Sample records for corn root tips

  1. Calcium-Dependent Protein Kinase Genes in Corn Roots

    NASA Technical Reports Server (NTRS)

    Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.

    1996-01-01

    Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.

  2. Root elongation against a constant force: experiment with a computerized feedback-controlled device

    NASA Technical Reports Server (NTRS)

    Kuzeja, P. S.; Lintilhac, P. M.; Wei, C.

    2001-01-01

    Axial force was applied to the root tip of corn (Zea mays L. cv. Merit) seedlings using a computerized, feedback-controlled mechanical device. The system's feedback capability allowed continuous control of a constant tip load, and the attached displacement transducer provided the time course of root elongation. Loads up to 7.5 g decreased the root elongation rate by 0.13 mm h-1 g-1, but loads 7.5 to 17.5 g decreased the growth rate by only 0.04 mm h-1 g-1. Loads higher than 18 g stopped root elongation completely. Measurement of the cross-sectional areas of the root tips indicated that the 18 g load had applied about 0.98 MPa of axial pressure to the root, thereby exceeding the root's ability to respond with increased turgor pressure. Recorded time-lapse images of loaded roots showed that radial thickening (swelling) occurred behind the root cap, whose cross-sectional area increased with tip load.

  3. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere

    PubMed Central

    Herron, Patrick M.; Gage, Daniel J.; Arango Pinedo, Catalina; Haider, Zane K.; Cardon, Zoe G.

    2013-01-01

    The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to) environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constitutive promoter nptII and luxCDABE (coding for light-emitting proteins) from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L.), black poplar (Populus nigra L.), or tomato (Solanum lycopersicum L.) was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1–4 and 20–35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. PMID:24032034

  4. Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?

    NASA Technical Reports Server (NTRS)

    Edwards, K. L.

    1985-01-01

    The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.

  5. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  6. In-vitro morphogenesis of corn (Zea mays L.) : I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips.

    PubMed

    Zhong, H; Srinivasan, C; Sticklen, M B

    1992-07-01

    In-vitro methods have been developed to regenerate clumps of multiple shoots and somatic embryos at high frequency from shoot tips of aseptically-grown seedlings as well as from shoot apices of precociously-germinated immature zygotic embryos of corn (Zea mays L.). About 500 shoots were produced from a shoot tip after eight weeks of culture (primary culture and one subculture of four weeks) in darkness on Murashige and Skoog basal medium (MS) supplemented with 500 mg/L casein hydrolysate (CH) and 9 μM N(6)-benzyladenine (BA). In this medium, shoots formed in shoot tips as tightly packed "multiple shoot clumps" (MSC), which were composed of some axillary shoots and many adventitious shoots. When the shoot tips were cultured on MS medium containing 500 mg/L CH, 9 μM BA and 2.25 μM 2,4-dichlorophenoxyacetic acid (2,4-D), most of the shoots in the clumps were adventitious in origin. Similar shoot tips cultured on MS medium containing 500 mg/L CH, 4.5 μM BA and 2.25 μM 2,4-D regenerated many somatic embryos within eight weeks of culture. Somatic embryos were produced either directly from the shoot apical meristems or from calli derived from the shoots apices. Both the MSC and the embryos produced normal shoots on MS medium containing 2.25 μM BA and 1.8 μM indole-3-butyric acid (IBA). These shoots were rooted on MS medium containing 3.6 μM IBA, and fertile corn plants were grown in the greenhouse. The sweet-corn genotype, Honey N Pearl, was used for the experiments described above, but shoot-tip cultures from all of 19 other corn genotypes tested also formed MSC on MS medium containing 500 mg/L CH and 9 μM BA.

  7. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.

    1993-01-01

    Roots of Pisum sativum L. and Zea mays L. were exposed to different moisture gradients established by placing both wet cheesecloth (hydrostimulant) and saturated aqueous solutions of various salts in a closed chamber. Atmospheric conditions with different relative humidity (RH) in a range between 98 and 86% RH were obtained at root level, 2 to 3mm from the water-saturated hydrostimulant. Roots of Silver Queen corn placed vertically with the tips down curved sideways toward the hydrostimulant in response to approximately 94% RH but did not respond positively to RH higher than approximately 95%. The positive hydrotropic response increased linearly as RH was lowered from 95 to 90%. A maximum response was observed at RH between 90 and 86%. However, RH required for the induction of hydrotropism as well as the responsiveness differed among plant species used; gravitropically sensitive roots appeared to require a somewhat greater moisture gradient for the induction of hydrotropism. Decapped roots of corn failed to curve hydrotropically, suggesting the root cap as a major site of hydrosensing.

  8. Proline Accumulation in Maize (Zea mays L.) Primary Roots at Low Water Potentials. II. Metabolic Source of Increased Proline Deposition in the Elongation Zone1

    PubMed Central

    Verslues, Paul E.; Sharp, Robert E.

    1999-01-01

    The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed. PMID:10198094

  9. Spatial Distributions of Potassium, Solutes, and Their Deposition Rates in the Growth Zone of the Primary Corn Root 1

    PubMed Central

    Silk, Wendy Kuhn; Hsiao, Theodore C.; Diedenhofen, Ulrike; Matson, Christina

    1986-01-01

    Densities of osmoticum and potassium were measured as a function of distance from the tip of the primary root of Zea mays L. (cv WF9 × mo17). Millimeter segments were excised and analyzed for osmotic potential by a miniaturized freezing point depression technique, and for potassium by flame spectrophotometry. Local deposition rates were estimated from the continuity equation with values for density and growth velocity. Osmotic potential was uniform, −0.73 ± 0.05 megapascals, throughout the growth zone of well-watered roots. Osmoticum deposition rate was 260 μosmoles per gram fresh weight per hour. Potassium density fell from 117 micromoles per gram in the first mm region to 48 micromoles per gram at the base of the growth zone. Potassium deposition rates had a maximum of 29 micromoles per gram per hour at 3.5 millimeters from the tip and were positive (i.e. potassium was being added to the tissue) until 8 millimeters from the tip. The results are discussed in terms of ion relations of the growing zone and growth physics. PMID:16665121

  10. Silver Uptake, Distribution, and Effect on Calcium, Phosphorus, and Sulfur Uptake 1

    PubMed Central

    Koontz, Harold V.; Berle, Karen L.

    1980-01-01

    Bean, corn, and tomato plants were grown in a nutrient solution labeled with 32P, 45Ca, or 35S and varying concentrations of AgNO3. Following a 6-hour treatment period, plants were harvested and analyzed. A low Ag+ concentration (50 nanomolar) inhibited the shoot uptake of the ions investigated. In the roots, Ca uptake increased whereas P and S uptake decreased. Autoradiograms of bean and corn plants, using 110mAg, showed that Ag+ was uniformly deposited in the bean shoot, but corn shoots had regions of high activity along the leaf margins and at the tips where guttation had occurred. Roots were heavily labeled and shoots (especially the new growth) continued to accumulate Ag+ even after the intact plant was returned to Ag-free solution. Silver was believed to be phloem-mobile since it was exported from a treated leaf. Bean plants removed one-half the Ag+ from 4 liters of nutrient solution containing 50 nanomolar AgNO3 within 1.5 hours, but took 16 hours for 20 liters of solution. Images PMID:16661185

  11. Effects of Carriers, Emulsifiers, and Biopesticides for Direct Silk Treatments on Caterpillar Feeding Damage and Ear Development in Sweet Corn.

    PubMed

    Westgate, P J; Schultz, B B; Hazzard, R V

    2017-04-01

    In the northeastern United States, control of Lepidopteran pests of sweet corn, particularly corn earworm [Helicoverpa zea (Boddie)], is difficult using organic methods. The direct application of corn oil and Bacillus thuringiensis (Bt) to corn silk has been shown to reduce ear damage from corn earworm in past studies; these studies sought to optimize this method by evaluating additional carrier and biopesticide mixtures that comply with the United States Federal Insecticide, Fungicide, and Rodenticide Act and National Organic Standards. Carriers, which are liquids used to dissolve the biopesticide and deliver it into the tip of the ear, may have phytotoxic or insecticidal properties. Experiments conducted from 2001 to 2005 evaluated caterpillar damage and ear development effects from carriers (vegetable and paraffinic oils and carrageenan), biopesticides (Bt, spinsosad, and neem), and three emulsifiers in various combinations when applied directly to the tips of the ears 5-7 d after silk initiation. There were no effects of emulsifiers on ear quality, except for slight reduction in caterpillar damage in one of the two years. There were no differences among corn, soy, canola, and safflower oils in corn earworm control or tip development. The carrageenan carrier had the least effect upon ear development as measured by the length of nonpollinated kernels at the tip, compared to corn oil or paraffinic oil (JMS Stylet Oil), which caused the greatest tip damage as well as an oily discoloration. The carrier-pesticide combinations with the best ear quality overall were spinosad in carrageenan or corn oil, and Bt in carrageenan. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    USDA-ARS?s Scientific Manuscript database

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  13. Descriptive and hedonic analyses of low-Phe food formulations containing corn (Zea mays) seedling roots: toward development of a dietary supplement for individuals with phenylketonuria.

    PubMed

    Cliff, Margaret A; Law, Jessica R; Lücker, Joost; Scaman, Christine H; Kermode, Allison R

    2016-01-15

    Seedling roots of anthocyanin-rich corn (Zea mays) cultivars contain high levels of phenylalanine ammonia lyase (PAL) activity. The development of a natural dietary supplement containing corn roots could provide the means to improve the restrictive diet of phenylketonuria (PKU) patients by increasing their tolerance to dietary phenylalanine (Phe). Therefore this research was undertaken to explore the sensory characteristics of roots of four corn cultivars as well as to develop and evaluate food products (cereal bar, beverage, jam-like spread) to which roots had been added. Sensory profiles of corn roots were investigated using ten trained judges. Roots of Japanese Striped corn seedlings were more bitter, pungent and astringent than those of white and yellow cultivars, while roots from the Blue Jade cultivar had a more pronounced earthy/mushroom aroma. Consumer research using 24 untrained panelists provided hedonic (degree-of-liking) assessments for products with and without roots (controls). The former had lower mean scores than the controls; however, the cereal bar had scores above 5 on the nine-point scale for all hedonic assessments compared with the other treated products. By evaluating low-Phe food products containing corn roots, this research ascertained that the root-containing low-Phe cereal bar was an acceptable 'natural' dietary supplement for PKU-affected individuals. © 2015 Her Majesty the Queen in Right of Canada. Journal of the Science of Food and Agriculture © 2015 Society of Chemical Industry.

  14. Fomation of corn fiber gum-milk protein conjugates and their molecular characterization

    USDA-ARS?s Scientific Manuscript database

    Corn fiber arabinoxylan is hemicellulose B isolated from the fibrous portions (pericarp, tip cap, and endosperm cell wall fractions) of corn kernels and is commonly referred to as corn fiber gum (CFG). Our previous studies showed that CFG isolated from corn bran (a byproduct of corn dry milling) co...

  15. Effect of length of interval between cereal rye cover crop termination and corn planting on seedling root disease and corn growth

    USDA-ARS?s Scientific Manuscript database

    Cereal rye cover crops terminated immediately before corn planting can sometimes reduce corn population, early growth, and yield. We hypothesized that cereal rye may act as a green bridge for corn pathogens and may increase corn seedling root disease. A field experiment was conducted over two years ...

  16. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination.

    PubMed

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-07-01

    Toxicity of engineered nanoparticles on organisms is of concern worldwide due to their extensive use and unique properties. The impacts of ZnO nanoparticles (ZnO NPs) on seed germination and root elongation of corn (Zea mays L.) and cucumber (Cucumis sativus L.) were investigated in this study. The role of seed coats of corn in the mitigation toxicity of nanoparticles was also evaluated. ZnO NPs (1,000 mg L(-1)) reduced root length of corn and cucumber by 17 % (p < 0.05) and 51 % (p < 0.05), respectively, but exhibited no effects on germination. In comparison with Zn(2+), toxicity of ZnO NPs on the root elongation of corn could be attributed to the nanoparticulate ZnO, while released Zn ion from ZnO could solely contribute to the inhibition of root elongation of cucumber. Zn uptake in corn exposed to ZnO NPs during germination was much higher than that in corn exposed to Zn(2+), whereas Zn uptake in cucumber was significantly correlated with soluble Zn in suspension. It could be inferred that Zn was taken up by corn and cucumber mainly in the form of ZnO NPs and soluble Zn, respectively. Transmission electron microscope confirmed the uptake of ZnO NPs into root of corn. Although isolation of the seed coats might not be the principal factor that achieved avoidance from toxicity on germination, seed coats of corn were found to mitigate the toxicity of ZnO NPs on root elongation and prevent approximately half of the Zn from entering into root and endosperm.

  17. Springback and diagravitropism in Merit corn roots

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots.

  18. The possible involvement of root-cap mucilage in gravitropism and calcium movement across root tips of Allium cepa L

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1986-01-01

    Roots of Allium cepa L. grown in aerated water elongate rapidly, but are not graviresponsive. These roots (1) possess extensive columella tissues comprised of cells containing numerous sedimented amyloplasts, (2) lack mucilage on their tips, and (3) are characterized by a weakly polar movement of calcium (Ca) across their tips. Placing roots in humid air correlates positively with the (1) onset of gravicurvature, (2) appearance of mucilage on tips of the roots, and (3) onset of the ability to transport Ca polarly to the lower side of the root tip. Gravicurvature of roots previously submerged in aerated water is more rapid when roots are oriented vertically for 1-2 h in humid air prior to being oriented horizontally. The more rapid gravicurvature of these roots correlates positively with the accumulation of mucilage at the tips of roots during the time the roots are oriented vertically. Therefore, the onset of gravicurvature and the ability of roots to transport Ca to the lower sides of their tips correlate positively with the presence of mucilage at their tips. These results suggest that mucilage may be important for the transport of Ca across root caps.

  19. Corn fiber gum: New structure/function relationships for this potential beverage flavor stabilizer

    USDA-ARS?s Scientific Manuscript database

    Corn fiber arabinoxylan is a hemicellulose B isolated from the fibrous portions (pericarp, tip cap, and endosperm cell wall fractions) of corn kernels by alkaline solution, often in the presence of hydrogen peroxide and is commonly referred to as “Corn fiber gum” (CFG). The unique polysaccharide, C...

  20. Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots

    Treesearch

    Daniel L. Lindner; Mark T. Banik

    2009-01-01

    To better understand the effects of cloning on observations of fungal ITS sequences from Picea glauca (white spruce) roots two techniques were compared: (i) direct sequencing of fungal ITS regions from individual root tips without cloning and (ii) cloning and sequencing of fungal ITS regions from individual root tips. Effect of root tip size was...

  1. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    NASA Astrophysics Data System (ADS)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  2. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Liang, Jiansheng; Zhou, Feng; Li, Qianfeng; Zhang, Jianhua

    2013-01-01

    Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1983-01-01

    The application of calcium chelating agents (EDTA or EGTA) to the tips of maize roots caused a loss of gravitropic sensitivity. When the chelator was replaced with calcium chloride, gravitropic sensitivity was restored. Asymmetric application of calcium chloride near the tip of a vertical root caused curvature toward the calcium source. When the calcium was applied to the upper surface of the tip of a root oriented horizontally, the root curved upward even though control roots exhibited strong downward curvature. Application of calcium chloride to the tips of decapped roots, which are known to be gravitropically insensitive, did not restore gravitropic sensitivity. However, asymmetric application of calcium chloride near the tips of decapped roots caused curvature toward the calcium source. Calcium may play a key role in linking gravity detection to gravitropic curvature in roots.

  4. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN

    PubMed Central

    Kirchgessner, Norbert; Walter, Achim

    2017-01-01

    Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344

  5. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  6. In vitro induction of lipo-chitooligosaccharide production in Bradyrhizobium japonicum cultures by root extracts from non-leguminous plants.

    PubMed

    Lian, Bin; Souleimanov, Alfred; Zhou, Xiaomin; Smith, Donald L

    2002-01-01

    Bradyrhizobium japonicum can form a N2-fixing symbiosis with compatible leguminous plants. It can also act as a plant-growth promoting rhizobacterium (PGPR) for non-legume plants, possibly through production of lipo-chitooligosaccharides (LCOs), which should have the ability to induce disease resistance responses in plants. The objective of this work was to determine whether non-leguminous crop plants can induce LCO formation by B. japonicum cultures. Cultures treated with root extracts of soybean, corn, cotton or winter wheat were assayed for presence and level of LCO. Root extracts of soybean, corn and winter wheat all induced LCO production, with extracts of corn inducing the greatest amounts. Root washings of corn also induced LCO production, but less than the root extract. These results indicated that the stimulation of non-legume plant growth by B. japonicum could be through the production of LCOs, induced by materials excreted by the roots of non-legume plants.

  7. Corn-on-a-chip: Mini-channel Device for Corn Root Growth

    NASA Astrophysics Data System (ADS)

    Kreis, Kevin; Ryu, Sangjin

    2015-11-01

    Plant growth heavily relies on interactions between the root and the soil environment, but it is impossible to observe such interactions because of opaqueness of soil. Microfluidics has been successfully utilized to monitor the root growth behaviors of Arabidopsis. In this study we have chosen Maize as a model plant because of its economic significance, and aim to develop transparent mini-channel devices accommodating the root growth of corn seedlings in a controlled environment. To mimic aspects of the soil environment, we try to impose concentration gradients of key chemical ions to the growing root using the device, and to investigate how the root responds to the applied stimuli. We acknowledge support from NASA Nebraska Space Grant Fellowship.

  8. Intraear Compensation of Field Corn, Zea mays, from Simulated and Naturally Occurring Injury by Ear-Feeding Larvae.

    PubMed

    Steckel, S; Stewart, S D

    2015-06-01

    Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Uronide Deposition Rates in the Primary Root of Zea mays1

    PubMed Central

    Silk, Wendy Kuhn; Walker, Robert C.; Labavitch, John

    1984-01-01

    The spatial distribution of the rate of deposition of uronic acids in the elongation zone of Zea mays L. Crow WF9 × Mo 17 was determined using the continuity equation with experimentally determined values for uronide density and growth velocity. In spatial terms, the uronide deposition rate has a maximum of 0.4 micrograms per millimeter per hour at s = 3.5 mm (i.e., at the location 3.5 mm from the root tip) and decreases to 0.1 mg mm−1 h−1 by s = 10 mm. In terms of a material tissue element, a tissue segment located initially from s = 2.0 to s = 2.1 mm has 0.14 μg of uronic acids and increases in both length and uronic acid content until it is 0.9 mm long and has 0.7 μg of uronide when its center is at s = 10 mm. Simulations of radioactive labeling experiments show that 15 min is the appropriate time scale for pulse determinations of deposition rate profiles in a rapidly growing corn root. PMID:16663488

  10. Water deficit stress effects on corn (Zea mays, L.) root: shoot ratio

    USDA-ARS?s Scientific Manuscript database

    A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation...

  11. Semi field trials to evaluate undersowings in maize for management of western corn rootworm larvae

    USDA-ARS?s Scientific Manuscript database

    Western corn rootworm larvae (Diabrotica virgifera virgifera) need to feed on maize roots after hatching from overwintering eggs. It was hypothesized that the roots of undersown plants mixed with maize roots disrupt the host finding of the larvae, lowering their survival and subsequently reducing la...

  12. Corn rootworms and Bt resistance

    USDA-ARS?s Scientific Manuscript database

    Corn rootworms have been a major pest of corn for many years. As their name suggests, corn rootworms damage corn plants by feeding on the roots. Western and northern corn rootworms have overcome practices farmers use to keep their population numbers down, such as insecticides and crop rotation. Cor...

  13. The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: Characterization of EgTIP2, a root-specific and osmotic stress-responsive gene.

    PubMed

    Rodrigues, Marcela I; Bravo, Juliana P; Sassaki, Flávio T; Severino, Fábio E; Maia, Ivan G

    2013-12-01

    Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    PubMed

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Correlations between polyamine ratios and growth patterns in seedling roots

    NASA Technical Reports Server (NTRS)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  16. Phytochemical screening, total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species.

    PubMed

    Ahmed, Hiwa M

    2018-03-01

    Allelopathic effects of corn (Zea mays) extracts was studied, against seed germination and seedling growth of Phalaris minor, Helianthus annuus, Triticumaestivum, Sorghum halepense, Z. mays. Bioassay results showed that aqueous extracts of corn root and shoot, markedly affected seed germination, and other parameters compared with related controls. Preliminary phytochemical screening revealed the presence of various phytochemicals such as tannins, phlobatannins, flavonoids, terpenoids and alkaloids in both roots and shoot aqueous extracts. However, saponins were only present in the shoot aqueous extract, while in shoot ethanol extracts, only terpenoids and alkaloids were detected. Additionally, total polyphenolic (TPC) content in aqueous extracts of corn root and shoot, plus ethanol extracts of corn shoot were determined using an Ultraviolet-visible spectroscopy. Results revealed TPC content of the corn shoot aqueous extract showed the highest yield, compared to other extracts. These findings suggest that phytochemicals present in Z. mays extracts may contribute to allelopathy effect.

  17. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). III. A model to explain the differential georesponsiveness of primary and lateral roots

    NASA Technical Reports Server (NTRS)

    Ransom, J. S.; Moore, R.

    1985-01-01

    Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.

  18. 40 CFR 180.464 - Dimethenamid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., sugar, dried pulp 0.01 Beet, sugar, molasses 0.01 Beet, sugar, roots 0.01 Beet, sugar, tops 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, forage 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks...

  19. 40 CFR 180.470 - Acetochlor; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., sugar, dried pulp 0.50 Beet, sugar, molasses 0.80 Beet, sugar, roots 0.30 Beet, sugar, tops 0.70 Corn, field, forage 4.5 Corn, field, grain 0.05 Corn, field, stover 2.5 Corn, pop, grain 0.05 Corn, pop, stover 2.5 Corn, sweet, forage 1.5 Corn, sweet, kernels plus cob with husks removed 0.05 Corn, sweet...

  20. 40 CFR 180.464 - Dimethenamid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., sugar, dried pulp 0.01 Beet, sugar, molasses 0.01 Beet, sugar, roots 0.01 Beet, sugar, tops 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, forage 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks...

  1. 40 CFR 180.464 - Dimethenamid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., sugar, dried pulp 0.01 Beet, sugar, molasses 0.01 Beet, sugar, roots 0.01 Beet, sugar, tops 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, forage 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks...

  2. Root-tip-mediated inhibition of hydrotropism is accompanied with the suppression of asymmetric expression of auxin-inducible genes in response to moisture gradients in cucumber roots

    PubMed Central

    Miyabayashi, Sachiko; Sugita, Tomoki; Kobayashi, Akie; Yamazaki, Chiaki; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Takahashi, Hideyuki

    2018-01-01

    In cucumber seedlings, gravitropism interferes with hydrotropism, which results in the nearly complete inhibition of hydrotropism under stationary conditions. However, hydrotropic responses are induced when the gravitropic response in the root is nullified by clinorotation. Columella cells in the root cap sense gravity, which induces the gravitropic response. In this study, we found that removing the root tip induced hydrotropism in cucumber roots under stationary conditions. The application of auxin transport inhibitors to cucumber seedlings under stationary conditions suppressed the hydrotropic response induced by the removal of the root tip. To investigate the expression of genes related to hydrotropism in de-tipped cucumber roots, we conducted transcriptome analysis of gene expression by RNA-Seq using seedlings exhibiting hydrotropic and gravitropic responses. Of the 21 and 45 genes asymmetrically expressed during hydrotropic and gravitropic responses, respectively, five genes were identical. Gene ontology (GO) analysis indicated that the category auxin-inducible genes was significantly enriched among genes that were more highly expressed in the concave side of the root than the convex side during hydrotropic or gravitropic responses. Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis revealed that root hydrotropism induced under stationary conditions (by removing the root tip) was accompanied by the asymmetric expression of several auxin-inducible genes. However, intact roots did not exhibit the asymmetric expression patterns of auxin-inducible genes under stationary conditions, even in the presence of a moisture gradient. These results suggest that the root tip inhibits hydrotropism by suppressing the induction of asymmetric auxin distribution. Auxin transport and distribution not mediated by the root tip might play a role in hydrotropism in cucumber roots. PMID:29324818

  3. Evaluation of Cuphea as a rotation crop for control of western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Behle, Robert W; Isbell, Terry A

    2005-12-01

    The ability to prevent significant root feeding damage to corn, Zea mays L., by the western corn rootworm, Diabrotica virgifera virgifera LeConte, by crop rotation with soybean, Glycine max (L.) Merr., has been lost in portions of the Corn Belt because this pest has adapted to laying eggs in soybean fields. Cuphea spp. has been proposed as a new broadleaf crop that may provide an undesirable habitat for rootworm adults because of its sticky surface and therefore may reduce or prevent oviposition in these fields. A 4-yr study (1 yr to establish seven rotation programs followed by 3 yr of evaluation) was conducted to determine whether crop rotation with Cuphea would provide cultural control of corn rootworm. In support of Cuphea as a rotation crop, fewer beetles were captured by sticky traps in plots of Cuphea over the 4 yr of this study compared with traps in corn and soybean, suggesting that fewer eggs may be laid in plots planted to Cuphea. Also, corn grown after Cuphea was significantly taller during vegetative growth, had significantly lower root damage ratings for 2 of 3 yr, and had significantly higher yields for 2 of 3 yr compared with continuous corn plots. In contrast to these benefits, growing Cuphea did not prevent economic damage to subsequent corn crops as indicated by root damage ratings > 3.0 recorded for corn plants in plots rotated from Cuphea, and sticky trap catches that exceeded the threshold of five beetles trap(-1) day(-1). Beetle emergence from corn plots rotated from Cuphea was significantly lower, not different and significantly higher compared with beetle emergence from continuous corn plots for 2002, 2003 and 2004 growing seasons, respectively. A high number of beetles were captured by emergence cages in plots planted to Cuphea, indicating that rootworm larvae may be capable of completing larval development by feeding on roots of Cuphea, although peak emergence lagged approximately 4 wk behind peak emergence from corn. Based on these data, it is unlikely that crop rotation with Cuphea will provide consistent, economical, cultural control of corn rootworm.

  4. 40 CFR 180.352 - Terbufos; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million Banana 0.025 Beet, sugar, roots 0.05 Beet, sugar, tops 0.1 Coffee, green bean 1 0.05 Corn, field, forage 0.5 Corn, field, grain 0.5 Corn, field, stover 0.5 Corn, pop, grain 0.5 Corn, pop, stover 0.5 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, forage 0.5 Corn, sweet, stover 0.5 Sorghum...

  5. 40 CFR 180.352 - Terbufos; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... million Banana 0.025 Beet, sugar, roots 0.05 Beet, sugar, tops 0.1 Coffee, green bean 1 0.05 Corn, field, forage 0.5 Corn, field, grain 0.5 Corn, field, stover 0.5 Corn, pop, grain 0.5 Corn, pop, stover 0.5 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, forage 0.5 Corn, sweet, stover 0.5 Sorghum...

  6. 40 CFR 180.352 - Terbufos; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... million Banana 0.025 Beet, sugar, roots 0.05 Beet, sugar, tops 0.1 Coffee, green bean 1 0.05 Corn, field, forage 0.5 Corn, field, grain 0.5 Corn, field, stover 0.5 Corn, pop, grain 0.5 Corn, pop, stover 0.5 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, forage 0.5 Corn, sweet, stover 0.5 Sorghum...

  7. 40 CFR 180.352 - Terbufos; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... million Banana 0.025 Beet, sugar, roots 0.05 Beet, sugar, tops 0.1 Coffee, green bean 1 0.05 Corn, field, forage 0.5 Corn, field, grain 0.5 Corn, field, stover 0.5 Corn, pop, grain 0.5 Corn, pop, stover 0.5 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, forage 0.5 Corn, sweet, stover 0.5 Sorghum...

  8. 40 CFR 180.352 - Terbufos; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... million Banana 0.025 Beet, sugar, roots 0.05 Beet, sugar, tops 0.1 Coffee, green bean 1 0.05 Corn, field, forage 0.5 Corn, field, grain 0.5 Corn, field, stover 0.5 Corn, pop, grain 0.5 Corn, pop, stover 0.5 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, forage 0.5 Corn, sweet, stover 0.5 Sorghum...

  9. Direct amplification of DNA from fresh and preserved ectomycorrhizal root tips

    Treesearch

    Elizabeth Bent; D. Lee Taylor

    2009-01-01

    Methods are described by which DNA can be amplified directly from ectomycorrhizal root tip homogenates of a variety of plant species (Picea mariana (black spruce), Betula papyrifera (paper birch), Populus tremuloides (trembling aspen) and Alnus sp.(alder)), including root tips that have...

  10. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  11. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  12. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

    PubMed

    Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko

    2016-01-01

    Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dispersion of near-infrared laser energy through radicular dentine when using plain or conical tips.

    PubMed

    Teo, Christine Yi Jia; George, Roy; Walsh, Laurence J

    2018-02-01

    The aim of this study was to investigate the influence of tip design on patterns of laser energy dispersion through the dentine of tooth roots when using near-infrared diode lasers. Diode laser emissions of 810 or 940 nm were used in combination with optical fiber tips with either conventional plain ends or conical ends, to irradiate tooth roots of oval or round cross-sectional shapes. The lasers were operated in continuous wave mode at 0.5 W for 5 s with the distal end of the fiber tip placed in the apical or coronal third of the root canal at preset positions. Laser light exiting through the roots and apical foramen was imaged, and the extent of lateral spread calculated. There was a significant difference in infrared light exiting the root canal apex between plain and conical fiber tips for both laser wavelengths, with more forward transmission of laser energy through the apex for plain tips. For both laser wavelengths, there were no significant differences in emission patterns when the variable of canal shape was used and all other variables were kept the same (plain vs conical tip, tip position). To ensure optimal treatment effect and to prevent the risks of inadvertent laser effects on the adjacent periapical tissues, it is important to have a good understanding of laser transmission characteristics of the root canal and root dentine. Importantly, it is also essential to understand transmission characteristics of plain and conical fibers tips.

  14. 40 CFR 180.332 - Metribuzin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Barley, straw 1.0 Carrot, roots 0.3 Cattle, fat 0.7 Cattle, meat 0.7 Cattle, meat byproducts 0.7 Corn, field, forage 0.1 Corn, field, grain 0.05 Corn, field, stover 0.1 Corn, pop, grain 0.05 Corn, sweet, forage 0.1 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.1 Egg 0.01 Goat...

  15. 40 CFR 180.332 - Metribuzin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Barley, straw 1.0 Carrot, roots 0.3 Cattle, fat 0.7 Cattle, meat 0.7 Cattle, meat byproducts 0.7 Corn, field, forage 0.1 Corn, field, grain 0.05 Corn, field, stover 0.1 Corn, pop, grain 0.05 Corn, sweet, forage 0.1 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.1 Egg 0.01 Goat...

  16. 40 CFR 180.332 - Metribuzin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Barley, straw 1.0 Carrot, roots 0.3 Cattle, fat 0.7 Cattle, meat 0.7 Cattle, meat byproducts 0.7 Corn, field, forage 0.1 Corn, field, grain 0.05 Corn, field, stover 0.1 Corn, pop, grain 0.05 Corn, sweet, forage 0.1 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.1 Egg 0.01 Goat...

  17. 40 CFR 180.332 - Metribuzin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Barley, straw 1.0 Carrot, roots 0.3 Cattle, fat 0.7 Cattle, meat 0.7 Cattle, meat byproducts 0.7 Corn, field, forage 0.1 Corn, field, grain 0.05 Corn, field, stover 0.1 Corn, pop, grain 0.05 Corn, sweet, forage 0.1 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.1 Egg 0.01 Goat...

  18. Evidence of resistance to Cry34/35Ab1 corn by western corn rootworm: root injury in the field and larval survival in plant-based bioassays

    USDA-ARS?s Scientific Manuscript database

    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn in the United States and recent management of western corn rootworm has included planting of Bt corn. Beginning in 2009, western corn rootworm populations with resistance to Cry3Bb1 c...

  19. Root tips moving through soil

    PubMed Central

    Curlango-Rivera, Gilberto

    2011-01-01

    Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030

  20. A morel improved growth and suppressed Fusarium infection in sweet corn.

    PubMed

    Yu, Dan; Bu, Fangfang; Hou, Jiaojiao; Kang, Yongxiang; Yu, Zhongdong

    2016-12-01

    A post-fire morel collected from Populus simonii stands in Mt. Qingling was identified as Morchella crassipes Mes-20 by using nuclear ribosomal DNA internal transcribed spacer phylogeny. It was inoculated into sweet corn to observe colonized roots in purified culture and in greenhouse experiments. The elongation and maturation zones of sweet corn were remarkably colonized at the cortex intercellular and intracellular cells, vessel cells, and around the Casparian strip, forming ectendomycorrhiza-like structures. Colonization was also observed in the zone of cell division proximal to the root cap. Greenhouse assays with sweet corn showed that this morel stimulated the development of the root system and significantly increased the dry root biomass. M. crassipes also significantly reduced the incidence of Fusarium verticillioides in the kernels of mature ears when inoculated into young ears before Fusarium inoculation and prevented Fusarium infection in corn ears compared with that of the control in the greenhouse. When grown under axenic conditions, M. crassipes produced the phytohormones abscisic acid, indole-3-acetic acid, and salicylic acid. The benefits to plants elicited by M. crassipes may result from these phytohormones which may improve the drought resistance, biomass growth and resistance to Fusarium.

  1. Aluminum and calcium in fine root tips of red spruce collected from the forest floor

    Treesearch

    K.T. Smith; W.C. Shortle; W.D. Ostrofsky

    1995-01-01

    Root chemistry is being increasingly used as a marker of biologically relevant soil chemistry. To evaluate this marker, we determined the precision of measurement, the effect of organic soil horizon, and the effect of stand elevation on the chemistry of fine root tips of red spruce (Picea rubens Sarg.) Fine root tips were collected from the F and H...

  2. Modeling the Kinetics of Root Gravireaction

    NASA Astrophysics Data System (ADS)

    Kondrachuk, Alexander V.; Starkov, Vyacheslav N.

    2011-02-01

    The known "sun-flower equation" (SFE), which was originally proposed to model root circumnutating, was used to describe the simplest tip root graviresponse. Two forms of the SFE (integro-differential and differential-delayed) were solved, analyzed and compared with each other. The numerical solutions of these equations were found to be matching with arbitrary accuracy. The analysis of the solutions focused on time-lag effects on the kinetics of tip root bending. The results of the modeling are in good correlation with an experiment at the initial stages of root tips graviresponse. Further development of the model calls for its systematic comparison with some specially designed experiments, which would include measuring the kinetics of root tip bending before gravistimulation over the period of time longer than the time lag.

  3. Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin.

    PubMed

    Hatfield, Ronald D; Chaptman, Ann K

    2009-05-27

    This study was undertaken to compare cell wall characteristics including levels of p-coumarate (pCA) and lignin in corn (Zea mays L.) types. Five different types of corn, four commercial and Teosinte, were grown in the greenhouse in individual pots. For each corn type replicate stems were harvested at tassel emergence. Tissues for cell wall analysis were harvested from stems (separated into rind and pith tissues) and roots. Stem cell wall characteristics across the different corn types were similar for total neutral sugars, total uronosyls, lignin, and phenolic acids. However, the neutral sugar composition of root cell walls was markedly different, with high levels of galactose and arabinose. Levels of pCA in the different tissues ranged from 13.8 to 33.1 mg g(-1) of CW depending upon the type of tissue. There was no evidence that pCA was incorporated into cell walls attached to arabinoxylans. Lignin levels were similar within a given tissue, with pith ranging from 86.1 to 132.0 mg g(-1) of CW, rind from 178.4 to 236.6 mg g(-1) of CW, and roots from 216.5 to 242.6 mg g(-1) of CW. The higher values for lignins in root tissue may be due to suberin remaining in the acid-insoluble residue, forming Klason lignins. With the exception of root tissues, higher pCA levels accompanied higher lignin levels. This may indicate a potential role of pCA aiding lignin formation in corn cell walls during the lignification process.

  4. Visualization of the Dynamic Rhizosphere Environment: Microbial and Biogeochemical Perspectives

    NASA Astrophysics Data System (ADS)

    Cardon, Z. G.; Forbes, E. S.; Thomas, F.; Herron, P. M.; Gage, D. J.; Thomas, S.; Larsen, M.; Arango Pinedo, C.; Sievert, S. M.; Giblin, A. E.

    2014-12-01

    The rhizosphere is a hotbed of nutrient cycling fueled by carbon from plants and controlled by microbes. Plants also strongly affect the rhizosphere by driving water flow into and out of roots, and by oxygenating saturated soil and sediment. Location and dynamics of plant-spurred microbial growth and activities are impossible to discern with destructive soil assays mixing microbe-scale soil microenvironments in a single"snap-shot" sample. Yet data are needed to inform (and validate) models describing microbial activity and biogeochemistry in the ebb and flow of the dynamic rhizosphere. Dynamics and localization of rapid microbial growth in the rhizosphere can be assessed over time using living soil microbiosensors. We used the bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE(genes coding for light production). High light production by KT2440/pZKH2 correlated with rapid microbial growth supported by high carbon availability. Biosensors were used in clear-sided microcosms filled with non-sterile soil in which corn, black poplar or tomato were growing. KT2440/pZKH2 revealed that root tips are not necessarily the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. Roots can also be sources of oxygen (O2) to the rhizosphere in saturated soil. We quantified spatial distributions of O2 using planar optodes placed against the face of sediment blocks cut from vegetated salt marsh at Plum Island Ecosystems LTER. Integrated over time, Spartina alterniflora roots were O2 sources to the rhizosphere. However, "sun-up" (light on) did not uniformly enhance rhizosphere O2 concentrations (as stomata opened and O2 production commenced). In some regions, the balance of O2 supply (from roots) and O2 demand (root and microbial) tipped toward demand at sun-up (repeatedly, over days). We speculate that in these regions, carbon produced during photosynthesis was released from roots and stimulated microbial O2 demand in the light. In situ, such dynamics in O2 and carbon availability around plant roots will influence interlinked sulfur, nitrogen, and carbon cycling in salt marsh rhizosphere.

