Separation of Glucose and Pentose Sugars by Selective Enzyme Hydrolysis of AFEX-Treated Corn Fiber
NASA Astrophysics Data System (ADS)
Hanchar, Robert J.; Teymouri, Farzaneh; Nielson, Chandra D.; McCalla, Darold; Stowers, Mark D.
A process was developed to fractionate corn fiber into glucose- and pentose-rich fractions. Corn fiber was ammonia fiber explosion treated at 90°C, using 1 g anhydrous ammonia per gram of dry biomass, 60% moisture, and 30-min residence time. Twenty four hour hydrolysis of ammonia fiber explosion-treated corn fiber with cellulase converted 83% of available glucanto-glucose. In this hydrolysis the hemicellulose was partially broken down with 81% of the xylan and 68% of the arabinan being contained in the hydrolysate after filtration to remove lignin and other insoluble material. Addition of ethanol was used to precipitate and recover the solubilized hemicellulose from the hydrolysate, followed by hydrolysis with 2% (v/v) sulfuric acid to convert the recovered xylan and arabinan to monomeric sugars. Using this method, 57% of xylose and 54% of arabinose available in corn fiber were recovered in a pentose-rich stream. The carbohydrate composition of the pentose-enriched stream was 5% glucose, 57% xylose, 27% arabinose, and 11% galactose. The carbohydrate composition of the glucose-enriched stream was 87% glucose, 5% xylose, 6% arabinose, and 1% galactose, and contained 83% of glucose available from the corn fiber.
Correlating Detergent Fiber Analysis and Dietary Fiber Analysis Data for Corn Stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfrum, E. J.; Lorenz, A. J.; deLeon, N.
There exist large amounts of detergent fiber analysis data [neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL)] for many different potential cellulosic ethanol feedstocks, since these techniques are widely used for the analysis of forages. Researchers working in the area of cellulosic ethanol are interested in the structural carbohydrates in a feedstock (principally glucan and xylan), which are typically determined by acid hydrolysis of the structural fraction after multiple extractions of the biomass. These so-called dietary fiber analysis methods are significantly more involved than detergent fiber analysis methods. The purpose of this study was to determinemore » whether it is feasible to correlate detergent fiber analysis values to glucan and xylan content determined by dietary fiber analysis methods for corn stover. In the detergent fiber analysis literature cellulose is often estimated as the difference between ADF and ADL, while hemicellulose is often estimated as the difference between NDF and ADF. Examination of a corn stover dataset containing both detergent fiber analysis data and dietary fiber analysis data predicted using near infrared spectroscopy shows that correlations between structural glucan measured using dietary fiber techniques and cellulose estimated using detergent techniques, and between structural xylan measured using dietary fiber techniques and hemicellulose estimated using detergent techniques are high, but are driven largely by the underlying correlation between total extractives measured by fiber analysis and NDF/ADF. That is, detergent analysis data is correlated to dietary fiber analysis data for structural carbohydrates, but only indirectly; the main correlation is between detergent analysis data and solvent extraction data produced during the dietary fiber analysis procedure.« less
Van Eylen, David; van Dongen, Femke; Kabel, Mirjam; de Bont, Jan
2011-05-01
Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2g per g of dry matter) of ethanol was reached. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhu, Yongming; Kim, Tae Hyun; Lee, Y Y; Chen, Rongfu; Elander, Richard T
2006-01-01
A novel method of producing food-grade xylooligosaccharides from corn stover and corn cobs was investigated. The process starts with pretreatment of feedstock in aqueous ammonia, which results delignified and xylan-rich substrate. The pretreated substrates are subjected to enzymatic hydrolysis of xylan using endoxylanase for production of xylooligosaccharides. The conventional enzyme-based method involves extraction of xylan with a strong alkaline solution to form a liquid intermediate containing soluble xylan. This intermediate is heavily contaminated with various extraneous components. A costly purification step is therefore required before enzymatic hydrolysis. In the present method, xylan is obtained in solid form after pretreatment. Water-washing is all that is required for enzymatic hydrolysis of this material. The complex step of purifying soluble xylan from contaminant is essentially eliminated. Refining of xylooligosaccharides to food-grade is accomplished by charcoal adsorption followed by ethanol elution. Xylanlytic hydrolysis of the pretreated corn stover yielded glucan-rich residue that is easily digestible by cellulase enzyme. The digestibility of the residue reached 86% with enzyme loading of 10 filter paper units/g-glucan. As a feedstock for xylooligosaccharides production, corn cobs are superior to corn stover because of high xylan content and high packing density. The high packing density of corn cobs reduces water input and eventually raises the product concentration.
2011-01-01
Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX) and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy. PMID:21702938
d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard
2016-02-10
Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production. Copyright © 2015 Elsevier B.V. All rights reserved.
Large Scale Green Synthesis of 1,2,4-Butanetriol
2007-03-31
processing Corn fiber was pretreated by AFEX and the resultant glucan was enzymatically converted to monosaccharide . Saccharification of the cellulose...After removing the residual solids from the hydrolyzate solution, solubilized hemicellulose and monosaccharides were measured in solution, where the...resulting hemicellulose was 62% polysachharide by mass. The component polysaccharide content of the hemicellulose was 35% xylan, 18% arabinan, 6
Melo-Silveira, Raniere Fagundes; Fidelis, Gabriel Pereira; Costa, Mariana Santana Santos Pereira; Telles, Cinthia Beatrice Silva; Dantas-Santos, Nednaldo; de Oliveira Elias, Susana; Ribeiro, Vanessa Bley; Barth, Afonso Luis; Macedo, Alexandre José; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira
2012-01-01
Xylan is one of most abundant polymer after cellulose. However, its potential has yet to be completely recognized. Corn cobs contain a considerable reservoir of xylan. The aim of this work was to study some of the biological activities of xylan obtained from corn cobs after alkaline extraction enhanced by ultrasonication. Physical chemistry and infrared analyses showed 130 kDa heteroxylan containing mainly xylose:arabinose: galactose:glucose (5.0:1.5:2.0:1.2). Xylan obtained exhibited total antioxidant activity corresponding to 48.5 mg of ascorbic acid equivalent/g of xylan. Furthermore, xylan displayed high ferric chelating activity (70%) at 2 mg/mL. Xylan also showed anticoagulant activity in aPTT test. In antimicrobial assay, the polysaccharide significantly inhibited bacterial growth of Klebsiella pneumoniae. In a test with normal and tumor human cells, after 72 h, only HeLa tumor cell proliferation was inhibited (p < 0.05) in a dose-dependent manner by xylan, reaching saturation at around 2 mg/mL, whereas 3T3 normal cell proliferation was not affected. The results suggest that it has potential clinical applications as antioxidant, anticoagulant, antimicrobial and antiproliferative compounds.
Melo-Silveira, Raniere Fagundes; Fidelis, Gabriel Pereira; Costa, Mariana Santana Santos Pereira; Telles, Cinthia Beatrice Silva; Dantas-Santos, Nednaldo; de Oliveira Elias, Susana; Ribeiro, Vanessa Bley; Barth, Afonso Luis; Macedo, Alexandre José; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira
2012-01-01
Xylan is one of most abundant polymer after cellulose. However, its potential has yet to be completely recognized. Corn cobs contain a considerable reservoir of xylan. The aim of this work was to study some of the biological activities of xylan obtained from corn cobs after alkaline extraction enhanced by ultrasonication. Physical chemistry and infrared analyses showed 130 kDa heteroxylan containing mainly xylose:arabinose: galactose:glucose (5.0:1.5:2.0:1.2). Xylan obtained exhibited total antioxidant activity corresponding to 48.5 mg of ascorbic acid equivalent/g of xylan. Furthermore, xylan displayed high ferric chelating activity (70%) at 2 mg/mL. Xylan also showed anticoagulant activity in aPTT test. In antimicrobial assay, the polysaccharide significantly inhibited bacterial growth of Klebsiella pneumoniae. In a test with normal and tumor human cells, after 72 h, only HeLa tumor cell proliferation was inhibited (p < 0.05) in a dose-dependent manner by xylan, reaching saturation at around 2 mg/mL, whereas 3T3 normal cell proliferation was not affected. The results suggest that it has potential clinical applications as antioxidant, anticoagulant, antimicrobial and antiproliferative compounds. PMID:22312261
Xylan from corn cobs, a promising polymer for drug delivery: production and characterization.
Oliveira, Elquio Eleamen; Silva, Acarília Eduardo; Júnior, Toshiyuki Nagashima; Gomes, Monique Christine Salgado; Aguiar, Larissa Muratori; Marcelino, Henrique Rodrigues; Araújo, Ivonete Batista; Bayer, Marc P; Ricardo, Nágila M P S; Oliveira, Anselmo Gomes; Egito, Eryvaldo Sócrates Tabosa
2010-07-01
Although many authors have reported several beneficial effects ascribed to xylan, such as inhibitory action on mutagenicity activity, antiphlogistic effects, and mitogenic and comitogenic activities, few papers have investigated a systematic study on the technological properties of this polymer. The aim of the present work was to evaluate xylan as a promise raw material for the pharmaceutical industry. The water-insoluble xylan samples were extracted from corn cobs following several steps. The obtained powered sample was analyzed by infrared and RMN spectroscopy, and characterized regarding their particle size, bulk and tap densities, compressibility index, compactability, Hausner ratio, and angle of repose. According to the results, infrared and RMN spectroscopy were shown to be able to evaluate the xylan structural conformation and composition, respectively. In addition, rheological data demonstrated that xylan powder obtained from corn cobs may be characterized as a material with low density and very cohesive flow properties. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Appeldoorn, Maaike M; de Waard, Pieter; Kabel, Mirjam A; Gruppen, Harry; Schols, Henk A
2013-11-15
In order to use corn fiber as a source for bioethanol production the enzymatic hydrolysis of the complex glucuronoarabinoxylans present has to be improved. Several oligosaccharides present in the supernatant of mild acid pretreated and enzymatically saccharified corn fiber that resist the current available enzymes were (semi)purified for structural analysis by NMR or ESI-MS(n). The structural features of 21 recalcitrant oligosaccharides are presented. A common feature of almost all these oligosaccharides is that they contain (part of) an α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose side chain attached to the O-3 position of the β-1-4 linked xylose backbone. Several of the identified oligosaccharides contained an ethyl group at the reducing end hypothesized to be formed during SSF. The ethyl glycosides found are far more complex than previously described structures. A new feature present in more than half of the oligosaccharides is an acetyl group attached to the O-2 position of the same xylose to which the oligomeric side chain was attached to the O-3 position. Finding enzymes attacking these large side chains and the dense substituted xylan backbone will boost the hydrolysis of corn fiber glucuronoxylan. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shrestha, Prachand
This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.
Yang, Bin; Wyman, Charles E
2004-04-05
Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover. Copyright 2004 Wiley Periodicals, Inc.
2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.
Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R
2015-02-15
Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. Copyright © 2014 Elsevier Inc. All rights reserved.
Heat Extraction of Corn Fiber Hemicellulose
NASA Astrophysics Data System (ADS)
Benkő, Zsuzsa; Andersson, Alexandra; Szengyel, Zsolt; Gáspár, Melinda; Réczey, Kati; Stålbrand, Henrik
Water-soluble hemicellulose was extracted from corn fiber with microwave-assisted heat treatment. The effects of treatment temperature and initial pH of the aqueous extraction media were investigated regarding hemicellulose recovery and molecular mass of the isolated polysaccharides. In treatments carried out at neutral pH (simple water extraction), it has been demonstrated that hemicellulose recovery could be increased by applying higher treatment temperatures. However, the molecular weight of isolated hemicellulose gets significantly lower. For example, 10% of the raw materials' xylan was extracted at 160°C and about 30% recovery was reached at 210°C. However, the molecular mass of the isolated polysaccharide at 210°C (5.82×104) was about half of that measured at 160°C (1.37×105). Reducing the pH with sulfuric acid resulted in shorter polymer chains (1.7×104) and lower hemicellulose yields (2.2%). Application of sodium hydroxide in the treatment showed that, compared with acid, considerably higher yields (11%) with longer polysaccharide chains (1.3×105) could be obtained.
Rumpagaporn, Pinthip; Reuhs, Brad L; Kaur, Amandeep; Patterson, John A; Keshavarzian, Ali; Hamaker, Bruce R
2015-10-05
Most soluble dietary fibers ferment rapidly in the proximal colon, potentially causing discomfort and poor tolerability. Alkali-extracted arabinoxylan isolates from corn, wheat, rice and sorghum brans were prepared, through hydrolysis (except sorghum) and ethanol fractionation, to have a broad range of initial fermentation rates, and their linkage patterns were determined to understand structural aspects related to slow fermentation rate. They were all highly branched polymers with degree of substitution greater than 64%. There was no relationship of molecular mass, arabinose:xylose ratio, or degree of substitution to fermentation rate patterns. Slow fermenting wheat and corn arabinoxylans had much higher amount of terminal xylose in branches than fast fermenting rice and sorghum arabinoxylans. The slowest fermenting wheat arabinoxylan additionally contained a complex trisaccharide side chain with two arabinoses linked at the O-2 and O-3 positions of an arabinose that is O-2 linked to the xylan backbone. Structural features were proposed for tolerable slowly fermentable arabinoxylan with possible beneficial fermentation function into the distal colon. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility.
Yuan, Wei; Gong, Zhiwei; Wang, Guanghui; Zhou, Wenting; Liu, Yi; Wang, Xuemin; Zhao, Mi
2018-06-14
In the present study, a sodium hydroxide-methanol solution (SMs) pretreatment of corn stover was described to overcome biomass recalcitrance for the first time. Effects of sodium hydroxide loading, solid-to-liquid ratio, processing time and temperature on enzymatic saccharification were studied in detail. The SMs pretreatment could significantly enhance the enzyme accessibility of corn stover, minimize the degradation of sugar polymers, and decrease the energy consumption. 97.5% glucan and 83.5% xylan were preserved in the regenerated corn stover under the optimal condition. Subsequent enzymatic digestibilities of glucan and xylan reached 97.2% and 80.3%, respectively. The enzyme susceptibility of the regenerated samples was explained by their physical and chemical characteristics. This strategy provides a promising alternative for better techno-economic of the lignocelluloses-to-sugars routes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of cationic xylan from annual plants on the mechanical properties of paper.
Deutschle, Alexander L; Römhild, Katrin; Meister, Frank; Janzon, Ron; Riegert, Christiane; Saake, Bodo
2014-02-15
Xylan from oat spelt and wheat was used as an additive to enhance the dry strength of paper. The absorption of xylan by the cellulose fibers was increased by cationization to different degrees of substitution. Paper hand sheets with different doses of xylan and industrial cationic starch were produced, and the mechanical properties were determined. Absorption measurements of cationic oat spelt xylan on pulp fibers explained the differing influences of low and high cationized xylan addition on paper strength. The addition of cationic oat spelt xylan with a degree of substitution of 0.1 at a 4% dose provided the largest improvement in the tensile-index (67%), burst-index (105%) and tear-index (77%). Compared to cationic starch, cationic oat spelt xylan additives led to similar paper strength values, excepting the tear strength. The structural differences and protein impurities made the wheat xylan unsuitable as a strength additive for paper pulp. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh
Xylan constitutes a significant portion of biomass (e.g. 22% in corn stover used in this study). Xylan is also an important source of carbohydrates, besides cellulose, for renewable and sustainable energy applications. Currently used method for the localization of xylan in biomass is to use fluorescence confocal microscope to image the fluorescent dye labeled monoclonal antibody that specifically binds to xylan. With the rapid adoption of the Raman-based label-free chemical imaging techniques in biology, identifying Raman bands that are unique to xylan would be critical for the implementation of the above label-free techniques for in situ xylan imaging. Unlike ligninmore » and cellulose that have long be assigned fingerprint Raman bands, specific Raman bands for xylan remain unclear. The major challenge is the cellulose in plant cell wall, which has chemical units highly similar to that of xylan. Here we report using xylanase to specifically remove xylan from feedstock. Under various degree of xylan removal, with minimum impact to other major cell wall components, i.e. lignin and cellulose, we have identified Raman bands that could be further tested for chemical imaging of xylan in biomass in situ.« less
Screening and production study of microbial xylanase producers from Brazilian Cerrado.
Alves-Prado, Heloiza Ferreira; Pavezzi, Fabiana Carina; Leite, Rodrigo Simões Ribeiro; de Oliveira, Valéria Maia; Sette, Lara Durães; Dasilva, Roberto
2010-05-01
Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55 and 60 degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 degrees C.
USDA-ARS?s Scientific Manuscript database
An integrated bioconversion process was developed to convert corn-stover derived pentose and hexose to ethanol effectively. In this study, corn stover was pretreated by soaking in aqueous ammonia (SAA), which resulted in high retention of glucan (~100%) and xylan (>80%) in the solids. The pretreated...
Maleic acid treatment of biologically detoxified corn stover liquor
USDA-ARS?s Scientific Manuscript database
Elimination of microbial and/or enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot-water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases. Other so...
Preparation, characterization and in vitro anticoagulant activity of corn stover xylan sulfates.
Cheng, He-Li; Liu, Hao; Feng, Qing-Hua; Xie, Yi-Min; Zhan, Huai-Yu
2017-02-01
A new anticoagulant agent was prepared by introducing sulfate groups into corn stover xylan through homogeneous reactions. Three organic solvents, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and formamide (FA), were adopted as reaction media, with the assistance of LiCl. Structural characterization by FT-IR and 13 CNMR showed that xylan sulfate (XS) could be successfully synthesized with SO 3 ∙Pyridine (SO 3 ∙Py) complexes sulfation reagent in the three media. The effect of sulfation temperature, sulfation time, media type and molar ratio of -SO 3 /-OH on the degree of substitution (DS) and degree of the polymerization (DP) were studied. DMF/LiCl were more effective than DMSO/LiCl and FA/LiCl in preparation of xylan sulfate with high DS. The optimal conditions for sulfation were obtained when SO 3 ∙Py complex was added to DMF/LiCl with -SO 3 /-OH ratio of 1.5:1 and maintained at 50 °C for 3 h. Degree of polymerization of xylan was decreased during the sulfation process and DMF/LiCl offered the least xylan degradation as compared with DMSO/LiCl or FA/LiCl. Anticoagulant activities of the resultant xylan sulfates with different DS were evaluated by using activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT). Results indicated that the introducing of sulfate groups into xylan did endow the polysaccharides with anticoagulant activity. The APTT and TT of XS with DS of 1.20 reached 141 and 45.3 s at a dosage of 20 μg/mL, while the APTT and TT values for the blank sample were only 35.5 and 15.6 s. Furthermore, coagulation time was prolonged with the increase of DS and the concentration of XS. Our findings provide new insights into the value-added utilization of agricultural biomass.
Moisture barrier properties of xylan composite films
Amit Saxena; Thomas J. Elder; Arthur J. Ragauskas
2011-01-01
Moisture barrier properties of films based on xylan reinforced with several cellulosic resources including nanocrystalline cellulose, acacia bleached kraft pulp fibers and softwood kraft fibers have been evaluated. Measurements of water vapor transmission rate (WVTR) were performed by a modification of the wet cup method described by ASTM E 96-95, indicating that...
Liu, Tongjun; Williams, Daniel L; Pattathil, Sivakumar; Li, Muyang; Hahn, Michael G; Hodge, David B
2014-04-03
A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. This work demonstrates that this two-stage pretreatment process is well suited for converting lignocellulose to fermentable sugars and biofuels, such as ethanol. This approach achieved high enzymatic sugars yields from pretreated corn stover using substantially lower oxidant loadings than have been reported previously in the literature. This pretreatment approach allows for many possible process configurations involving novel alkali recovery approaches and novel uses of alkaline pre-extraction liquors. Further work is required to identify the most economical configuration, including process designs using techno-economic analysis and investigating processing strategies that economize water use.
Study on the Modification of Bleached Eucalyptus Kraft Pulp Using Birch Xylan
Wenjia Han; Chuanshan Zhao; Thomas Elder; Rendang Yang; Dongho Kim; Yunqiao Pu; Jeffery Hsieh; Arthur J. Ragauskas
2012-01-01
In this study, birch xylan was deposited onto elementally chlorine free (ECF) bleached eucalyptus kraft pulp, and the corresponding changes in physical properties were determined. An aqueous 5% birch xylan solution at pH 9 was added to 5 wt% slurry of bleached kraft eucalyptus fibers, with stirring at 70 C for 15 min after which the pH was adjusted to 5â6. The xylan...
Li, Yanfei; Ge, Xiaoyan; Sun, Zongping; Zhang, Junhua
2015-06-01
The competitive adsorption between cellulases and additives on lignin in the hydrolysis of lignocelluloses has been confirmed, whereas the effect of additives on the interaction between xylanase and lignin is not clear. In this work, the effects of additives, poly(ethylene glycol) 2000, poly(ethylene glycol) 6000, Tween 20, and Tween 80, on the xylanase adsorption/desorption onto/from acid-insoluble lignin from corn stover (CS-lignin) and wheat straw (WS-lignin) were investigated. The results indicated that the additives could adsorb onto isolated lignin and reduce the xylanase adsorption onto lignin. Compared to CS-lignin, more additives could adsorb onto WS-lignin, making less xylanase adsorbed onto WS-lignin. In addition, the additives could enhance desorption of xylanase from lignin, which might be due to the competitive adsorption between xylanase and additives on lignin. The released xylanase from lignin still exhibited hydrolytic capacity in the hydrolysis of isolated xylan and xylan in corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of alkaline- and fungi-assisted wet-storage of corn stover.
Cui, Zhifang; Shi, Jian; Wan, Caixia; Li, Yebo
2012-04-01
Storage of lignocellulosic biomass is critical for a year-round supply of feedstock for a biorefinery. Compared with dry storage, wet storage is a promising alternative technology, providing several advantages including reduced dry matter loss and fire risk and improved feedstock digestibility after storage. This study investigated the concurrent pretreatment and wet-storage of corn stover with the assistance of NaOH or a lignin-degrading fungus, Ceriporiopsis subvermispora, during a 90-d period. Compared with ensilage, adding NaOH or inoculation with C. subvermispora significantly enhanced the enzymatic degradability of corn stover by 2-3-fold after 90-d wet storage. Lignin and xylan removal during NaOH pretreatment and wet-storage were influenced by NaOH loading and moisture. NaOH pretreatment retarded the production of organic acids during storage and the acetate release correlated with lignin and xylan removal. Further study is needed to reduce cellulose degradation during the late stage of fungal treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh
Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have provenmore » to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. As a result, we believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction.« less
Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; ...
2016-11-22
Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have provenmore » to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. As a result, we believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction.« less
2014-01-01
Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two-stage pretreatment process is well suited for converting lignocellulose to fermentable sugars and biofuels, such as ethanol. This approach achieved high enzymatic sugars yields from pretreated corn stover using substantially lower oxidant loadings than have been reported previously in the literature. This pretreatment approach allows for many possible process configurations involving novel alkali recovery approaches and novel uses of alkaline pre-extraction liquors. Further work is required to identify the most economical configuration, including process designs using techno-economic analysis and investigating processing strategies that economize water use. PMID:24693882
Selig, Michael J; Vinzant, Todd B; Himmel, Michael E; Decker, Stephen R
2009-05-01
Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.
Structural changes of corn stover lignin during acid pretreatment.
Moxley, Geoffrey; Gaspar, Armindo Ribeiro; Higgins, Don; Xu, Hui
2012-09-01
In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70 % at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by ³¹P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180 °C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.
Yoo, Chang Geun; Wang, Chao; Yu, Chenxu; Kim, Tae Hyun
2013-03-01
Photocatalyst-assisted ammonia pretreatment was explored to improve lignin removal of the lignocellulosic biomass for effective sugar conversion. Corn stover was treated with 5.0-12.5 wt.% ammonium hydroxide, two different photocatalysts (TiO(2) and ZnO) in the presence of molecular oxygen in a batch reactor at 60 °C. Various solid-to-liquid ratios (1:20-1:50) were also tested. Ammonia pretreatment assisted by TiO(2)-catalyzed photo-degradation removed 70 % of Klason lignin under the optimum condition (12.5 % ammonium hydroxide, 60 °C, 24 h, solid/liquid=1:20, photocatalyst/biomass=1:10 with oxygen atmosphere). The enzymatic digestibilities of pretreated corn stover were 85 % for glucan and 75 % for xylan with NH(3)-TiO(2)-treated solid and 82 % for glucan and 77 % for xylan with NH(3)-ZnO-treated solid with 15 filter paper units/g-glucan of cellulase and 30 cellobiase units/g-glucan of β-glucosidase, a 2-13 % improvement over ammonia pretreatment alone.
Utilisation of corn (Zea mays) bran and corn fiber in the production of food components.
Rose, Devin J; Inglett, George E; Liu, Sean X
2010-04-30
The milling of corn for the production of food constituents results in a number of low-value co-products. Two of the major co-products produced by this operation are corn bran and corn fiber, which currently have low commercial value. This review focuses on current and prospective research surrounding the utilization of corn fiber and corn bran in the production of potentially higher-value food components. Corn bran and corn fiber contain potentially useful components that may be harvested through physical, chemical or enzymatic means for the production of food ingredients or additives, including corn fiber oil, corn fiber gum, cellulosic fiber gels, xylo-oligosaccharides and ferulic acid. Components of corn bran and corn fiber may also be converted to food chemicals such as vanillin and xylitol. Commercialization of processes for the isolation or production of food products from corn bran or corn fiber has been met with numerous technical challenges, therefore further research that improves the production of these components from corn bran or corn fiber is needed.
Ethanol extraction of phytosterols from corn fiber
Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.
2010-11-16
The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.
Benefits from Tween during enzymic hydrolysis of corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaar, W.E.; Holtzapple, M.T.
1998-08-20
Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. The critical relationship was the Tweenmore » loading on the biomass, not the Tween concentration in solution. The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector.« less
Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors
USDA-ARS?s Scientific Manuscript database
Removal of inhibitory compounds by bioabatement, combined with xylan hydrolysis, enables effective cellulose hydrolysis of pretreated corn stover, for fermentation of the sugars to fuel ethanol or other products. The fungus Coniochaeta ligniaria NRRL30616 eliminates most enzyme and fermentation inhi...
The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process
2012-01-01
Background Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: 1) cleavage of the xylosidic bonds, and 2) cleavage of covalently bonded acetyl ester groups. Results In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield. PMID:22369467
Utilization of corn fiber for production of schizophyllan
USDA-ARS?s Scientific Manuscript database
Corn fiber is an abundant lignocellulosic biomass resource produced during the wet milling of corn. Although corn fiber is recalcitrant to enzymatic digestion, the fungus Schizophyllum commune was able to directly utilize corn fiber for production of the valuable bioproduct, schizophyllan. Schizophy...
Influence of dietary fiber on xylanolytic and cellulolytic bacteria of adult pigs.
Varel, V H; Robinson, I M; Jung, H J
1987-01-01
Xylanolytic and cellulolytic bacteria were enumerated over an 86-day period from fecal samples of 10 8-month-old gilts that were fed either a control or a 40% alfalfa meal (high-fiber) diet. Fecal samples were collected from all pigs on days 0, 3, 5, 12, 25, 37, 58, and 86. Overall, the numbers of xylanolytic bacteria producing greater than 5-mm-diameter zones of clearing on 0.24% xylan roll tube medium after 24 to 36 h of incubation were 1.6 X 10(8) and 4.2 X 10(8)/g (dry weight) of feces for the control pigs and those fed the high-fiber diet, respectively. After 1 week of incubation, a large number of smaller zones of clearing (1 to 2 mm) appeared. Besides Bacteroides succinogenes and Ruminococcus flavefaciens, which produced faint zones of clearing in xylan roll tubes, three strains which closely resembled B. ruminicola hydrolyzed and used xylan for growth. The overall numbers of cellulolytic bacteria producing zones of clearing in 0.5% agar roll tube medium were 0.36 X 10(8) and 4.1 X 10(8)/g for the control pigs and those fed the high-fiber diet, respectively. B. succinogenes was the predominant cellulolytic isolate from both groups of pigs, and R. flavefaciens was found in a ratio of approximately 1 to 15 with B. succinogenes. Degradation of xylan and cellulose, measured by in vitro dry matter disappearance after inoculation with fecal samples, was significantly greater for pigs fed the high-fiber diet than that for the controls. These data suggest that the number of fibrolytic microorganisms and their activity in the large intestine of the adult pig can be increased by feeding pigs high-alfalfa-fiber diets and that these organisms are similar to those found in the rumen. PMID:3030194
Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility.
Liu, Zhi-Hua; Chen, Hong-Zhang
2015-10-01
A novel conversion process using steam explosion combined with enzymatic digestibility was exploited to increase sugar yield. Results showed that glucan and xylan recovery decreased with the increase of holding temperature and residence time in SE, respectively, while glucan and xylan conversion exhibited an opposite trend. The optimal conditions of steam explosion were 160 °C and 48 min, under which glucan and xylan recovery was 93.4% and 71.6%, respectively. Glucan and xylan conversion at 18% solid loading by periodic peristalsis increased by 3.4-5.8% and 4.5-6.2%, respectively, compared with that by water baths shaker. In the whole process, glucose, xylose and total sugar yield reached to 77.3%, 62.8% and 72.3%, respectively. The yield of hydroxymethyl furfural, furfural and lignin-derived products was 6.3 × 10(-2), 7.5 × 10(-2) and less than 3.7 × 10(-2) g/100 g feedstock, respectively. This novel conversion process increased sugar recovery, reduced degradation products formation, improved digestibility efficiency, and hence increased sugar yield. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Huan; Pang, Bo; Wang, Haisong; Li, Haiming; Lu, Jie; Niu, Meihong
2015-04-01
In this study, alkaline sulfite pretreatment of corn stover was optimized. The influences of pretreatments on solid yield, delignification, and carbohydrate recovery under different pretreatment conditions and subsequent enzymatic hydrolysis were investigated. The effect of pretreatment was evaluated by enzymatic hydrolysis efficiency and the total sugar yield. The optimum pretreatment conditions were obtained, as follows: the total titratable alkali (TTA) of 12%, liquid/solid ratio of 6:1, temperature of 140 °C, and holding time of 20 min. Under those conditions, the solid yield was 55.24%, and the removal of lignin was 82.68%. Enzymatic hydrolysis rates of glucan and xylan for pretreated corn stover were 85.38% and 70.36%, and the total sugar yield was 74.73% at cellulase loading of 20 FPU/g and β-glucosidase loading of 10 IU/g for 48 h. Compared with sodium hydroxide pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 10.43%. Additionally, the corn stover pretreated under the optimum pretreatment conditions was beaten by PFI at 1500 revolutions. After beating, enzymatic hydrolysis rates of glucan and xylan were 89.74% and 74.06%, and the total sugar yield was 78.58% at the same enzymatic hydrolysis conditions. Compared with 1500 rpm of PFI beating after sodium pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 14.05%.
Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Charles; Beery, Kyle; Orth, Rick
2007-09-28
The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50%more » of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.« less
Fomation of corn fiber gum-milk protein conjugates and their molecular characterization
USDA-ARS?s Scientific Manuscript database
Corn fiber arabinoxylan is hemicellulose B isolated from the fibrous portions (pericarp, tip cap, and endosperm cell wall fractions) of corn kernels and is commonly referred to as corn fiber gum (CFG). Our previous studies showed that CFG isolated from corn bran (a byproduct of corn dry milling) co...
Hao, Zhangying; Avci, Utku; Tan, Li; Zhu, Xiang; Glushka, John; Pattathil, Sivakumar; Eberhard, Stefan; Sholes, Tipton; Rothstein, Grace E.; Lukowitz, Wolfgang; Orlando, Ron; Hahn, Michael G.; Mohnen, Debra
2014-01-01
GAlactUronosylTransferase12 (GAUT12)/IRregular Xylem8 (IRX8) is a putative glycosyltransferase involved in Arabidopsis secondary cell wall biosynthesis. Previous work showed that Arabidopsis irregular xylem8 (irx8) mutants have collapsed xylem due to a reduction in xylan and a lesser reduction in a subfraction of homogalacturonan (HG). We now show that male sterility in the irx8 mutant is due to indehiscent anthers caused by reduced deposition of xylan and lignin in the endothecium cell layer. The reduced lignin content was demonstrated by histochemical lignin staining and pyrolysis Molecular Beam Mass Spectrometry (pyMBMS) and is associated with reduced lignin biosynthesis in irx8 stems. Examination of sequential chemical extracts of stem walls using 2D 13C-1H Heteronuclear Single-Quantum Correlation (HSQC) NMR spectroscopy and antibody-based glycome profiling revealed a reduction in G lignin in the 1 M KOH extract and a concomitant loss of xylan, arabinogalactan and pectin epitopes in the ammonium oxalate, sodium carbonate, and 1 M KOH extracts from the irx8 walls compared with wild-type walls. Immunolabeling of stem sections using the monoclonal antibody CCRC-M138 reactive against an unsubstituted xylopentaose epitope revealed a bi-lamellate pattern in wild-type fiber cells and a collapsed bi-layer in irx8 cells, suggesting that at least in fiber cells, GAUT12 participates in the synthesis of a specific layer or type of xylan or helps to provide an architecture framework required for the native xylan deposition pattern. The results support the hypothesis that GAUT12 functions in the synthesis of a structure required for xylan and lignin deposition during secondary cell wall formation. PMID:25120548
Isolation, purification and identification of protein associated with corn fiber gum
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of corn kernel milling by-product “corn fiber” is a proteinaceous arabinoxylan with a protein content ranging from ca. 2 to 9% by weight for the CFG samples isolated from different corn milling fiber sources. Several studies have suggested...
Maleic acid treatment of biologically detoxified corn stover liquor.
Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R
2016-09-01
Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Jie; Guo, Rong-Bo; Qiu, Yan-Ling; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Wang, Chuan-Shui
2015-03-01
The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%. Copyright © 2014 Elsevier Ltd. All rights reserved.
In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material.
Chimphango, Annie F A; Görgens, J F; van Zyl, W H
2016-06-05
The functional properties of cellulose fibers can be modified by adsorption of xylan biopolymers. The adsorption is improved when the degree of biopolymers substitution with arabinose and 4-O-methyl-glucuronic acid (MeGlcA) side groups, is reduced. α-l-Arabinofuranosidase (AbfB) and α-d-glucuronidase (AguA) enzymes were applied for side group removal, to increase adsorption of xylan from sugarcane (Saccharum officinarum L) bagasse (BH), bamboo (Bambusa balcooa) (BM), Pinus patula (PP) and Eucalyptus grandis (EH) onto cotton lint. The AguA treatment increased the adsorption of all xylans by up to 334%, whereas, the AbfB increased the adsorption of the BM and PP by 31% and 44%, respectively. A combination of AguA and AbfB treatment increased the adsorption, but to a lesser extent than achieved with AguA treatment. This indicated that the removal of the glucuronic acid side groups provided the most significant increase in xylan adsorption to cellulose, in particular through enzymatic treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of twin-screw extrusion on soluble arabinoxylans and corn fiber gum from corn fiber.
Singkhornart, Sasathorn; Lee, Seul Gi; Ryu, Gi Hyung
2013-09-01
The effect of feed moisture content and screw speed in the extrusion process with and without chemical pretreatment of corn fiber was investigated. Different chemical pretreatment methods (NaOH and H2 SO4 solution) were compared. The improvement of reducing sugar, soluble arabinoxylans (SAX) content and the yield of corn fiber gum was measured. A high reducing sugar content was obtained in the filtrate fraction from the extruded destarched corn fiber (EDCF) with H₂SO₄ pretreatment. Feed moisture content most effectively improved both reducing sugar and SAX content of filtrate. Increasing feed moisture content and screw speed resulted in a higher SAX content in the filtrate of the EDCF with NaOH pretreatment. The SAX content of the residual solid from the EDCF with NaOH pretreatment was higher compared to H₂SO₄ pretreated and unpretreated samples and significantly increased with decreasing feed moisture content. The screw speed did not have a major impact after enzyme hydrolysis. The yield of corn fiber gum was increased by 12% using NaOH pretreatment combined with extrusion process as compared to the destarched corn fiber. The results show the great potential of the extrusion process as an effective pretreatment for disruption the lignocelluloses of corn fiber, leading to conversion of cellulose to glucose and hemicelluloses to SAX and isolation of corn fiber gum. © 2013 Society of Chemical Industry.
Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide.
Gupta, Rajesh; Lee, Y Y
2010-01-01
Sodium hydroxide and its derivatives are used as pulping reagents, wherein the spent NaOH is recovered in salt form and reused. In this study, use of low concentration NaOH (1-5%) in pretreatment of corn stover and hybrid poplar was investigated. It was done with the understanding that NaOH can be recovered. One of the main objectives in this study is to explore the potential of H(2)O(2) with NaOH for pretreatment of high lignin substrate such as hybrid poplar. Pretreatment time has not been optimized in this study but held constant at 24 h. Corn stover, after treatment with NaOH under moderate conditions, attains near quantitative glucan digestibility. On the other hand, hybrid poplar requires treatment at higher temperature and NaOH concentration to attain acceptable level of digestibility. Supplementation of hydrogen peroxide in the pretreatment significantly raises delignification and digestibility of hybrid poplar. It was also helpful in retaining the carbohydrates in the treated solids. Retention of hemicellulose after pretreatment provides a significant economic benefit as it eliminates the need for detoxifying hemicellulose sugars. As the residual xylan remaining after pretreatment is an impediment to enzymatic digestion of glucan, supplementation of xylanase has significantly increased the digestibility of glucan as well as xylan of the treated hybrid poplar. (c) 2010 American Institute of Chemical Engineers
Corn fiber hulls as a food additive or animal feed
Abbas, Charles; Beery, Kyle E.; Cecava, Michael J.; Doane, Perry H.
2010-12-21
The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.
Evaluation of Elevated Dietary Corn Fiber from Corn Germ Meal in Growing Female Pigs
USDA-ARS?s Scientific Manuscript database
To evaluate the effects of high dietary corn fiber on growth and metabolic measures, female pigs (n= 48; initial body weight of 30.8 kg) were fed diets containing 0 to 38.6% solvent-extracted corn germ meal for 28 days. Increasing the level of dietary corn fiber had no impact on average daily gain o...
Corn fiber gum: New structure/function relationships for this potential beverage flavor stabilizer
USDA-ARS?s Scientific Manuscript database
Corn fiber arabinoxylan is a hemicellulose B isolated from the fibrous portions (pericarp, tip cap, and endosperm cell wall fractions) of corn kernels by alkaline solution, often in the presence of hydrogen peroxide and is commonly referred to as “Corn fiber gum” (CFG). The unique polysaccharide, C...
Gutierrez, N A; Kerr, B J; Patience, J F
2013-11-01
Extensive use of corn coproducts in swine diets increases the concentration of dietary fiber, raising concerns on energy and nutrient digestibility and, ultimately, pig performance. A digestion trial was conducted to determine the effect of increasing levels of insoluble-low fermentable fiber from corn in the diet, using corn bran with solubles (CBS) from the corn-ethanol distillation industry, on digestibility of energy, fiber, and AA, and hindgut fermentation of fiber in diets fed to growing pigs. Fifteen growing pigs (BW=28.7 kg) arranged in a 3-period incomplete block design and fitted with a T-cannula in the distal ileum were provided 5 diets (n=9) containing either a corn-casein basal or the basal diet with 10, 20, 30, or 40% CBS. Fecal and ileal digesta samples were collected. Two subsequent 28-d growth trials determined the effects of increasing dietary fiber from CBS in 2 sets of 7 diets formulated either with declining (growing phase: 2,387 to 2,133 kcal NE/kg; finishing phase: 2,499 to 2,209 kcal NE/kg) or constant dietary NE (growing phase≈2,390 kcal NE/kg; finishing phase≈2,500 kcal NE/kg) on growth performance and apparent total tract digestibility (ATTD) of energy in 70 growing (BW=48.9 kg; n=10 per diet) and 70 finishing (BW=102.0 kg; n=10) pigs. Results indicated that increasing fiber from corn lowered (P<0.01) the apparent ileal digestibility of all indispensable amino acids except Arg, GE, DM, and CP but not NDF or total dietary fiber (TDF). Increased fiber from corn also reduced ATTD of GE, DM, CP, NDF, and TDF (P<0.01). Increasing fiber with declining diet NE lowered BW, ADG, and G:F (P<0.05) in growing and in finishing pigs. When NE was held constant, as fiber increased, BW and ADG were unaffected in growing and finishing pigs, and G:F was unaffected in finishing pigs but improved in growing pigs (P<0.05) with increasing dietary fiber. In both growing and finishing pigs, ADFI was unaffected by the increased fiber from corn, regardless of the NE content of diets. In conclusion, the dietary level of insoluble-low fermentable dietary fiber from corn origin decreased the digestibility of dietary AA, and the ability of the growing pig to ferment corn dietary fiber. In spite of the reduction in digestibility of energy and nutrients with insoluble-low fermentable fiber level from corn, growth performance was not impaired when the energy supply is adequately balanced in the diet using the NE system.
Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process.
Yoo, Chang Geun; Nghiem, Nhuan P; Hicks, Kevin B; Kim, Tae Hyun
2011-11-01
A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30-70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40-120°C) for 48-144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1g-ammonia+1.0 g-water per g biomass, 80°C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan+xylan in corn stover). Copyright © 2011 Elsevier Ltd. All rights reserved.
Ballistics Tests of Fibrous Concrete Dome and Plate Specimens
1976-04-01
x 0.22 x 1 in. chopped steel fibers from U.S. Steel. KG denotes 1 in. fiberglass fibers from Owens - Corning . Table 3 Dome Test Results Test Fiber...1 in. drawn steel fibers Innii National Standard. FG denotes fiberglass fibers from Owens - Corning . Table 4b 30-Callber Machine Gun Plate Teat...drawn steel fibers from National Standard. FG denotes fiberglass fibers from Owens - Corning . { ♦ Tabk4c 45-Callbcr Pbtol Plate Teat Reantti lypeof
Metabolic Effects of Diets High in Corn Fiber in Growing Female Pigs
USDA-ARS?s Scientific Manuscript database
To evaluate the effects of high dietary corn fiber on growth and metabolic measures, growing female pigs (n= 48; BW 30.8 kg) were fed diets containing 0 to 38.6% solvent-extracted corn germ meal for 28 days. Corn germ meal is relatively high in neutral detergent fiber (53%) and hemicellulose content...
Coble, Kyle F; DeRouchey, Joel M; Tokach, Mike D; Dritz, Steve S; Goodband, Robert D; Woodworth, Jason C
2018-02-15
Two experiments were conducted to determine the duration of high-fiber ingredient removal from finishing pig diets before marketing to restore carcass yield and carcass fat iodine value (IV), similar to pigs continuously fed a corn-soybean meal diet. In experiment 1, 288 pigs (initially 38.4 ± 0.3 kg body weight [BW]) were used in an 88-d study and fed either a low-fiber corn-soybean meal diet from day 0 to 88 or a high-fiber diet containing 30% corn distillers dried grains with solubles and 19% wheat middlings until day 20, 15, 10, 5, or 0 before slaughter and switched to the low-fiber corn-soybean meal diet thereafter. Diets were not balanced for net energy. From day 0 to 88, pigs continuously fed the high-fiber diet tended to have increased average daily feed intake (P = 0.072) and decreased G:F and carcass yield (P = 0.001) compared with pigs fed the low-fiber corn-soybean meal diet. Pigs continuously fed the high-fiber diet had greater (P < 0.010) IV of jowl, backfat, belly, and ham collar fat than those fed the low-fiber corn-soybean meal diet throughout. As days of withdrawal increased, pigs previously fed the high-fiber diet had increased carcass yield (quadratic; P = 0.039). Pigs continuously fed the high-fiber diet had heavier (percentage of hot carcass weight [HCW]) full large intestines (P = 0.003) than pigs fed the corn-soybean meal diet. Full large intestine weight decreased (linear; P = 0.018) as withdrawal time increased. Belly fat IV tended (linear; P = 0.080) to improve as withdrawal time increased. In experiment 2, a total of 1,089 pigs (initially 44.5 ± 0.1 kg BW) were used in a 96-d study with the same dietary treatments as in experiment 1, except pigs were fed the high-fiber diet until day 24, 19, 14, 9, or 0 before slaughter and then switched to the corn-soybean meal diet. Pigs fed the high-fiber diet throughout had decreased average daily gain and G:F (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet. For pigs initially fed the high-fiber diet and then switched to the low-fiber corn-soybean meal diet, G:F tended to improve (linear; P = 0.070) as withdrawal period increased. Pigs fed the high-fiber diet throughout had decreased HCW (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet and HCW marginally increased (quadratic; P = 0.077) as withdrawal period increased. In summary, switching pigs from a high-fiber diet to a corn-soybean meal diet for up to 24 d before market increased carcass yield (experiment 1) or HCW (experiment 2) with the improvement most prominent during the first 5 to 9 d after withdrawal.
Kabel, Mirjam A.; Yeoman, Carl J.; Han, Yejun; Dodd, Dylan; Abbas, Charles A.; de Bont, Jan A. M.; Morrison, Mark; Cann, Isaac K. O.; Mackie, Roderick I.
2011-01-01
We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOSFA,Ac) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOSFA,Ac, a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23 likely gives it the ability to hydrolyze substituents on the xylan backbone and enhances its capacity to efficiently degrade hemicellulose. PMID:21742923
USDA-ARS?s Scientific Manuscript database
Two types of corn fiber gum (CFGs) were extracted from corn fibers (CFs) obtained from wet or dry corn milling processing. Both CFGs could form hydrogels when induced via laccase, but CFGs isolated from wet milled CFs exhibited higher storage modulus (G') and better mechanical strength as obtained f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Suan; Guan, Wenjian; Kang, Li
High solid conditions are desirable in pretreatment of lignocellulosic biomass. An advanced dilute-acid pretreatment reactor has been developed at National Renewable Energy Laboratory (NREL). It is a continuous auger-driven reactor that can be operated with high-solid charge at high temperature and with short residence time resulting high productivity and high sugar concentration. Here, we investigated the kinetics of the reactions associated with dilute-acid pretreatment of corn stover, covering the reaction conditions of the NREL reactor operation: 155-185 C, 1-2 wt% sulfuric acid concentration, and 1:2 solid to liquid ratio. The experimental data were fitted to a first-order biphasic model whichmore » assumes that xylan is comprised of two different fragments: fast and slow reacting fractions. Due to the high solid loading condition, significant amount of xylose oligomers was observed during the pretreatment. We also included the oligomers as an intermediate entity in the kinetic model. The effect of acid concentration was incorporated into the pre-exponential factor of Arrhenius equation. The kinetic model with bestfit kinetic parameters has shown good agreement with experimental data. The kinetic parameter values of the proposed model were noticeably different from those previously reported. The activation energies of xylan hydrolysis are lower and the acid exponents are higher than the average of literature values. The proposed model can serve as a useful tool for design and operation of pretreatment system pertaining to corn stover.« less
Shi, Suan; Guan, Wenjian; Kang, Li; ...
2017-09-13
High solid conditions are desirable in pretreatment of lignocellulosic biomass. An advanced dilute-acid pretreatment reactor has been developed at National Renewable Energy Laboratory (NREL). It is a continuous auger-driven reactor that can be operated with high-solid charge at high temperature and with short residence time resulting high productivity and high sugar concentration. Here, we investigated the kinetics of the reactions associated with dilute-acid pretreatment of corn stover, covering the reaction conditions of the NREL reactor operation: 155-185 C, 1-2 wt% sulfuric acid concentration, and 1:2 solid to liquid ratio. The experimental data were fitted to a first-order biphasic model whichmore » assumes that xylan is comprised of two different fragments: fast and slow reacting fractions. Due to the high solid loading condition, significant amount of xylose oligomers was observed during the pretreatment. We also included the oligomers as an intermediate entity in the kinetic model. The effect of acid concentration was incorporated into the pre-exponential factor of Arrhenius equation. The kinetic model with bestfit kinetic parameters has shown good agreement with experimental data. The kinetic parameter values of the proposed model were noticeably different from those previously reported. The activation energies of xylan hydrolysis are lower and the acid exponents are higher than the average of literature values. The proposed model can serve as a useful tool for design and operation of pretreatment system pertaining to corn stover.« less
Utilisation of Corn (Zea mays) Bran and Corn Fiber in the Production of Food Components
USDA-ARS?s Scientific Manuscript database
Over the past decade, the demand for ethanol has increased dramatically. Demand for other products of corn milling, such as starches and sweeteners, is also expected to increase. With the increase in demand for industrial and food use of corn, the production of byproducts, such as corn fiber, corn...
Crincoli, Christine M; Garcia-Campayo, Vicenta; Rihner, Marisa O; Nikiforov, Andrey I; Liska, DeAnn; van de Ligt, Jennifer L G
2016-11-01
Two independent clinical studies were conducted to compare the gastrointestinal (GI) tolerability of corn starch fiber, a novel dietary fiber, at up to 50 g/day (single-dose study) or 90 g/day (multiple-serving study) with a negative control (no fiber) and a positive control (50 or 90 g polydextrose, for single- and multiple-serving studies, respectively) in generally healthy study volunteers. Flatulence and borborygmus were the primary symptoms reported at the higher doses of corn starch fiber and for the positive control interventions. Bowel movements were increased over 48 h with corn starch fiber at 90 g. Thresholds for mild GI effects were established at 30 g as a single dose and 60 g as multiple servings spread over the day. Other than moderate abdominal pain and mild increased appetite in one subject at 90-g corn starch fiber, no test article-related adverse events were reported.
Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.
Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao
2010-01-01
Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.
Synthesis and thermal characterization of xylan-graft-polyacrylonitrile.
Ünlü, Cüneyt H; Öztekin, N Simge; Atıcı, Oya Galioğlu
2012-10-01
In this study emulsion polymerization of acrylonitrile using xylan from agricultural waste material (corn cob) and cerium ammonium nitrate was investigated in terms of catalyst acid. Stock ceric solutions were prepared using either nitric or perchloric acid as catalyst. Optimum conditions were determined using different parameters such as reaction time, temperature, and component concentrations. Nitric acid catalyzed reactions resulted in maximum conversion ratio (96%) at 50°C, 1 h where ceric ion, acrylonitrile, xylan, and catalyst concentrations were 21.7 mmol l(-1), 0.5 mol l(-1), 0.2% (w/v), and 0.1 mol l(-1), respectively. However, 83% conversion was obtained with perchloric acid catalysis at 27 °C, 1 h where concentrations were 5.4 mmol l(-1), 0.8 mol l(-1), 0.5% (w/v), and 0.2 mol l(-1), respectively. Copolymer synthesis using perchloric acid was realized at milder conditions than using nitric acid. Thermal analyses of obtained polymers were conducted to characterize copolymers. Results showed that calculated activation energy, maximum degradation temperature, and heat of thermal decomposition changed relying mainly on molecular weight. Copyright © 2012 Elsevier Ltd. All rights reserved.
A 90-day oral (dietary) toxicity and mass balance study of corn starch fiber in Sprague Dawley rats.
Crincoli, Christine M; Nikiforov, Andrey I; Rihner, Marisa O; Lambert, Elizabeth A; Greeley, Melanie A; Godsey, Justin; Eapen, Alex K; van de Ligt, Jennifer L G
2016-11-01
The potential toxicity of corn starch fiber was assessed and compared to polydextrose, a commonly used bulking agent with a long history of safe use in the food supply. Groups of male and female Crl:CD(SD) rats were fed 0 (control), 1,000, 3,000, or 10,000 mg/kg-bw/day corn starch fiber in the diet for 90 days. The polydextrose reference article was offered on a comparable regimen at 10,000 mg/kg-bw/day. Following a single gavage dose of [ 14 C]-corn starch fiber on study day 13 or 90, the mass balance of the test article was assessed by analysis of excreta samples collected from 0 to 168 h post-dose. There were no toxicologically or biologically relevant findings in any of the test article-treated groups. The few minor differences observed between the corn starch fiber and polydextrose exposed groups were considered to be due to normal biological variation. Following [ 14 C]-corn starch fiber dosing, nearly complete excretion of the administered dose occurred over 168 h post-dosing, with the majority excreted in the feces. The dietary no-observed-adverse-effect level of corn starch fiber after 90 days was 10,000 mg/kg-bw/day. Similar toxicity profiles for corn starch fiber and polydextrose were observed due to the structural and compositional similarities of these materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Production of corn fiber gum under conditions that retain its functional components
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a hemicellulose (arabinoxylan)-enriched fraction obtained by the extraction of corn bran/fiber using a mild alkaline hydrogen peroxide process. The unique polysaccharide, CFG, with its low solution viscosity has been proposed as a stabilizer for oil-in-water emulsions. We ha...
Xylo-oligosaccharides production by autohydrolysis of corn fiber separated from DDGS
USDA-ARS?s Scientific Manuscript database
Xylo-oligosaccharides (XOS) are reported to have beneficial health properties, and are considered to be functional food ingredients. XOS was produced using corn fiber separated from distillers dried grains with solubles (DDGS). Corn fiber was treated with deionized water in a Parr-reactor, at temper...
Wang, Anna; Wu, Ligen; Li, Xiulin
2013-09-01
Corn pericarp, which is an industrial waste of corn starch production, is an important source of dietary fiber in cereals, with claimed health benefits. However, they used to be discarded or utilized as animal feed. The application of pre-ultrasound treatment is critical for achieving rapid preparation of desired components from plant materials and for preserving structural and molecular properties of these compounds. Ultrasonic-assisted preparation was used to produce dietary fiber from corn pericarp using response surface methodology. The optimal particle size of corn pericarp (mesh size 40), the ratio of liquid to solid (25 mL g⁻¹), ultrasonic power (180 W) and ultrasonic time (80 min) were determined based on response surface methodology analysis. The interaction effects of particle size of corn pericarp and ultrasonic time had a highlysignificant effect on the yield of dietary fiber, and a significant effect was shown by ultrasonic power and ultrasonic time. The maximum yield of dietary fiber was 86.84%, which agreed closely with the predicted value. Using ultrasonic-assisted preparation, it may be possible to enhance the yield of dietary fiber from corn pericarp. © 2013 Society of Chemical Industry.
Importance of protein rich components in the emulsifying properties of corn fiber gum
USDA-ARS?s Scientific Manuscript database
Purified corn fiber gum (CFG-F) isolated from "fine" (kernel endosperm-derived) corn fiber that contained about 2% residual protein was extracted with 70% aqueous ethanol. The aqueous ethanol extract (AEE), which contained 19.5% of the total CFG, contained a high percentage of the proteinaceous ma...
The development of a new corn fiber gum isolation process that preserves its functional components
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a hemicellulose (arabinoxylan)-enriched fraction obtained by the extraction of corn bran/fiber using a mild alkaline hydrogen peroxide process. The unique polysaccharide, CFG, with its low solution viscosity has been proposed as a stabilizer for oil-in-water emulsions. We ha...
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a good flavor stabilizer for beverages and food. This study was undertaken to test the hypothesis that binding additional protein to CFG would further improve its flavor stabilizing properties. Conjugates of corn fiber gum (CFG) and bovine serum albumin (BFG) were prepared ...
Corn fiber gum and milk protein conjugates with improved emulsion stability
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of the corn kernel milling by-product “corn fiber” was covalently conjugated with Beta-lactoglobulin (Beta-LG) and whey protein isolate (WPI). Covalent coupling of CFG to protein was achieved by dry heating reaction (Maillard-type) of CFG ...
