Proteine haben untereinander eine hohe Sequenzhomologie, und die Struktur ihrer Monomere, ein all-ß-Motiv, ist hoch konserviert. Dagegen gibt es innerhalb der Familie eine große Vielfalt an unterschiedlichen Quartärstrukturen, die Gegenstand kristallographischer und theoretischer Arbeiten waren. Das Erbsenlektin ist ein dimeres Leguminosenlektin mit einer Besonderheit in seiner Struktur: Nach der Faltung in der Zelle wird aus einem Loop eine kurze Aminosäuresequenz herausgeschnitten, so dass sich in jeder Untereinheit zwei unabhängige Polypeptidketten befinden. Beide Ketten sind aber stark miteinander verschränkt und bilden eine gemeinsame strukturelle Domäne. Wie alle Lektine bindet Erbsenlektin komplexe Oligosaccharide, doch sind seine physiologische Rolle und der natürliche Ligand unbekannt. In dieser Arbeit wurden Versuche zur Entwicklung eines Funktionstests für Erbsenlektin durchgeführt und seine Faltung, Stabilität und Monomer-Dimer-Gleichgewicht charakterisiert. Um die spezifische Rolle der Prozessierung für Stabilität und Faltung zu untersuchen, wurde ein unprozessiertes Konstrukt in E. coli exprimiert und mit der prozessierten Form verglichen. Beide Proteine zeigen die gleiche kinetische Stabilität gegenüber chemischer Denaturierung. Sie denaturieren extrem langsam, weil nur die isolierten Untereinheiten entfalten können und das Monomer-Dimer-Gleichgewicht bei mittleren Konzentrationen an Denaturierungsmittel auf der Seite der Dimere liegt. Durch die extrem langsame Entfaltung zeigen beide Proteine eine apparente Hysterese im Gleichgewichtsübergang, und es ist nicht möglich, die thermodynamische Stabilität zu bestimmen. Die Stabilität und die Geschwindigkeit der Assoziation und Dissoziation in die prozessierten bzw. nichtprozessierten Untereinheiten sind für beide Proteine gleich. Darüber hinaus konnte gezeigt werden, dass auch unter

  12. Ion Relations of Symplastic and Apoplastic Space in Leaves from Spinacia oleracea L. and Pisum sativum L. under Salinity 1

    PubMed Central

    Speer, Michael; Kaiser, Werner M.

    1991-01-01

    Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl−) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3−/Cl− uptake by roots. PMID:16668541

  13. Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum.

    PubMed

    Rodriguez, Eleazar; Azevedo, Raquel; Fernandes, Pedro; Santos, Conceição

    2011-07-18

    Chromium(VI) is recognized as the most toxic valency of Cr, but its genotoxicity and cytostaticity in plants is still poorly studied. In order to analyze Cr(VI) cyto- and gentotoxicity, Pisum sativum L. plants were grown in soil and watered with solutions with different concentrations of Cr up to 2000 mg/L. After 28 days of exposure, leaves showed no significant variations in either cell cycle dynamics or ploidy level. As for DNA damage, flow cytometric (FCM) histograms showed significant differences in full peak coefficient of variation (FPCV) values, suggesting clastogenicity. This is paralleled by the Comet assay results, showing an increase in DNA damage for 1000 and 2000 mg/L. In roots, exposure to 2000 mg/L resulted in cell cycle arrest at the G(2)/M checkpoint. It was also verified that under the same conditions 40% of the individuals analyzed suffered polyploidization having both 2C and 4C levels. DNA damage analysis by the Comet assay and FCM revealed dose-dependent increases in DNA damage and FPCV. Through this, we have unequivocally demonstrated for the first time in plants that Cr exposure can result in DNA damage, cell cycle arrest, and polyploidization. Moreover, we critically compare the validity of the Comet assay and FCM in evaluating cytogenetic toxicity tests in plants and demonstrate that the data provided by both techniques complement each other and present high correlation levels. In conclusion, the data presented provides new insight on Cr effects in plants in general and supports the use of the parameters tested in this study as reliable endpoints for this metal toxicity in plants. © 2011 American Chemical Society

  14. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.)

    PubMed Central

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield. PMID

  15. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.).

    PubMed

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield.