  5. Effect of ultrasonic tip and root-end filling material on bond strength.

    PubMed

    Vivan, Rodrigo Ricci; Guerreiro-Tanomaru, Juliane Maria; Bernardes, Ricardo Affonso; Reis, José Mauricio Santos Nunes; Hungaro Duarte, Marco Antonio; Tanomaru-Filho, Mário

    2016-11-01

    The objective of this study was to evaluate the bond strength of three root-end filling materials (MTAA-MTA Angelus, MTAS-experimental MTA Sealer, and ZOE- zinc oxide and eugenol cement) in retrograde preparations performed with different ultrasonic tips (CVD, Trinity, and Satelec). Ninety 2-mm root sections from single-rooted human teeth were used. The retrograde cavities were prepared by using the ultrasonic tips, coupled to a device for position standardization. The specimens were randomly divided into nine groups: CVD MTAA; CVD MTAS; CVD ZOE; Trinity MTAA; Trinity MTAS; Trinity ZOE; Satelec MTAA; Satelec MTAS; Satelec ZOE. Each resin disc/dentin/root-end filling material was placed in the machine to perform the push-out test. The specimens were examined in a stereomicroscope to evaluate the type of failure. Data were submitted to statistical analysis using ANOVA and Tukey tests (α = 0.05). The highest bond strength was observed for the CVD tip irrespective of the material used (P < 0.05). There was no significant difference for the Trinity TU-18 diamond and S12 Satelec tips (P > 0.05). MTAA and MTAS showed highest bond strength. The most common type of failure was adhesion between the filling material and dentin wall, except for ZOE, where mixed failure was predominant. The CVD tip favored higher bond strength of the root-end filling materials. MTA Angelus and experimental MTAS presented bond strength to dentin prepared with ultrasonic tips. Root-end preparation with the CVD tip positively influences the bond strength of root-end filling materials. MTA Angelus and experimental MTAS present bond strength to be used as root-end filling materials.

  6. Protein and carotenoid synthesis and turnover in gravistimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1984-01-01

    In certain cultivars of corn gravitropic bending occurs only after the root cap, the site of gravity perception, is exposed to light. Light appears to trigger or to remove some block in the gravity translation process. Using light sensitive cultivars of corn, it was shown that light affects various processes in the cap. The roles of these light-induced processes in gravitropic bending in roots were studied.

  7. Observations on the Feeding and Symptomatology of Xiphinema and Longidorus on Selected Host Roots

    PubMed Central

    Cohn, E.

    1970-01-01

    In vitro feeding of Xiphinema brevicolle, X. index and Longidorus africanus on roots of host seedlings is described. Both Xiphinema spp. fed mainly along roots rather than at tips and up to several days at a single site. Feeding of L. africanus was confined to root tips and lasted up to 15 min. No visible short term reaction of roots parasitized by the Xiphinema spp. could be discerned, but both swelling and cessation of growth of root tips were observed within 20 hr after feeding by L. africanus. Long-term (12-month) symptoms on roots of several host plants caused by cultured populations of X. brevicolle, X. index, X. italiae, L. africanus and L. brevicaudatus are described. All the Xiphinema spp. caused a thinning and distinct darkening of root systems and, at some sites, a breakdown of the cortex. Both species of Longidorus caused stubby and swollen root tips. Root symptom severity was in proportion to nematode population levels. PMID:19322291

  8. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  9. A novel tracking tool for the analysis of plant-root tip movements.

    PubMed

    Russino, A; Ascrizzi, A; Popova, L; Tonazzini, A; Mancuso, S; Mazzolai, B

    2013-06-01

    The growth process of roots consists of many activities, such as exploring the soil volume, mining minerals, avoiding obstacles and taking up water to fulfil the plant's primary functions, that are performed differently, depending on environmental conditions. Root movements are strictly related to a root decision strategy, which helps plants to survive under stressful conditions by optimizing energy consumption. In this work, we present a novel image-analysis tool to study the kinematics of the root tip (apex), named analyser for root tip tracks (ARTT). The software implementation combines a segmentation algorithm with additional software imaging filters in order to realize a 2D tip detection. The resulting paths, or tracks, arise from the sampled tip positions through the acquired images during the growth. ARTT allows work with no markers and deals autonomously with new emerging root tips, as well as handling a massive number of data relying on minimum user interaction. Consequently, ARTT can be used for a wide range of applications and for the study of kinematics in different plant species. In particular, the study of the root growth and behaviour could lead to the definition of novel principles for the penetration and/or control paradigms for soil exploration and monitoring tasks. The software capabilities were demonstrated by experimental trials performed with Zea mays and Oryza sativa.

  10. A maize inbred exhibits resistance against western corn root worm, Diabrotica vergifera vergifera.

    USDA-ARS?s Scientific Manuscript database

    Plants respond to insect infestations with a suite of natural defenses that vary depending on their genetic and phenotypic traits. Insect resistance traits against root herbivores like western corn rootworm (WCR, Diabrotica virgifera) are not well understood in non-transgenic maize. Using biomechani...

  11. Proteomic and metabolomic analyses of soybean root tips under flooding stress.

    PubMed

    Komatsu, Setsuko; Nakamura, Takuji; Sugimoto, Yurie; Sakamoto, Kazunori

    2014-01-01

    Flooding is one of the serious problems for soybean plants because it inhibits growth. Proteomic and metabolomic techniques were used to determine whether proteins and metabolites are altered in the root tips of soybeans under flooding stress. Two-day-old soybean plants were flooded for 2 days, and proteins and metabolites were extracted from root tips. Flooding-responsive proteins were identified using two-dimensional- or SDS-polyacrylamide gel electrophoresis- based proteomics techniques. Using both techniques, 172 proteins increased and 105 proteins decreased in abundance in the root tips of flood-stressed soybean. The abundance of methionine synthase, heat shock cognate protein, urease, and phosphoenol pyruvate carboxylase was significantly increased by flooding stress. Furthermore, 73 flooding-responsive metabolites were identified using capillary electrophoresis-mass spectrometry. The levels of gamma-aminobutyric acid, glycine, NADH2, and phosphoenol pyruvate were increased by flooding stress. Taken together, these results suggest that synthesis of phosphoenol pyruvate by way of oxaloacetate produced in the tricarboxylic acid cycle is activated in soybean root tips in response to flooding stress, and that flooding stress also leads to modulation of the urea cycle in the root tips.

  12. Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench)

    PubMed Central

    Klug, Benjamin; Specht, André; Horst, Walter J.

    2011-01-01

    Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots. The results compare well with the distribution of total Al determined by LA-ICP-MS which could be reliably calibrated to compare with Al contents by conventional total Al determination using graphite furnace atomic absorption spectrometry. The Al localization in root cross-sections along the root tip showed that in buckwheat Al is highly mobile in the radial direction. The root apex predominantly accumulated Al in the cortex. The subapical root section showed a homogenous Al distribution across the whole section. In the following root section Al was located particularly in the pericycle and the xylem parenchyma cells. With further increasing distance from the root apex Al could be detected only in individual xylem vessels. The results support the view that the 10 mm apical root tip is the main site of Al uptake into the symplast of the cortex, while the subapical 10–20 mm zone is the main site of xylem loading through the pericycle and xylem parenchyma cells. Progress in the better molecular understanding of Al transport in buckwheat will depend on the consideration of the tissue specificity of Al transport and complexation. PMID:21831842

  13. Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil.

    PubMed

    Chouychai, Waraporn; Kruatrachue, Maleeya; Lee, Hung

    2015-01-01

    The influence of three plant growth regulators, indolebutyric acid (IBA), thidiazuron (TDZ) and gibberellic acid (GA3), either individually or in pair-wise combinations, on the ability of waxy corn plant to remove hexachlorocyclohexane (HCH) from contaminated soil was studied. Waxy corn seeds were immersed for 3 h in solutions of 1.0 mg/l IBA, 0.01 mg/l TDZ, 0.1 mg/l GA3, or a mixture of two of the growth regulators, and then inoculated in soil contaminated with 46.8 mg/kg HCH for 30 days. Pretreatment of corn seeds with the plant growth regulators did not enhance corn growth when compared with those immersed in distilled water (control), but the pretreatment enhanced HCH removal significantly. On day 30, HCH concentration in the bulk soil planted with corn seeds pretreated with GA3 or TDZ+GA3 decreased by 97.4% and 98.4%, respectively. In comparison, HCH removal in soil planted with non-pretreated control waxy corn seeds was only 35.7%. The effect of several growth regulator application methods was tested with 0.01 mg/l TDZ. The results showed that none of the methods, which ranged from seed immersion, watering in soil, or spraying on shoots, affected HCH removal from soil. However, the method of applying the growth regulators may affect corn growth. Watering the corn plant with TDZ in soil led to higher root fresh weight (2.2 g) and higher root dried weight (0.57 g) than the other treatments (0.2-1.7 g root fresh weight and 0.02-0.43 g root dried weight) on day 30. Varying the concentrations of GA3 did not affect the enhancement of corn growth and HCH removal on day 30. The results showed that plant growth regulators may have potential for use to enhance HCH phytoremediation.

  14. Effects of ultrasonic root-end cavity preparation with different surgical-tips and at different power-settings on glucose-leakage of root-end filling material.

    PubMed

    Gunes, Betul; Aydinbelge, Hale Ali

    2014-09-01

    The aim of this in vitro study was to evaluate the effects of different ultrasonic surgical-tips and power-settings on micro-leakage of root-end filling material. The root canals were instrumented using rotary-files and were filled with tapered gutta-percha and root canal sealer using a single-cone technique. The apical 3 mm of each root was resected and the roots were divided into six experimental groups; negative and positive control groups. Root-end cavities were prepared with diamond-coated, zirconum-nitride-coated and stainless-steel ultrasonic retro-tips at half-power and high-power settings. The time required to prepare the root-end cavities for each group was recorded. Root-end cavities were filled with Super-EBA. Leakage values of all samples evaluated with glucose penetration method on 7, 14, 21 and 28(th) days. The results were statistically analyzed with Kruskal-Wallis and Hollander-Wolfe tests. The mean time required to prepare retro cavities using diamond-coated surgical tip at high-power setting was significantly less than other groups (P < 0.01). There were no statistically significant differences in the glucose penetration between the groups at first and second weeks (P > 0.01). Diamond-coated surgical tip showed the least leakage at high-power setting at 3(rd) and 4(th) weeks (P < 0.01). Under the conditions of this study, cavity preparation time was the shortest and the leakage of the root-end filling was the least when diamond-coated retro-tip used at high-power setting.

  15. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    PubMed

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  16. Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi

    USDA-ARS?s Scientific Manuscript database

    While many studies have characterized the transcriptome of plants attacked by herbivorous insect pests, few have undertaken an examination of the genes affected by root pests. We have subjected maize seedlings to infestation by southern corn rootworm (SCR) Diabrotica undecimpunctata howardi and usin...

  17. Joint effects of microwave and chromium trioxide on root tip cells of Vicia faba *

    PubMed Central

    Qian, Xiao-Wei; Luo, Wei-Hua; Zheng, Ou-Xiang

    2006-01-01

    The mutagenic effects of microwave and chromium trioxide (CrO3) on Vicia faba root tip were studied. Micronucleus assay and chromosomal aberration assay were used to determine the mitotic index, the micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells induced by microwave and CrO3. The results showed that the micronucleus frequency decreased, and that the mitotic index and chromosomal aberration frequency showed linear dose responses to CrO3, in treatment of microwave for 5 s. In microwave of 25 s, the mitotic index decreased, the micronucleus frequency and chromosomal aberration frequency increased with increase of CrO3 concentration. We concluded that microwave and CrO3 had antagonistic effect on the mitotic index of Vicia faba root tip cells, but had synergetic effect on micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells. PMID:16502510

  18. Joint effects of microwave and chromium trioxide on root tip cells of Vicia faba.

    PubMed

    Qian, Xiao-wei; Luo, Wei-hua; Zheng, Ou-xiang

    2006-03-01

    The mutagenic effects of microwave and chromium trioxide (CrO(3)) on Vicia faba root tip were studied. Micronucleus assay and chromosomal aberration assay were used to determine the mitotic index, the micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells induced by microwave and CrO(3). The results showed that the micronucleus frequency decreased, and that the mitotic index and chromosomal aberration frequency showed linear dose responses to CrO(3), in treatment of microwave for 5 s. In microwave of 25 s, the mitotic index decreased, the micronucleus frequency and chromosomal aberration frequency increased with increase of CrO(3) concentration. We concluded that microwave and CrO(3) had antagonistic effect on the mitotic index of Vicia faba root tip cells, but had synergetic effect on micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells.

  19. [Study on teratogenic effect of potassium dichromate on Vicia faba root tip cells].

    PubMed

    Qian, Xiao-Wei

    2004-05-01

    We studied the aberrant effects of different concentrations of potassium dichromate on Vicia faba root tip cells. The micronucleus and chromosome aberration assay was conducted to determine the micronucleus rate and chromosome aberration rate of Vicia faba root tip cells induced by potassium dichromate. The result indicated that potassium dichromate could increase the micronucleus rate of Vicia faba root tip cells. Within certain range of concentration the rate of micronucleus was found to be increased with the increase of potassium dichromate concentration,but beyond this range the rate of micronucleus decreased with further increase of potassium dichromate concentration. The potassium dichromate at different concentrations could increase the cell mitosis index. Besides,it also caused various types of chromosome aberration,and the rates of chromosome aberration were always higher than that of the control group. The conclusion of this study was that potassium dichromate has obvious teratogenic effect on Vicia faba root tip cells.

  20. Uptake, distribution, and velocity of organically complexed plutonium in corn (Zea mays).

    PubMed

    Thompson, Shannon W; Molz, Fred J; Fjeld, Robert A; Kaplan, Daniel I

    2012-10-01

    Lysimeter experiments and associated simulations suggested that Pu moved into and through plants that invaded field lysimeters during an 11-year study at the Savannah River Site. However, probable plant uptake and transport mechanisms were not well defined, so more detailed study is needed. Therefore, experiments were performed to examine movement, distribution, and velocity of soluble, complexed Pu in corn. Corn was grown and exposed to Pu using a "long root" system in which the primary root extended through a soil pot and into a hydroponic container. To maintain solubility, Pu was complexed with the bacterial siderophore DFOB (Desferrioxamine B) or the chelating agent DTPA (diethylenetriaminepentaacetic acid). Corn plants were exposed to nutrient solutions containing Pu for periods of 10 min to 10 d. Analysis of root and shoot tissues permitted concentration measurement and calculation of uptake velocity and Pu retardation in corn. Results showed that depending on exposure time, 98.3-95.9% of Pu entering the plant was retained in the roots external to the xylem, and that 1.7-4.1% of Pu entered the shoots (shoot fraction increased with exposure time). Corn Pu uptake was 2-4 times greater as Pu(DFOB) than as Pu(2)(DTPA)(3). Pu(DFOB) solution entered the root xylem and moved 1.74 m h(-1) or greater upward, which is more than a million times faster than Pu(III/IV) downward movement through soil during the lysimeter study. The Pu(DFOB) xylem retardation factor was estimated to be 3.7-11, allowing for rapid upward Pu transport and potential environmental release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1986-01-01

    We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn (Zea mays L., B73 x Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 mM CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 micromole) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of 1-aminocyclopropane-1-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.

  2. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    PubMed

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  3. Mathematical Modeling and Experimental Validation of the Spatial Distribution of Boron in the Root of Arabidopsis thaliana Identify High Boron Accumulation in the Tip and Predict a Distinct Root Tip Uptake Function

    PubMed Central

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru

    2015-01-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713

  4. [Effects of chlorobenzene stress on seedling growth and cell division of Vicia faba].

    PubMed

    Liu, Wan; Zhou, Qixing; Li, Peijun; Sun, Tieheng; Tai, Peidong; Xu, Huaxia; Zhang, Chungui; Zhang, Hairong

    2003-04-01

    Effects of 1, 2, 4-trichlorobenzene (TCB) stress on seedling growth, cell division and chromosomal aberration frequency of root-tip cells of Vicia faba were studied. The results indicated that the growth of the root length and mitotic index of root tip cells were successively decreased and even stopped with the increase of TCB concentrations and treatment duration. Numerical and structural chromosomal aberrations at metaphase and anaphase of root-tip cells in Vicia faba seedlings were produced by 50-300 micrograms.g-1 TCB treatment for 12-96 h. The percentage of c-mitosis, chromosomal bridge and chromosomal asymmetry array in root tip cells exposed to 50-100 micrograms.g-1 TCB for 12-24 h was up to 1.0-10.3%. The percentage of chromosomal stickness (S), chromosomal stickiness + chromosomal breakage (S + B), chromosomal stickness + chromosomal ring (S + R), chromosomal stickiness + chromosomal asymmetry array (S + A) and chromosomal stickness + chromosomal bridge (S + Be) in root tip cells reached 47.9-88.9%, and 18.1-29.6% for different kinds of chromosomal breakage at 300 micrograms.g-1 TCB for 12-96 h. Thus, the chromosomal aberration of root tip cells in Vicia faba seedlings could be used as a sensitive biomarker of monitoring soil contaminated with TCB.

  5. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  6. Turbine bucket for use in gas turbine engines and methods for fabricating the same

    DOEpatents

    Garcia-Crespo, Andres

    2014-06-03

    A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.

  7. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  8. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    PubMed Central

    Wang, Tao; Li, Chengxiang; Wu, Zhihua; Jia, Yancui; Wang, Hong; Sun, Shiyong; Mao, Chuanzao; Wang, Xuelu

    2017-01-01

    Abscisic acid (ABA) plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10) had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2) had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development. PMID:28702040

  9. Prediction of pest pressure on corn root nodes: the POPP-Corn model.

    PubMed

    Agatz, Annika; Ashauer, Roman; Sweeney, Paul; Brown, Colin D

    2017-01-01

    A model for the corn rootworm Diabrotica spp. combined with a temporally explicit model for development of corn roots across the soil profile was developed to link pest ecology, root damage and yield loss. Development of the model focused on simulating root damage from rootworm feeding in accordance with observations in the field to allow the virtual testing of efficacy from management interventions in the future. We present the model and demonstrate its applicability for simulating root damage by comparison between observed and simulated pest development and root damage (assessed according to the node injury scale from 0 to 3) for field studies from the literature conducted in Urbana, Illinois (US), between 1991 and 2014. The model simulated the first appearance of larvae and adults to within a week of that observed in 88 and 71 % of all years, respectively, and in all cases to within 2 weeks of the first sightings recorded for central Illinois. Furthermore, in 73 % of all years simulated root damage differed by <0.5 node injury scale points compared to the observations made in the field between 2005 and 2014 even though accurate information for initial pest pressure (i.e. number of eggs in the soil) was not measured at the sites or available from nearby locations. This is, to our knowledge, the first time that pest ecology, root damage and yield loss have been successfully interlinked to produce a virtual field. There are potential applications in investigating efficacy of different pest control measures and strategies.

  10. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces.

    PubMed

    Rams, Thomas E; Alwaqyan, Abdulaziz Y

    2017-10-01

    This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.

  11. Acetylene reduction (nitrogen fixation) associated with corn inoculated with Spirillum.

    PubMed

    Barber, L E; Tjepkema, J D; Russell, S A; Evans, H J

    1976-07-01

    Sorghum and corn breeding lines were grown in soil in field and greenhouse experiments with and without an inoculum of N2-fixing in Spirillum strains from Brazil. Estimated rates of N2 fixation associated with field-grown corn and sorghum plants were less than 4 g of N2/ha per day. The mean estimated N2-fixation rates determined on segments of roots from corn inoculated with Spirillum and grown in the greenhouse at 24 to 27 degrees C were 15 g of N2/ha per day (16 inbreds), 25 g of N2/ha per day (six hybrids), and 165 g of N2/ha per day for one hybird which was heavily inoculated. The corresponding mean rates determined from measurements of in situ cultures of the same series of corn plants (i.e., 16 inbreds, six hybrids, and one heavily inoculated hybrid) were 0.4, 2.3, and 1.1 g of N2/ha per day, respectively. Lower rates of C2H2 reduction were associated with control corn cultures which had been treated with autoclaved Spirillum than with cultures inoculated with live Spirillum. No C2H2 reduction was detected in plant cultures treated with ammonium nitrate. Numbers of nitrogen-fixing bacteria on excised roots of corn plants increased an average of about 30-fold during an overnight preincubation period, and as a result acetylene reduction assays of root samples after preincubation failed to serve as a valid basis for estimating N2 fixation by corn in pot cultures. Plants grown without added nitrogen either with or without inoculum exhibited severe symptoms of nitrogen deficiency and in most cases produced significantly less dry weight than those supplied with fixed nitrogen. Although substantial rates of C2H2 reduction by excised corn roots were observed after preincubation under limited oxygen, the yield and nitrogen content of inoculated plants and the C2H2-reduction rates by inoculated pot cultures of corn, in situ, provided no evidence of appreciable N2 fixation.

  12. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01 None Corn, sweet, kernels plus cop with husks removed 0.01 None Corn, sweet, stover 0.01 None Fruit, citrus...

  13. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01 None Corn, sweet, kernels plus cop with husks removed 0.01 None Corn, sweet, stover 0.01 None Fruit, citrus...

  14. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01 None Corn, sweet, kernels plus cop with husks removed 0.01 None Corn, sweet, stover 0.01 None Fruit, citrus...

  15. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., dry, seed 0.1 None Beet, sugar, dried pulp 3.5 12/25/10 Beet, sugar, roots 0.25 12/25/10 Beet, sugar..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01 None Corn, sweet, kernels plus cop with husks removed 0.01 None Corn, sweet, stover 0.01 None Fruit, citrus...

  16. Root Border Cells and Their Role in Plant Defense.

    PubMed

    Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo

    2016-08-04

    Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.

  17. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  18. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    NASA Technical Reports Server (NTRS)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  19. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  20. 40 CFR 180.414 - Cyromazine; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Commodity Parts per million Cotton, undelinted seed 0.1 Corn, sweet, kernel plus cob with husks removed 0.5 Corn, sweet, forage 0.5 Corn, sweet, stover 0.5 Radish, roots 0.5 Radish, tops 0.5 [65 FR 25860, May 4...

  1. Nitrogen management for first-year corn after alfalfa

    USDA-ARS?s Scientific Manuscript database

    Rotating alfalfa with corn can increase corn yield potential due to improved soil physical properties that enhance water infiltration and root extension, altered soil microbial communities, and reduced pest pressure. In addition, fertilizer nitrogen (N) requirements are commonly reduced by about 100...

  2. [Effects of simulated acid rain on seed germination and seedling growth of different type corn Zea mays].

    PubMed

    Zhang, Hai-Yan

    2013-06-01

    Taking normal corn, waxy corn, pop corn, and sweet corn as test materials, this paper studied their seed germination and seedling growth under effects of simulated acid rain (pH 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0). Simulated acid rain at pH 2.0-5.0 had no significant effects on the seed germination and seedling growth, but at pH 1.0, the germination rate of normal corn, waxy corn, pop corn, and sweet corn was 91.3%, 68.7%, 27.5%, and 11.7%, respectively. As compared with those at pH 6.0 (CK), the germination rate, germination index, vigor index, germination velocity, shoot height, root length, shoot and root dry mass, and the transformation rate of stored substances at pH 1.0 had significant decrease, and the average germination time extended apparently. At pH 1.0, the effects of acid rain were greater at seedling growth stage than at germination stage, and greater on underground part than on aboveground part. Due to the differences in gene type, normal corn and waxy corn had the strongest capability against acid rain, followed by pop corn, and sweet corn. It was suggested that corn could be categorized as an acid rain-tolerant crop, the injury threshold value of acid rain was likely between pH 1.0 and pH 2.0, and normal corn and waxy corn would be prioritized for planting in acid rain-stricken area.

  3. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth1[OPEN

    PubMed Central

    Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Fu, Ying

    2017-01-01

    Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth. PMID:28314794

  4. Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Marcum, H.; Moore, R.

    1990-01-01

    Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.

  5. Induction of numerical chromosomal aberrations during DNA synthesis using the fungicides nimrod and rubigan-4 in root tips of Vicia faba L.

    PubMed

    Shahin, S A; el-Amoodi, K H

    1991-11-01

    The 2 fungicides nimrod and rubigan-4 were tested for genotoxicity using Vicia faba root tips as the biological test system. Treating lateral roots with different concentrations of each fungicide for different periods showed that both fungicides were able to produce numerical but not structural chromosomal aberrations. The percentage of total aberrations in root tips exposed to nimrod reached 54.39% at 250 ppm for 4 h, and 64.69% in root tips exposed to rubigan-4 at 250 ppm for 6 h. The types of numerical chromosomal aberrations produced by both fungicides included: binucleate cells, c-metaphases, sticky chromosomes, polyploid cells, and laggards. Recovery experiments for 24, 48, and 96 h showed no significant differences between the percentage of total aberrations in treated and control groups.

  6. A Simple and Sensitive Plant-Based Western Corn Rootworm Bioassay Method for Resistance Determination and Event Selection.

    PubMed

    Wen, Zhimou; Chen, Jeng Shong

    2018-05-26

    We report here a simple and sensitive plant-based western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), bioassay method that allows for examination of multiple parameters for both plants and insects in a single experimental setup within a short duration. For plants, injury to roots can be visually examined, fresh root weight can be measured, and expression of trait protein in plant roots can be analyzed. For insects, in addition to survival, larval growth and development can be evaluated in several aspects including body weight gain, body length, and head capsule width. We demonstrated using the method that eCry3.1Ab-expressing 5307 corn was very effective against western corn rootworm by eliciting high mortality and significantly inhibiting larval growth and development. We also validated that the method allowed determination of resistance in an eCry3.1Ab-resistant western corn rootworm strain. While data presented in this paper demonstrate the usefulness of the method for selection of events of protein traits and for determination of resistance in laboratory populations, we envision that the method can be applied in much broader applications.

  7. Characterization of closely related delta-TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air.

    PubMed

    Sarda, X; Tousch, D; Ferrare, K; Cellier, F; Alcon, C; Dupuis, J M; Casse, F; Lamaze, T

    1999-05-01

    We isolated five sunflower (Helianthus annuus) cDNAs belonging to the TIP (tonoplast intrinsic protein) family. SunRb7 and Sun gammaTIP (partial sequence) are homologous to tobacco TobRb7 and Arabidopsis gamma-TIP, respectively. SunTIP7, 18 and 20 (SunTIPs) are closely related and homologous to Arabidopsis delta-TIP (SunTIP7 and 20 have already been presented in Sarda et al., Plant J. 12 (1997) 1103-1111). As was previously shown for SunTIP7 and 20, expression of SunTIP18 and SunRb7 in Xenopus oocytes caused an increase in osmotic water permeability demonstrating that they are aquaporins. In roots, in situ hybridization revealed that SunTIP7 and 18 mRNAs accumulate in phloem tissues. The expression of TIP-like genes was studied in roots during 24 h water deprivation through exposure to air. During the course of the treatment, each SunTIP gene displayed an individual response: SunTIP7 transcript abundance increased, SunTIP18 decreased whereas that of SunTIP20 was transitorily enhanced. By contrast, SunRb7 and Sun gammaTIP mRNA levels did not fluctuate. Due to the changes in their transcript levels, it is proposed that SUNTIP aquaporins encoded by delta-TIP-like genes play a role in the sunflower response to drought.

  8. Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2*- levels.

    PubMed

    Bustos, Dolores; Lascano, Ramiro; Villasuso, Ana Laura; Machado, Estela; Senn, María Eugenia; Córdoba, Alicia; Taleisnik, Edith

    2008-10-01

    Experimental evidence in the literature suggests that O(2)(*-) produced in the elongation zone of roots and leaves by plasma membrane NADPH oxidase activity is required for growth. This study explores whether growth changes along the root tip induced by hyperosmotic treatments in Zea mays are associated with the distribution of apoplastic O(2)(*-). Stress treatments were imposed using 150 mm NaCl or 300 mM sorbitol. Root elongation rates and the spatial distribution of growth rates in the root tip were measured. Apoplastic O(2)(*-) was determined using nitro blue tetrazolium, and H(2)O(2) was determined using 2', 7'-dichlorofluorescin. In non-stressed plants, the distribution of accelerating growth and highest O(2)(*-) levels coincided along the root tip. Salt and osmotic stress of the same intensity had similar inhibitory effects on root elongation, but O(2)(*-) levels increased in sorbitol-treated roots and decreased in NaCl-treated roots. The lack of association between apoplastic O(2)(*-) levels and root growth inhibition under hyper-osmotic stress leads us to hypothesize that under those conditions the role of apoplastic O(2)(*-) may be to participate in signalling processes, that convey information on the nature of the substrate that the growing root is exploring.

  9. A complete system for 3D reconstruction of roots for phenotypic analysis.

    PubMed

    Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J

    2015-01-01

    Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis.

  10. Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production.

    PubMed

    Tamás, L; Budíková, S; Huttová, J; Mistrík, I; Simonovicová, M; Siroká, B

    2005-06-01

    The function of root border cells (RBC) during aluminum (Al) stress and the involvement of oxalate oxidase, peroxidase and H(2)O(2) generation in Al toxicity were studied in barley roots. Our results suggest that RBC effectively protect the barley root tip from Al relative to the situation in roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue uptake, inhibition of RBC production, the level of dead RBC, peroxidase and oxalate oxidase activity and the production of H(2)O(2). Our results suggest that even though RBC actively produce active oxygen species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al in their dead cell body.

  11. Meiotic drive-based strategy to minimize mycotoxins in corn

    USDA-ARS?s Scientific Manuscript database

    Some fungi pose a dual threat to corn production by causing disease (seedling, root, stalk or ear rots) and by producing mycotoxins that pose health risks to humans and domestic animals. For example, the fungus Fusarium verticillioides can cause stalk and ear rot of corn and produce fumonisins, a fa...

  12. Corn rootworms (Coleoptera: Chrysomelidae) in space and time

    NASA Astrophysics Data System (ADS)

    Park, Yong-Lak

    Spatial dispersion is a main characteristic of insect populations. Dispersion pattern provides useful information for developing effective sampling and scouting programs because it affects sampling accuracy, efficiency, and precision. Insect dispersion, however, is dynamic in space and time and largely dependent upon interactions among insect, plant and environmental factors. This study investigated the spatial and temporal dynamics of corn rootworm dispersion at different spatial scales by using the global positioning system, the geographic information system, and geostatistics. Egg dispersion pattern was random or uniform in 8-ha cornfields, but could be aggregated at a smaller scale. Larval dispersion pattern was aggregated regardless of spatial scales used in this study. Soil moisture positively affected corn rootworm egg and larval dispersions. Adult dispersion tended to be aggregated during peak population period and random or uniform early and late in the season and corn plant phenology was a major factor to determine dispersion patterns. The dispersion pattern of root injury by corn rootworm larval feeding was aggregated and the degree of aggregation increased as the root injury increased within the range of root injury observed in microscale study. Between-year relationships in dispersion among eggs, larvae, adult, and environment provided a strategy that could predict potential root damage the subsequent year. The best prediction map for the subsequent year's potential root damage was the dispersion maps of adults during population peaked in the cornfield. The prediction map was used to develop site-specific pest management that can reduce chemical input and increase control efficiency by controlling pests only where management is needed. This study demonstrated the spatio-temporal dynamics of insect population and spatial interactions among insects, plants, and environment.

  13. Host Specialization in the Charcoal Rot Fungus, Macrophomina phaseolina.

    PubMed

    Su, G; Suh, S O; Schneider, R W; Russin, J S

    2001-02-01

    ABSTRACT To investigate host specialization in Macrophomina phaseolina, the fungus was isolated from soybean, corn, sorghum, and cotton root tissue and soil from fields cropped continuously to these species for 15 years in St. Joseph, LA. Chlorate phenotype of each isolate was determined after growing on a minimal medium containing 120 mM potassium chlorate. Consistent differences in chlorate sensitivity were detected among isolates from different hosts and from soil versus root. To further explore genetic differentiation among fungal isolates from each host, these isolates were examined by restriction fragment length polymorphism and random amplified polymorphic DNA (RAPD) analysis. No variations were observed among isolates in restriction patterns of DNA fragments amplified by polymerase chain reaction covering the internal transcribed spacer region, 5.8S rRNA and part of 25S rRNA, suggesting that M. phaseolina constitutes a single species. Ten random primers were used to amplify the total DNA of 45 isolates, and banding patterns resulting from RAPD analysis were compared with the neighbor-joining method. Isolates from a given host were genetically similar to each other but distinctly different from those from other hosts. Chlorate-sensitive isolates were distinct from chlorate-resistant isolates within a given host. In greenhouse tests, soybean, sorghum, corn, and cotton were grown separately in soil infested with individual isolates of M. phaseolina that were chosen based on their host of origin and chlorate phenotype. Root colonization and plant weight were measured after harvesting. More colonization of corn roots occurred when corn was grown in soil containing corn isolates compared with isolates from other hosts. However, there was no host specialization in isolates from soybean, sorghum, or cotton. More root colonization in soybean occurred with chlorate-sensitive than with chlorate-resistant isolates.

  14. Latent nitrate reductase activity is associated with the plasma membrane of corn roots

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Grimes, H. D.; Huffaker, R. C.

    1989-01-01

    Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.

  15. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem

    NASA Astrophysics Data System (ADS)

    Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2017-02-01

    Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.

  16. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    PubMed

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  17. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  18. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  19. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    PubMed

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  20. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa

    PubMed Central

    Tank, Jigna G.; Thaker, Vrinda S.

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. PMID:24955358

  1. INSECTICIDAL TOXIN FROM BACILLUS THURINGIENSIS IS RELEASED FROM ROOTS OF TRANSGENIC BT CORN IN VITRO AND IN SITU. (R826107)

    EPA Science Inventory

    Abstract

    The insecticidal toxin encoded by the cry1Ab gene from Bacillus thuringiensis was released in root exudates from transgenic Bt corn during 40 days of growth in soil amended to 0, 3, 6, 9, or 12% (v/v) with montmorillonite or kaolinite in a...

  2. Heat stress increases the efficiency of EDTA in phytoextraction of heavy metals.

    PubMed

    Chen, Ya-Hua; Mao, Ying; He, Shi-Bin; Guo, Peng; Xu, Ke

    2007-04-01

    Solution culture and pot experiments were carried out to investigate the effects of root damage on phytoextraction of heavy metals. In hydroponics, roots of corn (Zea mays L.) seedlings were pretreated with heating stress, and then were exposed to 250 microM Pb+250 microM EDTA solutions for 7d. The results showed that the preheating treatment significantly increased Pb transportation from roots to shoots. In pot experiments, the effect of hot EDTA solution (95 degrees C) on the accumulation of heavy metal in the shoot of corn and pea (Pisum sativum L.) was also examined. Compared to normal EDTA (25 degrees C) treatment, application of hot EDTA solution to the soil surface increased the total removal of Pb in shoots of corn and pea by about 8- and 12-fold, respectively, in an artificially multimetal-contaminated soil. In addition, hot EDTA solution increased the shoot Cu removal by about 6-fold for corn and 9-fold for pea, respectively, in a naturally Cu-contaminated soil. These results suggested that exposure of roots to high temperature could increase the efficiency of EDTA on the accumulation of heavy metals in shoots. This new approach can help to minimize the amount of chelate applied in the field and reduce the potential risk of heavy metals' leaching.

  3. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  4. Gibberellin Biosynthesis in Developing Pumpkin Seedlings12

    PubMed Central

    Lange, Theo; Kappler, Jeannette; Fischer, Andreas; Frisse, Andrea; Padeffke, Tania; Schmidtke, Sabine; Lange, Maria João Pimenta

    2005-01-01

    A gibberellin (GA) biosynthetic pathway was discovered operating in root tips of 7-d-old pumpkin (Cucurbita maxima) seedlings. Stepwise analysis of GA metabolism in cell-free systems revealed the conversion of GA12-aldehyde to bioactive GA4 and inactive GA34. Highest levels of endogenous GA4 and GA34 were found in hypocotyls and root tips of 3-d-old seedlings. cDNA molecules encoding two GA oxidases, CmGA20ox3 and CmGA3ox3, were isolated from root tips of 7-d-old LAB150978-treated seedlings. Recombinant CmGA20ox3 fusion protein converted GA12 to GA9, GA24 to GA9, GA14 to GA4, and, less efficiently, GA53 to GA20, and recombinant CmGA3ox3 protein oxidized GA9 to GA4. Transcript profiles were determined for four GA oxidase genes from pumpkin revealing relatively high transcript levels for CmGA7ox in shoot tips and cotyledons, for CmGA20ox3 in shoot tips and hypocotyls, and for CmGA3ox3 in hypocotyls and roots of 3-d-old seedlings. Transcripts of CmGA2ox1 were mainly found in roots of 7-d-old seedlings. In roots of 7-d-old seedlings, transcripts of CmGA7ox, CmGA20ox3, and CmGA3ox3 were localized in the cap and the rhizodermis by in situ hybridization. We conclude that hypocotyls and root tips are important sites of GA biosynthesis in the developing pumpkin seedling. PMID:16126862

  5. Effects of different types of tooth movement and force magnitudes on the amount of tooth movement and root resorption in rats.

    PubMed

    Nakano, Takako; Hotokezaka, Hitoshi; Hashimoto, Megumi; Sirisoontorn, Irin; Arita, Kotaro; Kurohama, Takeshi; Darendeliler, M Ali; Yoshida, Noriaki

    2014-11-01

    To investigate differences in the amount of tooth movement and root resorption that occurred after tipping and bodily movement of the maxillary first molar in rats. Ten-week-old female Wistar rats were divided into two groups according to type of tooth movement and subdivided into four subgroups according to the magnitude of applied force. Nickel-titanium closed-coil springs exerting forces of 10, 25, 50, or 100 g were applied to the maxillary left first molars to induce mesial tooth movement. We designed a novel orthodontic appliance for bodily tooth movement. Tooth movement distance and root resorption were measured using microcomputed tomography and scanning electron and scanning laser microscopy. The amount of tooth movement in the bodily tooth movement group was less than half that in the tipping tooth movement group. The greatest amount of tooth movement occurred in the 10-g tipping and 50-g bodily tooth movement subgroups, and the amount of tooth movement decreased with the application of an excessive magnitude of force. Conversely, root resorption increased when the heavier orthodontic force was applied in both groups. Root resorption in the tipping tooth movement group was approximately twice that in the bodily tooth movement group. Root resorption in the tipping tooth movement group was more pronounced than that in the bodily tooth movement group. Although the amount of tooth movement decreased when extremely heavy forces were applied, root resorption increased in both the tipping and bodily tooth movement groups in rats.

  6. Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil.

    PubMed

    Cano, Amanda M; Kohl, Kristina; Deleon, Sabrina; Payton, Paxton; Irin, Fahmida; Saed, Mohammad; Shah, Smit Alkesh; Green, Micah J; Cañas-Carrell, Jaclyn E

    2016-06-01

    Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d. In Study 1, corn was exposed to various SWNT concentrations (0, 10, and 100 mg/kg) with different functionalities (non-functionalized, OH-functionalized, or surfactant stabilized). A microwave induced heating method was used to determine SWNTs accumulated mostly in roots (0-24 μg/g), with minimal accumulation in stems and leaves (2-10 μg/g) with a limit of detection at 0.1 μg/g. Uptake was not functional group dependent. In Study 2, corn was exposed to 10 mg/kg SWNTs (non-functionalized or COOH-functionalized) under optimally grown or water deficit conditions. Plant physiological stress was determined by the measurement of photosynthetic rate throughout Study 2. No significant differences were seen between control and SWNT treatments. Considering the amount of SWNTs accumulated in corn roots, further studies are needed to address the potential for SWNTs to enter root crop species (i.e., carrots), which could present a significant pathway for human dietary exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Foliar resistance to fall armyworm in corn germplasm lines that confer resistance to root- and ear-feeding insects

    USDA-ARS?s Scientific Manuscript database

    A holistic approach to developing new corn germplasm that confers multiple insect resistance in various plant tissues at different growth stages was examined. Eight corn germplasm lines were examined for their foliage resistance to fall armyworm [Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noc...