Kumar, Kuttanpillai Santhosh; Manimaran, Ayyachamy; Permaul, Kugen; Singh, Suren
2009-05-01
The production of hemicellulases by Thermomyces lanuginosus SK using oatspelts xylan was examined during submerged cultivation. A high level of extracellular xylanase (346+/-10 U ml(-1)) production was observed on the fifth day; however, accessory enzyme levels were low. T. lanuginosus SK was further subjected to UV and N-methyl-N-nitro-N-nitrosoguanidine mutagenesis. The T. lanuginosus MC 134 mutant showed a 1.5 fold increase in xylanase production on oatspelts xylan, compared to the wild type strain. Xylanase production was further enhanced to 3299+/-95 U ml(-1) by using corn cobs under optimized growth conditions. A reduction in xylanase production was observed in a 5 L fermenter. Also, the biobleaching efficiency of crude xylanase was evaluated on bagasse pulp, and a brightness of 46.07+/-0.05% was observed with the use of 50 U of crude xylanase per gram of pulp. This brightness was 3.6 points higher than that of the untreated samples. Reducing sugars (25.78+/-0.14 mg g(-1)) and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. T. lanuginosus MC 134 has a potential application in the pulp and paper industries.
Kumar, Rajeev; Wyman, Charles E
2009-09-01
Solids resulting from pretreatment of corn stover by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO(2)) technologies were hydrolyzed by enzyme cocktails based on cellulase supplemented with beta-glucosidase at an activity ratio of 1:2, respectively, and augmented with up to 11.0 g xylanase protein/g cellulase protein for combined cellulase and beta-glucosidase mass loadings of 14.5 and 29.0 mg protein (about 7.5 and 15 FPU, respectively)/g of original potential glucose. It was found that glucose release increased nearly linearly with residual xylose removal by enzymes for all pretreatments despite substantial differences in their relative yields. The ratio of the fraction of glucan removed by enzymes to that for xylose was defined as leverage and correlated statistically at two combined cellulase and beta-glucosidase mass loadings with pretreatment type. However, no direct relationship was found between leverage and solid features following different pretreatments such as residual xylan or acetyl content. However, acetyl content not only affected how xylanase impacted cellulase action but also enhanced accessibility of cellulose and/or cellulase effectiveness, as determined by hydrolysis with purified CBHI (Cel7A). Statistical modeling showed that cellulose crystallinity, among the main substrate features, played a vital role in cellulase-xylanase interactions, and a mechanism is suggested to explain the incremental increase in glucose release with xylanase supplementation.
Effects of different sources of physically effective fiber on rumen microbial populations.
Shaw, C N; Kim, M; Eastridge, M L; Yu, Z
2016-03-01
Physically effective fiber is needed by dairy cattle to prevent ruminal acidosis. This study aimed to examine the effects of different sources of physically effective fiber on the populations of fibrolytic bacteria and methanogens. Five ruminally cannulated Holstein cows were each fed five diets differing in physically effective fiber sources over 15 weeks (21 days/period) in a Latin Square design: (1) 44.1% corn silage, (2) 34.0% corn silage plus 11.5% alfalfa hay, (3) 34.0% corn silage plus 5.1% wheat straw, (4) 36.1% corn silage plus 10.1% wheat straw, and (5) 34.0% corn silage plus 5.5% corn stover. The impact of the physically effective fiber sources on total bacteria and archaea were examined using denaturing gradient gel electrophoresis. Specific real-time PCR assays were used to quantify total bacteria, total archaea, the genus Butyrivibrio, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and three uncultured rumen bacteria that were identified from adhering ruminal fractions in a previous study. No significant differences were observed among the different sources of physical effective fiber with respect to the microbial populations quantified. Any of the physically effective fiber sources may be fed to dairy cattle without negative impact on the ruminal microbial community.
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is an arabinoxylan enriched fraction obtained by the extraction of corn bran/fiber using a proprietary alkaline hydrogen peroxide process. When purified CFG prepared by this process was hydrolyzed with concentrated base (1.5 N methanolic KOH at 70 °C for one hour) considerable ...
Rasmussen, M L; Shrestha, P; Khanal, S K; Pometto, A L; Hans van Leeuwen, J
2010-05-01
Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product. Copyright 2010 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The U.S. food and non-food industries would benefit from the development of a domestically produced crude, semi-pure and pure bio-based fiber gum from corn bran and oat hulls processing waste streams. When corn bran and oat hulls are processed to produce a commercial cellulose enriched fiber gel, th...
de Castro, María; Miller, Janice G; Acebes, José Luis; Encina, Antonio; García-Angulo, Penélope; Fry, Stephen C
2015-04-01
Cell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle. Using pulse-chase radiolabeling, we fed habituated and non-habituated cultures with [(3)H]arabinose, and traced the distribution of (3)H-pentose residues between xylans, xyloglucans and other polymers in several cellular compartments for 5 h. Habituated cells were slower taking up exogenous [(3)H]arabinose. Tritium was incorporated into polysaccharide-bound arabinose and xylose residues, but habituated cells diverted a higher proportion of their new [(3)H]xylose residues into (hetero) xylans at the expense of xyloglucan synthesis. During logarithmic growth, habituated cells showed slower vesicular trafficking of polymers, especially xylans. Moreover, habituated cells showed a decrease in the strong wall-binding of all pentose-containing polysaccharides studied; correspondingly, especially in log-phase cultures, habituation increased the proportion of (3)H-hemicelluloses ([(3)H]xylans and [(3)H]xyloglucan) sloughed into the medium. These findings could be related to the cell walls' cellulose-deficiency, and consequent reduction in binding sites for hemicelluloses; the data could also reflect the habituated cells' reduced capacity to integrate arabinoxylans by extra-protoplasmic phenolic cross-linking, as well as xyloglucans, during wall assembly. © 2015 Institute of Botany, Chinese Academy of Sciences.
Stability of Glass Fiber-Plastic Composites
1974-11-01
investigated. 1. S-Glass The formation of S-g1ass 1s proprietary and differs between the two main sources ( Owens - Corning and Ferro Corporation) from...which samples were obtained for this research program. However, according to published work by Humphrey (8) of Owens - Corning , the approximate...of the glass fibers. S-glass fibers furnished by both Owens - Corning and Ferro Cor- poration were utilized and the results analyzed using scanning
Corn-like indium tin oxide nanostructures: fabrication, characterization and formation mechanism
NASA Astrophysics Data System (ADS)
Wu, Xu; Wang, Yihua; Yang, Bin
2015-11-01
Electrospinning is a simple but efficient procedure enabling the parallel fabrication of a multitude of inorganic fibers. But the precise control of the fiber's morphology, which seriously affects the electrical, optical and other important properties of such electrospun materials, is still less developed. The creation of nanoscale indium tin oxide fibers with corn-like geometry (corn-like ITO NFs) by our group has provided a good example to show how to modify the morphologies and properties of nanofibers by means of tailoring the fiber's compositions. Here we show that in the fabrication of corn-like ITO NFs, the usage of different solvents N, N-dimethylformamide (DMF) and deionized water, as well as the calcination temperature, can also lead to dramatic morphology changes, from ribbon-like to cylindrical and then to corn-like. The resultant nanoribbons and nanoscale corn-like fibers exhibit different photoluminescence properties. We find that the morphology of the as-spun fibers is closely related to the vapor pressure of the solvent we used, and the generation of ITO crystals sensitively depends on the calcination temperature, which both are critical for the morphology and properties of the final products. Thus, we demonstrate that the formation of this unprecedented nanostructure is determined by the combined effect of the precursor chemical composition, solvent and calcination temperature.
Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials.
Bahcegul, Erinc; Akinalan, Busra; Toraman, Hilal E; Erdemir, Duygu; Ozkan, Necati; Bakir, Ufuk
2013-12-01
Solvent casting technique, which comprises multiple energy demanding steps including the dissolution of a polymer in a solvent followed by the evaporation of the solvent from the polymer solution, is currently the main technique for the production of xylan based polymeric materials. The present study shows that sufficient water content renders arabinoglucuronoxylan (AGX) polymers extrudable, enabling the production of AGX based polymeric materials in a single step via extrusion, which is economically advantageous to solvent casting process for mass production. AGX polymers with water content of 27% were found to yield extrudates at an extrusion temperature of 90°C. The extruded strips showed very good mechanical properties with an ultimate tensile strength of 76 ± 6 MPa and elongation at break value of 35 ± 8%, which were superior to the mechanical properties of the strips obtained from polylactic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Z. F.; Wan, C. X.; Shi, J.
Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p < 0.05). For all fractions, xylan and glucan degradation followed a pattern similar to lignin degradation, with leaves having a significantly higher percentage of degradation (p < 0.05). Hydrolytic enzyme activity also revealed that the fungus was moremore » active in the degradation of carbohydrates in leaves. As a result of fungal pretreatment, the highest sugar yield, however, was obtained with corn cobs.« less
Cayetano, Roent Dune A; Kim, Tae Hyun
2017-04-01
Corn stover was treated using low-moisture anhydrous ammonia (LMAA) at controlled ammoniation temperature. Moisturized corn stover (50 % moisture) was contacted with anhydrous ammonia (0.1 g NH 3 /g-biomass) in a batch reactor at various temperatures (ambient to 150 °C). After ammoniation at elevated and controlled temperature, ammoniated corn stover was pretreated at various temperatures (60-150 °C) for 72-144 h. Change in composition was marginal at low pretreatment temperature but was relatively severe with pretreatment at high temperature (130-150 °C). The latter resulted in low enzymatic digestibility. It was also observed that extreme levels (either high or low) of residual ammonia affected enzymatic digestibility, while residual ammonia improved by 1.0-1.5 %. The LMAA method enhanced enzymatic digestibility compared to untreated corn stover (29.8 %). The highest glucan and xylan digestibility (84.1 and 73.6 %, respectively) was obtained under the optimal LMAA conditions (i.e., ammoniation at 70 °C for 20 min, followed by pretreatment at 90 °C for 48 h).
Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo
2014-01-01
Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192
Investigation of enzyme formulation on pretreated switchgrass.
Falls, Matthew; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Garlock, Rebecca; Balan, Venkatesh; Dale, Bruce E; Pallapolu, V Ramesh; Lee, Y Y; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Hames, Bonnie; Thomas, Steve; Donohoe, Bryon S; Vinzant, Todd B; Elander, Richard T; Warner, Ryan E; Sierra-Ramirez, Rocio; Holtzapple, Mark T
2011-12-01
This work studied the benefits of adding different enzyme cocktails (cellulase, xylanase, β-glucosidase) to pretreated switchgrass. Pretreatment methods included ammonia fiber expansion (AFEX), dilute-acid (DA), liquid hot water (LHW), lime, lime+ball-milling, soaking in aqueous ammonia (SAA), and sulfur dioxide (SO(2)). The compositions of the pretreated materials were analyzed and showed a strong correlation between initial xylan composition and the benefits of xylanase addition. Adding xylanase dramatically improved xylan yields for SAA (+8.4%) and AFEX (+6.3%), and showed negligible improvement (0-2%) for the pretreatments with low xylan content (dilute-acid, SO(2)). Xylanase addition also improved overall yields with lime+ball-milling and SO(2) achieving the highest overall yields from pretreated biomass (98.3% and 93.2%, respectively). Lime+ball-milling obtained an enzymatic yield of 92.3kg of sugar digested/kg of protein loaded. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pandey, Pankaj
The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.
Peng, Xiaowei; Qiao, Weibo; Mi, Shuofu; Jia, Xiaojing; Su, Hong; Han, Yejun
2015-01-01
Pretreatment is currently the common approach for improving the efficiency of enzymatic hydrolysis on lignocellulose. However, the pretreatment process is expensive and will produce inhibitors such as furan derivatives and phenol derivatives. If the lignocellulosic biomass can efficiently be saccharified by enzymolysis without pretreatment, the bioconversion process would be simplified. The genus Caldicellulosiruptor, an obligatory anaerobic and extreme thermophile can produce a diverse set of glycoside hydrolases (GHs) for deconstruction of lignocellulosic biomass. It gives potential opportunities for improving the efficiency of converting native lignocellulosic biomass to fermentable sugars. Both of the extracellular (extra-) and intracellular (intra-) enzymes of C. owensensis cultivated on corncob xylan or xylose had cellulase (including endoglucanase, cellobiohydrolase and β-glucosidase) and hemicellulase (including xylanase, xylosidase, arabinofuranosidase and acetyl xylan esterase) activities. The enzymes of C. owensensis had high ability for degrading hemicellulose of native corn stover and corncob with the conversion rates of xylan 16.7 % and araban 60.0 %. Moreover, they had remarkable synergetic function with the commercial enzyme cocktail Cellic CTec2 (Novoyzmes). When the native corn stover and corncob were respectively, sequentially hydrolyzed by the extra-enzymes of C. owensensis and CTec2, the glucan conversion rates were 31.2 and 37.9 %,which were 1.7- and 1.9-fold of each control (hydrolyzed by CTec2 alone), whereas the glucan conversion rates of the steam-exploded corn stover and corncob hydrolyzed by CTec2 alone on the same loading rate were 38.2 and 39.6 %, respectively. These results show that hydrolysis by the extra-enzyme of C. owensensis made almost the same contribution as steam-exploded pretreatment on degradation of native lignocellulosic biomass. A new process for saccharification of lignocellulosic biomass by sequential hydrolysis is demonstrated in the present research, namely hyperthermal enzymolysis (70-80 °C) by enzymes of C. owensensis followed with mesothermal enzymolysis (50-55 °C) by commercial cellulase. This process has the advantages of no sugar loss, few inhibitors generation and consolidated with sterilization. The enzymes of C. owensensis demonstrated an enhanced ability to degrade the hemicellulose of native lignocellulose. The pretreatment and detoxification steps may be removed from the bioconversion process of the lignocellulosic biomass by using the enzymes from C. owensensis.
Corn fiber utilization for production of Schizophyllan
USDA-ARS?s Scientific Manuscript database
Corn fiber is an abundant coproduct of the corn wet milling process, primarily composed of the seed pericarp and adherent starch. Schizophyllan is a biopolymer composed entirely of glucose, with a ß-1,3-linked backbone and single ß-1,6-linked glucose side chains at every third residue, produced by t...
Characterization of a Polymer Composite Section of Foreign Armor
2000-03-01
Core Sample 8 6. ESEM From Owens - Corning S-2 Glass Reference 10 7. ESEM From Owens-Coming E Glass Reference 11 8. ESEM From Known Russian S...light element energy dispersive spectrometer. Samples of domestic Owens - Corning E and S-2 glass fibers were first analyzed for reference purposes...for comparison to the unknown Russian armor fiber. The two domestic reference fibers were Owens - Corning E and S-2 glass. Their spectra are shown in
USDA-ARS?s Scientific Manuscript database
Xylo-oligosaccharides (XOS) are known to have beneficial health properties, and are considered to be functional food ingredients. The objective of this study is to compare corn fibers separated from ground corn flour and distillers dried grains with solubles (DDGS) for XOS yield and optimum authoyd...
Despres, Jordane; Forano, Evelyne; Lepercq, Pascale; Comtet-Marre, Sophie; Jubelin, Gregory; Chambon, Christophe; Yeoman, Carl J; Berg Miller, Margaret E; Fields, Christopher J; Martens, Eric; Terrapon, Nicolas; Henrissat, Bernard; White, Bryan A; Mosoni, Pascale
2016-05-04
Plant cell wall (PCW) polysaccharides and especially xylans constitute an important part of human diet. Xylans are not degraded by human digestive enzymes in the upper digestive tract and therefore reach the colon where they are subjected to extensive degradation by some members of the symbiotic microbiota. Xylanolytic bacteria are the first degraders of these complex polysaccharides and they release breakdown products that can have beneficial effects on human health. In order to understand better how these bacteria metabolize xylans in the colon, this study was undertaken to investigate xylan breakdown by the prominent human gut symbiont Bacteroides xylanisolvens XB1A(T). Transcriptomic analyses of B. xylanisolvens XB1A(T) grown on insoluble oat-spelt xylan (OSX) at mid- and late-log phases highlighted genes in a polysaccharide utilization locus (PUL), hereafter called PUL 43, and genes in a fragmentary remnant of another PUL, hereafter referred to as rPUL 70, which were highly overexpressed on OSX relative to glucose. Proteomic analyses supported the up-regulation of several genes belonging to PUL 43 and showed the important over-production of a CBM4-containing GH10 endo-xylanase. We also show that PUL 43 is organized in two operons and that the knockout of the PUL 43 sensor/regulator HTCS gene blocked the growth of the mutant on insoluble OSX and soluble wheat arabinoxylan (WAX). The mutation not only repressed gene expression in the PUL 43 operons but also repressed gene expression in rPUL 70. This study shows that xylan degradation by B. xylanisolvens XB1A(T) is orchestrated by one PUL and one PUL remnant that are linked at the transcriptional level. Coupled to studies on other xylanolytic Bacteroides species, our data emphasize the importance of one peculiar CBM4-containing GH10 endo-xylanase in xylan breakdown and that this modular enzyme may be used as a functional marker of xylan degradation in the human gut. Our results also suggest that B. xylanisolvens XB1A(T) has specialized in the degradation of xylans of low complexity. This functional feature may provide a niche to all xylanolytic bacteria harboring similar PULs. Further functional and ecological studies on fibrolytic Bacteroides species are needed to better understand their role in dietary fiber degradation and their impact on intestinal health.
Select corn coproducts from the ethanol industry and their potential as ingredients in pet foods.
de Godoy, M R C; Bauer, L L; Parsons, C M; Fahey, G C
2009-01-01
The objectives of this study were to determine the chemical composition and nutritive value of corn protein product 1 (CPP 1), corn protein product 2 (CPP 2), and corn fiber (CF), novel coproducts of the ethanol industry, and compare these feed ingredients with standard plant protein ingredients [soybean meal (SBM), distillers dried grains with solubles (DDGS), corn gluten meal (CGlM), and corn germ meal (CGeM)], and to compare CF sources (CF control 1 and control 2) with standard fiber sources (peanut hulls, Solka-Floc, and beet pulp) commonly used in pet foods. Corn fiber, CPP 1, and CPP 2 were produced at a pilot-scale modified dry-grind plant, with CPP 2 having a greater degree of purification than CPP 1. Crude protein values for CPP 2 and CPP 1 were 57.3 and 49.7%, respectively. Total dietary fiber concentration was 29% for CPP 2 and 23.5% for CPP 1. Acid-hydrolyzed fat and GE concentrations were similar for these ingredients. In a protein efficiency ratio assay, no differences (P > 0.05) in feed intake, BW gain, or CP intake were noted for CPP 2, CPP 1, or CGlM. However, feeding CPP 2 resulted in a greater (P < 0.05) G:F ratio and protein efficiency ratio than CPP 1 and CGlM. In a cecectomized rooster assay, CGlM had numerically the greatest standardized total AA, total essential AA, and total nonessential AA digestibilities, but they were not different (P > 0.05) from CPP 1 or SBM values. Corn germ meal resulted in the least values, but they were not different from those for DDGS and CPP 1. The greatest values for true nitrogen-corrected ME were obtained with CGlM, followed by CPP 2, DDGS, CPP 1, SBM, and CGeM. Distillers dried grains with solubles and CPP 1 had similar true nitrogen-corrected ME values, and they were not different from values for CPP 2 and SBM. In vitro CP disappearance was greatest (P < 0.05) for CGlM (94.1%), intermediate for DDGS (76.8%) and CPP 1 (77.5%), and least for CPP 2 (74.1%) and CGeM (67.7%). Corn fibers contained predominantly insoluble dietary fiber (1% or less of soluble dietary fiber), with a moderate CP concentration. In vitro OM disappearance for the fiber sources, when using inoculum from dog feces, revealed that with the exception of beet pulp, which had a moderate disappearance value after 16 h of fermentation (17.7%), all fiber substrates had a nonsignificant extent of fermentation. In conclusion, novel corn coproducts had properties comparable with the standard protein and fiber sources used in animal nutrition.
Payne, Courtney E; Wolfrum, Edward J
2015-01-01
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. It is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.
Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, S. E.; Donohoe, B. S.; Beery, K. E.
Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. Thesemore » probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.« less
USDA-ARS?s Scientific Manuscript database
Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...
Navarro, D M D L; Bruininx, E M A M; de Jong, L; Stein, H H
2018-05-04
Effects of inclusion rate of fiber-rich ingredients on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of GE and on the concentration of DE and ME in mixed diets fed to growing pigs were determined. The hypothesis was that increasing the inclusion rate of fiber decreases digestibility of GE, and thus, the contribution of DE and ME from hindgut fermentation because greater concentrations may reduce the ability of microbes to ferment fiber. Twenty ileal-cannulated pigs (BW: 30.64 ± 2.09 kg) were allotted to a replicated 10 × 4 incomplete Latin Square design with 10 diets and four 26-d periods. There were 2 pigs per diet in each period for a total of 8 replications per diet. A basal diet based on corn and soybean meal (SBM) and a corn-SBM diet with 30% corn starch were formulated. Six additional diets were formulated by replacing 15% or 30% corn starch by 15% or 30% corn germ meal, sugar beet pulp, or wheat middlings, and 2 diets were formulated by including 15% or 30% canola meal in a diet containing corn, SBM, and 30% corn starch. Effects of adding 15% or 30% of each fiber source to experimental diets were analyzed using orthogonal contrasts and t-tests were used to compare inclusion rates within each ingredient. The AID and ATTD of GE and concentration of DE and ME in diets decreased (P < 0.05) with the addition of 15% or 30% canola meal, corn germ meal, sugar beet pulp, or wheat middlings compared with the corn starch diet. However, inclusion rate did not affect the calculated DE and ME or AID and ATTD of GE in any of the ingredients indicating that concentration of DE and ME in ingredients was independent of inclusion rate and utilization of energy from test ingredients was equally efficient between diets with 15% and 30% inclusion. Increased inclusion of fiber in the diet did not influence transit time in the small intestine, but reduced the time of first appearance of digesta in the feces indicating that transit time was reduced in the hindgut of pigs fed high-fiber diets. However, this had no impact on DE and ME or ATTD of GE in test ingredients. In conclusion, fiber reduced the DE and ME in the diet. However, inclusion rate of fiber-rich ingredients in diets did not affect calculated values for DE and ME in feed ingredients indicating that microbial capacity for fermentation of fiber in pigs is not overwhelmed by inclusion of 30% high-fiber ingredients in the diets.
Li, Jue; Kaneko, Takashi; Wang, Yuan; Qin, Li-Qiang; Sato, Akio
2003-05-01
In this study, the effects of a barley diet containing high dietary fiber on the onset and development of diabetes mellitus in spontaneously diabetic rats was investigated by comparing with a rice diet containing low dietary fiber and an alpha-corn starch diet containing very low dietary fiber. 30 male Goto-Kakizaki (GK) strain rats (8 weeks of age) were randomly assigned to 3 groups; high barley (HB) group on a barley diet (dietary fiber intake, 1.79 g/day/rat), rice (R) group on a rice diet (dietary fiber intake, 0.46 g/day/rat), and alpha-corn starch (CS) group on an alpha-corn starch diet (dietary fiber intake, 0.24 g/day/rat). The carbohydrate (70%), fat (10%), and protein (20%) contents of these 3 diets were equal, and the rats were pair-fed each diet for 3 months. Feeding for 3 months showed that fasting plasma glucose level in the HB group was significantly lower than in the R and CS groups; the glucose tolerance in the HB group was markedly improved. Moreover, the plasma cholesterol and triglyceride levels in the HB group were significantly lower than those of the R and CS groups. Our findings demonstrated that barley enabled glycemic control and improved glucose tolerance compared with rice or alpha-corn starch.
USDA-ARS?s Scientific Manuscript database
A process was developed to fractionate and isolate the hemicellulose B component of corn fiber generated by corn wet milling. The process consisted of pretreatment by soaking in aqueous ammonia (SAA) followed by enzymatic cellulose hydrolysis, during which the hemicellulose B was solubilized by cle...
USDA-ARS?s Scientific Manuscript database
This study was designed to test the hypothesis that the stability and physical properties of starch gels could be improved by adding small amounts of corn fiber gum (CFG). When compared with the starch gel alone, the addition of CFG (0 to 1.0 %) significantly lowered the hardness of the composite s...
Production of astaxanthin from corn fiber as a value-added co-product of fuel ethanol fermentation
USDA-ARS?s Scientific Manuscript database
Five strains of the yeast Phaffia rhodozyma, NRRL Y-17268, NRRL Y-17270, ATCC 96594 (CBS 6938), ATCC 24202 (UCD 67-210), and ATCC 74219 (UBV-AX2) were tested for astaxanthin production using the major sugars derived from corn fiber, a byproduct from the wet milling of corn kernels that contains prim...
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a novel arabinoxylan hydrocolloid. Recent research has shown that it has a considerable potential in food processing. In our previous study, we reported that CFG could be used to modify the gelling and rheological properties of starch-based food. In this study, starch and CFG...
1981-10-01
Miler for polypropylene. Glass Fiber Reinforced Resin: As a result of discussions with LNP Corp. and Owens - Corning Fiberglas, it was learned that... Owens - Corning had available what they believed to be an FDA approvable, glass fiber/sizing system. Data from Owens - Corning appear in Table 4. These data...increase from the 130*-1400 F values normal for unrein*orced PBT. Neither LNP Corp. nor Owens - Corning had any information on results to be obtained by
Asparagus Spears as a Model to Study Heteroxylan Biosynthesis during Secondary Wall Development
Wu, Aimin; Picard, Kelsey; Lampugnani, Edwin R.; Cheetamun, Roshan; Beahan, Cherie; Cassin, Andrew; Lonsdale, Andrew; Doblin, Monika S.; Bacic, Antony
2015-01-01
Garden asparagus (Asparagus officinalis L.) is a commercially important crop species utilized for its excellent source of vitamins, minerals and dietary fiber. However, after harvest the tissue hardens and its quality rapidly deteriorates because spear cell walls become rigidified due to lignification and substantial increases in heteroxylan content. This latter observation prompted us to investigate the in vitro xylan xylosyltransferase (XylT) activity in asparagus. The current model system for studying heteroxylan biosynthesis, Arabidopsis, whilst a powerful genetic system, displays relatively low xylan XylT activity in in vitro microsomal preparations compared with garden asparagus therefore hampering our ability to study the molecular mechanism(s) of heteroxylan assembly. Here, we analyzed physiological and biochemical changes of garden asparagus spears stored at 4 °C after harvest and detected a high level of xylan XylT activity that accounts for this increased heteroxylan. The xylan XylT catalytic activity is at least thirteen-fold higher than that reported for previously published species, including Arabidopsis and grasses. A biochemical assay was optimized and up to seven successive Xyl residues were incorporated to extend the xylotetraose (Xyl4) acceptor backbone. To further elucidate the xylan biosynthesis mechanism, we used RNA-seq to generate an Asparagus reference transcriptome and identified five putative xylan biosynthetic genes (AoIRX9, AoIRX9-L, AoIRX10, AoIRX14_A, AoIRX14_B) with AoIRX9 having an expression profile that is distinct from the other genes. We propose that Asparagus provides an ideal biochemical system to investigate the biochemical aspects of heteroxylan biosynthesis and also offers the additional benefit of being able to study the lignification process during plant stem maturation. PMID:25894575
Jia, Jun; Yu, Bin; Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai
2014-01-01
Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%-23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn.
Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai
2014-01-01
Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%–23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn. PMID:25251456
Moreau, Robert A; Hicks, Kevin B
2006-10-18
We previously reported that heat pretreatment of corn fiber (150 degrees C, 1 h) caused a tenfold increase in the levels of extractable gamma-tocopherol. The current study was a reinvestigation of the previous effect, using improved methods (HPLC with fluorescence detection, diode-array UV detection, and mass spectrometry) for tocol analysis. Heat pretreatment did not cause an increase in the levels of any of the tocopherols or tocotrienols in corn fiber oil, but lowered the levels of three of the tocols and had no effect on the levels of the other two tocols. Heat pretreatment of corn germ had a similar effect. UV and mass spectra indicated that the peak that we had identified as gamma-tocopherol in our previous report was probably a mixture of oxidation products of triacylglycerols. Thus, heat treatment of corn germ or other corn-oil containing fractions at high temperatures leads to decreases in gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol and to the production of triacylglycerol oxidation products.
Corn kernel oil and corn fiber oil
USDA-ARS?s Scientific Manuscript database
Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...
Vertical distribution of structural components in corn stover
Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; ...
2014-11-17
In the United States, corn ( Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above themore » ear averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less
Vertical distribution of structural components in corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.
In the United States, corn ( Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above themore » ear averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less
Vertical distribution of structural components in corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham
In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the earmore » averaged 16.3 ± 0.40 MJ kg?¹, but with an alkalinity measure of 0.83 g MJ?¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?¹, but it would be only 1000 L ha?¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less
Corn fiber: structure, composition, and response to enzymes for fermentable sugars and coproducts.
Akin, Danny E; Rigsby, Luanne L
2008-01-01
Corn (Zea mays L.) fiber, which is the seed coat and residual endosperm left after grain processing, is a low-value residue that contains carbohydrates and aromatic compounds that could provide value-added coproducts. Treatment of corn fiber with NaOH and assessment by gas chromatography indicated a prevalence of ferulic acid, with about 90% ester-linked in the cell walls. p-coumaric acid was much lower at about 10% of the amount of ferulic acid. Histochemical reactions employing acid phloroglucinol and diazotized sulfanilic acid indicated the presence of phenolic acids in cell walls of the pericarp and aleurone layer. Various protocols were tested using milled corn fiber and pretreatment with commercial ferulic acid esterases before cellulase treatment, and dry weight loss and sugars and phenolic acids released into the filtrate were evaluated. Ferulic acid esterases effectively degraded corn fiber and released substantial amounts of ferulic acid and sugars (e.g., glucose and xylose) in the incubation medium. Light microscopy showed that ferulic acid esterase substantially disrupted the aleurone layer but caused little visible damage to the lignified pericarp cell walls. Amounts of compounds released varied with protocols, and one study with various milling methods showed that esterase pretreatment followed by cellulase released about 2.8 to 4.4 and 1.5 to 2.9 times more ferulic acid and glucose, respectively, than cellulase alone. The highest levels for one lot of corn fiber with esterase pretreatment followed by cellulase were 3.9 and 218 mg/g of ferulic acid and glucose, respectively.
Payne, Courtney E.; Wolfrum, Edward J.
2015-03-12
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Courtney E.; Wolfrum, Edward J.
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less
Drury, Suzanne M; Reynolds, Tracey L; Ridley, William P; Bogdanova, Natalia; Riordan, Susan; Nemeth, Margaret A; Sorbet, Roy; Trujillo, William A; Breeze, Matthew L
2008-06-25
Insect-protected corn hybrids containing Cry insecticidal proteins derived from Bacillus thuringiensis have protection from target pests and provide effective management of insect resistance. MON 89034 hybrids have been developed that produce both the Cry1A.105 and Cry2Ab2 proteins, which provide two independent modes of insecticidal action against the European corn borer ( Ostrinia nubilalis ) and other lepidopteran insect pests of corn. The composition of MON 89034 corn was compared to conventional corn by measuring proximates, fiber, and minerals in forage and by measuring proximates, fiber, amino acids, fatty acids, vitamins, minerals, antinutrients, and secondary metabolites in grain collected from 10 replicated field sites across the United States and Argentina during the 2004-2005 growing seasons. Analyses established that the forage and grain from MON 89034 are compositionally comparable to the control corn hybrid and conventional corn reference hybrids. These findings support the conclusion that MON 89034 is compositionally equivalent to conventional corn hybrids.
Quality Assessment of Physical and Organoleptic Instant Corn Rice on Scale-Up Process
NASA Astrophysics Data System (ADS)
Kumalasari, R.; Ekafitri, R.; Indrianti, N.
2017-12-01
Development of instant corn rice product has been successfully conducted on a laboratory scale. Corn has high carbohydrate content but low in fiber. The addition of fiber in instant corn rice, intended to improve the functioning of the product, and replace fiber loss during the process. Scale up process of Instant corn rice required to increase the production capacity. Scale up was the process to get identic output on a larger scale based on predetermined production scale. This study aimed to assess the changes and differences in the quality of instant corn rice during scale up. Instant corn rice scale up was done on production capacity 3 kg, 4 kg and 5 kg. Results showed that scale up of instant corn rice producing products with rehydration ratio ranges between 514% - 570%, the absorption rate ranged between 414% - 470%, swelling rate ranging between 119% - 134%, bulk density ranged from 0.3661 to 0.4745 (g/ml) and porosity ranging between 30-37%. The physical quality of instant corn rice on scale up were stable from the ones at laboratory scale on swelling rate, rehydration ratio, and absorption rate but not stable on bulk density and porosity. Organoleptic qualities were stable at increased scale compared on a laboratory scale. Bulk density was higher than those at laboratory scale, and the porosity was lower than those at laboratory scale.
Tucker, Matthew R.; Ma, Chao; Phan, Jana; Neumann, Kylie; Shirley, Neil J.; Hahn, Michael G.; Cozzolino, Daniel; Burton, Rachel A.
2017-01-01
Seeds from the myxospermous species Plantago ovata release a polysaccharide-rich mucilage upon contact with water. This seed coat derived mucilage is composed predominantly of heteroxylan (HX) and is utilized as a gluten-free dietary fiber supplement to promote human colorectal health. In this study, a gamma-irradiated P. ovata population was generated and screened using histological stains and Fourier Transform Mid Infrared (FTMIR) spectroscopy to identify putative mutants showing defects in seed coat mucilage HX composition and/or structure. FTMIR analysis of dry seed revealed variation in regions of the IR spectra previously linked to xylan structure in Secale cereale (rye). Subsequent absorbance ratio and PCA multivariate analysis identified 22 putative mutant families with differences in the HX IR fingerprint region. Many of these showed distinct changes in the amount and subtle changes in structure of HX after mucilage extrusion, while 20% of the putative HX mutants identified by FTMIR showed no difference in staining patterns of extruded mucilage compared to wild-type. Transcriptional screening analysis of two putative reduced xylan in mucilage (rxm) mutants, rxm1 and rxm3, revealed that changes in HX levels in rxm1 correlate with reduced transcription of known and novel genes associated with xylan synthesis, possibly indicative of specific co-regulatory units within the xylan biosynthetic pathway. These results confirm that FTMIR is a suitable method for identifying putative mutants with altered mucilage HX composition in P. ovata, and therefore forms a resource to identify novel genes involved in xylan biosynthesis. PMID:28377777
USDA-ARS?s Scientific Manuscript database
The Elusieve process, a combination of sieving and elutriation (air classification), has been found to be effective in fiber separation from ground corn, distillers dried grains with solubles (DDGS) and soybean meal (SBM). The objective of this study was to determine the effect of removing fiber fro...
Micro-heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls
USDA-ARS?s Scientific Manuscript database
Z-trim is a zero calorie cellulosic fiber biopolymer produced from corn hulls. The micro-structural heterogeneities of Z-trim biopolymer were investigated by monitoring the thermally driven displacements of well-dispersed micro-spheres via video fluorescence microscopy named multiple-particle track...
Micro-Heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls
USDA-ARS?s Scientific Manuscript database
Z-trim is a zero calorie cellulosic fiber biopolymer produced from corn hulls. The micro-structural heterogeneities of Z-trim biopolymer were investigated by monitoring the thermally driven displacements of well-dispersed micro-spheres via video fluorescence microscopy named multiple-particle track...
Liang, Yanna; Jarosz, Kimberly; Wardlow, Ashley T; Zhang, Ji; Cui, Yi
2014-08-01
Corn fiber and sweet sorghum bagasse (SSB) are both pre-processed lignocellulosic materials that can be used to produce liquid biofuels. Pretreatment using dilute sulfuric acid at a severity factor of 1.06 and 1.02 released 83.2 and 86.5 % of theoretically available sugars out of corn fiber and SSB, respectively. The resulting hydrolysates derived from pretreatment of SSB at SF of 1.02 supported growth of Cryptococcus curvatus well. In 6 days, the dry cell density reached 10.8 g/l with a lipid content of 40 % (w/w). Hydrolysates from corn fiber, however, did not lead to any significant cell growth even with addition of nutrients. In addition to consuming glucose, xylose, and arabinose, C. curvatus also utilized formic acid, acetic acid, 4-hydroxymethylfurfural, and levulinic acid for growth. Thus, C. curvatus appeared to be an excellent yeast strain for producing lipids from hydrolysates developed from lignocellulosic feedstocks.
USDA-ARS?s Scientific Manuscript database
Many factors, including sharply fluctuating fuel prices and questions regarding the sustainability of fuel produced from potential food crops, have bolstered interest in renewable fuels from alternative feedstocks. We tested pretreated and nonpretreated corn fiber for its susceptibility to hydrolys...
Chemical modification of corn fiber with ion-exchanging groups
USDA-ARS?s Scientific Manuscript database
Pretreated corn fiber was chemically modified with quaternary ammonium group or/and sulfonated with 3-chloro-2-hydroxypropanesulfonic acid under vacuum or at ambient pressure. The soluble fraction was dialyzed through 1 kDa MWCO dialysis tubing and the material retained inside the tubing was filtere...
Viscofying properties of corn fiber gum with various polysaccharides
USDA-ARS?s Scientific Manuscript database
The effect of corn fiber gum (CFG) on the aqueous solutions of a series of widely-used commercial polysaccharides has been studied by rheological techniques using stress synergism index to evaluate its viscosifying action. Though CFG solution exhibited Newtonian fluid behaviour with a very low vis...
Chemicals and ruminant feed from lignocelluloses by the steaming-extraction process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puls, J.; Ayla, C.; Dietrichs, H.H.
1983-01-01
Steaming is applicable to lignocelluloses with lower lignin content such as hardwoods and most agricultural residues. The cellulose of steamed fiber materials becomes accessible for enzymatic degradation in spite of the presence of lignin. The hemicelluloses become water soluble. The lignin can be extracted with alkaline or organic solvents. Without further treatment, the steamed material can be used as highly digestible ruminant feed. Steam treatment, however, is most effective after separation of the hemicelluloses. Depending on the starting material, 10-25% hemicelluloses with xylose contents up to 80% can be recovered by aqueous extraction of the fiber material. The xylans andmore » xylan fragments can be used as substrates for chemical, biochemical, or microbial processes. The residual fiber material consists only of cellulose and lignin in highly accessible form for rumen bacteria and fungal cellulases. They are digested by ruminants up to 70-80% and degraded by cellulases without further treatment to 50-60%. In a second extraction step, the lignin can be removed from the fiber material. After controlled steaming at 190/sup 0/C with an optimum yield of hemicellulose, two-thirds of the original lignin present in the starting material can be extracted with dilute alkali. A relatively mild steaming with additional alkaline extraction of lignin is recommended when total utilization of the components including the hemicelluloses is desired. The extracted lignin can be used as a chemical feedstock. 16 references, 6 figures, 3 tables.« less
USDA-ARS?s Scientific Manuscript database
A novel technique named multiple-particle tracking (MPT) was used to investigate the micro-structural heterogeneities of Z-trim, a zero calorie cellulosic fiber biopolymer produced from corn hulls. The Multiple-Particle Tracking (MPT) method was used in this study, which was originally described by ...
Electrospinning of guar gum/corn starch blends
USDA-ARS?s Scientific Manuscript database
In this study, electrospun nanofibers were prepared for the first time from aqueous blends of guar gum (GG) and corn starch with amylose contents of 27.8% (CS28) and 50% (CS50). The fiber morphology and fiber diameter sizes (FDS) were correlated with solution rheology. The spinning solutions were pr...
USDA-ARS?s Scientific Manuscript database
The effects of thermochemical hydrolysis of corn fiber gum (CFG) and conjugation of the resulting oligomers with sodium caseinate in presence of transglutaminase was studied. The dynamic interfacial tension at the oil-water interface was studied and the molecular characteristics were determined by h...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre
This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less
Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre; ...
2016-01-19
This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less
76 FR 41048 - Agricultural Commodity Definition
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... becomes fiber. Category two would include high fructose corn syrup, but not corn- based products such as... the CEA, including such things as wheat, cotton, corn, the soybean complex, livestock, etc.; 2. A... MGEX's various wheat, corn, and soybean cash-bid indexes) should remain outside of the definition of...
Partial replacement of alfalfa fiber with fiber from ground corn cobs or wheat middlings.
Depies, K K; Armentano, L E
1995-06-01
This trial examined the effect of using corn cobs or wheat middlings to replace alfalfa partially as the dietary fiber source for lactating cows. Multiparous midlactation cows were used in three 4 x 4 Latin squares with 21-d periods. A low fiber, basal diet contained 26.8 g of total NDF, including 14.7 g of alfalfa NDF/100 g of dietary DM. Dietary fiber was increased by addition of more alfalfa, corn cobs, or wheat middlings to obtain 27.4, 28.9, and 27.9%, respectively, of total dietary NDF. Intake (24.9 kg of DM/d) and milk yield (31.6 kg/d) were not different among treatments. Nonforage fiber sources raised milk fat concentration above basal amounts (3.1% to 3.4% fat) and decreased ruminating time below that of the high alfalfa diet (423 to 390 min/d). Fat test was raised approximately one-half as much per unit of NDF from these nonforage feeds as it was per unit of NDF from alfalfa. When additional dietary fiber came from nonforage sources, milk protein concentration (3.3%) was greater than when alfalfa provided the added fiber (3.2%).
Characterization of co-products from producing ethanol by sequential extraction processing of corn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hojilla-Evangelista, M.P.; Johnson, L.A.; Pometto, A.L. III
1996-12-31
Sequential Extraction Processing (SEP) is a new process for ethanol production that has potential to produce more valuable co-products than alternative processes. Previous work determined the yields of oil and protein and evaluated their chemical and functional properties. The properties of the crude fiber and spent solids, however, have yet to be studied. This research was conducted to evaluate the potential of SEP corn fiber to increase ethanol conversion and as replacement for gum arabic, and evaluate the potential of SEP starch and fiber to be fermented to ethanol. SEP hemicellulose from crude fiber was readily dispersible in water andmore » its solution (5%) gave low viscosity despite having high solids content. These properties indicated potential utilization as stabilizers, thickeners, and adhesive for coatings and batters in food and industrial products. Enzyme hydrolysis studies and batch fermentation of SEP starch/fiber indicated that SEP crude fiber was more readily accessible to the action of cellulases. More ethanol (about 10%) was produced from the fermentation of SEP starch/fiber than from undegermed or degermed soft dent corn, particularly when the hemicellulose fraction was absent from the SEP fiber.« less
Sá Neto, A; Bispo, A W; Junges, D; Bercht, A K; Zopollatto, M; Daniel, J L P; Nussio, L G
2014-11-01
The objective of this study was to determine whether replacing the physically effective neutral detergent fiber (peNDF) of corn silage with sugarcane silage peNDF would affect performance in dairy cows. Twenty-four late-lactation Holstein cows were assigned to eight 3 × 3 Latin squares with 21-d periods. The dietary treatments were (1) 25% peNDF of corn silage, (2) 25% peNDF of sugarcane silage, and (3) 12.5% peNDF of corn silage + 12.5% peNDF of sugarcane silage. The physical effectiveness factors (pef) were assumed to be 1 for corn silage and 1.2 for sugarcane silage, as measured previously by bioassay. Thus, peNDF was calculated as neutral detergent fiber (NDF) × pef. The concentrate ingredients were finely ground corn, soybean meal, pelleted citrus pulp, and mineral-vitamin premix. Dry matter intake (22.5 ± 0.63 kg/d), 3.5% fat-corrected milk yield (28.8 ± 1.13 kg/d), milk composition (fat, protein, lactose, urea, casein, free fatty acids, and somatic cell count), and blood metabolites (glucose, insulin, and nonesterified fatty acids) were unaffected by the treatments. The time spent eating, ruminating, or chewing was also similar among the diets, as was particle-sorting behavior. By contrast, chewing per kilogram of forage NDF intake was higher for the sugarcane silage (137 min/kg) than the corn silage diet (116 min/kg), indicating the greater physical effectiveness of sugarcane fiber. Based on chewing behavior (min/d), the estimated pef of sugarcane silage NDF were 1.28 in the corn silage plus sugarcane silage diet and 1.29 in the sugarcane silage diet. Formulating dairy rations of equal peNDF content allows similar performance if corn and sugarcane silages are exchanged. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A novel technique named multiple-particle tracking (MPT) was used to investigate the micro-structural heterogeneities of Z-trim, a zero calorie cellulosic fiber biopolymer produced from corn hulls. The principle of MPT technique is to monitor the thermally driven motion of inert micro-spheres, which...
Improved emulsification performance of corn fiber gum following maturation treatment
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) in the solid state (milled powder form) was subjected to a maturation treatment by heating under atmospheric pressure at 110 degrees C for 5 (CFG5) and 24 hours (CFG24). The treatment reduced the solubility and aggregation of the proteinaceous component with increased heating t...
Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P
2013-09-01
Sequential feeding (SF) is an innovative system for laying hens consisting of nutrients separating energy, protein, and calcium supplies to fulfill nutrient requirements at the relevant time of day. In previous studies, hens received whole wheat in the morning and a balancer diet (rich in protein and calcium) in the afternoon. To improve SF utilization, the aim was to substitute whole wheat in the morning by an alternative energy supply: ground wheat and ground corn, with or without a proportion of whole wheat and insoluble fiber. The goal was to obtain the advantages observed in previous experiments with whole wheat [bigger gizzard, thinner hens, reduced feed conversion ratio (FCR)]. Four hundred thirty-two ISA Brown hens were housed in collective cages from 20 to 35 wk of age divided into 8 different treatments: a continuous control diet, a sequential diet with whole wheat in the morning, 3 wheat-based diets (ground wheat, ground wheat and 20% whole wheat, and ground wheat with 5% insoluble fiber) and 3 ground corn-based (ground corn, ground corn and 20% whole wheat, and ground corn with 5% insoluble fiber) provided in the morning. All sequential regimens received the same balancer diet rich in protein and calcium in the afternoon. Whole wheat SF gave the best results with an improved FCR compared with continuous control and all other SF diets. Wheat- and corn-based diets showed intermediate results between whole wheat SF and continuous feeding. Gizzard weight was higher and hens were lighter than with conventional continuous feeding, leading to an average FCR improvement of 3.2% compared with a continuous control. Thus, it is possible in SF diets to substitute, at least partially, whole wheat by ground wheat or ground corn with added insoluble fiber or some whole wheat, allowing more flexibility and economic optimization.
21 CFR 137.250 - White corn meal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false White corn meal. 137.250 Section 137.250 Food and... Related Products § 137.250 White corn meal. (a) White corn meal is the food prepared by so grinding... fiber content of the finished corn meal is not less than 1.2 percent and not more than that of the...
21 CFR 137.250 - White corn meal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false White corn meal. 137.250 Section 137.250 Food and... Related Products § 137.250 White corn meal. (a) White corn meal is the food prepared by so grinding... fiber content of the finished corn meal is not less than 1.2 percent and not more than that of the...
USDA-ARS?s Scientific Manuscript database
A comparative study of both the bulk and air/liquid interfacial rheological responses was carried out by using four kinds of high molecular weight and highly branched polysaccharide emulsifiers, (a) corn fiber gum (CFG), (b) octenyl succinate anhydride-modified starch (OSA-s), (c) gum arabic (GA) an...
Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a novel arabinoxylan hydrocolloid. Recent research showed its considerable potential in food processing. In this study, the interactions of maize starch and CFG were studied. Maize starch/CFG blend gels were prepared from maize starch suspension mixed with 0.1%, 0.25%, 0.5%, ...
Effect of corn bran particle size on rheology and pasting characteristics of flour gels
USDA-ARS?s Scientific Manuscript database
Dietary fiber in corn bran is known for its beneficial effects on human health and nutrition. Corn bran substitution has shown to affect batter viscosity, and volume, crumb grain, color, and texture of cakes. Purified food-grade corn bran was milled to pass through 80, 100 and 120 mesh sieve, resu...
75 FR 65586 - Agricultural Commodity Definition
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... processed from cellulose before it becomes fiber. Category two would include high fructose corn syrup, but... wheat, cotton, rice, corn, oats, barley, rye, flaxseed, grain sorghum, mill feeds, butter, eggs, and... remained unchanged since the 1974 amendments: ``The term ``commodity'' means wheat, cotton, rice, corn...
Kaith, B S; Jindal, R; Jana, A K; Maiti, M
2010-09-01
In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.
Liu, Y F; Zhao, H B; Liu, X M; You, W; Cheng, H J; Wan, F C; Liu, G F; Tan, X W; Song, E L; Zhang, X L
2016-10-01
The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle.
Barczynska, Renata; Slizewska, Katarzyna; Litwin, Mieczyslaw; Szalecki, Mieczyslaw; Kapusniak, Janusz
2016-01-01
Currently, there is a search for substances that would be very well tolerated by an organism and which could contribute to the activation of the growth of Bacteroidetes and Actinobacteria strains, with simultaneous inhibition of the growth of Firmicutes. High expectations in this regard are raised with the use of fiber preparations from starch - resistant corn dextrins, branched dextrins, resistant maltodextrins and soluble corn fiber. In this paper, the influence of fiber preparations made from corn starch was evaluated on growth and activity of Bacteroidetes, Actinobacteria and Firmicutes strains isolated from obese children. It was demonstrated that in the stool of obese children Firmicutes strains predominate, while Bacteroidetes and Actinobacteria strains were in the minority. A supplementation of fecal culture with fiber preparations did not cause any significant changes in the number of strains of Bacteroidetes and Firmicutes. Addition of fiber preparations to the fecal samples of obese children increased the amount of short-chain fatty acids, especially acetic (p < 0.01), propionic, butyric (p = 0.05) and lactic acid (p < 0.01).
Mathew, Anil Kuruvilla; Parameshwaran, Binod; Sukumaran, Rajeev Kumar; Pandey, Ashok
2016-01-01
The challenge associated with cellulosic ethanol production is maximizing sugar yield at low cost. Current research is being focused to develop a pretreatment method to overcome biomass recalcitrance in an efficient way. This review is focused on two major pretreatments: dilute acid (DA) and ammonia fiber explosion (AFEX) pretreatment of corn stover and how these pretreatment cause morphological and chemical changes to corn stover in order to overcome the biomass recalcitrance. This review highlights the key differences of these two pretreatments based on compositional analysis, cellulose and its crystallinity, morphological changes, structural changes to lignin, enzymatic reactivity and enzyme adsorption onto pretreated solids and finally cellulosic ethanol production from the hydrolysate of DA and AFEX treated corn stover. Each stage of the process, AFEX pretreated corn stover was superior to DA treated corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The interfacial rheology of polysaccharide adsorption layers of corn fiber gum (CFG), octenyl succinate anhydride-modified starch (OSA-s), gum arabic (GA) and soybean soluble polysaccharides (SSPS) at the oil/water interface and their emulsifying properties in oil-in-water (O/W) emulsions were compa...
USDA-ARS?s Scientific Manuscript database
Transportation biofuel ethanol was produced from xylose and corn fiber hydrolyzate (CFH) in a batch reactor employing Escherichia coli FBR5. This strain was previously developed in our laboratory to use cellulosic sugars. The culture can produce up to 49.32 gL-1 ethanol from approximately 125 gL-1 x...
Russell, J R; Sexten, W J; Kerley, M S
2016-07-01
Two experiments were conducted using soybean hull (SH) diets with increasing corn proportions to determine increasing corn inclusion effects on fermentation characteristics, diet digestibility, and feedlot performance. The hypothesis was that fiber digestibility would quadratically respond to starch proportion in the diet with a break point where starch inclusion improved fiber digestion and feedlot performance. Proportionately, the diets contained 100:0 (SH100), 90:10 (SH90), 80:20 (SH80), 60:40 (SH60), or 20:80 SH:corn (SH20). In Exp. 1, diets were randomly distributed over 24 continuous culture fermenters and fed for 7 d. In Exp. 2, forty steers (347 ± 29 kg BW) and 50 heifers (374 ± 24 kg BW) were blocked by gender, stratified by BW, and distributed across diets. Cattle were fed for 70 d with titanium dioxide included in the diet for the final 14 d and fecal samples collected to measure digestibility. Individual DMI was measured using GrowSafe Feed Intake system. Data were analyzed using the MIXED procedure of SAS with diet evaluated as the fixed effect. In Exp. 1, NDF digestibility (NDFd) linearly decreased ( = 0.04) and ADF digestibility (ADFd) tended to linearly decrease ( = 0.09) as corn increased. Dry matter digestibility (DMd) was cubic ( = 0.01) and OM digestibility (OMd) was quadratic ( = 0.03), and among the 4 SH-based diets, DMd and OMd were greatest for SH90. Acetate:propionate ratio and pH were quadratic ( < 0.01) and greatest for SH80. In Exp. 2, ADG and G:F linearly increased ( < 0.01) as corn inclusion increased. Among the 4 SH-based diets, ADG was numerically greatest for SH80. There was no DMI difference ( ≥ 0.4) due to diet. As corn inclusion increased, DMd tended to linearly increase (P = 0.06), as did OMd ( = 0.05). Both NDFd and ADFd were quadratic ( = 0.04) and greatest for SH80. Overall, feedlot performance increased and fiber digestibility decreased as corn inclusion increased. However, based on continuous culture digestibility and VFA values as well as feedlot digestibility and performance, optimal corn inclusion for growth and diet utilization in the 4 SH-based diets fell between SH80 and SH90, or 0.4 and 0.2% BW corn supplementation. In this study, providing 0.4% BW corn supplementation in fiber-based diets (SH80) provided greater improvement in performance compared with 0.2% BW corn supplementation (SH90).
Jin, Mingjie; Liu, Yanping; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh
2017-08-01
High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Parametric study for the optimization of ionic liquid pretreatment of corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papa, Gabriella; Feldman, Taya; Sale, Kenneth L.
A parametric study of the efficacy of the ionic liquid (IL) pretreatment (PT) of corn stover (CS) using 1-ethyl-3-methylimidazolium acetate ([C 2C 1Im][OAc] ) and cholinium lysinate ([Ch][Lys] ) was conducted. The impact of 50% and 15% biomass loading for milled and non-milled CS on IL-PT was evaluated, as well the impact of 20 and 5 mg enzyme/g glucan on saccharification efficiency. The glucose and xylose released were generated from 32 conditions – 2 ionic liquids (ILs), 2 temperatures, 2 particle sizes (S), 2 solid loadings, and 2 enzyme loadings. Statistical analysis indicates that sugar yields were correlated with lignin andmore » xylan removal and depends on the factors, where S did not explain variation in sugar yields. Both ILs were effective in pretreating large particle sized CS, without compromising sugar yields. The knowledge from material and energy balances is an essential step in directing optimization of sugar recovery at desirable process conditions.« less
Zhang, Jie; Wang, Yue-Hai; Wei, Quan-Yuan; Du, Xiao-Jia; Qu, Yong-Shui
2018-02-01
As the most representative of lignocellulosic materials, corn stalk (CS) will be a great candidate to produce xylo-oligosaccharides (XOS). Owing to the high impurity content of the XOS produced by directly enzymatic hydrolysis of xylan extracted from CS, subsequent refining steps are essential. The present study was aimed to investigate desorption during ethanol elution to improve the quality and antioxidant activity of XOS from CS. The desorption was systematically investigated after optimizing the elution conditions. The results showed that it had an elution watershed when the volume ratio was 2:1. More interestingly, XOS had a obvious priorities of desorption during ethanol gradient elution. The highest purity of XOS was 98.12% from 30% ethanol eluate. Antioxidant activity assay showed that the highest radical scavenging activity of XOS was 89.89% obtained from 70% ethanol eluate at a concentration of 3 mg/mL, which could be used in antioxidant food, feed additives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw.