  16. Comparison of digestion methods for determination of trace and minor metals in plant samples.

    PubMed

    Lavilla, I; Filgueiras, A V; Bendicho, C

    1999-12-01

    In this paper, three dissolution methods using pressure digestion vessels (low-, medium-, and high-pressure vessels) for the determination of metals in plant samples are described. The Plackett-Burman saturated factorial design was used to identify the significant factors influencing wet ashing and to select optimized dissolution conditions. The three methods were statistically compared (on-way ANOVA) on the same sample; no significant differences were obtained. In all cases the relative standard deviation values were <3%. The digestion method based on the use of low-pressure vessels and a microwave oven was validated against CRM GBW07605 tea leaves. This method was applied to the determination of Cu, Zn, Mn, Fe, Mg, and Ca in 22 different medicinal, aromatic, and seasoning plants by flame-atomic absorption spectrometry. The concentration intervals of metal in the plants analyzed were the following: Cu, 4 (Allium sativum)-35 (Thea sinensis) microg g(-1); Zn, 7 (Piper nigrum)-90 (Betula alba) microg g(-1); Mn, 9 (Allium sativum)-939 (Caryophylus aromaticus) microg g(-1); Fe, 33 (Allium sativum)-2486 (Anethum graveolens) microg g(-1); Mg, 495 (Allium sativum)-7458 (Ocimum basilicum) microg g(-1); Ca, 386 (Allium sativum)-21500 (Ocimum basilicum) microg g(-1).

  17. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content.

    PubMed

    Pereira, Marina Pelincer; Tavano, Olga Luisa

    2014-12-01

    Herbs and spices, excellent sources of phenolic compounds, can be considered potential antioxidant additives. The use of spices must strike a balance between their potential antioxidant capabilities during preparation and the flavor acceptance, in order to avoid rejection of the food. The aimed of this study is to evaluate the influence of different spices and their concentrations on cooked common beans, focusing its potential as antioxidant additives. Onion, parsley, spring onion, laurel and coriander increased the antioxidant activity of preparation when used at 7.96 g of onion, 1.06 g parsley, 3.43 g spring onion, 0.25 g laurel (dry leaves), and 0.43 g coriander/100 g of cooked beans. Besides, these spices concentrations enhance total phenolics and alter the mixture protein digestibility minimally. For garlic samples it was not possible to establish a concentration that increases the antioxidant activity of cooked beans.

  18. Ochratoxin A levels in spices and dried nuts consumed in Tunisia.

    PubMed

    Zaied, Chiraz; Abid, Salwa; Bouaziz, Chayma; Chouchane, Salwa; Jomaa, Mohamed; Bacha, Hassen

    2010-01-01

    A total of 112 samples of spices (24 caraway, 20 coriander, 25 curcuma, 20 black pepper and 23 red pepper) and 110 samples of dried nuts (44 almonds, 42 peanuts and 24 pistachio) purchased from popular markets in 24 regions of Tunisia were analyzed for ochratoxin A (OTA) by fluorescence HPLC. The average levels of contamination of OTA found in spice samples were 244, 206, 290, 274 and 203 µg/kg, respectively, for caraway, coriander, curcuma, black pepper and red pepper. Concerning dried nut samples, the average levels were 61, 60 and 89 µg/kg, respectively, for almonds, peanuts and pistachio. Contamination levels were higher than the usual norms (10.0 OTA µg/kg) established by the European Commission in 2005 . This survey is the first to be carried out on the natural occurrence of OTA in the main spices and dried nuts consumed by the Tunisian population.

  19. Apiaceae Family Plants as Low-Cost Adsorbents for the Removal of Lead Ion from Water Environment

    NASA Astrophysics Data System (ADS)

    Boontham, W.; Babel, S.

    2017-06-01

    Adsorbents prepared from the three selected plants from Apiaceae famaily commonly known as parsley, coriander and culantro were observed to remove lead from aqueous solutions. Batch experiments were conducted to study the effect of dosage, pH, contact time and agitation speed at 10 mg L-1 initial Pb(II) concentration. Results revealed that three selected plants showed high adsorption capacity for removal of lead from aqueous solutions. The maximum biosorption of Pb2+ was found to be more than 97% with 1.0 g/l dosage for all three adsorbents under optimum pH of 3-5. The adsorption equilibrium was established after about 1 hr. The equilibrium adsorption capacity of parsley and coriander were found to fit well with the Langmuir isotherm whereas the Freundlich isotherm was better fit for culantro. The studies showed that the adsorbents can be used for removing lead ions from contaminated waters.