  8. Effects of light on protein patterns in gravitropically stimulated root caps of corn

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Gildow, V.

    1984-01-01

    In certain cultivars of corn (Zea mays var. Merit), light stimulates gravitropic bending of the root by influencing events in the root cap. In this paper, we report on changes in root cap proteins which occur as a result of the light treatment and single out specific proteins as potentially having a role in mediating the gravitropic response. For this work, we have used root caps maintained aseptically in culture media supplemented with auxin. If auxin is deleted from the culture medium, the protein profiles observed following illumination differ from that seen in caps provided light while in auxin-supplemented media. We also report that several of the proteins for which synthesis is stimulated by light appear to turn over rapidly, usually within 0.5 hour of formation.

  9. 40 CFR 180.34 - Tests on the amount of residue remaining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Carrots, garden beets, sugar beets, horseradish, parsnips, radishes, rutabagas, salsify roots, turnips... corn, popcorn, sweet corn (each in grain form). (23) Milo, sorghum (each in grain form). (24) Wheat...

  10. 40 CFR 180.34 - Tests on the amount of residue remaining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Carrots, garden beets, sugar beets, horseradish, parsnips, radishes, rutabagas, salsify roots, turnips... corn, popcorn, sweet corn (each in grain form). (23) Milo, sorghum (each in grain form). (24) Wheat...

  11. Crop Rotation and Races of Meloidogyne incognita in Cotton Root-knot Management

    PubMed Central

    Kirkpatrick, T. L.; Sasser, J. N.

    1984-01-01

    The influence o f various crop rotations and nematode inoculum levels on subsequent population densities of Meloidogyne incognita races 1 and 3 were studied in microplots. Ten different 3-year sequences o f cotton, corn, peanut, or soybean, all with cotton as the 3rd-year crop, were grown in microplots infested with each race. Cotton monoculture, two seasons o f corn, or cotton followed by corn resulted in high race 3 population densities and severe root galling on cotton the 3rd year. Peanut for 2 years preceding cotton most effectively decreased the race 3 population and root galls on cotton the 3rd year. Race 1 did not significantly influence cotton growth or yield at initial populations of up to 5,000 eggs/500 cm³ soil. At 5,000 eggs/500 cm³, cotton growth was suppressed by race 3 but yield was not affected. PMID:19294030

  12. Induced Phytoextraction of Lead Through Chemical Manipulation of Switchgrass and Corn; Role of Iron Supplement.

    PubMed

    Johnson, Deayne M; Deocampo, Daniel M; El-Mayas, Hanan; Greipsson, Sigurdur

    2015-01-01

    The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg(-1)) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.

  13. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.).

    PubMed

    Li, Junli; Hu, Jing; Ma, Chuanxin; Wang, Yunqiang; Wu, Chan; Huang, Jin; Xing, Baoshan

    2016-09-01

    Iron oxide nanoparticles (γ-Fe2O3 NPs) have emerged as an innovative and promising method of iron application in agricultural systems. However, the possible toxicity of γ-Fe2O3 NPs and its uptake and translocation require further study prior to large-scale field application. In this study, we investigated uptake and distribution of γ-Fe2O3 NPs in corn (Zea mays L.) and its impacts on seed germination, antioxidant enzyme activity, malondialdehyde (MDA) content, and chlorophyll content were determined. 20 mg/L of γ-Fe2O3 NPs significantly promoted root elongation by 11.5%, and increased germination index and vigor index by 27.2% and 39.6%, respectively. However, 50 and 100 mg/L γ-Fe2O3 NPs remarkably decreased root length by 13.5% and 12.5%, respectively. Additionally, evidence for γ-Fe2O3 NPs induced oxidative stress was exclusively found in the root. Exposures of different concentrations of NPs induced notably high levels of MDA in corn roots, and the MDA levels of corn roots treated by γ-Fe2O3 NPs (20-100 mg/L) were 5-7-fold higher than that observed in the control plants. Meanwhile, the chlorophyll contents were decreased by 11.6%, 39.9% and 19.6%, respectively, upon NPs treatment relative to the control group. Images from fluorescence and transmission electron microscopy (TEM) indicated that γ-Fe2O3 NPs could enter plant roots and migrate apoplastically from the epidermis to the endodermis and accumulate the vacuole. Furthermore, we found that NPs mostly existed around the epidermis of root and no translocation of NPs from roots to shoots was observed. Our results will be highly meaningful on understanding the fate and physiological effects of γ-Fe2O3 NPs in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biomass and nutrient concentration of sweet corn roots and shoots under organic amendments application.

    PubMed

    Ahmad, Amjad A; Fares, Ali; Paramasivam, Sivapatham; Elrashidi, Moustafa A; Savabi, Reza M

    2009-09-01

    Two field experiments were conducted at the Waimanalo research station on the island of O'ahu, Hawaii to study the effect of chicken (CM) and dairy (DM) manures on biomass and nutrient concentration in sweet corn roots and shoots. Sweet corn (super sweet 10, Zea Mays L. subsp. mays) was grown for two consecutive growing seasons under four rates of application (0, 168, 337, and 672 kg ha(-1) total N equivalent) and one time (OTA) or two time (TTA) applications of organic manure types and rates. There were significant effects of types, rates, and number of manure applications on dry biomass and macro- and micro-nutrient concentration in roots and shoots tissues. Results of root tissue indicated a significant accumulation of N and C under CM and DM treatments compared with the control treatment. Manure application rates significantly increased the accumulation of N and C in root tissue. Dry weight of roots and shoots and both macro- and micro-nutrient contents in the plant tissues significantly increased under TTA treatment compared with OTA treatment. There was a significant correlation (r(2) = 0.46 to 0.81) between root biomass, macro-, and micro-nutrient contents during both growing seasons. The results of the study indicates that amending soils with CM at the highest application rate provided the best crop performance in terms of root and shoot biomass, crop N, C, and other macro- and micro-nutrients.

  15. Abscisic Acid Stimulates Elongation of Excised Pea Root Tips

    PubMed Central

    Gaither, Douglas H.; Lutz, Donald H.; Forrence, Leonard E.

    1975-01-01

    Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 μm abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 μm abscisic acid. Prior to two hours, stimulation of elongation by 1 μm abscisic acid was not detectable. Increased elongation did not occur in abscisic acid-treated root tips of Lens culinaris L., Phaseolus vulgaris L., or Zea mays L. PMID:16659198

  16. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth

    PubMed Central

    Ivanchenko, Maria G.; den Os, Désirée; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednářová, Andrea; Krishnan, Natraj

    2013-01-01

    Background and Aims The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Methods Wild-type and auxin-resistant mutant, diageotropica (dgt), of tomato (S. lycopersicum ‘Ailsa Craig’) were characterized in terms of root apical meristem and elongation zone histology, expression of the cell-cycle marker gene Sl-CycB1;1, accumulation of ROS, response to auxin and hydrogen peroxide (H2O2), and expression of ROS-related mRNAs. Key Results The dgt mutant exhibited histological defects in the root apical meristem and elongation zone and displayed a constitutively increased level of hydrogen peroxide (H2O2) in the root tip, part of which was detected in the apoplast. Treatments of wild-type with auxin increased the H2O2 concentration in the root tip in a dose-dependent manner. Auxin and H2O2 elicited similar inhibition of cell elongation while bringing forth differential responses in terms of meristem length and number of cells in the elongation zone. Auxin treatments affected the expression of mRNAs of ROS-scavenging enzymes and less significantly mRNAs related to antioxidant level. The dgt mutation resulted in resistance to both auxin and H2O2 and affected profoundly the expression of mRNAs related to antioxidant level. Conclusions The results indicate that auxin regulates the level of H2O2 in the root tip, so increasing the auxin level triggers accumulation of H2O2 leading to inhibition of root cell elongation and root growth. The dgt mutation affects this pathway by reducing the auxin responsiveness of tissues and by disrupting the H2O2 homeostasis in the root tip. PMID:23965615

  17. Changes in the Expression and the Enzymic Properties of the 20S Proteasome in Sugar-Starved Maize Roots. Evidence for an in Vivo Oxidation of the Proteasome1

    PubMed Central

    Basset , Gilles; Raymond, Philippe; Malek, Lada; Brouquisse, Renaud

    2002-01-01

    The 20S proteasome (multicatalytic proteinase) was purified from maize (Zea mays L. cv DEA 1992) roots through a five-step procedure. After biochemical characterization, it was shown to be similar to most eukaryotic proteasomes. We investigated the involvement of the 20S proteasome in the response to carbon starvation in excised maize root tips. Using polyclonal antibodies, we showed that the amount of proteasome increased in 24-h-carbon-starved root tips compared with freshly excised tips, whereas the mRNA levels of α3 and β6 subunits of 20S proteasome decreased. Moreover, in carbon-starved tissues, chymotrypsin-like and caseinolytic activities of the 20S proteasome were found to increase, whereas trypsin-like activities decreased. The measurement of specific activities and kinetic parameters of 20S proteasome purified from 24-h-starved root tips suggested that it was subjected to posttranslational modifications. Using dinitrophenylhydrazine, a carbonyl-specific reagent, we observed an increase in carbonyl residues in 20S proteasome purified from starved root tips. This means that 20S proteasome was oxidized during starvation treatment. Moreover, an in vitro mild oxidative treatment of 20S proteasome from non-starved material resulted in the activation of chymotrypsin-like, peptidyl-glutamyl-peptide hydrolase and caseinolytic-specific activities and in the inhibition of trypsin-like specific activities, similar to that observed for proteasome from starved root tips. Our results provide the first evidence, to our knowledge, for an in vivo carbonylation of the 20S proteasome. They suggest that sugar deprivation induces an oxidative stress, and that oxidized 20S proteasome could be associated to the degradation of oxidatively damaged proteins in carbon starvation situations. PMID:11891269

  18. Alleviation effect of alginate-derived oligosaccharides on Vicia faba root tip cells damaged by cadmium.

    PubMed

    Ma, L J; Zhang, Y; Bu, N; Wang, S H

    2010-02-01

    Cadmium has been shown to prevent Vicia faba growth by inhibiting cell mitosis. In this study we investigated the role of Alginate-derived Oligosaccharides (ADO) in alleviating Vicia faba root tip cells damaged by 6 and 8 mg L(-1) CdCl2. Micronucleus assay and chromosomal aberration assay were used to determine mitotic index, micronucleus frequency and chromosomal aberration frequency. The results showed that micronucleus frequency of Vicia faba root tip cells was inhibited under all the ADO concentrations. Especially, the inhibition ratio of 0.125% ADO highly reached 66.11 and 67.17% in 6 and 8 mg L(-1) CdCl2, respectively. Furthermore, the mitotic index increased (p < 0.05) and chromosomal aberration frequency decreased (p < 0.05) under all the ADO concentrations. This indicated that ADO had a significant alleviation effect on Vicia faba root tip cells damaged by cadmium.

  19. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    PubMed

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  20. 40 CFR 180.626 - Prothioconazole; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Beet, sugar, roots 0.25 Corn, sweet, kernel plus cob with husks removed 0.04 Grain, aspirated grain..., group 16, except sorghum, and rice; straw 5.0 Grain, cereal, group 15, except sweet corn, sorghum, and...

  1. 40 CFR 180.626 - Prothioconazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Beet, sugar, roots 0.25 Corn, sweet, kernel plus cob with husks removed 0.04 Grain, aspirated grain..., group 16, except sorghum, and rice; straw 5.0 Grain, cereal, group 15, except sweet corn, sorghum, and...

  2. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply

    PubMed Central

    2010-01-01

    Background Plants grown under iron deficiency show different morphological, biochemical and physiological changes. These changes include, among others, the elicitation of different strategies to improve the acquisition of Fe from the rhizosphere, the adjustment of Fe homeostasis processes and a reorganization of carbohydrate metabolism. The application of modern techniques that allow the simultaneous and untargeted analysis of multiple proteins and metabolites can provide insight into multiple processes taking place in plants under Fe deficiency. The objective of this study was to characterize the changes induced in the root tip proteome and metabolome of sugar beet plants in response to Fe deficiency and resupply. Results Root tip extract proteome maps were obtained by 2-D isoelectric focusing polyacrylamide gel electrophoresis, and approximately 140 spots were detected. Iron deficiency resulted in changes in the relative amounts of 61 polypeptides, and 22 of them were identified by mass spectrometry (MS). Metabolites in root tip extracts were analyzed by gas chromatography-MS, and more than 300 metabolites were resolved. Out of 77 identified metabolites, 26 changed significantly with Fe deficiency. Iron deficiency induced increases in the relative amounts of proteins and metabolites associated to glycolysis, tri-carboxylic acid cycle and anaerobic respiration, confirming previous studies. Furthermore, a protein not present in Fe-sufficient roots, dimethyl-8-ribityllumazine (DMRL) synthase, was present in high amounts in root tips from Fe-deficient sugar beet plants and gene transcript levels were higher in Fe-deficient root tips. Also, a marked increase in the relative amounts of the raffinose family of oligosaccharides (RFOs) was observed in Fe-deficient plants, and a further increase in these compounds occurred upon short term Fe resupply. Conclusions The increases in DMRL synthase and in RFO sugars were the major changes induced by Fe deficiency and resupply in root tips of sugar beet plants. Flavin synthesis could be involved in Fe uptake, whereas RFO sugars could be involved in the alleviation of oxidative stress, C trafficking or cell signalling. Our data also confirm the increase in proteins and metabolites related to carbohydrate metabolism and TCA cycle pathways. PMID:20565974

  3. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  4. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  5. Amyloplast Sedimentation Kinetics in Corn Roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Sack, F.

    1985-01-01

    Knowledge of the parameters of amyloplast sedimentation is crucial for an evaluation of proposed mechanisms of root graviperception. Early estimates of the rate of root amyloplast sedimentation were as low as 1.2 micron/min which may be too slow for many amyloplasts to reach the vicinity of the new lower wall within the presentation time. On this basis, Haberlandt's classical statolith hypothesis involving amyloplast stimulation of a sensitive surface near the new lower wall was questioned. The aim was to determine the kinetics of amyloplast sedimentation with reference to the presentation time in living and fixed corn rootcap cells as compared with coleoptiles of the same variety.

  6. Control of Larval Northern Corn Rootworm. (Diabrotica barberi) with Two Steinernematid Nematode Species

    PubMed Central

    Thurston, G. S.; Yule, W. N.

    1990-01-01

    The entomogenous nematodes Steinerema feltiae and S. bibionis did not penetrate the roots of corn, Zea mays, to infect larval northern corn rootworm (NCR), Diabrotica barberi, feeding within. Laboratory bioassays against first instar NCR indicated that S. feltiae, Mexican strain (LD₅₀ = 49 nematodes/insect) is more virulent than S. bibionis (LD₅₀ = 100). Numbers of NCR larvae in a grain corn crop were reduced by both nematode species applied at corn seeding time at the rate of 10,000 infective-stage juveniles per linear meter of corn row. The chemical insecticide fonofos provided significantly better control than either nematode species. PMID:19287699

  7. Nitric Oxide Is Associated with Long-Term Zinc Tolerance in Solanum nigrum1[W

    PubMed Central

    Xu, Jin; Yin, Hengxia; Li, Yulong; Liu, Xiaojing

    2010-01-01

    Nitric oxide (NO) has been identified as a signal molecule that interplays with reactive oxygen species in response to heavy metal stresses. Roles of NO in regulating cadmium toxicity and iron deficiency have been proposed; however, the function of NO in zinc (Zn) tolerance in plants remains unclear. Here, we investigated NO accumulation and its role in plant Zn tolerance. Zn-induced NO production promoted an increase in reactive oxygen species accumulation in Solanum nigrum roots by modulating the expression and activity of antioxidative enzymes. Subsequently, programmed cell death (PCD) was observed in primary root tips. Inhibiting NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (a specific NO scavenger) or NG-nitro-l-arginine-methyl ester (a NO synthase inhibitor) prevented the increase of superoxide radical and hydrogen peroxide as well as the subsequent cell death in the root tips, supporting the role of NO in Zn-induced PCD in the root tips. Zn-induced NO production affected the length of primary roots, the number of lateral roots, and root hair growth and thereby modulated root system architecture and activity. Investigation of metal contents in Zn-treated roots suggests that NO is required for metal (especially iron) uptake and homeostasis in plants exposed to excess Zn. Taken together, our results indicate that NO production and the subsequent PCD in root tips exposed to excess Zn are favorable for the S. nigrum seedling response to long-term Zn toxicity by modulating root system architecture and subsequent adaptation to Zn stress. PMID:20855519

  8. 40 CFR 180.206 - Phorate; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following food commodities: Commodity Parts per million Bean, dry, seed 0.05 Bean, succulent 0.05 Beet, sugar, roots 0.3 Beet, sugar, tops 3.0 Coffee, green bean 1 0.02 Corn, field, forage 0.5 Corn, field...

  9. 40 CFR 180.206 - Phorate; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following food commodities: Commodity Parts per million Bean, dry, seed 0.05 Bean, succulent 0.05 Beet, sugar, roots 0.3 Beet, sugar, tops 3.0 Coffee, green bean 1 0.02 Corn, field, forage 0.5 Corn, field...

  10. 40 CFR 180.206 - Phorate; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following food commodities: Commodity Parts per million Bean, dry, seed 0.05 Bean, succulent 0.05 Beet, sugar, roots 0.3 Beet, sugar, tops 3.0 Coffee, green bean 1 0.02 Corn, field, forage 0.5 Corn, field...

  11. 40 CFR 180.206 - Phorate; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following food commodities: Commodity Parts per million Bean, dry, seed 0.05 Bean, succulent 0.05 Beet, sugar, roots 0.3 Beet, sugar, tops 3.0 Coffee, green bean 1 0.02 Corn, field, forage 0.5 Corn, field...

  12. 40 CFR 180.206 - Phorate; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following food commodities: Commodity Parts per million Bean, dry, seed 0.05 Bean, succulent 0.05 Beet, sugar, roots 0.3 Beet, sugar, tops 3.0 Coffee, green bean 1 0.02 Corn, field, forage 0.5 Corn, field...

  13. Rhodamine B induces long nucleoplasmic bridges and other nuclear anomalies in Allium cepa root tip cells.

    PubMed

    Tan, Dehong; Bai, Bing; Jiang, Donghua; Shi, Lin; Cheng, Shunchang; Tao, Dongbing; Ji, Shujuan

    2014-03-01

    The cytogenetic toxicity of rhodamine B on root tip cells of Allium cepa was investigated. A. cepa were cultured in water (negative control), 10 ppm methyl methanesulfonate (positive control), and three concentrations of rhodamine B (200, 100, and 50 ppm) for 7 days. Rhodamine B inhibited mitotic activity; increased nuclear anomalies, including micronuclei, nuclear buds, and bridged nuclei; and induced oxidative stress in A. cepa root tissues. Furthermore, a substantial amount of long nucleoplasmic bridges were entangled together, and some nuclei were simultaneously linked to several other nuclei and to nuclear buds with nucleoplasmic bridges in rhodamine B-treated cells. In conclusion, rhodamine B induced cytogenetic effects in A. cepa root tip cells, which suggests that the A. cepa root is an ideal model system for detecting cellular interactions.

  14. Seasonal Changes in Adult Longevity and Pupal Weight of the Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) with Implications for Interpreting Pheromone Trap Catch

    Treesearch

    Christopher Asaro; C. Wayne Berisford

    2001-01-01

    Pheromone trap catches of the Nantucket pine tip moth, Rhyacionia frustrana (Corn-stock), are often much higher during the first generation as compared with later generations, regardless of population density or damage levels. One hypothesis proposed to explain this phenomenon is reduced adult longevity during summer due to high temperatures. In this...

  15. Effects of Mg{sup 2+}, Co{sup 2+}, and Hg{sup 2+} on the nucleus and nucleolus in root tip cells of allium cepa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D.; Jiang, W.; Wang, W.

    Metal toxicity in plants has been known for a long time. Much importance has increasingly been attached to the problems of metal pollution with the development of modern industry and agriculture. If metals in plants are accumulated to a large extent, it might seriously affect them. The cytological effects of cobalt and mercury have been studied in Allium cepa by documentation of c-mitosis. Also, the quantification of chromosome aberration in Vicia faba root-tip cells treated by magnesium sulphate and in Allium cepa by metyl mercury chloride and mercuric chloride has been reported. Cytological research on the poisoning effects of Mg,more » Co and Hg on the nuclei and nucleoli in root-tip cells of plants has hardly been reported. The aim of this study was to determine the effects of different concentrations of magnesium, cobalt and mercury ions on root growth, and on the nuclei and nucleoli of root tip cells of Allium-cepa. 20 refs., 3 figs.« less

  16. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps.

    PubMed

    Mosca, E; Montecchio, L; Barion, G; Dal Cortivo, C; Vamerali, T

    2017-05-01

    Oak decline is a complex phenomenon, characterized by symptoms of canopy transparency, bark cracks and root biomass reduction. Root health status is one of the first stress indicators, and root turnover is a key process in plant adaptation to unfavourable conditions. In this study, the combined effects of decline and thinning were evaluated on fine root dynamics in an oak forest adjoining the Italian Pre-Alps by comparison of acute declining trees with non-declining trees, both with and without thinning treatment of surrounding trees. Dynamics of volumetric root length density (RLD V ) and tip density (RTD V ), root tip density per unit length of root (RTD L ), diameter, branching index (BI) and mycorrhizal colonization were monitored by soil coring over 2 years as possible descriptors of decline. At the beginning of the experiment, the relationship between canopy transparency and root status was weak, declining trees having slightly lower RLD V (-20 %) and RTD V (-11 %). After a 1 year lag, during which the parameters were almost unaffected, BI and RLD V , together with tip density, tip vitality and mycorrhizal colonization, became the descriptors most representative of both decline class and thinning. Thinning of declining trees increased RLD V (+12 %) and RTD V (+32 %), but reduced tip mycorrhizal colonization and vitality over time compared with non-thinned trees, whereas the opposite occurred in healthy trees, together with a marked decrease in branching. After thinning, there was an initial reduction in the structure of the ectomycorrhizal community, although recovery occurred about 10 months later, regardless of decline severity. Decline causes losses of fine root length, and a moderate recovery can be achieved by thinning, allowing better soil exploration by oak roots. The close correlation between root vitality and mycorrhizal colonization and their deterioration after thinning indicates that decline does not benefit from reduced root competition, excluding the hypothesis of limited water and nutrient availability as a possible cause of the syndrome in this forest. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps

    PubMed Central

    Montecchio, L.; Barion, G.; Dal Cortivo, C.; Vamerali, T.

    2017-01-01

    Abstract Aims Oak decline is a complex phenomenon, characterized by symptoms of canopy transparency, bark cracks and root biomass reduction. Root health status is one of the first stress indicators, and root turnover is a key process in plant adaptation to unfavourable conditions. In this study, the combined effects of decline and thinning were evaluated on fine root dynamics in an oak forest adjoining the Italian Pre-Alps by comparison of acute declining trees with non-declining trees, both with and without thinning treatment of surrounding trees. Methods Dynamics of volumetric root length density (RLDV) and tip density (RTDV), root tip density per unit length of root (RTDL), diameter, branching index (BI) and mycorrhizal colonization were monitored by soil coring over 2 years as possible descriptors of decline. Key Results At the beginning of the experiment, the relationship between canopy transparency and root status was weak, declining trees having slightly lower RLDV (–20 %) and RTDV (–11 %). After a 1 year lag, during which the parameters were almost unaffected, BI and RLDV, together with tip density, tip vitality and mycorrhizal colonization, became the descriptors most representative of both decline class and thinning. Thinning of declining trees increased RLDV (+12 %) and RTDV (+32 %), but reduced tip mycorrhizal colonization and vitality over time compared with non-thinned trees, whereas the opposite occurred in healthy trees, together with a marked decrease in branching. After thinning, there was an initial reduction in the structure of the ectomycorrhizal community, although recovery occurred about 10 months later, regardless of decline severity. Conclusions Decline causes losses of fine root length, and a moderate recovery can be achieved by thinning, allowing better soil exploration by oak roots. The close correlation between root vitality and mycorrhizal colonization and their deterioration after thinning indicates that decline does not benefit from reduced root competition, excluding the hypothesis of limited water and nutrient availability as a possible cause of the syndrome in this forest. PMID:28334145

  18. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides.

    PubMed

    Weiller, Florent; Moore, John P; Young, Philip; Driouich, Azeddine; Vivier, Melané A

    2017-03-01

    Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides

    PubMed Central

    Weiller, Florent; Young, Philip; Driouich, Azeddine; Vivier, Melané A.

    2017-01-01

    Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana, have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1–4) have previously been characterized from Heliophila coronopifolia, a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia. Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1–4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. PMID:27481828

  20. Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize

    NASA Technical Reports Server (NTRS)

    Young, L. M.; Evans, M. L.

    1996-01-01

    Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.

  1. Digestive Health Tips

    MedlinePlus

    ... of irritable bowel syndrome. To relieve symptoms, avoid: Broccoli Baked beans Cabbage Carbonated drinks Cauliflower Chewing gum ... break it down. Certain vegetables--baked beans, cauliflower, broccoli, cabbage Certain starches--wheat, oats, corn, potatoes. Rice ...

  2. 40 CFR 180.626 - Prothioconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Alfalfa, forage 0.02 Alfalfa, hay 0.02 Beet, sugar, roots 0.25 Corn, sweet kernel plus cob with husks... sweet corn and sorghum 0.35 Pea and bean, dried shelled, except soybean, subgroup 6C 0.9 Peanut 0.02...

  3. 40 CFR 180.626 - Prothioconazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Alfalfa, forage 0.02 Alfalfa, hay 0.02 Beet, sugar, roots 0.25 Corn, sweet kernel plus cob with husks... sweet corn and sorghum 0.35 Pea and bean, dried shelled, except soybean, subgroup 6C 0.9 Peanut 0.02...

  4. Maize and soybean root front velocity and maximum depth in the Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Quantitative measurements of root traits can improve our understanding of how crops respond to soil-weather conditions. However, such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for corn and soybean crops across a range of growing conditions in the M...

  5. Measurement of pressure changes during laser-activated irrigant by an erbium, chromium: yttrium, scandium, gallium, garnet laser.

    PubMed

    Peeters, Harry Huiz; De Moor, Roeland J G

    2015-07-01

    The use of Er,Cr:YSGG laser to activate irrigants results in the creation of vapour bubbles and shockwaves. The present study evaluated the magnitude of pressure changes in the root canal during laser-activated irrigation. The root canal of a single extracted maxillary canine was enlarged to a size 40/0.06 file. A pressure sensor was inserted apically into the root canal. The tooth was processed as follows. In the EDTA condition, the tooth was irrigated with 17 % EDTA; in the NaOCl condition, the tooth was irrigated with 3 % NaOCl. In all conditions, the irrigants were activated at 0.75 and 1.75 W for 60 s using RFT2 and MZ2 tips; to analyse the effect of tip placement, the tip was activated at the orifice and after inserting the tip 5 mm deeper than the orifice. Data showed no significant difference between irrigation regimens (p > 0.05). There were no significant differences of the pressure between RFT2 and MZ2 tips (p > 0.05). The placement of tips closer to the apex resulted in significantly higher pressure than at the orifice (p < 0.001). The use of 1.75 W power resulted in a significantly higher increase of pressure compared to 0.75 W (p < 0.001), regardless either the type of solutions or tips used. The magnitude of the pressure changes in the root canal at 0.75 W was significantly lower than 1.75 W regardless of either type of tips or solutions used. The closer the insertion of the tip to the apex, the higher the pressure.

  6. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  7. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip

    PubMed Central

    Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula

    2013-01-01

    Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365

  8. Hydrotropism and its interaction with gravitropism in maize roots

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.

    1991-01-01

    We have partially characterized root hydrotropism and its interaction with gravitropism in maize (Zea mays L.). Roots of Golden Cross Bantam 70, which require light for orthogravitropism, showed positive hydrotropism; bending upward when placed horizontally below a hydrostimulant (moist cheesecloth) in 85% relative humidity (RH) and in total darkness. However, the light-exposed roots of Golden Cross Bantam 70 or roots of a normal maize cultivar, Burpee Snow Cross, showed positive gravitropism under the same conditions; bending downward when placed horizontally below the hydrostimulant in 85% RH. Light-exposed roots of Golden Cross Bantam 70 placed at 70 degrees below the horizontal plane responded positively hydrotropically, but gravitropism overcame the hydrotropism when the roots were placed at 45 degrees below the horizontal. Roots placed vertically with the tip down in 85% RH bent to the side toward the hydrostimulant in both cultivars, and light conditions did not affect the response. Such vertical roots did not respond when the humidity was maintained near saturation. These results suggest that hydrotropic and gravitropic responses interact with one another depending on the intensity of one or both factors. Removal of the approximately 1.5 millimeter root tip blocked both hydrotropic and gravitropic responses in the two cultivars. However, removal of visible root tip mucilage did not affect hydrotropism or gravitropism in either cultivar.

  9. Operationally Defined Apoplastic and Symplastic Aluminum Fractions in Root Tips of Aluminum-Intoxicated Wheat

    PubMed Central

    Tice, Kathy R.; Parker, David R.; DeMason, Darleen A.

    1992-01-01

    Knowledge of the mechanistic basis of differential aluminum (Al) tolerance depends, in part, on an improved ability to quantify Al located in the apoplastic and symplastic compartments of the root apex. Using root tips excised from seedlings of an Al-tolerant wheat cultivar (Triticum aestivum L. cv Yecora Rojo) grown in Al solutions for 2 d, we established an operationally defined apoplastic Al fraction determined with six sequential 30-min washes using 5 mm CaCl2 (pH 4.3). Soluble symplastic Al was eluted by freezing root tips to rupture cell membranes and performing four additional 30-min CaCl2 washes, and a residual fraction was determined via digestion of root tips with HNO3. The three fractions were then determined in Yecora Rojo and a sensitive wheat cultivar (Tyler) grown at 18, 55, or 140 μm total solution Al (AlT). When grown at equal AlT, Tyler contained more Al than Yecora Rojo in all fractions, but both total Al and fractional distribution were similar in the two cultivars grown at AlT levels effecting a 50% reduction in root growth. Residual Al was consistently 50 to 70% of the total, and its location was elucidated by staining root tips with the fluorophore morin and examining them using fluorescence and confocal laser scanning microscopy. Wall-associated Al was only observed in tips prior to any washing, and the residual fraction was manifested as distinct staining of the cytoplasm and nucleus but not of the apoplastic space. Accordingly, the residual fraction was allocated to the symplastic compartment for both cultivars, and recalculated apoplastic Al was consistently approximately 30 to 40% of the total. Distributions of Al in the two cultivars did not support a symplastic detoxification hypothesis, but the role of cytoplasmic exclusion remains unsettled. Images Figure 4 Figure 5 PMID:16652962

  10. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  11. Effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown hydroponically

    NASA Technical Reports Server (NTRS)

    Ogbuehi, Cyriacus R.; Loretan, Phil A.; Bonsi, C. K.; Hill, Walter A.; Morris, Carlton E.; Biswas, P. K.; Mortley, Desmond G.

    1989-01-01

    Sweet potato shoot tips have been shown to be a nutritious green vegetable. A study was conducted to determine the effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown in the greenhouse using the nutrient film technique (NFT). The nutrient solution consisted of a modified half Hoagland solution. Biweekly shoot tip harvests, beginning 42 days after planting, provided substantial amounts of vegetable greens and did not affect the fresh and dry foliage weights or the storage root number and fresh and dry storage root weights at final harvest. The rates of anion and cation uptake were not affected by tip harvests.

  12. Nuclear Proteomics Reveals the Role of Protein Synthesis and Chromatin Structure in Root Tip of Soybean during the Initial Stage of Flooding Stress.

    PubMed

    Yin, Xiaojian; Komatsu, Setsuko

    2016-07-01

    To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.

  13. Forensic DNA typing from teeth using demineralized root tips.

    PubMed

    Corrêa, Heitor Simões Dutra; Pedro, Fabio Luis Miranda; Volpato, Luiz Evaristo Ricci; Pereira, Thiago Machado; Siebert Filho, Gilberto; Borges, Álvaro Henrique

    2017-11-01

    Teeth are widely used samples in forensic human genetic identification due to their persistence and practical sampling and processing. Their processing, however, has changed very little in the last 20 years, usually including powdering or pulverization of the tooth. The objective of this study was to present demineralized root tips as DNA sources while, at the same time, not involving powdering the samples or expensive equipment for teeth processing. One to five teeth from each of 20 unidentified human bodies recovered from midwest Brazil were analyzed. Whole teeth were demineralized in EDTA solution with daily solution change. After a maximum of approximately seven days, the final millimeters of the root tip was excised. This portion of the sample was used for DNA extraction through a conventional organic protocol. DNA quantification and STR amplification were performed using commercial kits followed by capillary electrophoresis on 3130 or 3500 genetic analyzers. For 60% of the unidentified bodies (12 of 20), a full genetic profile was obtained from the extraction of the first root tip. By the end of the analyses, full genetic profiles were obtained for 85% of the individuals studied, of which 80% were positively identified. This alternative low-tech approach for postmortem teeth processing is capable of extracting DNA in sufficient quantity and quality for forensic casework, showing that root tips are viable nuclear DNA sources even after demineralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Morphological and Biological alteration of maize root architectures on drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  15. Morphological and biological alteration of maize root architectures on drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  16. 40 CFR 180.205 - Paraquat; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., roots 0.5 Beet, sugar, tops 0.05 Berry group 13 0.05 Biriba 0.05 Cacao bean, bean 0.05 Canistel 0.05... kidney 0.05 Cherimoya 0.05 Coffee, bean, green 0.05 Corn, field, forage 3.0 Corn, field, grain 0.1 Corn... Olive 0.05 Onion, bulb 0.1 Onion, green 0.05 Papaya 0.05 Passionfruit 0.2 Pawpaw 0.05 Pea and bean...

  17. 40 CFR 180.205 - Paraquat; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., roots 0.5 Beet, sugar, tops 0.05 Berry group 13 0.05 Biriba 0.05 Cacao bean, bean 0.05 Canistel 0.05... kidney 0.05 Cherimoya 0.05 Coffee, bean, green 0.05 Corn, field, forage 3.0 Corn, field, grain 0.1 Corn... Olive 0.05 Onion, bulb 0.1 Onion, green 0.05 Papaya 0.05 Passionfruit 0.2 Pawpaw 0.05 Pea and bean...

  18. Field Trial Performance of Herculex XTRA (Cry34Ab1/Cry35Ab1) and SmartStax (Cry34Ab1/Cry35Ab1 + Cry3Bb1) Hybrids and Soil Insecticides Against Western and Northern Corn Rootworms (Coleoptera: Chrysomelidae).

    PubMed

    Johnson, K D; Campbell, L A; Lepping, M D; Rule, D M

    2017-06-01

    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), and northern corn rootworm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae), are important insect pests in corn, Zea mays L. For more than a decade, growers have been using transgenic plants expressing proteins from the bacterium Bacillus thuringiensis (Bt) to protect corn roots from feeding. In 2011, western corn rootworm populations were reported to have developed resistance to Bt hybrids expressing Cry3Bb1 and later found to be cross-resistant to hybrids expressing mCry3A and eCry3.1Ab. The identification of resistance to Cry3 (Cry3Bb1, mCry3A, and eCry3.1Ab) hybrids led to concerns about durability and efficacy of products with single traits and of products containing a pyramid of a Cry3 protein and the binary Bt proteins Cry34Ab1 and Cry35Ab1. From 2012 to 2014, 43 field trials were conducted across the central United States to estimate root protection provided by plants expressing Cry34Ab1/Cry35Ab1 alone (Herculex RW) or pyramided with Cry3Bb1 (SmartStax). These technologies were evaluated with and without soil-applied insecticides to determine if additional management measures provided benefit where Cry3 performance was reduced. Trials were categorized for analysis based on rootworm damage levels on Cry3-expressing hybrids and rootworm feeding pressure within each trial. Across scenarios, Cry34Ab1/Cry35Ab1 hybrids provided excellent root protection. Pyramided traits provided greater root and yield protection than non-Bt plus a soil-applied insecticide, and only in trials where larval feeding pressure exceeded two nodes of damage did Cry34Ab1/Cry35Ab1 single-trait hybrids and pyramided hybrids show greater root protection from the addition of soil-applied insecticides. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. 40 CFR 180.474 - Tebuconazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 3.5 Bean, dry seed 0.1 Bean, succulent 0.1 Beet, garden, roots 0.70 Beet, garden, tops 7.0 Brassica...-harvest 5.0 Coffee, green bean 1 0.15 Coffee, roasted bean 1 0.3 Corn, field, forage 4.0 Corn, field...

  20. 40 CFR 180.474 - Tebuconazole; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 3.5 Bean, dry seed 0.1 Bean, succulent 0.1 Beet, garden, roots 0.70 Beet, garden, tops 7.0 Brassica...-harvest 5.0 Coffee, green bean 1 0.15 Coffee, roasted bean 1 0.3 Corn, field, forage 4.0 Corn, field...

  1. Autoradiography and the Cell Cycle.

    ERIC Educational Resources Information Center

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and…

  2. Auxin, ethylene and the regulation of root growth under mechanical impedance

    NASA Astrophysics Data System (ADS)

    Sharma, Rameshwar; Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju

    2012-07-01

    Among the multitude functions performed by plant roots, little information is available about the mechanisms that allow roots to overcome the soil resistance, in order to grow in the soil to obtain water and nutrient. Tomato (Solanum lycopersicum) seedlings grown on horizontally placed agar plates showed a progressive decline in the root length with the increasing impedance of agar media. The incubation with 1-methylcyclopropane (1-MCP), an inhibitor of ethylene perception, led to aerial growth of roots. In contrast, in absence of 1-MCP control roots grew horizontally anchored to the agar surface. Though 1-MCP-treated and control seedlings showed differential ability to penetrate in the agar, the inhibition of root elongation was nearly similar for both treatments. While increased mechanical impedance also progressively impaired hypocotyl elongation in 1-MCP treated seedlings, it did not affect the hypocotyl length of control seedlings. The decline in root elongation was also associated with increased expression of DR5::GUS activity in the root tip signifying accumulation of auxin at the root tip. The increased expression of DR5::GUS activity in the root tip was also observed in 1-MCP treated seedlings, indicating independence of this response from ethylene signaling. Our results indicate operation of a sensing mechanism in root that likely operates independently of ethylene but involves auxin to determine the degree of impedance of the substratum.

  3. Monogalactosyldiacylglycerols as host recognition cues for western corn rootworm larvae (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    Monogalactosyldiacylglycerol (MGDG) was identified as a host recognition cue for larvae of the western corn rootworm Diabrotica virgifera virgifera LeConte. An active glycolipid fraction obtained from an extract of germinating maize roots was isolated with thin layer chromatography using a bioassay-...