Moniz, Patrícia; Ho, Ai Ling; Duarte, Luís C; Kolida, Sofia; Rastall, Robert A; Pereira, Helena; Carvalheiro, Florbela
2016-01-20
This work evaluates the bifidogenic potential of substituted xylo-oligosaccharides (XOS) obtained from a lignocellulosic feedstock (corn straw). Autohydrolysis was used to selectively hydrolyse the xylan-rich hemicellulosic fraction and the soluble oligosaccharides were purified by gel filtration chromatography. Selected oligosaccharides fractions within the target ranges of polymerization degree (4-6 and 9-21, samples S1 and S2, respectively) were characterized and their bifidogenic potential was investigated by in vitro fermentations using human fecal inocula. Bacterial growth was assessed by fluorescent in situ hybridization (FISH). XOS consumption and short-chain fatty acids (SCFA) production were evaluated and compared with commercial oligosaccharides. Under the tested conditions, all the substrates were utilized by the microbiota, and fermentation resulted in increased bifidobacteria populations. Samples S1 and S2 increased bifidobacteria populations and the production profile of SCFA was similar for XOS samples and commercial oligosaccharides although XOS samples displayed the highest concentration of SCFA on longer fermentation times. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong
2015-12-01
A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in γ-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170°C for 10 min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190°C for 100 min). Copyright © 2015 Elsevier Ltd. All rights reserved.
Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W
2016-04-01
Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of protein, dietary fiber, and micronutrient enriched extruded corn snacks.
Shah, Faiz-Ul-Hassan; Sharif, Mian Kamran; Butt, Masood Sadiq; Shahid, Muhammad
2017-06-01
The study was aimed to develop protein, dietary fiber, and micronutrient enriched corn snacks through extrusion processing. Corn snacks supplemented with chickpea, defatted soy flour (20-40/100 g) and guar gum (7/100 g) were prepared through extrusion processing. Micronutrients (iron, zinc, iodine, and vitamins A, C, and folic acid) at recommended daily values were added in all formulations. Extruded corn snacks were analyzed for physical, textural, and sensory attributes. Results showed that piece density (0.34-0.44 g/cm 3 ), moisture (3.40-5.25%), water activity (0.203-0.361), hardness (64.4-133.2 N), and cohesiveness (0.25-0.44) was increased Whereas, expansion ratio (3.72-2.64), springiness (0.82-0.69), chewiness (1.63-0.42), and resilience (1.37-0.14) was decreased as supplementation with soy and chickpea flour increased from 20 to 40/100 g. Overall corn snack supplemented with 15/100 g of soy and 15/100 g of chickpea flour got the highest acceptance from the sensory panelists. The article focuses on physical, textural, and sensory attributes of extruded corn snacks enriched with protein, dietary fiber, and micronutrients Awareness about the importance of healthy snacks has grown among the consumers during the last decade. Extruded snacks developed using nutrient rich ingredients with good textural and sensory properties has always remained a challenge for the snack industry. Texture of the extruded snacks varies a lot with high levels of protein and dietary fiber. This study is helpful for the development of healthy snacks especially in developing countries lacking storage infrastructure or tropical environment. Nutrient rich extruded snacks can also be used to alleviate malnutrition by incorporating in school lunch programs. © 2016 Wiley Periodicals, Inc.
Lopes, F; Cook, D E; Combs, D K
2015-01-01
An in vivo study was performed to validate an in vitro procedure that predicts rate of fiber digestion and total-tract neutral detergent fiber digestibility (TTNDFD). Two corn silages that differed in fiber digestibility were used in this trial. The corn silage with lower fiber digestibility (LFDCS) had the TTNDFD prediction of 36.0% of total NDF, whereas TTNDFD for the corn silage with higher fiber digestibility (HFDCS) was 44.9% of total neutral detergent fiber (NDF). Two diets (1 with LFDCS and 1 with HFDCS) were formulated and analyzed using the in vitro assay to predict the TTNDFD and rumen potentially digestible NDF (pdNDF) digestion rate. Similar diets were fed to 8 ruminally cannulated, multiparous, high-producing dairy cows in 2 replicated 4×4 Latin squares with 21-d periods. A 2×2 factorial arrangement of treatments was used with main effects of intake (restricted to approximately 90% of ad libitum intake vs. ad libitum) and corn silage of different fiber digestibility. Treatments were restricted and ad libitum LFDCS as well as restricted and ad libitum HFDCS. The input and output values predicted from the in vitro model were compared with in vivo measurements. The pdNDF intake predicted by the in vitro model was similar to pdNDF intake observed in vivo. Also, the pdNDF digestion rate predicted in vitro was similar to what was observed in vivo. The in vitro method predicted TTNDFD of 50.2% for HFDCS and 42.9% for LFDCS as a percentage of total NDF in the diets, whereas the in vivo measurements of TTNDFD averaged 50.3 and 48.6% of total NDF for the HFDCS and LFDCS diets, respectively. The in vitro TTNDFD assay predicted total-tract NDF digestibility of HFDCS diets similar to the digestibility observed in vivo, but for LFDCS diets the assay underestimated the digestibility compared with in vivo. When the in vitro and in vivo measurements were compared without intake effect (ad libitum and restricted) considering only diet effect of silage fiber digestibility (HFDCS and LFDCS), no differences were observed between methods. These values suggest that our in vitro TTNDFD model could be used to predicted rate of fiber digestion and NDF digestibility for dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Physicochemical, Thermal, and Sensory Properties of Blue Corn (Zea Mays L.).
Mutlu, Ceren; Arslan-Tontul, Sultan; Candal, Cihadiye; Kilic, Ozlem; Erbas, Mustafa
2018-01-01
The aim of this study was to investigate some physicochemical and sensory properties of blue corn cultivated in Turkey. The length and width of the cob with kernels, hectoliter, and 1000-kernel weight of blue corn were measured as 7.66, 2.02 mm, 84.40 kg/100 L, and 44.27 g, respectively. The gelatinization onset, peak, and end temperatures were measured as 61.12 °C, 64.35 °C, and 75.65 °C, respectively. The water activity, moisture content, total protein, lipid, and crude fiber contents of the blue corn sample were detected as 0.44, 9.39%, 13.13%, 4.30%, and 2.68%, respectively. Total starch and resistant starch contents of blue corn were determined as 63.94% and 8.89%, respectively. Also, total monomeric anthocyanin content and antioxidant capacity of blue corn were detected as 915.43 mg CGE/kg and 7.99 μmol TE/g, respectively. Additionally, the major fatty acids detected in blue corn samples were palmitic, stearic, oleic, and linoleic acids. Blue corn can be utilized in the production of enjoyable and healthier snacks, such as popcorn and chips, because of its color and high phenolic, anthocyanin, and fiber contents. © 2017 Institute of Food Technologists®.
Aerosol Filter Loading Data for a Simulated Jet Engine Test Cell Aerosol.
1979-08-01
media. M SECTION II TEST PROGRAM I. TESTING PROCEDURE Sheets of the filter media were obtained from Owens - Corning Fiberglas Corporation. Ten centimeter...loading cycle. 2. TEST FILTERS The four following glass fiber filter medias were obtained from Owens - Corning Fiberglas Corporation (OCF) and tested both...shown in Table 22. Filters were washed from the back side. 5. ONCLUSIONS Four glass fiber filters, specified in the contract, were obtained from Owens
Lawoko, Martin; Henriksson, Gunnar; Gellerstedt, Göran
2005-01-01
Lignin-carbohydrate complexes (LCCs) were prepared in quantitative yield from spruce wood and from the corresponding kraft and oxygen-delignified pulps and were separated into different fractions on the basis of their carbohydrate composition. To obtain an understanding of the differences in lignin structure and reactivity within the various LCC fractions, thioacidolysis in combination with gas chromatography was used to quantify the content of beta-O-4 structures in the lignin. Periodate oxidation followed by determination of methanol was used to quantify the phenolic hydroxyl groups. Furthermore, size exclusion chromatography (SEC) of the thioacidolysis fractions was used to monitor any differences between the original molecular size distribution and that after the delignification processes. Characteristic differences between the various LCC fractions were observed, clearly indicating that two different forms of lignin are present in the wood fiber wall. These forms are linked to glucomannan and xylan, respectively. On pulping, the different LCCs have different reactivities. The xylan-linked lignin is to a large extent degraded, whereas the glucomannan-linked lignin undergoes a partial condensation to form more high molecular mass material. The latter seems to be rather unchanged during a subsequent oxygen-delignification stage. On the basis of these findings, a modified arrangement of the fiber wall polymers is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri
Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating ormore » a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.« less
Mosier, Nathan S; Hendrickson, Richard; Brewer, Mark; Ho, Nancy; Sedlak, Miroslav; Dreshel, Richard; Welch, Gary; Dien, Bruce S; Aden, Andy; Ladisch, Michael R
2005-05-01
The pretreatment of cellulose in corn fiber by liquid hot water at 160 degrees C and a pH above 4.0 dissolved 50% of the fiber in 20 min. The pretreatment also enabled the subsequent complete enzymatic hydrolysis of the remaining polysaccharides to monosaccharides. The carbohydrates dissolved by the pretreatment were 80% soluble oligosaccharides and 20% monosaccharides with <1% of the carbohydrates lost to degradation products. Only a minimal amount of protein was dissolved, thus enriching the protein content of the undissolved material. Replication of laboratory results in an industrial trial at 43 gallons per minute (163 L/min) of fiber slurry with a residence time of 20 min illustrates the utility and practicality of this approach for pretreating corn fiber. The added costs owing to pretreatment, fiber, and hydrolysis are equivalent to less than 0.84 dollars/gal of ethanol produced from the fiber. Minimizing monosaccharide formation during pretreatment minimized the formation of degradation products; hence, the resulting sugars were readily fermentable to ethanol by the recombinant hexose and by pentose-fermenting Saccharomyces cerevisiae 424A(LNH-ST) and ethanologenic Escherichia coli at yields >90% of theoretical based on the starting fiber. This cooperative effort and first successful trial opens the door for examining the robustness of the pretreatment system under extended run conditions as well as pretreatment of other cellulose-containing materials using water at controlled pH.
Digestibility of dietary fiber in distillers coproducts fed to growing pigs.
Urriola, P E; Shurson, G C; Stein, H H
2010-07-01
The objective of this work was to measure the apparent ileal digestibility (AID) and the apparent total tract digestibility (ATTD) of dietary fiber in different sources of distillers dried grains with solubles (DDGS) and to calculate hindgut fermentation of dietary fiber in DDGS fed to growing pigs. Diets, ileal digesta, and fecal samples from pigs fed corn or diets containing 1 of 28 sources of distillers coproducts were analyzed for fiber. Of the 28 sources of coproducts, 24 sources were corn DDGS (C-DDGS), 1 source was sorghum DDGS (S-DDGS), 1 source was DDGS from a blend of sorghum and corn (SC-DDGS), 1 source was C-DDGS from beverage production (DDGS(beverage)), and a source of corn distillers dried grain (DDG) was also included in the experiment. Total dietary fiber (TDF) and DM were analyzed in all DDGS sources, ileal digesta, and fecal samples. Hindgut fermentation was calculated by subtracting values for AID from values for ATTD. In 10 sources of DDGS and in ileal and fecal samples from pigs fed those sources, crude fiber, ADF, NDF, insoluble dietary fiber (IDF), and soluble dietary fiber (SDF) were also determined. Concentrations of CP, ether extract, and ash were also analyzed in these samples, and concentrations of organic residue (OR) were calculated by subtracting the concentration of CP, ether extract, and water from OM. The AID and the ATTD of TDF differed (P < 0.01) among sources of C-DDGS. The average AID of TDF in 10 sources of C-DDGS (21.5%) was not different (P > 0.05) from the AID of TDF in corn (16.5%), but the ATTD and the hindgut fermentation of TDF in the 10 sources of C-DDGS (44.5 and 23.0%, respectively) were greater (P < 0.05) than in corn (23.1 and 6.6%, respectively). The AID of crude fiber, NDF, IDF, SDF, and TDF were not different between C-DDGS and S-DDGS, but the AID of ADF was greater (P < 0.01) in S-DDGS (57.4%) than in C-DDGS (36.8%). The ATTD of OR in S-DDGS (72.5%) and SC-DDGS (68.4%) were less (P < 0.05) than in C-DDGS (77.1%), but the ATTD of ADF, NDF, IDF, SDF, and TDF were not different among the 3 sources of DDGS. The AID, ATTD, and hindgut fermentation of TDF were not different between DDGS from an ethanol plant and DDGS from a beverage plant. The average AID, ATTD, and hindgut fermentation of TDF in the 24 sources of C-DDGS were 23.0, 47.3, and 24.4%, respectively. It is concluded that the AID and ATTD of fiber differ among sources of DDGS and those differences may contribute to differences in the digestibility of energy in DDGS.
Measurement of fumonisins in corn with a fiber optic fluoroimmunosensor
NASA Astrophysics Data System (ADS)
Thompson, Vicki S.; Maragos, Chris M.
1997-05-01
A fiber-optic immunosensor was used to determine concentrations of the mycotoxin fumonisin B1(FB1) in both spiked and naturally contaminated corn samples. Samples were extracted with a mixture of methanol/water. Two methods were used to prepare the methanolic corn extracts before introduction to the immunosensor: (1) simple dilution of the methanolic corn extract; or (2) affinity column cleanup. The sensor displayed an IC50 of 70 ng FB1/mL when toxin was introduced in phosphate buffered saline. Simple dilution of methanolic corn extracts yielded an assay with an IC50 equivalent to 25 (mu) gFB1/g corn and a limit of detection of 3.2 (mu) g/g corn, while affinity cleanup of corn extracts yielded an assay with an IC50 of 5 (mu) gFB1/g corn and a limit of detection of 0.4 (mu) gFB1/g corn. The difference in sensitivity between the two cleanup techniques was due to concentration of fumonisins obtained from the affinity cleanup procedure. Naturally contaminated corn samples were also analyzed after either simple dilution or affinity column cleanup. For comparison the naturally contaminated corn samples were analyzed with an HPLC method after isolation of the fumonisins with strong anion exchange (SAX) solid phase extraction cartridges. The SAX/HPLC method and the immunosensor method agreed well except when large amounts of other fumonisins (i.e. fumonisin B2) were present. This was due in part to the cross-reactivity of the monoclonal antibody with other fumonisins. The immunosensor has the potential to screen individual corn samples for fumonisins within six minutes, and is among the fastest of the currently available FB1 detection methods.
Laccase catalysed grafting of phenolic onto xylan to improve its applicability in films
NASA Astrophysics Data System (ADS)
Pei, Jicheng; Wang, Bing; Zhang, Fangdong; Li, Zhongyang; Yin, Yunbei; Zhang, Dongxu
2015-07-01
Xylan can be tailored for various value-added applications. However, its use in aqueous systems is hampered by its complex structure, and small molecular weight. This research aimed at improving the xylan molecular weight and changing its structure. Laccase-catalysed oxidation of 4-coumaric acid (PCA), ferulic acid (FA), syringaldehyde (SD), and vanillin (VA) onto xylan was grafted to study the changes in its structure, tensile properties, and antibacterial activities. A Fourier transform infrared (FTIR) spectrum analyser was used to observe the changes in functional groups of xylan. The results showed a band at 1635 cm-1 corresponding to the stretching vibration of conjugated carbonyl carboxy hemoglobin and a benzene ring structure were strengthened; the appearance of a new band between 1200 cm-1 and 1270 cm-1 corresponding to alkyl ethers on the aryl C-O stretching vibration was due to the fact that during the grafting process, the number of benzene ring structures increased and covalent connections occurred between phenols and xylan. The reaction mechanism for the laccase-catalysed oxidation of phenol compounds onto xylan was preliminary explored by 13C-NMR. The results showed that PCA-xylan, FA-xylan graft poly onto xylan by Cγ ester bond, SD-xylan graft poly onto xylan by ether bond and an ester bond, and VD-xylan graft poly onto xylan by ether bond. The film strength of xylan derivatives has been significantly increased, especially for the PCA-xylan derivative. The increases in tensile stress at break, tensile strength, tensile yield stress, and Young's modulus were: 24.04%, 31.30%, 55.56%, and 28.21%, respectively. After laccase/phenolics were modified, xylan had a good antibacterial effect to E. coli, Corynebacterium glutamicum, and Bacillus subtilis. The SD-xylan, FA-xylan, and PCA-xylan showed a greater efficacy against E. coli, Corynebacterium glutamicum, and Bacillus subtilis, respectively.
Wei, Hui; Chen, Xiaowen; Shekiro, Joseph; ...
2018-01-20
High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose, resulting in enhanced sugar solubilization and digestibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Hui; Chen, Xiaowen; Shekiro, Joseph
High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose, resulting in enhanced sugar solubilization and digestibility.« less
Rumen passage kinetics of forage- and concentrate-derived fiber in dairy cows.
Krämer, M; Lund, P; Weisbjerg, M R
2013-05-01
Rumen passage kinetics of forage and concentrate fiber were analyzed to determine intrinsic feed effects and extrinsic ration effects on the retention time of fiber in the rumen. Sixteen Danish Holstein cows (557 ± 37 kg of body weight, 120 ± 21 d in milk, mean ± SD), 8 fitted with ruminal cannulas, were used in a completely randomized block experiment. Treatments differed in forage type (corn silage vs. grass silage) and forage:concentrate ratio (50:50 vs. 75:25 on organic matter basis). Fiber passage kinetics were studied based on rumen evacuations and on marker excretion profiles in feces fitted to 1 and 2 pool models. Each cow received ytterbium (Yb)-labeled fiber of the forage fed in the ration, samarium (Sm)-labeled fiber of the forage not fed in the ration, and concentrate fiber labeled with lanthanum (La), all as a single pulse dose. Nineteen fecal grab samples were taken per cow. Rumen liquid passage was studied using chromium-EDTA dosed as a single pulse into the rumen, followed by sampling of rumen liquid from both the ventral and medial rumen. Rumen mean retention time did not differ between forages when based on Yb-excretion profiles but was numerically longer for grass silage- than for corn silage-based rations using rumen evacuation data. Liquid rate of passage did not differ when calculated from medial or ventral rumen liquid samples, indicating that estimates for the probability of rumen liquid escape were independent of rumen sampling site. Total mean retention time decreased from forage fiber to concentrate fiber to liquid. The forage type itself (corn silage or grass silage) rather than the ration composition seemed to determine the total-tract retention time of forage fiber. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sharma, Savita; Gupta, Jatinder Pal; Nagi, H P S; Kumar, Rakesh
2012-10-01
The effect of blending level (0, 5, 10, 15 and 20%) of corn bran, defatted germ and gluten with wheat flour on the physico-chemical properties (protein, crude fiber, phosphorus, iron and calcium), baking properties of bread, muffins and cookies, and extrusion properties of noodles and extruded snacks prepared from semolina were examined. Blending of wheat flour and corn byproducts significantly increased the protein, crude fiber, phosphorus, iron and calcium contents. Breads from gluten blends had higher loaf volume as compared to bran and germ breads. Among corn byproducts, gluten cookies were rated superior with respect to top grain. Muffins from germ blends and gluten blends had higher acceptability scores than the bran muffins. Blending of corn bran, defatted germ and gluten at 5 and 10% with wheat flour resulted in satisfactory bread, cookie, and muffin score. Quality of noodles was significantly influenced by addition of corn byproducts and their levels. Corn byproducts blending had significant influence on cooking time, however, gruel solid loss affected non-significantly in case of noodles. Expansion ratio and density of extruded snacks was affected non significantly by blending source and blending level. However, significant effect was observed on amperage, pressure, yield and overall acceptability of extruded snacks. Acceptable extruded products (noodles and extruded snacks) could be produced by blending corn byproducts with semolina upto 10% level.
McCann, Melinda C; Trujillo, William A; Riordan, Susan G; Sorbet, Roy; Bogdanova, Natalia N; Sidhu, Ravinder S
2007-05-16
The next generation of biotechnology-derived products with the combined benefit of herbicide tolerance and insect protection (MON 88017) was developed to withstand feeding damage caused by the coleopteran pest corn rootworm and over-the-top applications of glyphosate, the active ingredient in Roundup herbicides. As a part of a larger safety and characterization assessment, MON 88017 was grown under field conditions at geographically diverse locations within the United States and Argentina during the 2002 and 2003-2004 field seasons, respectively, along with a near-isogenic control and other conventional corn hybrids for compositional assessment. Field trials were conducted using a randomized complete block design with three replication blocks at each site. Corn forage samples were harvested at the late dough/early dent stage, ground, and analyzed for the concentration of proximate constituents, fibers, and minerals. Samples of mature grain were harvested, ground, and analyzed for the concentration of proximate constituents, fiber, minerals, amino acids, fatty acids, vitamins, antinutrients, and secondary metabolites. The results showed that the forage and grain from MON 88017 are compositionally equivalent to forage and grain from control and conventional corn hybrids.
Teeravivattanakit, Thitiporn; Baramee, Sirilak; Phitsuwan, Paripok; Sornyotha, Somphit; Waeonukul, Rattiya; Pason, Patthra; Tachaapaikoon, Chakrit; Poomputsa, Kanokwan; Kosugi, Akihiko; Sakka, Kazuo
2017-01-01
ABSTRACT Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment. IMPORTANCE Ongoing research is focused on improving “green” pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method. PMID:28864653
Teeravivattanakit, Thitiporn; Baramee, Sirilak; Phitsuwan, Paripok; Sornyotha, Somphit; Waeonukul, Rattiya; Pason, Patthra; Tachaapaikoon, Chakrit; Poomputsa, Kanokwan; Kosugi, Akihiko; Sakka, Kazuo; Ratanakhanokchai, Khanok
2017-11-15
Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment. IMPORTANCE Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method. Copyright © 2017 American Society for Microbiology.
Angle selective fiber coupler.
Barnoski, M K; Morrison, R J
1976-01-01
Angle selective input coupling through the side of a slightly tapered section of Corning highly multimode fiber has been experimentally demonstrated for the first time. This coupling technique allows the possibility of fabricating bidirectional (duplex) couplers for systems employing single strands of multimode, low loss fiber.
FORAGES AND PASTURES SYMPOSIUM: Optimizing the use of fibrous residues in beef and dairy diets.
Watson, A K; MacDonald, J C; Erickson, G E; Kononoff, P J; Klopfenstein, T J
2015-06-01
Increased corn prices over the past decade have altered land use away from traditional forage in favor of corn. Accordingly, beef and dairy producers have had to adopt nontraditional forage resources into their production systems, many of which have become available as a result of increased corn production. Corn residues have become more available due to increases in corn hectares and yield. The individual plant components (i.e., husk, leaf, and stem) vary in fiber digestibility (NDF digestibility estimates = 40.5, 31.4, and 0.6% ± 0.8 for husk, leaf, and stalk, respectively). Stocking cattle to consume 3.6 kg forage/25.5 kg of grain allows cattle to graze selectively; selection of husks and leaves improves cattle performance. Byproducts of the wet and dry milling industries can be supplemented to calves grazing corn residues to provide protein and energy. Optimal gains were observed when these byproducts were supplemented at approximately 2.5 kg/d to 250-kg growing calves. Gestating beef cows do not require supplemental inputs when grazing corn residue, if stocked appropriately. Alkaline treatment of crop residues improves their feeding value. Concentrations of up to 20% harvested corn residue treated with calcium oxide can be included in finishing diets with an average of 1.3% reduction in G:F when diets contain 40% wet or modified distillers grains. Conversely, when untreated corn residues are included in similar finishing diets, G:F is reduced by 13.4%. Calcium oxide-treated residues included in beef growing diets increases DMI and ADG without significant improvements in G:F. Calcium oxide treatment of corn residues has been evaluated in dairy diets by replacing corn or corn silage with variable results. Efficient use of nontraditional fiber sources, such as corn milling byproducts and corn residue, are critical to the future viability of ruminant animal production.
Van Weelden, M B; Andersen, D S; Kerr, B J; Trabue, S L; Pepple, L M
2016-02-01
Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure inoculation on foaming characteristics. Animals were fed: (1) C-SBM (corn-soybean meal): (2) C-DDGS (corn-dried distiller grains with solubles); and (3) C-Soybean Hull (corn-soybean meal with soybean hulls) with each diet ground to either fine (374 μm) or coarse (631 μm) particle size. Two sets of 24 pigs were fed and their manure collected. Factors that decreased feed digestibility (larger grind size and increased fiber content) resulted in increased solids loading to the manure, greater foaming characteristics, more particles in the critical particle size range (2-25 μm), and a greater biological activity/potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrasound-assisted synthesis of CuO nanostructures templated by cotton fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yunling, E-mail: zouyunling1999@126.com; Li, Yan; Guo, Ying
Highlights: ► Flower-like and corn-like CuO nanostructures were synthesized by a simple method. ► Cotton fibers purchased from commercially are used as template. ► The concentration of Cu(NO{sub 3}){sub 2} solution is an important parameter. -- Abstract: Flower-like and corn-like CuO nanostructures composed of CuO nanoparticles were successfully synthesized via ultrasound-assisted template method, respectively, by controlling the initial concentration of Cu(NO{sub 3}){sub 2} solution. Here, cotton fibers were used as template agent. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy (EDS), respectively. The results demonstrated that the initialmore » concentration of Cu(NO{sub 3}){sub 2} solution was an important parameter for determining whether CuO nanoparticles assembled into flower-like structures or corn-like structures. The mechanism of forming different nanostructures of CuO was discussed.« less
Effects of water states on steam explosion of lignocellulosic biomass.
Sui, Wenjie; Chen, Hongzhang
2016-01-01
The work aimed to identify the complexity and roles of water states in steam explosion process of corn stalk to enhance the treatment efficiency. Results showed that two main water states with different mobility existed in corn stalk and influenced steam explosion treatment. By correlating dynamic water states data to feedstock mechanical properties and treatment process characteristics, the bound water being the excellent plasticizer that reduced the mechanical strength of fibers by over 30%, was conducive to treatment; while, the free water presenting buffering effects in treatment by hindering heat transfer which was reflected by the increase of temperature rising time by 1.29 folds and steam consumption by 2.18 folds, was not conducive. The distinguished point of these two waters was fiber saturated point. By considering treatment efficacy and energy consumption, the significance of fiber saturated point was highlighted as the optimal water states for steam explosion of corn stalk. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, An; Gomes, Thiago C.F.
2016-01-01
The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls. PMID:27325663
The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries
NASA Astrophysics Data System (ADS)
Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof
Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.
The potential in bioethanol production from waste fiber sludges in pulp mill-based biorefineries.
Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J; Nilvebrant, Nils-Olof
2007-04-01
Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.
Characterization of Thick Glass Reinforced Composites
1992-07-01
24 ounces per square yard. The matrices were different polyester resin systems from American Cyanamid and Owens Corning . Specimen thicknesses ranged...fab- ricated similar size plates using the American Cyanamid resin. The Owens Corning plates con- tained 53% volume fraction fiber while the American...thicknesses for the Owens Corning and four for the American Cyanamid. Specimens were loaded in three point bending at a displacement rate that was changed
Gutierrez, N A; Serão, N V L; Kerr, B J; Zijlstra, R T; Patience, J F
2014-10-01
An experiment was conducted to determine a best fitting dietary fiber (DF) component to estimate the effect of DF concentration on the digestibility of energy, DF, and AA and energy value of 9 corn coproducts: corn bran (37.0% total nonstarch polysaccharides [NSP]); corn bran with solubles (17.1% NSP); cooked corn distillers dried grains with solubles (DDGS; 20.4% NSP); reduced oil DDGS (25.0% NSP); uncooked DDGS (22.0% NSP); high protein distillers dried grains (21.9% NSP); dehulled, degermed corn (1.1% NSP); corn germ meal (44.4% NSP); and corn gluten meal (4.9% NSP). A total of 20 growing pigs (initial BW: 25.9 ± 2.5 kg) were fitted with a T-cannula in the distal ileum and allotted to 10 dietary treatment groups in a 4-period incomplete block design with 8 observations per treatment. Treatments included a corn-soybean meal-based basal diet and 9 diets obtained by mixing 70% of the basal diet with 30% of the test ingredient. In tested ingredients, 11 DF components were determined: 1) ADF, 2) NDF, 3) total dietary fiber, 4) hemicellulose, 5) total NSP, 6) NSP arabinose, 7) NSP xylose, 8) NSP mannose, 9) NSP glucose, 10) NSP galactose, and 11) arabinoxylan. The apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of GE, DM, and NDF and the AID of AA of ingredients were measured. A single best fitting DF component was assessed and ranked for each trait, showing that arabinoxylan concentration best explained variance in AID of GE (R(2) = 0.65; cubic, P < 0.01) and DM (R(2) = 0.67; cubic, P < 0.01). The NSP xylose residue best explained variance in ATTD of GE (R(2) = 0.80; cubic, P < 0.01), DM (R(2) = 0.78; cubic, P < 0.01), and NDF (R(2) = 0.63; cubic, P < 0.01); AID of Met (R(2) = 0.40; cubic, P = 0.02), Met + Cys (R(2) = 0.44; cubic, P = 0.04), and Trp (R(2) = 0.11; cubic, P = 0.04); and DE (R(2) = 0.66; linear, P = 0.02) and ME (R(2) = 0.71; cubic, P = 0.01) values. The AID of Lys was not predictable (P > 0.05) from the DF concentration. In conclusion, the arabinoxylan and NSP xylose residue were the DF components that best explained variation due to DF concentration and, with the exception of AID of Lys, can be used to predict the digestibility of energy and DF and the DE and ME values in corn coproducts.
Utilization of corn residues for production of the polysaccharide schizophyllan
USDA-ARS?s Scientific Manuscript database
Abundant corn residues include fiber from wet milling operations and distillers' dried grains from dry grind ethanol plants. Biorefineries of the future will utilize such residues for the production of valuable bioproducts, particularly those traditionally produced from fossil fuels. Schizophyllan...
Directed Biosynthesis of Oriented Crystalline Cellulose for Advanced Composite Fibers
2012-05-03
8 growth rate Table 2. An optimized minimal salts high conductivity growth medium (named 9 Son-Matsuoka- Fructose , SMF) based on the optimized...basis for a high -conductivity medium for Acetobacter that also contained corn steep liquor. List of Figures Figure 1. Scanning electron micrographs of...bacterial cellulose production include corn steep liquor (Matsuoka et al., 1996) apples, beer wort (Brown, 1886; Herrmann, 1928), corn syrup , kale (black
USDA-ARS?s Scientific Manuscript database
Three experiments were conducted determine the effect of narasin on growth performance, and on GE and nutrient digestibility in nursery, grower, and finishing pigs fed either a corn-soybean (CSBM) diet or a CSBM diet supplemented with distillers dried grains with solubles (DDGS), in combination with...
Improved corn protein based articles
USDA-ARS?s Scientific Manuscript database
Developing higher value uses for zein (corn protein), a potential major co-product of the bio-ethanol industry, will improve the economics of this business. Historically, zein was predominantly used in the textile fiber industry. Unfortunately the techniques used at that time to modify the zein cann...
Effect of Water Immersion on Fiber/Matrix Adhesion
1993-01-01
ABBREVIATIONS 0C Degrees Centigrade KSI Thousand Pounds Per Square Inch MSI Million Pounds Per Square Inch OCF Owens Corning Fiberglas PEEK...A209 Dr. David Hartman Gaithersburg, MD 20899 Owens - Corning Fiberglas Corp. Technical Center Dr. Forrest Sloan 2790 Columbus Road, Rt. 16 Allied
Two-stage dilute acid prehydrolysis of biomass
Grohmann, Karel; Torget, Robert W.
1992-01-01
A two-stage dilute acid prehydrolysis process on xylan containing hemicellulose in biomass is effected by: treating feedstock of hemicellulosic material comprising xylan that is slow hydrolyzable and xylan that is fast hydrolyzable under predetermined low temperature conditions with a dilute acid for a residence time sufficient to hydrolyze the fast hydrolyzable xylan to xylose; removing said xylose from said fast hydrolyzable xylan and leaving a residue; and treating said residue having a slow hydrolyzable xylan with a dilute acid under predetermined high temperature conditions for a residence time required to hydrolyze said slow hydrolyzable xylan to xylose.
Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets.
Knudsen, Knud Erik Bach
2014-09-01
The current paper reviews content and variation in fiber and nonstarch polysaccharides (NSP) of common crops used in broiler diets. The cereal grain is a complex structure, and its cell walls (CW) differ in their composition and hence properties. Arabinoxylan (AX), mixed linkage (1→3; 1→4)-β-glucan (β-glucan), cellulose, and the noncarbohydrate component lignin are the predominant polymers in cereals. They occur in different proportions depending on the species and tissue type. Rye, triticale, wheat, corn, and sorghum are all rich in AX, whereas barley and oats contain a high level of β-glucan. The AX from rye, wheat, and triticale and β-glucan from barley and oats are to a large extent soluble, whereas the solubility of AX found in corn and sorghum is lower than the other cereals. The ratio of arabinose to xylose gives a crude indication of the AX structure, which varies between the endosperm, the aleurone and the outer grain layers as well as between the same tissues from different grains. Varietal differences in AX structure of the endosperm are also identified. From the analysis of the released oligomers after hydrolysis with a specific (1→3,1→4)-β-d-glucan hydrolase, it is found that the ratio of trisaccharides (degree of polymerization 3) and tetrasaccharides (degree of polymerization 4) varies depending on the source, being higher in barley than in oats but lower than in wheat. The molecular weight of β-glucan is higher than that of AX, and both polymers contribute to the viscosity of the extract. However, because AX molecules are more resistant to degradation than β-glucan, the use of AX rich grains in broiler diets is usually more problematic than those containing high concentrations of β-glucan. The cereal coproducts (brans and hulls) are concentrated sources of cellulose, lignin, and insoluble AX, but β-glucan can also be present mainly in rye and wheat brans. The CW composition of seeds and grains of protein crops and feedstuffs are different from that of cereals. The main CW polymers are pectic substances (homogalacturonan, rhamnogalacturonan type I and II, xylogalacturonan, and arabinogalactans type I and II), xyloglucans, and cellulose, but there are significant differences in the composition of the parenchymatous (cotyledon) tissues and that of the hulls. In the hulls, cellulose is the predominant polysaccharide, followed by acidic xylans and pectic substances. The implications of the heterogeneous CW for the action of exogenous enzymes are discussed. © 2014 Poultry Science Association Inc.
González-Vega, J C; Walk, C L; Stein, H H
2015-10-01
Two experiments were conducted to determine the effects of phytate, phytase, fiber, and soybean oil on apparent total tract digestibility (ATTD) and standardized total tract digestibility (STTD) of Ca and on ATTD of P in fish meal fed to growing pigs. In Exp. 1, 40 growing pigs (initial average BW: 19.16 ± 2.04 kg) were randomly allotted to 1 of 5 diets with 8 pigs per treatment and placed in metabolism crates. Four diets were used in a 2 ´ 2 factorial design with 2 levels of phytate (0 or 0.7%) and 2 levels of microbial phytase (0 or 500 phytase units/kg). The diet containing no phytate was based on sucrose, cornstarch, fish meal, casein, and soybean oil, and the diet containing 0.7% phytate was based on corn, corn germ, fish meal, casein, and soybean oil. A Ca-free diet was used to determine basal endogenous losses of Ca. Feces were collected from d 6 to 13 after a 5-d adaptation period. Results indicated that the ATTD and STTD of Ca in fish meal and the ATTD of P increased ( < 0.001) if phytase was used and were greater ( < 0.05) in the diets based on corn and corn germ. Experiment 2 was conducted to determine the effects of fiber and soybean oil on the ATTD and STTD of Ca and the ATTD of P in fish meal. Fifty growing pigs (initial average BW: 19.36 ± 0.99 kg) were randomly allotted to 1 of 5 diets with 10 pigs per treatment. Two diets contained sucrose, cornstarch, fish meal, casein, and either 0 or 8% of a synthetic source of fiber. Two additional diets contained fish meal, casein, corn, and either 1 or 7% soybean oil. A Ca-free diet was also used. Pigs were housed individually in metabolism crates and fecal samples were collected. Results indicated that fiber increased ( < 0.001) the ATTD and STTD of Ca and the ATTD of P, but the ATTD and STTD of Ca or the ATTD of P were not affected by soybean oil. In agreement with the results of Exp. 1, the ATTD and STTD of Ca and the ATTD of P in the corn-based diet were greater ( < 0.05) than those in the cornstarch-based diet. In conclusion, phytase and fiber increased the ATTD and STTD of Ca and the ATTD of P in fish meal, but inclusion of soybean oil did not affect digestibility of Ca or P. The observation that values for the ATTD and STTD of Ca and ATTD of P are greater in corn-based diets than in cornstarch-based diets indicates that values for the digestibility of Ca and P obtained in cornstarch-based diets may not always be representative for the digestibility in practical corn-based diets.
Fredin, S M; Akins, M S; Ferraretto, L F; Shaver, R D
2015-01-01
An experiment was conducted to evaluate the effects of corn-based dietary starch content and source of neutral detergent fiber (NDF) on lactation performance, nutrient digestion, bacterial protein flow, and ruminal parameters in lactating dairy cows. Eight ruminally cannulated multiparous Holstein cows averaging 193±11d in milk were randomly assigned to treatments in a replicated 4×4 Latin square design with 21-d periods. Treatment diets were high corn grain (HCG; 38% corn silage, 19% dry ground corn, and 4% soy hulls), high soy hulls (HSH; 38% corn silage, 11% dry ground corn, and 13% soy hulls), high corn silage (HCS; 50% corn silage, 6% dry ground corn, and 4% soy hulls), and low corn silage (LCS; 29% corn silage, 15% corn, and 19% soy hulls). The HCG, HSH, HCS, and LCS diets contained 29, 23, 24, and 22% starch; 27, 32, 30, and 32% total NDF; and 21, 21, 25, and 17% forage NDF (dry matter basis), respectively. Mean dry matter intake and milk yield were unaffected by treatment. Cows fed LCS had reduced milk fat content compared with HSH and HCS. The concentration of milk urea nitrogen was greater for cows fed HCS compared with the other treatments. Total-tract digestion of NDF was reduced for cows fed the HCG diet. Total-tract starch digestion was increased for cows fed the HSH and HCS compared with HCG and LCS diets. Bacterial protein flow was unaffected by treatment. Ruminal ammonia concentration was reduced in cows fed the HCG and LCS diets compared with the HCS diet. Ruminal propionate increased and the acetate:propionate ratio decreased in cows fed the LCS diet compared with the HCS diet. Ruminal pH was greater for cows fed the HCS diet compared with cows fed the LCS diet. Diet digestibility and performance of mid- to late-lactation cows fed reduced-starch diets by partially replacing corn grain with soy hulls or corn silage was similar to or improved compared with cows fed a normal-starch diet. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...
Reducing the heterogeneity of xylan through processing.
Zhang, Wei; Johnson, Amanda M; Barone, Justin R; Renneckar, Scott
2016-10-05
Glycerol thermal processing (GTP) of hardwood biomass at temperatures between 200 and 240°C facilitated stepwise biopolymer fractionation, while limiting significant degradation of the major hemicellulose, glucuronoxylan, into water-extractable oligosaccharides. After GTP pretreatment and sequential water and organic solvent extraction, up to 80% of the initial xylan remained in the pretreated biomass. The majority of the xylan from GTP pretreated and water/solvent extracted biomass was removed using a mild alkali extraction and the composition was compared to xylan directly isolated from untreated hardwood. The precipitated xylan from the neutralized alkaline filtrate was isolated as a water insoluble xylan portion (WIX). The residual xylan dissolved in the neutralized filtrate was precipitated in cold methanol and recovered as the water soluble xylan portion (WSX). Results showed that xylan in WIX was in a polymeric form with a number average degree of polymerization (DP) over 100, whereas the WSX had a much lower average DP of 27 (ca) and contained more substitution. As the processing severity increased during GTP pretreatment, the proportion of WIX increased and the purity of the xylan within the WIX sample reached 84% based on compositional analysis. FT-IR analysis of WIX revealed that xylan isolated after GTP contained peaks related to a reduced carbonyl signal compared to the control. Furthermore, crude WSX contained less xylan with more lignin contamination at severe GTP conditions. The recovery of the xylan in two portions facilitated a preferential purification strategy resulting in WIX with an extremely narrow polydispersity index between 1.1 and 1.25, dependent upon the GTP severity. This study provided insight into fractionating higher molecular weight xylan that may serve value-added applications such as healthcare materials and advanced packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches.
Sporck, Daniele; Reinoso, Felipe A M; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, José C; Ferraz, André; Milagres, Adriane M F
2017-01-01
New biorefinery concepts are necessary to drive industrial use of lignocellulose biomass components. Xylan recovery before enzymatic hydrolysis of the glucan component is a way to add value to the hemicellulose fraction, which can be used in papermaking, pharmaceutical, and food industries. Hemicellulose removal can also facilitate subsequent cellulolytic glucan hydrolysis. Sugarcane bagasse was pretreated with an alkaline-sulfite chemithermomechanical process to facilitate subsequent extraction of xylan by enzymatic or alkaline procedures. Alkaline extraction methods yielded 53% (w/w) xylan recovery. The enzymatic approach provided a limited yield of 22% (w/w) but produced the xylan with the lowest contamination with lignin and glucan components. All extracted xylans presented arabinosyl side groups and absence of acetylation. 2D-NMR data suggested the presence of O -methyl-glucuronic acid and p -coumarates only in enzymatically extracted xylan. Xylans isolated using the enzymatic approach resulted in products with molecular weights (Mw) lower than 6 kDa. Higher Mw values were detected in the alkali-isolated xylans. Alkaline extraction of xylan provided a glucan-enriched solid readily hydrolysable with low cellulase loads, generating hydrolysates with a high glucose/xylose ratio. Hemicellulose removal before enzymatic hydrolysis of the cellulosic fraction proved to be an efficient manner to add value to sugarcane bagasse biorefining. Xylans with varied yield, purity, and structure can be obtained according to the extraction method. Enzymatic extraction procedures produce high-purity xylans at low yield, whereas alkaline extraction methods provided higher xylan yields with more lignin and glucan contamination. When xylan extraction is performed with alkaline methods, the residual glucan-enriched solid seems suitable for glucose production employing low cellulase loadings.
USDA-ARS?s Scientific Manuscript database
Xylan is a barrier to enzymatic hydrolysis of plant cell walls. It is well accepted that the xylan layer needs to be removed to efficiently hydrolyze cellulose and consequently pretreatment conditions are in part optimized for maximal xylan depolymerization or displacement. Xylan consists of a lon...
USDA-ARS?s Scientific Manuscript database
The emulsifying properties of corn fiber gum (CFG), a naturally-occurring polysaccharide protein complex, were improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase. The formation of hetero-crosslinked CFG-BSA conjugate...
Roberts, S A; Xin, H; Kerr, B J; Russell, J R; Bregendahl, K
2007-08-01
Ammonia emission is a major concern for the poultry industry and can be lowered by dietary inclusion of fibrous ingredients and by lowering the dietary CP content. The objectives of this research were to determine the effects of dietary fiber and reduced-CP diets, which may lower NH(3) emission, on egg production and N balance in laying hens. A total of 256 Hy-Line W-36 hens were fed diets with 2 contents of CP (normal and reduced) and 4 fiber treatments in a 2 x 4 factorial arrangement from 23 to 58 wk of age. The fiber treatments included a corn and soybean meal-based control diet and diets formulated with either 10.0% corn dried distillers grains with solubles (DDGS), 7.3% wheat middlings (WM), or 4.8% soybean hulls (SH) added to contribute equal amounts of neutral detergent fiber. The CP contents of the reduced-CP diets were approximately 1 percentage unit lower than that of the normal-CP diets. All diets were formulated on a digestible amino acid basis to be isoenergetic. There were no effects (P > 0.05) of including corn DDGS, WM, or SH in the diet on egg production, egg weight, egg mass, yolk color, feed consumption, feed utilization, or BW gain. Although the corn DDGS and WM diets resulted in an increase (P < 0.001) in N consumption, N excretion was not affected (P > 0.10) compared with hens fed the control diet. The reduced-CP diets did not affect egg weight, feed consumption, or BW gain (P > 0.05); however, egg production, egg mass, feed utilization, N consumption, and N excretion were lower than that from the hens fed the normal-CP diets (P < 0.05). The results of this study show that the diets containing 10% corn DDGS, 7% WM, or 5% SH did not affect egg production or N excretion. However, the 1% lower CP diets caused a lower egg production and lower N excretion.
A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas L. Karlen; Stuart J. Birell; J. Richard Hess
Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubblemore » height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner.« less
NASA Astrophysics Data System (ADS)
Whitacre, Ryan John
In the field of renewable materials, natural fiber composites demonstrate the capacity to be a viable structural material. When normalized by density, flax fiber mechanical properties are competitive with E-glass fibers. However, the hydrophilic nature of flax fibers reduces the interfacial bond strength with polymer thermosets, limiting composite mechanical properties. Corn zein protein was selected as a natural bio-based coupling agent because of its combination of hydrophobic and hydrophilic properties. Zein was deposited on the surface of flax, which was then processed into unidirectional composite. The mechanical properties of zein treated samples where measured and compared against commonly utilized synthetic treatments sodium hydroxide and silane which incorporate harsh chemicals. Fourier transform infrared spectroscopy, chemical analysis, and scanning electron microscopy were also used to determine analyze zein treatments. Results demonstrate the environmentally friendly zein treatment successfully increased tensile strength 8%, flexural strength 17%, and shear strength 30% compared to untreated samples.
Wood plastic composites from agro-waste materials: Analysis of mechanical properties.
Nourbakhsh, Amir; Ashori, Alireza
2010-04-01
This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties. Copyright 2009 Elsevier Ltd. All rights reserved.
Lascano, G J; Heinrichs, A J
2011-06-01
The objective of this experiment was to assess the effects of manipulating dietary fiber by replacing corn silage (CS) with lower quality forage as corn stover (CST) when used in high concentrate (HC) and low concentrate (LC) diets for precision-fed dairy heifers. Eight Holstein heifers (335.6 ± 7.41 kg of body weight) were randomly assigned to 2 levels of concentrate: HC (20% forage) and LC (80% forage), and to a forage type sequence [0% of forage as corn stover (CST), 100% corn silage (CS); 20% CST, 80% CS; 40% CST, 60% CS; and 60% CST, 40% CS] within concentrate level administered according to a split-plot, 4 × 4 Latin square design (21-d periods). Heifers fed HC had higher apparent total-tract dry matter digestibility (DMD). Increasing the fiber level by increasing the amount of CST in the diet resulted in a linear decrease of DMD and organic matter digestibility. Heifers fed LC diets had higher neutral detergent fiber (NDF) digestibility and tended to have lower acid detergent fiber (ADF) digestibility than those fed HC diets. Substituting CS with 20% CST resulted in the highest NDF and ADF digestibilities. Digestibility of N was not different, but N retention increased for HC and decreased quadratically for LC diets. Heifers fed HC diets decreased fecal output, and CST linearly increased these parameters. Urine volume tended to be higher for HC-fed heifers, and increasing dietary fiber through CST inclusion tended to decrease urine output. This shift in water excretion resulted in similar total manure output. Total purine derivative excretion did not differ between treatments, but interacted with CST addition, resulting in a linear increase in microbial protein flow to the duodenum in HC-fed heifers and in a linear decrease in LC diets as CST increased. In conclusion, increasing dietary fiber through CST decreased DMD and organic matter digestibility linearly, whereas NDF and ADF digestibility were maximized when 20% CST was added to HC and LC diets. Microbial protein synthesis increased and decreased linearly with CST addition in HC and LC diets, respectively. Retention of N increased and decreased quadratically with CST addition in HC and LC diets, respectively. Total manure excretion was not different between HC or LC diets. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Xylan is a barrier to enzymatic hydrolysis of plant cell walls. It is well accepted that the xylan layer needs to be removed to efficiently hydrolyze cellulose and consequently pretreatment conditions are in part optimized for maximal xylan depolymerization or displacement. Xylan consists of a long ...
USDA-ARS?s Scientific Manuscript database
Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, ammonia fiber expansion: AFEX and extractive ammonia: EA). The methodology for large-scale separation of ...
DEMONSTRATION OF A CLOSED LOOP REUSE SYSTEM IN A FIBERGLAS TEXTILE PLANT
The report describes work done toward providing a totally recycled water system for Owens-Corning's textile fiber manufacturing plant at Anderson, SC. (The work was based on pre-1968 pilot plant work by Owens-Corning that resulted in development of totally recycled industrial was...
Implementation of a Prototype Registration and Administrative System for Field Use.
1981-10-20
Chemical U.S.A. (4), Owens - Corning Fiber- glass Corporation (5), and the Plastics Business Operations of the General Electric Company (6), it was concluded...561. 5. Lichtenberg, F.W., & Devitt, G.E. The medical data base system of Owens - Corning Fiberglass Corporation. American Industrial Hygiene
Low Efficiency Control Measures for Jet Engine Test Cells
1978-09-01
replacement cost was based upon filter cost data ob- tained from Mr. Roland Langlois, Owens - Corning Fiberglas Inc., Technical Cen- ter, Granville, Ohio. 3...Torgeson’s theory was used to calculate the collection efficiency of three commercial glass fiber filter media samples obtained from Owens - Corning Fiberglas
Maillard reaction products from chitosan-xylan ionic liquid solution.
Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang
2013-10-15
A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Xue-Qin; Chen, Ming-Jie; Liu, Chuan-Fu; Sun, Run-Cang
2014-01-22
The preparation of xylan-graft-poly(ε-caprolactone) (xylan-g-PCL) copolymers was investigated by homogeneous ring-opening polymerization (ROP) in a dual-component system containing Lewis base LiCl and strong polar aprotic solvent dimethyl sulfoxide (DMSO). DMSO/LiCl acted as solvent, base, and catalyst for the ROP reaction. The effects of the parameters, including the reaction temperature, molar ratio of ε-caprolactone (ε-CL) to anhydroxylose units (AXU) in xylan, and reaction time, on the degree of substitution (DS) and weight percent of PCL side chain (WPCL) were investigated. The results showed that xylan-g-PCL copolymers with low DS in the range of 0.03-0.39 were obtained under the given conditions. The Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance (NMR), (13)C NMR, (1)H-(1)H correlation spectroscopy (COSY), and (1)H-(13)C correlation two-dimensional (2D) NMR [heteronuclear single-quantum coherence (HSQC)] characterization provided more evidence of the attachment of side chains onto xylan. Only one ε-CL was confirmed to be attached onto xylan with each side chain. Integration of resonances assigned to the substituted C2 and C3 in the HSQC spectrum also indicated 69.23 and 30.77% of PCL side chains attached to AXU at C3 and C2 positions, respectively. Although the attachment of PCL onto xylan led to the decreased thermal stability of xylan, the loss of unrecovered xylan fractions with low molecular weight because of the high solubility of xylan in DMSO/LiCl resulted in the increased thermal stability of the samples. This kind of xylan derivative has potential application in environmentally friendly and biodegradable materials considering the good biodegradability of xylan and PCL.
Busse-Wicher, Marta; Gomes, Thiago C F; Tryfona, Theodora; Nikolovski, Nino; Stott, Katherine; Grantham, Nicholas J; Bolam, David N; Skaf, Munir S; Dupree, Paul
2014-08-01
The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy. © 2014 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan
Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. Lastly, the differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less
An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14
Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan; ...
2015-06-04
Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. Lastly, the differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less
Flammability Characteristics of Fiber Reinforced Composite Materials
1990-08-01
Thick Vertical Sheet of Kevlar/Phenolio-PVB ( Owens - Corning $pall Liner), MTL A4) 3 12 Chemical Heat Release Rate During Fire Propagation for a 40 0.61 m...Long, 0.10 m Wide and 3 mm Thick Vertical Sheet of S-2/Phenolic ( Owens - Corning ), MTL #5) 13 Chemical Heac Release Rate During Fire Propagation for 41...Materials T eohnology Laboratory (AKTL) by Owens - Corning Corporation; 3. NTL #3: S-2 fiberglabs/polyestel’, flame retardant, prepreg, formulated for
Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M Cata
2014-03-05
The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.
Del Río, José C; Prinsen, Pepijn; Cadena, Edith M; Martínez, Ángel T; Gutiérrez, Ana; Rencoret, Jorge
2016-05-01
Two types of lignins occurred in different lignin-carbohydrate fractions, a lignin enriched in syringyl units, less condensed, preferentially associated with xylans, and a lignin with more guaiacyl units, more condensed, associated with glucans. Lignin-carbohydrate complexes (LCC) were isolated from the fibers of sisal (Agave sisalana) and abaca (Musa textilis) according to a plant biomass fractionation procedure recently developed and which was termed as "universally" applicable to any type of lignocellulosic material. Two LCC fractions, namely glucan-lignin (GL) and xylan-lignin (XL), were isolated and differed in the content and composition of carbohydrates and lignin. In both cases, GL fractions were enriched in glucans and comparatively depleted in lignin, whereas XL fractions were depleted in glucans, but enriched in xylans and lignin. Analysis by two-dimensional Nuclear Magnetic Resonance (2D-NMR) and Derivatization Followed by Reductive Cleavage (DFRC) indicated that the XL fractions were enriched in syringyl (S)-lignin units and β-O-4' alkyl-aryl ether linkages, whereas GL fractions have more guaiacyl (G)-lignin units and less β-O-4' alkyl-aryl ether linkages per lignin unit. The data suggest that the structural characteristics of the lignin polymers are not homogeneously distributed within the same plant and that two different lignin polymers with different composition and structure might be present. The analyses also suggested that acetates from hemicelluloses and the acyl groups (acetates and p-coumarates) attached to the γ-OH of the lignin side chains were extensively hydrolyzed and removed during the LCC fractionation process. Therefore, caution must be paid when using this fractionation approach for the structural characterization of plants with acylated hemicelluloses and lignins. Finally, several chemical linkages (phenylglycosides and benzyl ethers) could be observed to occur between lignin and xylans in these plants.
Busse-Wicher, Marta; Gomes, Thiago C F; Tryfona, Theodora; Nikolovski, Nino; Stott, Katherine; Grantham, Nicholas J; Bolam, David N; Skaf, Munir S; Dupree, Paul
2014-01-01
The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan–cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy. PMID:24889696
NASA Astrophysics Data System (ADS)
Crowe, Jacob Dillon
Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study, alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.
Pereira, Caroline S; Silveira, Rodrigo L; Dupree, Paul; Skaf, Munir S
2017-04-10
Lignocellulosic biomass is mainly constituted by cellulose, hemicellulose, and lignin and represents an important resource for the sustainable production of biofuels and green chemistry materials. Xylans, a common hemicellulose, interact with cellulose and often exhibit various side chain substitutions including acetate, (4-O-methyl) glucuronic acid, and arabinose. Recent studies have shown that the distribution of xylan substitutions is not random, but follows patterns that are dependent on the plant taxonomic family and cell wall type. Here, we use molecular dynamics simulations to investigate the role of substitutions on xylan interactions with the hydrophilic cellulose face, using the recently discovered xylan decoration pattern of the conifer gymnosperms as a model. The results show that α-1,2-linked substitutions stabilize the binding of single xylan chains independently of the nature of the substitution and that Ca 2+ ions can mediate cross-links between glucuronic acid substitutions of two neighboring xylan chains, thus stabilizing binding. At high temperature, xylans move from the hydrophilic to the hydrophobic cellulose surface and are also stabilized by Ca 2+ cross-links. Our results help to explain the role of substitutions on xylan-cellulose interactions, and improve our understanding of the plant cell wall architecture and the fundamentals of biomass pretreatments.