  20. Biophysical insight into structure-function relation of Allium sativum Protease Inhibitor by thermal, chemical and pH-induced modulation using comprehensive spectroscopic analysis.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Naz, Huma; Haque, Md Anzarul; Fatima, Sadaf

    2017-10-01

    In this study, we have analyzed the structural and functional changes in the nature of Allium sativum Protease Inhibitor (ASPI) on undergoing various denaturation with variable range of pH, temperature and urea (at pH 8.2). ASPI being anti-tryptic in nature has native molecular mass of ∼15kDa. The conformational stability, functional parameters and their correlation were estimated under different conditions using circular dichroism, fluorescence and activity measurements. ASPI was found to fall in belongs to α+β protein. It demonstrated structural and functional stability in the pH range 5.0-12.0 and up to70°C temperature. Further decrease in pH and increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were reversible and sigmoid. T m (midpoint of denaturation), ΔC p (constant pressure heat capacity change) and ΔH m (van't Hoff enthalpy change at T m were calculated to be 41.25±0.2°C, 1.3±0.07kcalmol -1 K -1 and 61±2kcalmol -1 respectively for thermally denatured ASPI earlier. The reversibility of the protein was confirmed for both thermally and chemically denatured ASPI. The results obtained from trypsin inhibitory activity assay and structural studies are found to be in a significant correlation and hence established structure-function relationship of ASPI. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Protective effect of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) on induced oxidation of low-density lipoprotein in rats.

    PubMed

    Mukthamba, Puttaswamy; Srinivasan, Krishnapura

    2016-01-01

    Dietary fenugreek seeds (Trigonella foenum-graecum) and garlic (Allium sativum) have been previously observed to have cardioprotective influence in experimentally induced myocardial infarction in rats. Since low-density lipoprotein (LDL) oxidation is a key factor in the arteriosclerotic process, we evaluated their potential in minimizing the LDL oxidation in rats. Fenugreek seeds, garlic, and their combination were included along with a high-cholesterol diet for 8 weeks. Iron-induced oxidation of LDL in vivo was considerably lowered by dietary fenugreek and garlic. The extent of copper-induced oxidation of isolated LDL in vitro was also significantly lesser in fenugreek-fed or fenugreek+garlic-fed rats. Anodic electrophoretic mobility of the oxidized LDL on agarose gel in case of spice-fed animals was decreased and hence consistent with the observed protective influence on LDL oxidation. Dietary fenugreek, garlic, and their combination significantly lowered lipid peroxide levels in plasma, liver, and heart in iron (II)-administered rats. The results suggest that these two dietary spices have protective effect on LDL oxidation under normal situation as well as in hypercholesterolemic situation. The protective effect of the combination of dietary fenugreek and garlic on LDL oxidation both in vivo and in vitro was greater than that of the individual spices. The protective effect of dietary fenugreek and garlic on LDL oxidation both in vivo and in vitro as evidenced in the present study is suggestive of their cardioprotective potential since LDL oxidation is a key factor in the arteriosclerotic process.

  2. Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum.

    PubMed

    Nakasato, Daniele Y; Pereira, Anderson E S; Oliveira, Jhones L; Oliveira, Halley C; Fraceto, Leonardo F

    2017-08-01

    Although the potential toxicity of many metallic and carbon nanoparticles to plants has been reported, few studies have evaluated the phytotoxic effects of polymeric and solid lipid nanoparticles. The present work described the preparation and characterization of chitosan/tripolyphosphate (CS/TPP) nanoparticles and solid lipid nanoparticles (SLN) and evaluated the effects of different concentrations of these nanoparticles on germination of Zea mays, Brassica rapa, and Pisum sativum. CS/TPP nanoparticles presented an average size of 233.6±12.1nm, polydispersity index (PDI) of 0.30±0.02, and zeta potential of +21.4±1.7mV. SLN showed an average size of 323.25±41.4nm, PDI of 0.23±0.103, and zeta potential of -13.25±3.2mV. Nanotracking analysis enabled determination of concentrations of 1.33×10 10 (CS/TPP) and 3.64×10 12 (SLN) nanoparticles per mL. At high concentrations, CS/TPP nanoparticles caused complete inhibition of germination, and thus negatively affected the initial growth of all tested species. Differently, SLN presented no phytotoxic effects. The different size and composition and the opposite charges of SLN and CS/TPP nanoparticles could be associated with the differential phytotoxicity of these nanomaterials. The present study reports the phytotoxic potential of polymeric CS/TPP nanoparticles towards plants, indicating that further investigation is needed on the effects of such formulations intended for future use in agricultural systems, in order to avoid damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    PubMed Central

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  4. Deciphering the mode of action of a mutant Allium sativum Leaf Agglutinin (mASAL), a potent antifungal protein on Rhizoctonia solani.