  4. Changes in extracellular calcium activity during gravity sensing in maize roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjoerkman, T.; Cleland, R.E.

    1990-05-01

    A redistribution of calcium downward across the root cap has been proposed as an essential part of gravitropism in roots. Exogenous {sup 45}Ca moves preferentially downward across gravistimulated maize root tips. However, because of the many calcium-binding sites in the apoplast, this might not result in a physiologically effect change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity with calcium-specific microelectrodes. Decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. Themore » calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 {plus minus} 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for about five minutes after gravistimulation, then decreased by about one half. On the lower side, after a similar lag the calcium activity doubled. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. We have found a distinct and rapid differential in the apoplasmic calcium activity between the upper and lower sides of gravistimulated maize root tips.« less

  5. Relationships between Political Development and Intervention

    DTIC Science & Technology

    2006-05-01

    characteristics of foreign interventions into failing states. First, the root causes of instability that necessitate an intervention are oftentimes rooted ...interventions into failing states. First, the root causes of instability that necessitate an intervention are oftentimes rooted in the host country’s...provided technical assistance, missionaries, corn, cassava , and tobacco in exchange for ivory, and copperwares. In the eighteenth century, more European

  6. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    PubMed

    George, Roy; Walsh, Laurence J

    2010-04-01

    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  7. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  8. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    PubMed

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. A RAPID DNA EXTRACTION METHOD IS SUCCESSFULLY APPLIED TO ITS-RFLP ANALYSIS OF MYCORRHIZAL ROOT TIPS

    EPA Science Inventory

    A rapid method for extracting DNA from intact, single root tips using a Xanthine solution was developed to handle very large numbers of analyses of ectomycorrhizas. By using an extraction without grinding we have attempted to bias the extraction towards the fungal DNA in the man...

  10. A Novel Growing Device Inspired by Plant Root Soil Penetration Behaviors

    PubMed Central

    Sadeghi, Ali; Tonazzini, Alice; Popova, Liyana; Mazzolai, Barbara

    2014-01-01

    Moving in an unstructured environment such as soil requires approaches that are constrained by the physics of this complex medium and can ensure energy efficiency and minimize friction while exploring and searching. Among living organisms, plants are the most efficient at soil exploration, and their roots show remarkable abilities that can be exploited in artificial systems. Energy efficiency and friction reduction are assured by a growth process wherein new cells are added at the root apex by mitosis while mature cells of the root remain stationary and in contact with the soil. We propose a new concept of root-like growing robots that is inspired by these plant root features. The device penetrates soil and develops its own structure using an additive layering technique: each layer of new material is deposited adjacent to the tip of the device. This deposition produces both a motive force at the tip and a hollow tubular structure that extends to the surface of the soil and is strongly anchored to the soil. The addition of material at the tip area facilitates soil penetration by omitting peripheral friction and thus decreasing the energy consumption down to 70% comparing with penetration by pushing into the soil from the base of the penetration system. The tubular structure provides a path for delivering materials and energy to the tip of the system and for collecting information for exploratory tasks. PMID:24587244

  11. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh.

    PubMed

    Ikka, Takashi; Ogawa, Tsuyoshi; Li, Donghua; Hiradate, Syuntaro; Morita, Akio

    2013-10-01

    Eucalyptus (Eucalyptus camaldulensis) has relatively high resistance to aluminum (Al) toxicity than the various herbaceous plants and model plant species. To investigate Al-tolerance mechanism, the metabolism of organic acids and the chemical forms of Al in the target site (root tips) in Eucalyptus was investigated. To do this, 2-year old rooted cuttings of E. camaldulensis were cultivated in half-strength Hoagland solution (pH 4.0) containing Al (0, 0.25, 0.5, 1.0, 2.5 and 5.0mM) salts for 5weeks; growth was not affected at concentrations up to 2.5mM even with Al concentration reaching 6000μgg(-1) DW. In roots, the citrate content also increased with increasing Al application. Concurrently, the activities of aconitase and NADP(+)-isocitrate dehydrogenase, which catalyze the decomposition of citrate, decreased. On the other hand, the activity of citrate synthase was not affected at concentrations up to 2.5mM Al. (27)Al-NMR spectroscopic analyses were carried out where it was found that Al-citrate complexes were a major chemical form present in cell sap of root tips. These findings suggested that E. camaldulensis detoxifies Al by forming Al-citrate complexes, and that this is achieved through Al-induced citrate accumulation in root tips via suppression of the citrate decomposition pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Soil profile organic carbon as affected by tillage and cropping systems

    USDA-ARS?s Scientific Manuscript database

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  13. The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa.

    PubMed

    Andrade, L F; Davide, L C; Gedraite, L S

    2010-05-01

    SPL (spent pot liner) is a solid waste produced by the aluminum industry. This waste has a highly variable composition, consisting of cyanides, fluorides, organics, and metals. The aim of this work was to study the effect of SPL on root tips of Lactuca sativa using current plant bioassays. We observed a decrease in the germination rate with increasing concentrations of SPL. In addition, SPL was found to reduce root growth, which is correlated with a decrease in the mitotic index. Nevertheless, we noticed a significant enhancement in the percentage of stickiness, c-metaphase, anaphase bridges, and laggard chromosomes in dividing cells and also an increase in the number of cells with condensed nuclei. Moreover, SPL was found to alter the root tip surface, resulting in a reduction in the amount of root hair. These results demonstrate that SPL is a toxic agent that leads to cell damage and disturbance. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.

  15. Long-term fertilization, but not warming, shifts rates of ectomycorrhizal nutrient cycling in Arctic tussock tundra.

    NASA Astrophysics Data System (ADS)

    Dunleavy, H.; Mack, M. C.

    2017-12-01

    The role of ectomycorrhizae (ECM) in Arctic nutrient cycling may be changing as temperature, nutrient availability, and ECM shrub abundance and size increase. A shift in ECM function has been proposed as a possible mechanism for shrub expansion. While several studies demonstrate a higher abundance of ECM as well as community compositional shifts in response to long-term experimental warming and fertilization, direct measurements of functional responses are missing. To understand the potential role of ECM in soil biogeochemical processes of the changing Arctic, we investigated the functional response of ECM to 30 years of summer warming and increased nutrient availability by measuring potential activities of extracellular enzymes associated with nitrogen (N) and phosphorous (P) acquisition on ECM root tips. We hypothesize ECM enzyme activities will be higher with warmer temperatures. Conversely, fertilization will lower ECM enzyme activities as N and P become less limiting to host plants. Preliminary results strongly support our latter hypothesis, but not the first. Warming decreased hydrolytic P-associated and labile N-associated enzyme activities on individual root tips (pmol/min/mm2 root tip) by 30% and 83%, respectively. However, warming increased ECM abundance and did not alter community-level activities (pmol/min/cm3 soil). Fertilization decreased hydrolytic and oxidative enzymatic activities on individual root tips by 34 to 80% as well as on a community level by 67 to 93%, even though ECM shrubs were almost monodominant. The combined effect of warming and fertilization decreased labile N-associated enzyme activity by 82%, but had little effect on oxidative and other hydrolytic enzyme activities. Although both warming and fertilization decreased root tip activities, reflecting a potential reduction in plant allocation to mycorrhizal nutrient acquisition, only fertilization lowered rates of ECM nutrient cycling. The indirect relationship between ECM abundance and individual root tip activity highlights the importance of measuring ECM function to assess the role of this symbiosis in nutrient cycling.

  16. Topographic and soil influences on root productivity of three bioenergy cropping systems

    Treesearch

    Todd A. Ontl; Kirsten S. Hofmockel; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2013-01-01

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern...

  17. CASIROZ: Root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes.

    PubMed

    Zeleznik, P; Hrenko, M; Then, C; Koch, N; Grebenc, T; Levanic, T; Kraigher, H

    2007-03-01

    Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital mycorrhizal root tips, fine root (mass) density, root tip density per surface, root area index, concentration of Zn, and Ca/Al ratio. Due to the general reduction in root growth indices and nutrient cycling in ozone-fumigated plants, alterations in soil carbon pools could be predicted.

  18. Floating retained root lesion mimicking apical periodontitis.

    PubMed

    Chung, Ming-Pang; Chen, Chih-Ping; Shieh, Yi-Shing

    2009-10-01

    A case of a retained root tip simulating apical periodontitis on radiographic examination is described. The retained root tip, originating from the left lower first molar, floated under the left lower second premolar apical region mimicking apical periodontitis. It appeared as an ill-defined periapical radiolucency containing a smaller radiodense mass on radiograph. The differential diagnosis included focal sclerosing osteomyelitis (condensing osteitis) and ossifying fibroma. Upon exicisional biopsy, a retained root associated with granulation tissue was found. After 1-year follow-up, the patient was asymptomatic and the periradicular lesion was healing. Meanwhile, the associated tooth showed a normal response to stimulation testing.

  19. Effect of specific plant-growth-promoting rhizobacteria (PGPR) on growth and uptake of neonicotinoid insecticide thiamethoxam in corn (Zea mays L.) seedlings.

    PubMed

    Myresiotis, Charalampos K; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2015-09-01

    Corn (Zea mays L.) is one of the most important cereal crops in the world and is used for food, feed and energy. Inoculation with plant-growth-promoting rhizobacteria (PGPR) would reduce the use of chemical fertilisers and pesticides and could be suggested as an alternative practice for sustainable production of corn in modern agricultural systems. In this study, the effect of two Bacillus PGPR formulated products, Companion (B. subtilis GB03) and FZB24 (B. subtilis FZB24), on corn growth and root uptake of insecticide thiamethoxam was investigated. All bacterial treatments enhanced root biomass production by 38-65% compared with the uninoculated control, with no stimulatory effect of PGPR on above-ground biomass of corn. The uptake results revealed that, in plants inoculated with the PGPR B. subtilis FZB24 and B. subtilis GB03, singly or in combination, the uptake and/or systemic translocation of thiamethoxam in the above-ground corn parts was significantly higher at the different growth ages compared with the control receiving no bacterial treatment. The findings suggest that the PGPR-elicited enhanced uptake of thiamethoxam could lead to improved efficiency of thiamethoxam using reduced rates of pesticides in combination with PGPR as an alternative crop protection technique. © 2014 Society of Chemical Industry.

  20. [Evaluation of the cavity cleaning of ultrasonic instruments and slow-speed handpiece in posterior teeth root-end preparation].

    PubMed

    Zhang, Ping-juan; Chen, Wen-xia; Zeng, Qi-xin; Xie, Fang-fang

    2013-04-01

    To compare the cleanliness of root end preparations by using ultrasonic instrumentation and slow-speed handpiece. Thirty-two mesial roots of the first mandibular molars with two canals and mature root apices were assigned randomly to 2 groups, each group had 16 teeth. The root-end preparations were made respectively using ultrasonic diamond tip Berutti and NiTi tip RE2 and slow-speed handpiece with No.2 round bur. Root end cavities were examined under scanning electron microscope for further evaluation of the superficial debris and smear layer of the root end preparations. SPSS 13.0 software package was used for Kruskal Wallis test. Ultrasonic preparation had significantly less superficial debris and smear layer than slow-speed handpiece preparation (P<0.05). Ultrasonic instrument creates cleaner surfaces for root end cavities than slow-speed handpiece preparation in posterior teeth root end preparation.

  1. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells.

    PubMed

    Abdelsalam, Nader R; Abdel-Megeed, Ahmed; Ali, Hayssam M; Salem, Mohamed Z M; Al-Hayali, Muwafaq F A; Elshikh, Mohamed S

    2018-07-15

    The distribution and use of nanoparticles have rapidly increased over recent years, but the available knowledge regarding their mode of action, ecological tolerance and biodegradability remains insufficient. Wheat (Triticum aestivum L.) is the most important crop worldwide. In the current study, the effects of silver nanoparticles (AgNPs) obtained from two different sources, namely, green and chemical syntheses, on chromosomal aberrations and cell division were investigated. Wheat root tips were treated with four different AgNP concentrations (10, 20, 40 and 50 ppm) for three different exposure durations (8, 16 and 24 h), and the different concentrations of the nanoparticles were added to the tested grains until the root lengths reached 1.5-2 cm. For each concentration, the mitotic indexes (%) were obtained from an analysis of ~ 2000 cells. The treated root-tip cells exhibited various types of chromosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage, metaphasic plate distortion, spindle dysfunction, stickiness, aberrant movement at metaphase, fragmentation, scattering, unequal separation, scattering, chromosomal gaps, multipolar anaphase, erosion, and distributed and lagging chromosomes. These results demonstrate that the root tip cells of wheat can readily internalize the AgNPs and that the internalized AgNPs can interfere with the cells' normal function. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L.

    PubMed

    Doležel, J; Cíhalíková, J; Lucretti, S

    1992-08-01

    A new method is described for the isolation of large quantities of Vicia faba metaphase chromosomes. Roots were treated with 2.5 mM hydroxyurea for 18 h to accumulate meristem tip cells at the G1/S interface. After release from the block, the cells re-entered the cell cycle with a high degree of synchrony. A treatment with 2.5 μM amiprophos-methyl (APM) was used to accumulate mitotic cells in metaphase. The highest metaphase index (53.9%) was achieved when, 6 h after the release from the hydroxyurea block, the roots were exposed to APM for 4 h. The chromosomes were released from formaldehyde-fixed root tips by chopping with a scalpel in LB01 lysis buffer. Both the quality and the quantity of isolated chromosomes, examined microscopically and by flow cytometry, depended on the extent of the fixation. The best results were achieved after fixation with 6% formaldehyde for 30 min. Under these conditions, 1 · 10(6) chromosomes were routinely obtained from 30 root tips. The chromosomes were morphologically intact and suitable both for high-resolution chromosome studies and for flow-cytometric analysis and sorting. After the addition of hexylene glycol, the chromosome suspensions could be stored at 4° C for six months without any signs of deterioration.

  3. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way, we were able to simulate root growth and root water uptake in soil with macropores. The model was parametrized using experimental results of studies by Hirth et al. (2005) and Stirzaker et al. (1996). It proved to be capable of reproducing observed root growth responses to structured soil both at the single root and the plant root system scale. This new approach enables us to investigate how plant roots use macropores to gain access to water and nutrient reservoirs in deeper, highly dense soil layers. Acknowledgements: Funding by German Research Foundation within the Research Unit 888 is gratefully acknowledged. The James Hutton Institute receives funding from the Scottish Government.

  4. ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5

    NASA Astrophysics Data System (ADS)

    Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent

    2016-07-01

    It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.

  5. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions.

    PubMed

    Mendis, Hajeewaka C; Thomas, Varghese P; Schwientek, Patrick; Salamzade, Rauf; Chien, Jung-Ting; Waidyarathne, Pramuditha; Kloepper, Joseph; De La Fuente, Leonardo

    2018-01-01

    Bacillus amyloliquefaciens QST713 and B. firmus I-1582 are bacterial strains which are used as active ingredients of commercially-available soil application and seed treatment products Serenade® and VOTiVO®, respectively. These bacteria colonize plant roots promoting plant growth and offering protection against pathogens/pests. The objective of this study was to develop a qPCR protocol to quantitate the dynamics of root colonization by these two strains under field conditions. Primers and TaqMan® probes were designed based on genome comparisons of the two strains with publicly-available and unpublished bacterial genomes of the same species. An optimized qPCR protocol was developed to quantify bacterial colonization of corn roots after seed treatment. Treated corn seeds were planted in non-sterile soil in the greenhouse and grown for 28 days. Specific detection of bacteria was quantified weekly, and showed stable colonization between ~104-105 CFU/g during the experimental period for both bacteria, and the protocol detected as low as 103 CFU/g bacteria on roots. In a separate experiment, streptomycin-resistant QST713 and rifampicin-resistant I-1582 strains were used to compare dilution-plating on TSA with the newly developed qPCR method. Results also indicated that the presence of natural microflora and another inoculated strain does not affect root colonization of either one of these strains. The same qPCR protocol was used to quantitate root colonization by QST713 and I-1582 in two corn and two soybean varieties grown in the field. Both bacteria were quantitated up to two weeks after seeds were planted in the field and there were no significant differences in root colonization in either bacteria strain among varieties. Results presented here confirm that the developed qPCR protocol can be successfully used to understand dynamics of root colonization by these bacteria in plants growing in growth chamber, greenhouse and the field.

  6. A Finite Element Analysis of a Carbon Fiber Composite Micro Air Vehicle Wing

    DTIC Science & Technology

    2012-03-22

    3. Errors in the manufacturing of the laminate resulting in errors in ply orientation. Each of these was examined in order to determine a root ...material properties. 4.2.4. Vein Width The widths of the individual veins of the manufactured wing were varied linearly from root to tip of the...wing. In the sizing of the engineered wing, the width of the veins were varied linearly from the root of the vein to the tip. For manufacturing

  7. Aluminum fractions in root tips of slash pine and loblolly pine families differing in Al resistance

    Treesearch

    Jaroslaw Nowak; Alexander L. Friend

    2005-01-01

    Aluminum (Al) distribution among several cellular fractions was investigated in root tips of seedlings of one Al-resistant and one Al-sensitive family of slash pine (Pinus elliottii Engelm.) and loblolly pine (Pinus taeda L.) grown in nutrient solution containing 100 M AlCl3 (pH 4) for 167 h....

  8. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  9. Theoretical parametric study of the relative advantages of winglets and wing-tip extensions

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.; Riebe, G. D.; Fulton, C. L.

    1977-01-01

    It was found that for identical increases in bending moment, a winglet provides a greater gain in induced efficiency than a tip extension. Winglet toe-in angle allows design trades between efficiency and root moment. A winglet showed the greatest benefit when the wing loads were heavy near the tip. Washout diminished the benefit of either tip modification, and the gain in induced efficiency became a function of lift coefficient; heavy wing loadings obtained the greatest benefit from a winglet, and low speed performance was enhanced even more than cruise performance. Both induced efficiency and bending moment increased with winglet length and outward cant. The benefit of a winglet relative to a tip extension was greatest for a nearly vertical winglet. Root bending moment was proportional to the minimum weight of bending material required in the wing; it is a valid index of the impact of tip modifications on a new wing design.

  10. Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.; Riebe, G. D.; Fulton, C. L.

    1977-01-01

    For identical increases in bending moment, a winglet provides a greater gain in induced efficiency than tip extension. Winglet toe angle allows design trades between efficiency and root moment. A winglet shows the greatest benefit when the wing loads are heavy near the tip. Washout diminishes the benefit of either tip modification, and the gain in induced efficiency becomes a function of lift coefficient; thus, heavy wing loadings obtain the greatest benefit from a winglet, and low-speed performance is enhanced even more than cruise performance. Both induced efficiency and bending moment increase with winglet length and outward cant. The benefit of a winglet relative to a tip extension is greatest for a nearly vertical winglet. Root bending moment is proportional to the minimum weight of bending material required in the wing; thus, it is a valid index of the impact of tip modifications on a new wing design.

  11. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  12. Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare).

    PubMed

    Ligaba, Ayalew; Katsuhara, Maki; Shibasaka, Mineo; Djira, Gemechis

    2011-02-01

    In one of the most important crops, barley (Hordeum vulgare L.), gene expression and physiological roles of most major intrinsic proteins (MIPs) remained to be elucidated. Here we studied expression of five tonoplast intrinsic protein isoforms (HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3 and HvTIP4;1), a NOD26-like intrinsic protein (HvNIP2;1) and a plasma membrane intrinsic protein (HvPIP2;1) by using the quantitative real-time RT-PCR. Five-day-old seedlings were exposed to abiotic stresses (salt, heavy metals and nutrient deficiency), abscisic acid (ABA) and gibberellic acid (GA) for 24 h. Treatment with 100 mM NaCl, 0.1 mM ABA and 1 mM GA differentially regulated gene expression in roots and shoots. Nitrogen and prolonged P-deficiency downregulated expression of most MIP genes in roots. Intriguingly, gene expression was restored to the values in the control three days after nutrient supply was resumed. Heavy metals (0.2 mM each of Cd, Cu, Zn and Cr) downregulated the transcript levels by 60-80% in roots, whereas 0.2 mM Hg upregulated expressions of most genes in roots. This was accompanied by a 45% decrease in the rate of transpiration. In order to study the physiological role of the MIPs, cDNA of three genes (HvTIP2;1, HvTIP2;3 and HvNIP2;1) have been cloned and heterologous expression was performed in Xenopus laevis oocytes. Osmotic water permeability was determined by a swelling assay. However, no water uptake activity was observed for the three proteins. Hence, the possible physiological role of the proteins is discussed. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Discovery of a novel aquaporin ZmPIP2-8 from southern corn rootworm infested maize

    USDA-ARS?s Scientific Manuscript database

    A common paradigm of infestation by chewing insects is a jasmonic acid (JA) cascade that results in the induction of JA responsive genes. However examination of several maize genes induced by Southern corn rootworm (SCR) infestation, an insect that chews into and significantly damages maize roots, ...

  14. Nitric Oxide Inhibits Al-Induced Programmed Cell Death in Root Tips of Peanut (Arachis hypogaea L.) by Affecting Physiological Properties of Antioxidants Systems and Cell Wall

    PubMed Central

    Pan, Chun-Liu; Yao, Shao-Chang; Xiong, Wei-Jiao; Luo, Shu-Zhen; Wang, Ya-Lun; Wang, Ai-Qin; Xiao, Dong; Zhan, Jie; He, Long-Fei

    2017-01-01

    It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase (XTH-32) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW. PMID:29311970

  15. Nitric Oxide Inhibits Al-Induced Programmed Cell Death in Root Tips of Peanut (Arachis hypogaea L.) by Affecting Physiological Properties of Antioxidants Systems and Cell Wall.

    PubMed

    Pan, Chun-Liu; Yao, Shao-Chang; Xiong, Wei-Jiao; Luo, Shu-Zhen; Wang, Ya-Lun; Wang, Ai-Qin; Xiao, Dong; Zhan, Jie; He, Long-Fei

    2017-01-01

    It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase ( XTH-32 ) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW.

  16. Reactive oxygen species triggering systemic programmed cell death process via elevation of nuclear calcium ion level in tomatoes resisting tobacco mosaic virus.

    PubMed

    Li, Yang; Li, Qi; Hong, Qiang; Lin, Yichun; Mao, Wang; Zhou, Shumin

    2018-05-01

    Programmed cell death (PCD) plays a positive role in the systemic response of plants to pathogen resistance. It has been confirmed that local tobacco mosaic virus (TMV) infecting tomato leaves can induce systemic PCD process in root-tip tissues. But up to now the underlying physiological mechanisms are poorly understood. This study focused on the detailed investigation of the physiological responses of root-tip cells during the initiation of systemic PCD. Physiological, biochemical examination and cytological observation showed that 1 day post-inoculation (dpi) of TMV inoculation there was an increase in calcium fluorescence intensity in root tip tissue cells. Then at 2 dpi, 4 dpi, 8 dpi and 15 dpi, the fluorescence intensity of calcium ion continued to increase. However, at 5 dpi, the reactive oxygen species (ROS) began to accumulate in the root-tip cells. And finally at 20 dpi, the obvious PCD reaction was detected. In addition, the experimental results also showed that the above process involved the elevation of two types of intracellular Ca 2+ , including cytoplasmic calcium ([Ca 2+ ] cyt ) and nuclear calcium ([Ca 2+ ] nuc ). The [Ca 2+ ] cyt , as a pilot signal could lead to the subsequent elevation of intracellular ROS concentration. Then, the high levels of ROS stimulated an increase of [Ca 2+ ] nuc and eventually caused PCD reactions in the root-tip tissues. In particular, the high level of nuclear calcium is an essential mediator in systemic PCD of plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of water storage in the stele on measurements of the hydraulics of young roots of corn and barley.

    PubMed

    Joshi, Ankur; Knipfer, Thorsten; Steudle, Ernst

    2009-11-01

    In standard techniques (root pressure probe or high-pressure flowmeter), the hydraulic conductivity of roots is calculated from transients of root pressure using responses following step changes in volume or pressure, which may be affected by a storage of water in the stele. Storage effects were examined using both experimental data of root pressure relaxations and clamps and a physical capacity model. Young roots of corn and barley were treated as a three-compartment system, comprising a serial arrangement of xylem/probe, stele and outside medium/cortex. The hydraulic conductivities of the endodermis and of xylem vessels were derived from experimental data. The lower limit of the storage capacity of stelar tissue was caused by the compressibility of water. This was subsequently increased to account for realistic storage capacities of the stele. When root water storage was varied over up to five orders of magnitude, the results of simulations showed that storage effects could not explain the experimental data, suggesting a major contribution of effects other than water storage. It is concluded that initial water flows may be used to measure root hydraulic conductivity provided that the volumes of water used are much larger than the volumes stored.

  18. [Introduction of hexaploid of Chinese narcissus and analysis of its chromosome change].

    PubMed

    Wang, Rui; Zhang, Ya Nan; Wang, Ya Ying; Tian, Hui Qiao

    2007-06-01

    Anthers of Chinese narcissus (Narcissus tazetta L. var chinesis Roem) were used as explants for callus induction and plant regeneration. About 80% anthers produced callus and 28% of the callus differentiated out bulbs, making a good experiment system of tissue culture of Chinese narcissus for further cellular and gene engineering. The 700 callus were treated by 0.5% colchicin for 5-6 days and then transformed into a MS medium containing 3 mg/L 6-BA to induce differentiation. 90 bulbs were obtained and 55 bulbs among them were checked the chromosome number from their root tips for three times. 29 bulbs (53%, 29/55) still kept triploidy and the most cells of root tips contained 30 chromosomes. 22 bulbs (40%, 22/55) displayed aneuploidy and the most cells of its root tips contained 10-50 chromosomes. 4 bulbs displayed hexaploidy and contained 60 chromosomes. After three months growing, the cells of root tips containing aneuploidy chromosomes disappeared, and the bulbs became triploidy. The chromosomes of 4 hexaploidy bulbs did not changed during three checks. The origin and disappearance of aneuploidy cells of Chinese narcissus after treated by colchicin were discussed.

  19. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.

    PubMed

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A; Lentz, Rodrick D

    2016-01-01

    Biochar can increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be abundant and inexpensive if locally available, and thus can be applied to fields at greater rates than biochar. In a field study comparing biochar and manure, a fast pyrolysis hardwood biochar (22.4 Mg ha(-1)), dairy manure (42 Mg ha(-1) dry wt), a combination of biochar and manure at the aforementioned rates, or no amendment (control) was applied to an Aridisol (n=3) in fall 2008. Plots were annually cropped to corn (Zea maize L.). Surface soils (0-30 cm) were sampled directly under corn plants in late June 2009 and early August 2012, and assayed for microbial community fatty acid methyl ester (FAME) profiles and six extracellular enzyme activities involved in soil C, N, and P cycling. Arbuscular mycorrhizal (AM) fungal colonization was assayed in corn roots in 2012. Biochar had no effect on microbial biomass, community structure, extracellular enzyme activities, or AM fungi root colonization of corn. In the short-term, manure amendment increased microbial biomass, altered microbial community structure, and significantly reduced the relative concentration of the AM fungal biomass in soil. Manure also reduced the percent root colonization of corn by AM fungi in the longer-term. Thus, biochar and manure had contrasting short-term effects on soil microbial communities, perhaps because of the relatively low application rate of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina.

    PubMed

    Russo, María L; Pelizza, Sebastián A; Cabello, Marta N; Stenglein, Sebastián A; Vianna, María F; Scorsetti, Ana C

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  2. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism

    PubMed Central

    Band, Leah R.; Wells, Darren M.; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M.; French, Andrew P.; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H.; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M.; Estelle, Mark; Owen, Markus R.; Vissenberg, Kris; Hodgman, T. Charlie; Pridmore, Tony P.; King, John R.; Vernoux, Teva; Bennett, Malcolm J.

    2012-01-01

    Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution. PMID:22393022

  3. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism.

    PubMed

    Band, Leah R; Wells, Darren M; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M; French, Andrew P; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M; Estelle, Mark; Owen, Markus R; Vissenberg, Kris; Hodgman, T Charlie; Pridmore, Tony P; King, John R; Vernoux, Teva; Bennett, Malcolm J

    2012-03-20

    Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.

  4. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests.

    PubMed

    Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe

    2007-11-01

    Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.

  5. Assessment of arsenic toxicity using Allium/Vicia root tip micronucleus assays.

    PubMed

    Wu, Lihua; Yi, Huilan; Yi, Min

    2010-04-15

    Arsenic is ubiquitous in the environment and is a potential human carcinogen. Its carcinogenicity has been demonstrated in several models. In this study, broad bean (Vicia faba L.) and common onion (Allium cepa L.), two plant species which are commonly used for detecting the genotoxic effects of environmental pollutants, were used to measure possible genotoxic effect of arsenite (0.3-30 mg/l). Present results showed that arsenite (As(III)) induced micronuclei (MN) formation in both Allium and Vicia root tips. MN frequency significantly increased in Vicia root cells exposed to 0.3-10 mg/l arsenite and in Allium root cells exposed to 1-30 mg/l arsenite, which indicated that Vicia root tip cells are more sensitive to arsenite than Allium. Mitotic index (MI) decreased in a concentration-dependent manner and showed significant differences in Vicia/Allium roots among treatments and the control, after exposure to 1-30 mg/l arsenite for at least 4 h. In the present study, MN frequency was positively associated with lipid peroxidation, which indicated that arsenite exposure can induce oxidative stress, cytotoxicity and genotoxicity in plant cells. The results also suggested that Vicia/Allium root micronucleus (MN) assays are simple, efficient and reproducible methods for the genotoxicity monitoring of arsenic water contamination. 2009 Elsevier B.V. All rights reserved.

  6. Assessing the phytoavailability of arsenic and phosphorus to corn plant after the addition of an acrylic copolymer to polluted soils.

    PubMed

    Mansouri, Tahereh; Golchin, Ahmad; Kouhestani, Hossein

    2017-08-13

    Soil pollution by arsenic increases the potential risk of arsenic entrance into the food chain. The usefulness of maleic anhydride- styrene- acrylic acid copolymer on the mobility and phytoavailability of arsenic was evaluated. Treatments were the concentrations of acrylic copolymer (0, 0.05, 0.10, and 0.20% w/w) and the concentrations of soil total arsenic (0, 6, 12, 24, 48, and 96 mg kg -1 ). Sodium arsenate was added in appropriate amounts to subsamples of an uncontaminated soil to give contaminated soils with different levels of arsenic. The contaminated soils were subjected to a greenhouse experiment using corn as the test crop. The results showed that contamination of soil by arsenic increased the concentrations of soil available arsenic, root and aerial parts arsenic. By the use of acrylic copolymer, the concentration of available arsenic in the soil and the accumulation of arsenic in the root and aerial parts of the corn plant decreased but the dry weights of the root and aerial parts increased significantly. When the concentration of soil total arsenic was 96 mg kg -1 , the application of copolymer at the concentration of 0.20% w/w reduced the concentrations of arsenic in soil, root, and aerial parts by 62.53, 43.65, and 37.00% respectively, indicating that application of acrylic copolymer immobilized arsenic in soils.

  7. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    1998-01-01

    Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 +/- 50 microns back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 +/- 137 microns. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is < or = 30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 +/- 30 microns from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.

  8. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  9. Neonate larvae of the specialist herbivore Diabrotica virgifera virgifera do not exploit the defensive volatile (E)-ß-caryophyllene in locating maize roots

    USDA-ARS?s Scientific Manuscript database

    The behavior of the neonate larvae of Diabrotica virgifera virgifera LeConte (western corn rootworm, WCR) was assessed in presence of maize root constitutively emitting (E)-ß-caryophylene (EßC). This root volatile has been shown to attract both second instar WCR and insect-killing nematodes, offerin...

  10. Absence of plant uptake and translocation of polybrominated biphenyls (PBBs).

    PubMed

    Chou, S F; Jacobs, L W; Penner, D; Tiedje, J M

    1978-04-01

    Studies of polybrominated biphenyl (PBB) uptake by plants have been conducted in hydroponic solutions and in greenhouse experiments with soil. Autoradiograms of corn and soybean seedlings grown in hydroponic solutions showed no translocation of 14C-PBB from 14C-PBB-treated solutions to plant tops or within the leaf from 14C-PBB-treated spots on the upper leaf surface. A significant portion of the 14C-PBB associated with the roots was removed when the roots were dipped in acetone. Three root crops (radishes, carrots, and onions) were grown in two soils, each treated with a mixture of FireMaster BP-6 (PBB) and 14C-PBB to achieve final concentrations of 100 ppm and 100 ppb. All roots showed more PBB when grown in the soil with the lower clay and organic matter content than they did when grown in the soil with more clay and organic matter. In the latter soil (clay loam) no PBB was detected in any roots from the 100 ppb treatment. More PBB was associated with roots of carrot than of radish or onion. Corn leaf whorls containing dust from a PBB contamination soil and washed radishes from a heavily contaminated garden showed no PBB.

  11. Rhizosphere Microbial Community Structure in Relation to Root Location and Plant Iron Nutritional Status

    PubMed Central

    Yang, Ching-Hong; Crowley, David E.

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status. PMID:10618246

  12. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  13. Distribution of calmodulin in corn seedlings - Immunocytochemical localization in coleoptiles and root apices

    NASA Technical Reports Server (NTRS)

    Dauwalder, M.; Roux, S. J.

    1986-01-01

    Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.

  14. Reciprocal trade of Carbon and Nitrogen at the root-fungus interface in ectomycorrhizal beech plants

    NASA Astrophysics Data System (ADS)

    Kaiser, Christina; Mayerhofer, Werner; Dietrich, Marlies; Gorka, Stefan; Schintlmeister, Arno; Reipert, Siegfried; Schweiger, Peter; Weidinger, Marieluise; Wiesenbauer, Julia; Martin, Victoria; Richter, Andreas; Woebken, Dagmar

    2017-04-01

    Plants deliver recently assimilated carbon (C) to mycorrhizal fungi, and receive nutrients, such as N and P, in exchange. A reciprocal exchange of C and nutrients between plants and mycorrhizal fungi (i.e., fungi which deliver more nutrients receive more plant C in return and vice versa) has been suggested for arbuscular mycorrhizal symbioses by some studies, but challenged by others. For ectomycorrhizal associations even less is known on how the exchange of C for nutrients is regulated, and whether it is based on reciprocity, or other controls. The aim of this study was to test the concept of reciprocal rewards between beech (Fagus sylvatica) and their associated ectomycorrhizal fungi on different scales, namely (a) across associations between individual root tips of beech and different fungal partners, and (b) at the subcellular scale at the plant-fungus interface. We exposed young beech trees associated with natural mycorrhizal fungal communities to a 13CO2 atmosphere and added 15N-labelled amino acids to a 'litter compartment', that mycorrhizal hyphae, but not plant roots could access. Plants were harvested within 2 days after application of 15N and less than one day after applying 13CO2. If the trading of C for N was reciprocal, we expect that 13C would be correlated to 15N across individual plant-fungal connections and at the subcellular scale within one mycorrhizal root tip, respectively. We collected individual mycorrhizal root-tips from 8 plants right after harvest, analyzed their 13C and 15N content by isotope-ratio mass spectrometry (EA-IRMS) and performed ITS sequencing to identify fungal communities associated with individual root tips. Selected mycorrhizal root tips were also prepared for nano-scale secondary ion mass spectrometry (NanoSIMS) to visualize the spatial distribution of 13C and 15N in cross-sections of mycorrhizal root-tips at the subcellular scale. Our results showed a significant, albeit weak correlation between 13C and 15N across collected mycorrhizal root-tips, the variability of which was seemingly influenced by fungal colonization pattern. Within a cross-section of an individual root-tip, however, NanoSIMS imaging revealed not only a high spatial heterogeneity of 13C and 15N across plant and fungal cells, but also a strong spatial correlation between 13C and 15N in both, plant cells and fungal cells of the Hartig Net, the fungal mantle and external hyphae. Intriguingly, individual 'hotspots' of external fungal hyphae that were highly enriched in 15N (delivering high amounts of the added 15N to the plant), were also always extraordinarily enriched in 13C (receiving more 13C in return). Our results provide first evidence for a reciprocal exchange of C for N between plants and ectomycorrhizal fungi at the subcellular scale. This indicates that a mechanism at the cellular level exists, that (i) either allows plants to direct their C flow into N-delivering parts of the mycorrhizal hyphal network or (ii) allow the fungus to 'draw' more C from the plant (develop a higher sink strength) when it has access to N. While such a mechanism still remains to be elucidated, our study shows, for the first time, direct evidence for its existence.

  15. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway.

    PubMed

    Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang

    2008-05-01

    We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.

  16. In vitro fermentability and physicochemical properties of fibre substrates and their effect on bacteriological and morphological characteristics of the gastrointestinal tract of newly weaned piglets.

    PubMed

    Van Nevel, Christian J; Dierick, Noel A; Decuypere, Jaak A; De Smet, Stefaan M

    2006-12-01

    Fermentability of fibre has a great impact on the bacterial flora along the gastrointestinal tract of newly weaned piglets. Therefore, this parameter was determined by incubating in vitro different fibre substrates (chicory roots, sugar beet pulp, wheat bran and corn cobs) with contents of jejunum or caecum sampled from slaughtered pigs. Incubating with small intestinal contents, lactic acid was the only fermentation product. Fermentability was highest for chicory roots, followed by wheat bran and sugar beet pulp, while corn cobs were not fermented. Based on SCFA formed in the incubations with caecal contents, ranking of the fermentability of the fibre substrates was in the same order. The effect of adding different fibre substrates to diets of newly weaned piglets on bacteriological and morphological aspects of the gastrointestinal tract was also investigated. In Experiment 1 three groups of five piglets, weaned at four weeks of age, received a control feed (C), C supplemented with corn cobs (50 g/kg) or with chicory roots (20 g/kg). In Experiment 2, diet C was supplemented with sugar beet pulp (120 g/kg) or with wheat bran (75 g/kg). After three weeks animals were euthanized and digesta were sampled from stomach, proximal and distal jejunum, caecum and colon. Furthermore, mucosal scrapings were prepared and tissue samples were taken from jejunum, caecum and colon. Viscosity was determined for jejunal, caecal and colon contents. Corn cobs in the feed increased the number of total bacteria, lactobacilli and bifidobacteria in the stomach and proximal duodenum, while a decreased count of streptococci in distal jejunum contents was noted. Chicory roots increased the counts of Escherichia coli in the distal jejunum and on the mucosa, while sugar beet pulp decreased the number of lactobacilli on the mucosa only. Wheat bran seemed to increase the count of E. coli in jejunal digesta and on the mucosa, and also the number of lactobacilli in the stomach and jejunum. Bifidobacterial numbers were increased but only in the proximal part of the jejunum. Fibre substrates affected the concentration of lactate and SCFA in different parts of the intestinal tract. Feeding corn cobs increased villus length in the proximal jejunum by 13%. The number of intra-epithelial lymphocytes in the villous epithelium of proximal and distal jejunum was decreased by corn cobs and chicory roots supplementation while beet pulp and wheat bran had the opposite effect. In Experiment 1, apoptotic index of the mucosa of the distal jejunum was very low and decreased when corn cobs were fed. Mitotic index in the crypts was only affected by the wheat bran diet and a small decrease was noted. It was concluded that the fermentability of fibre was not an ideal criterion for predicting its effects on the flora. The effect of fibres on viscosity of digesta was negligible probably explaining the lack of clear and consistent influences on the intestinal mucosa.