Dry In-Line Thermoplastic Matrix Impregnation. Phase 1
1993-04-01
grades supplied by Hoechst Celanese under their designations Fortran 0203B6 and 0205B4. Fibers tested included Owens - Corning S Glass with an epoxy...it was found that it had a much greater tendency to shred and jam when fed through the tensioning pin system than did the Owens Corning s glass
Tuncer, M; Ball, A S
2003-01-01
To determine and quantify the products from the degradation of xylan by a range of purified xylan-degrading enzymes, endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase produced extracellularly by Thermomonospora fusca BD25. The amounts of reducing sugars released from oat-spelt xylan by the actions of endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase were equal to 28.1, 4.6 and 7% hydrolysis (as xylose equivalents) of the substrate used, respectively. However, addition of beta-xylosidase and alpha-l-arabinofuranosidase preparation to endoxylanase significantly enhanced (70 and 20% respectively) the action of endoxylanase on the substrate. The combination of purified endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase preparations produced a greater sugar yield (58.6% hydrolysis) and enhanced the total reducing sugar yield by around 50%. The main xylooligosaccharide products released using the action of endoxylanase alone on oat-spelt xylan were identified as xylobiose and xylopentose. alpha-l-Arabinofuranosidase was able to release arabinose and xylobiose from oat-spelt xylan. In the presence of all three purified enzymes the hydrolysis products of oat-spelt xylan were mainly xylose, arabinose and substituted xylotetrose with lesser amount of substituted xylotriose. The addition of the beta-xylosidase and alpha-l-arabinofuranosidase enzymes to purified xylanases more than doubled the degradation of xylan from 28 to 58% of the total substrate with xylose and arabinose being the major sugars produced. The results highlight the role of xylan de-branching enzymes in the degradation of xylan and suggest that the use of enzyme cocktails may significantly improve the hydrolysis of xylan in industrial processes.
Single Mode Optical Waveguide Design Investigation.
1981-03-30
ADA09 979 CORNING GLASS WORKS NY F/6 20/6 SINGLE NOOK OPTICAL WAVEGUIOC DESIGN INVESTIGATION. (U) MA 81 V A BHAGAVAY~l-A, R A WESTWIG. D 6 KECK...Bhagavatula R. A. Westwig D. B. Keck Corning Glass Wqrks Corning, N.Y. March 30, 1981 Approved L r oc e 81 415 021 1i. Summary 1.1 Lateral and angular offset...sensitivity test equipment has been designed and built. 1.2 Measurements of lateral offset sensitivity have been made on several fibers to determine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
Battelle`s electroacoustic dewatering (EAD) process improves the performance of mechanical dewatering processes for several food products (such as corn fiber) by superimposing electric and ultrasonic fields. EAD has the potential to save 0.027 to 0.035 quad/yr energy by 1995 in the food processing industry, which consumed 0.15 to 0.18 quad in 1986. This report covers Phase III for demonstrating the EAD prototype on corn wet milling products (corn fiber and gluten); only Task 1 (prototype preparation and planning) was completed. EAD performance was examined in the laboratory; availability of a test site was examined. The single-roll, postdewatering EAD belt pressmore » prototype can accept material predewatered by a screw press, centrifuge, or any other mechanical dewatering device. The two-belt system, utilizing a copper-polymer cathode belt, performed as well as the three-belt system used in Phase II.« less
Duguid, K B; Montross, M D; Radtke, C W; Crofcheck, C L; Wendt, L M; Shearer, S A
2009-11-01
Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.
Xylose induces cellulase production in Thermoascus aurantiacus.
Schuerg, Timo; Prahl, Jan-Philip; Gabriel, Raphael; Harth, Simon; Tachea, Firehiwot; Chen, Chyi-Shin; Miller, Matthew; Masson, Fabrice; He, Qian; Brown, Sarah; Mirshiaghi, Mona; Liang, Ling; Tom, Lauren M; Tanjore, Deepti; Sun, Ning; Pray, Todd R; Singer, Steven W
2017-01-01
Lignocellulosic biomass is an important resource for renewable production of biofuels and bioproducts. Enzymes that deconstruct this biomass are critical for the viability of biomass-based biofuel production processes. Current commercial enzyme mixtures have limited thermotolerance. Thermophilic fungi may provide enzyme mixtures with greater thermal stability leading to more robust processes. Understanding the induction of biomass-deconstructing enzymes in thermophilic fungi will provide the foundation for strategies to construct hyper-production strains. Induction of cellulases using xylan was demonstrated during cultivation of the thermophilic fungus Thermoascus aurantiacus . Simulated fed-batch conditions with xylose induced comparable levels of cellulases. These fed-batch conditions were adapted to produce enzymes in 2 and 19 L bioreactors using xylose and xylose-rich hydrolysate from dilute acid pretreatment of corn stover. Enzymes from T. aurantiacus that were produced in the xylose-fed bioreactor demonstrated comparable performance in the saccharification of deacetylated, dilute acid-pretreated corn stover when compared to a commercial enzyme mixture at 50 °C. The T. aurantiacus enzymes retained this activity at of 60 °C while the commercial enzyme mixture was largely inactivated. Xylose induces both cellulase and xylanase production in T. aurantiacus and was used to produce enzymes at up to the 19 L bioreactor scale. The demonstration of induction by xylose-rich hydrolysate and saccharification of deacetylated, dilute acid-pretreated corn stover suggests a scenario to couple biomass pretreatment with onsite enzyme production in a biorefinery. This work further demonstrates the potential for T. aurantiacus as a thermophilic platform for cellulase development.
Johnson, L; Harrison, J H; Hunt, C; Shinners, K; Doggett, C G; Sapienza, D
1999-12-01
Stage of maturity at harvest and mechanical processing affect the nutritive value of corn silage. The change in nutritive value of corn silage as maturity advances can be measured by animal digestion and macro in situ degradation studies among other methods. Predictive equations using climatic data, vitreousness of corn grain in corn silage, starch reactivity, gelatinization enthalpy, dry matter (DM) of corn grain in corn silage, and DM of corn silage can be used to estimate starch digestibility of corn silage. Whole plant corn silage can be mechanically processed either pre- or postensiling with a kernel processor mounted on a forage harvester, a recutter screen on a forage harvester, or a stationary roller mill. Mechanical processing of corn silage can improve ensiling characteristics, reduce DM losses during ensiling, and improve starch and fiber digestion as a result of fracturing the corn kernels and crushing and shearing the stover and cobs. Improvements in milk production have ranged from 0.2 to 2.0 kg/d when cows were fed mechanically processed corn silage. A consistent improvement in milk protein yield has also been observed when mechanically processed corn silage has been fed. With the advent of mechanical processors, alternative strategies are evident for corn silage management, such as a longer harvest window.
Shin, J H; Wang, D; Kim, S C; Adesogan, A T; Staples, C R
2012-07-01
The objective was to determine whether crude glycerin could partially replace concentrate ingredients in corn silage- or cottonseed hull-based diets formulated to support minimal milk fat production without reducing milk production. Multiparous, lactating Holstein cows (n=24; 116 ± 13d in milk) were assigned to dietary treatments arranged in a 2 × 3 factorial design; namely, 2 dietary roughage sources (cottonseed hulls or corn silage) and 3 dietary concentrations of glycerin [0, 5, or 10% on a dry matter (DM) basis]. Four different cows received each dietary treatment in each of 3 periods such that each diet was evaluated using 12 cows. Crude glycerin, produced using soybean oil, contained 12% water, 5% oil, 6.8% sodium chloride, and 0.4% methanol. Glycerin partially replaced ground corn, corn gluten feed, and citrus pulp. Diets of minimum fiber concentrations were fed to lactating dairy cows and resulted in low concentrations of milk fat (averaging 3.12% for cows fed diets without glycerin). The effects of glycerin on cow performance and ruminal measurements were the same for both dietary roughage sources with the exception of feed efficiency. Replacing concentrate with crude glycerin at 5% of dietary DM increased DM intake without increasing milk yield. Concentration and yield of milk fat were reduced when glycerin was fed at 10% of dietary DM. This was accompanied by a 30% reduction in apparent total-tract digestion of dietary neutral detergent fiber. Crude glycerin affected the microbial population in the rumen as evidenced by increased molar proportions of propionic, butyric, and valeric acids and decreased molar proportions of acetic acid. Efficiency of N utilization was improved as evidenced by lower concentrations of blood urea nitrogen and ruminal ammonia-N. Cows fed cottonseed hull-based diets consumed 5.3 kg/d more DM but produced only 1.7 kg/d more milk, resulting in reduced efficiency. Increased production of ruminal microbial protein, molar proportion of propionic acid, and passage of ruminal fluid resulted from feeding the cottonseed hull- versus corn silage-based diets, although apparent digestibilities of DM and neutral detergent fiber were reduced. Replacing 5 and 10% of concentrate ingredients with crude glycerin improved efficiency of 4% fat-corrected milk production when corn silage-based diets were fed but decreased it when cottonseed hull-based diets were fed. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Novel polyurethanes from xylan and TDI: Preparation and characterization
USDA-ARS?s Scientific Manuscript database
In this work a novel polyurethane was developed involving xylan and tolylene-2,4-diisocyanate (TDI). Polymer synthesis was achieved via conventional heat or microwave-assisted reaction in dimethylsulfoxide. Because xylan has multiple OH groups on each polymer chain, the TDI/xylan molar ratio neede...
Rayan, Ahmed M; Abbott, Louise C
2015-06-01
Compositional analysis of genetically modified (GM) crops continues to be an important part of the overall evaluation in the safety assessment for these materials. The present study was designed to detect the genetic modifications and investigate the compositional analysis of GM corn containing traits of multiple genes (NK603, MON88017×MON810 and MON89034×MON88017) compared with non-GM corn. Values for most biochemical components assessed for the GM corn samples were similar to those of the non-GM control or were within the literature range. Significant increases were observed in protein, fat, fiber and fatty acids of the GM corn samples. The observed increases may be due to the synergistic effect of new traits introduced into corn varieties. Furthermore, SDS-PAGE analysis showed high similarity among the protein fractions of the investigated corn samples. These data indicate that GM corn samples were compositionally equivalent to, and as nutritious as, non-GM corn. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra-Ramirez, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Donohoe, Bryon S; Vinzant, Todd B; Elander, Richard T; Hames, Bonnie; Thomas, Steve; Warner, Ryan E
2011-12-01
The objective of this work is to investigate the effects of cellulase loading and β-glucosidase supplementation on enzymatic hydrolysis of pretreated Dacotah switchgrass. To assess the difference among various pretreatment methods, the profiles of sugars and intermediates were determined for differently treated substrates. For all pretreatments, 72 h glucan/xylan digestibilities increased sharply with enzyme loading up to 25mg protein/g-glucan, after which the response varied depending on the pretreatment method. For a fixed level of enzyme loading, dilute sulfuric acid (DA), SO(2), and Lime pretreatments exhibited higher digestibility than the soaking in aqueous ammonia (SAA) and ammonia fiber expansion (AFEX). Supplementation of Novozyme-188 to Spezyme-CP improved the 72 h glucan digestibility only for the SAA treated samples. The effect of β-glucosidase supplementation was discernible only at the early phase of hydrolysis where accumulation of cellobiose and oligomers is significant. Addition of β-glucosidase increased the xylan digestibility of alkaline treated samples due to the β-xylosidase activity present in Novozyme-188. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Q; Yang, X; Leonard, S; Archbold, T; Sullivan, J A; Duncan, A M; Ma, W D L; Bizimungu, B; Murphy, A; Htoo, J K; Fan, M Z
2012-12-01
Whereas dietary fibers are well recognized for nutritional management of human health issues, fiber is also known to be one of the dietary factors potentially affecting digestive use of dietary proteins. As a staple food, potato (Solanum tuberosum) may be a significant dietary fiber source. The objective of this study was to examine effects of dietary supplementation of six potato cultivar-genotype samples that differ in soluble fiber content and two conventional fiber components (i.e., cellulose and guar gum) on the apparent ileal AA digestibility in pigs fed a high-fat basal diet. The basal diet was formulated as a zero-fiber negative control (NC) to contain 41.5% poultry meal, 4% casein, 15% animal fat-oil blend, 2.8% sucrose, 31% corn (Zea mays) starch, 0.50% salt, and 0.40% trace mineral-vitamin supplement with fat contributing to 47% of the dietary GE. The two fiber diets were formulated by respectively diluting the basal diet with 10% guar gum and 10% cellulose at the expense of corn starch. Six other test diets were formulated by including 8.5% guar gum and further diluting the basal diet with 25.1% one of the six cultivar-genotype samples of dehydrated potato tuber powder to contain about 10% total dietary fiber at the expense of corn starch. Eighty-one 25-kg barrows were fitted with a simple T-cannula at the distal ileum and fed the diets according to a completely randomized block design with each block lasting 28 d. Compared with the NC, the ileal digestibility of Ala, Gly, and Pro were decreased (P < 0.05) by 10% guar gum whereas the digestibility of Gly was reduced (P < 0.05) by 10% cellulose. The ileal digestibility of several AA was decreased (P < 0.05) by the test potatoes plus 8.5% guar gum compared with the NC. Our results suggest that dietary inclusion of fiber at 10% from guar gum and cellulose and contributed by potatoes may adversely affect digestive use of dietary protein.
Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels
Tobias Köhnke; Thomas Elder; Hans Theliander; Arthur J. Ragauskas
2014-01-01
Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szweda, A.
2001-01-01
The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.
Rodríguez, Luis F; Li, Changying; Khanna, Madhu; Spaulding, Aslihan D; Lin, Tao; Eckhoff, Steven R
2010-07-01
An engineering economic model, which is mass balanced and compositionally driven, was developed to compare the conventional corn dry-grind process and the pre-fractionation process called quick germ-quick fiber (QQ). In this model, documented in a companion article, the distillers dried grains with solubles (DDGS) price was linked with its protein and fiber content as well as with the long-term average relationship with the corn price. The detailed economic analysis showed that the QQ plant retrofitted from conventional dry-grind ethanol plant reduces the manufacturing cost of ethanol by 13.5 cent/gallon and has net present value of nearly $4 million greater than the conventional dry-grind plant at an interest rate of 4% in 15years. Ethanol and feedstock price sensitivity analysis showed that the QQ plant gains more profits when ethanol price increases than conventional dry-grind ethanol plant. An optimistic analysis of the QQ process suggests that the greater value of the modified DDGS would provide greater resistance to fluctuations in corn price for QQ facilities. This model can be used to provide decision support for ethanol producers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Utility of alfalfa stemlage for feeding dairy heifers
USDA-ARS?s Scientific Manuscript database
Dairy heifers are typically offered high-forage diets to control weight gains; however, these forage-based diets often contain significant portions of corn silage or other high-quality forages with low fiber concentrations. Inadequate concentrations of dietary fiber can lead to greater feed and ener...
Application of enzyme-treated corn starches in breakfast cereal coating.
Luckett, Curtis R; Wang, Ya-Jane
2012-08-01
Presently ready-to-eat cereals are coated with high levels of sugar coating to extend the bowl life. Because of health concerns of added sugar, there is a need to identify alternative coating materials. This study was designed to test the efficacy of debranched corn starches with varying amylose contents as a cereal coating. Hylon VII (70% amylose), common, and waxy corn starches were gelatinized and debranched, and then sprayed onto ready-to-eat breakfast cereal flakes. The surface morphology, milk absorption, texture, and digestibility of coated cereals were determined. A starch film with a thickness of 50 to 130 μm was observed with scanning electron microscopy on the surface of the cereals coated with Hylon VII. All starch-coated cereals had a lower milk absorption value than the uncoated and glucose-coated controls. Among starch coatings, common corn starch and Hylon VII resulted in lower milk absorption than did waxy corn starch. After soaking in milk for 3 min, the peak force and work to peak of the cereals coated with corn starches were higher than those of the glucose control and uncoated reference. The cereals coated with Hylon VII were found to have an increase in dietary fiber content. The results suggest that debranched amylose-containing corn starches could extend the bowl-life of ready-to-eat cereals. Currently, many cereals are coated with sugar to keep them from becoming soggy in milk. However, added sugar has been linked to obesity, hyperactivity, and dental caries. This has led to the investigation of alternative coating materials. This study employed the film-forming properties of enzyme-treated corn starch to function as a coating material in breakfast cereal flakes. In addition, the enzyme-treated high amylose corn starch also increased the dietary fiber content of the cereal flakes. © 2012 Institute of Food Technologists®
Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Roth, G W; Hristov, A N
2017-07-01
Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly decreased DM, organic matter, crude protein, and starch digestibility. Cows consuming the oat silage diet had higher milk urea N and urinary urea N concentrations. Milk N efficiency was decreased by the sorghum diet. Diet did not affect enteric methane or carbon dioxide emissions. This study shows that oat silage can partially replace corn silage at 10% of the diet DM with no effect on MY. Brown midrib sorghum silage harvested at the milk stage with <1% starch may decrease DM intake and MY in dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Development and Characterization of a High-Solids Deacetylation Process
Shekiro, III, Joseph; Chen, Xiaowen; Smith, Holly; ...
2016-05-20
Dilute-acid pretreatment has proven to be a robust means of converting herbaceous feedstock to fermentable sugars. However, it also releases acetic acid, a known fermentation inhibitor, from acetyl groups present in the biomass. A mild, dilute alkaline extraction stage was implemented prior to acid pretreatment to separate acetic acid from the hydrolysate sugar stream. This step, termed deacetylation, improved the glucose and xylose yields from enzymatic hydrolysis and ethanol yields from fermentation of the sugars relative to the control experiments using dilute-acid pretreatment of native corn stover without deacetylation. While promising, deacetylation as it was historically practiced is conducted atmore » low solids loadings, and at fixed conditions. Thus, many questions have been left unanswered, including the relationship between sodium hydroxide and solids loading, and acetate and xylan solubilization, as well as the impact of temperature and residence time on the process efficacy. A central composite experiment was designed to evaluate the impact of solids loading, sodium hydroxide loading, reaction time and temperature during deacetylation on the acetate and xylan solubilization of corn stover. Using the ANOVA test, it became apparent that neither of the responses was significantly impacted by the solids loading, while the reaction time was a minor factor - the responses were largely driven by reaction temperature and the sodium hydroxide loading. Based on the results, we successfully demonstrated the ability to transition the low-solids (10 % w/w) deacetylation process to a higher-solids process (30 % w/w) with minimal impact on the ability to extract acetate from biomass. Conditions were selected to minimize xylose loss during deacetylation, while also removing 70 % of acetyl groups. The impact of selected conditions on the enzymatic hydrolysis and fermentation was further investigated. In conclusion, evaluation of the whole-process impact demonstrated that despite the upfront reduction in carbohydrate loss during deacetylation, the overall process sugar yields were depressed by the high-solids, low alkali process relative to the historical control. Consequently, ethanol titers were reduced, though strong fermentation performance was still observed, indicating that 70 % acetate removal is sufficient to depress acetic acid concentrations to a level that does not substantially inhibit ethanol fermentation by rZymomo nas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekiro, III, Joseph; Chen, Xiaowen; Smith, Holly
Dilute-acid pretreatment has proven to be a robust means of converting herbaceous feedstock to fermentable sugars. However, it also releases acetic acid, a known fermentation inhibitor, from acetyl groups present in the biomass. A mild, dilute alkaline extraction stage was implemented prior to acid pretreatment to separate acetic acid from the hydrolysate sugar stream. This step, termed deacetylation, improved the glucose and xylose yields from enzymatic hydrolysis and ethanol yields from fermentation of the sugars relative to the control experiments using dilute-acid pretreatment of native corn stover without deacetylation. While promising, deacetylation as it was historically practiced is conducted atmore » low solids loadings, and at fixed conditions. Thus, many questions have been left unanswered, including the relationship between sodium hydroxide and solids loading, and acetate and xylan solubilization, as well as the impact of temperature and residence time on the process efficacy. A central composite experiment was designed to evaluate the impact of solids loading, sodium hydroxide loading, reaction time and temperature during deacetylation on the acetate and xylan solubilization of corn stover. Using the ANOVA test, it became apparent that neither of the responses was significantly impacted by the solids loading, while the reaction time was a minor factor - the responses were largely driven by reaction temperature and the sodium hydroxide loading. Based on the results, we successfully demonstrated the ability to transition the low-solids (10 % w/w) deacetylation process to a higher-solids process (30 % w/w) with minimal impact on the ability to extract acetate from biomass. Conditions were selected to minimize xylose loss during deacetylation, while also removing 70 % of acetyl groups. The impact of selected conditions on the enzymatic hydrolysis and fermentation was further investigated. In conclusion, evaluation of the whole-process impact demonstrated that despite the upfront reduction in carbohydrate loss during deacetylation, the overall process sugar yields were depressed by the high-solids, low alkali process relative to the historical control. Consequently, ethanol titers were reduced, though strong fermentation performance was still observed, indicating that 70 % acetate removal is sufficient to depress acetic acid concentrations to a level that does not substantially inhibit ethanol fermentation by rZymomo nas.« less
Panasevich, M R; Kerr, K R; Serao, M C Rossoni; de Godoy, M R C; Guérin-Deremaux, L; Lynch, G L; Wils, D; Dowd, S E; Fahey, G C; Swanson, K S; Dilger, R N
2015-05-01
Dietary fermentable fiber is known to benefit intestinal health of companion animals. Soluble corn fiber (SCF) was evaluated for its chemical composition, nitrogen-corrected true ME (TMEn) content, in vitro digestion and fermentation characteristics, and in vivo effects on nutrient digestibility, fecal fermentation end products, and modulation of the fecal microbiome of dogs. Soluble corn fiber contained 78% total dietary fiber, all present as soluble dietary fiber; 56% was low molecular weight soluble fiber (did not precipitate in 95% ethanol). The SCF also contained 26% starch and 8% resistant starch and had a TMEn value of 2.6 kcal/g. Soluble corn fiber was first subjected to in vitro hydrolytic-enzymatic digestion to determine extent of digestibility and then fermented using dog fecal inoculum, with fermentative outcomes measured at 0, 3, 6, 9, and 12 h. Hydrolytic-enzymatic digestion of SCF was only 7%. In vitro fermentation showed increased (P < 0.05) concentrations of short-chain fatty acids through 12 h, with acetate, propionate, and butyrate reaching peak concentrations of 1,803, 926, and 112 μmol/g DM, respectively. Fermentability of SCF was higher (P < 0.05) than for cellulose but lower (P < 0.05) than for pectin. In the in vivo experiment, 10 female dogs (6.4 ± 0.2 yr and 22 ± 2.1 kg) received 5 diets with graded concentrations of SCF (0, 0.5, 0.75, 1.0, or 1.25% [as-is basis]) replacing cellulose in a replicated 5 × 5 Latin square design. Dogs were first acclimated to the experimental diets for 10 d followed by 4 d of total fecal collection. Fresh fecal samples were collected to measure fecal pH and fermentation end products and permit a microbiome analysis. For microbiome analysis, extraction of DNA was followed by amplification of the V4 to V6 variable region of the 16S rRNA gene using barcoded primers. Sequences were classified into taxonomic levels using a nucleotide basic local alignment search tool (BLASTn) against a curated GreenGenes database. Few changes in nutrient digestibility or fecal fermentation end products or stool consistency were observed, and no appreciable modulation of the fecal microbiome occurred. In conclusion, SCF was fermentable in vitro, but higher dietary concentrations may be necessary to elicit potential in vivo responses.
β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs.
de Vries, Sonja; Gerrits, Walter J J; Kabel, Mirjam A; Vasanthan, Thava; Zijlstra, Ruurd T
2016-01-01
Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch) on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose) or corn distillers dried grain with solubles (DDGS; (glucurono)arabinoxylans and cellulose) with or without inclusion of β-glucans (6%) or retrograded tapioca (40%) substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg) were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD) of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction) from rapeseed meal (6%-units, P<0.001), but did not affect non-glucosyl polysaccharides from DDGS. Retrograded tapioca reduced ATTD of non-glucosyl polysaccharides from rapeseed meal and DDGS (>10%-units, P<0.001), indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.
Chang, Yao-Tang; Yen, Chih-Ta; Wu, Yue-Shiun; Cheng, Hsu-Chih
2013-05-16
This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning) and a fiber Bragg grating (FBG) to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously.
Single Mode Optical Waveguide Design Investigation.
1981-07-10
AD-AI04 584 CORNING GLASS WORKS NY F/G 20/6 SINGLE MODE OPTICAL WAVEGUIDE DESIGN INVESTIGATION. (7 N JUL 81 V A BHAGAVATJLA, R A WESTWIG. D B KECK...Contract N00173-8O-C-0563 / V. A./Bhagavatula R. A..Westwig D. B.!Keck Corning Glass Works Corning, New York H> July 1,0, 1981 CL 8m NA Single Mode Optical...Waveguide Design Inve-tigation Progress Report 3 1. Sumpry 1.1 ,A total of six fibers have been fabricated with parameters fitting the design matrix
1990-09-01
Comments MTL-1 SZIPolyester 70/30 E-701 Baseline MTL-2 S2IPdyester’ 70130 Owens - Corning MTL-3 S2/Polyester* 70/30 American-Cyanamide MTL-5 S2IPhenolic...80120 Owens - Corning *Resin formulation is ro rietary t ~ e s i n is 50150 phenofc-FvB. ’ Organic polymers a re one of the major constituents of...SPECTROMETRY OF MTL-2, OWENS - CORNING ; 900°C IN HELIUM Peak No. Identification Carbon Monoxide and Carbon Dioxide Formaldehyde Propene 1.2-Propadiene 1
Lens and cornea lesions of rats fed corn syrup and the protective effects of alpha lipoic acid.
Gunes, Alime; Ozmen, Ozlem; Saygın, Mustafa; Ascı, Halil; Tok, Levent; Tok, Ozlem; Dıncoglu, Dılnur
2016-03-01
To examine the pathological findings that occurred in the lens and cornea and biochemical findings in the lens of rats fed with corn syrup and the protective effects of alpha lipoic acid (ALA). Twenty-four rats were randomly divided into three groups. Group I served as the control group. Group II was used as the study group; the rats were treated with 30% corn sugar solution for 10 weeks. Group III was the treatment group. Corn syrup was given by the oral route to the rats during the study, and ALA (100 mg/kg) was added to the treatment 4 weeks after the study began. At the end of the experiment, central corneal thickness (CCT) was measured in all rats with an ultrasonic pachymeter. Then the right eyes of the rats were enucleated for histopathological examination of the cornea and lens. The left lenses were homogenized for biochemical analyses. The lenses of the rats treated with corn syrup revealed severe damage; many lens fibers appeared swollen and ruptured with large vacuoles near the lens epithelium. In addition, malondialdehyde (MDA) levels, a parameter of oxidative stress, increased but not significantly in Group II; however. ALA treatment decreased MDA levels significantly. Antioxidant enzyme and catalase (CAT) activities were significantly decreased in Group II, and ALA treatment increased these activities; however, the increase was not significant. Changes were observed in the cornea such as epithelial alterations, subepithelial vacuolizations, collagen fibers loss in the stromal layer, interruptions in the subepithelial basement membrane and central corneal thickening. Corn syrup can cause severe damage in rat lenses and corneas. However, ALA ameliorates the effect of corn syrup-related lesions on the cornea and lens.
Properties of Organic Matrix Short Fiber Composites
1982-02-01
reinforced SMC composites ( Owens Corning Fiberglas System) ............... ........................ ... 37 4 Schematic of process used to manufacture XMC...71 Vi F, viii. TLST OF TABLES TABLEPAE 1 Material formulations and densitius of SMC materials (PPG-PPG Industries, OFC- Owens Corning Fiberglas) (refs...Composite Materials, 14 (April 1980) , 142-154. 16 ,. Table 1. Material formulations and densities of SMC materials. (PPG-PPG Industries, OFC- Owens
Lynch, J P; Baah, J; Beauchemin, K A
2015-02-01
The aim of this study was to determine the effects of the use of a fibrolytic enzyme product, applied at ensiling either alone or in combination with a ferulic acid esterase-producing bacterial additive, on the chemical composition, conservation characteristics, and in vitro degradability of corn silage harvested at either conventional or high cutting height. Triplicate samples of corn were harvested to leave stubble of either a conventional (15cm; NC) or high (45cm; HC) height above ground. Sub-samples of chopped herbage were ensiled untreated or with a fibrolytic enzyme product containing xylanases and cellulases applied either alone (ENZ) or in combination with a ferulic acid esterase-producing silage inoculant (ENZ+FAEI). The fibrolytic enzyme treatment was applied at 2mL of enzyme product/kg of herbage dry matter (DM), and the inoculant was applied at 1.3×10(5) cfu/g of fresh herbage. Samples were packed into laboratory-scale silos, stored for 7, 28, or 70 d, and analyzed for fermentation characteristics, and samples ensiled for 70 d were also analyzed for DM losses, chemical composition, and in vitro ruminal degradability. After 70 d of ensiling, the fermentation characteristics of corn silages were generally unaffected by cutting height, whereas the neutral detergent fiber, acid detergent fiber, and ash concentrations were lower and the starch concentration greater for silages made with crops harvested at HC compared with NC. After 70 d of ensiling, the acetic acid, ethanol concentrations, and the number of yeasts were greater, and the pH and neutral detergent fiber concentrations were lower, in silages produced using ENZ or ENZ+FAEI than the untreated silages, whereas ENZ+FAEI silages also incurred higher DM losses. No effect of additive treatment was observed on in vitro degradability indices after 48h ruminal incubation. The use of a fibrolytic enzyme product, either alone or in combination with a ferulic acid esterase-producing inoculant, at ensiling did not improve corn silage fermentation or its nutritive value and resulted in some negative effects on these parameters. The effects of using a fibrolytic enzyme product at ensiling, either alone or in combination with a ferulic acid esterase-producing inoculant, did not differ between corn harvested at either NC or HC. Silage made from HC had a greater starch content and lower fiber content than NC silage, whereas cutting height did not affect the in vitro digestibility indices. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chen, Haizhen; Ni, Jinping; Chen, Jing; Xue, Wenwen; Wang, Jinggang; Na, Haining; Zhu, Jin
2015-06-05
Water and four small molecular alcohols are respectively used to activate corn cellulose (CN cellulose) with the aim to improve the dissolvability in DMAc/LiCl. Among all these activated agents, monohydric alcohols are found to produce the optimal effect of activation in the whole process including of activating, dissolving, and electrospinning of CN cellulose. Meanwhile, well distributed fibers with the diameter of 500nm-2μm are fabricated in electrospinning. Understanding the activation effect of monohydric alcohols with water and polyhydric alcohols, the most effective activated agent is ascertained with the characteristics of small molecular size, low viscosity, and single functionality. This work is definitely initiated to understand the critical principle of CN cellulose in dissolving. Accordingly, a feasible methodology is also established to prepare ultrafine cellulose fibers with good morphology in electrospinning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Morais, Eduarda S; Mendonça, Patrícia V; Coelho, Jorge F J; Freire, Mara G; Freire, Carmen S R; Coutinho, João A P; Silvestre, Armando J D
2018-02-22
This work contributes to the development of integrated lignocellulosic-based biorefineries by the pioneering exploitation of hardwood xylans by solubilization and extraction in deep eutectic solvents (DES). DES formed by choline chloride and urea or acetic acid were initially evaluated as solvents for commercial xylan as a model compound. The effects of temperature, molar ratio, and concentration of the DES aqueous solutions were evaluated and optimized by using a response surface methodology. The results obtained demonstrated the potential of these solvents, with 328.23 g L -1 of xylan solubilization using 66.7 wt % DES in water at 80 °C. Furthermore, xylans could be recovered by precipitation from the DES aqueous media in yields above 90 %. The detailed characterization of the xylans recovered after solubilization in aqueous DES demonstrated that 4-O-methyl groups were eliminated from the 4-O-methylglucuronic acids moieties and uronic acids (15 %) were cleaved from the xylan backbone during this process. The similar M w values of both pristine and recovered xylans confirmed the success of the reported procedure. DES recovery in four additional extraction cycles was also demonstrated. Finally, the successful extraction of xylans from Eucalyptus globulus wood by using aqueous solutions of DES was demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jin, Ying; Hu, Zhenhu; Wen, Zhiyou
2009-08-01
Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively.
Sophorolipid production from lignocellulosic biomass feedstocks
NASA Astrophysics Data System (ADS)
Samad, Abdul
The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed, the yield of SLs was 0.55 g/g carbon (sugars plus oil) for cultures with bagasse hydrolysates. Further, SL production was investigated using sweet sorghum bagasse and corn stover hydrolysates derived from different pretreatment conditions. For the former and latter sugar sources, yellow grease or soybean oil was supplemented at different doses to enhance sophorolipid yield. 14-day batch fermentation on bagasse hydrolysates with 10, 40 and 60 g/L of yellow grease had cell densities of 5.7 g/L, 6.4 g/L and 7.8 g/L, respectively. The study also revealed that the yield of SLs on bagasse hydrolysate decreased from 0.67 to 0.61 and to 0.44 g/g carbon when yellow grease was dosed at 10, 40 and 60 g/L. With aforementioned increasing yellow grease concentration, the residual oil left after 14 days was recorded as 3.2 g/L, 8.5 g/L and 19.9 g/L. For similar experimental conditions, the cell densities observed for corn stover hydrolysate combined with soybean oil at 10, 20 and 40 g/L concentration were 6.1 g/L, 5.9 g/L, and 5.4 g/L respectively. Also, in the same order of oil dose supplemented, the residual oil recovered after 14-day was 8.5 g/L, 8.9 g/L, and 26.9 g/L. Corn stover hydrolysate mixed with the 10, 20 and 40 g/L soybean oil, the SL yield was 0.19, 0.11 and 0.09 g/g carbon. Overall, both hydrolysates supported cell growth and sophorolipid production. The results from this research show that hydrolysates derived from the different lignocellulosic biomass feedstocks can be utilized by C. bombicola to achieve substantial yields of SLs. Based upon the results revealed by several batch-stage experiments, it can be stated that there is great potential for scaling up and industrial scale production of these high value products in future.
Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk
NASA Astrophysics Data System (ADS)
Banchorndhevakul, Siriwattana
2002-08-01
Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study.
Diamond Shaped Ring Laser Characterization, Package Design and Performance
2006-09-01
fabricated by Binoptics, with the end facets formed by chemically assisted ion beam etching . The lasers, designed for operation at 1550 nm, propagated bi...calculated and Corning OptiFocus™ Lensed fiber was chosen to use for the four fiber outputs. Each fiber placement was actively optimized. Output power...aligned using active feedback and placed with submicron precision. The prototype package design was constrained to modification of a prior
Smith, Micholas Dean; Cai, Charles M.; Cheng, Xiaolin; ...
2018-03-06
Xylose, Xylan, Hemicellulose, CELF, THF, Co-solvent, Pretreatment, Biomass ABSTRACT: Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidences, we reveal how the unique temperature-dependent phase behaviour of water-tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ‘good’ solvents for xylan.more » Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF-water is dependent on the temperature-phase behaviour. At temperatures between 333K and 418K, THF and water become immiscible, and THF is evacuated from the solvation shell of xylan, while above and below this temperature range, THF and water are both present in the polysaccharide’s solvation shell. This suggested that the solubilization of xylan in THF-water may be similar to aqueous-only solutions at temperatures between 333K and 418K and different outside this range. Experimental reactions on beachwood xylan corroborate this hypothesis by demonstrating 2-fold reduction of xylan solubilization in THF-water within a miscible temperature regime (445K) and unchanged solubilization within an immiscible regime (400K). Translating this phase-dependent behaviour to processing of maple wood chips, we demonstrate how the weaker xylan solvation in THF-water under miscible conditions can delay furfural production from xylose, allowing 5-HMF production from cellulose to “catch-up” such that their high yield production from biomass can be synergized in a single pot reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Micholas Dean; Cai, Charles M.; Cheng, Xiaolin
Xylose, Xylan, Hemicellulose, CELF, THF, Co-solvent, Pretreatment, Biomass ABSTRACT: Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidences, we reveal how the unique temperature-dependent phase behaviour of water-tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ‘good’ solvents for xylan.more » Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF-water is dependent on the temperature-phase behaviour. At temperatures between 333K and 418K, THF and water become immiscible, and THF is evacuated from the solvation shell of xylan, while above and below this temperature range, THF and water are both present in the polysaccharide’s solvation shell. This suggested that the solubilization of xylan in THF-water may be similar to aqueous-only solutions at temperatures between 333K and 418K and different outside this range. Experimental reactions on beachwood xylan corroborate this hypothesis by demonstrating 2-fold reduction of xylan solubilization in THF-water within a miscible temperature regime (445K) and unchanged solubilization within an immiscible regime (400K). Translating this phase-dependent behaviour to processing of maple wood chips, we demonstrate how the weaker xylan solvation in THF-water under miscible conditions can delay furfural production from xylose, allowing 5-HMF production from cellulose to “catch-up” such that their high yield production from biomass can be synergized in a single pot reaction.« less
Brown midrib corn silage and Tifton 85 bermudagrass in rations for early-lactation cows.
Castro, J J; Bernard, J K; Mullis, N A; Eggleston, R B
2010-05-01
Forty Holstein cows were used in an 8-wk randomized trial to evaluate the effects of feeding combinations of forages with improved fiber digestibility on performance during early lactation. Treatments were arranged as a 2 x 2 factorial to include silage from normal (NCS) or brown midrib (BMR) corn silage with or without 10% Tifton 85 bermudagrass hay (T85). In a simultaneous digestion trial, degradation and passage kinetics and ruminal fermentation parameters were evaluated in a 4 x 4 Latin square design trial using late-lactation Holstein cows fitted with ruminal cannulas. Dry matter intake (DMI) and neutral detergent fiber (NDF) intake were greater with BMR than with NCS; however, milk yield and composition were similar among corn silage types. Inclusion of T85 reduced milk yield but supported higher milk fat percentage, resulting in similar yields of energy-corrected milk. Blood glucose concentrations were higher for BMR compared with NCS, and inclusion of T85 increased blood urea N concentrations. Treatments did not alter liquid or solid phase passage rates or rumen turnover. Corn silage type did not affect ruminal pH or volatile fatty acid concentrations, but inclusion of T85 increased pH and molar proportion of acetate but decreased butyrate. Molar proportions of propionate were greater for NCS and T85 compared with BMR and T85, resulting in an interaction. Results of this trial indicate that combinations of forages with improved fiber digestibility can be used to support intake and performance of cows during early lactation. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie
2011-01-01
The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin
Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less
Biochemical characterization of rice xylan O-acetyltransferases.
Zhong, Ruiqin; Cui, Dongtao; Dasher, Robert L; Ye, Zheng-Hua
2018-06-01
Rice xylan is predominantly monoacetylated at O-2 and O-3, and 14 rice DUF231 proteins were demonstrated to be xylan acetyltransferases. Acetylated xylans are the principal hemicellulose in the cell walls of grass species. Because xylan acetylation impedes the conversion of cellulosic biomass into biofuels, knowledge on acetyltransferases catalyzing xylan acetylation in grass species will be instrumental for a better utilization of grass biomass for biofuel production. Xylan in rice (Oryza sativa) is predominantly monoacetylated at O-2 and O-3 with a total degree of acetylation of 0.19. In this report, we have characterized 14 rice DUF231 proteins (OsXOAT1 to OsXOAT14) that are phylogenetically grouped together with Arabidopsis xylan acetyltransferases ESK1 and its close homologs. Complementation analysis demonstrated that the expression of OsXOAT1 to OsXOAT7 in the Arabidopsis esk1 mutant was able to rescue its defects in 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation. Activity assay of recombinant proteins revealed that all 14 OsXOATs exhibited acetyltransferase activities capable of transferring acetyl groups from acetyl-CoA to the xylohexaose acceptor with 10 of them having high activities. Structural analysis of the OsXOAT-catalyzed products showed that the acetylated structural units consisted mainly of 2-O- and 3-O-monoacetylated xylosyl residues with a minor amount of 2,3-di-O-acetylated xylosyl units, which is consistent with the acetyl substitution pattern of rice xylan. Further kinetic studies revealed that OsXOAT1, OsXOAT2, OsXOAT5, OsXOAT6 and OsXOAT7 had high affinity toward the xylohexaose acceptor. Our results provide biochemical evidence indicating that OsXOATs are acetyltransferases involved in xylan acetylation in rice.
Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition
Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; ...
2016-01-08
Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less
Curran, Kassie L; Festa, Adam R; Goddard, Scott D; Harrigan, George G; Taylor, Mary L
2015-03-25
Monsanto Co. has developed two sweet corn hybrids, MON 88017 and MON 89034, that contain biotechnology-derived (biotech) traits designed to enhance sustainability and improve agronomic practices. MON 88017 confers benefits of glyphosate tolerance and protection against corn rootworm. MON 89034 provides protection against European corn borer and other lepidopteran insect pests. The purpose of this assessment was to compare the kernel compositions of MON 88017 and MON 89034 sweet corn with that of a conventional control that has a genetic background similar to the biotech sweet corn but does not express the biotechnology-derived traits. The sweet corn samples were grown at five replicated sites in the United States during the 2010 growing season and the conventional hybrid and 17 reference hybrids were grown concurrently to provide an estimate of natural variability for all assessed components. The compositional analysis included proximates, fibers, amino acids, sugars, vitamins, minerals, and selected metabolites. Results highlighted that MON 88017 and MON 89034 sweet corns were compositionally equivalent to the conventional control and that levels of the components essential to the desired properties of sweet corn, such as sugars and vitamins, were more affected by growing environment than the biotech traits. In summary, the benefits of biotech traits can be incorporated into sweet corn with no adverse effects on nutritional quality.
Xylose induces cellulase production in Thermoascus aurantiacus
Schuerg, Timo; Prahl, Jan -Philip; Gabriel, Raphael; ...
2017-11-15
Lignocellulosic biomass is an important resource for renewable production of biofuels and bioproducts. Enzymes that deconstruct this biomass are critical for the viability of biomass-based biofuel production processes. Current commercial enzyme mixtures have limited thermotolerance. Thermophilic fungi may provide enzyme mixtures with greater thermal stability leading to more robust processes. Understanding the induction of biomass-deconstructing enzymes in thermophilic fungi will provide the foundation for strategies to construct hyper-production strains. Induction of cellulases using xylan was demonstrated during cultivation of the thermophilic fungus Thermoascus aurantiacus. Simulated fed-batch conditions with xylose induced comparable levels of cellulases. These fed-batch conditions were adapted tomore » produce enzymes in 2 and 19 L bioreactors using xylose and xylose-rich hydrolysate from dilute acid pretreatment of corn stover. Enzymes from T. aurantiacus that were produced in the xylose-fed bioreactor demonstrated comparable performance in the saccharification of deacetylated, dilute acid-pretreated corn stover when compared to a commercial enzyme mixture at 50 °C. The T. aurantiacus enzymes retained this activity at of 60 °C while the commercial enzyme mixture was largely inactivated. CXylose induces both cellulase and xylanase production in T. aurantiacus and was used to produce enzymes at up to the 19 L bioreactor scale. The demonstration of induction by xylose-rich hydrolysate and saccharification of deacetylated, dilute acid-pretreated corn stover suggests a scenario to couple biomass pretreatment with onsite enzyme production in a biorefinery. This work further demonstrates the potential for T. aurantiacus as a thermophilic platform for cellulase development.« less
Pilot-Scale Batch Alkaline Pretreatment of Corn Stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Erik M.; O’Brien, Marykate H.; Ciesielski, Peter N.
The goal of biomass pretreatment is to increase the enzymatic digestibility of the plant cell wall polysaccharides to produce sugars for upgrading to biofuels. Alkaline pretreatment has the ability to solubilize much of the lignin in biomass while the carbohydrates remain insoluble. With an increased research focus to produce high-value products from lignin, a low molecular weight, lignin-rich stream in a biorefinery is desirable. Here, this work reports on batch alkaline pretreatment of corn stover conducted using a three-factor, two-level central composite experimental design in a pilot-scale reactor to determine the relationship between sodium hydroxide (NaOH) loading, temperature, and anthraquinonemore » (AQ) charge on solids solubilization, component yields, and enzymatic digestibility of the residual solids. Operating conditions were 100 to 140 °C, 40 to 70 mg NaOH/g dry corn stover, and 0.05% to 0.2% (w/w) AQ loading. An enzymatic hydrolysis screening study was performed at 2% cellulose loading. Empirical modeling results showed that NaOH loading and temperature are both significant factors, solubilizing 15% to 35% of the solids and up to 54% of the lignin. Enzymatic hydrolysis of the residual solids produced good monomeric glucose (>90%) and xylose (>70%) yields at the more severe pretreatment conditions. We also found that the AQ charge was not a significant factor at the conditions studied, so efforts to reduce xylan and increase lignin solubilization using this compound were not successful. Lastly, while good lignin solubilization was achieved, effectively recovering this stream remains a challenge, and demonstrating performance in continuous reactors is still needed.« less
Xylose induces cellulase production in Thermoascus aurantiacus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuerg, Timo; Prahl, Jan -Philip; Gabriel, Raphael
Lignocellulosic biomass is an important resource for renewable production of biofuels and bioproducts. Enzymes that deconstruct this biomass are critical for the viability of biomass-based biofuel production processes. Current commercial enzyme mixtures have limited thermotolerance. Thermophilic fungi may provide enzyme mixtures with greater thermal stability leading to more robust processes. Understanding the induction of biomass-deconstructing enzymes in thermophilic fungi will provide the foundation for strategies to construct hyper-production strains. Induction of cellulases using xylan was demonstrated during cultivation of the thermophilic fungus Thermoascus aurantiacus. Simulated fed-batch conditions with xylose induced comparable levels of cellulases. These fed-batch conditions were adapted tomore » produce enzymes in 2 and 19 L bioreactors using xylose and xylose-rich hydrolysate from dilute acid pretreatment of corn stover. Enzymes from T. aurantiacus that were produced in the xylose-fed bioreactor demonstrated comparable performance in the saccharification of deacetylated, dilute acid-pretreated corn stover when compared to a commercial enzyme mixture at 50 °C. The T. aurantiacus enzymes retained this activity at of 60 °C while the commercial enzyme mixture was largely inactivated. CXylose induces both cellulase and xylanase production in T. aurantiacus and was used to produce enzymes at up to the 19 L bioreactor scale. The demonstration of induction by xylose-rich hydrolysate and saccharification of deacetylated, dilute acid-pretreated corn stover suggests a scenario to couple biomass pretreatment with onsite enzyme production in a biorefinery. This work further demonstrates the potential for T. aurantiacus as a thermophilic platform for cellulase development.« less
Pilot-Scale Batch Alkaline Pretreatment of Corn Stover
Kuhn, Erik M.; O’Brien, Marykate H.; Ciesielski, Peter N.; ...
2015-12-18
The goal of biomass pretreatment is to increase the enzymatic digestibility of the plant cell wall polysaccharides to produce sugars for upgrading to biofuels. Alkaline pretreatment has the ability to solubilize much of the lignin in biomass while the carbohydrates remain insoluble. With an increased research focus to produce high-value products from lignin, a low molecular weight, lignin-rich stream in a biorefinery is desirable. Here, this work reports on batch alkaline pretreatment of corn stover conducted using a three-factor, two-level central composite experimental design in a pilot-scale reactor to determine the relationship between sodium hydroxide (NaOH) loading, temperature, and anthraquinonemore » (AQ) charge on solids solubilization, component yields, and enzymatic digestibility of the residual solids. Operating conditions were 100 to 140 °C, 40 to 70 mg NaOH/g dry corn stover, and 0.05% to 0.2% (w/w) AQ loading. An enzymatic hydrolysis screening study was performed at 2% cellulose loading. Empirical modeling results showed that NaOH loading and temperature are both significant factors, solubilizing 15% to 35% of the solids and up to 54% of the lignin. Enzymatic hydrolysis of the residual solids produced good monomeric glucose (>90%) and xylose (>70%) yields at the more severe pretreatment conditions. We also found that the AQ charge was not a significant factor at the conditions studied, so efforts to reduce xylan and increase lignin solubilization using this compound were not successful. Lastly, while good lignin solubilization was achieved, effectively recovering this stream remains a challenge, and demonstrating performance in continuous reactors is still needed.« less
USDA-ARS?s Scientific Manuscript database
The ability of enzymes, direct fed microbials, or yeast to enhance nutrient utilization or growth performance in nursery or finishing pigs fed diets containing increased levels of corn fiber from dried distillers grains with solubles (DDGS) is largely unknown. Ten commercially available feed additiv...
USDA-ARS?s Scientific Manuscript database
This experiment was conducted to evaluate the effect of alkali treatment on in vitro and in situ digestibility of fiber sources. An in vitro and in situ experiment were conducted to determine the effects of treating sorghum WDG with solubles (SWDG) and corn stalks (CS) with calcium hydroxide on in ...
β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs
Gerrits, Walter J. J.; Kabel, Mirjam A.; Vasanthan, Thava; Zijlstra, Ruurd T.
2016-01-01
Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch) on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose) or corn distillers dried grain with solubles (DDGS; (glucurono)arabinoxylans and cellulose) with or without inclusion of β-glucans (6%) or retrograded tapioca (40%) substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg) were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD) of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction) from rapeseed meal (6%-units, P<0.001), but did not affect non-glucosyl polysaccharides from DDGS. Retrograded tapioca reduced ATTD of non-glucosyl polysaccharides from rapeseed meal and DDGS (>10%-units, P<0.001), indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value. PMID:27911928
Shen, Rui; Li, Hong-Qiang; Zhang, Jie; Xu, Jian
2016-07-01
As the second abundant natural carbohydrate, xylan is normally prepared through alkaline extraction and then used for xylo-oligosaccharides (XOS) production. However, the extracted xylan inevitably contains salt, ethanol, and pigment. In order to investigate the effects of these impurities on XOS production, the alkaline-extracted xylan with different kinds and concentrations of impurities was made and then hydrolyzed using alkaline xylanase (EC 3.2.1.8) to produce XOS. The results showed that a certain concentration of salt (NaCl) promoted the XOS production, while ethanol and pigment inhibited the enzymatic hydrolysis process significantly. The color value mainly ascribed to the phenolic compounds binding to xylan was a key restriction factor in the enzymatic hydrolysis later stage. Using optimal xylan sample (with 10 mg/mL NaCl, color value of 4.6 × 10(5), without ethanol) as substrate, the highest XOS yield of 58.58 % was obtained. As the substrate of XOS production, prepared xylan should contain colored materials and ethanol as less as possible, however, retains appropriate salt.
Yu, Hailong; You, Yanzhi; Lei, Fuhou; Liu, Zuguang; Zhang, Weiming; Jiang, Jianxin
2015-01-01
Green liquor (GL) combined with H2O2 (GL-H2O2) and green liquor (GL) combined with ethanol (GL-ethanol) were chosen for treating sugarcane bagasse. Results showed that the glucose yield (calculated from the glucose content as a percentage of the theoretical glucose available in the substrates)of sugarcane bagasse from GL-ethanol pretreatment (97.7%) was higher than that from GL-H2O2 pretreatment (41.7%) after 72h hydrolysis with 18 filter paper unit (FPU)/g-cellulose for cellulase, 27,175 cellobiase units (CBU)/g-cellulose for β-glucosidase. Furthermore, about 94.1% of xylan was converted to xylose after GL-ethanol pretreatment without additional xylanase, while the xylose yield was only 29.2% after GL-H2O2 pretreatment. Scanning electron microscopy showed that GL-ethanol pretreatment could break up the fiber severely. Moreover, GL-ethanol pretreated substrate was more accessible to cellulase and more hydrophilic than that of GL-H2O2 pretreated. Therefore, GL-ethanol pretreatment is a promising method for improving the overall sugar (glucose and xylan) yield of sugarcane bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac
2014-09-02
Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fall, R.; Phelps, P.; Spindler, D.
A series of lipid-accumulating yeasts was examined for their potential to saccharify xylan and accumulate triglyceride. Of the genera tested, including Candida, Cryptococcus, Lipomyces, Rhodosporidium, Rhodotorula, and Trichosporon, only Crytococcus and Trichosporon isolates saccharified xylan. All of the strains could assimilate xylose and accumuate triglyceride under nitrogen-limiting conditions. Strains of Cryptococcus albidus were found to be especially useful for a one-step saccharification of xylan coupled to triglyceride synthesis. Crytococcus terricolus, a strain constitutive for lipid accumulation, lacked extracellular xylanase, but did assimilate xylose and xylobiose and was able to continuously convert xylan to triglyceride if the culture medium was supplementedmore » with xylanase. 22 references.« less
Jensen, Jacob Kruger; Busse-Wicher, Marta; Poulsen, Christian Peter; ...
2018-02-20
Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 inmore » plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. Finally, these data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.« less
Gong, Weili; Dai, Lin; Zhang, Huaiqiang; Zhang, Lili; Wang, Lushan
2018-01-01
Xylan constituted with β-1,4-D-xylose linked backbone and diverse substituted side-chains is the most abundant hemicellulose component of biomass, which can be completely and rapidly degraded into fermentable sugars by Aspergillus niger . This is of great value for obtaining renewable biofuels and biochemicals. To clarify the underlying mechanisms associated with highly efficient xylan degradation, assimilation, and metabolism by A. niger , we utilized functional proteomics to analyze the secreted proteins, sugar transporters, and intracellular proteins of A. niger An76 grown on xylan-based substrates. Results demonstrated that the complete xylanolytic enzyme system required for xylan degradation and composed of diverse isozymes was secreted in a sequential order. Xylan-backbone-degrading enzymes were preferentially induced by xylose or other soluble sugars, which efficiently produced large amounts of xylooligosaccharides (XOS) and xylose; however, XOS was more efficient than xylose in triggering the expression of the key transcription activator XlnR, resulting in higher xylanase activity and shortening xylanase-production time. Moreover, the substituted XOS was responsible for improving the abundance of side-chain-degrading enzymes, specific transporters, and key reductases and dehydrogenases in the pentose catabolic pathway. Our findings indicated that industries might be able to improve the species and concentrations of xylan-degrading enzymes and shorten fermentation time by adding abundant intermediate products of natural xylan (XOS) to cultures of filamentous fungi.