    PubMed

    Ghosh, Prithwi; Roy, Amit; Hess, Daniel; Ghosh, Anupama; Das, Sampa

    2015-10-26

    Mutant Allium sativum leaf agglutinin (mASAL) is a potent, biosafe, antifungal protein that exhibits fungicidal activity against different phytopathogenic fungi, including Rhizoctonia solani. The effect of mASAL on the morphology of R.solani was monitored primarily by scanning electron and light microscopic techniques. Besides different fluorescent probes were used for monitoring various intracellular changes associated with mASAL treatment like change in mitochondrial membrane potential (MMP), intracellular accumulation of reactive oxygen species (ROS) and induction of programmed cell death (PCD). In addition ligand blot followed by LC-MS/MS analyses were performed to detect the putative interactors of mASAL. Knowledge on the mode of function for any new protein is a prerequisite for its biotechnological application. Detailed morphological analysis of mASAL treated R. solani hyphae using different microscopic techniques revealed a detrimental effect of mASAL on both the cell wall and the plasma membrane. Moreover, exposure to mASAL caused the loss of mitochondrial membrane potential (MMP) and the subsequent intracellular accumulation of reactive oxygen species (ROS) in the target organism. In conjunction with this observation, evidence of the induction of programmed cell death (PCD) was also noted in the mASAL treated R. solani hyphae. Furthermore, we investigated its interacting partners from R. solani. Using ligand blots followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses, we identified different binding partners including Actin, HSP70, ATPase and 14-3-3 protein. Taken together, the present study provides insight into the probable mode of action of the antifungal protein, mASAL on R. solani which could be exploited in future biotechnological applications.

  5. Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L.

    PubMed

    Kichigina, Natalia E; Puhalsky, Jan V; Shaposhnikov, Aleksander I; Azarova, Tatiana S; Makarova, Natalia M; Loskutov, Svyatoslav I; Safronova, Vera I; Tikhonovich, Igor A; Vishnyakova, Margarita A; Semenova, Elena V; Kosareva, Irina A; Belimov, Andrey A

    2017-10-01

    Our study aimed to evaluate intraspecific variability of pea ( Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.

  6. Protomyces Unger (1833)

    USDA-ARS?s Scientific Manuscript database

    This chapter describes the ascomycetous fungal genus Protomyces and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." Species of the genus Protomyces are plant pathogens that attack asters, wild celery, coriander and certain other plants. Symptoms include disruption of stems, lea...

  7. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    PubMed

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  8. Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius.

    PubMed

    Knio, K M; Usta, J; Dagher, S; Zournajian, H; Kreydiyyeh, S

    2008-03-01

    This study investigates the potential of essential oils from commonly used medical and culinary herbs in Lebanon as an environmentally safe measure to control the seaside mosquito, Ochlerotatus caspius. The composition of essential oils extracted from parsley seeds and leaves, alpine thyme inflorescences, anis seeds, and coriander fruits were analyzed by GC-MS, and the major components of these oils were found to be thymol, sabinene, carvacrol, anethole, and linalool, respectively. Mosquito larvicidal assays were conducted to evaluate the LC(50) and LC(90) after 24 and 48h of the essential oils and their major constituents. All of the tested oils proved to have strong larvicidal activity (LC(50): 15-156ppm) against Oc. caspius fourth instars, with the most potent oil being thyme inflorescence extract, followed by parsley seed oil, aniseed oil, and then coriander fruit oil. Toxicity of each oil major constituent was also estimated and compared to a reported larvicidal compound, eugenol.