  17. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.

    PubMed

    Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  18. Revising the role of pH and thermal treatments in aflatoxin content reduction during the tortilla and deep frying processes.

    PubMed

    Torres, P; Guzmán-Ortiz, M; Ramírez-Wong, B

    2001-06-01

    Naturally aflatoxin-contaminated corn (Zea mays L.) was made into tortillas, tortilla chips, and corn chips by the traditional and commercial alkaline cooking processes. The traditional nixtamalization (alkaline-cooking) process involved cooking and steeping the corn, whereas the commercial nixtamalization process only steeps the corn in a hot alkaline solution (initially boiling). A pilot plant that includes the cooker, stone grinder, celorio cutter, and oven was used for the experiments. The traditional process eliminated 51.7, 84.5, and 78.8% of the aflatoxins content in tortilla, tortilla chips, and corn chips, respectively. The commercial process was less effective: it removed 29.5, 71.2, and 71.2 of the aflatoxin in the same products. Intermediate and final products did not reach a high enough pH to allow permanent aflatoxin reduction during thermal processing. The cooking or steeping liquor (nejayote) is the only component of the system with a sufficiently high pH (10.2-10.7) to allow modification and detoxification of aflatoxins present in the corn grain. The importance of removal of tip, pericarp, and germ during nixtamalization for aflatoxin reduction in tortilla is evident.

  19. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth.

    PubMed

    Berson, Tobias; von Wangenheim, Daniel; Takáč, Tomáš; Šamajová, Olga; Rosero, Amparo; Ovečka, Miroslav; Komis, George; Stelzer, Ernst H K; Šamaj, Jozef

    2014-09-27

    Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. RabA1d is located in early endosomes/TGN and is involved in vesicle trafficking. RabA1d participates in both cell plate formation and root hair oscillatory tip growth. The specific GFP-RabA1d subcellular localization confirms a correlation between its specific spatio-temporal accumulation and local vesicle trafficking requirements during cell plate and root hair formation.

  20. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan

    PubMed

    Jaeger; Lindow; Miller; Clark; Firestone

    1999-06-01

    We developed a technique to map the availability of sugars and amino acids along live roots in an intact soil-root matrix with native microbial soil flora and fauna present. It will allow us to study interactions between root exudates and soil microorganisms at the fine spatial scale necessary to evaluate mechanisms of nitrogen cycling in the rhizosphere. Erwinia herbicola 299R harboring a promoterless ice nucleation reporter gene, driven by either of two nutrient-responsive promoters, was used as a biosensor. Strain 299RTice exhibits tryptophan-dependent ice nucleation activity, while strain 299R(p61RYice) expresses ice nucleation activity proportional to sucrose concentration in its environment. Both biosensors exhibited up to 100-fold differences in ice nucleation activity in response to varying substrate abundance in culture. The biosensors were introduced into the rhizosphere of the annual grass Avena barbata and, as a control, into bulk soil. Neither strain exhibited significant ice nucleation activity in the bulk soil. Both tryptophan and sucrose were detected in the rhizosphere, but they showed different spatial patterns. Tryptophan was apparently most abundant in soil around roots 12 to 16 cm from the tip, while sucrose was most abundant in soil near the root tip. The largest numbers of bacteria (determined by acridine orange staining and direct microscopy) occurred near root sections with the highest apparent sucrose or tryptophan exudation. High sucrose availability at the root tip is consistent with leakage of photosynthate from immature, rapidly growing root tissues, while tryptophan loss from older root sections may result from lateral root perforation of the root epidermis.

  1. Alginate-encapsulation of shoot tips of jojoba [Simmondsia chinensis (Link) Schneider] for germplasm exchange and distribution.

    PubMed

    Kumar, Sunil; Rai, Manoj K; Singh, Narender; Mangal, Manisha

    2010-12-01

    Shoot tips excised from in vitro proliferated shoots derived from nodal explants of jojoba [Simmondsia chinensis (Link) Schneider] were encapsulated in calcium alginate beads for germplasm exchange and distribution. A gelling matrix of 3 % sodium alginate and 100 mM calcium chloride was found most suitable for formation of ideal calcium alginate beads. Best response for shoot sprouting from encapsulated shoot tips was recorded on 0.8 % agar-solidified full-strength MS medium. Rooting was induced upon transfer of sprouted shoots to 0.8 % agar-solidified MS medium containing 1 mg l(-1) IBA. About 70 % of encapsulated shoot tips were rooted and converted into plantlets. Plants regenerated from encapsulated shoot tips were acclimatized successfully. The present encapsulation approach could also be applied as an alternative method of propagation of desirable elite genotype of jojoba.

  2. Distribution and Biocontrol Potential of phlD(+) Pseudomonads in Corn and Soybean Fields.

    PubMed

    McSpadden Gardener, Brian B; Gutierrez, Laura J; Joshi, Raghavendra; Edema, Richard; Lutton, Elizabeth

    2005-06-01

    ABSTRACT The abundance and diversity of phlD(+) Pseudomonas spp. colonizing the rhizospheres of young, field-grown corn and soybean plants were assayed over a 3-year period. Populations of these bacteria were detected on the large majority of plants sampled in the state of Ohio, but colonization was greater on corn. Although significant variation in the incidence of rhizosphere colonization was observed from site to site and year to year on both crops, the magnitude of the variation was greatest for soybean. The D genotype was detected on plants collected from all 15 counties examined, and it represented the most abundant subpopulation on both crops. Additionally, six other genotypes (A, C, F, I, R, and S) were found to predominate in the rhizosphere of some plants. The most frequently observed of these were the A genotype and a newly discovered S genotype, both of which were found on corn and soybean roots obtained from multiple locations. Multiple isolates of the most abundant genotypes were recovered and characterized. The S genotype was found to be phylogenetically and phenotypically similar to the D genotype. In addition, the novel R genotype was found to be most similar to the A genotype. All of the isolates displayed significant capacities to inhibit the growth of an oomycete pathogen in vitro, but such phenotypes were highly dependent on media used. When tested against multiple oomycete pathogens isolated from soybean, the A genotype was significantly more inhibitory than the D genotype when incubated on 1/10x tryptic soy agar and 1/5x corn meal agar. Seed inoculation with different isolates of the A, D, and S genotypes indicated that significant root colonization, generally in excess of log 5 cells per gram of root, could be attained on both crops. Field trials of the A genotype isolate Wayne1R indicated the capacity of inoculant populations to supplement the activities of native populations so as to increase soybean stands and yields. The relevance of these findings to natural and augmentative biocontrol of root pathogens by these bacteria is discussed.

  3. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    PubMed

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  4. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses.

    PubMed

    Yang, Zhimin; Chen, Yu; Hu, Baoyun; Tan, Zhiqun; Huang, Bingru

    2015-01-01

    Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.

  5. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study.

    PubMed

    Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol; Kim, Hyeon-Cheol

    2014-11-01

    The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.

  6. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study

    PubMed Central

    Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol

    2014-01-01

    Objectives The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. Materials and Methods The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. Results There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Conclusions Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency. PMID:25383346

  7. 40 CFR 180.434 - Propiconazole; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... group 13 1.0 Carrot, roots 0.25 Cattle, fat 0.05 Cattle, kidney 2.0 Cattle, liver 2.0 Cattle, meat 0.05 Cattle, meat byproducts, except liver and kidney 0.05 Cilantro, leaves 13 Corn, field, forage 12 Corn... 1.0 Goat, fat 0.05 Goat, kidney 2.0 Goat, liver 2.0 Goat, meat 0.05 Goat, meat byproducts, except...

  8. Bone condition of the maxillary zygomatic process prior to orthodontic anchorage plate fixation.

    PubMed

    Präger, T M; Brochhagen, H G; Mischkowski, R; Jost-Brinkmann, P G; Müller-Hartwich, R

    2015-01-01

    The clinical success of orthodontic miniplates depends on the stability of the miniscrews used for fixation. For good stability, it is essential that the application site provides enough bone of good quality. This study was performed to analyze the amount of bone available for orthodontic miniplates in the zygomatic process of the maxilla. We examined 51 dental CT scans (Somatom Plus 4; Siemens, Erlangen, Germany) obtained from 51 fully dentate adult patients (mean age 24.0 ± 8.1 years; 27 male and 24 female) prior to third molar surgery. The amount of bone in the zygomatic process region at the level of the first molar root tips and at several other cranial levels as far as 15 mm from the root tips was measured Bone thickness at the root tip level averaged 4.1 ± 1.0 mm; the lowest value measured at this level in any of the patients was 2.7 mm. Bone thickness averaged 8.3 ± 1.0 mm at 15 mm cranial to the root tips; 6.9 mm was the lowest value. The zygomatic process appears to provide sufficient bone to accommodate screws for miniplate fixation. While some patients may possess a borderline amount of bone at more caudal levels, lack of volume is not a problem near the zygomatic bone.

  9. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less

  10. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells.

    PubMed

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I

    2010-06-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.

  11. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    DOE PAGES

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; ...

    2016-09-19

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less

  12. Progressive Inhibition by Water Deficit of Cell Wall Extensibility and Growth along the Elongation Zone of Maize Roots Is Related to Increased Lignin Metabolism and Progressive Stelar Accumulation of Wall Phenolics1

    PubMed Central

    Fan, Ling; Linker, Raphael; Gepstein, Shimon; Tanimoto, Eiichi; Yamamoto, Ryoichi; Neumann, Peter M.

    2006-01-01

    Water deficit caused by addition of polyethylene glycol 6000 at −0.5 MPa water potential to well-aerated nutrient solution for 48 h inhibited the elongation of maize (Zea mays) seedling primary roots. Segmental growth rates in the root elongation zone were maintained 0 to 3 mm behind the tip, but in comparison with well-watered control roots, progressive growth inhibition was initiated by water deficit as expanding cells crossed the region 3 to 9 mm behind the tip. The mechanical extensibility of the cell walls was also progressively inhibited. We investigated the possible involvement in root growth inhibition by water deficit of alterations in metabolism and accumulation of wall-linked phenolic substances. Water deficit increased expression in the root elongation zone of transcripts of two genes involved in lignin biosynthesis, cinnamoyl-CoA reductase 1 and 2, after only 1 h, i.e. before decreases in wall extensibility. Further increases in transcript expression and increased lignin staining were detected after 48 h. Progressive stress-induced increases in wall-linked phenolics at 3 to 6 and 6 to 9 mm behind the root tip were detected by comparing Fourier transform infrared spectra and UV-fluorescence images of isolated cell walls from water deficit and control roots. Increased UV fluorescence and lignin staining colocated to vascular tissues in the stele. Longitudinal bisection of the elongation zone resulted in inward curvature, suggesting that inner, stelar tissues were also rate limiting for root growth. We suggest that spatially localized changes in wall-phenolic metabolism are involved in the progressive inhibition of wall extensibility and root growth and may facilitate root acclimation to drying environments. PMID:16384904

  13. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere.

    PubMed

    Hennion, Nils; Durand, Mickael; Vriet, Cécile; Doidy, Joan; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2018-04-28

    In plants, root is a typical sink organ that relies exclusively on the import of sugar from the aerial parts. Sucrose is delivered by the phloem to the most distant root tips and, en route to the tip, is used by the different root tissues for metabolism and storage. Besides, a certain portion of this carbon is exuded in the rhizosphere, supplied to beneficial microorganisms and diverted by parasitic microbes. The transport of sugars towards these numerous sinks either occurs symplastically through cell connections (plasmodesmata) or is apoplastically mediated through membrane transporters (MST, SUT/SUC and SWEET) that control monosaccharide and sucrose fluxes. Here, we review recent progresses on carbon partitioning within and outside roots, discussing membrane transporters involved in plant responses to biotic and abiotic factors. This article is protected by copyright. All rights reserved.

  14. Corn stover harvest increases herbicide movement to subsurface drains – Root Zone Water Quality Model simulations

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Removal of crop residues for bioenergy production can alter soil hydrologic properties, but there is little information on its impact on transport of herbicides and their degradation products to subsurface drains. The Root Zone Water Quality Model, previously calibrated using measured fl...

  15. UPTAKE OF BACTERIOPHAGE F2 THROUGH PLANT ROOTS

    EPA Science Inventory

    A model system was designed to measure viral uptake through the roots of plants and translocation to distal plant parts. For this study, uptake of bacteriophage f2 was measured in corn and bean plants growing in hydroponic solutions. Few phage were detected in plants with uncut r...

  16. Localization of lead accumulated by corn plants. [Zea mays L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, C.; Koeppe, D.E.; Miller, R.J.

    1974-01-01

    Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dicytosome vesicles. Dicytosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit then fusedmore » with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner.« less

  17. Localization of Lead Accumulated by Corn Plants 1

    PubMed Central

    Malone, Carl; Koeppe, D. E.; Miller, Raymond J.

    1974-01-01

    Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dictyosome vesicles. Dictyosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit fused with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner. Images PMID:16658711

  18. Effects of cations on hormone transport in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.

  19. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight.

    PubMed

    Song, Yuan Yuan; Cao, Man; Xie, Li Jun; Liang, Xiao Ting; Zeng, Ren Sen; Su, Yi Juan; Huang, Jing Hua; Wang, Rui Long; Luo, Shi Ming

    2011-11-01

    Arbuscular mycorrhizas are the most important symbioses in terrestrial ecosystems and they enhance the plant defense against numerous soil-borne pathogenic fungi and nematodes. Two corn (Zea mays) varieties, Gaoyou-115 that is susceptible to sheath blight disease caused by Rhizoctonia solani and Yuenong-9 that is resistant, were used for mycorrhizal inoculation in this study. Pre-inoculation of susceptible Gaoyou-115 with arbuscular mycorrhizal fungus (AMF) Glomus mosseae significantly reduced the disease incidence and disease severity of sheath blight of corn. HPLC analysis showed that AMF inoculation led to significant increase in 2,4-dihydroxy-7-methoxy-2 H-1,4-benzoxazin-3(4 H)-one (DIMBOA) accumulation in the roots of both corn varieties and in leaves of resistant Yuenong-9. R. solani inoculation alone did not result in accumulation of DIMBOA in both roots and leaves of the two corn varieties. Our previous study showed that DIMBOA strongly inhibited mycelial growth of R. solani in vitro. Real-time PCR analysis showed that mycorrhizal inoculation itself did not affect the transcripts of most genes tested. However, pre-inoculation with G. mosseae induced strong responses of three defense-related genes PR2a, PAL, and AOS, as well as BX9, one of the key genes in DIMBOA biosynthesis pathway, in the leaves of corn plants of both Yuenong-9 and Gaoyou-115 after the pathogen attack. Induction of defense responses in pre-inoculated plants was much higher and quicker than that in non-inoculated plants upon R. solani infection. These results indicate that induction of accumulation of DIMBOA, an important phytoalexin in corn, and systemic defense responses by AMF, plays a vital role in enhanced disease resistance of mycorrhizal plants of corn against sheath blight. This study also suggests that priming is an important mechanism in mycorrhiza-induced resistance.

  20. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  1. Morphology of Er:YAG-laser-treated root surfaces

    NASA Astrophysics Data System (ADS)

    Keller, Ulrich; Stock, Karl; Hibst, Raimund

    1997-12-01

    From previous studies it could be demonstrated that an efficient ablation of dental calculus is possible using an Er:YAG laser with a special contact fiber tip. After improving of the design and the efficiency of light transmission of the contact tip laser treated tooth root surfaces were investigated due to morphological changes in comparison to conventional root scaling and planing. Surface modifications were observed histologically under the light microscope and by means of a Scanning Electron Microscope. During laser treatment the intrapulpal temperature increase was measured. The results show that the improved contact tip a microstructured surface can be generated, which shows no signs of thermal effects even when a laser pulse repetition rate of 15 Hz was used. Temperature increase was limited to 4 K at a repetition rate of 10 Hz and to 5.5 K at a repetition rate of 15 Hz.

  2. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaranthus, M.P.; Page-Dumroese, D.; Harvey, A.

    1996-05-01

    Three levels of organic matter removal (bole only; bole and crowns; and bole, crowns, and forest floor) and three levels of mechanical soil compaction (no compaction, moderate compaction, and severe soil compaction) were studied as they influence Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings following outplanting. Moderate and severe soil compaction significantly reduced nonmycorrhizal root tip abundance on both Douglas-fir and western white pine seedlings (p less than or equal to 0.05). Ectomycorrhizal root tip abundance was significantly reduced on Douglas-fir seedlings in severely compacted areas with bole andmore » crowns and bole, crowns, and forest floor removed. Ectomycorrhizal diversity also was significantly reduced on Douglas-fir seedlings in all severely compacted areas.« less

  3. Graviresponsiveness and the Development of Columella Tissue in Primary and Lateral Roots of Ricinus communis1

    PubMed Central

    Moore, Randy; Pasieniuk, John

    1984-01-01

    Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818

  4. The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli.

    PubMed

    Mochizuki, Susumu; Harada, Akiko; Inada, Sayaka; Sugimoto-Shirasu, Keiko; Stacey, Nicola; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka; Sakai, Tatsuya

    2005-02-01

    To understand how the direction of root growth changes in response to obstacles, light, and gravity, we characterized an Arabidopsis thaliana mutant, wavy growth 2 (wav2), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The roots of the wav2 mutant bent with larger curvature than those of the wild-type seedlings in wavy growth and in gravitropic and phototropic responses. The cell file rotations of the root epidermis of wav2-1 in the wavy growth pattern were enhanced in both right-handed and left-handed rotations. WAV2 encodes a protein belonging to the BUD EMERGENCE 46 family with a transmembrane domain at the N terminus and an alpha/beta-hydrolase domain at the C terminus. Expression analyses showed that mRNA of WAV2 was expressed strongly in adult plant roots and seedlings, especially in the root tip, the cell elongation zone, and the stele. Our results suggest that WAV2 is not involved in sensing environmental stimuli but that it negatively regulates stimulus-induced root bending through inhibition of root tip rotation.

  5. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis

    PubMed Central

    Colla, Giuseppe; Rouphael, Youssef; Canaguier, Renaud; Svecova, Eva; Cardarelli, Mariateresa

    2014-01-01

    The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances. PMID:25250039

  6. A class I ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis.

    PubMed

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M; Sparks, J Alan; Blancaflor, Elison B

    2008-08-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.

  7. A Class I ADP-Ribosylation Factor GTPase-Activating Protein Is Critical for Maintaining Directional Root Hair Growth in Arabidopsis1[W][OA

    PubMed Central

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M.; Sparks, J. Alan; Blancaflor, Elison B.

    2008-01-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs. PMID:18539780

  8. Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Arnold, D.; Lloyd, A.; Roux, S. J.

    2001-01-01

    We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.

  9. Plant root and shoot dynamics during subsurface obstacle interaction

    NASA Astrophysics Data System (ADS)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  10. Nature Study Tips: Native American Foods.

    ERIC Educational Resources Information Center

    Russell, Helen Ross

    1984-01-01

    Discusses Native American foods, focusing on Native American cultivated crops, methods of cooking, and methods of preserving food. Includes suggestions for 19 classroom activities, including collecting wild plants used as food, gathering/drying and eating various wild plants and plant products (such as acorns and corn), and making a garden. (JN)

  11. Corn rootworm areawide management program: United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Chandler, Laurence D

    2003-01-01

    The corn rootworm areawide management program was implemented by USDA-ARS in 1995 at five locations across the USA. This program is based on the use of a semiochemical insecticide bait applied to maize (Zea mays L) during peak adult corn rootworm activity. Managing adult rootworms minimizes the number of eggs laid, resulting in fewer larvae available to economically damage maize roots in the following growing season. To date, rootworm populations have been significantly reduced at all participating locations and new bait products have been developed and evaluated for use in rootworm-infested areas.

  12. Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression1

    PubMed Central

    Boursiac, Yann; Chen, Sheng; Luu, Doan-Trung; Sorieul, Mathias; van den Dries, Niels; Maurel, Christophe

    2005-01-01

    Aquaporins facilitate the uptake of soil water and mediate the regulation of root hydraulic conductivity (Lpr) in response to a large variety of environmental stresses. Here, we use Arabidopsis (Arabidopsis thaliana) plants to dissect the effects of salt on both Lpr and aquaporin expression and investigate possible molecular and cellular mechanisms of aquaporin regulation in plant roots under stress. Treatment of plants by 100 mm NaCl was perceived as an osmotic stimulus and induced a rapid (half-time, 45 min) and significant (70%) decrease in Lpr, which was maintained for at least 24 h. Macroarray experiments with gene-specific tags were performed to investigate the expression of all 35 genes of the Arabidopsis aquaporin family. Transcripts from 20 individual aquaporin genes, most of which encoded members of the plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP) subfamilies, were detected in nontreated roots. All PIP and TIP aquaporin transcripts with a strong expression signal showed a 60% to 75% decrease in their abundance between 2 and 4 h following exposure to salt. The use of antipeptide antibodies that cross-reacted with isoforms of specific aquaporin subclasses revealed that the abundance of PIP1s decreased by 40% as early as 30 min after salt exposure, whereas PIP2 and TIP1 homologs showed a 20% to 40% decrease in abundance after 6 h of treatment. Expression in transgenic plants of aquaporins fused to the green fluorescent protein revealed that the subcellular localization of TIP2;1 and PIP1 and PIP2 homologs was unchanged after 45 min of exposure to salt, whereas a TIP1;1-green fluorescent protein fusion was relocalized into intracellular spherical structures tentatively identified as intravacuolar invaginations. The appearance of intracellular structures containing PIP1 and PIP2 homologs was occasionally observed after 2 h of salt treatment. In conclusion, this work shows that exposure of roots to salt induces changes in aquaporin expression at multiple levels. These changes include a coordinated transcriptional down-regulation and subcellular relocalization of both PIPs and TIPs. These mechanisms may act in concert to regulate root water transport, mostly in the long term (≥6 h). PMID:16183846

  13. A scanning electron microscopic study to evaluate the efficacy of NaviTip FX in removing the canal debris during root canal preparation: an in vitro study.

    PubMed

    Chandra, Vinay; Gandi, Padma; Shivanna, Anil Kumar; Srinivas, Siva; Himgiri, S; Nischith, K G

    2013-07-01

    To evaluate the efficacy of NaviTip FX in removing the canal debris during root canal preparation using scanning electron microscopic study. Thirty single rooted teeth with completely formed apices were used in this study. Standard endodontic access cavity preparations were performed. Then the teeth were randomly divided into two groups: groups 1 and 2 of 15 teeth each group. For group 1, NaviTip FX (brush covered needle) was used to irrigate the canal with 5.25% sodium hypochlorite after each instrument use. For group 2, NaviTip (brushless needle) was used for irrigation following each instrument use. ProTaper rotary files were used for the canal preparation. The teeth were then cleaned and dried before splitting them into two halves. The half with most visible part of the apex was used for scanning electron microscopic evaluation. The results were statistically analyzed using the Mann-Whitney U-test at significance level p < 0.005. The mean values for coronal and middle third of group 1 showed lower debris scores than group 2 and this difference was statistically significant at a p-value 0.01 and 0.05 respectively, but no significance difference between them at the apical third at a p-value of < 0.05. The NaviTip FX (brush covered needle) showed effectively better canal wall debris removal than the NaviTip (brushless needle).

  14. ß-Cyanoalanine Synthase Action in Root Hair Elongation is Exerted at Early Steps of the Root Hair Elongation Pathway and is Independent of Direct Cyanide Inactivation of NADPH Oxidase.

    PubMed

    Arenas-Alfonseca, Lucía; Gotor, Cecilia; Romero, Luis C; García, Irene

    2018-05-01

    In Arabidopsis thaliana, cyanide is produced concomitantly with ethylene biosynthesis and is mainly detoxified by the ß-cyanoalanine synthase CAS-C1. In roots, CAS-C1 activity is essential to maintain a low level of cyanide for proper root hair development. Root hair elongation relies on polarized cell expansion at the growing tip, and we have observed that CAS-C1 locates in mitochondria and accumulates in root hair tips during root hair elongation, as shown by observing the fluorescence in plants transformed with the translational construct ProC1:CASC1-GFP, containing the complete CAS-C1 gene fused to green fluorescent protein (GFP). Mutants in the SUPERCENTIPEDE (SCN1) gene, that regulate the NADPH oxidase gene ROOT HAIR DEFECTIVE 2 (RHD2)/AtrbohC, are affected at the very early steps of the development of root hair that do not elongate and do not show a preferential localization of the GFP accumulation in the tips of the root hair primordia. Root hairs of mutants in CAS-C1 or RHD2/AtrbohC, whose protein product catalyzes the generation of ROS and the Ca2+ gradient, start to grow out correctly, but they do not elongate. Genetic crosses between the cas-c1 mutant and scn1 or rhd2 mutants were performed, and the detailed phenotypic and molecular characterization of the double mutants demonstrates that scn1 mutation is epistatic to cas-c1 and cas-c1 is epistatic to rhd2 mutation, indicating that CAS-C1 acts in early steps of the root hair development process. Moreover, our results show that the role of CAS-C1 in root hair elongation is independent of H2O2 production and of a direct NADPH oxidase inhibition by cyanide.

  15. In Vivo potassium-39 NMR spectra by the burg maximum-entropy method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takanori; Minamitani, Haruyuki

    The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.

  16. Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis.

    PubMed

    Walker, Jennifer K M; Cohen, Hannah; Higgins, Logan M; Kennedy, Peter G

    2014-04-01

    Alnus trees associate with ectomycorrhizal (ECM) fungi and nitrogen-fixing Frankia bacteria and, although their ECM fungal communities are uncommonly host specific and species poor, it is unclear whether the functioning of Alnus ECM fungal symbionts differs from that of other ECM hosts. We used exoenzyme root tip assays and molecular identification to test whether ECM fungi on Alnus rubra differed in their ability to access organic phosphorus (P) and nitrogen (N) when compared with ECM fungi on the non-Frankia host Pseudotsuga menziesii. At the community level, potential acid phosphatase (AP) activity of ECM fungal root tips from A. rubra was significantly higher than that from P. menziesii, whereas potential leucine aminopeptidase (LA) activity was significantly lower for A. rubra root tips at one of the two sites. At the individual species level, there was no clear relationship between ECM fungal relative root tip abundance and relative AP or LA enzyme activities on either host. Our results are consistent with the hypothesis that ECM fungal communities associated with Alnus trees have enhanced organic P acquisition abilities relative to non-Frankia ECM hosts. This shift, in combination with the chemical conditions present in Alnus forest soils, may drive the atypical structure of Alnus ECM fungal communities. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Genotoxicity of fenpropathrin and fenitrothion on root tip cells of Vicia faba.

    PubMed

    Bu, N; Wang, S H; Yu, C M; Zhang, Y; Ma, C Y; Li, X M; Ma, L J

    2011-11-01

    The genotoxicity of fenpropathrin and fenitrothion on root tip cells of Vicia faba was studied. The symptoms were investigated about the mitotic index, the micronucleus frequency and chromosomal aberration frequency of root tip cells of Vicia faba which were induced by different concentrations of fenpropathrin and fenitrothion (1 × 10(-10)-1 × 10(-2) g L(-1)). Results showed that fenpropathrin and fenitrothion could induce the micronucleus of root tip cells of Vicia faba. It occurred in a dose-dependent manner. Peaks were observed at 1 × 10( -6) g L(-1) fenpropathrin and 1 × 10(-4) g L(-1) fenitrothion, and micronucleus frequency reached 14.587 ± 1.511‰ and 14.164 ± 1.623‰, respectively. From 1 × 10(-10) g L(-1) to 1 × 10( -6) g L(-1) fenpropathrin and 1 × 10(-4) g L(-1) fenitrothion, the micronucleus frequency increased with the increase of the concentrations, but beyond this range, the micronucleus frequency decreased with the further increase of the concentrations. A similar trend was observed for mitotic index. Moreover, fenpropathrin and fenitrothion could induce various types of chromosome aberration, such as lagging chromosomes, chromosome fragment, chromosome bridge, multipolar, nuclear buds, karyorrhexis, etc.

  18. Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production.

    PubMed

    Rodrigo-Moreno, Ana; Andrés-Colás, Nuria; Poschenrieder, Charlotte; Gunsé, Benet; Peñarrubia, Lola; Shabala, Sergey

    2013-04-01

    Transition metals such as copper can interact with ascorbate or hydrogen peroxide to form highly reactive hydroxyl radicals (OH(•) ), with numerous implications to membrane transport activity and cell metabolism. So far, such interaction was described for extracellular (apoplastic) space but not cytosol. Here, a range of advanced electrophysiological and imaging techniques were applied to Arabidopsis thaliana plants differing in their copper-transport activity: Col-0, high-affinity copper transporter COPT1-overexpressing (C1(OE) ) seedlings, and T-DNA COPT1 insertion mutant (copt1). Low Cu concentrations (10 µm) stimulated a dose-dependent Gd(3+) and verapamil sensitive net Ca(2+) influx in the root apex but not in mature zone. C1(OE) also showed a fivefold higher Cu-induced K(+) efflux at the root tip level compared with Col-0, and a reduction in basal peroxide accumulation at the root tip after copper exposure. Copper caused membrane disruptions of the root apex in C1(OE) seedlings but not in copt1 plants; this damage was prevented by pretreatment with Gd(3+) . Our results suggest that copper transport into cytosol in root apex results in hydroxyl radical generation at the cytosolic side, with a consequent regulation of plasma membrane OH(•) -sensitive Ca(2+) and K(+) transport systems. © 2012 Blackwell Publishing Ltd.

  19. Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells[C][W

    PubMed Central

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I.

    2010-01-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response. PMID:20562236

  20. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  1. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    PubMed

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.

  2. Integrated Metabolomics and Transcriptomics Reveal Enhanced Specialized Metabolism in Medicago truncatula Root Border Cells1[OPEN

    PubMed Central

    Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.

    2015-01-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316

  3. The Effect of Low Oxygen Stress on Phytophthora cinnamomi Infection and Disease of Cork Oak Roots

    Treesearch

    Karel A. Jacobs; James D. MacDonald; Alison M. Berry; Laurence R. Costello

    1997-01-01

    The incidence and severity of Phytophthora cinnamomi Rands root disease was quantified in cork oak (Quercus suber L.) roots subjected to low oxygen (hypoxia) stress. Seedling root tips were inoculated with mycelial plugs of the fungus and incubated in ≤1, 3-4, or 21 percent oxygen for 5 days. Ninety-four percent of roots...

  4. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  5. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection

    PubMed Central

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-01-01

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an “RRP domain” specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling. PMID:18621693

  6. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection.

    PubMed

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-07-15

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.

  7. [Influence of Four Kinds of PPCPs on Micronucleus Rate of the Root-Tip Cells of Vicia-faba and Garlic].

    PubMed

    Wang, Lan-jun; Wang, Jin-hua; Zhu, Lu-sheng; Wang, Jun; Zhao, Xiang

    2016-04-15

    In order to determine the degree of biological genetic injury induced by PPCPs, the genotoxic effects of the doxycycline (DOX), ciprofloxacin (CIP), triclocarban (TCC) and carbamazepine (CBZ) in the concentration range of 12.5-100 mg · L⁻¹ were studied using micronucleus rate and micronucleus index of Vicia-fabe and garlic. The results showed that: (1) When the Vicia-faba root- tip cells were exposed to DOX, CIP, TCC and CBZ, micronucleus rates were higher than 1.67 ‰ (CK₁), it was significantly different from that of the control group (P < 0.05), and the micronucleus index was even greater than 3.5; With the increasing concentrations of the PPCPs, the micronucleus rates first increased and then decreased. (2) When the garlic root tip cells were exposed to DOX, CIP, TCC and CBZ respectively, the micronucleus rates were less than those of the Vicia-faba, while in most treatments significantly higher than that of the control group (0.67‰). The micronucleus index was higher than 3.5 in the groups exposed to CIP with concentrations of 25, 50, 100 mg · L⁻¹ and TCC and CBZ with concentrations of 25 mg · L⁻¹; With the increase of exposure concentrations, the micronucleus rate showed a trend of first increasing and then decreasing as well. (3) Under the same experimental conditions, the cells micronucleus rates of the garlic cells caused by the four tested compounds were significantly lower than those of Vicia-faba. (4) The micronucleus index of the root tip cells of Vicia-faba and garlic treated with the four kinds of compounds followed the order of CIP > CBZ > TCC > DOX. These results demonstrated that the four compounds caused biological genetic injury to root-tip cells of Vicia-faba and garlic, and the genetic damage caused to garlic was significantly lower than that to Vicia-faba. The damages caused by the four kinds of different compounds were also different.

  8. Characterization of LeMir, a Root-Knot Nematode-Induced Gene in Tomato with an Encoded Product Secreted from the Root1

    PubMed Central

    Brenner, Eric D.; Lambert, Kris N.; Kaloshian, Isgouhi; Williamson, Valerie M.

    1998-01-01

    A tomato gene that is induced early after infection of tomato (Lycopersicon esculentum Mill.) with root-knot nematodes (Meloidogyne javanica) encodes a protein with 54% amino acid identity to miraculin, a flavorless protein that causes sour substances to be perceived as sweet. This gene was therefore named LeMir (L. esculentum miraculin). Sequence similarity places the encoded protein in the soybean trypsin-inhibitor family (Kunitz). LeMir mRNA is found in root, hypocotyl, and flower tissues, with the highest expression in the root. Rapid induction of expression upon nematode infection is localized to root tips. In situ hybridization shows that LeMir is expressed constitutively in the root-cap and root-tip epidermis. The LeMir protein product (LeMir) was produced in the yeast Pichia pastoris for generation of antibodies. Western-blot analysis showed that LeMir expression is up-regulated by nematode infection and by wounding. LeMir is also expressed in tomato callus tissue. Immunoprint analysis revealed that LeMir is expressed throughout the seedling root, but that levels are highest at the root/shoot junction. Analysis of seedling root exudates revealed that LeMir is secreted from the root into the surrounding environment, suggesting that it may interact with soil-borne microorganisms. PMID:9733543

  9. Tip Vortices of Isolated Wings and Helicopter Rotor Blades.

    DTIC Science & Technology

    1987-12-01

    root to tip, as expected due to the induced downwash of the tip vor- tex and wake vortex sheet. Although the three different tip-caps produce very...the inherent limitation of not being able to model the vortex wake with these equations, although the Euler formulation has in it the necessary...physics to model vorticity transport correctly. These equations basically lack the physical mecha- nism needed to generate the vortex wake . However, in

  10. Light Sheet Fluorescence Microscopy Quantifies Calcium Oscillations in Root Hairs of Arabidopsis thaliana.

    PubMed

    Candeo, Alessia; Doccula, Fabrizio G; Valentini, Gianluca; Bassi, Andrea; Costa, Alex

    2017-07-01

    Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas.

  12. The decreasing of corn root biomembrane penetration for acetochlor with vermicompost amendment

    NASA Astrophysics Data System (ADS)

    Sytnyk, Svitlana; Wiche, Oliver

    2016-04-01

    One of the topical environmental security issues is management and control of anthropogenic (artificially synthesized) chemical agents usage and utilization. Protection systems development against toxic effects of herbicides should be based on studies of biological indication mechanisms for identification of stressors effect in organisms. Lipid degradation is non-specific reaction to exogenous chemical agents effects. Therefore it is important to study responses of lipid components depending on the stressor type. We studied physiological and biochemical characteristics of lipid metabolism under action of herbicides of chloracetamide group. Corn at different stages of ontogenesis was used as testing object during model laboratory and microfield experiments. Cattle manure treated with earth worms Essenia Foetida was used as compost fertilizer to add to chain: chernozem (black soil) -corn system. It was found several acetochlor actions as following: -decreasing of sterols, phospholipids, phosphatidylcholines and phosphatidylethanolamines content; -increasing pool of available fatty acids and phosphatidic acids associated with intensification of hydrolysis processes; -lypase activity stimulation under effect of stressor in low concentrations; -lypase activity inhibition under effect of high stressor level; -decreasing of polyenoic free fatty acids indicating biomembrane degradation; -accumulation of phospholipids degradation products (phosphatidic acids); -decreasing of high-molecular compounds (phosphatidylcholin and phosphatidylinositol) concentrations; -change in the index of unsaturated and saturated free fatty acids ratio in biomembranes structure; It was established that incorporation of vermicompost in dose 0.4 kg/m2 in black soil lead to corn roots biomembrane restoration. It was fixed the decreasing roots biomembrane penetration for acetochlor in trial with vermicompost. Second compost substances antidote effect is the soil microorganism's activation (ammonification and associative nitrogen fixation improvement).

  13. Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism

    USGS Publications Warehouse

    Chabbi, A.; McKee, K.L.; Mendelssohn, I.A.

    2000-01-01

    The objective of this work was to determine whether radial oxygen loss (ROL) from roots of Typha domingensis and Cladium jamaicense creates an internal oxygen deficiency or, conversely, indicates adequate internal aeration and leakage of excess oxygen to the rhizosphere. Methylene blue in agar was used to quantify oxygen leakage. Typha's roots had a higher porosity than Cladium's and responded to flooding treatment by increasing cortical air space, particularly near the root tips. A greater oxygen release, which occurred along the subapical root axis, and an increase in rhizosphere redox potential (Eh) over time were associated with the well-developed aerenchyma system in Typha. Typha roots, regardless of oxygen release pattern, showed low or undetectable alcohol dehydrogenage (ADH) activity or ethanol concentrations, indicating that ROL did not cause internal deficiencies. Cladium roots also releases oxygen, but this loss primarily occurred at the root tips and was accompanied by increased root ADH activity and ethanol concentrations. These results support the hypothesis that oxygen release by Cladium is accompanied by internal deficiencies of oxygen sufficient to stimulate alcoholic fermentation and helps explain Cladium's lesser flood tolerance in comparison with Typha.

  14. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy.

    PubMed

    Achouak, Wafa; Conrod, Sandrine; Cohen, Valérie; Heulin, Thierry

    2004-08-01

    Pseudomonas brassicacearum was isolated as a major root-colonizing population from Arabidopsis thaliana. The strain NFM421 of P. brassicacearum undergoes phenotypic variation during A. thaliana and Brassica napus root colonization in vitro as well as in soil, resulting in different colony appearance on agar surfaces. Bacteria forming translucent colonies (phase II cells) essentially were localized at the surface of young roots and root tips, whereas wild-type cells (phase I cells) were localized at the basal part of roots. The ability of phase II cells to spread and colonize new sites on root surface correlates with over-production of flagellin as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of surface proteins and microsequencing. Moreover, phase II cells showed a higher ability to swim and to swarm on semisolid agar medium. Phase I and phase II cells of P. brassicacearum NFM421 were tagged genetically with green fluorescent protein and red fluorescent protein. Confocal scanning laser microscopy was used to localize phase II cells on secondary roots and root tips of A. thaliana, whereas phase I cells essentially were localized at the basal part of roots. These experiments were conducted in vitro and in soil. Phenotypic variation on plant roots is likely to be a colonization strategy that may explain the high colonization power of P. brassicacearum.