A Highly Efficient Xylan-Utilization System in Aspergillus niger An76: A Functional-Proteomics Study
Gong, Weili; Dai, Lin; Zhang, Huaiqiang; Zhang, Lili; Wang, Lushan
2018-01-01
Xylan constituted with β-1,4-D-xylose linked backbone and diverse substituted side-chains is the most abundant hemicellulose component of biomass, which can be completely and rapidly degraded into fermentable sugars by Aspergillus niger. This is of great value for obtaining renewable biofuels and biochemicals. To clarify the underlying mechanisms associated with highly efficient xylan degradation, assimilation, and metabolism by A. niger, we utilized functional proteomics to analyze the secreted proteins, sugar transporters, and intracellular proteins of A. niger An76 grown on xylan-based substrates. Results demonstrated that the complete xylanolytic enzyme system required for xylan degradation and composed of diverse isozymes was secreted in a sequential order. Xylan-backbone-degrading enzymes were preferentially induced by xylose or other soluble sugars, which efficiently produced large amounts of xylooligosaccharides (XOS) and xylose; however, XOS was more efficient than xylose in triggering the expression of the key transcription activator XlnR, resulting in higher xylanase activity and shortening xylanase-production time. Moreover, the substituted XOS was responsible for improving the abundance of side-chain-degrading enzymes, specific transporters, and key reductases and dehydrogenases in the pentose catabolic pathway. Our findings indicated that industries might be able to improve the species and concentrations of xylan-degrading enzymes and shorten fermentation time by adding abundant intermediate products of natural xylan (XOS) to cultures of filamentous fungi. PMID:29623069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Jacob Kruger; Busse-Wicher, Marta; Poulsen, Christian Peter
Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 inmore » plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. Finally, these data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.« less
Multi-material Preforming of Structural Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Robert E.; Eberle, Cliff C.; Pastore, Christopher M.
2015-05-01
Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.
Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying
2011-09-28
The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.
1994-07-15
from Fisher or Aldrich. AS-4 unsized carbon fibers were donated by Hercules Chemical Company and vinyl silane treated glass fibers were donated by Owens ... Corning Fiberglass Company. Composites were made using a mold that gave samples 60 mm long and 12.7 mm wide with variable thickness. Cure analysis
Nasrollahi, S M; Khorvash, M; Ghorbani, G R; Teimouri-Yansari, A; Zali, A; Zebeli, Q
2012-08-01
This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 × 4 Latin square design with four 21-day periods. The experiment was a 2 × 2 factorial arrangement with two levels of theoretical PS of AH (fine = 15 mm or long = 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P < 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P = 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P = 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P = 0.03) and higher pH (P < 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P = 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.
40 CFR 300.915 - Data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... methods for such determinations: Salmonella, fecal coliform, Shigella, Staphylococcus Coagulase positive... fibers or cork; (C) Corn cobs; (D) Chicken, duck, or other bird feathers. (ii) Mineral compounds— (A...
40 CFR 300.915 - Data requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... methods for such determinations: Salmonella, fecal coliform, Shigella, Staphylococcus Coagulase positive... fibers or cork; (C) Corn cobs; (D) Chicken, duck, or other bird feathers. (ii) Mineral compounds— (A...
40 CFR 300.915 - Data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... methods for such determinations: Salmonella, fecal coliform, Shigella, Staphylococcus Coagulase positive... fibers or cork; (C) Corn cobs; (D) Chicken, duck, or other bird feathers. (ii) Mineral compounds— (A...
40 CFR 300.915 - Data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... methods for such determinations: Salmonella, fecal coliform, Shigella, Staphylococcus Coagulase positive... fibers or cork; (C) Corn cobs; (D) Chicken, duck, or other bird feathers. (ii) Mineral compounds— (A...
López, O V; Versino, F; Villar, M A; García, M A
2015-12-10
Biocomposites films based on thermoplastic corn starch (TPS) containing 0.5% w/w fibrous residue from Pachyrhizus ahipa starch extraction (PASR) were obtained by melt-mixing and compression molding. PASR is mainly constituted by remaining cell walls and natural fibers, revealed by Scanning Electron Microscopy (SEM). Chemical composition of the residue indicated that fiber and starch were the principal components. Biocomposites thermo-stability was determined by Thermo-Gravimetric Analysis. A continuous PASR-TPS interface was observed by SEM, as a result of a good adhesion of the fibrous residue to starch matrix. Likewise, films containing PASR presented fewer superficial cracks than TPS ones, whereas their fracture surfaces were more irregular. Besides, the presence of PASR increased starch films roughness, due to fibers agglomerates. Films reinforced with PASR showed significantly lower water vapor permeability (WVP). In addition, PARS filler increased maximum tensile strength and Young's modulus of TPS films, thus leading to more resistant starch matrixes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification.
Barsberg, Søren; Selig, Michael Joseph; Felby, Claus
2013-02-01
Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6 % (w/w) and ash was from 5.8 to 30 % (w/w). ATR-IR analyses indicated significant and similar levels of calcium in all lignin isolates. Commercial cellulase adsorption studies showed that the presence of these lignins had no significant impact on the total amount of adsorbed enzyme in cellulose and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme-lignin interactions.
Qin, Lei; Li, Xia; Liu, Li; Zhu, Jia-Qing; Guan, Qi-Man; Zhang, Man-Tong; Li, Wen-Chao; Li, Bing-Zhi; Yuan, Ying-Jin
2017-01-01
In this study, wash liquors isolated from ethylenediamine and dry dilute acid pretreated corn stover were used to evaluate the effect of soluble materials in pretreated biomass on simultaneous saccharification and co-fermentation (SSCF) for ethanol production, respectively. Both of the wash liquors had different impacts on enzymatic hydrolysis and fermentation. Enzymatic conversions of glucan and xylan monotonically decreased as wash liquor concentration increased. Whereas, with low wash liquor concentrations, xylose consumption rate, cell viability and ethanol yield were maximally stimulated in fermentation without nutrient supplementary. Soluble lignins were found as the key composition which promoted sugars utilization and cell viability without nutrient supplementary. The dual effects of soluble materials on enzymatic hydrolysis and fermentation resulted in the reduction of ethanol yield as soluble materials increased in SSCF. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrolysis kinetics of tulip tree xylan in hot compressed water.
Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo
2016-08-01
Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. Copyright © 2016. Published by Elsevier Ltd.
Rojas, O J; Vinyeta, E; Stein, H H
2016-05-01
An experiment was conducted to determine effects of pelleting, extrusion, and extrusion and pelleting on energy and nutrient digestibility in diets containing low, medium, or high concentrations of fiber. Three diets were formulated: 1) the low-fiber diet contained corn and soybean meal; 2) the medium-fiber diet contained corn, soybean meal, and 25% distillers dried grains with solubles (DDGS); and 3) the high-fiber diet contained corn, soybean meal, 25% DDGS, and 20% soybean hulls. Each diet was divided into 4 batches after mixing. One batch was not further processed and was fed in a meal form, one batch was pelleted at 85°C, one batch was extruded at 115°C using a single-screw extruder, and one batch was extruded at 115°C and then pelleted at 85°C. Thus, 12 different diets were produced. Twenty-four growing pigs (26.5 ± 1.5 kg initial BW) had a T-cannula installed in the distal ileum and were allotted to the 12 diets in a split-plot design with 8 pigs allotted to the low-fiber diets, the medium-fiber diets, and the high-fiber diets, respectively. Diets were fed to the pigs during four 14-d periods. Within each type of diet, the 8 pigs were fed the diets produced using the 4 processing technologies. Therefore, there were 8 replicate pigs per diet. Pigs were adjusted to their diets for 14 d before the experiment was initiated. Each of the four 14-d periods consisted of 5 d for adaptation, 5 d of fecal collection according to the marker to marker approach, and ileal digesta were collected on d 13 and 14. Results indicated that pelleting, extrusion, or extrusion and pelleting improved ( < 0.05) the apparent ileal digestibility of starch and most indispensable AA. In most cases, there were no differences between the pelleted, the extruded, and the extruded and pelleted diets. The apparent total tract digestibility of GE was also improved ( < 0.05) by pelleting and by the combination of extrusion and pelleting. The ME of pelleted diets was greater ( < 0.05) than that of meal diets for the low- and medium-fiber diets, but this was not the case for high-fiber diets (interaction, < 0.05). Medium- and high-fiber diets that were extruded had greater ME ( < 0.05) than meal diets, but that was not the case for low-fiber diets. These data indicate that energy utilization may be improved by pelleting or extrusion or by a combination of the 2 technologies, but the response seems to be greater for extrusion in diets that are relatively high in fiber.
Liu, Yan; Selig, Michael J; Yadav, Madhav P; Yin, Lijun; Abbaspourrad, Alireza
2018-05-01
This study compliments previous work where peroxidase was successfully used to crosslink corn fiber gum (CFG) with bovine serum albumin and improve CFG's emulsifying properties. Herein, an alternative type of enzyme, transglutaminase, was used to prepare conjugates of CFG and sodium caseinate. Additionally, the CFG was partially hydrolyzed by sulfuric acid and its crosslinking pattern with caseinate was evaluated. The interfacial crosslinking degree between caseinate and CFG increased after hydrolysis according to high performance size exclusion chromatography. The equilibrium interfacial tension of CFG hydrolysate-caseinate conjugate was lower than that of CFG-caseinate conjugate as the rearrangement rate of the CFG hydrolysate-caseinate conjugate was higher. The dilatational modulus of CFG hydrolysate decreased from that of CFG. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluation of elevated dietary corn fiber from corn germ meal in growing female pigs.
Weber, T E; Trabue, S L; Ziemer, C J; Kerr, B J
2010-01-01
To evaluate the effects of dietary hemicellulose from corn on growth and metabolic measures, female pigs (n = 48; initial BW 30.8 kg) were fed diets containing 0 to 38.6% solvent-extracted corn germ meal for 28 d. Increasing the hemicellulose level had no impact on ADG or ADFI, but resulted in a quadratic response (P < 0.03) on G:F. To investigate physiological changes that occur with increased dietary hemicellulose, blood, colon contents, and tissue samples from the liver and intestine were obtained from a subset (n = 16; 8 pigs/treatment) of pigs fed the least and greatest hemicellulose levels. The abundance of phospho-adenosine monophosphate-activated protein kinase (AMPK) and the mitochondrial respiratory protein, cytochrome C oxidase II (COXII) were determined in liver, jejunum, ileum, and colon by Western blotting. The mRNA expression levels of AMPKalpha1, AMPKalpha2, PPAR coactivator 1alpha (PGC1-alpha), PPARgamma2, and sirtuin 1 (Sirt1) were determined in liver and intestinal tissues. When compared with pigs fed the control diet, pigs fed the high hemicellulose diet had increased (P < 0.02) plasma triglycerides, but there was no difference in plasma cholesterol, glucose, or insulin. Absolute and relative liver weights were decreased (P < 0.03) in pigs consuming the high hemicellulose diet. The high-fiber diet led to a tendency (P < 0.12) for decreased liver triglyceride content. In pigs fed the high hemicellulose diet, ileal mucosal alkaline phosphatase activity was increased (P < 0.08) and sucrase activity tended (P < 0.12) to be increased. The high hemicellulose diet had no effect on phospho-AMPK, AMPK mRNA, or colonic VFA, but in pigs consuming the high fiber diet there was a greater (P < 0.05) abundance of COXII in colon tissue. The expression of PGC1-alpha, PPARgamma, or Sirt1 mRNA was not altered by dietary fiber in liver, jejunum, or ileum tissue. In colon tissue from pigs fed the high fiber diet there was an increase (P < 0.09) in Sirt1 mRNA and a trend (P < 0.12) toward increased of PGC1-alpha mRNA. These data suggest that alterations in metabolism involved in adaptation to a diet high in hemicellulose are associated with increased colonic Sirt1 mRNA and COXII expression, indicating an increased propensity for oxidative metabolism by the intestine.
Xylan - A potential contaminant for lunar samples and Antarctic meteorites
NASA Astrophysics Data System (ADS)
Wright, I. P.; Russell, S. S.; Boyd, S. R.; Meyer, C.; Pillinger, C. T.
The possibility that lunar samples have been contaminated by the proprietary lubricant paint known as Xylan, which has been applied to screw threads in dry-N sample processing cabinets at NASA JSC, is considered. From a sample analysis using sealed-tube and stepped combustion, it is argued that the unexpectedly high concentration of organic materials found in EET A79001 is not due to Xylan contamination. It is considered unlikely that previous C and N analyses of lunar samples have been affected by the introduction of Xylan.
Cantu-Jungles, Thaisa Moro; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C
2017-04-15
The chemical features of xylan largely determine its physical and biological properties and its use in the industry. In this work, we describe the occurrence, purification and partial characterization of a xylan in edible açaí berries (Euterpe oleraceae), using a fairly simple and inexpensive method of purification from alkaline açaí extract. A mainly linear (1→4)-β-d-xylan was found as the majority (70%) of alkali extract and 4.2% of the dry matter açaí pulp. This represents the biggest source of xylan found so far in a fruit pulp and could be suitable for applications in the industry and biomedical field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lyczakowski, Jan J; Wicher, Krzysztof B; Terrett, Oliver M; Faria-Blanc, Nuno; Yu, Xiaolan; Brown, David; Krogh, Kristian B R M; Dupree, Paul; Busse-Wicher, Marta
2017-01-01
Plant lignocellulosic biomass can be a source of fermentable sugars for the production of second generation biofuels and biochemicals. The recalcitrance of this plant material is one of the major obstacles in its conversion into sugars. Biomass is primarily composed of secondary cell walls, which is made of cellulose, hemicelluloses and lignin. Xylan, a hemicellulose, binds to the cellulose microfibril and is hypothesised to form an interface between lignin and cellulose. Both softwood and hardwood xylan carry glucuronic acid side branches. As xylan branching may be important for biomass recalcitrance and softwood is an abundant, non-food competing, source of biomass it is important to investigate how conifer xylan is synthesised. Here, we show using Arabidopsis gux mutant biomass that removal of glucuronosyl substitutions of xylan can allow 30% more glucose and over 700% more xylose to be released during saccharification. Ethanol yields obtained through enzymatic saccharification and fermentation of gux biomass were double those obtained for non-mutant material. Our analysis of additional xylan branching mutants demonstrates that absence of GlcA is unique in conferring the reduced recalcitrance phenotype. As in hardwoods, conifer xylan is branched with GlcA. We use transcriptomic analysis to identify conifer enzymes that might be responsible for addition of GlcA branches onto xylan in industrially important softwood. Using a combination of in vitro and in vivo activity assays, we demonstrate that a white spruce ( Picea glauca ) gene, PgGUX , encodes an active glucuronosyl transferase. Glucuronic acid introduced by PgGUX reduces the sugar release of Arabidopsis gux mutant biomass to wild-type levels indicating that it can fulfil the same biological function as native glucuronosylation. Removal of glucuronic acid from xylan results in the largest increase in release of fermentable sugars from Arabidopsis plants that grow to the wild-type size. Additionally, plant material used in this work did not undergo any chemical pretreatment, and thus increased monosaccharide release from gux biomass can be achieved without the use of environmentally hazardous chemical pretreatment procedures. Therefore, the identification of a gymnosperm enzyme, likely to be responsible for softwood xylan glucuronosylation, provides a mutagenesis target for genetically improved forestry trees.
2012-01-01
Background Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. Results Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx) mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. Conclusions Spatial and temporal deposition of xylan in the secondary cell wall of Arabidopsis can be manipulated by using the promoter regions of vessel-specific genes to express xylan biosynthetic genes. The expression of xylan specifically in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels. PMID:23181474
Alkaline twin-screw extrusion pretreatment for fermentable sugar production.
Liu, Chao; van der Heide, Evert; Wang, Haisong; Li, Bin; Yu, Guang; Mu, Xindong
2013-01-01
The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process optimization and cost reduction.
Inclusion of brown midrib dwarf pearl millet silage in the diet of lactating dairy cows.
Harper, M T; Melgar, A; Oh, J; Nedelkov, K; Sanchez, G; Roth, G W; Hristov, A N
2018-06-01
Brown midrib brachytic dwarf pearl millet (Pennisetum glaucum) forage harvested at the flag leaf visible stage and subsequently ensiled was investigated as a partial replacement of corn silage in the diet of high-producing dairy cows. Seventeen lactating Holstein cows were fed 2 diets in a crossover design experiment with 2 periods of 28 d each. Both diets had forage:concentrate ratios of 60:40. The control diet (CSD) was based on corn silage and alfalfa haylage, and in the treatment diet, 20% of the corn silage dry matter (corresponding to 10% of the dietary dry matter) was replaced with pearl millet silage (PMD). The effects of partial substitution of corn silage with pearl millet silage on dry matter intake, milk yield, milk components, fatty acid profile, apparent total-tract digestibility of nutrients, N utilization, and enteric methane emissions were analyzed. The pearl millet silage was higher in crude protein and neutral detergent fiber and lower in lignin and starch than the corn silage. Diet did not affect dry matter intake or energy-corrected milk yield, which averaged 46.7 ± 1.92 kg/d. The PMD treatment tended to increase milk fat concentration, had no effect on milk fat yield, and increased milk urea N. Concentrations and yields of milk protein and lactose were not affected by diet. Apparent total-tract digestibility of dry matter decreased from 66.5% in CSD to 64.5% in PMD. Similarly, organic matter and crude protein digestibility was decreased by PMD, whereas neutral- and acid-detergent fiber digestibility was increased. Total milk trans fatty acid concentration was decreased by PMD, with a particular decrease in trans-10 18:1. Urinary urea and fecal N excretion increased with PMD compared with CSD. Milk N efficiency decreased with PMD. Carbon dioxide emission was not different between the diets, but PMD increased enteric methane emission from 396 to 454 g/d and increased methane yield and intensity. Substituting corn silage with brown midrib dwarf pearl millet silage at 10% of the diet dry matter supported high milk production in dairy cows. When planning on farm forage production strategies, brown midrib dwarf pearl millet should be considered as a viable fiber source. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lundy, E L; Loy, D D; Hansen, S L
2015-05-01
Two experiments evaluated the effects on animal performance of traditional wet distillers grains (T-WDG) compared to cellulosic wet distillers grains (C-WDG) from a new process converting corn kernel fiber into cellulosic ethanol. The resulting coproduct has greater CP and decreased starch and ether extract (EE) concentrations (34.0% CP, 1.6% starch, 7.3% EE) compared to T-WDG (32.5% CP, 5.1% starch, 7.7% EE). In Exp. 1, 10 wethers (34.1 ± 2.35 kg, SD) were used in a replicated 5 × 5 Latin square to evaluate digestibility of DM, fiber, EE, and N. Diets including a corn-based control with 7.5% T-WDG and 7.5% C-WDG (CORN); 30% or 45% inclusion of T-WDG; and 30% or 45% inclusion of C-WDG. Between CORN, 30% T-WDG, 45% T-WDG, or 45% C-WDG, DMI was not different (P ≥ 0.11), but lambs fed 30% C-WDG had decreased (P ≤ 0.05) DMI compared to other diets. Compared to CORN and 30% T-WDG, DM digestibility was lesser ( P< 0.05) for 45% T-WDG or 30% C-WDG, while 45% C-WDG has lesser (P ≤ 0.05) DM digestibility than all other treatments. Digestibility of NDF was not affected by treatment (P= 0.13), and ADF digestibility was not different ( 0.21) between CORN, 30% T-WDG, 30% C-WDG, or 45% C-WDG. However, digestibility of ADF tended to differ (P = 0.06) between 30% T-WDG and 45% C-WDG and was greater (P ≤ 0.05) in lambs fed 45% T-WDG compared to other treatments. In Exp. 2, 168 steers (421 ± 23.9 kg, SD) were used in a randomized complete block design to determine the impact of C-WDG or T-WDG on growth performance and carcass characteristics. Diets included a corn-based control (CON), 30% T-WDG (TRAD), 30% C-WDG (CEL), and 18% C-WDG and 12% condensed corn distillers solubles (CEL+CCDS; = 7 pens of 6 steers/pen). Steers fed TRAD had improved (P ≤ 0.01) ADG, G:F, and HCW compared to steers fed the CON diet. No differences (P ≥ 0.16) in ADG and HCW were noted for steers fed CEL compared to TRAD; however, steers fed CEL had decreased (P = 0.01) G:F due to increased (P = 0.02) DMI compared to TRAD-fed steers. Steers fed CEL or CEL+CCDS did not differ (P = 0.50) in G:F, but CEL+CCDS-fed steers had lesser (P ≤ 0.01) DMI and ADG likely due to greater S content of the CEL+CCDS diet. Overall, while DM digestibility of lambs fed 30% C-WDG was lesser than 30% T-WDG, performance of steers finished on C-WDG was similar to those fed T-WDG. However, WDG from the secondary fermentation appeared to have lesser energy than T-WDG, while maintaining similar cattle performance to corn-fed controls.
Cotta, M A; Zeltwanger, R L
1995-12-01
The cross-feeding of xyland hydrolysis products between the xylanolytic bacterium Butyrivibrio fibrisolvens H17c and the xylooligosaccharide-fermenting bacterium Selenomonas ruminantium GA192 was investigated. Cultures were grown anaerobically in complex medium containing oat spelt xylan, and the digestion of xylan and the generation and subsequent utilization of xylooligosaccharide intermediates were monitored over time. Monocultures of B. fibrisolvens rapidly degraded oat spelt xylan, and a pool of extracellular degradation intermediates composed of low-molecular-weight xylooligosaccharides (xylobiose through xylopentaose and larger, unidentified oligomers) accumulated in these cultures. The ability of S. ruminantium to utilize the products of xylanolysis by B. fibrisolvens was demonstrated by its ability to grow on xylan that had first been digested by the extracellular xylanolytic enzymes of B. fibrisolvens. Although enzymatic hydrolysis converted the xylan to soluble products, this alone was not sufficient to assure complete utilization by S. ruminantium, and considerable quantities of oligosaccharides remained following growth. Stable xylan-utilizing cocultures of S. ruminantium and B. fibrisolvens were established, and the utilization of xylan was monitored. Despite the presence of an oligosaccharide-fermenting organism, accumulations of acid-alcohol soluble products were still noted; however, the composition of carbohydrates present in these cultures differed from that seen when B. fibrisolvens was cultivated alone. Residual carbohydrates present at various times during growth were of higher average degree of polymerization in cocultures than in cultures of B. fibrisolvens alone. Structural characterization of these residual products may help define the limitations on the assimilation of xylooligosaccharides by ruminal bacteria.
Preliminary Investigation to Determine the Suitable Mixture Composition for Corn Starch Matrix
NASA Astrophysics Data System (ADS)
Huzaimi Zakaria, Nazri; Ngali, Zamani; Zulkefli Selamat, Mohd
2017-01-01
The use of natural fiber as reinforcement in polymeric composites has been seen a dramatically increase over the last decades. The surge in the interest of natural fiber composite or biodegradable composite is mainly due to the attractive cost of production, improved of hardness, better fatigue endurance and good thermal and mechanical resistivity. In this work, corn starch in the form of powder is utilized as the matrix of the composite. However, starch is brittle and has low strength make it inappropriate candidate for matrix binder. The main objective of this study is to modify the mechanical properties of pure corn starch by mixing it with water, glycerol and vinegar. The composition ratio of water is 60~80%, corn starch 10~35%, glycerol is 5~15% and vinegar is 0~5%, ten samples (A-J) have been manufactured and the best mixture composition is selected based on few selection criteria. The selection criteria are visual impaction, hardness and density. From the results, the samples without vinegar are not suitable to be used because of the fungus availability on the surface. Meanwhile the results from the samples with 5 ml vinegar have no fungus on their surface even has been exposed to the ambient air. While the sample C has shown the best sample based on the visual, hardness and density test.
Mun Su Rhee; Lusha Wei; Neha Sawhney; John D. Rice; Franz J. St. John; Jason C. Hurlbert; James F. Preston
2014-01-01
Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and...
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum, L.) is a potential renewable source of carbohydrates for use in microbial conversion to biofuels. Xylan comprises approximately 30% of the switchgrass cell wall. To understand the limitations of commercial enzyme mixtures, alkali-extracted, isolated switchgrass xylan w...
Xylan is one of the major polysaccharides in cellulosic biomass, and understanding the mechanisms underlying xylan biosynthesis will potentially help us design strategies to produce cellulosic biomass better suited for biofuel production. Although a number of genes have been show...
NASA Astrophysics Data System (ADS)
Morita, Kazuyo; Yamamoto, Kimiko
2017-03-01
Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.
Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu
2017-11-15
The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trinidad, Trinidad P; Loyola, Anacleta S; Mallillin, Aida C; Valdez, Divinagracia H; Askali, Faridah C; Castillo, Joan C; Resaba, Rosario L; Masa, Dina B
2004-01-01
This study investigated the effect of coconut flakes on serum cholesterol levels of humans with moderately raised serum cholesterol in 21 subjects. The serum total cholesterol of subjects differed and ranged from 259 to 283 mg/dL. The study was conducted in a double-blind randomized crossover design on a 14-week period, consisting of four 2-week experimental periods, with each experimental period separated by a 2-week washout period. The test foods were as follows: corn flakes as the control food, oat bran flakes as the reference food, and corn flakes with 15% and 25% dietary fiber from coconut flakes (made from coconut flour production). Results showed a significant percent reduction in serum total and low-density lipoprotein (LDL) cholesterol (in mg/dL) for all test foods, except for corn flakes, as follows: oat bran flakes, 8.4 +/- 1.4 and 8.8 +/- 6.0, respectively; 15% coconut flakes, 6.9 +/- 1.1 and 11.0 +/- 4.0, respectively; and 25% coconut flakes, 10.8 +/- 1.3 and 9.2 +/- 5.4, respectively. Serum triglycerides were significantly reduced for all test foods: corn flakes, 14.5 +/- 6.3%; oat bran flakes, 22.7 +/- 2.9%; 15% coconut flakes, 19.3 +/- 5.7%; and 25% coconut flakes, 21.8 +/- 6.0%. Only 60% of the subjects were considered for serum triglycerides reduction (serum triglycerides >170 mg/dL). In conclusion, both 15% and 25% coconut flakes reduced serum total and LDL cholesterol and serum triglycerides of humans with moderately raised serum cholesterol levels. Coconut flour is a good source of both soluble and insoluble dietary fiber, and both types of fiber may have significant role in the reduction of the above lipid biomarker. To our knowledge, this is the first study conducted to show a relationship between dietary fiber from a coconut by-product and a lipid biomarker. Results from this study serves as a good basis in the development of coconut flakes/flour as a functional food, justifying the increased production of coconut and coconut by-products.
Fan, M Z; Archbold, T; Lackeyram, D; Liu, Q; Mine, Y; Paliyath, G
2012-12-01
Increases in dietary intake of viscous and nonviscous soluble fiber are reported to improve bowel health. However, related biological mechanisms are not very clear. This study was conducted to examine if colonic inflammation would occur in a typical Western diet model and determine if consumption of soluble fiber components would attenuate potential detrimental effects by differentially affecting colonic abundances of anti-inflammatory cytokine IL-10 and 2 pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and IL-6 in pigs fed a high-fat basal diet supplemented, respectively, with 15% viscous soluble fiber guar gum (GG) and 15% nonviscous soluble fiber, that is, retrograded high-amylose corn (Zea mays) resistant starch (RS). A total of 24 Yorkshire growing barrows were assigned into a standard corn and soybean (Glycine max) meal (SBM)-based grower diet as a positive control (PC), an animal protein-based high-fat basal diet as the negative control (NC), and 2 NC basal diets supplemented with 15% GG and 15% RS, respectively, according to a completely randomized block design for 4 wk. Abundance of these cytokines in homogenized and extracted colonic tissue supernatant samples was measured by ELISA. Although colonic IL-10 abundance was lower (P < 0.05) in the corn and SBM-based PC group than that in the high-fat basal NC group, there were no differences (P > 0.05) in colonic abundances of TNF-α and IL-6 between NC and PC groups and among all of the treatment groups. Compared with the NC group, consumption of GG and RS at 15% increased (P < 0.05) colonic IL-10 abundance. Moreover, there was no difference (P > 0.05) in colonic IL-10 abundance between the 15% GG and the 15% RS groups. Thus, consumption of a typical high-fat Western diet did not induce colonic inflammation. Diets supplemented with 15% GG or 15% RS may protect the colon from developing inflammation by enhancing IL-10 abundance.
Rumpagaporn, Pinthip; Kaur, Amandeep; Campanella, Osvaldo H; Patterson, John A; Hamaker, Bruce R
2012-01-01
In in vitro batch fermentations, both alkali-extractable corn arabinoxylan (CAX) and its xylanase-hydrolyzate (CH) were utilized by human fecal microbiota and produced similar short chain fatty acid (SCFA) contents and desirable long fermentation profiles with low initial gas production. Fortification of these arabinoxylans into processed foods would contribute desirable dietary fiber benefits to humans. Heat and pH stability, as well as viscosity behavior of CAX and CH were investigated. Size exclusion chromatography was used to analyze the molecular size distribution after treatment at different pH's and heating temperatures for different time periods. Treated under boiling and pressure cooking conditions at pH 3, CAX was degraded to a smaller molecular size, whereas the molecular size of the CH showed only a minor decrease. CAX and CH were mostly stable at neutral pH, except when CAX was treated under pressure for 60 min that slightly lowered molecular size. At 37 °C, neither CAX nor CH was adversely affected by treatment at low or neutral pH. The viscosities of solutions containing 5% and 10% of CAX were 48.7 and 637.0 mPa.s, respectively that were higher than those of solutions containing 5% and 10% of its hydrolyzate at shear rate 1 s⁻¹. The CAX solutions showed Newtonian flow behavior, whereas shear-thinning behavior was observed in CH solutions. In conclusion, the hydrolyzate of CAX has potential to be used in high fiber drinks due to its favorable fermentation properties, higher pH and heat stability, lower and shear-thinning viscosity, and lighter color than the native CAX. Arabinoxylan extracted by an alkali from corn bran is a soluble fiber with a desirable low initial and extended fermentation property. Corn arabinoxylan hydrolyzate using an endoxylanase was much more stable at different levels of acidity and heat than the native arabinoxylan, and showed lower solution viscosity and shear-thinning property that indicates its potential as an alternative functional dietary fiber for the beverage industry. © 2011 Institute of Food Technologists®
Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses.
Anders, Nadine; Wilkinson, Mark D; Lovegrove, Alison; Freeman, Jacqueline; Tryfona, Theodora; Pellny, Till K; Weimar, Thilo; Mortimer, Jennifer C; Stott, Katherine; Baker, John M; Defoin-Platel, Michael; Shewry, Peter R; Dupree, Paul; Mitchell, Rowan A C
2012-01-17
Xylan, a hemicellulosic component of the plant cell wall, is one of the most abundant polysaccharides in nature. In contrast to dicots, xylan in grasses is extensively modified by α-(1,2)- and α-(1,3)-linked arabinofuranose. Despite the importance of grass arabinoxylan in human and animal nutrition and for bioenergy, the enzymes adding the arabinosyl substitutions are unknown. Here we demonstrate that knocking-down glycosyltransferase (GT) 61 expression in wheat endosperm strongly decreases α-(1,3)-linked arabinosyl substitution of xylan. Moreover, heterologous expression of wheat and rice GT61s in Arabidopsis leads to arabinosylation of the xylan, and therefore provides gain-of-function evidence for α-(1,3)-arabinosyltransferase activity. Thus, GT61 proteins play a key role in arabinoxylan biosynthesis and therefore in the evolutionary divergence of grass cell walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H.; Biely, P.; Latta, R.K.
Yeasts able to grow on D-xylose were screened for the ability to hydrolyze xylan. Xylanase activity was found to be rare; a total of only 19 of more than 250 strains yielded a positive test result. The activity was localized largely in the genus Cryptococcus and in Pichia stipitis and its anamorph Candida shehatae. The ability to hydrolyze xylan was generally uncoupled from that to hydrolyze cellulose; only three of the xylan-positive strains also yielded a positive test for cellulolytic activity. Of the 19 xylanolytic strains. 2. P. stipitis CBS 5773 and CBS 5775, converted xylan into ethanol, with aboutmore » 60% of a theoretical yield computed on the basis of the amount of D-xylose present originally that could be released by acid hydrolysis.« less
Chiniquy, Dawn; Varanasi, Patanjali; Oh, Taeyun; Harholt, Jesper; Katnelson, Jacob; Singh, Seema; Auer, Manfred; Simmons, Blake; Adams, Paul D.; Scheller, Henrik V.; Ronald, Pamela C.
2013-01-01
Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx) mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9), Os01g48440 (OsIRX9L), and Os06g47340 (OsIRX14), from glycosyltransferase family 43 as putative orthologs to the putative β-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the over-expression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx) mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase (XylT) activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in XylT activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength. PMID:23596448
Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation
Chateigner-Boutin, Anne-Laure; Ordaz-Ortiz, José J.; Alvarado, Camille; Bouchet, Brigitte; Durand, Sylvie; Verhertbruggen, Yves; Barrière, Yves; Saulnier, Luc
2016-01-01
Cell walls are comprised of networks of entangled polymers that differ considerably between species, tissues and developmental stages. The cell walls of grasses, a family that encompasses major crops, contain specific polysaccharide structures such as xylans substituted with feruloylated arabinose residues. Ferulic acid is involved in the grass cell wall assembly by mediating linkages between xylan chains and between xylans and lignins. Ferulic acid contributes to the physical properties of cell walls, it is a hindrance to cell wall degradability (thus biomass conversion and silage digestibility) and may contribute to pest resistance. Many steps leading to the formation of grass xylans and their cross-linkages remain elusive. One explanation might originate from the fact that many studies were performed on lignified stem tissues. Pathways leading to lignins and feruloylated xylans share several steps, and lignin may impede the release and thus the quantification of ferulic acid. To overcome these difficulties, we used the pericarp of the maize B73 line as a model to study feruloylated xylan synthesis and crosslinking. Using Fourier-transform infra-red spectroscopy and biochemical analyses, we show that this tissue has a low lignin content and is composed of approximately 50% heteroxylans and approximately 5% ferulic acid. Our study shows that, to date, maize pericarp contains the highest level of ferulic acid reported in plant tissue. The detection of feruloylated xylans with a polyclonal antibody shows that the occurrence of these polysaccharides is developmentally regulated in maize grain. We used the genomic tools publicly available for the B73 line to study the expression of genes within families involved or suggested to be involved in the phenylpropanoid pathway, xylan formation, feruloylation and their oxidative crosslinking. Our analysis supports the hypothesis that the feruloylated moiety of xylans originated from feruloylCoA and is transferred by a member of the BAHD acyltransferase family. We propose candidate genes for functional characterization that could subsequently be targeted for grass crop breeding. PMID:27746801
Rumpagaporn, Pinthip; Reuhs, Brad L; Cantu-Jungles, Thaisa M; Kaur, Amandeep; Patterson, John A; Keshavarzian, Ali; Hamaker, Bruce R
2016-12-07
Previous work in our laboratory showed that alkali-solubilized corn arabinoxylan (CAX) has a slow initial, but later complete, in vitro human fecal fermentation. CAX and a moderately high molecular weight hydrolysate (CH) were propiogenic, and produced low levels of butyrate. Here, we show that oxalic acid-generated hydrolysates from CAX, which include a large xylooligosaccharide, and free arabinose fractions, increased short chain fatty acid (SCFA) production, which included relatively high levels of both propionate and butyrate, an unusual SCFA combination. Hydrolytic degradation of CAX by acid hydrolysis (0.05 M oxalic acid at 100 °C for 2 h) and subsequent graded ethanol precipitations were used to obtain mixtures with different molecular weight ranges. Ethanol-precipitated fractions (F 0-65%, F 65-75%, F 75-85%) were mostly lower than 100 kDa and F > 85% was composed of monosaccharides and oligosaccharides of DP 2-8. Oxalic acid treatment caused the removal of all single arabinose unit branch chains and some di/trisaccharide branch chains, producing lightly substituted xylan backbone fragments, most of which were in the oligosaccharide (DP < 10) size range. In vitro human fecal fermentation analyses showed all oxalic acid-hydrolysate fractions were slower fermenting than fructooligosaccharides (FOS), but produced similar or higher amounts of total SCFAs. Butyrate production in two hydrolyzate fractions was double that of CH, while propionate levels remained relatively high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izquierdo, Javier A.; Pattathil, Sivakumar; Guseva, Anna
2014-11-18
Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass,more » and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. In conclusion, C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.« less
Boerman, J P; Potts, S B; VandeHaar, M J; Lock, A L
2015-10-01
The effects of partly replacing dietary starch with fiber and fat to provide a diet with similar net energy for lactation (NEL) density on yields of milk and milk components and on energy partitioning were evaluated in a crossover design experiment. Holstein cows (n = 32; 109 ± 22 d in milk, mean ± standard deviation) were randomly assigned to treatment sequence. Treatments were a high-starch diet containing 33% corn grain (mixture of dry ground and high-moisture corn; HS) or a high-fiber, high-fat diet containing 2.5% palmitic acid-enriched fatty acid (FA) supplement (HFF). Diets contained corn silage, alfalfa silage, and wheat straw as forage sources; HS contained 32% starch, 3.2% FA, and 25% neutral detergent fiber, whereas HFF contained 16% starch, 5.4% FA, and 33% neutral detergent fiber. Compared with HS, the HFF treatment reduced milk yield, milk protein concentration, and milk protein yield, but increased milk fat concentration, milk fat yield, milk energy output, and milk to feed ratio (energy-corrected milk/dry matter intake). The HFF treatment reduced the yield of de novo synthesized (< 16-carbon) milk FA and increased the yield of 16-carbon milk FA. Yield of preformed (> 16-carbon) milk FA was not different. The HFF treatment increased plasma concentrations of triglycerides and nonesterified fatty acids, but decreased plasma concentration of insulin. Compared with HS, the HFF treatment reduced body weight gain, change in body condition score, and fat thickness over the rump and rib. Calculated body energy gain, as a fraction of NEL use, was less for HFF than HS, whereas milk energy as a fraction of NEL use was increased for HFF. We concluded that the 2 treatments resulted in similar apparent NEL densities and intakes, but the HS treatment partitioned more energy toward body gain whereas the HFF treatment partitioned more energy toward milk. A high-fiber, high-fat diet might diminish the incidence of over conditioning in mid-lactation cows while maintaining high milk production. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.
1999-01-01
Tensile strength, creep strength, and rupture strength properties were measured for the following types of polymer-derived stoichiometric SiC fibers: Hi-Nicalon Type S from Nippon Carbon, Tyranno SA from Ube, and Sylramic from Dow Corning. Also included in this study were an earlier version of the SA fiber plus two recent developmental versions of the Sylramic fiber. The tensile strength measurements were made at room temperature on as-received fibers and on fibers after high-temperature inert exposure. The creep-rupture property data were obtained at 1400 deg C in air as well as, argon. Some fiber types showed strong effects of environment on their strength properties. These results are compared and discussed in terms of underlying mechanisms and implications for ceramic composites.
High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose
Amit Saxena; Thomas J. Elder; Jeffrey Kenvin; Arthur J. Ragauskas
2010-01-01
The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more...
Jakeman, Steven A; Henry, Courtney N; Martin, Berdine R; McCabe, George P; McCabe, Linda D; Jackson, George S; Peacock, Munro; Weaver, Connie M
2016-09-01
Dietary soluble corn fiber (SCF) significantly improves calcium absorption in adolescents and the bone strength and architecture in rodent models. In this study, we aimed to determine the skeletal benefits of SCF in postmenopausal women. We used our novel technology of determining bone calcium retention by following the urinary appearance of (41)Ca, a rare long-lived radioisotope, from prelabeled bone to rapidly and sensitively evaluate the effectiveness of SCF in reducing bone loss. A randomized-order, crossover, double-blinded trial was performed in 14 healthy postmenopausal women to compare doses of 0, 10, and 20 g fiber from SCF/d for 50 d. A dose-response effect was shown with 10 and 20 g fiber from SCF/d, whereby bone calcium retention was improved by 4.8% (P < 0.05) and 7% (P < 0.04), respectively. The bone turnover biomarkers N-terminal telopeptide and osteocalcin were not changed by the interventions; however, a significant increase in bone-specific alkaline phosphatase, which is a bone-formation marker, was detected between 0 and 20 g fiber from SCF/d (8%; P = 0.035). Daily SCF consumption significantly increased bone calcium retention in postmenopausal women, which improved the bone calcium balance by an estimated 50 mg/d. This study was registered at clinicaltrials.gov as NCT02416947. © 2016 American Society for Nutrition.
Rakitin, Andrey L; Ermakova, Alexandra Y; Ravin, Nikolai V
2015-09-01
Three endoxylanase-encoding genes from the moderately themophilic chemoorganotrophic bacterium Melioribacter roseus were cloned and expressed in Escherichia coli. Genes xyl2091 (Mros_2091) and xyl2495 (Mros_2495) encode GH10 family hydrolases, whereas xyl2090 (Mros_2090) represents the GH30 family. In addition to catalytic domains, Xyl2090 and Xyl2091 contain carbohydrate-binding modules that could facilitate their binding to xylans and Por sorting domains associated with the sorting of proteins from the periplasm to the outer membrane, where they are covalently attached. Recombinant endoxylanase Xyl2495 exhibited a high specific activity of 1,920 U/mg on birchwood xylan at 40°C. It is active at low temperatures, exhibiting more than 30% of the maximal activity even at 0°C. Endoxylanases Xyl2090 and Xyl2091 have lower specific activities but higher temperature optima at 80°C and 65°C, respectively. Analysis of xylan hydrolysis products revealed that Xyl2090 generates xylo-oligosaccharides longer than xylopentaose. Xylose and xylobiose are the major products of xylan hydrolysis by the recombinant Xyl2091 and Xyl2495. No activity against cellulose was observed for all enzymes. The presence of three xylanases ensures efficient xylan hydrolysis by M. roseus. The highly processive "free" endoxylanase Xyl2495 could hydrolyze xylan under moderate temperatures. Xylan hydrolysis at elevated temperatures could be accomplished by concerted action of two cell-bound xylanases; Xyl2090 that probably degrades xylans to long xylo-oligosaccharides, and Xyl2091 hydrolyzing them to xylose and xylobiose. The new endoxylanases could be useful for saccharification of lignocellulosic biomass in biofuels production, bleaching of paper pulp, and obtaining low molecular weight xylooligosaccharides.
Phenylacetic and Phenylpropionic Acids Do Not Affect Xylan Degradation by Ruminococcus albus
Reveneau, Carine; Adams, Sarah E.; Cotta, M. A.; Morrison, M.
2003-01-01
Since the addition of either ruminal fluid or a combination of phenylacetic and phenylpropionic acids (PAA/PPA) has previously been shown to dramatically improve cellulose degradation and growth of Ruminococcus albus, it was of interest to determine the effects of these additives on xylan-grown cultures. Although cell-bound xylanase activity increased when either PAA/PPA or ruminal fluid was added to the growth medium, total xylanase did not change, and neither of these supplements affected the growth or xylan-degrading capacity of R. albus 8. Similarly, neither PAA/PPA nor ruminal fluid affected xylan degradation by multiple strains of R. albus when xylan prepared from oat spelts was used as a carbohydrate source. These results show that the xylanolytic potential of R. albus is not conditional on the availability of PAA/PPA or other components of ruminal fluid. PMID:14602663
Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.
Jurak, Edita; Kabel, Mirjam A; Gruppen, Harry
2014-01-30
Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prem Anand, A Alwin; Sripathi, K
2004-09-01
Bats (Order Chiroptera) are a widely distributed group of mammals. Pteropus giganteus belongs to the Suborder Megachiroptera. This bat consumes fruits and leaves as their major food. Cellulose and xylan are the major composition of leaves. As they consume leaves in their diet, their digestive tract must contain cellulolytic and xylanolytic bacteria which help in the digestion of cellulose and xylan. The cellulolytic and xylanolytic bacteria were isolated and screened on Berg's agar containing cellulose and xylan. The bacteria isolated were characterized biochemically and found to be Proteus vulgaris, Proteus mirabilis, Citrobacter freundii, Serratia liquefaciens and Klebsiella oxytoca. These bacteria help in digestion of cellulose and xylan in the diet of the bat, P. giganteus. Here we show that leaves are also used as a carbohydrate source by these bats. An insectivorous bat, Hipposideros fulvus, was used as a control and does not possess cellulolytic and xylanolytic bacteria.
da Silva, Leila Picolli; Ciocca, Maria de Lourdes Santorio; Furlong, Eliana Badiale
2003-12-01
The precision attributes and use of the enzymatic-gravimetric method of Prosky et al. (1992) (AOAC 985.29) were evaluated using corn (BR 5202 Pampa) and oat (UFRGS 15) samples. The effect of laboratory batches carried out in different days were evaluated in six laboratory batches, using for each material one duplicate for total fiber (FT) determination, one duplicate for insoluble fiber (FI) determination and blank ones for FT and for FI (both in duplicate). In order to characterize repetitive aspects, five other FT and FI determinations added to each sample were evaluated, summing up 11 data. The low coefficients of variation in the first six batches were considered acceptable as an expression of expected total intralaboratory variation. The repetitive of the method was considered good for FT determinations (CVs < 10%). However, in the FI determination a high frequency of negative values of ash and blanks was found, impairing the repetitive aspects evaluation. The magnitude of the total gravimetric corrections varies with the kind of the sample and is especially influenced by the protein content.
Baral, Nawa Raj; Shah, Ajay
2017-05-01
Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.
Sizova, M V; Izquierdo, J A; Panikov, N S; Lynd, L R
2011-04-01
Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation.
Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Hassanat, Fadi
2014-12-09
The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS) to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss) in dairy slurry on fugitive CH₄ emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29%) the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS), fat, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH₄ emissions showed a significant increase of 15% (p < 0.05) for the slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH₄ emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05) in fugitive CH₄ emissions.
Kargar, S; Ghorbani, G R; Khorvash, M; Sadeghi-Sefidmazgi, A; Schingoethe, D J
2014-11-01
The effect of barley-based (BBD) or corn-based diets (CBD), or their equal blend (BCBD) on dry matter (DM) intake, feeding and chewing behavior, and production performance of lactating dairy cows was evaluated. Nine multiparous Holstein cows (75.6 ± 11.0 d in milk) were used in a triplicate 3 × 3 Latin square design with 21-d periods. Forage-to-concentrate ratio (40:60), forage neutral detergent fiber (20% of DM), total neutral detergent fiber (>29% of DM), and geometric mean particle size (4.3mm) were similar among treatments. Meal patterns, including meal size and intermeal interval, were not affected by the dietary treatments and DM intake (25.6 kg/d) was not different among treatments. Ether extract intake increased linearly with increasing amount of the corn grain in the diets. Due to similar feed intake, actual milk (48.6 kg/d), 4% fat-corrected milk (36.8 kg/d), and fat- and protein-corrected milk (38.1 kg/d) yields were not affected by treatments. Average milk protein percentage and yield were 2.83% and 1.37 kg/d, respectively, and were not different across treatments. Milk fat percentage increased linearly with increasing amount of corn grain in the diets and was greater in CBD relative to BCBD but not BBD (2.31, 2.28, and 2.57%, for BBD, BCBD, and CBD, respectively). However, milk fat yield tended to show a linear increase as the amount of corn grain included in the diets increased. Results indicated that changing diet fermentability by replacing barley grain for corn grain in oil-supplemented diets did not influence feeding patterns and thereby no changes in feed intake and milk yield occurred. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Blake, Andrew D.; Beri, Nina R.; Guttman, Hadassa S.; ...
2017-12-21
Lignocellulose degradation by microbes plays a central role in global carbon cycling, human gut metabolism, and renewable energy technologies. While considerable effort has been put into understanding the biochemical aspects of lignocellulose degradation, much less work has been done to understand how these enzymes work in an in vivo context. Here in this paper, we report a systems level study of xylan degradation in the saprophytic bacterium Cellvibrio japonicus. Transcriptome analysis indicated seven genes that encode carbohydrate active enzymes were up-regulated during growth with xylan containing media. In-frame deletion analysis of these genes found that only gly43F is critical formore » utilization of xylo-oligosaccharides, xylan, and arabinoxylan. Heterologous expression of gly43F was sufficient for the utilization of xylo-oligosaccharides in Escherichia coli. Additional analysis found that the xyn11A, xyn11B, abf43L, abf43K, and abf51A gene products were critical for utilization of arabinoxylan. Furthermore, a predicted transporter (CJA_1315) was required for effective utilization of xylan substrates, and we propose this unannotated gene be called xntA (xylan transporter A). Our major findings are 1) C. japonicus employs both secreted and surface associated enzymes for xylan degradation, which differs from the strategy used for cellulose degradation, and 2) a single cytoplasmic β-xylosidase is essential for the utilization of xylo-oligosaccharides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Andrew D.; Beri, Nina R.; Guttman, Hadassa S.
Lignocellulose degradation by microbes plays a central role in global carbon cycling, human gut metabolism, and renewable energy technologies. While considerable effort has been put into understanding the biochemical aspects of lignocellulose degradation, much less work has been done to understand how these enzymes work in an in vivo context. Here in this paper, we report a systems level study of xylan degradation in the saprophytic bacterium Cellvibrio japonicus. Transcriptome analysis indicated seven genes that encode carbohydrate active enzymes were up-regulated during growth with xylan containing media. In-frame deletion analysis of these genes found that only gly43F is critical formore » utilization of xylo-oligosaccharides, xylan, and arabinoxylan. Heterologous expression of gly43F was sufficient for the utilization of xylo-oligosaccharides in Escherichia coli. Additional analysis found that the xyn11A, xyn11B, abf43L, abf43K, and abf51A gene products were critical for utilization of arabinoxylan. Furthermore, a predicted transporter (CJA_1315) was required for effective utilization of xylan substrates, and we propose this unannotated gene be called xntA (xylan transporter A). Our major findings are 1) C. japonicus employs both secreted and surface associated enzymes for xylan degradation, which differs from the strategy used for cellulose degradation, and 2) a single cytoplasmic β-xylosidase is essential for the utilization of xylo-oligosaccharides.« less
NASA Astrophysics Data System (ADS)
Sayler, Nicholas
Nonlinear microscopy benefits from broadband laser sources, enabling efficient excitation of an array of fluorophores, for example. This work demonstrates broadening of a narrow band input pulse (6 nm to 40 nm) centered at 1040 nm with excellent shot-to-shot stability. In a preliminary demonstration, multiphoton imaging with pulses from the fiber is performed. In particular second harmonic imaging of corn starch is performed.
Smart Materials, Structures, and Mathematical Issues for Active Damage Control
1997-10-01
composites at both low and high velocities. The effect of low volume fractions (3% and 6%) of embedded Nitinol fibers on the impact-absorbing ability...ICI Wilton Materials Research Center General Dynamics Lockheed-Martin Hercules Aerospace Company U.S. Nitinol Owens-Corning DSB Associates...Reduction in a Plate," submitted to AIAA Journal. Paine, J. S. N., Rogers, C. A. 1993. "Characterization of Interfacial Adhesion of Nitinol Fibers
Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata
2014-01-01
Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum, L.) is a potential dedicated biomass crop for use in biocatalytic conversion systems to biofuels. Nearly 30% of switchgrass cell wall material is xylan. The complete depolymerization of xylan is desirable both as an additional carbon source for microbial fermentation a...
NASA Astrophysics Data System (ADS)
Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.
1994-03-01
Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.
Zhong, R Z; Li, J G; Gao, Y X; Tan, Z L; Ren, G P
2008-10-01
Eight multiparous Holstein cows, 4 of them fitted with rumen cannulas, were used to test the effects of substitution of steam-flaked corn (SFC) for equal amounts of finely ground corn (FGC) in diets on feed intake and digestion, blood metabolites, and lactation performance in early lactation dairy cows. Cows were fed 4 diets in a replicated 4 x 4 Latin square design. The fistulated cows formed 1 replicate. Each experimental period lasted for 3 wk. The 4 diets contained 0, 10, 20, or 40% SFC and 40, 30, 20, or 0% FGC (dry matter basis), respectively. The milk protein content and yield, milk solid nonfat content and yield, plasma glucose concentration, and dry matter intake increased as the proportion of SFC increased in diets. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, and average ruminal fluid NH(3)-N concentration decreased with increasing levels of SFC. The ruminal fluid pH was not affected by the substitution of SFC for FGC. The 20% SFC substitution improved digestion of crude protein, yield of fat-corrected milk, milk lactose content, fat, and fat yield. The 40% SFC substitution increased urea concentration in both plasma and milk. It was concluded that 20% of SFC substitution for FGC appeared to be an appropriate level in diet for early lactation dairy cows.
NASA Astrophysics Data System (ADS)
Qin, Yanlin; Qiu, Xueqing; Zhu, J. Y.
2016-10-01
Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFX) as a severity factor to quantitatively control xylan dissolution and BEP fibril deploymerization. More importantly, we were able to accurately predict the degree of polymerization (DP) of disk-milled fibrils using CHFX and milling time or milling energy consumption. Experimentally determined ratio of fibril DP and number mean fibril height (diameter d), DP/d, an aspect ratio measurer, were independent of the processing conditions. Therefore, we hypothesize that cellulose have a longitudinal hierarchical structure as in the lateral direction. Acid hydrolysis and milling did not substantially cut the “natural” chain length of cellulose fibrils. This cellulose longitudinal hierarchical model provides support for using weak acid hydrolysis in the production of cellulose nanofibrils with substantially reduced energy input without negatively affecting fibril mechanical strength.
Yang, Yu; Hu, Chang-Wei; Abu-Omar, Mahdi M
2012-02-13
Furfural was prepared in high yields (75 %) from the reaction of xylose in a water-tetrahydrofuran biphasic medium containing AlCl(3)·6H2O and NaCl under microwave heating at 140 °C. The reaction profile revealed the formation of xylulose as an intermediate en route to the dehydration product (furfural). The reaction under these conditions reached completion in 45 min. The aqueous phase containing AlCl(3)·6H(2)O and NaCl could be recycled multiple times (>5) without any loss of activity or selectivity for furfural. Extension of this biphasic reaction system to include xylan as the starting material afforded furfural in 64 % yield. The use of corn stover, pinewood, switchgrass, and poplar gave furfural in 55, 38, 56, and 64 % yield, respectively, at 160 °C. Even though AlCl(3)·6H(2)O did not affect the conversion of crystalline cellulose, moderate yields of the by-product 5-hydroxymethylfurfural (HMF) were noted. The highest HMF yield of 42 % was obtained from pinewood. The coproduction of HMF and furfural from biomass was attributed to the weakening of the cellulose network in the biomass, as a result of hemicellulose hydrolysis. The multifunctional capacity of AlCl(3)·6H(2)O (hemicellulose hydrolysis, xylose isomerization, and xylulose dehydration) in combination with its ease of recyclability make it an attractive candidate/catalyst for the selective synthesis of furfural from various biomass feedstocks. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hooda, Seema; Boler, Brittany M Vester; Serao, Mariana C Rossoni; Brulc, Jennifer M; Staeger, Michael A; Boileau, Thomas W; Dowd, Scot E; Fahey, George C; Swanson, Kelly S
2012-07-01
The relative contribution of novel fibers such as polydextrose and soluble corn fiber (SCF) to the human gut microbiome and its association with host physiology has not been well studied. This study was conducted to test the impact of polydextrose and SCF on the composition of the human gut microbiota using 454 pyrosequencing and to identify associations among fecal microbiota and fermentative end-products. Healthy adult men (n = 20) with a mean dietary fiber (DF) intake of 14 g/d were enrolled in a randomized, double-blind, placebo-controlled crossover study. Participants consumed 3 treatment snack bars/d during each 21-d period that contained no supplemental fiber (NFC), polydextrose (PDX; 21 g/d), or SCF (21 g/d) for 21 d. There were no washout periods. Fecal samples were collected on d 16-21 of each period; DNA was extracted, followed by amplification of the V4-V6 region of the 16S rRNA gene using barcoded primers. PDX and SCF significantly affected the relative abundance of bacteria at the class, genus, and species level. The consumption of PDX and SCF led to greater fecal Clostridiaceae and Veillonellaceae and lower Eubacteriaceae compared with a NFC. The abundance of Faecalibacterium, Phascolarctobacterium, and Dialister was greater (P < 0.05) in response to PDX and SCF intake, whereas Lactobacillus was greater (P < 0.05) only after SCF intake. Faecalibacterium prausnitzii, well known for its antiinflammatory properties, was greater (P < 0.05) after fiber consumption. Principal component analysis clearly indicated a distinct clustering of individuals consuming supplemental fibers. Our data demonstrate a beneficial shift in the gut microbiome of adults consuming PDX and SCF, with potential application as prebiotics.