  9. Ethnopharmacological survey on medicinal plants used in herbal drinks among the traditional communities of Pakistan.

    PubMed

    Ahmad, Mushtaq; Khan, Muhammad Pukhtoon Zada; Mukhtar, Anam; Zafar, Muhammad; Sultana, Shazia; Jahan, Sarwat

    2016-05-26

    There is very limited information regarding medicinal plants used by traditional healers in Pakistan, for treating wide-ranging diseases. Current study provides significant ethnopharmacological information, both qualitative and quantitative on medical plants in Pakistan and the pharmacological importance of herbal drinks, especially in the discovery of new drugs. The current ethnomedicinal field study was conducted from various traditional communities of Pakistan to document usage of medicinal plants as herbal drinks. Data was collected through field interviews from local people and using semi-structured questionnaires. Data was analyzed using quantitative indices such as UV (use value), RFC (Relative frequency of citation), and FL (Fidelity level). The present study recorded 217 plant species belonging to 174 genera and 69 families used in herbal drinks preparations. Major herbal preparations include decoctions, infusions and juice. According to use reports, significant species were Aloe vera, Artemisia fragrans, Allium cepa, Senegalia catechu, Alternanthera sessilis, Malva ludwigii, Arnebia benthamii, Cichorium intybus, Coccinia grandis, Dalbergia sissoo. Major ailment treated with herbal drinks include heartburn, fever, diarrhea, hypertension, and others. Use value (UV) varies from 0.23 to 0.02, with Mentha arvensis (0.23) having the highest value of UV followed by Mentha longifolia (0.22), Plantago lanceolate (0.19), Achillea millefolium (0.18), Coriandrum sativum (0.18), Justicia adhatoda and Malva sylvestris (0.17). Values of RFC varies from 0.28 to 0.09 while Fidelity level (FL) among plants varies from 37.5 to 100. Alternanthera sessilis, Oxytropis lapponica, Millettia pinnata and Salvia bucharica had the highest FL value (100). The use of medicinal plants is prevalent in traditional communities of Pakistan. Different herbal preparations are in common practice including various herbal drinks a common tradition and much favoured herbal preparation in terms

  10. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells.

    PubMed

    Zaidi, Syed Faisal; Muhammad, Jibran Sualeh; Shahryar, Saeeda; Usmanghani, Khan; Gilani, Anwarul-Hassan; Jafri, Wasim; Sugiyama, Toshiro

    2012-05-07

    Helicobacter pylori infection is associated with gastritis, peptic ulcer, and gastric cancer. Due to its high global prevalence and uprising resistance to available antibiotics, efforts are now directed to identify alternative source to treat and prevent associated disorders. In the present study, effect of selected indigenous medicinal plants of Pakistan was evaluated on the secretion of interleukin-8 (IL-8) and generation of reactive oxygen species (ROS) in a bid to rationalize their medicinal use and to examine the anti-inflammatory and cytoprotective effects in gastric epithelial cells. AGS cells and clinically isolated Helicobacter pylori strain (193C) were employed for co-culture experiments. Anti-Helicobacter pylori activity and cytotoxic effects of the selected plants were determined by serial dilution method and DNA fragmentation assay respectively. ELISA and flow cytometry were performed to evaluate the effect on IL-8 secretion and ROS generation in Helicobacter pylori-infected cells. At 100μg/ml, extracts of Alpinia galangal, Cinnamomum cassia, Cinnamomum tamala, Mentha arvensis, Myrtus communis, Oligochaeta ramose, Polygonum bistorta, Rosa damascena, Ruta graveolens, Syzygium aromaticum, Tamarix dioica, and Terminalia chebula exhibited strong inhibitory activity against IL-8 secretion. Of these, four extracts of Cinnamomum cassia, Myrtus communis, Syzygium aromaticum, and Terminalia chebula markedly inhibited IL-8 secretion at both 50 and 100μg/ml. Cinnamomum cassia was further assessed at different concentrations against Helicobacter pylori and TNF-α stimulated IL-8 secretion, which displayed significant suppression of IL-8 in a concentration-dependent-manner. Among the plants examined against ROS generation, Achillea millefolium, Berberis aristata, Coriandrum sativum, Foeniculum vulgare, Matricaria chamomilla and Prunus domestica demonstrated significant suppression of ROS from Helicobacter pylori-infected cells (p<0.01). Results of the study

  11. Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L.

    PubMed

    Ayeh, Kwadwo Owusu; Lee, YeonKyeong; Ambrose, Mike J; Hvoslef-Eide, Anne Kathrine

    2009-06-23

    In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.

  12. Growth performance and carcass characteristics of guinea fowl broilers fed micronized-dehulled pea (Pisum sativum L.) as a substitute for soybean meal.