  15. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth.

    PubMed

    Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O

    2011-05-01

    The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.

  16. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1992-01-01

    We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.

  17. Lanthanum resulted in unbalance of nutrient elements and disturbance of cell proliferation cycles in V. faba L. seedlings.

    PubMed

    Wang, Chengrun; Lu, Xianwen; Tian, Yuan; Cheng, Tao; Hu, Lingling; Chen, Fenfen; Jiang, Chuanjun; Wang, Xiaorong

    2011-11-01

    Effects of lanthanum (La) on mineral nutrients, cell cycles, and root lengthening have been little reported. The present work investigated these physiological responses in roots of Vicia faba seedlings cultivated in La3+-contained solutions for 15 days. The results showed that the increasing contents of La in the roots and leaves contributed to disbalances of contents of Ca, Fe, Cu, Zn, Mg, Mn, P, and K elements, and potential redistributions of some elements in the roots and leaves. These disbalances might be involved in the subsequent alteration of cell cycle phases in the root tips. Low-dose promotion and high-dose inhibition (Hormetic effects) were demonstrated as the dose responses of G0/G1-, S- or G2/M-phase ratios. The cell cycles were most probably arrested at G1/S interphase by La3+ in the root tips. The fact that the root lengths were not consistent with the changes of cell cycle phases suggested that the cell proliferation activities might be masked by other factors (e.g., cell expansion) under long-time exposure to La3+.

  18. Development of extruded Ready-To-Eat (RTE) snacks using corn, black gram, roots and tuber flour blends.

    PubMed

    Reddy, M Kavya; Kuna, Aparna; Devi, N Lakshmi; Krishnaiah, N; Kaur, Charanjit; Nagamalleswari, Y

    2014-09-01

    Extruded RTE snacks were prepared from flour blends made with corn flour, Bengal gram flour, roots and tuber flours in a proportion of 60-80: 20: 20 respectively and moisture was adjusted to 17-20 %. The roots and tubers flours were developed from potato (Solanum tuberosum), yam (Dioscorea spp.), sweet potato (Ipomoea batatas L.), taro (Colocassia esculenta) and beet root (Beta vulgaris). Different formulations were extruded at 80 ± 5 °C (heater I) and 95-105 °C (heater II) temperature, 300-350 rpm screw speed, 100 ± 10 °C die temperature and 15 ± 2 kg/h feed rate. The exit diameter of the circular die was 3 mm. Sensory acceptability, physical parameters and nutrient analysis along with storage stability of the products was conducted. The fiber and energy content of the RTE extruded snack improved in experimental samples prepared using root and tuber flours. A serving of 100 g of the snack can provide more than 400 Kcal and 10 g of protein. The overall acceptability of RTE extruded products made with potato and taro were highly acceptable compared to yam and sweet potato. The study demonstrates utilization of roots and tuber flours as potential and diverse ingredients to enhance the appearance and nutritional properties in RTE extruded snack.

  19. Growth regulation in tip-growing cells that develop on the epidermis.

    PubMed

    Honkanen, Suvi; Dolan, Liam

    2016-12-01

    Plants develop tip-growing extensions-root hairs and rhizoids-that initiate as swellings on the outer surface of individual epidermal cells. A conserved genetic mechanism controls the earliest stages in the initiation of these swellings. The same mechanism controls the formation of multicellular structures that develop from swellings on epidermal cells in early diverging land plants. Details of the molecular events that regulate the positioning of the swellings involve sterols and phosphatidylinositol phosphates. The final length of root hairs is determined by the intensity of a pulse of transcription factor synthesis. Genes encoding similar transcription factors control root hair development in cereals and are potential targets for crop improvement. Copyright © 2016. Published by Elsevier Ltd.

  20. Effects of ginsenosides Rg1 and Rb1 of Panax ginseng on mitosis in root tip cells of Allium cepa.

    PubMed

    Ng, W Y; Chao, C Y

    1981-01-01

    The effects of ginsenosides Rg1 and Rb1 of Panax ginseng on mitosis in the onion root tip cells as well as on the rate of DNA synthesis in onion seedlings were studied. Results obtained from the concentration and time course study in bulb and seeding root tip cells indicate that Rg1 promotes and Rb1 inhibits mitosis, both being dose-dependent. The promoting effect of Rg1 on the rate of DNA synthesis was observed at the peak hour which occurs at the same time as that of the control. Rb1 was found to shift the peak hour of DNA synthesis to a later period of the experiment. These results are in agreement with the results obtained from the study of the cell cycle by pulse labeling and autoradiography, which show that Rg1 shortens the mitotic cell cycle and S period while Rb1 lengthens them. They in turn increase and decrease the mitotic indices respectively.

  1. Three major nucleolar proteins migrate from nucleolus to nucleoplasm and cytoplasm in root tip cells of Vicia faba L. exposed to aluminum.

    PubMed

    Qin, Rong; Zhang, Huaning; Li, Shaoshan; Jiang, Wusheng; Liu, Donghua

    2014-09-01

    Results from our previous investigation indicated that Al could affect the nucleolus and induce extrusion of silver-staining nucleolar particles containing argyrophilic proteins from the nucleolus into the cytoplasm in root tip cells of Vicia faba L. So far, the nucleolar proteins involved have not been identified. It is well known that nucleophosmin (B23), nucleolin (C23), and fibrillarin are three major and multifunctional nucleolar proteins. Therefore, effects of Al on B23, C23, and fibrillarin in root tip cells of V. faba exposed to 100 μM Al for 48 h were observed and analyzed using indirect immunofluorescence microscopy and Western blotting. The results from this work demonstrated that after 100 μM of Al treatment for 48 h, B23 and C23 migrated from the nucleolus to the cytoplasm and fibrillarin from the nucleolus to the nucleoplasm. In some cells, fibrillarin was present only in the cytoplasm. Western blotting data revealed higher expression of the three major nucleolar proteins in Al-treated roots compared with the control and that the B23 content increased markedly. These findings confirmed our previous observations.

  2. Analysis of growth patterns during gravitropic curvature in roots of Zea mays by use of a computer-based video digitizer

    NASA Technical Reports Server (NTRS)

    Nelson, A. J.; Evans, M. L.

    1986-01-01

    A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50 degrees) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.

  3. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle/tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  4. Effect of ultrasonic tip designs on intraradicular post removal.

    PubMed

    Aguiar, Anny Carine Barros; de Meireles, Daniely Amorim; Marques, André Augusto Franco; Sponchiado Júnior, Emílio Carlos; Garrido, Angela Delfina Bitencourt; Garcia, Lucas da Fonseca Roberti

    2014-11-01

    To evaluate the effect of different ultrasonic tip designs on intraradicular post removal. The crowns of forty human canine teeth were removed, and after biomechanical preparation and filling, the roots were embedded in acrylic resin blocks. The post spaces were made, and root canal molding was performed with self-cured acrylic resin. After casting (Cu-Al), the posts were cemented with zinc phosphate cement. The specimens were randomly separated into 4 groups (n = 10), as follows: G1 - no ultrasonic vibration (control); G2 - ultrasonic vibration using an elongated cylindrical-shaped and active rounded tip; G3 - ultrasonic vibration with a flattened convex and linear active tip; G4 - ultrasonic vibration with active semicircular tapered tip. Ultrasonic vibration was applied for 15 seconds on each post surface and tensile test was performed in a Universal Testing Machine (Instron 4444 - 1 mm/min). G4 presented the highest mean values, however, with no statistically significant difference in comparison to G3 (P > 0.05). G2 presented the lowest mean values with statistically significant difference to G3 and G4 (P < 0.05). Ultrasonic vibration with elongated cylindrical-shaped and active rounded tip was most effective in reducing force required for intraradicular post removal.

  5. Simulation of corn yields and parameters uncertainties analysis in Hebei and Sichuang, China

    NASA Astrophysics Data System (ADS)

    Fu, A.; Xue, Y.; Hartman, M. D.; Chandran, A.; Qiu, B.; Liu, Y.

    2016-12-01

    Corn is one of most important agricultural production in China. Research on the impacts of climate change and human activities on corn yields is important in understanding and mitigating the negative effects of environmental factors on corn yields and maintaining the stable corn production. Using climatic data, including daily temperature, precipitation, and solar radiation from 1948 to 2010, soil properties, observed corn yields, and farmland management information, corn yields in Sichuang and Hebei Provinces of China in the past 63 years were simulated using the Daycent model, and the results was evaluated using Root mean square errors, bias, simulation efficiency, and standard deviation. The primary climatic factors influencing corn yields were examined, the uncertainties of climatic factors was analyzed, and the uncertainties of human activity parameters were also studied by changing fertilization levels and cultivated ways. The results showed that: (1) Daycent model is capable to simulate corn yields in Sichuang and Hebei provinces of China. Observed and simulated corn yields have the similar increasing trend with time. (2) The minimum daily temperature is the primary factor influencing corn yields in Sichuang. In Hebei Province, daily temperature, precipitation and wind speed significantly affect corn yields.(3) When the global warming trend of original data was removed, simulated corn yields were lower than before, decreased by about 687 kg/hm2 from 1992 to 2010; When the fertilization levels, cultivated ways were increased and decreased by 50% and 75%, respectively in the Schedule file in Daycent model, the simulated corn yields increased by 1206 kg/hm2 and 776 kg/hm2, respectively, with the enhancement of fertilization level and the improvement of cultivated way. This study provides a scientific base for selecting a suitable fertilization level and cultivated way in corn fields in China.

  6. Early root growth and architecture of fast- and slow-growing Norway spruce (Picea abies) families differ-potential for functional adaptation.

    PubMed

    Hamberg, Leena; Velmala, Sannakajsa M; Sievänen, Risto; Kalliokoski, Tuomo; Pennanen, Taina

    2018-06-01

    The relationship between the growth rate of aboveground parts of trees and fine root development is largely unknown. We investigated the early root development of fast- and slow-growing Norway spruce (Picea abies (L.) H. Karst.) families at a developmental stage when the difference in size is not yet observed. Seedling root architecture data, describing root branching, were collected with the WinRHIZO™ image analysis system, and mixed models were used to determine possible differences between the two growth phenotypes. A new approach was used to investigate the spatial extent of root properties along the whole sample root from the base of 1-year-old seedlings to the most distal part of a root. The root architecture of seedlings representing fast-growing phenotypes showed ~30% higher numbers of root branches and tips, which resulted in larger root extensions and potentially a better ability to acquire nutrients. Seedlings of fast-growing phenotypes oriented and allocated root tips and biomass further away from the base of the seedling than those growing slowly, a possible advantage in nutrient-limited and heterogeneous boreal forest soils. We conclude that a higher long-term growth rate of the aboveground parts in Norway spruce may relate to greater allocation of resources to explorative roots that confers a competitive edge during early growth phases in forest ecosystems.

  7. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.

    PubMed

    Yin, Xiaojian; Sakata, Katsumi; Komatsu, Setsuko

    2014-12-05

    Flooding has severe negative effects on soybean growth. To explore the flooding-responsive mechanisms in early-stage soybean, a phosphoproteomic approach was used. Two-day-old soybean plants were treated without or with flooding for 3, 6, 12, and 24 h, and root tip proteins were then extracted and analyzed at each time point. After 3 h of flooding exposure, the fresh weight of soybeans increased, whereas the ATP content of soybean root tips decreased. Using a gel-free proteomic technique, a total of 114 phosphoproteins were identified in the root tip samples, and 34 of the phosphoproteins were significantly changed with respect to phosphorylation status after 3 h of flooding stress. Among these phosphoproteins, eukaryotic translation initiation factors were dephosphorylated, whereas several protein synthesis-related proteins were phosphorylated. The mRNA expression levels of sucrose phosphate synthase 1F and eukaryotic translation initiation factor 4 G were down-regulated, whereas UDP-glucose 6-dehydrogenase mRNA expression was up-regulated during growth but down-regulated under flooding stress. Furthermore, bioinformatic protein interaction analysis of flooding-responsive proteins based on temporal phosphorylation patterns indicated that eukaryotic translation initiation factor 4 G was located in the center of the network during flooding. Soybean eukaryotic translation initiation factor 4 G has homology to programmed cell death 4 protein and is implicated in ethylene signaling. The weight of soybeans was increased with treatment by an ethylene-releasing agent under flooding condition, but it was decreased when plants were exposed to an ethylene receptor antagonist. These results suggest that the ethylene signaling pathway plays an important role, via the protein phosphorylation, in mechanisms of plant tolerance to the initial stages of flooding stress in soybean root tips.

  8. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs.

    PubMed

    Rounds, Caleb M; Lubeck, Eric; Hepler, Peter K; Winship, Lawrence J

    2011-09-01

    We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.

  9. The use of optical fiber in endodontic photodynamic therapy. Is it really relevant?

    PubMed

    Garcez, Aguinaldo S; Fregnani, Eduardo R; Rodriguez, Helena M; Nunez, Silvia C; Sabino, Caetano P; Suzuki, Hideo; Ribeiro, Martha S

    2013-01-01

    This study analyzed the necessity of use of an optical fiber/diffusor when performing antimicrobial photodynamic therapy (PDT) associated with endodontic therapy. Fifty freshly extracted human single-rooted teeth were used. Conventional endodontic treatment was performed using a sequence of ProTaper (Dentsply Maillefer Instruments), the teeth were sterilized, and the canals were contaminated with Enterococcus faecalis 3 days' biofilm. The samples were divided into five groups: group 1--ten roots irradiated with a laser tip (area of 0.04 cm(2)), group 2--ten roots irradiated with a smaller laser tip (area of 0.028 cm(2)), and group 3--ten teeth with the crown, irradiate with the laser tip with 0.04 cm(2) of area. The forth group (G4) followed the same methodology as group 3, but the irradiation was performed with smaller tip (area of 0.028 cm(2)) and G5 ten teeth with crown were irradiated using a 200-mm-diameter fiber/diffusor coupled to diode laser. Microbiological samples were taken after accessing the canal, after endodontic therapy, and after PDT. Groups 1 and 2 showed a reduction of two logs (99%), groups 3 and 4 of one log (85% and 97%, respectively), and group 5 of four logs (99.99%). Results suggest that the use of PDT added to endodontic treatment in roots canals infected with E. faecalis with the optical fiber/diffusor is better than when the laser light is used directed at the access of cavity.

  10. Dark conditions enhance aluminum tolerance in several rice cultivars via multiple modulations of membrane sterols.

    PubMed

    Wagatsuma, Tadao; Maejima, Eriko; Watanabe, Toshihiro; Toyomasu, Tomonobu; Kuroda, Masaharu; Muranaka, Toshiya; Ohyama, Kiyoshi; Ishikawa, Akifumi; Usui, Masami; Hossain Khan, Shahadat; Maruyama, Hayato; Tawaraya, Keitaro; Kobayashi, Yuriko; Koyama, Hiroyuki

    2018-01-23

    Aluminum-sensitive rice (Oryza sativa L.) cultivars showed increased Al tolerance under dark conditions, because less Al accumulated in the root tips (1 cm) under dark than under light conditions. Under dark conditions, the root tip concentration of total sterols, which generally reduce plasma membrane permeabilization, was higher in the most Al-sensitive japonica cultivar, Koshihikari (Ko), than in the most Al-tolerant cultivar, Rikuu-132 (R132), but the phospholipid content did not differ between the two. The Al treatment increased the proportion of stigmasterol (which has no ability to reduce membrane permeabilization) out of total sterols similarly in both cultivars under light conditions, but it decreased more in Ko under dark conditions. The carotenoid content in the root tip of Al-treated Ko was significantly lower under dark than under light conditions, indicating that isopentenyl diphosphate transport from the cytosol to plastids was decreased under dark conditions. HMG2 and HMG3 (encoding the key sterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase) transcript levels in the root tips were enhanced under dark conditions. We suggest that the following mechanisms contribute to the increase in Al tolerance under dark conditions: inhibition of stigmasterol formation to retain membrane integrity; greater partitioning of isopentenyl diphosphate for sterol biosynthesis; and enhanced expression of HMGs to increase sterol biosynthesis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    PubMed

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  12. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, N.; Singh, R.S.; Singh, J.S.

    The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density,more » water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.« less

  13. Predicting the digestible energy of corn determined with growing swine from nutrient composition and cross-species measurements.

    PubMed

    Smith, B; Hassen, A; Hinds, M; Rice, D; Jones, D; Sauber, T; Iiams, C; Sevenich, D; Allen, R; Owens, F; McNaughton, J; Parsons, C

    2015-03-01

    The DE values of corn grain for pigs will differ among corn sources. More accurate prediction of DE may improve diet formulation and reduce diet cost. Corn grain sources ( = 83) were assayed with growing swine (20 kg) in DE experiments with total collection of feces, with 3-wk-old broiler chick in nitrogen-corrected apparent ME (AME) trials and with cecectomized adult roosters in nitrogen-corrected true ME (TME) studies. Additional AME data for the corn grain source set was generated based on an existing near-infrared transmittance prediction model (near-infrared transmittance-predicted AME [NIT-AME]). Corn source nutrient composition was determined by wet chemistry methods. These data were then used to 1) test the accuracy of predicting swine DE of individual corn sources based on available literature equations and nutrient composition and 2) develop models for predicting DE of sources from nutrient composition and the cross-species information gathered above (AME, NIT-AME, and TME). The overall measured DE, AME, NIT-AME, and TME values were 4,105 ± 11, 4,006 ± 10, 4,004 ± 10, and 4,086 ± 12 kcal/kg DM, respectively. Prediction models were developed using 80% of the corn grain sources; the remaining 20% was reserved for validation of the developed prediction equation. Literature equations based on nutrient composition proved imprecise for predicting corn DE; the root mean square error of prediction ranged from 105 to 331 kcal/kg, an equivalent of 2.6 to 8.8% error. Yet among the corn composition traits, 4-variable models developed in the current study provided adequate prediction of DE (model ranging from 0.76 to 0.79 and root mean square error [RMSE] of 50 kcal/kg). When prediction equations were tested using the validation set, these models had a 1 to 1.2% error of prediction. Simple linear equations from AME, NIT-AME, or TME provided an accurate prediction of DE for individual sources ( ranged from 0.65 to 0.73 and RMSE ranged from 50 to 61 kcal/kg). Percentage error of prediction based on the validation data set was greater (1.4%) for the TME model than for the NIT-AME or AME models (1 and 1.2%, respectively), indicating that swine DE values could be accurately predicted by using AME or NIT-AME. In conclusion, regression equations developed from broiler measurements or from analyzed nutrient composition proved adequate to reliably predict the DE of commercially available corn hybrids for growing pigs.

  14. Silicon enhances suberization and lignification in roots of rice (Oryza sativa).

    PubMed

    Fleck, Alexander T; Nye, Thandar; Repenning, Cornelia; Stahl, Frank; Zahn, Marc; Schenk, Manfred K

    2011-03-01

    The beneficial element silicon (Si) may affect radial oxygen loss (ROL) of rice roots depending on suberization of the exodermis and lignification of sclerenchyma. Thus, the effect of Si nutrition on the oxidation power of rice roots, suberization and lignification was examined. In addition, Si-induced alterations of the transcript levels of 265 genes related to suberin and lignin synthesis were studied by custom-made microarray and quantitative Real Time-PCR. Without Si supply, the oxidation zone of 12 cm long adventitious roots extended along the entire root length but with Si supply the oxidation zone was restricted to 5 cm behind the root tip. This pattern coincided with enhanced suberization of the exodermis and lignification of sclerenchyma by Si supply. Suberization of the exodermis started, with and without Si supply, at 4-5 cm and 8-9 cm distance from the root tip (drt), respectively. Si significantly increased transcript abundance of 12 genes, while two genes had a reduced transcript level. A gene coding for a leucine-rich repeat protein exhibited a 25-fold higher transcript level with Si nutrition. Physiological, histochemical, and molecular-biological data showing that Si has an active impact on rice root anatomy and gene transcription is presented here.

  15. Expanding torque possibilities: A skeletally anchored torqued cantilever for uprighting "kissing molars".

    PubMed

    Barros, Sérgio Estelita; Janson, Guilherme; Chiqueto, Kelly; Ferreira, Eduardo; Rösing, Cassiano

    2018-04-01

    Several uprighting mechanics and devices have been used for repositioning tipped molars. "Kissing molars" (KMs) are an uncommon tooth impaction involving 2 severely tipped mandibular molars with their occlusal surfaces positioned crown to crown, with the roots pointing in opposite directions. Orthodontic uprighting of KMs has not been a usual treatment protocol, and it can be a challenging task due to the severe tipping and double impaction, requiring efficient and well-controlled uprighting mechanics. An innovative skeletally anchored cantilever, which uses the torque principle for uprighting tipped molars, is suggested. This torqued cantilever is easy to manufacture, install, and activate; it is a well-known torque that is effective for producing root movement. A successful treatment of symptomatic KMs, involving the first and second molars, was achieved with this cantilever. Thus, clinicians should consider the suggested uprighting mechanics and orthodontic device as a more conservative alternative to extraction of KMs, depending on the patient's age, involved teeth in KMs, tipping severity, and impaction positions. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. Diode laser for endodontic treatment: investigations of light distribution and disinfection efficiency

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Graser, Rainer; Udart, Martin; Kienle, Alwin; Hibst, Raimund

    2011-03-01

    Diode lasers are used in dentistry mainly for oral surgery and disinfection of root canals in endodontic treatment. The purpose of this study was to investigate and to improve the laser induced bacteria inactivation in endodontic treatment. An essential prerequisite of the optimization of the irradiation process and device is the knowledge about the determinative factors of bacteria killing: light intensity? light dosis? temperature? In order to find out whether high power NIR laser bacterial killing is caused by a photochemical or a photothermal process we heated bacteria suspensions of E. coli K12 by a water bath and by a diode laser (940 nm) with the same temporal temperature course. Furthermore, bacteria suspensions were irradiated while the temperature was fixed by ice water. Killing of bacteria was measured via fluorescence labeling. In order to optimize the irradiation of the root canal, we designed special fiber tips with radial light emission characteristic by optical ray tracing simulations. Also, we calculated the resulting light distribution in dentin by voxelbased Monte Carlo simulations. Furthermore, we irradiated root canals of extracted human teeth using different fiber tip geometries and measured the resulting light and heat distribution by CCD-camera and thermography. Comparison of killing rates between laser and water based heating shows no significant differences, and irradiation of ice cooled suspensions has no substantial killing effect. Thus, the most important parameter for bacterial killing is the maximum temperature. Irradiation of root canals using fiber tips with radial light emission results in a more defined irradiated area with minor irradiation of the apex and higher intensity and therefore higher temperature increase on root canal surface. In conclusion, our experiments show that at least for E. coli bacteria inactivation by NIR laser irradiation is solely based on a thermal process and that heat distribution in root canal can be significantly improved by specially designed fiber tips.

  17. Molecular genetic investigations of root gravitropism and other complex growth behaviors using Arabidopsis and Brachypodium as models

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Barker, Richard; Miller, Nathan; Su, Shih-Hao; Su, Shih-Heng

    2016-07-01

    When growing on hard surfaces, Arabidopsis roots tend to grown downward, as dictated by positive gravitropism. At the same time, surface-derived stimuli promote a wavy pattern of growth that is superimposed to a rightward root-skewing trend. This behavior is believed to facilitate obstacle avoidance in soil. To better understand these complex behaviors, we have isolated and characterized mutations that affect them. Some of these mutations were shown to affect gravitropism whereas others did not. Within the latter group, most of the mutations affected mechanisms that control anisotropic cell expansion. We have also characterized mutations that affect early steps of gravity signal transduction within the gravity-sensing columella cells of the root cap. Upon reorientation within the gravity field, starch-filled plastids sediment to the bottom-side of these cells, triggering a pathway that leads to re-localization of auxin efflux facilitators to the bottom membrane. Lateral auxin transport toward the bottom flank ensues, leading to gravitropic curvature. Several of the mutations we characterized affect genes that encode proteins associated with the vesicle trafficking pathway needed for this cell polarization. Other mutations were shown to affect components of the plastid outer envelope protein import complex (TOC). Their functional analysis suggests an active role for plastids in gravity signal transduction, beyond a simple contribution as sedimenting gravity susceptors. Because most cultivated crops are monocots, not dicots like Arabidopsis, we have also initiated studies of root-growth behavior with Brachypodium distachyon. When responding to a gravistimulus, the roots of Brachypodium seedlings develop a strong downward curvature that proceeds until the tip reaches a ~50-degree curvature. At that time, an oscillatory tip movement occurs while the root continues its downward reorientation. These root-tip oscillations also occur if roots are allowed to simply grow downward on vertical surfaces, or fully embedded in agar-containing medium. Brachypodium distachyon accessions differ in their gravisensitivity, kinetics of gravitropism and occurrence, periodicity and amplitude of tip oscillations. Mathematical models are being built to fit the data, and used to estimate growth, gravitropism and oscillation parameters for incorporation into Genome-Wide Association Study (GWAS) algorithms aimed at identifying contributing loci. This work was supported by grants from the National Aeronautics and Space Administration (NASA) and from the National Science Foundation (NSF).

  18. The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants.

    PubMed

    Ma, T H; Xu, Z; Xu, C; McConnell, H; Rabago, E V; Arreola, G A; Zhang, H

    1995-04-01

    The meristematic mitotic cells of plant roots are appropriate and efficient cytogenetic materials for the detection of clastogenicity of environmental pollutants, especially for in situ monitoring of water contaminants. Among several cytological endpoints in these fast dividing cells, such as chromosome/chromatid aberrations, sister-chromatid exchanges and micronuclei, the most effective and simplest indicator of cytological damage is micronucleus formation. Although the Allium cepa and Vicia faba root meristem micronucleus assays (Allium/Vicia root MCN) have been used in clastogenicity studies about 12 times by various authors in the last 25 years, there is no report on the comparison of the efficiency of these two plant systems and in different cell populations (meristem and F1) of the root tip as well as under adequate recovery duration. In order to maximize the efficiency of these bioassays, the current study was designed to compare the Allium and the Vicia root MCN assays on the basis of chromosome length, peak sensitivity of the mitotic cells, and the regions of the root tip where the MCN are formed. The total length of the 2n complement of Allium chromosomes is 14.4 microns and the total length of the 2n complement of Vicia is 9.32 microns. The peak sensitivity determined by serial fixation at 12-h intervals after 100 R of X-irradiation is 44 h. The slope of the X-ray dose-response curve of Allium roots derived from the meristematic regions was lower than that derived from cells in the F1 region. Higher efficiency was also demonstrated when the MCN frequencies were scored from the F1 cells in both Allium and Vicia treated with formaldehyde (FA), mitomycin C (MMC), and maleic hydrazide (MH). The results indicated that scoring of MCN frequencies from the F1 cell region of the root tip was more efficient than scoring from the meristematic region. The X-ray linear regression dose-response curves were established in both Allium and Vicia cell systems and the coefficients of correlations, slope values were used to verify the reliability and efficiency of these two plant cell systems. Based on the dose-response slope value of 0.894 for Allium and 0.643 for Vicia, the Allium root MCN was a more efficient test system. The greater sensitivity of the Allium roots is probably due to the greater total length of the diploid complement and the higher number of metacentric chromosomes.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage.

    PubMed

    Li, Yang; Shen, Fei; Guo, Haiyan; Wang, Zhanghong; Yang, Gang; Wang, Lilin; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2015-06-01

    The potential phytotoxicity of water extractable toxicants in a typical corn stover biochar, the product of fast pyrolysis, was investigated using an aqueous biochar extract on a soil-less bioassay with tomato plants. The biochar dosage of 0.0-16.0 g beaker(-1) resulted in an inverted U-shaped dose-response relationship between biochar doasage and seed germination/seedling growth. This indicated that tomato growth was slightly stimulated by low dosages of biochar and inhibited with higher dosages of biochar. Additionally, antioxidant enzyme activities in the roots and leaves were enhanced at lower dosages, but rapidly decreased with higher dosages of biochar. With the increased dosages of biochar, the malondialdehyde content in the roots and leaves increased, in addition with the observed morphology of necrotic root cells, suggesting that serious damage to tomato seedlings occurred. EC50 of root length inhibition occurred with biochar dosages of 9.2 g beaker(-1) (3.5th day) and 16.7 g beaker(-1) (11th day) (equivalent to 82.8 and 150.3 t ha(-1), respectively), which implied that toxicity to the early growth of tomato can potentially be alleviated as the plant grows.

  20. Turbine blade squealer tip rail with fence members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, David A

    2012-11-20

    A turbine blade includes an airfoil, a blade tip section, a squealer tip rail, and a plurality of chordally spaced fence members. The blade tip section includes a blade tip floor located at an end of the airfoil distal from the root. The blade tip floor includes a pressure side and a suction side joined together at chordally spaced apart leading and trailing edges of the airfoil. The squealer tip rail extends radially outwardly from the blade tip floor adjacent to the suction side and extends from a first location adjacent to the airfoil trailing edge to a second locationmore » adjacent to the airfoil leading edge. The fence members are located between the airfoil leading and trailing edges and extend radially outwardly from the blade tip floor and axially from the squealer tip rail toward the pressure side.« less

  1. Genotoxic effects and induction of phytochelatins in the presence of cadmium in Vicia faba roots.

    PubMed

    Béraud, Eric; Cotelle, Sylvie; Leroy, Pierre; Férard, Jean-François

    2007-10-04

    This study investigates different effects in roots of Vicia faba (broad bean) after exposure to cadmium. Genotoxic effects were assessed by use of the well-known Vicia root tip micronucleus assay. Cytotoxic effects were evaluated by determining the mitotic index in root tip cells. Finally, molecular induction mechanisms were evaluated by measuring phytochelatins with HPLC. After hydroponical exposure of V. faba roots to a range of cadmium concentrations and during different exposure times, the results of this approach showed large variations, according to the endpoint measured: after 48 h of exposure, genotoxic effects were found between 7.5 x 10(-8) and 5 x 10(-7)M CdCl(2), and cytotoxic effects were observed between 2.5 x 10(-7) and 5 x 10(-7)M CdCl(2). Statistically significant phytochelatin (PC) concentrations were measured at >or=10(-6)M CdCl(2) for PC(2), and at >or=10(-5)M CdCl(2) for PC3 and PC4.

  2. Hydraulic resistance of a plant root to water-uptake: A slender-body theory.

    PubMed

    Chen, Kang Ping

    2016-05-07

    A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Water Uptake along the Length of Grapevine Fine Roots: Developmental anatomy, tissue specific aquaporin expression, and pathways of water transport

    USDA-ARS?s Scientific Manuscript database

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...

  4. Sealing ability of three root-end filling materials prepared using an erbium: Yttrium aluminium garnet laser and endosonic tip evaluated by confocal laser scanning microscopy

    PubMed Central

    Nanjappa, A Salin; Ponnappa, KC; Nanjamma, KK; Ponappa, MC; Girish, Sabari; Nitin, Anita

    2015-01-01

    Aims: (1) To compare the sealing ability of mineral trioxide aggregate (MTA), Biodentine, and Chitra-calcium phosphate cement (CPC) when used as root-end filling, evaluated under confocal laser scanning microscope using Rhodamine B dye. (2) To evaluate effect of ultrasonic retroprep tip and an erbium:yttrium aluminium garnet (Er:YAG) laser on the integrity of three different root-end filling materials. Materials and Methods: The root canals of 80 extracted teeth were instrumented and obturated with gutta-percha. The apical 3 mm of each tooth was resected and 3 mm root-end preparation was made using ultrasonic tip (n = 30) and Er:YAG laser (n = 30). MTA, Biodentine, and Chitra-CPC were used to restore 10 teeth each. The samples were coated with varnish and after drying, they were immersed in Rhodamine B dye for 24 h. The teeth were then rinsed, sectioned longitudinally, and observed under confocal laser scanning microscope. Statistical Analysis Used: Data were analyzed using one-way analysis of variance (ANOVA) and a post-hoc Tukey's test at P < 0.05 (R software version 3.1.0). Results: Comparison of microleakage showed maximum peak value of 0.45 mm for Biodentine, 0.85 mm for MTA, and 1.05 mm for Chitra-CPC. The amount of dye penetration was found to be lesser in root ends prepared using Er:YAG laser when compared with ultrasonics, the difference was found to be statistically significant (P < 0.05). Conclusions: Root-end cavities prepared with Er:YAG laser and restored with Biodentine showed superior sealing ability compared to those prepared with ultrasonics. PMID:26180420

  5. A study on plant root apex morphology as a model for soft robots moving in soil

    PubMed Central

    Pugno, Nicola Maria; Mazzolai, Barbara

    2018-01-01

    Plants use many strategies to move efficiently in soil, such as growth from the tip, tropic movements, and morphological changes. In this paper, we propose a method to translate morphological features of Zea mays roots into a new design of soft robots that will be able to move in soil. The method relies on image processing and curve fitting techniques to extract the profile of Z. mays primary root. We implemented an analytic translation of the root profile in a 3D model (CAD) to fabricate root-like probes by means of 3D printing technology. Then, we carried out a comparative analysis among the artificial root-like probe and probes with different tip shapes (cylindrical, conical, elliptical, and parabolic) and diameters (11, 9, 7, 5, and 3 mm). The results showed that the energy consumption and the penetration force of the bioinspired probe are better with respect to the other shapes for all the diameters of the developed probes. For 100 mm of penetration depth and 7 mm of probe diameter, the energy consumption of the bioinspired probe is 89% lesser with respect to the cylindrical probe and 26% lesser with respect to the conical probe. The penetration performance of the considered tip shapes was evaluated also by means of numerical simulations, obtaining a good agreement with the experimental results. Additional investigations on plant root morphology, movement strategies, and material properties can allow the development of innovative bioinspired solutions exploitable in challenging environments. This research can bring to breakthrough scenarios in different fields, such as exploration tasks, environmental monitoring, geotechnical studies, and medical applications. PMID:29874267

  6. Calcium movement, graviresponsiveness and the structure of columella cells and columella tissues in roots of Allium cepa L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    Roots of Allium cepa L. cv. Yellow are differentially responsive to gravity. Long (e.g. 40 mm) roots are strongly graviresponsive, while short (c.g. 4 mm) roots are minimally responsive to gravity. Although columella cells of graviresponsive roots are larger than those of nongraviresponsive roots, they partition their volumes to cellular organelles similarly. The movement of amyloplasts and nuclei in columella cells of horizontally-oriented roots correlates positively with the onset of gravicurvature. Furthermore, there is no significant difference in the rates of organellar redistribution when graviresponsive and nongraviresponsive roots are oriented horizontally. The more pronounced graviresponsiveness of longer roots correlates positively with (1) their caps being 9-6 times more voluminous, (2) their columella tissues being 42 times more voluminous, (3) their caps having 15 times more columella cells, and (4) their columella tissues having relative volumes 4.4 times larger than those of shorter, nongraviresponsive roots. Graviresponsive roots that are oriented horizontally are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side, while similarly oriented nongraviresponsive roots exhibit only a minimal polar transport of 45Ca2+. These results indicate that the differential graviresponsiveness of roots of A. cepa is probably not due to either (1) ultrastructural differences in their columella cells, (2) differences in the rates of organellar redistribution when roots are oriented horizontally. Rather, these results indicate the graviresponsiveness may require an extensive columella tissue, which, in turn, may be necessary for polar movement of 45Ca2+ across the root tip.

  7. Listeria monocytogenes - Danger for health safety vegetable production.

    PubMed

    Kljujev, Igor; Raicevic, Vera; Jovicic-Petrovic, Jelena; Vujovic, Bojana; Mirkovic, Milica; Rothballer, Michael

    2018-04-22

    The microbiologically contaminated vegetables represent a risk for consumers, especially vegetables without thermal processing. It is known that human pathogen bacteria, such as Listeria monocytogenes, could exist on fresh vegetables. The fresh vegetables could become Listeria-contaminated if they come in touch with contaminated soil, manure, irrigation water. The aim of this work was to investigate the presence of Listeria spp. and L. monocytogenes in different kind of vegetables grown in field and greenhouse condition as well as surface and endophytic colonization plant roots of different vegetables species by L. monocytogenes in laboratory conditions. The detection of Listeria spp. and L. monocytogenes in vegetable samples was done using ISO and PCR methods. The investigation of colonization vegetable roots and detection Listeria-cells inside plant root tissue was done using Fluorescence in situ hybridization (FISH) method in combination with confocal laser scanning microscopy (CLSM). The results showed that 25.58% vegetable samples were positive for Listeria spp. and only one sample (carrot) was positive for L. monocytogenes out of 43 samples in total collected from field and greenhouse. The strain L. monocytogenes EGD-E surface and endophytic colonized carrot root in highest degree while strain L. monocytogenes SV4B was the most represented at leafy vegetable plants, such at lettuce (1.68 × 10 6  cells/mm 3 absolutely dry root) and spinach (1.39 × 10 6  cells/mm 3 absolutely dry root) root surface. The cells of L. monocytogenes SV4B were visible as single cells in interior tissue of plant roots (celery and sweet corn roots) as well as in the interior of the plant root cell at sweet corn root. The cells of L. monocytogenes EGD-E bind to the surface of the plant root and they were less commonly found out on root hair. In the inner layers of the root, those bacterial cells were inhabited intercellular spaces mainly as single cells very close to the larval vessels of root. Our results suggest that L. monocytogenes is very good endophytic colonizer of vegetable plant roots. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.)

    PubMed Central

    Horst, Walter Johannes

    2013-01-01

    Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure. PMID:24123251

  9. Propidium Iodide Competes with Ca2+ to Label Pectin in Pollen Tubes and Arabidopsis Root Hairs1[W][OA

    PubMed Central

    Rounds, Caleb M.; Lubeck, Eric; Hepler, Peter K.; Winship, Lawrence J.

    2011-01-01

    We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca2+ binding. We first show that Ca2+ is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca2+ in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca2+-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca2+ gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca2+ in tip growth. PMID:21768649

  10. The Allium Test--A Simple, Eukaryote Genotoxicity Assay.

    ERIC Educational Resources Information Center

    Babich, H.; Segall, M. A.; Fox, K. D.

    1997-01-01

    Explains the allium test in which roots are excised from onion bulblets grown in aqueous solutions of a test agent. Root tips are then isolated and stained with aceto-orcein, and chromosomal aberrations are microscopically observed. (Author/AIM)

  11. Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil Al/Ca ratios in the northeastern United States

    Treesearch

    Philip M. Wargo; Kristiina Vogt; Daniel Vogt; Quintaniay Holifield; Joel Tilley; Gregory Lawrence; Mark David

    2003-01-01

    Number of living root tips per branch, percent dead roots, percent mycorrhizae and mycorrhizal morphotype, response of woody roots to wounding and colonization by fungi, and concentrations of starch, soluble sugars, phenols, percent C and N and C/N ratio, and Al, Ca, Fe, K, Mg, Mn, and P were measured for 2 consecutive years in roots of red spruce (Picea...