Walugembe, M; Hsieh, J C F; Koszewski, N J; Lamont, S J; Persia, M E; Rothschild, M F
2015-10-01
This experiment was conducted to evaluate the effects of feeding dietary fiber on cecal short-chain fatty acid (SCFA) concentration and cecal microbiota of broiler and laying-hen chicks. The lower fiber diet was based on corn-soybean meal (SBM) and the higher fiber diet was formulated using corn-SBM-dried distillers grains with solubles (DDGS) and wheat bran to contain 60.0 g/kg of both DDGS and wheat bran from 1 to 12 d and 80.0 g/kg of both DDGS and wheat bran from 13 to 21 d. Diets were formulated to meet or exceed NRC nutrient requirements. Broiler and laying-hen chicks were randomly assigned to the high and low fiber diets with 11 replicates of 8 chicks for each of the 4 treatments. One cecum from 3 chicks was collected from each replicate: one cecum underwent SCFA concentration analysis, one underwent bacterial DNA isolation for terminal restriction fragment length polymorphism (TRFLP), and the third cecum was used for metagenomics analyses. There were interactions between bird line and dietary fiber for acetic acid (P = 0.04) and total SCFA (P = 0.04) concentration. There was higher concentration of acetic acid (P = 0.02) and propionic acid (P < 0.01) in broiler chicks compared to laying-hen chicks. TRFLP analysis showed that cecal microbiota varied due to diet (P = 0.02) and chicken line (P = 0.03). Metagenomics analyses identified differences in the relative abundance of Helicobacter pullorum and Megamonas hypermegale and the genera Enterobacteriaceae, Campylobacter, Faecalibacterium, and Bacteroides in different treatment groups. These results provide insights into the effect of dietary fiber on SCFA concentration and modulation of cecal microbiota in broiler and laying-hen chicks. © 2015 Poultry Science Association Inc.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1989-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Anti-inflammatory effect of microbial consortia during the utilization of dietary polysaccharides.
Thomson, Pamela; Medina, Daniel A; Ortúzar, Verónica; Gotteland, Martín; Garrido, Daniel
2018-07-01
The gut microbiome has a significant impact on host health, especially at the metabolic level. Dietary compounds arriving at the colon have a large influence on the composition of the gut microbiome. High fiber diets have been associated to health benefits that are mediated in great part by short chain fatty acids (SCFA). Gut microbial interactions are relevant for the utilization of complex carbohydrates in the gut microbiome. In this work we characterized the utilization of two dietary polysaccharides by combinations of representative adult gut microbes, and the impact of their activities on a cellular inflammation model. Paired combinations of Bifidobacterium adolescentis, Bacteroides dorei, Lactobacillus plantarum, Escherichia coli and Clostridium symbiosum were grown in inulin or xylan as carbon source. Their relative abundance, substrate consumption and major SCFAs produced were determined. Higher cell growth was observed during inulin consumption, and B. adolescentis and L. plantarum were dominant in co-cultures. The co-culture of B. dorei and C. symbiosum was dominant in xylan. In several cases the combined bacterial growth was lower in co-cultures than monocultures, with a few exceptions of synergistic growth between microorganisms. Inulin fermentation resulted in larger acetate and lactate concentrations, and several combinations grown in xylan containing C. symbiosum were characterized by high amounts of butyrate. These microbial consortia were scaled to batch bioreactor fermentations reaching high cell densities and similar profiles to co-culture experiments. Interestingly, a microbial combination producing high amounts of butyrate was able to reduce IL-8 expression in HT-29 cells co-incubated with TNFα. In summary, this work shows that microbial interactions during the utilization of dietary polysaccharides are complex and substrate dependent. Moreover, certain combinations deploy potent anti-inflammatory effects, which are independent of individual microbial growth, and could be mediated in part by higher butyrate production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sensory, Physico-Chemical and Water Sorption Properties of Corn Extrudates Enriched with Spirulina.
Tańska, Małgorzata; Konopka, Iwona; Ruszkowska, Millena
2017-09-01
This study compares the quality of extrudates made from corn grits with the addition of up to 8% of spirulina powder. The sensory properties (shape, color, aroma, taste and crispness), chemicals (content of water, protein, fat, ash, fiber, carbohydrates, carotenoids, chlorophyll and phycocyanin) and physical properties (color, water absorption index, expansion indices, texture and water sorption properties) were determined. It has been found that spirulina-enriched extrudates had slightly lower sensory scores, but the addition of spirulina improved their nutritional value. The contents of protein, ash, fiber and β-carotene increased in extrudates with 8% of spirulina by 34, 36, 140 and 1,260%, respectively. The increasing addition of spirulina caused a decrease in extrudates lightness, an increase in their greenness and yellowness accompanied by a decrease of expansion indices and an increase of softness. Only small differences were found in water sorption properties, suggesting a similar behavior of spirulina-enriched extrudates during storage.
Kim, Tae Hyun; Ryu, Hyun Jin; Oh, Kyeong Keun
2016-10-01
Low acid hydrothermal (LAH) fractionation was developed for the effective recovery of hemicellulosic sugar (mainly xylose) from Miscanthus sacchariflorus Goedae-Uksae 1 (M. GU-1). The xylose yield was maximized at 74.75% when the M. GU-1 was fractionated at 180°C and 0.3wt.% of sulfuric acid for 10min. At this condition, the hemicellulose (mainly xylan) degradation was 86.41%. The difference between xylan degradation and xylose recovery yield, i.e., xylan loss, was 11.66%, as indicated by the formation of decomposed products. The furfural, the value added biochemical product, was also obtained by 0.42g/L at this condition, which was 53.82% of furfural production yield based on the xylan loss. After then, the furfural production continued to increase to a maximum concentration of 1.87g/L, at which point the xylan loss corresponded to 25.87%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Trajano, Heather L; Pattathil, Sivakumar; Tomkins, Bruce A; Tschaplinski, Timothy J; Hahn, Michael G; Van Berkel, Gary J; Wyman, Charles E
2015-03-01
Previous studies defined easy and difficult to hydrolyze fractions of hemicellulose that may result from bonds among cellulose, hemicellulose, and lignin. To understand how such bonds affect hydrolysis, Populus trichocarpa × Populus deltoides, holocellulose isolated from P. trichocarpa × P. deltoides and birchwood xylan were subjected to hydrothermal flow-through pretreatment. Samples were characterized by glycome profiling, HPLC, and UPLC-MS. Glycome profiling revealed steady fragmentation and removal of glycans from solids during hydrolysis. The extent of polysaccharide fragmentation, hydrolysis rate, and total xylose yield were lowest for P. trichocarpa × P. deltoides and greatest for birchwood xylan. Comparison of results from P. trichocarpa × P. deltoides and holocellulose suggested that lignin-carbohydrate complexes reduce hydrolysis rates and limit release of large xylooligomers. Smaller differences between results with holocellulose and birchwood xylan suggest xylan-cellulose hydrogen bonds limited hydrolysis, but to a lesser extent. These findings imply cell wall structure strongly influences hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Properties of polyvinyl alcohol/xylan composite films with citric acid.
Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie
2014-03-15
Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming. Copyright © 2013. Published by Elsevier Ltd.
Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR
NASA Astrophysics Data System (ADS)
Simmons, Thomas J.; Mortimer, Jenny C.; Bernardinelli, Oigres D.; Pöppler, Ann-Christin; Brown, Steven P.; Deazevedo, Eduardo R.; Dupree, Ray; Dupree, Paul
2016-12-01
Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.
Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR.
Simmons, Thomas J; Mortimer, Jenny C; Bernardinelli, Oigres D; Pöppler, Ann-Christin; Brown, Steven P; deAzevedo, Eduardo R; Dupree, Ray; Dupree, Paul
2016-12-21
Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13 C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.
Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro
2017-11-01
Sorbitol and xylitol yields can be improved by converting cellulose and xylan simultaneously, due to a synergetic effect between both substrates. Furthermore, both yields can be greatly enhanced by simply adjusting the reaction conditions regarding the optimum for the production of each product, since xylitol (from xylan) and sorbitol (from cellulose) yields are maximized when the reaction is carried out at 170 and 205°C, respectively. Therefore, the combination of a simultaneous conversion of cellulose and xylan with a two-step temperature approach, which consists in the variation of the reaction temperature from 170 to 205°C after 2h, showed to be a good strategy for maximizing the production of sorbitol and xylitol directly from mixture of cellulose and xylan. Using this new and environmentally friendly approach, yields of sorbitol and xylitol of 75 and 77%, respectively, were obtained after 6h of reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Railroad Regulation: Changes in Freight Railroad Rates from 1997 through 2000
2002-06-01
Routes, 1990–2000 19 Figure 5: Real Rail Rates for Plastic Materials or Synthetic Fibers, Resins, or Rubbers, Selected Short-Distance Routes, 1990–2000...Compounds, Selected Short-, Medium-, and Long-Distance Routes, 1990–2000 39 Figure 14: Real Rail Rates for Plastic Materials or Synthetic Fibers, Resins...Transportation Board to determine rates for coal, grain (wheat and corn), chemicals (potassium and sodium compounds and plastic materials or synthetic
Inclusion of wheat and triticale silage in the diet of lactating dairy cows.
Harper, M T; Oh, J; Giallongo, F; Roth, G W; Hristov, A N
2017-08-01
The objective of this experiment was to partially replace corn silage with 2 alternative forages, wheat (Triticum aestivum) or triticale (X Triticosecale) silages at 10% of the diet dry matter (DM), and investigate the effects on dairy cow productivity, nutrient utilization, enteric CH 4 emissions, and farm income over feed costs. Wheat and triticale were planted in the fall as cover crops and harvested in the spring at the boot stage. Neutral- and acid-detergent fiber and lignin concentrations were higher in the wheat and triticale silages compared with corn silage. The forages had similar ruminal in situ effective degradability of DM. Both alternative forages had 1% starch or less compared with the approximately 35% starch in corn silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, wheat or triticale silages were included at 10% of dietary DM, replacing corn silage. Dry matter intake was not affected by diet, but both wheat and triticale silage decreased yield of milk (41.4 and 41.2 vs. 42.7 ± 5.18 kg/d) and milk components, compared with corn silage. Milk fat from cows fed the alternative forage diets contained higher concentrations of 4:0, 6:0, and 18:0 and tended to have lower concentrations of total trans fatty acids. Apparent total-tract digestibility of DM and organic matter was decreased in the wheat silage diet, and digestibility of neutral-and acid-detergent fiber was increased in the triticale silage diet. The wheat and triticale silage diets resulted in higher excretion of urinary urea, higher milk urea N, and lower milk N efficiency compared with the corn silage diet. Enteric CH 4 emission per kilogram of energy-corrected milk was highest in the triticale silage diet, whereas CO 2 emission was decreased by both wheat and triticale silage. This study showed that, at milk production of around 42 kg/d, wheat silage and triticale silage can partially replace corn silage DM and not affect DM intake, but milk yield may decrease slightly. For dairy farms in need of more forage, triticale or wheat double cropped with corn silage may be an appropriate cropping strategy. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
... Pumpkin Acorn squash Butternut squash Green Peas Corn Beans, Legumes, Peas and Lentils Try to include beans into several meals per week. They are a ... and are loaded with fiber, vitamins and minerals. Beans such as black, kidney, and pinto Bean products ...
Fang, Hong; Kandhola, Gurshagan; Rajan, Kalavathy; Djioleu, Angele; Carrier, Danielle Julie; Hood, Kendall R; Hood, Elizabeth E
2018-01-01
Loblolly pine residues have enormous potential to be the raw material for advanced biofuel production due to extensive sources and high cellulose content. Hot water (HW) pretreatment, while being a relatively economical and clean technology for the deconstruction of lignocellulosic biomass, could also inhibit the ensuing enzymatic hydrolysis process because of the production of inhibitors. In this study, we investigated the effect of oligosaccharide fractions purified from HW pre-hydrolyzate of pinewood using centrifugal partition chromatography (CPC) on three recombinant cellulolytic enzymes (E1, CBHI and CBHII), which were expressed in the transgenic corn grain system. The efficiency of recombinant enzymes was measured using either a 4-methylumbelliferyl-β-D-cellobioside (MUC) or a cellulose-dinitrosalicylic acid (DNS) assay system. The results showed that HW pre-hydrolyzate CPC fractions contain phenolics, furans, and monomeric and oligomeric sugars. Among CPC fractions, oligomers composed of xylan, galactan, and mannan were inhibitory to the three recombinant enzymes and to the commercial cellulase cocktail, reducing the enzymatic efficiency to as low as 10%.
Yang, Yi; Yang, Jinshui; Liu, Jiawen; Wang, Ruonan; Liu, Liang; Wang, Fengqin; Yuan, Hongli
2018-06-01
Herein, we report the secretome of Penicillium chrysogenum P33 under induction of lignocellulose for the first time. A total of 356 proteins were identified, including complete cellulases and numerous hemicellulases. Supplementing a commercial cellulase with increasing dosage of P33 enzyme cocktail from 1 to 5 mg/g substrate increased the release of reducing sugars from delignified corn stover by 21.4% to 106.8%. When 50% cellulase was replaced by P33 enzyme cocktail, release of reducing sugars was 78.6% higher than with cellulase alone. Meanwhile, glucan and xylan conversion was increased by 37% and 106%, respectively. P33 enzyme cocktail also enhanced commercial cellulase hydrolysis against four different delignified lignocellulosic biomass. These findings demonstrate that mixing appropriate amount of P33 cocktail with cellulase improves polysaccharide hydrolysis, suggesting P33 enzymes have great potential for industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of carbon dioxide on the thermal degradation of lignocellulosic biomass.
Kwon, Eilhann E; Jeon, Eui-Chan; Castaldi, Marco J; Jeon, Young Jae
2013-09-17
Using biomass as a renewable energy source via currently available thermochemical processes (i.e., pyrolysis and gasification) is environmentally advantageous owing to its intrinsic carbon neutrality. Developing methodologies to enhance the thermal efficiency of these proven technologies is therefore imperative. This study aimed to investigate the use of CO2 as a reaction medium to increase not only thermal efficiency but also environmental benefit. The influence of CO2 on thermochemical processes at a fundamental level was experimentally validated with the main constituents of biomass (i.e., cellulose and xylan) to avoid complexities arising from the heterogeneous matrix of biomass. For instance, gaseous products including H2, CH4, and CO were substantially enhanced in the presence of CO2 because CO2 expedited thermal cracking behavior (i.e., 200-1000%). This behavior was then universally observed in our case study with real biomass (i.e., corn stover) during pyrolysis and steam gasification. However, further study is urgently needed to optimize these experimental findings.
The complex of xylan and iodine: the induction and detection of nanoscale order
Xiaochun Yu; Rajai H. Atalla
2005-01-01
The complex of xylan and iodine and its formation in a solution of xylan, CaCl2, and I2 + KI was investigated by UV/Vis, second-derivative UV/Vis, and Raman spectroscopy. The complex forms only at very high concentrations of CaCl2, suggesting that when the water available in the solution is not sufficient to fully hydrate the calcium cation the chelation with the...
Dilute acid hydrolysis of paper birch : kinetics studies of xylan and acetyl-group hydrolysis
Mark T. Maloney; Thomas W. Chapman; Andrew J. Baker
1985-03-01
Batch hydrolysis kinetics of paper birch (Betula papyrifera) xylan and its associated acetyl groups in dilute sulfuric acid have been measured for acid concentrations of between 0.04 and 0.18 M and temperatures of between 100 and 170°C. Only 5% of the cellulose was hydrolyzed for up to 85% xylan removal. Rate data were correlated well by a parallel reaction model based...
Schäfer, Judith; Stanojlovic, Luisa; Trierweiler, Bernhard; Bunzel, Mirko
2017-03-01
Storage related changes in the cell wall composition potentially affect the texture of plant-based foods and the physiological effects of cell wall based dietary fiber components. Therefore, a detailed characterization of cell wall polysaccharides and lignins from broccoli stems was performed. Freshly harvested broccoli and broccoli stored at 20°C and 1°C for different periods of time were analyzed. Effects on dietary fiber contents, polysaccharide composition, and on lignin contents/composition were much more pronounced during storage at 20°C than at 1°C. During storage, insoluble dietary fiber contents of broccoli stems increased up to 13%. Storage related polysaccharide modifications include an increase of the portions of cellulose, xylans, and homogalacturonans and a decrease of the neutral pectic side-chains arabinans and galactans. Broccoli stem lignins are generally rich in guaiacyl units. Lignins from freshly harvested broccoli stems contain slightly larger amounts of p-hydroxyphenyl units than syringyl units. Syringyl units are predominantly incorporated into the lignin polymers during storage, resulting in increased acetyl bromide soluble lignin contents. NMR-based analysis of the interunit linkage types of broccoli stem lignins revealed comparably large portions of resinol structures for a guaiacyl rich lignin. Incorporation of syringyl units into the polymers over storage predominantly occurs through β-O-4-linkages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luo, Yuqiong; Shen, Suqin; Luo, Jiwen; Wang, Xiaoying; Sun, Runcang
2015-01-14
This work reported a facile and green method to prepare highly stable and uniformly distributed Ag nanoparticles (AgNPs), in which a biopolymer xylan was used as the stabilizing and reducing agent via the Tollens reaction under microwave irradiation. Different variables were evaluated to optimize the reaction conditions. Complete characterization was performed using UV-Vis, XRD, TEM, size distribution analysis and XPS. The results revealed that AgNPs were well dispersed with diameters of 20-35 nm due to the packing of xylan. The optimal conditions were as follows: microwave irradiation temperature was 60-70 °C, microwave power was 800 W, microwave time was 30 min, the ratio of xylan to AgNO3 was 50 mg: 0.13 mmol, and ammonia concentration was 2%. In addition, the AgNPs were collected via high-speed centrifugal separation, and the supernatant was tested by HPAEC, GPC, FT-IR, and NMR. By comparing the structure of xylan before and after the reaction, the reaction mechanism was discussed. It was noted that the xylan-AgNPs composites showed high selectivity and sensitivity for Hg(2+) detection. The other 15 metal ions used had no obvious effect on the detection of Hg(2+), and the limit of detection (LOD) was 4.6 nM, which is lower than the allowed maximum level of 30 nM for drinking water by WHO. In addition, the xylan-AgNPs composites can be applied for Hg(2+) detection in real water samples. This study provides a novel way for the high-value utilization of a rich biomass resource, and a green method for the synthesis of AgNPs for the selective and sensitive detection of harmful heavy metals.
Xuan, Lihui; Hui, Dongxue; Cheng, Wanli; Wong, Andrew H H; Han, Guangping; Tan, Wei Khong; Tawi, Carlson A D
2017-07-12
The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus.
Effect of Preservative Pretreatment on the Biological Durability of Corn Straw Fiber/HDPE Composites
Xuan, Lihui; Hui, Dongxue; Cheng, Wanli; Wong, Andrew H. H.; Han, Guangping; Tan, Wei Khong; Tawi, Carlson A. D.
2017-01-01
The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus. PMID:28773150
Phan, Jana L; Tucker, Matthew R; Khor, Shi Fang; Shirley, Neil; Lahnstein, Jelle; Beahan, Cherie; Bacic, Antony; Burton, Rachel A
2016-12-01
Xylans are the most abundant non-cellulosic polysaccharide found in plant cell walls. A diverse range of xylan structures influence tissue function during growth and development. Despite the abundance of xylans in nature, details of the genes and biochemical pathways controlling their biosynthesis are lacking. In this study we have utilized natural variation within the Plantago genus to examine variation in heteroxylan composition and structure in seed coat mucilage. Compositional assays were combined with analysis of the glycosyltransferase family 61 (GT61) family during seed coat development, with the aim of identifying GT61 sequences participating in xylan backbone substitution. The results reveal natural variation in heteroxylan content and structure, particularly in P. ovata and P. cunninghamii, species which show a similar amount of heteroxylan but different backbone substitution profiles. Analysis of the GT61 family identified specific sequences co-expressed with IRREGULAR XYLEM 10 genes, which encode putative xylan synthases, revealing a close temporal association between xylan synthesis and substitution. Moreover, in P. ovata, several abundant GT61 sequences appear to lack orthologues in P. cunninghamii. Our results indicate that natural variation in Plantago species can be exploited to reveal novel details of seed coat development and polysaccharide biosynthetic pathways. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Liu, Yang; Zhai, Chengkai; Sun, Guiju; Zhang, Hong; Jiang, Mingxia; Zhang, Haifeng; Guo, Junling; Lan, Xi
2014-05-01
To observe and compare the effects of grain-bean package, dietary fiber (DF) extracted from grain-bean package, and DF from grain corn on the blood lipids and fatty acid synthase (FAS) activity in high-fat, high-cholesterol feeding induced dyslipidemia rats, and observe its effects on regulation of sterol regulatory element protein-1c (SREBP-1c) mRNA expression in rat liver. Consolidation 50 SD rats of clean grade feeding adaptation for one week, randomly assigned into normal control group, hyperlipidemia model group, grain-bean package group, grain-bean package DF group and grain corn group. Feed with corresponding diets for 8 weeks, and measure the total cholesterol (TC), triglyceridaemia (TG), high density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), FAS, SREBP-1c mRNA of all groups. Compared with control group, TC, TG, FBG levels of hyperlipidemia model group were significantly increased (P < 0.05). Compared with model group, TC, TG, FBG levels of grain-bean package group, grain-bean package DF group were significantly decreased, HDL-C levels significantly increased, and activity of FAS, regulation of SREBP-1c were significantly decreased (P < 0.05). The Grain-bean package dietary fiber can improve blood lipids levels of dyslipidemia rats, and decrease FAS activity and SREBP-1c mRNA expression.
Knapp, Brenda K; Bauer, Laura L; Swanson, Kelly S; Tappenden, Kelly A; Fahey, George C; de Godoy, Maria R C
2013-02-04
The objective of this study was to evaluate health outcomes resulting from dietary supplementation of novel, low-digestible carbohydrates in the cecum and colon of Sprague-Dawley rats randomly assigned to one of four treatment groups for 21 days: 5% cellulose (Control), Pectin, soluble fiber dextrin (SFD), or soluble corn fiber (SCF). Rats fed Pectin had a higher average daily food intake, but no differences in final body weights or rates of weight gain among treatments were observed. No differences were observed in total short-chain fatty acid (SCFA) or branched-chain fatty acid (BCFA) concentrations in the cecum and colon of rats fed either SFD or SCF. The SFD and SCF treatments increased cecal propionate and decreased butyrate concentrations compared to Control or Pectin. Pectin resulted in increased BCFA in the cecum and colon. Supplementation of SFD and SCF had no effect on cecal microbial populations compared to Control. Consumption of SFD and SCF increased total and empty cecal weight but not colon weight. Gut histomorphology was positively affected by SFD and SCF. Increased crypt depth, goblet cell numbers, and acidic mucin were observed in both the cecum and colon of rats supplemented with SFD, SCF, and Pectin. These novel, low-digestible carbohydrates appear to be beneficial in modulating indices of hindgut morphology when supplemented in the diet of the rat.
Candida xylanilytica sp. nov., a xylan-degrading yeast species isolated from Thailand.
Boonmak, Chanita; Limtong, Savitree; Jindamorakot, Sasitorn; Am-In, Somjit; Yongmanitchai, Wichien; Suzuki, Ken-ichiro; Nakase, Takashi; Kawasaki, Hiroko
2011-05-01
Xylan is a major component of hemicellulose, which constitutes about 40 % of plant biomass. Hydrolysis of xylan into simple sugars is one of the important steps in the conversion of lignocellulosic material to value-added products. During an investigation of cellulose- and xylan-degrading yeasts, two yeast strains that were able to use cellulose and xylan as sole carbon source were found to represent a phylogenetically distinct species in the Spathaspora clade. The closest species in terms of pairwise sequence similarity in the D1/D2 domain of the LSU rRNA gene was Candida subhashii. The novel species can be distinguished from the other species in the Spathaspora clade based on the ability to assimilate methanol and raffinose, growth in medium containing 60 % glucose, and growth at 42 °C. It ferments glucose but not other carbohydrates. The name Candida xylanilytica sp. nov. is proposed for this species. The type strain is KU-Xn11(T) ( = NBRC 106499(T) = BCC 34694(T) = CBS 11761(T)).
Polydextrose and soluble corn fiber increase five-day fecal wet weight in healthy men and women.
Timm, Derek A; Thomas, William; Boileau, Thomas W; Williamson-Hughes, Patricia S; Slavin, Joanne L
2013-04-01
Dietary fiber has well-established beneficial effects on laxation. Many fibers have been developed with positive sensory properties and 2 such fibers are polydextrose (PDX) and soluble corn fiber (SCF), which can be added to many commercially produced products. We conducted a randomized, double-blind, placebo-controlled, crossover study comparing the laxative effects of PDX and SCF at a dose of 20 g/d with a low fiber control (LFC) eaten daily as a muffin and cereal in 36 healthy men and women. Each treatment period was 10 d with a 2-wk washout period between. Participants collected fecal samples during the last 5 d of each treatment and completed food diaries and gastrointestinal tolerance questionnaires on d 1, 2, and 10 of each treatment period. Five-day fecal wet weight was higher after the PDX and SCF treatments than the LFC treatment (P ≤ 0.0007). The number of stools per day and daily fecal output also were significantly greater during the PDX treatment compared with the LFC treatment. The whole gut transit time did not differ among treatments. The PDX treatment resulted in a softer stool (P = 0.002) than the SCF and LFC treatments. Fecal pH was lowered by the PDX treatment (P = 0.02), whereas SCF tended to lower it compared with the LFC treatment (P = 0.07). When the participants consumed PDX and SCF, they reported significantly more flatulence and borborygmi compared with when they consumed the LFC. Consumption of PDX and SCF at a dose of 20 g/d results in a mild laxative effect with nominal gastrointestinal tolerance issues.
Gunawan, Christa; Xue, Saisi; Pattathil, Sivakumar; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh
2017-01-01
Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomers after hydrolysis (72 h) with excess commercial enzyme loading (20 mg enzymes/g biomass). Nearly one third (7 out of 22%) of these total unconverted carbohydrates are present in unhydrolyzed solid (UHS) residues. The presence of these unconverted carbohydrates leads to a considerable sugar yield loss, which negatively impacts the overall economics of the biorefinery. Current commercial enzyme cocktails are not effective to digest specific cross-linkages in plant cell wall glycans, especially some of those present in hemicelluloses and pectins. Thus, obtaining information about the most recalcitrant non-cellulosic glycan cross-linkages becomes a key study to rationally improve commercial enzyme cocktails, by supplementing the required enzyme activities for hydrolyzing those unconverted glycans. In this work, cell wall glycans that could not be enzymatically converted to monomeric sugars from AFEX-pretreated corn stover (CS) were characterized using compositional analysis and glycome profiling tools. The pretreated CS was hydrolyzed using commercial enzyme mixtures comprising cellulase and hemicellulase at 7% glucan loading (~20% solid loading). The carbohydrates present in UHS and liquid hydrolysate were evaluated over a time period of 168 h enzymatic hydrolysis. Cell wall glycan-specific monoclonal antibodies (mAbs) were used to characterize the type and abundance of non-cellulosic polysaccharides present in UHS over the course of enzymatic hydrolysis. 4- O -methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan were found to be the most abundant epitopes recognized by mAbs in UHS and liquid hydrolysate, suggesting that the commercial enzyme cocktails used in this work are unable to effectively target those substituted polysaccharide residues. To our knowledge, this is the first report using glycome profiling as a tool to dynamically monitor recalcitrant cell wall carbohydrates during the course of enzymatic hydrolysis. Glycome profiling of UHS and liquid hydrolysates unveiled some of the glycans that are not cleaved and enriched after enzyme hydrolysis. The major polysaccharides include 4- O -methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan, suggesting that enzymes with glucuronidase and arabinofuranosidase activities are required to maximize monomeric sugar yields. This methodology provides a rapid tool to assist in developing new enzyme cocktails, by supplementing the existing cocktails with the required enzyme activities for achieving complete deconstruction of pretreated biomass in the future.
Andrae, J G; Hunt, C W; Pritchard, G T; Kennington, L R; Harrison, J H; Kezar, W; Mahanna, W
2001-09-01
A study involving a 2 x 2 x 2 factorial arrangement of treatments was conducted to evaluate effects of hybrid (Pioneer 3335 and 3489), maturity (half milkline and blacklayer), and mechanical processing (field chopper with and without on-board rollers engaged) on intake and digestibility of corn silage. Forty Angus steers (322 +/- 5.2 kg BW) were assigned to the eight silage treatments (five steers per treatment) and individually fed using electronic gates. Diets consisted of 60% corn silage and 40% chopped alfalfa hay (DM basis). Following a 5-d adaptation period, intake was measured for 7 d and subsequently fecal samples were collected for 5 d. Chromic oxide (5 g/d) was fed beginning 7 d before fecal sample collection and digestibility was determined by the ratio of Cr in the feed and feces. Steers were reallocated to treatments and these procedures were repeated, providing 10 observations per treatment. In addition, all silages were ruminally incubated in six mature cows for 0, 8, 16, 24, 48, and 96 h to determine extent and rate of DM, starch, NDF, and ADF disappearance. Processing increased DMI of hybrid 3489 but did not affect DMI of hybrid 3335 (hybrid x processing; P < 0.06). Total tract digestibility of DM, starch, NDF, and ADF decreased (P < 0.01) as plant maturity increased. Maturity tended to decrease starch digestibility more for hybrid 3489 than for hybrid 3335 (hybrid x maturity; P < 0.10). Processing increased (P < 0.01) starch digestibility but decreased (P < 0.01) NDF and ADF digestibility, resulting in no processing effect on DM digestibility. There was a numerical trend for processing to increase starch digestibility more for latethan for early-maturity corn silage (maturity x processing; P = 0.11). Processing increased in situ rates of DM and starch disappearance and maturity decreased in situ disappearance rates of starch and fiber. These data indicate that hybrid, maturity, and processing all affect corn silage digestibility. Mechanical processing of corn silage increased starch digestibility, which may have been associated with the observed decreased fiber digestibility.
Miyaji, M; Matsuyama, H; Hosoda, K
2014-02-01
The effects of the substitution of brown rice (Oryza sativa L.; BR) for corn (Zea mays L.) in ensiled total mixed ration (TMR) that had a high proportion of grain on feed intake, lactation performance, ruminal fermentation, digestion, and N utilization were evaluated. Nine multiparous Holstein cows (51 ± 9 d in milk) were used in a replicated 3 × 3 Latin square design with 3 dietary treatments: a diet containing 0, 20, or 40% steam-flaked BR and 40, 20, or 0% steam-flaked corn (dry matter basis). Cows were fed ad libitum an ensiled TMR consisting of 40.7% alfalfa silage, 11.8% grass silage, 7.1% soybean meal, and 40.0% steam-flaked grain (dry matter basis). The ensiled TMR was prepared by baling fresh TMR, and then sealed by a bale wrapper and stored outdoors at 5 to 30 °C for over 6 mo. Dry matter intake and milk yield were lower for cows fed 40% BR than for cows fed 40% corn. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The ruminal ammonia-N concentration decreased as the percentage of BR in the diets was elevated. The proportion of acetate decreased, and that of propionate and butyrate increased with the increasing levels of BR. Plasma urea-N concentrations was lower and glucose and insulin concentrations were higher for cows fed 40% BR than for cows fed 40% corn. The whole-tract apparent digestibility of dry matter, organic matter, and starch increased, and the digestibility of neutral detergent fiber and acid detergent fiber decreased with the increasing BR level in the diet, with no dietary effect on crude protein digestion. As a proportion of N intake, the urinary N excretion was lower and the retention of N was higher for cows fed 40% BR than for cows fed 40% corn, with no dietary effect observed on N secretion in milk and fecal N excretion. These results show that substituting BR for corn decreases urinary N losses and improves N utilization, but causes adverse effects on milk production when cows are fed high-grain diets at 40% of dietary dry matter. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Alkaline twin-screw extrusion pretreatment for fermentable sugar production
2013-01-01
Background The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. Results The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. Conclusions With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process optimization and cost reduction. PMID:23834726
Wachirapakorn, Chalong; Pilachai, Krung; Wanapat, Metha; Pakdee, Pawadee; Cherdthong, Anusorn
2016-12-01
The aim of this study was to evaluate the effect of ground corn cobs (GCC) as a sole fiber source in total mixed ration (TMR) on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows. Four multiparous crossbreds Holstein Friesian dairy cows with an initial body weight (BW) of 415.5 ± 26.20 kg were used in a 4 × 4 Latin square design. The dietary treatments of TMR contained a roughage-to-concentrate ratio of 40:60. The roughage source was used at different ratios of GCC to rice straw (RS) at 100:0, 82.5:17.5, 67.5:32.5, and 50:50 for TMR1 to TMR4, respectively. The results revealed significant improvements in intake of dry matter, protein, neutral detergent fiber (NDF) and metabolizable energy (ME) for TMR1 and TMR2 ( P < 0.05), while the digestibility of nutrients was not altered by the treatments ( P ≥ 0.05). Ground corn cobs was used for up to 100% of the total roughage without affecting milk production. Moreover, ruminal pH, temperature, ammonia-nitrogen (NH 3 -N) and volatile fatty acid (VFA) concentrations were not impacted by the treatments ( P > 0.05). However, milk yield was significantly different among the GCC:RS ratios ( P < 0.05) and was the highest in TMR1 and TMR2 (13.1 kg/d), while the milk compositions were not changed ( P > 0.05). The results imply that using GCC as a whole roughage source significantly improved nutrients intake and milk yield in dairy cows raised in tropical areas.
Luo, Guobin; Xu, Wenbin; Yang, Jinshan; Li, Yang; Zhang, Liyang; Wang, Yizhen; Lin, Cong; Zhang, Yonggen
2017-05-01
This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.
Dann, H M; Fredin, S M; Cotanch, K W; Grant, R J; Kokko, C; Ji, P; Fujita, K
2015-06-01
Increases in grain prices have led to renewed interest in feeding reduced-starch diets to lactating dairy cows. An experiment was conducted to determine the effects of altering carbohydrate sources and reducing dietary starch on lactational performance, feeding behavior, and ruminal measures of Holstein dairy cows. Fifteen multiparous cows (6 ruminally cannulated) were blocked and assigned to 1 of 5 squares and used in a replicated 3×3 Latin square design with 21-d periods. Cows were fed 1 of 3 experimental diets: a control diet containing 20% brown midrib corn silage, 20% conventional corn silage, and 10% hay crop silage (CON); a reduced-starch high-forage diet containing 53% brown midrib corn silage and 10% hay crop silage (HFOR); and a reduced-starch diet containing the same forages as CON with partial replacement of corn meal by nonforage fiber sources (HNFFS). The CON diet contained (% of dry matter) 26.0% starch and 34.7% neutral detergent fiber (NDF), whereas the HFOR and HNFFS diets contained 21.4 or 21.3% starch and 38.3 or 38.0% NDF, respectively. Dry matter intake tended to be greater for cows fed the CON diet (28.2 kg/d) compared with those fed the HFOR diet (27.2 kg/d). Dry matter intake for cows fed the HNFFS diet was intermediate (27.7 kg/d). Milk yield was greater for cows fed the CON diet (51.6 kg/d) compared with those fed the HFOR diet (48.4 kg/d), but milk fat content tended to increase for cows fed the HFOR diet (3.98%) compared with those fed the CON diet (3.66%). Consequently, fat-corrected and solids-corrected milk yields were unaffected by dietary treatments. Total chewing, eating, and rumination times were similar across all dietary treatments. Rumination time per kilogram of DM was greatest for the HFOR diet, intermediate for the HNFFS diet, and least for the CON diet, whereas rumination time per kilogram of NDF was greatest for the CON diet and least for the HNFFS diet. Mean ruminal pH, NH3-N (mg/dL), and total volatile fatty acid concentrations (mM) were similar across all dietary treatments. Molar proportion of ruminal acetate (mol/100 mol) was increased for cows fed the HFOR diet compared with cows fed the CON diet. Microbial N yield measured by urinary purine derivatives was unaffected by dietary treatment. Reduced-starch diets containing greater amounts of high quality, highly digestible forage or nonforage fiber sources in place of corn meal resulted in similar fat-corrected or solids-corrected milk yield for high-producing dairy cows in the short term. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hill, T M; Quigley, J D; Bateman, H G; Aldrich, J M; Schlotterbeck, R L
2016-04-01
Two 56-d trials with weaned Holstein dairy calves (initially 72 ± 1.8 kg of body weight, 58 to 60 d of age) fed 95% concentrate and 5% chopped grass hay diets were conducted. Each trial used 96 calves (4 calves/pen). During 15 of the last 21 d of the first trial and 10 of 14 d of the second and third week of the second trial, fecal samples were taken to estimate digestibility using acid-insoluble ash as an internal marker. Digestibility estimates along with 56-d average daily gain (ADG), hip width change, body condition score, and fecal score were analyzed with pen as the experimental unit. In trial 1, a textured diet (19% crude protein) with high starch [52% starch, 13% neutral detergent fiber (NDF)] based on whole corn and oats or a pelleted low-starch (20% starch, 35% NDF), high-digestible fiber diet were used. Within starch level, diets were formulated from supplemental soybean meal or soybean meal with blood meal and Alimet (Novus International Inc., St. Charles, MO) to provide 2 metabolizable protein levels (1 and 1.07% metabolizable lysine plus methionine). The 4 treatments were analyzed as a completely randomized design with a 2 by 2 factorial arrangement (6 pens/diet). In trial 2, all pelleted diets (19% crude protein) were fed. Diets were based on soybean hulls, wheat middlings, or corn, which contained increasing concentrations of starch (13, 27, and 42% starch and 42, 23, and 16% NDF, respectively; 8 pens/diet). Contrast statements were constructed to separate differences in the means (soybean hulls plus wheat middlings vs. corn; soybean hulls vs. wheat middlings). In trial 1, intake of organic matter (OM) did not differ. Digestibility of OM was greater in calves fed high- versus low starch-diets. Digestibility of NDF and starch were less in calves fed the high- versus low-starch diets. Calf ADG and hip width change were greater for high- versus low-starch diets. Source of protein did not influence digestibility or ADG. In trial 2, intake of OM was not different. Digestibility of OM was greater in calves fed corn versus other diets. Digestibility of NDF was greater for calves fed soybean hulls versus wheat middlings. Starch digestibility was not different among treatments. Calf ADG and hip width change were greater in calves fed corn versus other diets. High-starch diets were more digestible and supported more growth in 2- to 4-mo-old dairy calves than replacing starch with digestible fiber. Manipulating metabolizable protein compared with a control diet that was predominately corn and soybean meal did not alter growth or digestibility. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hidayat, B.; Muslihudin, M.; Akmal, S.
2018-01-01
Resistant starch is one important component determining the characteristics of a functional food. The aim of the research was to determine the cooling time optimum in the autoclaving-cooling treatment to increase the resistance starch content corn-based rice analogues, with 6 level of cooling time (0 hours/control, 12 hours, 24 hours, 36 hours, 48 hours and 60 hours). The results showed that cooling at 4°C for 60 hours would increase the resistant starch content (6.27% to 15.38%), dietary fiber content (14.53% to 20.17%); and decrease the digestible starch content (61.81% to 52.70%). Cooling time level at 4°C for 24 hours, would increase the sensory score of corn-based rice analogues then back down until cooling time level of 60 hours. Microscopic analysis of granular structure using SEM indicated that cooling time had a linear correlation with cracks intensity on the granule surface of the corn-based rice analogues. The high content of resistant starch showed that the application of cooling time level at 4°C for 24 hours would improve the functional properties of corn-based rice analogues with sensory characteristics remain favorable to panelists.
Fecal consistency as related to dietary composition in lactating Holstein cows.
Ireland-Perry, R L; Stallings, C C
1993-04-01
A trial was designed to study the relationships of dietary fiber and protein percentage and source to fecal consistency in lactating cattle. Thirty Holstein cows were assigned randomly to one of six TMR through four 21-d periods. The TMR were formulated to contain 17 or 25% ADF and CP of 15 or 22% with soybean meal supplementation or 22% with a combination of corn gluten and soybean meals. Two forage combinations were corn silage with or without alfalfa. Fecal consistency was evaluated using a four-point visual observation scale. Lower dietary fiber reduced fecal pH, score, NDF, and ADF but increased fecal DM and starch. A higher percentage of soybean meal lowered fecal DM and fecal score. Forage source affected fecal DM, NDF, ADF, and starch, but not pH or score. Prediction of fecal score from dietary components and cow parameters resulted in dietary DM percentage and 4% FCM as the most related variables. Accurate prediction of fecal consistency score from dietary and cow parameters was not possible.
Giménez, M A; Drago, S R; Bassett, M N; Lobo, M O; Sammán, N C
2016-05-15
In this study, the nutritional quality of pasta-like product (spaghetti-type), made with corn (Zea mays) flour enriched with 30% broad bean (Vicia faba) flour and 20% of quinoa (Chenopodium quinoa) flour, was determined. Proximate chemical composition and iron, zinc and dietary fiber were determined. A biological assay was performed to assess the protein value using net protein utilization (NPU), true digestibility (TD) and protein digestibility-corrected amino acid score (PDCAAS). Iron and zinc availability were estimated by measuring dialyzable mineral fraction (%Da) resulting from in vitro gastrointestinal digestion. Nutritionally improved, gluten-free spaghetti (NIS) showed significantly increased NPU and decreased TD compared with a non-enriched control sample. One NIS-portion supplied 10-20% of recommended fiber daily intake. Addition of quinoa flour had a positive effect on the FeDa% as did broad bean flour on ZnDa%. EDTA increased Fe- and ZnDa% in all NIS-products, but it also impaired sensorial quality. Copyright © 2016. Published by Elsevier Ltd.
A novel xylan degrading β-D-xylosidase: purification and biochemical characterization.
Michelin, Michele; Peixoto-Nogueira, Simone C; Silva, Tony M; Jorge, João A; Terenzi, Héctor F; Teixeira, José A; Polizeli, Maria de Lourdes T M
2012-11-01
Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular β-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. β-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 °C and 3.0-5.5, respectively. β-xylosidase was stable in acidic pH (3.0-6.0) and 70 °C for 1 h. The enzyme was activated by 5 mM MnCl₂ (28 %) and MgCl₂ (20 %) salts. The β-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-β-D-xylopyranoside, exhibiting apparent K(m) and V(max) values of 0.66 mM and 39 U (mg protein)⁻¹ respectively, and to a lesser extent p-nitrophenyl-β-D-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel β-D-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by β-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.
Senf, Deborah; Ruprecht, Colin; de Kruijff, Goswinus H M; Simonetti, Sebastian O; Schuhmacher, Frank; Seeberger, Peter H; Pfrengle, Fabian
2017-03-02
Xylan-degrading enzymes are crucial for the deconstruction of hemicellulosic biomass, making the hydrolysis products available for various industrial applications such as the production of biofuel. To determine the substrate specificities of these enzymes, we prepared a collection of complex xylan oligosaccharides by automated glycan assembly. Seven differentially protected building blocks provided the basis for the modular assembly of 2-substituted, 3-substituted, and 2-/3-substituted arabino- and glucuronoxylan oligosaccharides. Elongation of the xylan backbone relied on iterative additions of C4-fluorenylmethoxylcarbonyl (Fmoc) protected xylose building blocks to a linker-functionalized resin. Arabinofuranose and glucuronic acid residues have been selectively attached to the backbone using fully orthogonal 2-(methyl)naphthyl (Nap) and 2-(azidomethyl)benzoyl (Azmb) protecting groups at the C2 and C3 hydroxyls of the xylose building blocks. The arabinoxylan oligosaccharides are excellent tools to map the active site of glycosyl hydrolases involved in xylan deconstruction. The substrate specificities of several xylanases and arabinofuranosidases were determined by analyzing the digestion products after incubation of the oligosaccharides with glycosyl hydrolases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lopes, F; Cook, D E; Combs, D K
2015-09-01
An in vivo study was performed to test an in vitro procedure and model that predicts total-tract neutral detergent fiber (NDF) digestibility for lactating dairy cattle. Corn silage (CS) and alfalfa silage (AS) were used as forages for this study. These forages had similar NDF composition, but fiber in the CS contained less indigestible NDF compared with AS (35.5 and 47.8% of indigestible NDF, respectively). The in vitro method estimated rate of digestion of alfalfa potentially digestible NDF to be approximately 2 times faster than CS fiber (6.11 and 3.21%/h, respectively). Four diets were formulated containing different proportions of CS to AS: 100CS:0AS, 67CS:33AS, 33CS:67AS, and 0CS:100AS, as percentage of diet DM basis. The objective was to construct diets that contained approximately similar levels of NDF but with different pool sizes and rates of digestion of potentially digestible NDF. Diets were fed to 8 ruminally cannulated, multiparous, lactating dairy cows in a replicated 4×4 Latin square with 21-d periods. Total-tract fiber digestibility and fiber digestion kinetic parameters observed in vivo were compared with the values predicted by the in vitro assay and model. Total-tract NDF digestibility coefficients were similar (41.8 and 40.6% of total NDF) for the in vitro and in vivo methods, respectively. As the proportion of dietary alfalfa increased, the digestibility of NDF increased. The rate of digestion of potentially digestible NDF predicted from the in vitro assay was also similar to what was observed in vivo. Results suggest that the in vitro total-tract NDF digestibility model could be used to predict rate of fiber digestion and NDF digestibility for lactating dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Klop, G; Bannink, A; Dieho, K; Gerrits, W J J; Dijkstra, J
2016-09-01
Nitrate decreases enteric CH4 production in ruminants, but may also negatively affect fiber degradation. In this experiment, 28 lactating Holstein dairy cows were grouped into 7 blocks. Within blocks, cows were randomly assigned to 1 of 4 isonitrogenous treatments in a 2×2 factorial arrangement: control (CON); NO3 [21g of nitrate/kg of dry matter (DM)]; DHA [3g of docosahexaenoic acid (DHA)/kg of DM]; or NO3+DHA (21g of nitrate/kg of DM and 3g of DHA/kg of DM). Cows were fed a total mixed ration consisting of 21% grass silage, 49% corn silage, and 30% concentrates on a DM basis. Based on the difference in natural (13)C enrichment and neutral detergent fiber and starch content between grass silage and corn silage, we investigated whether a negative effect on rumen fiber degradation could be detected by evaluating diurnal patterns of (13)C enrichment of exhaled carbon dioxide. A significant nitrate × DHA interaction was found for neutral detergent fiber digestibility, which was reduced on the NO3 treatment to an average of 55%, as compared with 61, 64, and 65% on treatments CON, DHA, and NO3+DHA, respectively. Feeding nitrate, but not DHA, resulted in a pronounced increase in (13)C enrichment of CO2 in the first 3 to 4 h after feeding only. Results support the hypothesis that effects of a feed additive on the rate of fiber degradation in the rumen can be detected by evaluating diurnal patterns of (13)C enrichment of CO2. To be able to detect this, the main ration components have to differ considerably in fiber and nonfiber carbohydrate content as well as in natural (13)C enrichment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
Markstedt, Kajsa; Escalante, Alfredo; Toriz, Guillermo; Gatenholm, Paul
2017-11-22
This paper presents a sustainable all-wood-based ink which can be used for 3D printing of constructs for a large variety of applications such as clothes, furniture, electronics, and health care products with a customized design and versatile gel properties. The 3D printing technologies where the material is dispensed in the form of liquids, so called inks, have proven suitable for 3D printing dispersions of cellulose nanofibrils (CNFs) because of their unique shear thinning properties. In this study, novel inks were developed with a biomimetic approach where the structural properties of cellulose and the cross-linking function of hemicelluloses that are found in the plant cell wall were utilized. The CNF was mixed with xylan, a hemicellulose extracted from spruce, to introduce cross-linking properties which are essential for the final stability of the printed ink. For xylan to be cross-linkable, it was functionalized with tyramine at different degrees. Evaluation of different ink compositions by rheology measurements and 3D printing tests showed that the degree of tyramine substitution and the ratio of CNFs to xylan-tyramine in the prepared inks influenced the printability and cross-linking density. Both two-layered gridded structures and more complex 3D constructs were printed. Similarly to conventional composites, the interactions between the components and their miscibility are important for the stability of the printed and cross-linked ink. Thus, the influence of tyramine on the adsorption of xylan to cellulose was studied with a quartz crystal microbalance to verify that the functionalization had little influence on xylan's adsorption to cellulose. Utilizing xylan-tyramine in the CNF dispersions resulted in all-wood-based inks which after 3D printing can be cross-linked to form freestanding gels while at the same time, the excellent printing properties of CNFs remain intact.
Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota.
Chen, Tingting; Long, Wenmin; Zhang, Chenhong; Liu, Shuang; Zhao, Liping; Hamaker, Bruce R
2017-06-01
The gut microbiota of individuals are dominated by different fiber-utilizing bacteria, which ferment dietary fiber into short chain fatty acids (SCFAs) known to be important for human health. Here, we show that the dominance of Prevotella versus Bacteroides in fecal innocula, identified into two different enterotypes, differentially impacts in vitro fermentation profiles of SCFAs from fibers with different chemical structures. In a microbiome of the Prevotella enterotype, fructooligosaccharides, and sorghum and corn arabinoxylans significantly promoted one single Prevotella OTU with equally high production of total SCFAs with propionate as the major product. Conversely, in the Bacteroides-dominated microbiota, the three fibers enriched different OTUs leading to different levels and ratios of SCFAs. This is the first report showing how individual differences in two enterotypes cause distinctly different responses to dietary fiber. Microbiota dominated by different fiber-utilizing bacteria may impact host health by way of producing different amounts and profiles of SCFAs from the same carbohydrate substrates.
Preparation and characterization of safe microparticles based on xylan.
Cartaxo da Costa Urtiga, Silvana; Aquino Azevedo de Lucena Gabi, Camilla; Rodrigues de Araújo Eleamen, Giovanna; Santos Souza, Bartolomeu; Pessôa, Hilzeth de Luna Freire; Marcelino, Henrique Rodrigues; Afonso de Moura Mendonça, Elisângela; Egito, Eryvaldo Sócrates Tabosa do; Oliveira, Elquio Eleamen
2017-10-01
This work describes the preparation and evaluation of safe xylan-based microparticles prepared by cross-linking polymerization using sodium trimetaphosphate. The resulting microparticles were evaluated for morphology, particle size, polymer-cross-link agent interaction, and in vitro toxicity. The microparticles showed narrow monodisperse size distributions with their mean sizes being between 3.5 and 12.5 µm in dried state. FT-IR analyzes confirmed the interaction between sodium trimetaphosphate and xylan during the cross-linking process with formation of phosphate ester bonds. Additionally, the X-ray diffraction patterns and FT-IR analyzes suggested that little or no cross-linking agent remained inside the microparticles. Furthermore, the in-vitro studies using Artemia salina and human erythrocytes revealed that the microparticles are not toxic. Therefore, the overall results suggest that these xylan microparticles can be used as a platform for new drug delivery system.
Smith, Peter J; Wang, Hsin-Tzu; York, William S; Peña, Maria J; Urbanowicz, Breeanna R
2017-01-01
Xylans are the most abundant noncellulosic polysaccharides in lignified secondary cell walls of woody dicots and in both primary and secondary cell walls of grasses. These polysaccharides, which comprise 20-35% of terrestrial biomass, present major challenges for the efficient microbial bioconversion of lignocellulosic feedstocks to fuels and other value-added products. Xylans play a significant role in the recalcitrance of biomass to degradation, and their bioconversion requires metabolic pathways that are distinct from those used to metabolize cellulose. In this review, we discuss the key differences in the structural features of xylans across diverse plant species, how these features affect their interactions with cellulose and lignin, and recent developments in understanding their biosynthesis. In particular, we focus on how the combined structural and biosynthetic knowledge can be used as a basis for biomass engineering aimed at developing crops that are better suited as feedstocks for the bioconversion industry.
On the specificity and mode of action of a xylanase from Trametes hirsuta (Wulf.) Pilát.
Kubacková, M; Karácsonyi, S; Bilisics, L; Toman, R
1979-11-01
The mode of action of the extracellular endo-(1 leads to 4)-beta-D-xylanase produced by Trametes hirsuta on a (4-0-methyl-D-glucurono)-D-xylan and a modified, essentially neutral D-xylan from white willow (Salix alba L.) has been studied. Xylotetraose and xylohexaose, together with aldotetraouronic and aldohexaouronic acids, were the main products. The acidic oligosaccharides had a 4-O-methyl-D-glucopyranosyluronic acid group attached to the non-reducing D-xylosyl end-group. The action pattern of the xylanase corresponds to that of a typical endo-enzyme that acts more readily in the middle of chain, and the specific region of its action appears to involve five D-xylosyl residues. The products of the enzymic treatment of the D-xylan have revealed a regular distribution of the 4-O-methyl-D-glucopyranosyluronic acid groups attached to the D-xylan backbone.
Bonner, Ian Jeffery; Thompson, David N.; Plummer, Mitchell; ...