    PubMed

    Laudadio, V; Nahashon, S N; Tufarelli, V

    2012-11-01

    This study was conducted to evaluate the effect of substitution of soybean meal (SBM) with dehulled-micronized peas (Pisum sativum) in diets of guinea fowl broilers on their growth performance, carcass yields, and fatty acid composition of meat. One hundred forty 1-d-old guinea fowl keets were randomly assigned to 2 dietary treatments, which were fed from hatch to 12 wk. The birds were fed 2 wheat middling-based diets comprising a control diet, which contained SBM (78 g/kg) and a test diet containing dehulled-micronized peas (180 g/kg) as the main protein source. The substitution of SBM with peas had no adverse effect on growth performance, dressing percentage, or breast and thigh muscle relative weights of the guinea broilers. However, a reduction of abdominal fat content (P < 0.05) was observed in birds fed the pea diet compared with the control. Breast and thigh meat of birds fed the pea diet had higher lightness scores (P < 0.05) and water-holding capacity (P < 0.01) than the control. Meat from guinea fowls fed the pea diet had less cholesterol (P < 0.01) and lipids (P < 0.05), and higher concentrations of phospholipids (P < 0.05). Feeding peas increased polyunsaturated fatty acid concentration in breast and thigh muscles, and decreased the saturated fatty acid concentration. Feeding the pea diet also lowered the n-6/n-3 polyunsaturated fatty acid ratio of the guinea broiler muscles. Our results suggest that replacing the conventional SBM as the protein source with dehulled-micronized pea meal in diets of guinea fowls broilers can improve carcass quality and favorable lipid profile without adversely affecting growth performance traits.

  13. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima—How Do They Compare and How Do They Differ?

    PubMed Central

    Hvoslef-Eide, Anne K.; Munster, Cristel M.; Mathiesen, Cecilie A.; Ayeh, Kwadwo O.; Melby, Tone I.; Rasolomanana, Paoly; Lee, YeonKyeong

    2016-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94–98 million years in evolution, hence any genes or processes in common

  14. Studies on the Control of Ascochyta Blight in Field Peas (Pisum sativum L.) Caused by Ascochyta pinodes in Zhejiang Province, China

    PubMed Central

    Liu, Na; Xu, Shengchun; Yao, Xiefeng; Zhang, Guwen; Mao, Weihua; Hu, Qizan; Feng, Zhijuan; Gong, Yaming

    2016-01-01

    Ascochyta blight, an infection caused by a complex of Ascochyta pinodes, Ascochyta pinodella, Ascochyta pisi, and/or Phoma koolunga, is a destructive disease in many field peas (Pisum sativum L.)-growing regions, and it causes significant losses in grain yield. To understand the composition of fungi associated with this disease in Zhejiang Province, China, a total of 65 single-pycnidiospore fungal isolates were obtained from diseased pea samples collected from 5 locations in this region. These isolates were identified as Ascochyta pinodes by molecular techniques and their morphological and physiological characteristics. The mycelia of ZJ-1 could penetrate pea leaves across the stomas, and formed specific penetration structures and directly pierced leaves. The resistance level of 23 available pea cultivars was tested against their representative isolate A. pinodes ZJ-1 using the excised leaf-assay technique. The ZJ-1 mycelia could penetrate the leaves of all tested cultivars, and they developed typical symptoms, which suggested that all tested cultivars were susceptible to the fungus. Chemical fungicides and biological control agents were screened for management of this disease, and their efficacies were further determined. Most of the tested fungicides (11 out of 14) showed high activity toward ZJ-1 with EC50 < 5 μg/mL. Moreover, fungicides, including tebuconazole, boscalid, iprodione, carbendazim, and fludioxonil, displayed more than 80% disease control efficacy under the recorded conditions. Three biocontrol strains of Bacillus sp. and one of Pantoea agglomerans were isolated from pea-related niches and significantly reduced the severity of disease under greenhouse and field conditions. To our knowledge, this is the first study on ascochyta blight in field peas, and results presented here will be useful for controlling the disease in this area. PMID:27148177

  15. PA1b, an insecticidal protein extracted from pea seeds (Pisum sativum): 1H-2-D NMR study and molecular modeling.

    PubMed

    Jouvensal, Laurence; Quillien, Laurence; Ferrasson, Eric; Rahbé, Yvan; Guéguen, Jacques; Vovelle, Françoise