  12. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).

    PubMed

    Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio

    2012-09-01

    Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis. © 2012 Blackwell Publishing Ltd.

  13. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip--effects of oxidative stress generation and biouptake.

    PubMed

    Rajeshwari, A; Kavitha, S; Alex, Sruthi Ann; Kumar, Deepak; Mukherjee, Anita; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2015-07-01

    The commercial usage of Al2O3 nanoparticles (Al2O3 NPs) has gone up significantly in the recent times, enhancing the risk of environmental contamination with these agents and their consequent adverse effects on living systems. The current study has been designed to evaluate the cytogenetic potential of Al2O3 NPs in Allium cepa (root tip cells) at a range of exposure concentrations (0.01, 0.1, 1, 10, and 100 μg/mL), their uptake/internalization profile, and the oxidative stress generated. We noted a dose-dependent decrease in the mitotic index (42 to 28 %) and an increase in the number of chromosomal aberrations. Various chromosomal aberrations, e.g. sticky, multipolar and laggard chromosomes, chromosomal breaks, and the formation of binucleate cells, were observed by optical, fluorescence, and confocal laser scanning microscopy. FT-IR analysis demonstrated the surface chemical interaction between the nanoparticles and root tip cells. The biouptake of Al2O3 in particulate form led to reactive oxygen species generation, which in turn probably contributed to the induction of chromosomal aberrations.

  14. Graviresponsiveness of surgically altered primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Maimon, E.; Moore, R.

    1991-01-01

    We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.

  15. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    PubMed

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.

  16. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation

    PubMed Central

    Chacón-López, Alejandra; Ibarra-Laclette, Enrique; Sánchez-Calderón, Lenin; Gutiérrez-Alanís, Dolores

    2011-01-01

    Plants are exposed to several biotic and abiotic stresses. A common environmental stress that plants have to face both in natural and agricultural ecosystems that impacts both its growth and development is low phosphate (Pi) availability. There has been an important progress in the knowledge of the molecular mechanisms by which plants cope with Pi deficiency. However, the mechanisms that mediate alterations in the architecture of the Arabidopsis root system responses to Pi starvation are still largely unknown. One of the most conspicuous developmental effects of low Pi on the Arabidopsis root system is the inhibition of primary root growth that is accompanied by loss of root meristematic activity. To identify signalling pathways potentially involved in the Arabidpsis root meristem response to Pi-deprivation, here we report the global gene expression analysis of the root tip of wild type and low phosphorus insensitive4 (lpi4) mutant grown under Pi limiting conditions. Differential gene expression analysis and physiological experiments show that changes in the redox status, probably mediated by jasmonic acid and ethylene, play an important role in the primary root meristem exhaustion process triggered by Pi-starvation. PMID:21368582

  17. An evaluation of root resorption after orthodontic treatment.

    PubMed

    Thomas, E; Evans, W G; Becker, P

    2012-08-01

    Root resorption is commonly seen, albeit in varying degrees, in cases that have been treated orthodontically. In this retrospective study the objective was to compare the amount of root resorption observed after active orthodontic treatment had been completed with one of three different appliance systems, namely, Tip Edge, Modified Edgewise and Damon. The sample consisted of pre and post-treatment cephalograms of sixty eight orthodontic cases. Root resorption of the maxillary central incisor was assessed from pre- and post- treatment lateral ce phalograms using two methods. In the first, overall tooth length from the incisal edge to the apex was measured on both pre and post-treatment lateral cephalograms and root resorption was recorded as an actual millimetre loss of tooth length. There was a significant upward linear trend (p = 0.052) for root resorption from the Tip Edge Group to the Damon Group. In the second method root resorption was visually evaluated by using the five grade ordinal scale of Levander and Malmgren (1988). It was found that the majorty of cases in the sample came under Grade 1 and Grade 2 category of root resorption. Statistical evaluation tested the extent of agree ment in this study between visual measurements and actual measurements and demonstrated a significant association (p = 0.018) between the methods.

  18. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Prakash, Meppaloor G; Chung, Ill Min

    2016-09-01

    The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.

  19. Characterization of root agravitropism induced by genetic, chemical, and developmental constraints

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; Marcum, H.

    1987-01-01

    The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.

  20. Ozone Sensitivity in Sweet Corn (Zea mays L.) Plants: A Possible Relationship to Water Balance

    PubMed Central

    Harris, Michael J.; Heath, Robert L.

    1981-01-01

    Stomatal characteristics affecting gas exchange were compared in two sweet corn hybrids (var. Bonanza and Monarch Advance) which differ in foliar ozone sensitivity. No significant differences were observed in stomatal frequencies, guard cell lengths, or conductances to water vapor diffusion. When plant water status was compared, leaf-water potentials for the ozone-resistant cultivar, Bonanza, were lower. A comparison of the relationship between soil- and leaf-water potential indicated that the leaf-water potential of Bonanza was more sensitive to declines in soil-water potential. Additionally, a comparison of stomatal conductance to water vapor diffusion as soil moisture declined and following root detachment indicated that stomata of Bonanza were, likewise, more sensitive to increasing water stress. Data suggest that these differences are attributable to a greater shoot-to-root fresh weight ratio and higher resistance to water movement in the water-conducting tissues for Bonanza. Our observations suggest that root and water delivery system characteristics play a major contributory role in the determination of foliar ozone sensitivity in this species. PMID:16662019

  1. Determination of the genotoxic effects of Convolvulus arvensis extracts on corn (Zea mays L.) seeds.

    PubMed

    Sunar, Serap; Yildirim, Nalan; Aksakal, Ozkan; Agar, Guleray

    2013-06-01

    In this research, the methanolic extracts of Convolvulus arvensis were tested for genotoxic and inhibitor activity on the total soluble protein content and the genomic template stability against corn Zea mays L. seed. The methanol extracts of leaf, stem and root of C. arvensis were diluted to 50, 75 and 100 μl concentrations and applied to corn seed. The total soluble protein and genomic template stability results were compared with the control. The results showed that especially 100 μl extracts of diluted leaf, stem and root had a strong inhibitory activity on the genomic template stability. The changes occurred in random amplification of polymorphic DNA (RAPD) profiles of C. arvensis extract treatment included variation in band intensity, loss of bands and appearance of new bands compared with control. Also, the results obtained from this study revealed that the increase in the concentrations of C. arvensis extract increased the total soluble protein content in maize. The results suggested that RAPD analysis and total protein analysis could be applied as a suitable biomarker assay for the detection of genotoxic effects of plant allelochemicals.

  2. Effects of earthworms and plants on the soil structure, the physical stabilization of soil organic matter and the microbial abundance and diversity in soil aggregates in a long term study

    NASA Astrophysics Data System (ADS)

    Zangerlé, Anne; Hissler, Christophe; Lavelle, Patrick

    2014-05-01

    Earthworms and plant roots, as ecosystem engineers, have large effects on biotic and abiotic properties of the soil system. They create biogenic soil macroaggregates (i.e. earthworm casts and root macroaggregates) with specific physical, chemical and microbiological properties. Research to date has mainly considered their impacts in isolation thereby ignoring potential interactions between these organisms. On the other hand, most of the existing studies focused on short to midterm time scale. We propose in this study to consider effect of earthworms and plants on aggregate dynamics at long time scale. A 24 months macrocosm experiment, under semi-controlled conditions, was conducted to assess the impacts of corn and endogeic plus anecic earthworms (Apporectodea caliginosa and Lumbricus terrestris) on soil structure, C stabilization and microbial abundance and biodiversity. Aggregate stability was assessed by wet-sieving. Macroaggregates (>2 mm) were also visually separated according to their biological origin (e.g., earthworms, roots). Total C and N contents were measured in aggregates of all size classes and origins. Natural abundances of 13C of corn, a C4 plant, were used as a supplemental marker of OM incorporation in aggregates. The genetic structure and the abundance of the bacterial and fungal communities were characterized by using respectively the B- and F-ARISA fingerprinting approach and quantitative PCR bacteria (341F/515R) and fungi (FF330/FR1). They significantly impacted the soil physical properties in comparison to the other treatments: lower bulk density in the first 10cm of the soil with 0.95 g/cm3 in absence of corn plants and 0.88 g/cm3 in presence of corn plants compared to control soil (1.21g/cm3). The presence of earthworms increased aggregate stability (mean weight diameter) by 7.6 %, while plants alone had no simple impacts on aggregation. A significant interaction revealed that earthworms increased aggregate stability in the presence of roots by 2.4% when compared to macrocosms without plants. Additionally, the presence of roots increased the total C and N concentration in earthworm casts, while earthworms increased C storage in microaggregates within root-derived aggregates. Analyses of 13C abundances revealed that OM had been incorporated in earthworm casts from the fifth month of the experiment. Earthworms showed an impact on bacterial abundance of 26.7% of increase in single species macroaggregates and 35.5% in mixt species macroaggregates after the first harvest of corn plants. Trends however changed on the long term since bacterial abundances decreased dramatically (67.1% in single species treatments and 59.3% in mixed species treatments) during the second year and fungal abundances, stable during the first 5 months of the experiment, later increased 80% and 73.2% in earthworm and mixed species macroaggregates. This experiment showed how interactions between plants and earthworms can influence the soil structure and the soil aggregates dynamics by cooperating in macroaggregate formation. Both organisms need to be considered simultaneously for proper management of soils.

  3. Rejuvenation of Sequoia sempervirens by Repeated Grafting of Shoot Tips onto Juvenile Rootstocks in Vitro 1

    PubMed Central

    Huang, Li-Chun; Lius, Suwenza; Huang, Bau-Lian; Murashige, Toshio; Mahdi, El Fatih M.; Van Gundy, Richard

    1992-01-01

    Repeated grafting of 1.5-centimeter long shoot tips from an adult Sequoia sempervirens tree onto fresh, rooted juvenile stem cuttings in vitro resulted in progressive restoration of juvenile traits. After four successive grafts, stem cuttings of previously adult shoots rooted as well, branched as profusely, and grew with as much or more vigor as those of seedling shoots. Reassays disclosed retention for 3 years of rooting competence at similar levels as originally restored. Adventitious shoot formation was remanifested and callus development was depressed in stem segments from the repeatedly grafted adult. The reversion was associated with appearance and disappearance of distinctive leaf proteins. Neither gibberellic acid nor N6-beneyladenine as nutrient supplements duplicated the graft effects. ImagesFigure 2Figure 5Figure 8 PMID:16668609

  4. Protocol for Removal of Third Molar Root Tips from the Inferior Alveolar Canal-Crossing the line.

    PubMed

    Punga, Rohit; Keswani, Kiran

    2014-12-01

    The safe removal of third molars involved with the inferior alveolar canal (IAC) has been an area of concern since long. Many times we hesitate for the removal of third molars, fearing injury to the inferior alveolar nerve. The authors here describe a simple technique which can be used to remove third molars showing evidence of proximity to IAC on presurgical radiographic evaluation, as well as those root tips which, during removal, accidentally enter the IAC space. A step-by-step protocol is presented along with necessary precautions during the operative procedure.

  5. Plant Evo-Devo: How Tip Growth Evolved.

    PubMed

    Rensing, Stefan A

    2016-12-05

    Apical elongation of polarized plant cells (tip growth) occurs in root hairs of flowering plants and in rhizoids of bryophytes. A new report shows that the formation of these cells relies on genes already present in the first land plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Genome duplication improves rice root resistance to salt stress

    PubMed Central

    2014-01-01

    Background Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. Results Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased. Conclusions Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots. PMID:25184027

  7. Screening and Selection of Maize to Enhance Associative Bacterial Nitrogen Fixation 1

    PubMed Central

    Ela, Stephen W.; Anderson, Mary Ann; Brill, Winston J.

    1982-01-01

    The ability of maize (corn, Zea mays L.) to support bacterial nitrogen fixation in or on maize roots has been increased, through screening and selection. Isotopic N fixed from 15N2 was found on the roots. The nitrogen-fixing association was found in germplasm from tropical maize, but this activity can be transferred to maize currently used in midwestern United States agriculture. PMID:16662718

  8. Mitochondrial β-Cyanoalanine Synthase Is Essential for Root Hair Formation in Arabidopsis thaliana[W

    PubMed Central

    García, Irene; Castellano, José María; Vioque, Blanca; Solano, Roberto; Gotor, Cecilia; Romero, Luis C.

    2010-01-01

    Cyanide is stoichiometrically produced as a coproduct of the ethylene biosynthesis pathway and is detoxified by β-cyanoalanine synthase enzymes. The molecular and phenotypical analysis of T-DNA insertion mutants of the mitochondrial β-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild-type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin or by genetic complementation with the CYS-C1 gene. Hydroxocobalamin not only recovers the root phenotype of the mutant but also the formation of reactive oxygen species at the initial step of root hair tip growth. Transcriptional profiling of the cys-c1 mutant reveals that cyanide accumulation acts as a repressive signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial β-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development. PMID:20935247

  9. A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis.

    PubMed

    Sankaranarayanan, Subramanian; Samuel, Marcus A

    2015-01-01

    Plants respond to limited soil nutrient availability by inducing more lateral roots (LR) to increase the root surface area. At the cellular level, nutrient starvation triggers the process of autophagy through which bulk degradation of cellular materials is achieved to facilitate nutrient mobilization. Whether there is any link between the cellular autophagy and induction of LR had remained unknown. We recently showed that the S-Domain receptor Kinase (ARK2) and U Box/Armadillo Repeat-Containing E3 ligase (PUB9) module is required for lateral root formation under phosphate starvation in Arabidopsis thaliana.(1) We also showed that PUB9 localized to autophagic bodies following either activation by ARK2 or under phosphate starvation and ark2-1/pub9-1 plants displayed lateral root defects with inability to accumulate auxin in the root tips under phosphate starvation.(1) Supplementing exogenous auxin was sufficient to rescue the LR defects in ark2-1/pub9-1 mutant. Blocking of autophagic responses in wild-type Arabidopsis also resulted in inhibition of both lateral roots and auxin accumulation in the root tips indicating the importance of autophagy in mediating auxin accumulation under phosphate starved conditions.(1) Here, we propose a model for ARK2/AtPUB9 module in regulation of lateral root development via selective autophagy.

  10. Dietary corn fractions reduce atherogenesis in low-density lipoprotein receptor knockout mice.

    PubMed

    Masisi, Kabo; Le, Khuong; Ghazzawi, Nora; Moghadasian, Mohammed H; Beta, Trust

    2017-01-01

    Accumulating evidence has suggested that intake of whole grains is a protective factor against pathogenesis of coronary artery disease. The exact mechanisms, however, are still not clearly understood. In this study, we hypothesized that adequate intake of corn fractions (aleurone, endosperm and germ) can modify lipid profiles in relation to atherosclerotic lesion development in low-density lipoprotein receptor knockout (LDLr-KO) mice. The purpose of the present study was to investigate the potential cardiovascular benefits of corn fractions in LDLr-KO mice through a number of biomarkers including lipid profile, and morphologic and morphometrical analysis of atherosclerotic lesions in aortic root. Four groups of male LDLr-KO mice were fed with the experimental diets supplemented with (3 treated) or without (control) 5% (wt/wt) of each of corn fractions for 10 weeks. All diets were supplemented with 0.06% (wt/wt) cholesterol. Compared with mice in the control group, atherosclerotic lesions in the aortic roots were significantly reduced (P=.003) in the mice that were fed diet supplemented with aleurone and germ fractions. This effect was associated with significant reductions in plasma total (P=.02) and LDL (P=.03) cholesterol levels, and an increase in fecal cholesterol excretion (P=.04). Furthermore, abdominal fat mass was significantly reduced by consumption of aleurone (P=.03). In summary, the consumption of aleurone and germ may help attenuate atherosclerosis by reducing plasma total and LDL cholesterol levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    PubMed

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fred J. Molz, III

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flowmore » model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that the observed surface Pu residue was from the buried sources, not atmospheric fallout. (6) The plant experiments indicate a Pu-DFOB velocity in the corn xylem of at least 174 cm/hr, much higher than ionic Pu in soil. Thus, Pu complexation with chelating agents is probably what led to the observed enhanced uptake and mobility in grasses. (7) Plant experiments show that the uptake of Fe-DFOB, Pu-DFOB and the resulting distributions are very similar. This supports the hypothesis that plant and bacterial iron-seeking chemistry mistakes Pu for Fe.« less

  13. Chromosomal Fragmentation: A Possible Marker for the Selection of High Gymnemic Acid Yielding Accessions of Gymnema sylvestre R. Br.

    PubMed

    Verma, Ashutosh Kumar; Dhawan, Sunita Singh

    2017-10-01

    Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre . Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre . Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre . An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris . Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre . Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed anaphasic polarity.

  14. Chromosomal Fragmentation: A Possible Marker for the Selection of High Gymnemic Acid Yielding Accessions of Gymnema sylvestre R. Br

    PubMed Central

    Verma, Ashutosh Kumar; Dhawan, Sunita Singh

    2017-01-01

    Background: Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Objectives: Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre. Materials and Methods: Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre. Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Results: Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Conclusion: Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre. SUMMARY An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris. Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre. Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed anaphasic polarity. PMID:29142402

  15. A multi-year field study to evaluate the environmental fate and agronomic effects of insecticide mixtures.

    PubMed

    Whiting, Sara A; Strain, Katherine E; Campbell, Laura A; Young, Bryan G; Lydy, Michael J

    2014-11-01

    A mixture of insecticides used in corn production was monitored over a three-year period in a field study to determine how long each persists in the environment, where each insecticide travels within the corn field, and the efficacy of using soil-applied insecticides with genetically modified corn. The genetically modified corn contained the insecticidal Cry1Ab and Cry3Bb1 proteins (Bt corn) and the Cry1Ab protein was found to persist only during the corn growing season in soil, runoff water, and runoff sediment with highest concentrations measured during pollination. Very low concentrations of Cry1Ab proteins were measured in soil collected in the non-Bt corn field, and no Cry1Ab proteins were detected in shallow groundwater or soil pore water. Clothianidin, a neonicotinoid insecticide used as a seed coating, was detected in all matrices and remained persistent throughout the year in soil pore water. Tefluthrin, a pyrethroid insecticide applied at planting to control corn rootworm larvae (Diabrotica spp., Coleoptera: Chrysomelidae) populations, was consistently detected in soil, runoff water, and runoff sediment during the corn growing season, but was not detected in groundwater or soil pore water. Tefluthrin did not have an effect on root damage from corn rootworm larvae feeding to Bt corn, but did prevent damage to non-Bt corn. A slight reduction in grain yield was observed in the non-Bt, no tefluthrin treatment when compared to all other treatments, but no significant difference in grain yield was observed among Bt corn treatments regardless of soil insecticide application. In the current study, the use of tefluthrin on Bt corn did not significantly affect crop damage or yield, and tefluthrin may travel off-site in runoff water and sediment. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Aquaporin 4 molecular mimicry and implications for neuromyelitis optica.

    PubMed

    Vaishnav, Radhika A; Liu, Ruolan; Chapman, Joab; Roberts, Andrew M; Ye, Hong; Rebolledo-Mendez, Jovan D; Tabira, Takeshi; Fitzpatrick, Alicia H; Achiron, Anat; Running, Mark P; Friedland, Robert P

    2013-07-15

    Neuromyelitis optica (NMO) is associated with antibodies to aquaporin 4 (AQP4). We hypothesized that antibodies to AQP4 can be triggered by exposure to environmental proteins. We compared human AQP4 to plant and bacterial proteins to investigate the occurrence of significantly similar structures and sequences. High similarity to a known epitope for NMO-IgG, AQP4(207-232), was observed for corn ZmTIP4-1. NMO and non-NMO sera were assessed for reactivity to AQP4(207-232) and the corn peptide. NMO patient serum showed reactivity to both peptides as well as to plant tissue. These findings warrant further investigation into the role of the environment in NMO etiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Occurrence of mycorrhizae after logging and slash burning in the Douglas-fir forest type.

    Treesearch

    Ernest Wright; Robert F. Tarrant

    1958-01-01

    The association of certain fungi with plant roots results in formation of an organ called a mycorrhiza. There are two principal types of mycorrhizae: those with the fungus confined internally in the root, or endotrophic mycorrhizae, and those with both internal fungus development and an external fungal mantle enveloping the root tips, or ectotrophic mycorrhizae....

  18. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings.

    PubMed

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2012-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth.

  19. Correlation of toxicity with lead content in root tip cells (Allium cepa L.).

    PubMed

    Carruyo, Ingrid; Fernández, Yusmary; Marcano, Letty; Montiel, Xiomara; Torrealba, Zaida

    2008-12-01

    The present study determines lead content in onion root tip cells (Allium cepa L.), correlating it with its toxicity. The treatment was carried at 25 +/- 0.5 degrees C using aqueous solutions of lead chloride at 0.1, 0.25, 0.50, 0.75, and 1 ppm for 12, 24, 48, and 72 h. For each treatment, a control where the lead solution was substituted by distilled water was included. After treatment, the meristems were fixed with a mixture of alcohol-acetic acid (3:1) and colored according to the technique of Feulgen. Lead content was quantified by graphite furnace absorption atomic spectrometry. The lead content in the roots ranged from 3.25 to 244.72 microg/g dry weight, with a direct relation with the concentration and time of exposure. A significant negative correlation was presented (r = -0.3629; p < 0.01) among lead content and root growth increment, and a positive correlation (r = 0.7750; p < 0.01) with the induction of chromosomic aberrations. In conclusion, lead is able to induce a toxic effect in the exposed roots, correlated with its content.

  20. Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor.

    PubMed

    Kwankua, W; Sengsai, S; Kuleung, C; Euawong, N

    2010-07-01

    Utilization of neem plant (Azadirachta indica A. Juss) extract for pest control in agriculture has raised concerns over contamination by the residues to the environment. Such residues, particularly azadirachtin (Aza), may cause deleterious effect to non-target organisms. This investigation was conducted to find out if Aza could be inactivated through exposures to sunlight. Activity of Aza was assessed as its ability to cause cytotoxic and genotoxic effects in the forms of nuclei abnormality and chromosome aberration as measured by mitotic index (MI) and mitotic aberration (MA). Varying concentrations of Aza were tested on Allium cepa and Eucrosia bicolor. It was found that the MI of all root tip meristematic cells of A. cepa and E. bicolor treated with 0.00005%, 0.00010%, 0.00015%, and 0.00020% (w/v) Aza-containing neem extract for 24h, were significantly lower than the controls. Complementary to the lower levels of MI, the Aza-treated groups showed higher MA levels in all cases investigated. Furthermore, the decreasing levels of MI and the increasing levels of MA related well with the increasing concentration of Aza. Microscopic examination of root tip meristematic cells revealed that the anomaly found most often were mitotic disturbances and chromosomal bridges. Exposures of 0.00020% (w/v) Aza to sunlight for 3 days and 7 days decreased Aza ability to induce cytotoxicity and genotoxicity, both in terms of MI and MA, to root tip meristematic cells in A. cepa and E. bicolor. Photodegradation of Aza upon exposure to direct sunlight was confirmed by HPLC. The study implicates that Aza would unlikely cause long term deleterious effects to the environment since it would be inactivated by sunlight. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Field experiment with liquid manure and enhanced biochar

    NASA Astrophysics Data System (ADS)

    Dunst, Gerald

    2017-04-01

    Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.

  2. Plastic responses of native plant root systems to the presence of an invasive annual grass.

    PubMed

    Phillips, Allison J; Leger, Elizabeth A

    2015-01-01

    • The ability to respond to environmental change via phenotypic plasticity may be important for plants experiencing disturbances such as climate change and plant invasion. Responding to belowground competition through root plasticity may allow native plants to persist in highly invaded systems such as the cold deserts of the Intermountain West, USA.• We investigated whether Poa secunda, a native bunchgrass, could alter root morphology in response to nutrient availability and the presence of a competitive annual grass. Seeds from 20 families were grown with high and low nutrients and harvested after 50 d, and seeds from 48 families, grown with and without Bromus tectorum, were harvested after ∼2 or 6 mo. We measured total biomass, root mass fraction, specific root length (SRL), root tips, allocation to roots of varying diameter, and plasticity in allocation.• Plants had many parallel responses to low nutrients and competition, including increased root tip production, a trait associated with tolerance to reduced resources, though families differed in almost every trait and correlations among trait changes varied among experiments, indicating flexibility in plant responses. Seedlings actively increased SRL and fine root allocation under competition, while older seedlings also increased coarse root allocation, a trait associated with increased tolerance, and increased root mass fraction.• The high degree of genetic variation for root plasticity within natural populations could aid in the long-term persistence of P. secunda because phenotypic plasticity may allow native species to persist in invaded and fluctuating resource environments. © 2015 Botanical Society of America, Inc.

  3. APSR1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability.

    PubMed

    González-Mendoza, Víctor; Zurita-Silva, Andrés; Sánchez-Calderón, Lenin; Sánchez-Sandoval, María Eugenia; Oropeza-Aburto, Araceli; Gutiérrez-Alanís, Dolores; Alatorre-Cobos, Fulgencio; Herrera-Estrella, Luis

    2013-05-01

    Proper root growth is crucial for anchorage, exploration, and exploitation of the soil substrate. Root growth is highly sensitive to a variety of environmental cues, among them water and nutrient availability have a great impact on root development. Phosphorus (P) availability is one of the most limiting nutrients that affect plant growth and development under natural and agricultural environments. Root growth in the direction of the long axis proceeds from the root tip and requires the coordinated activities of cell proliferation, cell elongation and cell differentiation. Here we report a novel gene, APSR1 (Altered Phosphate Starvation Response1), involved in root meristem maintenance. The loss of function mutant apsr1-1 showed a reduction in primary root length and root apical meristem size, short differentiated epidermal cells and long root hairs. Expression of APSR1 gene decreases in response to phosphate starvation and apsr1-1 did not show the typical progressive decrease of undifferentiated cells at root tip when grown under P limiting conditions. Interestingly, APSR1 expression pattern overlaps with root zones of auxin accumulation. Furthermore, apsr1-1 showed a clear decrease in the level of the auxin transporter PIN7. These data suggest that APSR1 is required for the coordination of cell processes necessary for correct root growth in response to phosphate starvation conceivably by direct or indirect modulation of PIN7. We also propose, based on its nuclear localization and structure, that APSR1 may potentially be a member of a novel group of transcription factors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. A New Model for Root Growth in Soil with Macropores

    NASA Astrophysics Data System (ADS)

    Landl, M.; Huber, K.; Schnepf, A.; Vanderborght, J.; Javaux, M.; Bengough, G.; Vereecken, H.

    2016-12-01

    In order to study soil-root interaction processes, dynamic root architecture models which are linked to models that simulate water flow and nutrient transport in the soil-root system are needed. Such models can be used to predict the impact of soil structural features, e.g. the presence of macropores in dense subsoil, on water and nutrient uptake by plants. In dynamic root architecture models, root growth is represented by moving root tips whose growth trajectory results in the creation of linear root segments. Typically, the direction of each new root segment is calculated as the vector sum of various direction-affecting components. The use of these established methods to simulate root growth in soil containing macropores, however, failed to reproduce experimentally observed root growth patterns. We therefore developed an alternative modelling approach where we distinguish between, firstly, the driving force for root growth which is determined by the orientation of the previous root segment as well as the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by root conductance which represents the inverse of soil penetration resistance and is treated similarly to hydraulic conductivity in Darcy's law. At the presence of macropores, root conductance is anisotropic which leads to a difference between the direction of the driving force and the direction of the root tip movement. The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. The model simulated root growth trajectories in structured soil at both single root and whole root-system scales, generating root systems that were similar to images from experiments. Its implementation in the three dimensional soil and root water uptake model R-SWMS enables the use of the model in the future to evaluate the effect of macropores on crop access to water and nutrients.

  5. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    PubMed

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Bending and shear stresses developed by the instantaneous arrest of the root of a cantilever beam rotating with constant angular velocity about a transverse axis through the root

    NASA Technical Reports Server (NTRS)

    Stowell, Elbridge Z; Schwartz, Edward B; Houbolt, John C

    1945-01-01

    A theoretical investigation was made of the behavior of a cantilever beam in rotational motion about a transverse axis through the root determining the stresses, the deflections, and the accelerations that occur in the beam as a result of the arrest of motion. The equations for bending and shear stress reveal that, at a given percentage of the distance from root to tip and at a given trip velocity, the bending stresses for a particular mode are independent of the length of the beam and the shear stresses vary inversely with the length. When examined with respect to a given angular velocity instead of a given tip velocity, the equations reveal that the bending stress is proportional to the length of the beam whereas the shear stress is independent of the length. Sufficient experimental verification of the theory has previously been given in connection with another problem of the same type.

  7. Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles).

    PubMed

    Séne, Seynabou; Avril, Raymond; Chaintreuil, Clémence; Geoffroy, Alexandre; Ndiaye, Cheikh; Diédhiou, Abdala Gamby; Sadio, Oumar; Courtecuisse, Régis; Sylla, Samba Ndao; Selosse, Marc-André; Bâ, Amadou

    2015-10-01

    We studied belowground and aboveground diversity and distribution of ectomycorrhizal (EM) fungal species colonizing Coccoloba uvifera (L.) L. (seagrape) mature trees and seedlings naturally regenerating in four littoral forests of the Guadeloupe island (Lesser Antilles). We collected 546 sporocarps, 49 sclerotia, and morphotyped 26,722 root tips from mature trees and seedlings. Seven EM fungal species only were recovered among sporocarps (Cantharellus cinnabarinus, Amanita arenicola, Russula cremeolilacina, Inocybe littoralis, Inocybe xerophytica, Melanogaster sp., and Scleroderma bermudense) and one EM fungal species from sclerotia (Cenococcum geophilum). After internal transcribed spacer (ITS) sequencing, the EM root tips fell into 15 EM fungal taxa including 14 basidiomycetes and 1 ascomycete identified. Sporocarp survey only weakly reflected belowground assessment of the EM fungal community, although 5 fruiting species were found on roots. Seagrape seedlings and mature trees had very similar communities of EM fungi, dominated by S. bermudense, R. cremeolilacina, and two Thelephoraceae: shared species represented 93 % of the taxonomic EM fungal diversity and 74 % of the sampled EM root tips. Furthermore, some significant differences were observed between the frequencies of EM fungal taxa on mature trees and seedlings. The EM fungal community composition also varied between the four investigated sites. We discuss the reasons for such a species-poor community and the possible role of common mycorrhizal networks linking seagrape seedlings and mature trees in regeneration of coastal forests.

  8. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  9. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling1[OPEN

    PubMed Central

    Eysholdt-Derzsó, Emese

    2017-01-01

    When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip. PMID:28698356

  10. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan

    2015-01-01

    A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494

  11. The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots.

    PubMed

    Sakai, Tatsuya; Mochizuki, Susumu; Haga, Ken; Uehara, Yukiko; Suzuki, Akane; Harada, Akiko; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka

    2012-04-01

    Regulation of the root growth pattern is an important control mechanism during plant growth and propagation. To better understand alterations in root growth direction in response to environmental stimuli, we have characterized an Arabidopsis thaliana mutant, wavy growth 3 (wav3), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The wav3 mutant shows a greater curvature of root bending in response to gravity, but a smaller curvature in response to light, suggesting that it is a root gravitropism-enhancing mutation. This wav3 phenotype also suggests that enhancement of the gravitropic response in roots strengthens root tip impedance after contact with the agar surface and/or causes an increase in subsequent root bending in response to obstacle-touching stimulus in these mutants. WAV3 encodes a protein with a RING finger domain, and is mainly expressed in root tips. RING-containing proteins often function as an E3 ubiquitin ligase, and the WAV3 protein shows such activity in vitro. There are three genes homologous to WAV3 in the Arabidopsis genome [EMBRYO SAC DEVELOPMENT ARREST 40 (EDA40), WAVH1 and WAVH2 ], and wav3 wavh1 wavh2 triple mutants show marked root gravitropism abnormalities. This genetic study indicates that WAV3 functions positively rather than negatively in root gravitropism, and that enhancement of the gravitropic response in wav3 roots is dependent upon the function of WAVH2 in the absence of WAV3. Hence, our results demonstrate that the WAV3 family of proteins are E3 ligases that are required for root gravitropism in Arabidopsis. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  12. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris)

    PubMed Central

    Yang, Zhong-Bao; Eticha, Dejene; Albacete, Alfonso; Rao, Idupulapati Madhusudana; Roitsch, Thomas; Horst, Walter Johannes

    2012-01-01

    Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al–drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (–0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought. PMID:22371077

  13. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  14. Histological characterization of Passiflora pohlii Mast. root tips cryopreserved using the V-Cryo-plate technique.

    PubMed

    Simão, Mariela J; Collin, Myriam; Garcia, Renata O; Mansur, Elisabeth; Pacheco, Georgia; Engelmann, Florent

    2018-05-01

    Cryopreservation stands out as the main strategy to ensure safe and cost efficient long-term conservation of plant germplasm, especially for biotechnological materials. However, the injuries associated with the procedure may result in structural damage and low recovery rates after cooling. Histological analysis provides useful information on the effects of osmotic dehydration, LN exposure, and recovery conditions on cellular integrity and tissue organization, allowing the determination of the critical steps of the cryopreservation protocol and, thus, the use of optimized treatments. Passiflora pohlii Mast. (Passifloraceae) is a native species from Brazil with potential agronomic interest. Recent studies showed the presence of saponins in its roots, which presented antioxidant activity. The goal of this work was to develop a cryopreservation technique for root tips of in vitro-derived plants of P. pohlii using the V-Cryo-plate technique and to characterize the anatomical alterations that occurred during the successive steps of the protocol. Root tips were excised from in vitro plants and precultured before adhesion to cryo-plates and then treated for different periods with the plant vitrification solutions PVS2 or PVS3. Treatment with PVS2 for 45 min resulted in higher recovery (79%) when compared with PVS3 (43%). The greatest number of adventitious roots per cryopreserved explant was also observed after a 45-min exposure to PVS2. Plasmolysis levels were higher in cortical cells of cryopreserved explants treated with PVS2, while pericycle and central cylinder cells were not damaged after this treatment. Thirty days after rewarming, no plasmolysis could be detected, regardless of the experimental conditions.

  15. Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins

    NASA Astrophysics Data System (ADS)

    Devoria, Adam C.; Ringuette, Matthew J.

    2012-02-01

    We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.

  16. Multiple piece turbine engine airfoil with a structural spar

    DOEpatents

    Vance, Steven J [Orlando, FL

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  17. [Research on the cytotoxic and genotoxic effects of rare-earth element holmium to Vicia faba].

    PubMed

    Qu, Ai; Wang, Cheng-Run; Bo, Jun

    2004-03-01

    Crystal of nitrate, made by the reaction of holmium trioxide and nitric acid, was dissolved in distilled water, thus diluted into gradient solution. Soaked in the solution for 6 hours (6h), the root tips of Vicia faba were then recovered and cultivated for 22 h and 24 h, respectively. By observing the change of root tips and calculating the frequency of micronucleus (FMN), the frequency of chromosomal aberrations(CAF) and mitosis index (MI),we find that the dosage below 4mg/L (expressed by concentration of holmium trioxide) could accelerate the growth of root tips of Vicia faba. CAF and FMN increased while MI decreased with the rise of concentrations. From it a dosage effect relationship is clearly seen. And it indicated that the rare earth element holmium has certain cytotoxic and genotoxic effects. Furthermore, the different recovery groups have different FMN, CAF and MI, and the difference lies in the fact that FMN of 22 h recovery group was lower than that of 24 h recovery group, while CAF and MI were higher than those of 24 h recovery group. The results suggest that the statistics of FMN should be made after that of CAF.

  18. Role of plant-rock interactions in the N cycle of oligotrophic environments

    NASA Astrophysics Data System (ADS)

    Gaddis, E. E.; Zaharescu, D. G.; Dontsova, K.; Chorover, J.; Galey, M.; Huxman, T. E.

    2013-12-01

    The vital role of nitrogen--an abundant, but inaccessible building block for growth--in plants is well known. At the same time, plants and microorganisms are driving forces for accumulation of available N in the soils as they form. A deep understanding of N cycle initiation, progression, and link to ecological systems and their development is therefore necessary. A mesocosm experiment was set up with the goal of exploring the role of interactions between four rock types and biota on N fate in oligotrophic environments. Basalt, rhyolite, granite, and schist were used with 6 treatments: abiotic control; microbes only; grass and microbes; pine and microbes; grass, microbes, and mycorrhizal fungi; and pine, microbes, and mycorrhizal fungi. Pinus ponderosa and Buchloe dactyloides were seeded on the different rock media and maintained with purified air and water but no nutrient additions for 8 month. Throughout the experiment leachate solution was collected and its chemical composition characterized, including organic and inorganic C and N. In addition, plant roots were scanned and their images analyzed to quantify their morphological features. Root parameters included measurements of length, surface area, diameter, volume, the number of tips, forks and links, altitude, and overall plant biomass. Over the 8 month period, there was sustained vegetation growth on all rocks without N addition. A high C:N ratio was seen across all substrates, indicating N deficiency. A strong relationship was observed between total N removal in soil leachate and a number of plant parameters, including plant biomass, total surface area of the roots, sum of the root tips, and total root volume. These relationships were the strongest in basalt, where the pines had higher root surface area than grasses and this was accompanied by higher total N in leachate. There was also a positive correlation between total N removal and the total biomass, total N and the sum of the root tips, and total N and the sum of the root volume. This work shows the strong root-rock interactions effect on N that is characteristic of oligotrophic environments. Significant differences in total N between rock types

  19. Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.; Hou, Guichuan; Chapman, Kent D.

    2003-01-01

    N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.

  20. Two Seven-Transmembrane Domain MILDEW RESISTANCE LOCUS O Proteins Cofunction in Arabidopsis Root Thigmomorphogenesis[C][W

    PubMed Central

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H. Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M.

    2009-01-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane–localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gβ subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism. PMID:19602625

  1. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    PubMed

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  2. A split-root technique for measuring root water potential.

    PubMed

    Adeoye, K B; Rawlins, S L

    1981-07-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem.In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium.

  3. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  4. Three-dimensional reconstruction of root shape in the moth orchid Phalaenopsis sp.: a biomimicry methodology for robotic applications.

    PubMed

    Mishra, Anand Kumar; Degl'Innocenti, Andrea; Mazzolai, Barbara

    2018-04-25

    Within the field of biorobotics, an emerging branch is plant-inspired robotics. Some effort exists in particular towards the production of digging robots that mimic roots; for these, a deeper comprehension of the role of root tip geometry in excavation would be highly desirable. Here we demonstrate a photogrammetry-based pipeline for the production of computer and manufactured replicas of moth orchid root apexes. Our methods yields faithful root reproductions. This can be used either for quantitative studies aimed at comparing different root morphologies, or directly to implement a particular root shape in a biorobot.