2016-01-08
Pretreatment and densification of biomass can increase the viability of bioenergy production by providing a feedstock that is readily hydrolyzed and able to be transported greater distances. Ammonia Fiber Expansion (AFEX) is one such method targeted for use at distributed depots to create a value-added and densified feedstock for bioenergy use. However, the pretreatment process results in a high-moisture material that must be dried, further size reduced, and pelletized; all of which are energy intensive processes. This work quantifies the energy consumption required to dry, grind, and densify AFEX pretreated corn stover compared to non-pretreated stover and explores the potentialmore » of reduced drying as a means to conserve energy. The purpose of this work is to understand whether material property changes resulting from AFEX pretreatment influence the material performance in downstream formatting operations. Material properties, heat balance equations, and a rotary drum dryer model were used to model a commercial scale rotary drum dryer for AFEX pretreated corn stover, showing the potential to reduce dryer energy consumption by up to 36% compared to non-pretreated corn stover. Laboratory measured grinding and pelleting energies were both very sensitive to material moisture content. Overall, the total energy required for drying, grinding, and pelleting amounts to a savings of up to 20 kWh/dry ton for the AFEX pretreated material when dried to a low moisture content, equating to up to 0.55 /kg savings for gas and electricity. Grinding and pelleting of high moisture AFEX pretreated stover was shown to be more costly than the savings collected through reduced drying. Furthermore, while the energy and cost savings shown here are modest, the results help to highlight operational challenges and opportunities for continued improvement.« less
de Andrade, Felipe Leite; Rodrigues, João Paulo Pacheco; Detmann, Edenio; Valadares Filho, Sebastião de Campos; Castro, Marcelo Messias Duarte; Trece, Aline Souza; Silva, Tadeu Eder; Fischer, Vivian; Weiss, Kirsten; Marcondes, Marcos Inácio
2016-04-01
The objective of this study was to compare the intake, digestibility, and performance of dairy cows fed corn silage, fresh sugarcane, and sugarcane ensiled in three different forms. Twenty-five Holstein cows at 114 ± 12.6 days in milk (DIM) were used. A randomized block design was adopted, using an arrangement of repeated measures over time. The following treatments were tested: corn silage (CS); fresh sugarcane (FS); sugarcane silage without additives (SCS); sugarcane silage enriched with calcium oxide at 5 g/kg of forage (SCSc); and sugarcane silage enriched with Lactobacillus buchneri at 5 × 10(4) cfu/kg of forage (SCSb). The roughage to concentrate ratio was 60:40 for the CS diet and 40:60 for the sugarcane-based diets. The dry matter intake (DMI) as a function of body weight had a downward trend for the cows fed sugarcane silage, compared with those fed FS. The sugarcane silages had higher digestibilities of dry matter (DM), organic matter (OM), and neutral detergent fiber (NDFap), compared with FS. The use of L. buchneri or calcium oxide improved the diet's digestibility. The use of FS, sugarcane silage, or sugarcane silage with additives had no effects on milk and fat-corrected milk yield, compared to corn silage. Cows fed FS presented lower milk total solids content and had a downward trend for milk fat, compared with cows fed sugarcane-silage diets. Cows fed sugarcane silages produced milk with higher casein stability in the alcohol test than cows fed fresh-sugarcane diet. Sugarcane silage, with or without additives, did not reduce the intake of dairy cows, and the use of additives improved the fiber's digestibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonner, Ian Jeffery; Thompson, David N.; Plummer, Mitchell
Pretreatment and densification of biomass can increase the viability of bioenergy production by providing a feedstock that is readily hydrolyzed and able to be transported greater distances. Ammonia Fiber Expansion (AFEX) is one such method targeted for use at distributed depots to create a value-added and densified feedstock for bioenergy use. However, the pretreatment process results in a high-moisture material that must be dried, further size reduced, and pelletized; all of which are energy intensive processes. This work quantifies the energy consumption required to dry, grind, and densify AFEX pretreated corn stover compared to non-pretreated stover and explores the potentialmore » of reduced drying as a means to conserve energy. The purpose of this work is to understand whether material property changes resulting from AFEX pretreatment influence the material performance in downstream formatting operations. Material properties, heat balance equations, and a rotary drum dryer model were used to model a commercial scale rotary drum dryer for AFEX pretreated corn stover, showing the potential to reduce dryer energy consumption by up to 36% compared to non-pretreated corn stover. Laboratory measured grinding and pelleting energies were both very sensitive to material moisture content. Overall, the total energy required for drying, grinding, and pelleting amounts to a savings of up to 20 kWh/dry ton for the AFEX pretreated material when dried to a low moisture content, equating to up to 0.55 /kg savings for gas and electricity. Grinding and pelleting of high moisture AFEX pretreated stover was shown to be more costly than the savings collected through reduced drying. Furthermore, while the energy and cost savings shown here are modest, the results help to highlight operational challenges and opportunities for continued improvement.« less
Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Hassanat, Fadi
2014-01-01
Simple Summary The objectives of this experiment were to investigate the effects of adding corn DDGS to the dairy cow diet as well as the bedding types (wood shavings, straw or peat moss) on manure fugitive CH4 emissions. The incorporation of DDGS in the diet has increased manure methane emission by 15% and the use of peat moss as bedding has increased manure methane emission by 27%. Abstract The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS) to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss) in dairy slurry on fugitive CH4 emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29%) the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS), fat, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH4 emissions showed a significant increase of 15% (p < 0.05) for the slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH4 emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05) in fugitive CH4 emissions. PMID:26479012
Yan, Ruoyu; Vuong, Thu V; Wang, Weijun; Master, Emma R
2017-09-01
Glucuronic acid and/or 4-O-methyl-glucuronic acid (GlcA/MeGlcA) are substituents of the main xylans present in hardwoods, conifers, and many cereal grains. α-Glucuronidases from glycoside hydrolase family GH115 can target GlcA/MeGlcA from both internally and terminally substituted regions of xylans. The current study describes the first GH115 α-glucuronidase, AxyAgu115A, from the alkaliphilic organism Amphilbacillus xylanus. AxyAgu115A was active in a wide pH range, and demonstrated better performance in alkaline condition compared to other characterized GH115 α-glucuronidases, which generally show optimal activity in acidic conditions. Specifically, its relative activity between pH 5.0 and pH 8.5 was above 80%, and was 35% of maximum at pH 10.5; although the enzyme lost 30% and 80% relative residual activity after 24-h pre-incubation at pH 9 and pH 10, respectively. AxyAgu115A was also similarly active towards glucuronoxylan as well as comparatively complex xylans such as spruce arabinoglucurunoxylan. Accommodation of complex xylans was supported by docking analyses that predicted accessibility of AxyAgu115A to branched xylo-oligosaccharides. MeGlcA release by AxyAgu115A from each xylan sample was increased by up to 30% by performing the reaction at pH 11.0 rather than pH 4.0, revealing applied benefits of AxyAgu115A for xylan recovery and processing. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves
2014-04-28
Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylanmore » that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.« less
Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis
USDA-ARS?s Scientific Manuscript database
This work is the first report of the successful design, construction, and application of multi-functional, self-assembling biocatalysts for targeted xylan hydrolysis, termed xylanosomes. Using the architecture of cellulosomes found in some anaerobic cellulolytic microbes, four different xylanosomes...
Transcriptomic Analysis of Xylan Utilization Systems in Paenibacillus sp
Neha Sawhney; Casey Crooks; Franz St. John; James F. Preston; R. M. Kelly
2014-01-01
Xylans, including methylglucuronoxylans (MeGXn) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharides in hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX
Forsido, Sirawdink Fikreyesus; Rupasinghe, H P Vasantha; Astatkie, Tess
2013-12-01
The total antioxidant capacity, total phenolics content (TPC) and nutritional content of five types of enset (Enset ventricosum) flour in comparison with four staples (teff [Eragrostis tef], wheat, corn and tapioca) were evaluated. Teff, corn and "amicho" (corm of enset) had the highest ferric reducing antioxidant power (FRAP). The FRAP and TPC of teff (1.8 mmol Trolox equivalence/100 g dry matter (DM) and 123.6 mg gallic acid equivalent/100 g DM, respectively) were over 4-fold larger than the lowest obtained from "bulla" (dehydrated juice of pseudostem of enset). Corn had the lowest IC(50) value of 1,1-diphenyl-2-picrylhydrazyl radical scavenging (10.27 mg DM mL(-1)). Teff had the highest crude fat content (3.71%) and some mineral profile (P, Mg, Mn and Cu). Enset products had higher fiber, Ca, K, Mg and Mn content as compared to wheat and corn. Ethiopian staple teff has a potential for developing value-added food products with nutritional and health benefits.
USDA-ARS?s Scientific Manuscript database
Biofuels, including corn-based ethanol, can partially meet the increasing demand for transportation fuels. The production of ethanol in the U.S. has dramatically increased; so too has the quantity of manufacturing coproducts. These nonfermentable residues (i.e., proteins, fibers, oils) are sold as...
A multivariant study of the absorption properties of poly(glutaric-acid-glycerol) films
USDA-ARS?s Scientific Manuscript database
The solvent absorption into the matrix of poly(glutaric acid-glycerol) films made with or without either iminodiacetic acid, sugarcane bagasse, pectin, corn fiber gum or microcrystalline cellulose have been evaluated. The films were incubated in various solvent systems for 24h. The amounts of solve...
USDA-ARS?s Scientific Manuscript database
Conversion of second-generation renewable energy sources to useful products is gaining attention as an alternative to traditional conversion of sugar and starch-based renewable energy crops. The natural recalcitrance of second-generation energy resources, such as (ligno)cellulosic feedstock, makes ...
Antimicrobial edible coatings and films from micro-emulsions and their food applications
USDA-ARS?s Scientific Manuscript database
This study focused on the use of antimicrobial edible coatings and films from micro-emulsions to reduce populations of foodborne pathogens in foods. Corn-Bio-fiber gum (C-BFG) was used as an emulsifier with chitosan. Allyl isothiocyanate (AIT) and lauric arginate ester (LAE) served as antimicrobials...
Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover
Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li
2012-01-01
To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment. PMID:22605970
Comparison of ultrasonic and CO₂laser pretreatment methods on enzyme digestibility of corn stover.
Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li
2012-01-01
To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO(2) laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO(2) laser irradiation. The present work demonstrated that the CO(2) laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO(2) laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO(2) laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.
Jaworski, N W; Stein, H H
2017-02-01
Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed diets containing distillers dried grains with solubles (DDGS), wheat middlings, or soybean hulls was determined. A second objective was to test the hypothesis that physical characteristics of dietary fiber in diets are correlated with the digestibility of nutrients and energy. Eight barrows (initial BW = 37.3 ± 1.0 kg) with a T-cannula in the distal ileum and another T-cannula in the proximal colon were allotted to a replicated 4 × 4 Latin square design with 4 diets and 4 periods in each square. The basal diet was a corn-soybean meal diet and 3 additional diets were formulated by substituting 30% of the basal diet with DDGS, wheat middlings, or soybean hulls. Following an 8-d adaptation period, fecal samples were collected on d 9 and 10, and samples from the colon and the ileum were collected on d 11 and 12, and d 13 and 14, respectively. Values for apparent ileal digestibility (AID), apparent cecal digestibility (ACD), and apparent total tract digestibility (ATTD) of nutrients and energy were calculated. Results indicated that ACD and ATTD of soluble dietary fiber was not different regardless of diet indicating that the soluble dietary fiber is mostly fermented in the small intestine or in the cecum. Pigs fed the wheat middlings diet had greater ( ≤ 0.05) ACD of insoluble dietary fiber compared with pigs fed diets containing DDGS or soybean hulls indicating that the insoluble fiber in wheat middlings may be more fermentable than insoluble fiber in DDGS or soybean hulls. Insoluble dietary fiber disappearance in the colon of pigs fed the soybean hulls diet was greater ( ≤ 0.05) compared with the DGGS containing diet indicating that insoluble fiber in DDGS are more resistant to fermentation than insoluble fiber in soybean hulls. The ATTD of total dietary fiber in wheat middlings was greater ( ≤ 0.05) than in DDGS and soybean hulls further indicating that fiber in wheat middlings are more fermentable than fiber in DDGS and soybean hulls. Water binding capacity, bulk density, and viscosity of dietary fiber were not correlated with digestibility of nutrients and energy regardless of the diet. In conclusion, soluble dietary fiber is mostly fermented before reaching the colon whereas insoluble dietary fiber is mostly fermented in the colon, but fiber in wheat middlings is more fermentable than fiber in DDGS or soybean hulls.
Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R
2011-01-01
Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates with a benchmark slow fermenting fiber that we fabricated in an in vitro simulation of the human digestive system. Results show a variety of fermentation profiles only some of which have slow and extended rate of fermentation. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam
Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.
Bernard, J K; Tao, S
2015-12-01
A completely randomized lactation trial was conducted to compare the production response of lactating Holstein cows to diets based on corn or forage sorghum silage harvested from 2 crops. Corn was planted in March and harvested in July (corn silage-summer; CSS) and a second corn crop was planted in July and harvested in November (corn silage-fall; CSF). A brachytic dwarf brown midrib forage sorghum was planted in April, harvested in July (forage sorghum-summer; FSS), fertilized, and harvested a second time in November (forage sorghum-fall; FSF). All forage was ensiled in plastic bags and stored until the production trial began. Silages contained (dry matter basis) 8.0, 8.5, 9.0, and 9.5% crude protein; 39.0, 38.3, 54.2, and 55.1% neutral detergent fiber; and 3.6, 2.8. 7.7, and 7.8% acid detergent lignin, for CSS, CSF, FSS, and FSF, respectively. Forty-eight mid-lactation Holstein cows (153.5±37.2d in milk, 35.7±6.2kg/d of milk, 3.2±0.6% fat, 611.8±67.0kg of body weight, and 2.96±0.09 body condition score) were assigned randomly to 1 of the 4diets differing in forage source. Cows were individually fed experimental diets once daily behind Calan doors for 5wk. Diets were formulated to contain 38.7% of the experimental forages and balanced to provide equal concentrations of protein, fiber, and energy. No differences were observed in dry matter intake and yields of milk and components, but milk fat percentage was lower for CSS and CSF compared with FSS and FSF, being 3.20, 2.91, 3.42, and 3.53%, respectively. Milk lactose percentage was lower for CSS compared with CSF but was not different from FSS or FSF. Concentrations of milk urea nitrogen were lower for CSS and CSF compared with FSS and FSF (10.6, 13.4, 14.9, and 15.3mg/dL, respectively). No differences were observed in body weight or body condition score change during the trial. Results of this trial suggest that silage produced from brachytic forage sorghum, as either the first or the ratoon crop, can support similar intake and performance as diets based on corn silage. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nutrient digestibility in food waste ingredients for Pekin and Muscovy ducks.
Farhat, A; Normand, L; Chavez, E R; Touchburn, S P
1998-09-01
Food wastes are valuable resources to be recycled into new added-value products through animal production. The determination of energy and digestibility values of these wastes is essential for feed formulation. Corn, soybean meal (SBM), and a total of nine industrial food waste ingredients were tested in a comparative metabolic study in Pekin and Muscovy ducklings at two different ages during growth. The "precision-feeding" technique was employed to establish DM, fat, and fiber digestibility as well as retention of N and energy (AME, AMEn in Pekins; and AME, AMEn, TME, TMEn in Muscovies) for the 11 ingredients. For Pekin at 3 wk of age, the AMEn of peanuts, tofu, pogo, granola, waste diet, bread, corn, SBM, okara, and brewers grains were 5,141, 4,019, 3,971, 3,908, 3,141, 2,279, 1,572, and 1,442 kcal/kg, respectively. For Pekin at 6 wk of age, the AMEn of peanuts, pogo, tofu, granola, waste diet, bread, corn, SBM, and okara were 5,340, 4,327, 4,254, 4,079, 3,567, 3,302, 3,201, 2,416, and 1,562 kcal/kg, respectively. For Muscovy at 7 wk of age, the TMEn of peanuts, pogo, granola, waste diet, corn, tofu, bread, SBM, okara, and peanut skin were 5,207, 4,321, 4,057, 3,733, 3,233, 3,180, 3,084, 2,236, 1,575, and 904 kcal/kg, respectively. For Muscovy at 11 wk of age, the TMEn of peanuts, pogo, granola, tofu, waste diet, corn, bread, SBM, okara, and brewers grains were 5,077, 4,137, 4,025, 3,921, 3,586, 3,254, 3,123, 2,245, 2,007, and 1,392 kcal/kg, respectively. Nitrogen retention was significantly (P < 0.05) higher for SBM, tofu, okara, pogo, peanuts, and the food waste diet and lower for bread, corn, granola, brewers grains, and peanut skin. Dry matter digestibility was high for granola, pogo, corn, bread, and the food waste diet. Fat digestibility was generally the same for all the ingredients and was consistently over 97%. Bread neutral detergent fiber (NDF) was significantly (P < 0.05) the most digestible (88.92% NDF digestibility), as it consisted of 96.29% hemicellulose, whereas okara NDF was significantly (P < 0.05) the least digestible (26.94% NDF digestibility) and contained only 14.38% hemicellulose. Peanut skins and SBM with 30% hemicellulose showed only slightly higher digestibilities of NDF. The results of this study establish reliable data for formulation of duck diets using the tested industrial food waste ingredients as well as corn and SBM in both Pekin and Muscovy ducklings at two different ages during growth to market weight.
Fang, Hong; Kandhola, Gurshagan; Rajan, Kalavathy; Djioleu, Angele; Carrier, Danielle Julie; Hood, Kendall R.; Hood, Elizabeth E.
2018-01-01
Loblolly pine residues have enormous potential to be the raw material for advanced biofuel production due to extensive sources and high cellulose content. Hot water (HW) pretreatment, while being a relatively economical and clean technology for the deconstruction of lignocellulosic biomass, could also inhibit the ensuing enzymatic hydrolysis process because of the production of inhibitors. In this study, we investigated the effect of oligosaccharide fractions purified from HW pre-hydrolyzate of pinewood using centrifugal partition chromatography (CPC) on three recombinant cellulolytic enzymes (E1, CBHI and CBHII), which were expressed in the transgenic corn grain system. The efficiency of recombinant enzymes was measured using either a 4-methylumbelliferyl-β-D-cellobioside (MUC) or a cellulose-dinitrosalicylic acid (DNS) assay system. The results showed that HW pre-hydrolyzate CPC fractions contain phenolics, furans, and monomeric and oligomeric sugars. Among CPC fractions, oligomers composed of xylan, galactan, and mannan were inhibitory to the three recombinant enzymes and to the commercial cellulase cocktail, reducing the enzymatic efficiency to as low as 10%. PMID:29868572
Raffrenato, E; Fievisohn, R; Cotanch, K W; Grant, R J; Chase, L E; Van Amburgh, M E
2017-10-01
The objective of this study was to correlate in vitro and in vivo neutral detergent fiber (NDF) digestibility (NDFD) with the chemical composition of forages and specific chemical linkages, primarily ester- and ether-linked para-coumaric (pCA) and ferulic acids (FA) in forages fed to dairy cattle. The content of acid detergent lignin (ADL) and its relationship with NDF does not fully explain the observed variability in NDFD. The ferulic and p-coumaric acid linkages between ADL and cell wall polysaccharides, rather than the amount of ADL, might be a better predictor of NDFD. Twenty-three forages, including conventional and brown midrib corn silages and grasses at various stages of maturity were incubated in vitro for measurement of 24-h and 96-h NDFD. Undigested and digested residues were analyzed for NDF, acid detergent fiber (ADF), ADL, and Klason lignin (KL); ester- and ether-linked pCA and FA were determined in these fractions. To determine whether in vitro observations of ester- and ether-linked pCA and FA and digestibility were similar to in vivo observations, 3 corn silages selected for digestibility were fed to 6 ruminally fistulated cows for 3 wk in 3 iso-NDF diets. Intact samples and NDF and ADF residues of diet, rumen, and feces were analyzed for ester- and ether-linked pCA and FA. From the in vitro study, the phenolic acid content (total pCA and FA) was highest for corn silages, and overall the content of ester- and ether-linked pCA and FA in both NDF and ADF residues were correlated with NDF digestibility parameters, reflecting the competitive effect of these linkages on digestibility. Also, Klason lignin and ADL were negatively correlated with ether-linked ferulic acid on an NDF basis. Overall, esterified FA and esterified pCA were negatively correlated with all of the measured fiber fractions on both a dry matter and an NDF basis. The lignin content of the plant residues and chemical linkages explained most of the variation in both rate and extent of NDF digestion but not uniformly among forages, ranging from 56 to 99%. The results from the in vivo study were similar to the in vitro data, demonstrating the highest total-tract aNDF digestibility (70%; NDF analysis conducted with α-amylase and sodium sulfite) for cows fed the corn silage with the lowest ester- and ether-linked pCA content in the NDF fraction. In this study, digestibility of forage fiber was influenced by the linkages among lignin and the carbohydrate moieties, which vary by hybrid and species and most likely vary by the agronomic conditions under which the plant was grown. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
He, L W; Meng, Q X; Li, D Y; Zhang, Y W; Ren, L P
2015-04-01
The effects of dietary fiber sources on the meat quality, oxidative stability, and blood parameters of growing Graylag geese (28-112d) were investigated. The birds were randomly allocated into 4 treatments, of which dietary fiber was mainly from corn straw silage (CSS), steam-exploded corn straw (SECS), steam-exploded wheat straw (SEWS), and steam-exploded rice straw (SERS). No influence (P>0.05) on the basic chemical components, oxidative stability, or organoleptic traits of muscle were observed, except that birds fed SECS had a higher (P<0.05) protein proportion than those fed CSS or SERS, and CSS increased (P<0.01) the cholesterol content when compared to SEWS or SERS. Regarding fatty acid profile in meat, CSS and SECS increased (P<0.01) the proportion of C18:2n6t and decreased that of C21:0 and C22:0 when compared to the others. The birds fed SERS had a higher (P<0.05) proportion of C20:0 and C22:0 than the others, a higher proportion of C20:5n3, n-3 fatty acids, Δ-9 desaturase (18) index compared to those fed CSS or SECS, and a lower (P<0.01) proportion of C20:1n9 than those fed SECS or SEWS. Additionally, SEWS resulted in a higher (P<0.01) proportion of C20:2 when compared to the others. In conclusion, these fibers affect just the protein proportion, cholesterol content, and fatty acid profile of breast muscle, along with the concentration of TG and MDA in blood, but not the other characteristics. No superior fiber source exists with respect to meat quality, suggesting that Graylag geese feeding should make the most economically of the convenient fiber source with appropriate pretreatment. © 2015 Poultry Science Association Inc.
Molecular Dissection of Xylan Biosynthesis During Wood Formation in Poplar
Xylan, being the second most abundant polysaccharide in dicot wood, is considered to be one of the factors contributing to wood biomass recalcitrance for biofuel production. To better utilize wood as biofuel feedstock, it is crucial to functionally characterize all the genes invo...
Using isolated cell wall xylan to identify recalcitrant oligosaccharides
USDA-ARS?s Scientific Manuscript database
Herbaceous biomass is a renewable source of carbohydrates with potential for use in microbial conversion to biofuels. Xylan comprises 20-40% of herbaceous biomass cell wall material and its full depolymerization benefits the economics of bioconversion. To understand the limitations of commercial enz...
Mihiretu, Gezahegn T; Brodin, Malin; Chimphango, Annie F; Øyaas, Karin; Hoff, Bård H; Görgens, Johann F
2017-10-01
The viability of single-step microwave-induced pressurized hot water conditions for co-production of xylan-based biopolymers and bioethanol from aspenwood sawdust and sugarcane trash was investigated. Extraction of hemicelluloses was conducted using microwave-assisted pressurized hot water system. The effects of temperature and time on extraction yield and enzymatic digestibility of resulting solids were determined. Temperatures between 170-200°C for aspenwood and 165-195°C for sugarcane trash; retention times between 8-22min for both feedstocks, were selected for optimization purpose. Maximum xylan extraction yields of 66 and 50%, and highest cellulose digestibilities of 78 and 74%, were attained for aspenwood and sugarcane trash respectively. Monomeric xylose yields for both feedstocks were below 7%, showing that the xylan extracts were predominantly in non-monomeric form. Thus, single-step microwave-assisted hot water method is viable biorefinery approach to extract xylan from lignocelluloses while rendering the solid residues sufficiently digestible for ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lou, Hongming; Yuan, Long; Qiu, Xueqing; Qiu, Kexian; Fu, Jinguo; Pang, Yuxia; Huang, Jinhao
2016-01-01
Sodium lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) could enhance the enzymatic hydrolysis of xylan, and the compound of SXSL and LFAs have synergies on the enzymatic hydrolysis. SXSL shows a strong enhancement in buffer pH range from 4.0 to 6.0. The enhancement increased with the SXSL dosage and the xylanase loading. The cellulose and lignin in corncob substrate could not only adsorb xylanase nonproductively, but also seriously reduce the accessibility of xylanase on xylan to impede the enzymatic hydrolysis of xylan. Cellulase could break the plant cell wall structure of corncob and make additives work better. The xylose yield of corncob at 72h increased from 59.4% to 73.7% by adding the compound of 5g/L SXSL and 0.01% (v/v) n-decanol, which was higher than that without cellulase and additives by 30.7%. Meanwhile, the glucose yield at 72h of corncob increased from 45.8% to 62.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Wei; Hou, Qingxi; Mao, Changbin; Yuan, Zhirun; Li, Kecheng
2012-05-16
A portion of hemicelluloses and acetic acid can be pre-extracted with dilute sulfuric acid prior to the aspen chemithermomechanical pulp process. The streams collected from the second press-impregnation stage after acid pre-extraction contain a significant amount of acid pre-extracted hemicelluloses. Most of the total sugars obtained from the pressate were xylan, in which xylan was further hydrolyzed to sugar monomers under the acid pre-extraction condition. To fully understand the characteristics of hemicelluloses yielded prior to pulping, the pre-extracted hemicelluloses were separated and characterized by FT-IR, (1)H NMR, and thermogravimetric analysis in this study. Most of the FT-IR bonds from the hemicelluloses agreed well with the other two spectra of birch xylan and CA0050 xylan, except a new absorption at 1734 cm(-1) contributed to acetyl groups. The hemicelluloses obtained from acid pre-extraction began to decompose significantly at about 225 °C, slightly lower in comparison with organosolv and alkaline hemicelluloses reported in the literature.
Zhao, Yanyu; Luo, Huiying; Meng, Kun; Shi, Pengjun; Wang, Guozeng; Yang, Peilong; Yuan, Tiezheng; Yao, Bin
2011-09-01
A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.
Lara, Carla A; Santos, Renata O; Cadete, Raquel M; Ferreira, Carla; Marques, Susana; Gírio, Francisco; Oliveira, Evelyn S; Rosa, Carlos A; Fonseca, César
2014-06-01
In this study, yeasts associated with lignocellulosic materials in Brazil, including decaying wood and sugarcane bagasse, were isolated, and their ability to produce xylanolytic enzymes was investigated. A total of 358 yeast isolates were obtained, with 198 strains isolated from decaying wood and 160 strains isolated from decaying sugarcane bagasse samples. Seventy-five isolates possessed xylanase activity in solid medium and were identified as belonging to nine species: Candida intermedia, C. tropicalis, Meyerozyma guilliermondii, Scheffersomyces shehatae, Sugiyamaella smithiae, Cryptococcus diffluens, Cr. heveanensis, Cr. laurentii and Trichosporon mycotoxinivorans. Twenty-one isolates were further screened for total xylanase activity in liquid medium with xylan, and five xylanolytic yeasts were selected for further characterization, which included quantitative analysis of growth in xylan and xylose and xylanase and β-D-xylosidase activities. The yeasts showing the highest growth rate and cell density in xylan, Cr. laurentii UFMG-HB-48, Su. smithiae UFMG-HM-80.1 and Sc. shehatae UFMG-HM-9.1a, were, simultaneously, those exhibiting higher xylanase activity. Xylan induced the highest level of (extracellular) xylanase activity in Cr. laurentii UFMG-HB-48 and the highest level of (intracellular, extracellular and membrane-associated) β-D-xylosidase activity in Su. smithiae UFMG-HM-80.1. Also, significant β-D-xylosidase levels were detected in xylan-induced cultures of Cr. laurentii UFMG-HB-48 and Sc. shehatae UFMG-HM-9.1a, mainly in extracellular and intracellular spaces, respectively. Under xylose induction, Cr. laurentii UFMG-HB-48 showed the highest intracellular β-D-xylosidase activity among all the yeast tested. C. tropicalis UFMG-HB 93a showed its higher (intracellular) β-D-xylosidase activity under xylose induction and higher at 30 °C than at 50 °C. This study revealed different xylanolytic abilities and strategies in yeasts to metabolise xylan and/or its hydrolysis products (xylo-oligosaccharides and xylose). Xylanolytic yeasts are able to secrete xylanolytic enzymes mainly when induced by xylan and present different strategies (intra- and/or extracellular hydrolysis) for the metabolism of xylo-oligosaccharides. Some of the unique xylanolytic traits identified here should be further explored for their applicability in specific biotechnological processes.
Zhong, Ruiqin; Cui, Dongtao; Ye, Zheng-Hua
2018-01-01
Wood represents the most abundant biomass produced by plants and one of its major components is acetyl xylan. Acetylation in xylan can occur at O-2 or O-3 of a xylosyl residue, at both O-2 and O-3 of a xylosyl residue, and at O-3 of a xylosyl residue substituted at O-2 with glucuronic acid. Acetyltransferases responsible for the regiospecific acetylation of xylan in tree species have not yet been characterized. Here we report the biochemical characterization of twelve Populus trichocarpa DUF231-containing proteins, named PtrXOATs, for their roles in the regiospecific acetylation of xylan. The PtrXOAT genes were found to be differentially expressed in Populus organs and among them, PtrXOAT1, PtrXOAT2, PtrXOAT9 and PtrXOAT10 exhibited the highest level of expression in stems undergoing wood formation. Activity assays of recombinant proteins demonstrated that all twelve PtrXOAT proteins were able to transfer acetyl groups from acetyl CoA onto a xylohexaose acceptor with PtrXOAT1, PtrXOAT2, PtrXOAT3, PtrXOAT11 and PtrXOAT12 having the highest activity. Structural analysis of the PtrXOAT-catalyzed reaction products using 1H NMR spectroscopy revealed that PtrXOAT1, PtrXAOT2 and PtrXOAT3 mediated 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation of xylosyl residues and PtrXOAT11 and PtrXOAT12 only catalyzed 2-O- and 3-O-monoacetylation of xylosyl residues. Of the twelve PtrXOATs, only PtrXOAT9 and PtrXOAT10 were capable of transferring acetyl groups onto the O-3 position of 2-O-glucuronic acid-substituted xylosyl residues. Furthermore, when expressed in the Arabidopsis eskimo1 mutant, PtrXOAT1, PtrXAOT2 and PtrXOAT3 were able to rescue the defects in xylan acetylation. Together, these results demonstrate that the twelve PtrXOATs are acetyltransferases with different roles in xylan acetylation in P. trichocarpa.
Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.
Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio
2017-11-28
The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes for single as well as multi-step reactions.
Cook, D E; Bender, R W; Shinners, K J; Combs, D K
2016-07-01
The objective of this trial was to evaluate, in dairy cattle, the effects of calcium hydroxide treatment of whole-plant corn and a treatment applied to the bottom stalk fraction of the corn plant, achieved by harvesting corn in 2 crop streams. The treatments were calcium hydroxide-treated corn silage (TRTCS), toplage supplemented with calcium hydroxide-treated stalklage (TPL), a positive control of brown midrib corn silage (BMR), and a negative control of conventional whole-plant corn silage (WPCS). The toplage was harvested at a height of 82 cm with 2 of the 6 rows set as ear-snapping to incorporate higher tissues into the stalklage. Stalklage was harvested at 12 cm, and other corn silages were harvested at 27 cm. Sixteen pens, each with 8 Holstein cows averaging 70±25 d in milk and 46±11 kg of milk d(-1), were assigned 4 per treatment in a completely randomized design. The diet was approximately 40% corn silage, 20% alfalfa silage, and 40% concentrate on a dry matter basis. A 2-wk covariate period with conventional corn silage was followed by an 8-wk treatment period in which the 4 corn silage treatments were the only effective difference in diets. Cows fed TPL and TRTCS consumed more (1.9 and 1.4 kg of organic matter d(-1), respectively) than did cows fed WPCS. Milk yield was greater for cows fed BMR, TPL, and TRTCS. Cows fed BMR and TPL produced 2.9 and 2.7 kg d(-1), respectively, more energy-corrected milk (ECM) than cows fed WPCS, and cows fed TRTCS had the greatest ECM production (4.8 kg of ECM d(-1) greater than cows fed WPCS). No differences in body weight or body condition scored were observed. Milk fat concentration was similar among treatments and milk protein concentration was reduced for TRTCS. Starch and neutral detergent fiber digestibility were greater for cows fed TRTCS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
Yang, Bin; Wyman, Charles E
2006-07-05
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis. (c) 2006 Wiley Periodicals, Inc.
Cloning and characterization of alpha-glucuronidase enzyme
USDA-ARS?s Scientific Manuscript database
Hemicellulose is the second largest source of biomass on Earth. Xylan, a polymer of beta-1,4-linked xylose residues, is a common component of hemicellulose. The enzymes xylanase and beta-xylosidase hydrolyze the xylan into xylose which can then be fermented into value-added products. However, the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Jane
2013-03-01
Jane Lau of the Joint BioEnergy Institute on Improving biofuel feedstocks by modifying xylan biosynthesis at the 8th Annual Genomics of Energy Environment Meeting on March 28, 2013 in Walnut Creek, CA.
Glass fiber manufacturing and fiber safety: the producer's perspective.
Bender, J R; Hadley, J G
1994-01-01
Historically, the potential health effects of airborne fibers have been associated with the dose, dimension, and durability. Increasing focus is being placed on the latter category. Concern about airborne fiber safety could be reduced by manufacturing fibers that are not respirable; however, due to performance and manufacturing constraints on glasswool insulations, this is not possible today. These products are an important part of today's economy and as a major manufacturer, Owens-Corning is committed to producing and marketing materials that are both safe and effective in their intended use. To this end, manufacturing technology seeks to produce materials that generate low concentrations of airborne fibers, thus minimizing exposure and irritation. The range of fiber diameters is controlled to assure effective product performance and, as far as possible, to minimize respirability. Glass compositions are designed to allow effective fiber forming and ultimate product function. Fiber dissolution is primarily a function of composition; this too, can be controlled within certain constraints. Coupled with these broad parameters is an extensive product stewardship program to assure the safety of these materials. This article will discuss the factors that influence glasswool insulation production, use, and safety. PMID:7882953
Fermentation of Corn Fiber Hydrolysate to Lactic Acid by the Moderate Thermophile Bacillus coagulans
USDA-ARS?s Scientific Manuscript database
Composted manure from a dairy farm in Texas was examined for thermophilic microorganisms by enrichment in xylose broth medium. Forty randomly picked isolates were identified as strains of Bacillus coagulans by sequence analysis of rRNA genes. One strain, designated as MXL-9, could convert mixed su...
Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.
2008-12-01
Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.
Uchida, K; Ballard, C S; Mandebvu, P; Sniffen, C J; Carter, M P
2001-02-01
Sixty-six lactating multiparous Holstein cows (113+/-46 DIM) housed in a free-stall facility were blocked and assigned randomly to one of three treatments to evaluate the effects on animal performance from feeding cornmeal, cornmeal mixed with steam-rolled corn in a ratio of 1:1 on dry matter basis, or steam-rolled corn. The only difference in the dietary ingredients was the type of corn, which was included in the total mixed ration (TMR) at 17% of dry matter. The densities (g/L) of cornmeal and steam-rolled corn were, respectively, 635 and 553. Diets were fed as TMR and were formulated according to the Cornell Penn Miner Dairy nutrition model. The TMR consisted of 40% forage and 60% concentrate on dry matter basis. The first 2 wk of the 8-wk study was a preliminary period, and data collected during this period were used as covariate in statistical analysis of production data collected during wk 6 to 8. Treatment diets were fed from wk 3 to 8. Total tract digestibilities of dry matter, organic matter, crude protein, starch, and neutral detergent fiber were not significantly different among treatments. Cows fed TMR containing steam-rolled corn had higher body condition and ruminated longer. However, feeding cornmeal and steam-rolled corn together did not improve dry matter and nutrient digestion, milk yield, 3.5% fat-corrected milk yield, and percentage and yield of fat, crude protein, true protein, and lactose in milk, and milk urea nitrogen. In conclusion, feeding steam-rolled corn improved animal body condition and rumination. Partial or complete substitution of cornmeal by steam-rolled corn in diets for lactating dairy cows did not improve dry matter and nutrient digestion, milk yield, and milk composition.
2014-01-01
Background Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased the solubilization of dry matter (DM) during HTT and gave increased glucan content, but lower lignin in the insoluble fiber fraction. Ensiling improved glucose yields in the enzymatic hydrolysis of the washed solid fiber fraction at the lower HTT temperatures. At 170°C glucose yield improved from 17 to 24 (w/w)% (45 to 57% cellulose convertibility), and at 180°C glucose yield improved from 22 to 29 (w/w)% (54 to 69% cellulose convertibility). Direct HTT of grass at 190°C gave the same high glucose yield as for grass silage (35 (w/w)% (77% cellulose convertibility)) and improved xylan yields (27% xylan convertibility). The effect of ensiling of grass prior to HTT improved the enzymatic conversion of cellulose for HTT at 170 and 180°C, but the increased glucose release did not make up for the loss of water soluble carbohydrates (WSC) during ensiling. Overall, sugar yields (C6 + C5) were similar for HTT of grass and grass silage at both 170 and 180°C, but at 190°C the overall sugar yield was better for HTT of dry grass. Conclusions This study unequivocally establishes that ensiling of grass as a biomass pretreatment method comes with a loss of WSC. The loss of WSC by ensiling is not necessarily compensated for by providing a lower temperature requirement for HTT for high enzymatic monosaccharide release. However, ensiling can be an advantageous storage method prior to grass processing. PMID:25024743
Uday, Uma Shankar Prasad; Majumdar, Ria; Tiwari, Onkar Nath; Mishra, Umesh; Mondal, Abhijit; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath
2017-12-01
In the present work, a potent xylanase producing fungal strain Aspergillus niger (KP874102.1) was isolated through cultural and morphological observations from soil sample of Baramura forest, Tripura west, India. 28S rDNA technique was applied for genomic identification of this fungal strain. The isolated strain was found to be phylogenetically closely related to Aspergillus niger. Kinetic constants such as K m and V max for extracellular xylanase were determined using various substrate such as beech wood xylan, oat spelt xylan and CM cellulose through Lineweaver-Burk plot. K m , V max and K cat for beech wood xylan are found to be 2.89mg/ml, 2442U and 426178Umlmg -1 respectively. Crude enzyme did not show also CM cellulose activity. The relative efficiency of oat spelt xylan was found to be 0.819 with respect to beech wood xylan. After acid hydrolysis, enzyme was able to produce reducing sugar with 17.7, 35.5, 50.8 and 65% (w/w) from orange peel after 15, 30, 45 and 60min incubation with cellulase free xylanase and maximum reducing sugar formation rate was found to be 55.96μg/ml/min. Therefore, the Aspergillus niger (KP874102.1) is considered as a potential candidate for enzymatic hydrolysis of orange peel. Copyright © 2017 Elsevier B.V. All rights reserved.
Derba-Maceluch, Marta; Awano, Tatsuya; Takahashi, Junko; Lucenius, Jessica; Ratke, Christine; Kontro, Inkeri; Busse-Wicher, Marta; Kosik, Ondrej; Tanaka, Ryo; Winzéll, Anders; Kallas, Åsa; Leśniewska, Joanna; Berthold, Fredrik; Immerzeel, Peter; Teeri, Tuula T; Ezcurra, Ines; Dupree, Paul; Serimaa, Ritva; Mellerowicz, Ewa J
2015-01-01
Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Jie, Yong-Z; Zhang, Jian-Y; Zhao, Li-H; Ma, Qiu-G; Ji, Cheng
2013-09-25
This study was conducted to evaluate the apparent metabolizable energy (AME) and true metabolizable energy (TME) contents in 30 sources of corn distillers dried grains with solubles (DDGS) in adult roosters, and establish the prediction equations to estimate the AME and TME value based on its chemical composition and color score. Twenty-eight sources of corn DDGS made from several processing plants in 11 provinces of China and others imported from the United States. DDGS were analyzed for their metabolizable energy (ME) contents, measured for color score and chemical composition (crude protein, crude fat, ash, neutral detergent fiber, acid detergent fiber), to predict the equation of ME in DDGS. A precision-fed rooster assay was used, each DDGS sample was tube fed (50 g) to adult roosters. The experiment was conducted as a randomized incomplete block design with 3 periods. Ninety-five adult roosters were used in each period, with 90 being fed the DDGS samples and 5 being fasted to estimate basal endogenous energy losses. Results showed that the AME ranged from 5.93 to 12.19 MJ/kg, TME ranged from 7.28 to 13.54 MJ/kg. Correlations were found between ME and ash content (-0.64, P < 0.01) and between ME and yellowness score (0.39, P < 0.05) of the DDGS samples. Furthermore, the best-fit regression equation for AME content of DDGS based on chemical composition and color score was AME = 6.57111 + 0.51475 GE - 0.10003 NDF + 0.13380 ADF + 0.07057 fat - 0.57029 ash - 0.02437 L (R2 = 0.70). The best-fit regression equation for TME content of DDGS was TME = 7.92283 + 0.51475 GE - 0.10003 NDF + 0.13380 ADF + 0.07057 fat - 0.57029 ash - 0.02437 L (R2 = 0.70). This experiment suggested that measuring the chemical composition and color score of a corn DDGS sample may provide a quality parameter for identifying corn DDGS sources energy digestibility and metabolizable energy content.
Improvement in fermentation characteristics of degermed ground corn by lipid supplementation.
Murthy, Ganti S; Singh, Vijay; Johnston, David B; Rausch, Kent D; Tumbleson, M E
2006-08-01
With rapid growth of fuel ethanol industry, and concomitant increase in distillers dried grains with solubles (DDGS), new corn fractionation technologies that reduce DDGS volume and produce higher value coproducts in dry grind ethanol process have been developed. One of the technologies, a dry degerm, defiber (3D) process (similar to conventional corn dry milling) was used to separate germ and pericarp fiber prior to the endosperm fraction fermentation. Recovery of germ and pericarp fiber in the 3D process results in removal of lipids from the fermentation medium. Biosynthesis of lipids, which is important for cell growth and viability, cannot proceed in strictly anaerobic fermentations. The effects of ten different lipid supplements on improving fermentation rates and ethanol yields were studied and compared to the conventional dry grind process. Endosperm fraction (from the 3D process) was mixed with water and liquefied by enzymatic hydrolysis and was fermented using simultaneous saccharification and fermentation. The highest ethanol concentration (13.7% v/v) was achieved with conventional dry grind process. Control treatment (endosperm fraction from 3D process without lipid supplementation) produced the lowest ethanol concentration (11.2% v/v). Three lipid treatments (fatty acid ester, alkylphenol, and ethoxylated sorbitan ester 1836) were most effective in improving final ethanol concentrations. Fatty acid ester treatment produced the highest final ethanol concentration (12.3% v/v) among all lipid supplementation treatments. Mean final ethanol concentrations of alkylphenol and ethoxylated sorbitan ester 1836 supplemented samples were 12.3 and 12.0% v/v, respectively.
Chao Zhang; Xinshu Zhuang; Zhao Jiang Wang; Fred Matt; Franz St. John; J.Y. Zhu
2013-01-01
Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose...
Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix
Qining Sun; Anurag Mandalika; Thomas Elder; Sandeep S. Nair; Xianzhi Meng; Fang Huang; Art J. Ragauskas
2014-01-01
Novel bionanocomposite films have been prepared by depositing xylan onto cellulose nanowhiskers through a pH adjustment. Analysis of strength properties, water vapour transmission, transparency, surface morphology and thermal decomposition showed the enhancement of film performance. This provides a new green route to the utilization of biomass for sustainable...
USDA-ARS?s Scientific Manuscript database
Xylan is an important part of plant biomass and represents a renewable raw material for biorefineries. Contrary to cellulose, the structure of hemicellulose is quite complex. Therefore, the biodegradation of xylan needs the cooperation of many enzymes. For industrial production of xylanase multienzy...
The mechanism by which arabinoxylanases can recognize highly decorated xylans
USDA-ARS?s Scientific Manuscript database
The enzymatic degradation of plant cell walls is an important biological process of increasing environmental and industrial significance. Xylan, a major component of the plant cell wall, consists of a backbone of beta 1,4-xylose (Xylp) units that are often decorated with arabinofuranose (Araf) side ...
USDA-ARS?s Scientific Manuscript database
We assessed whether a wheat bran extract containing arabino-xylan-oligosaccharide (AXOS) elicited a prebiotic effect and influenced other physiologic parameters when consumed in ready-to-eat cereal at two dose levels. This double-blind, randomized, controlled, crossover trial evaluated the effects o...
Physiochemical Characteristics and Molecular Structures for Digestible Carbohydrates of Silages.
Refat, Basim; Prates, Luciana L; Khan, Nazir A; Lei, Yaogeng; Christensen, David A; McKinnon, John J; Yu, Peiqiang
2017-10-18
The main objectives of this study were (1) to assess the magnitude of differences among new barley silage varieties (BS) selected for varying rates of in vitro neutral detergent fiber (NDF) digestibility (ivNDFD; Cowboy BS with higher ivNDFD, Copeland BS with intermediate ivNDFD, and Xena BS with lower ivNDFD) with regard to their carbohydrate (CHO) molecular makeup, CHO chemical fractions, and rumen degradability in dairy cows in comparison with a new corn silage hybrid (Pioneer 7213R) and (2) to quantify the strength and pattern of association between the molecular structures and digestibility of carbohydrates. The carbohydrate-related molecular structure spectral data was measured using advanced vibrational molecular spectroscopy (FT/IR). In comparison to BS, corn silage showed a significantly (P < 0.05) higher level of starch and energy content and higher degradation of dry matter (DM). Cowboy BS had lower feeding value (higher indigestible fiber content and lower starch content) and lower DM degradation in the rumen compared to other BS varieties (P < 0.05). The spectral intensities of carbohydrates were significantly (P < 0.05) correlated with digestible carbohydrate content of the silages. In conclusion, the univariate approach with only one-factor consideration (ivNDFD) might not be a satisfactory method for evaluating and ranking BS quality. FT/IR molecular spectroscopy can be used to evaluate silage quality rapidly, particularly the digestible fiber content.
Whisner, Corrie M; Martin, Berdine R; Nakatsu, Cindy H; Story, Jon A; MacDonald-Clarke, Claire J; McCabe, Linda D; McCabe, George P; Weaver, Connie M
2016-07-01
Soluble corn fiber (SCF; 12 g fiber/d) is shown to increase calcium absorption efficiency, associated with shifts in the gut microbiota in adolescent males and females who participated in a controlled feeding study. We evaluated the dose response of 0, 10, and 20 g fiber/d delivered by PROMITOR SCF 85 (85% fiber) on calcium absorption, biochemical bone properties, and the fecal microbiome in free-living adolescents. Healthy adolescent females (n = 28; aged 11-14 y) randomly assigned into a 3-phase, double-blind, crossover study consumed SCF for 4 wk at each dose (0, 10, and 20 g fiber/d from SCF) alongside their habitual diet and were followed by 3-d clinical visits and 3-wk washout periods. Stable isotope ((44)Ca and (43)Ca) enrichment in pooled urine was measured by inductively coupled plasma mass spectrometry. Fecal microbial community composition was assessed by high-throughput sequencing (Illumina) of polymerase chain reaction-amplified 16S rRNA genes. Mixed model ANOVA and Friedman analysis were used to determine effects of SCF on calcium absorption and to compare mean microbial proportions, respectively. Calcium absorption increased significantly with 10 (13.3% ± 5.3%; P = 0.042) and 20 g fiber/d (12.9% ± 3.6%; P = 0.026) from SCF relative to control. Significant differences in fecal microbial community diversity were found after consuming SCF (operational taxonomic unit measures of 601.4 ± 83.5, 634.5 ± 83.8, and 649.6 ± 75.5 for 0, 10, and 20 g fiber/d, respectively; P < 0.05). Proportions of the genus Parabacteroides significantly increased with SCF dose (1.1% ± 0.8%, 2.1% ± 1.6%, and 3.0% ± 2.0% for 0, 10, and 20 g fiber/d from SCF, respectively; P < 0.05). Increases in calcium absorption positively correlated with increases in Clostridium (r = 0.44, P = 0.023) and unclassified Clostridiaceae (r = 0.40, P = 0.040). SCF, a nondigestible carbohydrate, increased calcium absorption in free-living adolescent females. Two groups of bacteria may be involved, one directly fermenting SCF and the second fermenting SCF metabolites further, thereby promoting increased calcium absorption. This trial was registered at clinicaltrials.gov as NCT01660503. © 2016 American Society for Nutrition.
Gross, Lee S; Li, Li; Ford, Earl S; Liu, Simin
2004-05-01
Type 2 diabetes is an epidemic that is affecting an ever-increasing proportion of the US population. Although consumption of refined carbohydrates has increased and is thought to be related to the increased risk of type 2 diabetes, the ecologic effect of changes in the quality of carbohydrates in the food supply on the risk of type 2 diabetes remains to be quantified. The objective was to examine the correlation between consumption of refined carbohydrates and the prevalence of type 2 diabetes in the United States. In this ecologic correlation study, the per capita nutrient consumption in the United States between 1909 and 1997 obtained from the US Department of Agriculture was compared with the prevalence of type 2 diabetes obtained from the Centers for Disease Control and Prevention. In a univariate analysis, a significant correlation with diabetes prevalence was observed for dietary fat (r = 0.84, P < 0.001), carbohydrate (r = 0.55, P < 0.001), protein (r = 0.71, P < 0.001), fiber (r = 0.16, P = 0.03), corn syrup (r = 0.83, P < 0.001), and total energy (r = 0.75, P < 0.001) intakes. In a multivariate nutrient-density model, in which total energy intake was accounted for, corn syrup was positively associated with the prevalence of type 2 diabetes (beta = 0.0132, P = 0.038). Fiber (beta = -13.86, P < 0.01) was negatively associated with the prevalence of type 2 diabetes. In contrast, protein (P = 0.084) and fat (P = 0.79) were not associated with the prevalence of type 2 diabetes when total energy was controlled for. Increasing intakes of refined carbohydrate (corn syrup) concomitant with decreasing intakes of fiber paralleled the upward trend in the prevalence of type 2 diabetes observed in the United States during the 20th century.
NASA Astrophysics Data System (ADS)
Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.
Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.
Brown midrib corn shredlage in diets for high-producing dairy cows.
Vanderwerff, L M; Ferraretto, L F; Shaver, R D
2015-08-01
A novel method of harvesting whole-plant corn silage, shredlage, may increase kernel processing and physically effective fiber. Improved fiber effectiveness may be especially advantageous when feeding brown midrib (BMR) corn hybrids, which have reduced lignin content. The objective of this study was to determine the effect of feeding TMR containing BMR corn shredlage (SHRD) compared with BMR conventionally processed corn silage (KP) or KP plus chopped alfalfa hay (KPH) on intake, lactation performance, and total-tract nutrient digestibility in dairy cows. The KP was harvested using conventional rolls (2-mm gap) and the self-propelled forage harvester set at 19mm of theoretical length of cut, whereas SHRD was harvested using novel cross-grooved rolls (2-mm gap) and the self-propelled forage harvester set at 26mm of theoretical length of cut. Holstein cows (n=120; 81±8 d in milk at trial initiation), stratified by parity, days in milk, and milk yield, were randomly assigned to 15 pens of 8 cows each. Pens were randomly assigned to 1 of 3 treatment diets, SHRD, KP, or KPH, in a completely randomized design using a 2-wk covariate period with cows fed a common diet followed by a 14-wk treatment period with cows fed their assigned treatment diet. The TMR contained (dry matter basis) KP or SHRD forages (45%), alfalfa silage (10%), and a concentrate mixture (45%). Hay replaced 10% of KP silage in the KPH treatment TMR (dry matter basis). Milk, protein, and lactose yields were 3.4, 0.08, and 0.16kg/d greater, respectively, for cows fed KP and SHRD than KPH. A week by treatment interaction was detected for milk yield, such that cows fed SHRD produced or tended to produce 1.5kg/d per cow more milk, on average, than cows fed KP during 6 of the 14 treatment weeks. Component-corrected milk yields were similar among treatments. Cows fed KPH had greater milk fat concentration than cows fed KP and SHRD (3.67 vs. 3.30% on average). Consumption of dry matter, rumination activity, and sorting behavior were similar among treatments. Ruminal in situ starch digestibility was greater for SHRD than KP forages, and total-tract dietary starch digestibility was greater for SHRD than KP. Milk yield and starch digestibility were greater for SHRD than KP. Lack of improvement in milk fat content and rumination activity for SHRD compared with KP and reduced milk fat content for SHRD compared with KPH, however, suggest no improvement in physically effective fiber from the longer theoretical length of cut used with SHRD in a BMR hybrid. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Favaro, V R; Ezequiel, J M B; Almeida, M T C; D'Aurea, A P; Paschoaloto, J R; van Cleef, E H C B; Carvalho, V B; Junqueira, N B
2016-08-01
Crude glycerin, a potential energy source for ruminant animals, has been evaluated, mainly, in diets with high starch content. However, a limit number of studies have evaluated the inclusion of crude glycerin in low starch diets. This study aimed to evaluate the effects of the association of crude glycerin with corn grain or citrus pulp on carcass traits and meat quality of Nellore bulls (n=30, 402±31 kg initial weight). The treatment consisted of: CON=control, without crude glycerin; CG10=10% of crude glycerin and corn grain; CG15=15% of crude glycerin and corn grain; CP10=10% of crude glycerin and citrus pulp; CP15=15% of crude glycerin and citrus pulp. The performance parameters and carcass traits were not affected by treatments (P>0.05). The inclusion of crude glycerin decreased yellow color intensity and increased fatty acids pentadecanoic and heptadecenoic in meat (P<0.05), without affecting neither the concentration of polyunsaturated fatty acids nor the relationship of saturated and unsaturated fatty acids. The association of crude glycerin with corn or citrus pulp has no adverse effects on carcass characteristics and meat quality.
Niu, M; Ying, Y; Bartell, P A; Harvatine, K J
2017-01-01
A daily pattern of feed intake, milk synthesis, and plasma metabolites and hormones occurs in dairy cows fed a total mixed ration once or twice a day. The objective of this study was to determine if feeding multiple rations within a day, complementing these rhythms, would improve milk production. Twelve Holstein cows were used in a replicated 3×3 Latin square design with 21-d periods. Cows were housed in tie stalls with feed tubs, and feed weight was recorded every 10 s for observation of feeding behavior. Rations were a low fiber and high fermentable starch ration [LFHS; 27.4% neutral detergent fiber (NDF) and 31.7% starch based on 55.7% corn silage and 14.1% steam-flaked corn], a high fiber and low fermentable starch ration (HFLS; 31.7% NDF and 22.3% starch based on 44% corn silage, 26.3% alfalfa haylage, and no steam-flaked corn), and a total mixed ration that was a 1:3 ratio of LFHS and HFLS (30.7% NDF, 24.5% starch). The control treatment (CON) cows were fed the total mixed ration at 0700h, the high/low treatment (HL) fed HFLS ration at 0700h and LFHS ration at 2200h, and the low/high (LH) treatment fed LFHS ration at 0700h and HFLS ration at 1100h (LFHS and HFLS rations fed at a 1:3 ratio). No effect was found of treatment on daily milk, but LH decreased milk fat concentration and yield compared with HL (0.2 percentage units and 0.24kg, respectively). Daily dry matter and NDF intake and total-tract digestibility did not differ between treatments. The HL treatment reduced intake at the morning-conditioned meal after feeding and reduced intake before the evening feeding. A treatment by time of day interaction was found for fecal NDF and indigestible NDF concentration, blood urea nitrogen (BUN), plasma insulin, and fatty acid concentration, and body temperature. The CON and LH treatments increased the daily amplitude of fecal NDF by 1.0 and 1.1 percentage units compared with HL. Plasma insulin was higher in HL than CON at 0100 and 0400h, but lower at 1300 and 1900h. Plasma fatty acids were higher for CON than HL at 0700h and HL was lower than LH at 0400 and 1900h. Plasma BUN was higher for HL than control at 0100h, but lower at 1000h. Body temperature in CON and HL treatments followed a similar diurnal pattern, whereas body temperature for LH was lower than that of HL treatment at 1300 and 2300h. No daily rhythm was found of fecal indigestible NDF concentration, plasma glucose, or fatty acids detected in the HL treatment, and the amplitude of plasma insulin and BUN was lower for HL compared with CON (70 and 60% decrease, respectively). In conclusion, feeding 2 rations that differ in fiber and fermentable starch modifies diurnal rhythms in dairy cows. Furthermore, feeding a high fiber and low fermentable starch ration during the high intake period of the day may stabilize nutrient absorption across the day. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Matsui, Hiroki; Ban-Tokuda, Tomomi
2008-12-01
An anaerobic fungal isolate, CR4, was isolated from the bovine rumen. The DNA sequence of internal transcribed spacer region 1 showed that CR4 belonged to the genus Caecocmyces. The dry matter digestibility of timothy hay by anaerobic fungal isolate CR4 was determined. The effects of carbohydrate growth substrates on carboxymethyl cellulase (CMCase) and xylanase activities also were examined. The extent of dry matter digestibility of timothy hay was 31% at 6 days' incubation. The highest specific activity of CMCase in the culture supernatant (SN) fraction was observed in xylose culture. The activity of CMCase was not detected in the SN fraction of cellobiose and xylan or in the cell-bound fraction of all growth substrates. The highest specific activity of xylanase in the SN fraction was observed in glucose culture. These results suggest that fiber-degrading enzyme activities were affected by growth substrates and that CR4 is xylanolytic. Zymogram analysis showed that CR4 produces three CMCases of molecular mass (95, 89, and 64 kDa) and three xylanases of molecular mass (82, 73, and 66 kDa). This is the first demonstration showing the molecular mass of fiber-degrading enzymes of Caecomyces.