    2003-10-21

    PA1b (pea albumin 1, subunit b) is a 37-amino acid cysteine-rich plant defense protein isolated from pea seeds (Pisum sativum). It induces short-term mortality in several pests, among which the cereal weevils Sitophilus sp. (Sitophilus oryzae, Sitophilus granarius, and Sitophilus zeamais) that are a major nuisance for stored cereals, all over the world. As such, PA1b is the first genuine protein phytotoxin specifically toxic to insects, which makes it a promising tool for seed weevil damage control. We have determined the 3-D solution structure of PA1b, using 2-D homonuclear proton NMR methods and molecular modeling. The primary sequence of the protein does not share similarities with other known toxins. It includes six cysteines forming three disulfide bridges. However, because of PA1b resistance to protease cleavage, conventional methods failed to establish the connectivity pattern. Our first attempts to assign the disulfide network from NOE data alone remained unsuccessful due to the tight packing of the cysteine residues within the core of the molecule. Yet, the use of ambiguous disulfide restraints within ARIA allowed us to establish that PA1b belongs to the inhibitor cystine-knot family. It exhibits the structural features that are characteristic of the knottin fold, namely, a triple-stranded antiparallel beta-sheet with a long flexible loop connecting the first to the second strand and a series of turns. A comparison of the structural properties of PA1b with that of structurally related proteins adopting a knottin fold and exhibiting a diverse range of biological activities shows that the electrostatic and lipophilic potentials at the surface of PA1b are very close to those found for the spider toxin ACTX-Hi:OB4219, thereby suggesting activity on ion channels.

  16. Amino acid fingerprint in the rhizosphere of Pisum sativum in response to water stress

    NASA Astrophysics Data System (ADS)

    Bobille, Hélène; Fustec, Joëlle; Robins, Richard J.; Cukier, Caroline; Limami, Anis M.

    2017-04-01

    In cropping systems, legumes release substantial amounts of nitrogen (N) into the soil, via rhizodeposition, and constitute a sustainable source of N, instead of synthetic N fertilisers (Fustec et al. 2010). More frequent or/and intense droughts and floodings, due to climate change and intensification of agriculture, may affect N rhizodeposition (Preece & Peñuelas 2016). However, the effects of water stress on this process are poorly documented. A part of N derived from root exudates, mainly in amino acids (AAs) form, is suspected shape and regulate rhizosphere microbial community, thus playing a potential role in maintaining plant health in case of abiotic stress (Moe 2013). We hypothesized that root AA exudation could change significantly, according to water availability, and would help to understand N metabolism changes in plant-rhizosphere interactions. Because studying exudation from plant grown in unsterilized soil is challenging (Oburger et al. 2013), we have measured the rhizosphere AA fingerprint (RAAF), as the result of interactions between AA exudation and rhizospheric environment. In addition, plants were stem-labeled (cotton-wick) with 15N-urea for 72 h to provide direct evidence of a link between root AA and exudation in the soil. The RAAF was measured in Pisum sativum rhizosphere, under either a water deficit or a water excess for 72 h. Water deficit decreases biomass accumulation in shoots but not in roots. Then, water deficit had no significant effect on total AAs released into the rhizosphere but, it significantly modified the composition of RAAF, with a preferential increase of proline, alanine and glutamate and a rise in isotopic enrichment of AAs derived from oxaloacetate in tricarboxylic acidic cycle (asparagine, aspartate, threonine and isoleucine). These results support the idea that, under the early stages of water deficit, recently assimilated N is rapidly translocated to the roots, and part of it is exudated in AAs. Most of the exudated

  17. Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots.

    PubMed

    Ruíz-Torres, Carmelo; Feriche-Linares, Rafael; Rodríguez-Ruíz, Marta; Palma, José M; Corpas, Francisco J

    2017-04-01

    Arsenic (As) contamination is a major environmental problem which affects most living organisms from plants to animals. This metalloid poses a health risk for humans through its accumulation in crops and water. Using garlic (Allium sativum L.) plants as model crop exposed to 200μM arsenate, a comparative study among their main organs (roots and shoots) was made. The analysis of arsenic, glutathione (GSH), phytochelatins (PCs) and lipid peroxidation contents with the activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate-glutathione cycle), and the main components of the NADPH-generating system, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH) was carried out. Data showed a correlation among arsenic accumulation in the different organs, PCs content and the antioxidative response, with a general decline of the NADPH-generating systems in roots. Overall, our results demonstrate that there are clear connections between arsenic uptake, increase of their As-chelating capacity in roots and a decline of antioxidative enzyme activities (catalase and the ascorbate peroxidase) whose alteration provoked As-induced oxidative stress. Thus, the data suggest that roots act as barrier of arsenic mediated by a prominent sulfur metabolism which is characterized by the biosynthesis of high amount of PCs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Identification of Phenolic Compounds from Seed Coats of Differently Colored European Varieties of Pea (Pisum sativum L.) and Characterization of Their Antioxidant and In Vitro Anticancer Activities.

    PubMed

    Stanisavljević, Nemanja S; Ilić, Marija D; Matić, Ivana Z; Jovanović, Živko S; Čupić, Tihomir; Dabić, Dragana Č; Natić, Maja M; Tešić, Živoslav Lj

    2016-01-01

    To date little has been done on identification of major phenolic compounds responsible for anticancer and antioxidant properties of pea (Pisum sativum L.) seed coat extracts. In the present study, phenolic profile of the seed coat extracts from 10 differently colored European varieties has been determined using ultrahigh-performance liquid chromatography-linear trap quadrupole orbitrap mass spectrometer technique. Extracts of dark colored varieties with high total phenolic content (up to 46.56 mg GAE/g) exhibited strong antioxidant activities (measured by 2,2-diphenyl-1-picrylhydrazyl or DPPH assay, and ferric ion reducing and ferrous ion chelating capacity assays) which could be attributed to presence of gallic acid, epigallocatechin, naringenin, and apigenin. The aqueous extracts of dark colored varieties exert concentration-dependent cytotoxic effects on all tested malignant cell lines (human colon adenocarcinoma LS174, human breast carcinoma MDA-MB-453, human lung carcinoma A594, and myelogenous leukemia K562). Correlation analysis revealed that intensities of cytotoxic activity of the extracts strongly correlated with contents of epigallocatechin and luteolin. Cell cycle analysis on LS174 cells in the presence of caspase-3 inhibitor points out that extracts may activate other cell death modalities besides caspase-3-dependent apoptosis. The study provides evidence that seed coat extracts of dark colored pea varieties might be used as potential cancer-chemopreventive and complementary agents in cancer therapy.

  19. Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar.

    PubMed

    Rodriguez, Eleazar; da Conceição Santos, Maria; Azevedo, Raquel; Correia, Carlos; Moutinho-Pereira, José; Ferreira de Oliveira, José Miguel Pimenta; Dias, Maria Celeste

    2015-01-01

    Lead (Pb) environmental contamination remains prevalent. Pisum sativum L. plants have been used in ecotoxicological studies, but some cultivars showed to tolerate and accumulate some levels of Pb, opening new perspectives to their use in phytoremediation approaches. However, the putative use of pea plants in phytoremediation requires reliable toxicity endpoints. Here, we evaluated the sensitivity of a large number of photosynthesis-related biomarkers in Pb-exposed pea plants. Plants (cv. "Corne de Bélier") were exposed to Pb concentrations up to 1,000 mg kg(-1) soil during 28 days. The photosynthetic potential biomarkers that were analyzed included pigments, chlorophyll (Chl) a fluorescence, gas exchange, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity, and carbohydrates. Flow cytometry (FCM) was also used to assess the morpho-functional status of chloroplasts. Finally, Pb-induced nutrient disorders were also evaluated. Net CO2 assimilation rate (A) and RuBisCO activity decreased strongly in Pb-exposed plants. Plant dry mass (DM) accumulation, however, was only reduced in the higher Pb concentrations tested (500 and 1,000 mg kg(-1) soil). Pigment contents increased solely in plants exposed to the largest Pb concentration, and in addition, the parameters related to the light-dependent reactions of photosynthesis, Fv/Fm and ΦPSII, were not affected by Pb exposure. In contrast to this, carbohydrates showed an overall tendency to increase in Pb-exposed plants. The morphological status of chloroplasts was affected by Pb exposure, with a general trend of volume decrease and granularity increase. These results point the endpoints related to the light-independent reactions of photosynthesis as more sensitive predictors of Pb-toxicity than the light-dependent reactions ones. Among the endpoints related to the light-independent photosynthesis reactions, RuBisCO activity and A were found to be the most sensitive. We discuss here the advantages of using

  20. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.

    PubMed

    Lee, YeonKyeong; Ayeh, Kwadwo Owusu; Ambrose, Mike; Hvoslef-Eide, Anne Kathrine

    2016-08-31

    In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 → 4)-β-D-galactan (LM5), (1 → 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into