Radiological study on newly developed composite corn advance lines in Malaysia
NASA Astrophysics Data System (ADS)
Adekunle Olatunji, Michael; Bemigho Uwatse, Onosohwo; Uddin Khandaker, Mayeen; Amin, Y. M.; Faruq, G.
2014-12-01
Owing to population growth, there has been high demand for food across the world, and hence, different agricultural activities such as use of phosphate fertilizers, recycling of organic matters, etc, have been deployed to increase crop yields. In Malaysia, a total of nine composite corn advance lines have been developed at the Institute of Biological Sciences, University of Malaya and are being grown under different conditions with a bid to meet the average daily human need for energy and fiber intake. To this end, the knowledge of radioactivity levels in these corn advance lines are of paramount importance for the estimation of possible radiological hazards due to its consumption. Hence, the radioactivity concentrations of 226Ra, 228Ra and 40K in the corn have been determined using HPGe γ-ray spectrometry. The activity concentrations in the corn ranged from 0.05 to 19.18 Bq kg-1 for 226Ra, from 0.10 to 3.22 Bq kg-1 for 228Ra and from 26.4 to 129 Bq kg-1 for 40K. In order to ascertain the radiological safety of the population regarding maize consumption, the daily intakes of these radionuclides as well as the annual effective dose were estimated. The total effective dose obtained due to the ingestion of radionuclides via maize consumption is 15.39 μSv y-1, which is less than the international recommendations.
Gralak, E; Faria, M V; Figueiredo, A S T; Rizzardi, D A; Neumann, M; Mendes, M C; Scapim, C A; Galbeiro, S
2017-05-25
We assessed the impact of genetic divergence and the ability to combine corn hybrids used for the production of silage on the agronomic and bromatological traits of silage quality. We evaluated 18 corn hybrids used as genitors in a circulant diallel scheme in which each genitor hybrid participated in 9 hybrid combinations, and evaluated 100 treatments [18 genitor hybrids, 81 diallelic hybrids, and a commercial check hybrid (DKB330)] in a triple lattice 10 x 10 experimental design in two environments in Brazil. Genetic variability was adequate among the corn silage hybrids, and we can recommend the use of genitors 2B688 and P30B39 for the formation of a base population for intrapopulational breeding. The P30P34 hybrid is the best for intrapopulational breeding when aiming for silage with high protein content, low fiber content, and higher in vitro digestibility. Interpopulational breeding directed at improving silage digestibility can use a combination of genitors P30P34 and AS1572, but AS1572 and P30K64 are the most recommended. Hybrids 2B688, P30P34, and SG6015 are considered the most genetically distant of the others hybrids, and have desirable combining potential; therefore, they are important genitors for the formation of new segregated populations for improving corn silage.
Suppression of Psyllium Husk Suspension Viscosity by Addition of Water Soluble Polysaccharides.
Kale, Madhuvanti S; Yadav, Madhav P; Hanah, Kyle A
2016-10-01
Psyllium seed husk is an insoluble dietary fiber with many health benefits. It can absorb many times its weight in water, forming very viscous suspensions, which have low palatability and consumer acceptance. We report here a novel approach for decreasing its viscosity, involving inclusion of a soluble polysaccharide in the suspension. This leads to a drastic decrease (up to 87%) in viscosity of suspensions, while maintaining the same dosage level of psyllium and also delivering a significant amount of soluble dietary fiber such as corn bio-fiber gum in a single serving. Four soluble polysaccharides with a range of molecular weights and solution viscosities have been studied for their viscosity suppression effect. Besides improving palatability, another advantage of this approach is that it makes it possible to deliver 2 different dietary fibers in significant quantities, thus offering even greater health benefits. © 2016 Institute of Food Technologists®.
Biopolymer nanocomposite films reinforced with nanocellulose whiskers
Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas
2011-01-01
A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...
Carboxymethylated-, hydroxypropylsulfonated- and quaternized xylan derivative films
Ivan Simkovic; Ivan Kelnar; Iveta Uhliarikova; Raniero Mdndichi; Anurag Mandalika; Thomas Elder
2014-01-01
Under alkaline/water conditions carboxymethyl, 2-hydroxypropylsulfonate and trimethylammonium-2-hydroxypropyl groups were introduced into xylan in one step with the goal to prepare film specimens. The materials were characterized by NMR, SEC-MALS, TG/DTG/DTA, AFM and mechanical testing. The properties of triple, double and mono-substituted materials were compared. The...
Huang, Caoxing; He, Juan; Li, Xin; Min, Douyong; Yong, Qiang
2015-09-01
Kraft pulping was performed on bamboo residues and its impact on the chemical compositions and the enzymatic digestibility of the samples were investigated. To improve the digestibility of sample by degrading the xylan and lignin-carbohydrates complexes (LCCs), xylanase and α-L-arabinofuranosidase (AF) were supplemented with cellulase. The results showed more carbohydrates were remained in the samples pulped with low effective alkali (EA) charge, compared to conventional kraft pulping. When 120 IU/g xylanase and 15 IU/g AF were supplemented with 20 FPU/g cellulase, the xylan degradation yield of the sample pulped with 12% EA charge increased from 68.20% to 88.35%, resulting in an increased enzymatic saccharification efficiency from 58.98% to 83.23%. The amount of LCCs in this sample decreased from 8.63/100C9 to 2.99/100C9 after saccharification with these enzymes. The results indicated that degrading the remained xylan and LCCs in the pulp could improve its enzymatic digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Straw and Xylan Utilization by Pure Cultures of Nitrogen-Fixing Azospirillum spp
Halsall, Dorothy M.; Turner, Graham L.; Gibson, Alan H.
1985-01-01
Azospirillum spp. were shown to utilize both straw and xylan, a major component of straw, for growth with an adequate combined N supply and also under N-limiting conditions. For most strains examined, a semisolid agar medium was satisfactory, but several strains appeared to be capable of slow metabolism of the agar. Subsequently, experiments were done with acid-washed sand supplemented with various carbon sources. In these experiments, authenticated laboratory strains, and all 16 recent field isolates from straw-amended soils, of both A. brasilense and A. lipoferum possessed the ability to utilize straw and xylan as energy sources for nitrogen fixation. Neither carboxymethyl cellulose nor cellulose was utilized. The strains and isolates differed in their abilities to utilize xylan and straw and in the efficiency of nitrogenase activity (CO2/C2H2 ratio). Reasonable levels of activity could be maintained for at least 14 days in the sand cultures. Nitrogenase activity (acetylene reduction) was confirmed by 15N2 incorporation. The level of nitrogenase activity observed was dependent on the time of the addition of acetylene to the culture vessels. PMID:16346730
Wang, Wenju; Ren, Junli; Li, Huiling; Deng, Aojie; Sun, Runcang
2015-05-01
Direct catalytic transformation of xylan-type hemicelluloses to furfural in the aqueous system and the biphasic system were comparatively investigated under mild conditions. Screening of several promising chlorides for conversion of beech xylan in the aqueous system revealed the Lewis acid SnCl4 was the most effective catalyst. Comparing to the single aqueous system, the bio-based 2-methyltetrahydrofuran (2-MTHF)/H2O biphasic system was more conducive to the synthesis of furfural, in which the highest furfural yield of 78.1% was achieved by using SnCl4 as catalysts under the optimized reaction conditions (150°C, 120 min). Additionally, the influences of xylan-type hemicelluloses with different chemical and structural features from beech, corncob and bagasse on the furfural production were studied. It was found that furfural yield to some extent was determined by the xylose content in hemicelluloses and also had relationships with the molecular weight of hemicelluloses and the degree of crystallization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection
Dai, Qing-Qing; Ren, Jun-Li; Peng, Feng; Chen, Xiao-Feng; Gao, Cun-Dian; Sun, Run-Cang
2016-01-01
Acylated xylan-based magnetic Fe3O4 nanocomposite hydrogels (ACX-MNP-gels) were prepared by fabricating Fe3O4 nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX) with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe3O4 fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C). The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt %) presented excellent catalytic activity and provided a sensitive response to H2O2 detection even at a concentration level of 5 × 10−6 mol·L−1. This approach to preparing magnetic hydrogels loaded with Fe3O4 nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry. PMID:28773811
Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.
Zhong, Ruiqin; Ye, Zheng-Hua
2015-02-01
Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.
Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less
Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; ...
2015-11-26
Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less
USDA-ARS?s Scientific Manuscript database
A novel Clostridium sp. strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L-1 butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH...
Opportunities for using bio-based fibers for value-added composites
Zhiyong Cai; Jerrold E. Winandy
2006-01-01
Efficient and economical utilization of various bio-based materials is an effective way to improve forest management, promote long-term sustainability, and restore native ecosystems. However, the dilemma is how to deal with lesser used, undervalued or no-value bio-resources such as small diameter trees, agricultural residues (wheat straw, rice straw, and corn stalk),...
Flexural Testing of Steel Wire Composite Beams Made with Hardwire (trademark) Unidirectional Tape
2003-11-18
Hardwire to carbon fabric in the panels was 85%/15% respectively. The 3XSF Hardwire/fiberglass specimens were made with a 675 yield Type 30 Owens ... Corning glass fiber incorporated into the steel wire cord as shown in Figure 3 in a proprietary co-mingling operation in the cord making process. Ply by
USDA-ARS?s Scientific Manuscript database
Effect of diet composition (DC) and particle size (PS) on nutrient digestibility, gastrointestinal hormones, total bile acids (TBA), total cholesterol and glucose concentrations in plasma were evaluated in finishing pigs (n=8/diet) fed finely (374±29 µm) or coarsely (631±35 µm) ground corn-soybean m...
Yang, Tao; Zhou, Yi-Han; Zhu, Sheng-Zhen; Pan, Hui; Huang, Yao-Bing
2017-10-23
A simple and efficient biphasic system with an earth-abundant metal salt catalyst was used to produce furfural from xylan with a high yield of up to 87.8 % under microwave conditions. Strikingly, the metal salt Al 2 (SO 4 ) 3 exhibited excellent catalytic activity for xylan conversion, owing to a combination of Lewis and Brønsted acidity and its ability to promote good phase separation. The critical role of the SO 4 2- anion was first analyzed, which resulted in the aforementioned characteristics when combined with the Al 3+ cation. The mixed solvent system with γ-valerolactone (GVL) as the organic phase provided the highest furfural yield, resulting from its good dielectric properties and dissolving capacity, which facilitated the absorption of microwave energy and promoted mass transfer. Mechanistic studies suggested that the xylan-to-furfural conversion proceeded mainly through a hydrolysis-isomerization-dehydration pathway and the hexa-coordinated Lewis acidic [Al(OH) 2 (aq)] + species were the active sites for xylose-xylulose isomerization. Detailed kinetic studies of the subreaction for the xylan conversion revealed that GVL regulates the reaction rates and pathways by promoting the rates of the key steps involved for furfural production and suppressing the side reactions for humin production. Finally, the Al 2 (SO 4 ) 3 catalyst was used for the production of furfural from several lignocellulosic feedstocks, revealing its great potential for other biomass conversions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Sun -Ki; Chung, Daehwan; Himmel, Michael E.; ...
2016-08-22
The ability to deconstruct plant biomass without conventional pretreatment has made members of the genus Caldicellulosiruptor the target of investigation for the consolidated processing of lignocellulosic biomass to biofuels and bioproducts. These Gram-positive bacteria are hyperthermophilic anaerobes and the most thermophilic cellulolytic organisms so far described. They use both C5 and C6 sugars simultaneously and have the ability to grow well on xylan, a major component of plant cell walls. This is an important advantage for their use to efficiently convert biomass at yields sufficient for an industrial process. For commodity chemicals, yield from substrate is perhaps the most importantmore » economic factor. In an attempt to improve even further the ability of C. bescii to use xylan, we introduced two xylanases from Acidothermus cellulolyticus. Acel_0180 includes tandem carbohydrate-binding modules (CBM2 and CBM3) located at the C-terminus, one of which, CBM2, is not present in C. bescii. Also, the sequences of Xyn10A and Acel_0180 have very little homology with the GH10 domains present in C. bescii. For these reasons, we selected these xylanases as potential candidates for synergistic interaction with those in the C. bescii exoproteome. As a result, heterologous expression of two xylanases from Acidothermus cellulolyticus in Caldicellulosiruptor bescii resulted in a modest, but significant increase in the activity of the exoproteome of C. bescii on xylan substrates. Even though the increase in extracellular activity was modest, the ability of C. bescii to grow on these substrates was dramatically improved suggesting that the xylan substrate/microbe interaction substantially increased deconstruction over the secreted free enzymes alone. In conclusion, we anticipate that the ability to efficiently use xylan, a major component of plant cell walls for conversion of plant biomass to products of interest, will allow the conversion of renewable, sustainable, and inexpensive plant feedstocks to products at high yields.« less
2010-01-01
Background Fermentations using Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST), and Zymomonas mobilis AX101 are compared side-by-side on corn steep liquor (CSL) media and the water extract and enzymatic hydrolysate from ammonia fiber expansion (AFEX)-pretreated corn stover. Results The three ethanologens are able produce ethanol from a CSL-supplemented co-fermentation at a metabolic yield, final concentration and rate greater than 0.42 g/g consumed sugars, 40 g/L and 0.7 g/L/h (0-48 h), respectively. Xylose-only fermentation of the tested ethanologenic bacteria are five to eight times faster than 424A(LNH-ST) in the CSL fermentation. All tested strains grow and co-ferment sugars at 15% w/v solids loading equivalent of ammonia fiber explosion (AFEX)-pretreated corn stover water extract. However, both KO11 and 424A(LNH-ST) exhibit higher growth robustness than AX101. In 18% w/w solids loading lignocellulosic hydrolysate from AFEX pretreatment, complete glucose fermentations can be achieved at a rate greater than 0.77 g/L/h. In contrast to results from fermentation in CSL, S. cerevisiae 424A(LNH-ST) consumed xylose at the greatest extent and rate in the hydrolysate compared to the bacteria tested. Conclusions Our results confirm that glucose fermentations among the tested strains are effective even at high solids loading (18% by weight). However, xylose consumption in the lignocellulosic hydrolysate is the major bottleneck affecting overall yield, titer or rate of the process. In comparison, Saccharomyces cerevisiae 424A(LNH-ST) is the most relevant strains for industrial production for its ability to ferment both glucose and xylose from undetoxified and unsupplemented hydrolysate from AFEX-pretreated corn stover at high yield. PMID:20507563
Biswal, Ajaya K.; Hao, Zhangying; Pattathil, Sivakumar; ...
2015-03-12
The inherent recalcitrance of woody bioenergy feedstocks is a major challenge for their use as a source of second-generation biofuel. Secondary cell walls that constitute the majority of hardwood biomass are rich in cellulose, xylan, and lignin. The interactions among these polymers prevent facile accessibility and deconstruction by enzymes and chemicals. Plant biomass that can with minimal pretreatment be degraded into sugars is required to produce renewable biofuels in a cost-effective manner. The following are the results: GAUT12/IRX8 is a putative glycosyltransferase proposed to be involved in secondary cell wall glucuronoxylan and/or pectin biosynthesis based on concomitant reductions of bothmore » xylan and the pectin homogalacturonan (HG) in Arabidopsis irx8 mutants. Two GAUT12 homologs exist in Populus trichocarpa, PtGAUT12.1 and PtGAUT12.2. Knockdown expression of both genes simultaneously has been shown to reduce xylan content in Populus wood. We tested the proposition that RNA interference (RNAi) downregulation of GAUT12.1 alone would lead to increased sugar release in Populus wood, that is, reduced recalcitrance, based on the hypothesis that GAUT12 synthesizes a wall structure required for deposition of xylan and that cell walls with less xylan and/or modified cell wall architecture would have reduced recalcitrance. Using an RNAi approach, we generated 11 Populus deltoides transgenic lines with 50 to 67% reduced PdGAUT12.1 transcript expression compared to wild type (WT) and vector controls. Ten of the eleven RNAi lines yielded 4 to 8% greater glucose release upon enzymatic saccharification than the controls. The PdGAUT12.1 knockdown (PdGAUT12.1-KD) lines also displayed 12 to 52% and 12 to 44% increased plant height and radial stem diameter, respectively, compared to the controls. Knockdown of PdGAUT12.1 resulted in a 25 to 47% reduction in galacturonic acid and 17 to 30% reduction in xylose without affecting total lignin content, revealing that in Populus wood as in Arabidopsis, GAUT12 affects both pectin and xylan formation. Finally, analyses of the sugars present in sequential cell wall extracts revealed a reduction of glucuronoxylan and pectic HG and rhamnogalacturonan in extracts from PdGAUT12.1-KD lines.« less
Xin, Hangshu; Abeysekara, Samen; Zhang, Xuewei; Yu, Peiqiang
2015-03-11
In this study, eight varieties of corn forage grown in semiarid western Canada (including Pioneer P2501, Pioneer P39m26, Pioneer P7443, Hyland HL3085, Hyland HLBaxxos, Hyland HLR219, Hyland HLSR22, and Pickseed Silex BT) were selected to explore the effect of irrigation implementation in comparison with nonirrigation on (1) agronomic characteristics, (2) basic chemical profiles explored by using a near-infrared reflectance (NIR) system, and (3) protein and carbohydrate internal structural parameters revealed by using an attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) system. Also, principal component analysis (PCA) was performed on spectroscopic data for clarification of differences in molecular structural makeup among the varieties. The results showed that irrigation treatment significantly increased (P < 0.05) contents of dry matter (DM) and organic matter (OM) but decreased crude protein (CP) of corn forages. Significant interactions of irrigation treatment and corn variety were observed on most agronomic characteristics (DM yield, T/ha, days to tasseling, days to silking) and crude fiber (CF) and ether extract (EE) contents as well as some spectral data such as cellulosic compounds (CELC) peak intensity, peak ratios of CHO third peak to CELC, α-helix to β-sheet, and CHO third peak to amide I. Additionally, the spectral ratios of chemical functional groups that related to structural and nonstructural carbohydrates and protein polymers in forages did not remain constant over corn varieties cultivated with and without water treatment. Moreover, different cultivars had different growth, structure, and nutrition performances in this study. Although significant differences could be found in peak intensities, PCA results indicated some structural similarities existed between two treated corn forages with the exception of HL3085 and HLBaxxos. In conclusion, irrigation and corn variety had interaction effects on agronomic, chemical, nutritional, and structural features. Further study on the optimum level of irrigation for corn forage cultivation might be helpful in semiarid regions such as western Canada.
Urriola, P E; Stein, H H
2010-04-01
The objective of this experiment was to measure the effect of distillers dried grains with solubles (DDGS) on the digestibility of AA, energy, and fiber, on the fermentation of fiber, and on the first appearance of digesta at the end of the ileum, in the cecum, and in the feces of growing pigs fed a corn-soybean meal-based diet. Sixteen pigs (initial BW = 38.0 +/- 1.6 kg) were prepared with a T-cannula in the distal ileum and a T-cannula in the cecum and allotted to 2 treatments. In period 1, all pigs were fed a corn-soybean meal diet. In periods 2, 3, and 4, pigs were fed the control diet or a diet containing corn, soybean meal, and 30% DDGS. First appearance of digesta at the end of the ileum, in the cecum, and over the entire intestinal tract was measured at the end of period 4. The apparent ileal digestibility (AID) and the apparent total tract digestibility (ATTD) of nutrients were measured, and the concentration of VFA was analyzed in ileal, cecal, and fecal samples. The AID of Lys (74.1%) in the DDGS diet was less (P < 0.05) than in the control diet (78.6%), but the AID of most other AA and GE, NDF, and total dietary fiber (TDF) were not different between the 2 diets. The ATTD of GE (81.0%), NDF (57.2%), TDF (55.5%), and DM (81.7%) were less (P < 0.05) in the DDGS diet than in the control diet (86.0, 69.3, 66.0, and 87.2%, respectively). The concentration of VFA in ileal, cecal, and fecal samples was not different between pigs fed the 2 diets. The pH of ileal and cecal digesta from pigs fed the DDGS diet (6.3 and 5.5) was greater (P < 0.01) than from pigs fed the control diet (5.8 and 5.3). The ATTD of DM, GE, ADF, NDF, and TDF did not change with collection period, but the AID of ADF, NDF, and TDF increased (P < 0.05) from period 2 to period 4. The concentration of all VFA, except isobutyrate, was greater (P < 0.05) in cecal samples from period 4 compared with period 2, and the concentration of all VFA except propionate and isovalerate were greater (P < 0.05) in fecal samples collected in period 4 compared with those collected in period 2. The first appearance of digesta at the end of the ileum, in the cecum, and in the feces was not affected by DDGS. In conclusion, pigs fed the diet containing DDGS had less digestibility of Lys, GE, ADF, NDF, and TDF than pigs fed the control diet. The digestibility of DM and GE was not influenced by collection period, but the concentration of VFA in cecal digesta and feces increased with the length of time pigs received the diets.
Tovar-Jiménez, Xochitl; Caro-Corrales, José; Gómez-Aldapa, Carlos A; Zazueta-Morales, José; Limón-Valenzuela, Víctor; Castro-Rosas, Javier; Hernández-Ávila, Juan; Aguilar-Palazuelos, Ernesto
2015-10-01
A mixture of orange vesicle flour, commercial nixtamalized corn flour and potato starch was extruded using a Brabender Laboratory single screw extruder (2:1 L/D). The resulting pellets were expanded by microwaves. Expansion index, bulk density, penetration force, carotenoid content, and dietary fiber were measured for this third-generation snack and optimum production conditions were estimated. Response surface methodology was applied using a central composite rotatable experimental design to evaluate the effect of moisture content and extrusion temperature. Temperature mainly affected the expansion index, bulk density and penetration force, while carotenoids content was affected by moisture content. Surface overlap was used to identify optimum processing conditions: temperature: 128-130 °C; moisture content: 22-24 %. Insoluble dietary fiber decreased and soluble dietary fiber increased after extrusion.
Effect of different fibers on dough properties and biscuit quality.
Blanco Canalis, María S; Steffolani, María E; León, Alberto E; Ribotta, Pablo D
2017-03-01
This study forms part of a broader project aimed at understanding the role of fibers from different sources in high-fat, high-sugar biscuits and at selecting the best fibers for biscuit quality. The main purpose of this work was to understand the rheological and structural properties involved in fiber-enriched biscuit dough. High-amylose corn starch (RSII), chemically modified starch (RSIV), oat fiber (OF) and inulin (IN) were used at two different levels of incorporation (6 and 12 g) in dough formulation. The influence of fiber on the properties of biscuit dough was studied via dynamic rheological tests, confocal microscopy and spreading behavior. Biscuit quality was assessed by width/thickness factor, texture and surface characteristics, total dietary fiber and sensory evaluation. Main results indicated that IN incorporation increased the capacity of dough spreading during baking and thus improved biscuit quality. OF reduced dough spreading during baking and strongly increased its resistance to deformation. RSII and RSIV slightly affected the quality of the biscuits. Sensory evaluation revealed that the panel liked IN-incorporated biscuits as much as control biscuits. The increase in total dietary fiber modified dough behavior and biscuit properties, and the extent of these effects depended on the type of fiber incorporated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Xylan is the second most abundant polysaccharide in dicot wood. Unraveling the biosynthetic pathway of xylan is important not only for our understanding of the process of wood formation but also for our rational engineering of wood for biofuel production. Although several glycosy...
Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that muta...
Fiber and Prebiotics: Mechanisms and Health Benefits
Slavin, Joanne
2013-01-01
The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known “prebiotics”, “a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health.” To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects. PMID:23609775
Stewart, Maria L.; Nikhanj, Soma D.; Timm, Derek A.; Thomas, William; Slavin, Joanne L.
2010-01-01
Background Average dietary fiber intake in the United States is roughly half of the recommended amount. As new dietary fiber products are introduced to increase fiber intake, it is critical to evaluate the physiological effects of such fibers. Aims: This study examined the effect of 4 fibers derived from maize or tapioca on fecal chemistry, gastrointestinal (GI) symptoms and serum markers of chronic disease. Methods Twenty healthy subjects completed the single-blind crossover study in which 12 g/day of fiber (pullulan, Promitor™ Resistant Starch, soluble fiber dextrin or Promitor Soluble Corn Fiber) or placebo (maltodextrin) were consumed for 14 days followed by a 21-day washout. GI symptom surveys were completed (days 3 and 14), stools were collected (days 11–14), diet was recorded (days 12–14) and fasting blood samples were obtained (day 15). Results The 4 test fibers were well tolerated, with mild to moderate GI symptoms. Total short-chain fatty acid (SCFA) concentrations did not differ among the treatments. Fecal pH and individual SCFAs were affected by some treatments. Stool weight and serum markers of chronic disease did not change with these treatments. Conclusion Increasing fiber intake by 12 g/day was well tolerated and may have a positive impact on colon health due to fermentation. PMID:20090313
Fiber and prebiotics: mechanisms and health benefits.
Slavin, Joanne
2013-04-22
The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known "prebiotics", "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health." To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects.
USDA-ARS?s Scientific Manuscript database
The semi-arid regions of western U.S., India, China, and other parts of the world produce a major portion of the world’s food and fiber needs—from staple food grains of wheat, rice, and corn, to vegetables, fruits, nuts, wine, cotton, and forage crops for cattle and poultry. Most of this production ...
Hamady, Zaed Z R; Scott, Nigel; Farrar, Mark D; Lodge, J Peter A; Holland, Keith T; Whitehead, Terence; Carding, Simon R
2010-04-01
Human growth factors are potential therapeutic agents for various inflammatory disorders affecting the gastrointestinal tract. However, they are unstable when administered orally and systemic administration requires high doses increasing the risk of unwanted side effects. Live microorganism-based delivery systems can overcome these problems although they suffer from the inability to control heterologous protein production and there are concerns regarding biosafety and environmental contamination. To overcome these limitations we have developed a new live bacteria drug-delivery system using the human commensal gut bacterium Bacteroides ovatus engineered to secrete human growth factors in response to dietary xylan. The anaerobic nature of B ovatus provides an inherent biosafety feature. B ovatus strains expressing human keratinocyte growth factor-2, which plays a central role in intestinal epithelial homeostasis and repair (BO-KGF), were generated by homologous recombination and evaluated using the dextran sodium sulfate (DSS)-induced model of intestinal epithelial injury and colitis. In response to xylan BO-KGF produced biologically active KGF both in vitro and in vivo. In DSS treated mice administration of xylan and BO-KGF had a significant therapeutic effect in reducing weight loss, improving stool consistency, reducing rectal bleeding, accelerating healing of damaged epithelium, reducing inflammation and neutrophil infiltration, reducing expression of pro-inflammatory cytokines, and accelerating production of goblet cells. BO-KGF and xylan treatment also had a marked prophylactic effect limiting the development of inflammation and disruption of the epithelial barrier. This novel, diet-regulated, live bacterial drug delivery system may be applicable to treating various bowel disorders.
Jia, Yangyang; Wilkins, David; Lu, Hongyuan; Cai, Mingwei
2015-01-01
Cellulose and xylan are two major components of lignocellulosic biomass, which represents a potentially important energy source, as it is abundant and can be converted to methane by microbial action. However, it is recalcitrant to hydrolysis, and the establishment of a complete anaerobic digestion system requires a specific repertoire of microbial functions. In this study, we maintained 2-year enrichment cultures of anaerobic digestion sludge amended with cellulose or xylan to investigate whether a cellulose- or xylan-digesting microbial system could be assembled from sludge previously used to treat neither of them. While efficient methane-producing communities developed under mesophilic (35°C) incubation, they did not under thermophilic (55°C) conditions. Illumina amplicon sequencing results of the archaeal and bacterial 16S rRNA genes revealed that the mature cultures were much lower in richness than the inocula and were dominated by single archaeal (genus Methanobacterium) and bacterial (order Clostridiales) groups, although at finer taxonomic levels the bacteria were differentiated by substrates. Methanogenesis was primarily via the hydrogenotrophic pathway under all conditions, although the identity and growth requirements of syntrophic acetate-oxidizing bacteria were unclear. Incubation conditions (substrate and temperature) had a much greater effect than inoculum source in shaping the mature microbial community, although analysis based on unweighted UniFrac distance found that the inoculum still determined the pool from which microbes could be enriched. Overall, this study confirmed that anaerobic digestion sludge treating nonlignocellulosic material is a potential source of microbial cellulose- and xylan-digesting functions given appropriate enrichment conditions. PMID:26712547
Zeng, Wei; Picard, Kelsey L.; Song, Lili; Wu, Ai-Min; Farion, Isabela M.; Zhao, Jia; Ford, Kris; Bacic, Antony
2016-01-01
Heteroxylans are abundant components of plant cell walls and provide important raw materials for the food, pharmaceutical, and biofuel industries. A number of studies in Arabidopsis (Arabidopsis thaliana) have suggested that the IRREGULAR XYLEM9 (IRX9), IRX10, and IRX14 proteins, as well as their homologs, are involved in xylan synthesis via a Golgi-localized complex termed the xylan synthase complex (XSC). However, both the biochemical and cell biological research lags the genetic and molecular evidence. In this study, we characterized garden asparagus (Asparagus officinalis) stem xylan biosynthesis genes (AoIRX9, AoIRX9L, AoIRX10, AoIRX14A, and AoIRX14B) by heterologous expression in Nicotiana benthamiana. We reconstituted and partially purified an active XSC and showed that three proteins, AoIRX9, AoIRX10, and AoIRX14A, are necessary for xylan xylosyltranferase activity in planta. To better understand the XSC structure and its composition, we carried out coimmunoprecipitation and bimolecular fluorescence complementation analysis to show the molecular interactions between these three IRX proteins. Using a site-directed mutagenesis approach, we showed that the DxD motifs of AoIRX10 and AoIRX14A are crucial for the catalytic activity. These data provide, to our knowledge, the first lines of biochemical and cell biological evidence that AoIRX9, AoIRX10, and AoIRX14A are core components of a Golgi-localized XSC, each with distinct roles for effective heteroxylan biosynthesis. PMID:26951434
Anand, A. Alwin Prem; Vennison, S. John; Sankar, S. Gowri; Prabhu, D. Immanual Gilwax; Vasan, P. Thirumalai; Raghuraman, T.; Geoffrey, C. Jerome; Vendan, S. Ezhil
2010-01-01
Bombyx mori L. (Lepidoptera: Bombycidae) have been domesticated and widely used for silk production. It feeds on mulberry leaves. Mulberry leaves are mainly composed of pectin, xylan, cellulose and starch. Some of the digestive enzymes that degrade these carbohydrates might be produced by gut bacteria. Eleven isolates were obtained from the digestive tract of B. mori, including the Gram positive Bacillus circulans and Gram negative Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, Serratia liquefaciens, Enterobacter sp., Pseudomonas fluorescens, P. aeruginosa, Aeromonas sp., and Erwinia sp.. Three of these isolates, P. vulgaris, K. pneumoniae, C. freundii, were cellulolytic and xylanolytic, P. fluorescens and Erwinia sp., were pectinolytic and K. pneumoniae degraded starch. Aeromonas sp. was able to utilize the CMcellulose and xylan. S. liquefaciens was able to utilize three polysaccharides including CMcellulose, xylan and pectin. B. circulans was able to utilize all four polysaccharides with different efficacy. The gut of B. mori has an alkaline pH and all of the isolated bacterial strains were found to grow and degrade polysaccharides at alkaline pH. The number of cellulolytic bacteria increases with each instar. PMID:20874394
Anand, A Alwin Prem; Vennison, S John; Sankar, S Gowri; Prabhu, D Immanual Gilwax; Vasan, P Thirumalai; Raghuraman, T; Geoffrey, C Jerome; Vendan, S Ezhil
2010-01-01
Bombyx mori L. (Lepidoptera: Bombycidae) have been domesticated and widely used for silk production. It feeds on mulberry leaves. Mulberry leaves are mainly composed of pectin, xylan, cellulose and starch. Some of the digestive enzymes that degrade these carbohydrates might be produced by gut bacteria. Eleven isolates were obtained from the digestive tract of B. mori, including the Gram positive Bacillus circulans and Gram negative Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, Serratia liquefaciens, Enterobacter sp., Pseudomonas fluorescens, P. aeruginosa, Aeromonas sp., and Erwinia sp.. Three of these isolates, P. vulgaris, K. pneumoniae, C. freundii, were cellulolytic and xylanolytic, P. fluorescens and Erwinia sp., were pectinolytic and K. pneumoniae degraded starch. Aeromonas sp. was able to utilize the CMcellulose and xylan. S. liquefaciens was able to utilize three polysaccharides including CMcellulose, xylan and pectin. B. circulans was able to utilize all four polysaccharides with different efficacy. The gut of B. mori has an alkaline pH and all of the isolated bacterial strains were found to grow and degrade polysaccharides at alkaline pH. The number of cellulolytic bacteria increases with each instar.
Rajagopalan, Gobinath; Shanmugavelu, Kavitha; Yang, Kun-Lin
2017-07-01
Xylooligosaccharides (XOS) are emerging prebiotics which can be produced from lignocellulosic biomass including agro-residues and hardwood. In this study, we report the production of XOS from thermal-alkali pretreated hardwood such as mahogany and mango by using a purified xylanase from Clostridium strain BOH3. In the first approach, pure xylan is extracted from mahogany and mango hardwood and then the pure xylan is hydrolyzed by using the xylanase. In this case, 572 and 504mg XOS/g pure xylan were obtained from mahogany and mango woods, respectively. In the second approach, the same xylanase is employed to hydrolyze sawdust of hardwood after different types of pretreatments. After a thermal (121°C for 15min) pretreatment under a mild alkaline (0.05N NaOH) condition, the pretreated mahogany and mango sawdust can be utilized directly to produce 89.5 and 67.6mg XOS/g pretreated sawdust, respectively. XOS produced from the pretreated sawdust show strong prebiotic effects on Bifidobacteria and Lactobacilli. This report shows the possibility of producing XOS from pretreated woody wastes without using pure xylan as a substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mi, Shuofu; Jia, Xiaojing; Wang, Jinzhi; Qiao, Weibo; Peng, Xiaowei; Han, Yejun
2014-01-01
The xylanolytic extremely thermophilic bacterium Caldicellulosiruptor owensensis provides a promising platform for xylan utilization. In the present study, two novel xylanolytic enzymes, GH10 endo-β-1,4-xylanase (Coxyn A) and GH39 β-1,4-xylosidase (Coxyl A) encoded in one gene cluster of C.owensensis were heterogeneously expressed and biochemically characterized. The optimum temperature of the two xylanlytic enzymes was 75°C, and the respective optimum pH for Coxyn A and Coxyl A was 7.0 and 5.0. The difference of Coxyn A and Coxyl A in solution was existing as monomer and homodimer respectively, it was also observed in predicted secondary structure. Under optimum condition, the catalytic efficiency (kcat/Km) of Coxyn A was 366 mg ml(-1) s(-1) on beechwood xylan, and the catalytic efficiency (kcat/Km) of Coxyl A was 2253 mM(-1) s(-1) on pNP-β-D-xylopyranoside. Coxyn A degraded xylan to oligosaccharides, which were converted to monomer by Coxyl A. The two intracellular enzymes might be responsible for xylooligosaccharides utilization in C.owensensis, also provide a potential way for xylan degradation in vitro.
Hamady, Zaed Z R; Farrar, Mark D; Whitehead, Terence R; Holland, Keith T; Lodge, J Peter A; Carding, Simon R
2008-10-01
The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ovatus for the production of these molecules, due to its ability to colonize the colon and xylan utilization properties. Here we have identified the putative xylanase promoter. The 5' region of the corresponding mRNA was determined by 5'RACE analysis and the transcription initiation site was identified 216 bp upstream of the ATG start codon. The putative xylanase promoter was regulated by xylan in a dose- and time-dependent manner, and repressed by glucose. This promoter was subsequently used to direct the controlled expression of a gene encoding the human intestinal trefoil factor (TFF-3) after integration as a single copy into the chromosome of B. ovatus. The resulting strain produced biologically active TFF-3 in the presence of xylan. These findings identify the B. ovatus xylanase operon promoter and show that it can be utilized to direct xylan-inducible expression of heterologous eukaryotic genes in B. ovatus.
Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.
Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje
2017-07-01
The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Fangbing; Wang, Hui; Xin, Huaxia; Cai, Jianfeng; Fu, Qing; Jin, Yu
2016-12-01
Purified standards of xylooligosaccharides (XOSs) (DP2-6) were first prepared from a mixture of XOSs using solid phase extraction (SPE), followed by semi-preparative liquid chromatography both under hydrophilic interaction liquid chromatography (HILIC) modes. Then, an accurate quantitative analysis method based on hydrophilic interaction liquid chromatography-evaporative light scattering detection (HILIC-ELSD) was developed and validated for simultaneous determination of xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6). This developed HILIC-ELSD method was applied to the comparison of different hydrolysis methods for xylans and assessment of XOSs contents from different agricultural wastes. The result indicated that enzymatic hydrolysis was preferable with fewer by-products and high XOSs yield. The XOSs yield (48.40%) from sugarcane bagasse xylan was the highest, showing conversions of 11.21g X2, 12.75g X3, 4.54g X4, 13.31g X5, and 6.78g X6 from 100g xylan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guo, Qingbin; Kang, Ji; Wu, Yan; Cui, Steve W; Hu, Xinzhong; Yada, Rickey Y
2015-12-10
The structure and conformation relationships of a heteropolysaccharide (GlcpA)Xylan in terms of various molecular weights, Xylp/GlcpA ratio and the distribution of GlcpA along xylan chain were investigated using computer modeling. The adiabatic contour maps of xylobiose, XylpXylp(GlcpA) and (GlcpA)XylpXylp(GlcpA) indicated that the insertion of the side group (GlcpA) influenced the accessible conformational space of xylobiose molecule. RIS-Metropolis Monte Carlo method indicated that insertion of GlcpA side chain induced a lowering effect of the calculated chain extension at low GlcpA:Xylp ratio (GlcpA:Xylp = 1:3). The chain, however, became extended when the ratio of GlcpA:Xylp above 2/3. It was also shown that the spatial extension of the polymer chains was dependent on the distribution of side chain: the random distribution demonstrated the most flexible structure compared to block and alternative distribution. The present studies provide a unique insight into the dependence of both side chain ratio and distribution on the stiffness and flexibility of various (GlcpA)Xylan molecules. Copyright © 2015. Published by Elsevier Ltd.
Response of goose intestinal microflora to the source and level of dietary fiber.
Zhou, Haizhu; Guo, Wei; Zhang, Tao; Xu, Bo; Zhang, Di; Teng, Zhanwei; Tao, Dapeng; Lou, Yujie; Gao, Yunhang
2018-06-01
Geese are capable of digesting and making use of a high-fiber diet, but the mechanism is not well understood and would be of great significance for the development and utilization of roughage resources. In this study, we investigated the effect of dietary fiber (source: corn stover and alfalfa, included at 5% or 8%) on microflora in goose intestines. We used 35-day-old Carlos geese in which we first studied the influence of fiber ingestion on diet digestibility and immune organ indices of geese and found that high dietary fiber (8% content) significantly increased feed intake, the digestibility of neutral and acid detergent fiber, and thymus, bursa, and spleen size. Subsequently, we investigated the effect of dietary fiber on the microbial flora in the various intestinal segments by high throughput sequencing. The bacterial diversity and relative abundance were significantly affected by the type and amount of dietary fiber fed, including that of cellulolytic bacteria such as Bacteroides, Ruminococcus, Clostridium, and Pseudomonas spp. Finally, we isolated and identified 8 strains with cellulolytic ability from goose intestine and then analyzed their activities in combination. The optimal combination for cellulase activity was Cerea bacillus and Pseudomonas aeruginosa. This study has laid a theoretical and practical foundation for knowledge of the efficient conversion and utilization of cellulose by geese.
Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage.
Kim, Youngmi; Mosier, Nathan S; Hendrickson, Rick; Ezeji, Thaddeus; Blaschek, Hans; Dien, Bruce; Cotta, Michael; Dale, Bruce; Ladisch, Michael R
2008-08-01
DDGS and wet distillers' grains are the major co-products of the dry grind ethanol facilities. As they are mainly used as animal feed, a typical compositional analysis of the DDGS and wet distillers' grains mainly focuses on defining the feedstock's nutritional characteristics. With an increasing demand for fuel ethanol, the DDGS and wet distillers' grains are viewed as a potential bridge feedstock for ethanol production from other cellulosic biomass. The introduction of DDGS or wet distillers' grains as an additional feed to the existing dry grind plants for increased ethanol yield requires a different approach to the compositional analysis of the material. Rather than focusing on its nutritional value, this new approach aims at determining more detailed chemical composition, especially on polymeric sugars such as cellulose, starch and xylan, which release fermentable sugars upon enzymatic hydrolysis. In this paper we present a detailed and complete compositional analysis procedure suggested for DDGS and wet distillers' grains, as well as the resulting compositions completed by three different research groups. Polymeric sugars, crude protein, crude oil and ash contents of DDGS and wet distillers' grains were accurately and reproducibly determined by the compositional analysis procedure described in this paper.
Chassard, Christophe; Bernalier-Donadille, Annick
2006-01-01
The aim of this work was to investigate in vitro interrelationships during xylan fermentation between an H2 and butyrate-producing xylanolytic species recently isolated in our laboratory from human faeces and identified as Roseburia intestinalis and the H2-utilizing acetogen Ruminococcus hydrogenotrophicus or the methanogen Methanobrevibacter smithii. H2 transfer between M. smithii or Ru. hydrogenotrophicus and the xylanolytic species was evidenced, confirming the great potential of these H2-consuming microorganisms to reutilize fermentative H2 during fibre fermentation in the gut. In addition, acetate transfer was demonstrated between the xylanolytic Roseburia sp. and the acetogenic species, both metabolites transfers leading to butyric fermentation of oat xylan without production of H2.
Adsorption of lignocelluloses of model pre-hydrolysis liquor on activated carbon.
Fatehi, Pedram; Ryan, Jennifer; Ni, Yonghao
2013-03-01
The main objective of this work was to study the adsorption behavior of various components dissolved in the pre-hydrolysis of kraft process on activated carbon. In this work, model prehydrolysis liquor (PHL) solutions (MPHL)s were prepared via mixing various commercially available monosugars, xylan, lignin and furfural; and their adsorption performance on activated carbon (AC) was investigated. In singular (one component) MPHL/AC systems, furfural had the maximum and xylose had the minimum adsorption, and the adsorption of monosugars was basically similar on AC. Also, polydiallyldimethylammonium chloride (PDADMAC) was added (0.5 g/l) to singular xylan or lignin MPHL/AC system, which increased the lignin and xylan adsorptions to 350 and 190 mg/g on AC, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Real-time near-infrared spectroscopic inspection system for adulterated sesame oil
NASA Astrophysics Data System (ADS)
Kang, Sukwon; Lee, Kang-jin; Son, Jaeryong; Kim, Moon S.
2010-04-01
Sesame seed oil is popular and expensive in Korea and has been often mixed with other less expensive vegetable oils. The objective of this research is to develop an economical and rapid adulteration determination system for sesame seed oil mixed with other vegetable oils. A recently developed inspection system consists of a light source, a measuring unit, a spectrophotometer, fiber optics, and a data acquisition module. A near-infrared transmittance spectroscopic method was used to develop the prediction model using Partial Least Square (PLS). Sesame seed oil mixed with a range of concentrations of corn, or perilla, or soybean oil was measured in 8 mm diameter glass tubes. For the model development, a correlation coefficient value of 0.98 was observed for corn, perilla, and soybean oil mixtures with standard errors of correlation of 6.32%, 6.16%, and 5.67%, respectively. From the prediction model, the correlation coefficients of corn oil, perilla oil, and soybean oil were 0.98, 0.97 and 0.98, respectively. The Standard Error of Prediction (SEP) for corn oil, perilla oil, and soybean oil were 6.52%, 6.89% and 5.88%, respectively. The results indicated that this system can potentially be used as a rapid non-destructive adulteration analysis tool for sesame seed oil mixed with other vegetable oils.
Colombini, S; Galassi, G; Crovetto, G M; Rapetti, L
2012-08-01
Total mixed rations containing corn (CS), whole plant grain sorghum (WPGS), or forage sorghum (FS) silages were fed to 6 primiparous Italian Friesian cows to determine the effects on lactation performance, nutrient digestibility, and N balance. Furthermore, the relationship between in vivo total-tract neutral detergent fiber (NDF) digestibility (ttNDFD) and the ttNDFD derived by the Cornell Net Carbohydrate and Protein System (CNCPS) model was assessed. Cows were assigned to 1 of 3 diets in a replicated 3 × 3 Latin square with 28-d periods. The experimental treatment was silage type and 3 different silages were included in the diets. The diets were formulated to be iso-NDF. Accordingly, each diet was formulated to contain 41.5% CS silage, 36.7% WPGS silage, or 28.0% FS silage, on a DM basis. Starch content was balanced by adding the appropriate amount of corn meal. Separate collection of total urine and feces was performed. Dietary forages were analyzed for in vitro NDF digestibility (6 and 24h of incubation) to predict fiber digestion rate with 2 NDF pools (digestible and indigestible). Rumen digestibility of the potentially digestible NDF pool was predicted using CNCPS version 6.1, using the in vitro forage fiber digestion rate. The ttNDFD was predicted assuming that intestinal digestibility of the NDF amount escaping rumen digestion was 20%, according to the CNCPS model. Dry matter intake was decreased by approximately 1.8 kg/d in cows fed the FS diet compared with the other diets, probably for the greater particle size of FS diet. Hence, milk yield (kg/d) was lowest for FS (23.6), intermediate for WPGS (24.6), and highest for the CS diet (25.4). Milk urea N (mg/dL) was highest for FS (12.9), intermediate for WPGS (11.9), and lowest for CS (10.7) diet. In vivo ttNDFD (%) was 51.4 (CS), 48.6 (WPGS), and 54.1 (FS); this was probably due to a higher retention time of FS diet in the rumen rather than to a better quality of the FS silage, as confirmed by in situ and in vitro results. Urinary N excretion (% N intake) was highest for FS (31.8), intermediate for WPGS (29.3), and lowest for the CS (27.5) diet. The predicted ttNDFD (37.7, 36.3, and 39.5% for CS, WPGS, and FS, respectively) were lower than the in vivo results. Providing an adequate starch supplementation, whole plant grain sorghum silage can replace corn silage in dairy cows TMR. Forage sorghum silage had rumen NDF digestibility comparable to the other silages; however, it had a negative effect on dry matter intake and milk production, probably due to an inadequate effect of processing. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
New High-Performance SiC Fiber Developed for Ceramic Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Yun, Hee Mann
2002-01-01
Sylramic-iBN fiber is a new type of small-diameter (10-mm) SiC fiber that was developed at the NASA Glenn Research Center and was recently given an R&D 100 Award for 2001. It is produced by subjecting commercially available Sylramic (Dow Corning, Midland, MI) SiC fibers, fabrics, or preforms to a specially designed high-temperature treatment in a controlled nitrogen environment for a specific time. It can be used in a variety of applications, but it currently has the greatest advantage as a reinforcement for SiC/SiC ceramic composites that are targeted for long-term structural applications at temperatures higher than the capability of metallic superalloys. The commercial Sylramic SiC fiber, which is the precursor for the Sylramic-iBN fiber, is produced by Dow Corning, Midland, Michigan. It is derived from polymers at low temperatures and then pyrolyzed and sintered at high temperatures using boron-containing sintering aids (ref. 1). The sintering process results in very strong fibers (>3 GPa) that are dense, oxygen-free, and nearly stoichiometric. They also display an optimum grain size that is beneficial for high tensile strength, good creep resistance, and good thermal conductivity (ref. 2). The NASA-developed treatment allows the excess boron in the bulk to diffuse to the fiber surface where it reacts with nitrogen to form an in situ boron nitride (BN) coating on the fiber surface (thus the product name of Sylramic-iBN fiber). The removal of boron from the fiber bulk allows the retention of high tensile strength while significantly improving creep resistance and electrical conductivity, and probably thermal conductivity since the grains are slightly larger and the grain boundaries cleaner (ref. 2). Also, as shown in the graph, these improvements allow the fiber to display the best rupture strength at high temperatures in air for any available SiC fiber. In addition, for CMC applications under oxidizing conditions, the formation of an in situ BN surface layer creates a more environmentally durable fiber surface not only because a more oxidation-resistant BN is formed, but also because this layer provides a physical barrier between contacting fibers with oxidation-prone SiC surface layers (refs. 3 and 4). This year, Glenn demonstrated that the in situ BN treatment can be applied simply to Sylramic fibers located within continuous multifiber tows, within woven fabric pieces, or even assembled into complex product shapes (preforms). SiC/SiC ceramic composite panels have been fabricated from Sylramic-iBN fabric and then tested at Glenn within the Ultra-Efficient Engine Technology Program. The test conditions were selected to simulate those experienced by hot-section components in advanced gas turbine engines. The results from testing at Glenn demonstrate all the benefits expected for the Sylramic-iBN fibers. That is, the composites displayed the best thermostructural performance in comparison to composites reinforced by Sylramic fibers and by all other currently available high-performance SiC fiber types (refs. 3 and 5). For these reasons, the Ultra-Efficient Engine Technology Program has selected the Sylramic-iBN fiber for ongoing efforts aimed at SiC/SiC engine component development.
Stone, W C; Chase, L E; Overton, T R; Nestor, K E
2012-11-01
The objective of this study was to evaluate transition cow performance when brown midrib corn silage (BMRCS; Mycogen F2F444) was included in the diet during the transition period, and to determine if any production response occurring during the first 3 wk of lactation would persist from wk 4 to 15 when a common diet was fed. Seventy Holstein dairy cows were blocked by parity (either second or third and greater) and calving date and randomly assigned to the CCS (a mixture of varieties of conventional corn silage) or BMRCS treatment. Diets were formulated with the objective of keeping all ration parameters the same, with the exception of neutral detergent fiber digestibility. Neutral detergent fiber digestibility values (30 h) for CCS and BMRCS averaged 56.8 and 73.8%, respectively. Prepartum rations contained 47% corn silage, 18% wheat straw, 7% alfalfa haylage, and 28% concentrate, and averaged 45% neutral detergent fiber (DM basis). Postpartum rations contained 40% corn silage, 15% alfalfa haylage, 1% straw, and 44% concentrate. Milk weights (3×/d) and dry matter intake were recorded daily, and milk composition was measured weekly. Cows fed BMRCS had higher dry matter intake during the 2-wk period before calving (14.3 vs. 13.2 kg/d) and the 3-wk period after calving (20.1 vs. 18.1 kg/d) than did cows fed CCS. Yields of milk, solids, and lactose were increased, whereas a trend was observed for a reduction in somatic cell counts and linear scores in the postpartum period for cows receiving BMRCS during the transition. A significant carryover effect of BMRCS was observed on production from wk 4 to 15 when the common diet was fed, with yields of protein (1.36 vs. 1.30 kg/d), lactose (2.24 vs. 2.12 kg/d), and solids (5.82 vs. 5.51 kg/d) increasing significantly, and yields of fat-corrected milk, energy-corrected milk, and fat tending to increase during this period for cows that had been fed BMRCS. The increased intakes during the last 2 wk of the prepartum period in the BMRCS treatment were likely because of a reduction in fill, whereas the increased intakes in the postpartum period in cows fed the BMRCS were either because of the higher intakes during the prepartum period or because of a reduction in fill limitations in the postpartum period. The carryover response in wk 4 to 15 may have resulted from cows that received BMRCS during the transition period being in a more positive nutrient balance than cows fed CCS. The results of this study indicate the importance that digestible NDF can have in transition diets and the long-term production responses that can occur when intake is increased in the transition period. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Jaworski, N W; Owusu-Asiedu, A; Walsh, M C; McCann, J C; Loor, J J; Stein, H H
2017-01-01
Effects of a -based direct-fed microbial (DFM) on growth performance, plasma tumor necrosis factor ɑ (TNFɑ), relative gene expression, and intestinal VFA concentrations in weanling pigs fed low- or high-fiber diets were evaluated. Two hundred pigs (initial BW: 6.31 ± 0.73 kg) were allotted to 1 of 4 dietary treatments (5 pigs per pen and 10 pens per treatment). Treatments were arranged in a 2 × 2 factorial design with 2 diet types [low-fiber (LF) or high-fiber (HF)] and 2 concentrations of DFM (0 or 60 g DFM/t of feed). The DFM contained 1.5 × 10 cfu/g and was obtained from Danisco Animal Nutrition-DuPont Industrial Biosciences, Marlborough, UK. Phase 1 diets were fed for 2 wk post-weaning and phase 2 diets were fed over the following 29 d. Low fiber diets contained corn and soybean meal as main ingredients and HF diets contained corn, soybean meal, corn distillers dried grains with solubles (7.5 and 15.0% in phase 1 and 2, respectively), and wheat middlings (10.0%). Pigs and feed were weighed at the start and at the end of each phase, and ADG, ADFI, and G:F were calculated. At the conclusion of phase 2, blood was collected from 1 pig per pen and 1 pig per pen was sacrificed. Cecum and rectum contents were analyzed for VFA, and tissue samples were collected from the ileum, cecum, rectum, and liver to determine expression of genes related to absorption and metabolism of VFA using quantitative reverse transcription-PCR. Results indicated that feeding HF diets reduced ( ≤ 0.05) ADFI and ADG of pigs compared with feeding LF diets. Pigs fed DFM diets had improved ( ≤ 0.05) G:F compared with pigs fed non-DFM diets. Pigs fed LF diets had greater ( ≤ 0.05) BW at the end of phase 2 compared with pigs fed HF diets. The concentration of VFA in rectum contents was greater ( ≤ 0.05) in pigs fed LF diets than in pigs fed HF diets. The expression of in the rectum of pigs fed HF diets was greater ( ≤ 0.05) than for pigs fed LF diets, and pigs fed DFM-containing diets had an increased ( ≤ 0.05) expression of in the liver. Pigs fed HF diets had greater ( ≤ 0.05) concentrations of urea N in plasma compared with pigs fed LF diets, but dietary fiber and DFM had no effect on plasma concentration of TNF-ɑ. In conclusion, the -based DFM improved overall G:F of weanling pigs, but pigs fed LF diets had greater final BW than pigs fed HF diets.
2010-01-01
Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol at 93% metabolic yield) and WCP (resulting in 30 g/L ethanol at 89% metabolic yield) is reported in this work. Conclusions The current results indicate the feasibility of co-utilization of whole plants (that is, starchy grains plus cellulosic residues) using an ammonia-based (AFEX) pretreatment to increase bioethanol yield and reduce overall production cost. PMID:20534126
Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru
2016-03-10
Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P
2016-11-01
Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.