  5. Purple corn-associated rhizobacteria with potential for plant growth promotion.

    PubMed

    Castellano-Hinojosa, A; Pérez-Tapia, V; Bedmar, E J; Santillana, N

    2018-05-01

    Purple corn (Zea mays var. purple amylaceum) is a native variety of the Peruvian Andes, cultivated at 3000 m since the pre-Inca times without N fertilization. We aimed to isolate and identify native plant growth-promoting rhizobacteria (PGPR) for future microbial-based inoculants. Eighteen strains were isolated from the rhizosphere of purple corn plants grown without N fertilization in Ayacucho (Peru). The 16S rRNA gene clustered the 18 strains into nine groups that contained species of Bacillus, Stenotrophomonas, Achromobacter, Paenibacillus, Pseudomonas and Lysinibacillus. A representative strain from each group was selected and assayed for N 2 fixation, phosphate solubilization, indole acetic and siderophore production, 1-aminocyclopropane-1-carboxylic acid deaminase activity and biocontrol abilities. Inoculation of purple corn plants with single and combined strains selected after a principal component analysis caused significant increases in root and shoot dry weight, total C and N contents of the plants. PGPRs can support growth and crop production of purple corn in the Peruvian Andes and constitute the base for microbial-based inoculants. This study enlarges our knowledge on plant-microbial interactions in high altitude mountains and provides new applications for PGPR inoculation in purple amylaceum corn, which is part of the staple diet for the native Quechua communities. © 2018 The Society for Applied Microbiology.

  6. Management of Root-knot Nematodes by Phenamiphos Applied through an Irrigation Simulator with Various Amounts of Water

    PubMed Central

    Johnson, A. W.; Young, J. R.; Wright, W. C.

    1986-01-01

    Phenamiphos (6.7 kg a.i./ha) was applied via an irrigation simulator to squash at planting (AP) and 2 weeks after planting (PP), and to corn AP and 1 week PP to manage root-knot nematodes (Meloidogyne incognita). The nematicide was applied with 0.25, 0.64, 1.27, and 1.91 cm surface water/ ha to a Lakeland sand in which the soil moisture was at or near field capacity. Based on efficacy and crop response, no additional benefits resulted when phenamiphos was applied in volumes of water greater than 0.25 crn/ha. The cost of applying each 0.25 cm of water over a hectare is approximately $1.08, or a 92% reduction in nematicide application cost over conventional methods ($13.50/ha). Low root-gall indices and high yields from squash and corn indicate more effective nematode management when phenamiphos was applied AP rather than PP. Results from this method of applying phenamiphos suggest that certain nematicides could be used as salvage alternatives when nematodes are detected in crops soon after planting. For multiple-pest management, nematicides, other compatible biocides, and fertilizers could be applied simultaneously with sprinkler irrigation. PMID:19294192

  7. INSECTICIDAL TOXIN IN ROOT EXUDATES FROM BT CORN. (R826107)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran.

    PubMed

    Nezami, Sareh; Malakouti, Mohammad Jafar; Bahrami Samani, Ali; Ghannadi Maragheh, Mohammad

    2016-11-01

    To study the benefit of including citric and oxalic acid treatments for phytoremediation of 226 Ra contaminated soils a greenhouse experiment with corn was conducted. A soil was sampled from a region of high natural 226 Ra radioactivity in Ramsar, Iran. After cultivation of corn seed and using organic acid treatments at 1, 10 and 100 mM concentrations, plants (shoots and roots) were harvested, digested and prepared to measure 226 Ra activity. Simultaneously, sequential selective extraction were performed to estimate the partitioning of 226 Ra among geochemical extraction. Results showed that the maximum uptake of 226 Ra in plants was observed in citric acid (6.3%) and then oxalic acid (6%) at 100 mM concentration. These treatments increased radium uptake by a factor of 1.5 than the control. Enhancement of radium uptake by plants was related to soil pH reduction of organic acids in comparison to control. Also, the maximum uptake of this radionuclide in all treatments was obtained in roots compared to shoots. 226 Ra fractionations results revealed that 91.8% of radium was in the residual phase of the soil and the available fractions were less than 2%. As the main percent of 226 Ra was in the residual phase of the soil in this region, it seems that organic acids had not significant effect on the uptake of 226 Ra for phytoremediation by corn in this condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mycorrhizae

    Treesearch

    Martin Jurgensen; Dana Richter; Carl C. Trettin; Mary Davis

    2000-01-01

    Mycorrhizae, a mutual partnership between certain soil fungi and fine root tips, contribute to tree growth and vigor by increasing both water and nutrient uptake, especially nitrogen (N) and phosphorus (P). The fungal hyphae increase root surface contact with the soil, while the fungi are supplied with a reliable source of carbon (Allen 1991, George and Marschner 1995...

  10. Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis

    USDA-ARS?s Scientific Manuscript database

    Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...

  11. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.).

    PubMed

    Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus

    2016-01-01

    Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Tetraploidy enhances B excess tolerance in citrange CarrizoExpression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidiesB tolerance is attributed to root anatomical modifications induced by genome duplicationThe rootstock 4x citrange carrizo may prevent citrus trees from B excess.

  12. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.)

    PubMed Central

    Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus

    2016-01-01

    Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Highlights Tetraploidy enhances B excess tolerance in citrange Carrizo Expression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidies B tolerance is attributed to root anatomical modifications induced by genome duplication The rootstock 4x citrange carrizo may prevent citrus trees from B excess. PMID:27252717

  13. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit

    PubMed Central

    Ferl, Robert J; Paul, Anna-Lisa

    2016-01-01

    Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721

  14. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Sedbrook, J.; Boonsirichai, K.; Chen, R.; Hilson, P.; Pearlman, R.; Rosen, E.; Rutherford, R.; Batiza, A.; Carroll, K.; Schulz, T.; hide

    1998-01-01

    When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.

  15. NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis

    PubMed Central

    Wang, Yuqi; Li, Ruihong; Li, Demou; Jia, Xiaomin; Zhou, Dangwei; Li, Jianyong; Lyi, Sangbom M.; Hou, Siyu; Huang, Yulan

    2017-01-01

    Members of the aquaporin (AQP) family have been suggested to transport aluminum (Al) in plants; however, the Al form transported by AQPs and the roles of AQPs in Al tolerance remain elusive. Here we report that NIP1;2, a plasma membrane-localized member of the Arabidopsis nodulin 26-like intrinsic protein (NIP) subfamily of the AQP family, facilitates Al-malate transport from the root cell wall into the root symplasm, with subsequent Al xylem loading and root-to-shoot translocation, which are critical steps in an internal Al tolerance mechanism in Arabidopsis. We found that NIP1;2 transcripts are expressed mainly in the root tips, and that this expression is enhanced by Al but not by other metal stresses. Mutations in NIP1;2 lead to hyperaccumulation of toxic Al3+ in the root cell wall, inhibition of root-to-shoot Al translocation, and a significant reduction in Al tolerance. NIP1;2 facilitates the transport of Al-malate, but not Al3+ ions, in both yeast and Arabidopsis. We demonstrate that the formation of the Al-malate complex in the root tip apoplast is a prerequisite for NIP1;2-mediated Al removal from the root cell wall, and that this requires a functional root malate exudation system mediated by the Al-activated malate transporter, ALMT1. Taken together, these findings reveal a critical linkage between the previously identified Al exclusion mechanism based on root malate release and an internal Al tolerance mechanism identified here through the coordinated function of NIP1;2 and ALMT1, which is required for Al removal from the root cell wall, root-to-shoot Al translocation, and overall Al tolerance in Arabidopsis. PMID:28439024

  16. Root damage induced by intraosseous anesthesia. An in vitro investigation.

    PubMed

    Graetz, Christian; Fawzy-El-Sayed, Karim-Mohamed; Graetz, Nicole; Dörfer, Christof-Edmund

    2013-01-01

    The principle of the intraosseous anesthesia (IOA) relies on the perforation of the cortical plate of the bone for direct application of the local anesthetic solution into the underlying cancellous structures. During this procedure, IOA needles might accidentally come in contact with the tooth roots. The aim of the current in vitro study was to examine the consequences of this 'worst case scenario' comparing five commercially available IOA systems. Extracted human roots were randomly perforated using five different IOA systems with a drilling time ≤5s. To simulate normal in vivo conditions, the roots were kept humid during the drilling procedure. Data was statistically evaluated using F-test (SPSS16, SPSS Inc., Chicago, USA) and the significance level was set at p ≤ 0.05. All examined systems resulted in root perforation. Drill fractures occurred in either none 0% (Quicksleeper, Anesto, Intraflow, Stabident) or 100% (X-Tip) of the applications. Excessive heat generation, as evident by combustion odor as well as metal and tooth discoloration, appeared in 30% (Quicksleeper), 40% (Anesto), 60% (Intraflow), 90% (Stabident) and 100% (X-Tip) of all perforations. Within the limits of in-vitro studies, the results show a potential for irreversible root damage that might be inflicted by an improper use of IOA systems.

  17. Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L.

    PubMed

    Liu, Donghua; Jiang, Wusheng; Meng, Qingmin; Zou, Jin; Gu, Jiegang; Zeng, Muai

    2009-04-01

    Different copper concentrations, as well as different exposure times, were applied to investigate both cytogenetical and ultrastructural alterations in garlic (Allium sativum L.) meristem cells. Results showed that the mitotic index decreased progressively when either copper concentration or exposure time increased. C-mitosis, anaphase bridges, chromosome stickiness and broken nuclei were observed in the copper treated root tip cells. Some particulates containing the argyrophilic NOR-associated proteins were distributed in the nucleus of the root-tip cells and the amount of this particulate material progressively increased with increasing exposure time. Finally, the nucleolar material was extruded from the nucleus into the cytoplasm. Also, increased dictyosome vesicles in number, formation of cytoplasmic vesicles containing electron dense granules, altered mitochondrial shape, disruption of nuclear membranes, condensation of chromatin material, disintegration of organelles were observed. The mechanisms of detoxification and tolerance of copper are briefly discussed.

  18. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments

    PubMed Central

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48–68°N) in Norway spruce (Picea abies (L.) Karst) and (53–66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994–2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages. PMID:24032035

  19. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments.

    PubMed

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.) Karst) and (53-66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994-2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.

  20. Apoplastic Alkalinization Is Instrumental for the Inhibition of Cell Elongation in the Arabidopsis Root by the Ethylene Precursor 1-Aminocyclopropane-1-Carboxylic Acid1[W][OA

    PubMed Central

    Staal, Marten; De Cnodder, Tinne; Simon, Damien; Vandenbussche, Filip; Van Der Straeten, Dominique; Verbelen, Jean-Pierre; Elzenga, Theo; Vissenberg, Kris

    2011-01-01

    In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200–450 μm proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the adjacent proximal region (450 μm away from the root tip up to the first root hair) with a high rate of elongation. In this study, the surface pH was measured in both zones using the microelectrode ion flux estimation technique. The surface pH is highest in the apical part of the transition zone and is lowest at the basal part of the fast elongation zone. Fast cell elongation is inhibited within minutes by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid; concomitantly, apoplastic alkalinization occurs in the affected root zone. Fusicoccin, an activator of the plasma membrane H+-ATPase, can partially rescue this inhibition of cell elongation, whereas the inhibitor N,N′-dicyclohexylcarbodiimide does not further reduce the maximal cell length. Microelectrode ion flux estimation experiments with auxin mutants lead to the final conclusion that control of the activity state of plasma membrane H+-ATPases is one of the mechanisms by which ethylene, via auxin, affects the final cell length in the root. PMID:21282405

  1. Root damage induced by intraosseous anesthesia–An in vitro investigation

    PubMed Central

    Fawzy-El-Sayed, Karim M.; Graetz, Nicole; Dörfer, Christof-Edmund

    2013-01-01

    Objectives: The principle of the intraosseous anesthesia (IOA) relies on the perforation of the cortical plate of the bone for direct application of the local anesthetic solution into the underlying cancellous structures. During this procedure, IOA needles might accidentally come in contact with the tooth roots. The aim of the current in vitro study was to examine the consequences of this ‘worst case scenario’ comparing five commercially available IOA systems. Material and Methods: Extracted human roots were randomly perforated using five different IOA systems with a drilling time ≤5s. To simulate normal in vivo conditions, the roots were kept humid during the drilling procedure. Data was statistically evaluated using F-test (SPSS16, SPSS Inc., Chicago, USA) and the significance level was set at p≤0.05. Results: All examined systems resulted in root perforation. Drill fractures occurred in either none 0% (Quicksleeper®, Anesto®, Intraflow®, Stabident®) or 100% (X-Tip®) of the applications. Excessive heat generation, as evident by combustion odor as well as metal and tooth discoloration, appeared in 30% (Quicksleeper®), 40% (Anesto®), 60% (Intraflow®), 90% (Stabident®) and 100% (X-Tip®) of all perforations. Conclusion: Within the limits of in-vitro studies, the results show a potential for irreversible root damage that might be inflicted by an improper use of IOA systems. Key words:Intraosseous anesthesia, complication, root damage. PMID:23229260

  2. Immunolocalization of integrin-like proteins in Arabidopsis and Chara

    NASA Technical Reports Server (NTRS)

    Katembe, W. J.; Swatzell, L. J.; Makaroff, C. A.; Kiss, J. Z.

    1997-01-01

    Integrins are a large family of integral plasma membrane proteins that link the extracellular matrix to the cytoskeleton in animal cells. As a first step in determining if integrin-like proteins are involved in gravitropic signal transduction pathways, we have used a polyclonal antibody against the chicken beta1 integrin subunit in western blot analyses and immunofluorescence microscopy to gain information on the size and location of these proteins in plants. Several different polypeptides are recognized by the anti-integrin antibody in roots and shoots of Arabidopsis and in the internodal cells and rhizoids of Chara. These cross-reactive polypeptides are associated with cellular membranes, a feature which is consistent with the known location of integrins in animal systems. In immunofluorescence studies of Arabidopsis roots, a strong signal was obtained from labeling integrin-like proteins in root cap cells, and there was little or no immunolabel in other regions of the root tip. While the antibody stained throughout Chara rhizoids, the highest density of immunolabel was at the tip. Thus, in both Arabidopsis roots and Chara rhizoids, the sites of gravity perception/transduction appear to be enriched in integrin-like molecules.

  3. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings

    PubMed Central

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2011-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth. PMID:22423233

  4. TRANSGENIC PLANTS - INSECTICIDAL TOXIN IN ROOT EXUDATES FROM BT CORN. (R826107)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Trehalose-related gene deletions in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a widespread corn pathogen that causes root, stalk, and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioide...

  6. Trehalose-related Gene Deletions in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a widespread corn pathogen that causes root, stalk and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioides...

  7. Hormonal regulation of gravitropic bending

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.

    Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending

  8. Efficiency of a zinc lignosulfonate as Zn source for wheat (Triticum aestivum L.) and corn (Zea mays L.) under hydroponic culture conditions.

    PubMed

    Martín-Ortiz, Diego; Hernández-Apaolaza, Lourdes; Gárate, Agustin

    2009-01-14

    The objective of this study was to evaluate the efficiency of a zinc lignosulfonate (ZnLS) as Zn source for wheat and corn plants under hydroponic conditions. The Zn-complexing capacity of three commercial lignosulfonates (byproducts of the paper and pulp industry) was tested, and a LS-NH4, from spruce wood, was selected. Its efficacy as Zn fertilizer for wheat and corn plants was assessed at different pH values (7.0 and 8.0) in comparison with a chelate (ZnEDTA) and an inorganic salt (ZnSO4). For wheat at pH 7.0, it was concluded that the efficacy of the Zn fertilizers followed the sequence Zn-EDTA > Zn-LS approximately ZnSO4 > zero-Zn; and for wheat and corn at pH 8.0, similar results were obtained: Zn-LS > ZnSO4 approximately 0 Zn. These data give evidence that ZnLS could be used as Zn source to the roots of wheat and corn and seems to be more efficient than ZnSO4 to correct Zn deficiency in both plants.

  9. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil

    PubMed Central

    Abuarab, Mohamed; Mostafa, Ehab; Ibrahim, Mohamed

    2012-01-01

    Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration. A field study was conducted in 2010 and 2011, to evaluate the effect of air-injection into the irrigation stream in SDI on the performance of corn. Experimental treatments were drip irrigation (DI), SDI, and SDI with air injection. The leaf area per plant with air injected was 1.477 and 1.0045 times greater in the aerated treatment than in DI and SDI, respectively. Grain filling was faster, and terminated earlier under air-injected drip system, than in DI. Root distribution, stem diameter, plant height and number of grains per plant were noticed to be higher under air injection than DI and SDI. Air injection had the highest water use efficiency (WUE) and irrigation water use efficiency (IWUE) in both growing seasons; with values of 1.442 and 1.096 in 2010 and 1.463 and 1.112 in 2011 for WUE and IWUE respectively. In comparison with DI and SDI, the air injection treatment achieved a significantly higher productivity through the two seasons. Yield increases due to air injection were 37.78% and 12.27% greater in 2010 and 38.46% and 12.5% in 2011 compared to the DI and SDI treatments, respectively. Data from this study indicate that corn yield can be improved under SDI if the drip water is aerated. PMID:25685457

  10. An improved method for chromosome counting in maize.

    PubMed

    Kato, A

    1997-09-01

    An improved method for counting chromosomes in maize (Zea mays L.) is presented. Application of cold treatment (5C, 24 hr), heat treatment (42 C, 5 min) and a second cold treatment (5C, 24 hr) to root tips before fixation increased the number of condensed and dispersed countable metaphase chromosome figures. Fixed root tips were prepared by the enzymatic maceration-air drying method and preparations were stained with acetic orcein. Under favorable conditions, one preparation with 50-100 countable chromosome figures could be obtained in diploid maize using this method. Conditions affecting the dispersion of the chromosomes are described. This technique is especially useful for determining the somatic chromosome number in triploid and tetraploid maize lines.

  11. Ultrasonic irrigation of a maxillary lateral incisor with perforation of the apical third of the root.

    PubMed

    Tsurumachi, Tamotsu; Takita, Toshiya; Hashimoto, Kazuhiro; Katoh, Takeshi; Ogiso, Bunnai

    2010-12-01

    We describe the successful use of a combination of nonsurgical root canal treatment and ultrasonic irrigation for collaborative management of a maxillary left lateral incisor with perforation of the apical third of the root. During the endodontic treatment procedure, the ultrasonically activated tip was used for intracanal irrigation. The area of perforation in the apical third of the root and the main root canal space were obturated with gutta-percha and root canal sealer, using a lateral condensation method. A follow-up clinical and radiographic examination at 5 years after treatment showed an asymptomatic tooth with excellent osseous healing.

  12. Nitrous oxide fluxes from cultivated areas and rangeland: U.S. High Plains

    USGS Publications Warehouse

    Weeks, Edwin P.; McMahon, Peter B.

    2007-01-01

    Concentration profiles of N2O, a greenhouse gas, and the conservative trace gases SF6 and the chlorofluorocarbons CFC-11, CFC-12, CFC-113, and were measured periodically through thick vadose zones at nine sites in the U.S. High Plains. The CFC and SF6 measurements were used to calibrate a one-dimensional gas diffusion model, using the parameter identification program UCODE. The calibrated model was used with N2O measurements to estimate average annual N2O flux from both the root zone and the deep vadose zone to the atmosphere. Estimates of root-zone N 2O fluxes from three rangeland sites ranged from near 0 to about 0.2 kg N2O-N ha-1 yr-1, values near the low end of the ranges determined for native grass from other studies. Estimates of root-zone N2O fluxes from two fields planted to corn (Zea mays L.) of about 2 to 6 kg N2O-N ha-1 yr-1 are similar to those determined for corn in other studies. Estimates of N2O flux from Conservation Reserve grassland converted from irrigated corn indicate that production of N2O is substantially reduced following conversion from cropland. Small N2O fluxes from the water table or from deep in the vadose zone occurred at three sites, ranging from 0.004 to 0.02 kg N 2O-N ha-1 yr-1. Our estimates of N2O flux represent space- and time-averaged values that should be useful to more fully evaluate the significance of instantaneous point flux measurements. ?? Soil Science Society of America.

  13. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model

    NASA Astrophysics Data System (ADS)

    Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki

    2018-05-01

    To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model.

  14. Rooting cuttings of shrub species for plantings in California wildlands

    Treesearch

    Eamor C. Nord; J. R. Goodin

    1970-01-01

    Selected shrub species are being studied in southern California for their possible fuel volume or slow burning characteristics. In propagation tests, five species-fourwing, Gardner's, Nuttall's, and allscale saltbushes; and creeping sage - rooted successfully from green tip and ripewood stem cuttings taken in spring and fall and placed under intermittent mist...

  15. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait

    PubMed Central

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G.

    2013-01-01

    Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses. PMID:23666887

  16. Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice

    PubMed Central

    Ma, Jian Feng; Goto, Shoko; Tamai, Kazunori; Ichii, Masahiko

    2001-01-01

    The rice plant (Oryza sativa L. cv Oochikara) is known to be a Si accumulator, but the mechanism responsible for the high uptake of Si by the roots is not well understood. We investigated the role of root hairs and lateral roots in the Si uptake using two mutants of rice, one defective in the formation of root hairs (RH2) and another in that of lateral roots (RM109). Uptake experiments with nutrient solution during both a short term (up to 12 h) and relatively long term (26 d) showed that there was no significant difference in Si uptake between RH2 and the wild type (WT), whereas the Si uptake of RM109 was much less than that of WT. The number of silica bodies formed on the third leaf in RH2 was similar to that in WT, but the number of silica bodies in RM109 was only 40% of that in WT, when grown in soil amended with Si under flooded conditions. There was also no difference in the shoot Si concentration between WT and RH2 when grown in soil under upland conditions. Using a multi-compartment transport box, the Si uptake at the root tip (0–1 cm, without lateral roots and root hairs) was found to be similar in WT, RH2, and RM109. However, the Si uptake in the mature zone (1–4 cm from root tip) was significantly lower in RM109 than in WT, whereas no difference was found in Si uptake between WT and RH2. All these results clearly indicate that lateral roots contribute to the Si uptake in rice plant, whereas root hairs do not. Analysis of F2 populations between RM109 and WT showed that Si uptake was correlated with the presence of lateral roots and that the gene controlling formation of lateral roots and Si uptake is a dominant gene. PMID:11743120

  17. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait.

    PubMed

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G

    2013-07-01

    Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses.

  18. A Galacturonic Acid–Containing Xyloglucan Is Involved in Arabidopsis Root Hair Tip Growth[W

    PubMed Central

    Peña, Maria J.; Kong, Yingzhen; York, William S.; O’Neill, Malcolm A.

    2012-01-01

    Root hairs provide a model system to study plant cell growth, yet little is known about the polysaccharide compositions of their walls or the role of these polysaccharides in wall expansion. We report that Arabidopsis thaliana root hair walls contain a previously unidentified xyloglucan that is composed of both neutral and galacturonic acid–containing subunits, the latter containing the β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→ and/or α-l-fucosyl-(1→2)-β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→) side chains. Arabidopsis mutants lacking root hairs have no acidic xyloglucan. A loss-of-function mutation in At1g63450, a root hair–specific gene encoding a family GT47 glycosyltransferase, results in the synthesis of xyloglucan that lacks galacturonic acid. The root hairs of this mutant are shorter than those of the wild type. This mutant phenotype and the absence of galacturonic acid in the root xyloglucan are complemented by At1g63450. The leaf and stem cell walls of wild-type Arabidopsis contain no acidic xyloglucan. However, overexpression of At1g63450 led to the synthesis of galacturonic acid–containing xyloglucan in these tissues. We propose that At1g63450 encodes XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE1, which catalyzes the formation of the galactosyluronic acid-(1→2)-α-d-xylopyranosyl linkage and that the acidic xyloglucan is present only in root hair cell walls. The role of the acidic xyloglucan in root hair tip growth is discussed. PMID:23175743

  19. Generation and multiplication of plantlets from callus derived from Haplopappus gracilus (Nutt.) Gray and their karyotype analysis

    NASA Technical Reports Server (NTRS)

    Kann, R. P.; O'Connor, S. A.; Levine, H. G.; Krikorian, A. D.

    1991-01-01

    Unopened flower heads of Haplopappus gracilis (2n = 4) provided primary explants for callus production and subsequent induction of organized growth. Callus was initiated from small (3-5 mm in length) floral buds with benzylaminopurine (BAP) (44.4 micromoles; 10 mg/l) and naphthalene acetic acid (NAA) (0.54 micromole; 0.1 mg/l). Lowering the BAP level to 4.44 micromoles (1 mg/l) but maintaining the NAA level, gave rise to organized but highly compressed shoot growing points from an otherwise undifferentiated callus mass. Shoots selected from such cultures were maintainable and could be proliferated by growing 1-1.5-cm stem tip cuttings on Murashige and Skoog basal medium (solidified with agar) containing 0.444 micromole (0.1 mg/l) BAP and 0.054 micromole (0.01 mg/l) NAA. The stem tip multiplication rates obtainable by these means permit reliable strategies for shoot multiplication or production of rooted plantlets. Prolonged subculture and maintenance of shoots on growth regulator-free medium leads to in vitro flowering and greatly reduces rooting capacity. Karyotype analysis of chromosomes from root tip cells at metaphase and chromosome measurements show that karyologically uniform plantlets (based on chromosome number and morphology) can be obtained.

  20. Comparison of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips of Nicotiana and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Giddings, T. H. Jr; Staehelin, L. A.; Sack, F. D.

    1990-01-01

    To circumvent the limitations of chemical fixation (CF) and to gain more reliable structural information about higher plant tissues, we have cryofixed root tips of Nicotiana and Arabidopsis by high pressure freezing (HPF). Whereas other freezing techniques preserve tissue to a relatively shallow depth, HPF in conjunction with freeze substitution (FS) resulted in excellent preservation of entire root tips. Compared to CF, in tissue prepared by HPF/FS: (1) the plasmalemma and all internal membranes were much smoother and often coated on the cytoplasmic side by a thin layer of stained material, (2) the plasmalemma was appressed to the cell wall, (3) organelle profiles were rounder, (4) the cytoplasmic, mitochondrial, and amyloplast matrices were denser, (5) vacuoles contained electron dense material, (6) microtubules appeared to be more numerous and straighter, with crossbridges observed between them, (7) cisternae of endoplasmic reticulum (ER) were wider and filled with material, (8) Golgi intercisternal elements were more clearly resolved and were observed between both Golgi vesicles and cisternae, and (9) larger vesicles were associated with Golgi stacks. This study demonstrates that HPF/FS can be used to successfully preserve the ultrastructure of relatively large plant tissues without the use of intracellular cryoprotectants.

  1. Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons

    PubMed Central

    Landeweert, Renske; Leeflang, Paula; Kuyper, Thom W.; Hoffland, Ellis; Rosling, Anna; Wernars, Karel; Smit, Eric

    2003-01-01

    Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (≥99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had ≥98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil. PMID:12514012

  2. Incorporation and translocation of 2-deoxy-2-[(18)F]fluoro-D-glucose in Sorghum bicolor (L.) Moench monitored using a planar positron imaging system.

    PubMed

    Hattori, Etsuko; Uchida, Hiroshi; Harada, Norihiro; Ohta, Mari; Tsukada, Hideo; Hara, Yasuhiro; Suzuki, Tetsuya

    2008-04-01

    [(18)F]FDG (2-deoxy-2-[(18)F]fluoro-D-glucose) was fed to a sorghum plant [Sorghum bicolor (L.) Moench] from the tip of a leaf and its movement was monitored using a planar positron imaging system (PPIS). [(18)F]FDG was uptaken from the leaf tip and it was translocated to the basal part of the shoots from where it moved to the roots, the tillers and the sheaths. Autoradiographic analysis of the distribution of (18)F, [(18)F]FDG and/or its metabolites showed translocation to the roots, tillers, and to the leaves that were younger than the supplied leaf. Strong labelling was observed in the basal part of the shoots, in the sheaths, the youngest leaf and the root tips. Our results indicate that [(18)F]FDG and/or its metabolites were absorbed from the leaf and translocated to the sites where nutrients are required. This strongly suggests that [(18)F]FDG can be utilised as a tracer to study photoassimilate translocation in the living plant. This is the first report on the use of [(18)F]FDG, which is routinely used as a probe for clinical diagnosis, to study source to sink translocation of metabolites in whole plants in real time.

  3. 40 CFR 180.474 - Tebuconazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Barley, hay 7.0 Barley, straw 3.5 Bean, dry seed 0.1 Bean, succulent 0.1 Beet, garden, roots 0.70 Beet..., tart, pre- and post-harvest 5.0 Coffee, green bean 1 0.15 Coffee, roasted bean 1 0.3 Corn, field...

  4. 40 CFR 180.474 - Tebuconazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Barley, hay 7.0 Barley, straw 3.5 Bean, dry seed 0.1 Bean, succulent 0.1 Beet, garden, roots 0.70 Beet..., tart, pre- and post-harvest 5.0 Coffee, green bean 1 0.15 Coffee, roasted bean 1 0.3 Corn, field...

  5. 40 CFR 180.474 - Tebuconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Barley, hay 7.0 Barley, straw 3.5 Bean, dry seed 0.1 Bean, succulent 0.1 Beet, garden, roots 0.70 Beet..., tart, pre- and post-harvest 5.0 Coffee, green bean 1 0.15 Coffee, roasted bean 1 0.3 Corn, field...

  6. Gene expression of H+-pumps in plasma and vacuolar membranes of corn root cells under the effect of sodium ions and bioactive preparations.

    PubMed

    Kovalenko, N O; Palladina, T A

    2016-01-01

    Four isoforms of H+-ATPase of plasma membrane: MHA1, MHA2, MHA3, MHA4 are expressed in the corn seedling roots with prevalence of genes MHA3 і MHA4. The exposure of seedlings in the presence of 0.1 M NaCl activated the expression of MHA4 gene isoform, that demonstrates its important role in the processes of adaptation to salinization conditions. In vacuolar membrane, where potential is created by two Н+-pumps, sodium ions activated gene expression of only Н+-АТРase of V-type, taking no effect on the expression of Н+-pyrophosphatase. The seeds pretreatment by synthetic preparations Methyure and Ivine did not affect gene expression of Н+-pumps. Thus we can suppose that the ability of the above preparations to activate functioning of Н+-pumps in the presence of sodium ions is realized at the post-tranlation level.

  7. Light regulation of the growth response in corn root gravitropism

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Roots of Merit variety corn (Zea mays L.) require red light for orthogravitropic curvature. Experiments were undertaken to identify the step in the pathway from gravity perception to asymmetric growth on which light may act. Red light was effective in inducing gravitropism whether it was supplied concomitant with or as long as 30 minutes after the gravity stimulus (GS). The presentation time was the same whether the GS was supplied in red light or in darkness. Red light given before the GS slightly enhanced the rate of curvature but had little effect on the lag time or on the final curvature. This enhancement was expanded by a delay between the red light pulse and the GS. These results indicate that gravity perception and at least the initial transduction steps proceed in the dark. Light may regulate the final growth (motor) phase of gravitropism. The time required for full expression of the light enhancement of curvature is consistent with its involvement in some light-stimulated biosynthetic event.

  8. Use of higher plants as screens for toxicity assessment.

    PubMed

    Kristen, U

    1997-01-01

    This review deals with the use of entire plants, seedlings, cell suspension cultures and pollen tubes for the estimation of potential toxicity in the environment, and for risk assessment of chemicals and formulations of human relevance. It is shown that the roots of onions and various crop seedlings, as well as in vitro growing pollen tubes of some mono- and dicotyledonous plants, are most frequently used to obtain toxicity data by determination of root and tube growth inhibition. Both roots and pollen tubes are chloroplast free, non-photosynthetic systems and, therefore, with regard to their cytotoxic reactions are closer to vertebrate tissues and cells than are chloroplast-containing plant organs. Root tips and anthers of flower buds are shown to be applicable to genotoxicity screening by microscopic analysis of mitotic or meiotic aberrations during cell division or microspore development, respectively. The processes of mitosis and meiosis are similar in plants and animals. Therefore, meristematic and sporogenic tissues of plants generally show patterns of cytotoxic response similar to those of embryogenic and spermatogenic tissues of vertebrates. The suitability of root tips, cell suspensions and pollen tubes for the investigation of mechanisms of toxic action and for the analysis of structure-activity relationships is also demonstrated. Two plant-based assays, the Allium test and the pollen tube growth test, both currently being evaluated alongside with established mammalian in vivo and in vitro protocols, are emphasized with regard to their potential use as alternatives to animal in vivo toxicity tests. For both assays, preliminary results indicate that the tips of growing roots and the rapidly elongating pollen tubes of certain higher plant species are as reliable as mammalian cell lines for detecting basal cytotoxicity. It is suggested that seeds and pollen grains, in particular, provide easily storable and convenient systems for inexpensive, relatively simple but precise toxicological assays. (c) 1997 Elsevier Science Ltd.

  9. Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Hasenstein, K. H.; Evans, M. L.

    1991-01-01

    We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.

  10. Comparative assessment of the polypeptide profiles from lateral and primary roots of Phaseolus vulgaris L

    NASA Technical Reports Server (NTRS)

    Westberg, J.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    In Phaseolus vulgaris, primary roots show gravitational sensitivity soon after emerging from the seed. In contrast, lateral roots are agravitropic during early development, and become gravitropic after several cm growth. Primary and lateral root tissues were examined by polyacrylamide gel electrophoresis, coupled with western blotting techniques, to compare proteins which may contribute to the acquisition of gravitational sensitivity. Root tips and zones of cell elongation were compared for each root type, using immunological probes for calmodulin, alpha-actin, alpha-tubulin, and proteins of the plastid envelope. Lateral roots contained qualitatively less calmodulin, and showed a slightly different pattern of actin-related epitope proteins, than did primary root tissues, suggesting that polypeptide differences may contribute to the gravitational sensitivity which these root types express.

  11. Genetical approach to gravitropism

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Chen, R.; Guan, C.; Rosen, E.; Young, L.; Masson, P.

    Gravitropism guides the growth of plant organs at a defined angle from the gravity vector. Accordingly, most roots grow downward, undergoing positive gravitropism. Gravity perception by roots appears to involve the sedimentation of amyloplasts within the columella cells of the cap. Amyloplast sedimentation triggers a signal transduction pathway that promotes the development of an auxin gradient across the root tip. This gradient is then transmitted to the elongation zones where it promotes a differential cellular elongation, partly responsible for the development of a root-tip curvature. To better understand the mechanisms involved in gravity signal transduction, we have identified and characterized several Arabidopsis thaliana mutants that show specific defects in root gravitropism. Several of these genes were characterized. ARG1 functions in gravity signal transduction, and encodes a dnaJ-like protein whose structure suggests an interaction with the cytoskeleton. Two other genes encode similar proteins (ARL1 and ARL2) in Arabidopsis. One of them (ARL2) also appears to function in gravity signal transduction. Because loss-of-function mutations in ARG1 result in partial alterations of gravitropism, we were able to identify and characterize two genetic enhancers of arg1-2: mar1-1 and mar2-1. These enhancers increased the gravitropism defect of arg1-2 roots and hypocotyls, and changed its orientation. Hence, MAR1 and MAR2 also appear to function in gravity signal transduction. AGR1, on the other hand, encodes a transmembrane component of the auxin efflux carrier complex involved in polar auxin transport through the elongation zones of Arabidopsis root tips. It belongs to a large gene family, several members of which are expressed in the root cap. Upon gravistimulation, the AGR3 protein appears to quickly relocate within the columella cells, accumulating in membranes at the new physical bottom. Hence, the gravity signal transduction pathway that includes the ARG1, ARL2, MAR1 and MAR2 gene products, appears to control the cellular distribution of auxin efflux carriers in the columella cells of the root cap, thereby controlling the polarity of lateral auxin transport in response to gravistimulation. Work is in progress to identify new proteins that interact genetically or physically with ARG1, ARL2 or AGR1, and characterize their involvement in gravitropism.

  12. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  13. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation

    PubMed Central

    Kim, Min Jeong; Shim, Chang Ki; Kim, Yong Ki; Hong, Sung Jun; Park, Jong Ho; Han, Eun Jung; Kim, Jin Ho; Kim, Suk Chul

    2015-01-01

    This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO−3-N than NH+4-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition. PMID:26361474

  14. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation.

    PubMed

    Kim, Min Jeong; Shim, Chang Ki; Kim, Yong Ki; Hong, Sung Jun; Park, Jong Ho; Han, Eun Jung; Kim, Jin Ho; Kim, Suk Chul

    2015-09-01

    This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO(-) 3-N than NH(+) 4-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition.

  15. Distribution host status and potential sources of resistance to Vittatidera zeaphila

    USDA-ARS?s Scientific Manuscript database

    Vittatidera zeaphila was described from stunted Zea mays (corn) roots collected in northwestern Tennessee (Obion County) in 2006. Similar cyst specimens had previously been collected in 1978 from Lauderdale County, TN, on Eleusine indica (goosegrass). Comparison of the 1978 specimens deposited in t...

  16. Doppler-guided retrograde catheterization system

    NASA Astrophysics Data System (ADS)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the catheter tip is placed in the aortic root. Such technology may conceivably assist in allowing selective coronary catheterization. These studies have demonstrated that Doppler guided retrograde catheterization provides an accurate method to catheterization the aortic root and left ventricular chamber without x-ray. In humans, it may prove useful in a variety of settings including the development of invasive ultrasonic diagnostic and therapeutic technology.

  17. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    PubMed

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    • Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Dietary Fat Feeding Alters Lipid Peroxidation in Surfactant-like Particles Secreted by Rat Small Intestine.

    PubMed

    Turan, Aasma; Mahmood, Akhtar; Alpers, David H

    2009-04-01

    Long-term feeding of fish oil (n-3) and corn oil (n-6) markedly enhances levels of lipid peroxidation within isolated rat enterocytes. The effect is 10-fold greater at the villus tip than in the crypt region, correlating with the distribution of deleterious oxidative systems (glutathione reductase) in the tip and beneficial systems (superoxide dismutase) at the base of the villus. Because of this vertical gradient of peroxidation, the process was thought to play a role in apoptosis of enterocytes at the villus tip. Surfactant-like particles (SLPs) are membranes secreted by the enterocyte and a component of these membranes is directed to the intestinal surface overlying villus tips. One suggested role for SLPs has been to protect the mucosal surface from the harsh luminal conditions that might enhance apoptotic loss of enterocytes. The hypothesis to be tested was whether SLP lipids, like those in enterocytes, were also peroxidized, although they were external to the cellular processes that seem to oxidize enterocyte lipids, or whether SLP were immune to these biological processes. Feeding with groundnut oil (n-9) was compared with fish oil (n-3) and corn oil (predominantly n-6) to determine whether oils with various lipid composition would affect peroxidation in both SLP and enterocytes. After an overnight fast, Wistar rats were fed 2 mL of dietary oil by gavage. Five hours later SLPs and underlying microvillus membranes (MVM) were isolated and analyzed for generation of thiobarbituric acid reactive substances (TBARS) and for hydrolase activities, at baseline and after addition of an Fe +2 /ascorbate system to induce peroxidation. In vitro lipid peroxidation using the Fe 2+ /ascorbate system produced greater peroxidation than in MVM. Intestinal alkaline phosphatase (IAP), sucrase and lactase activities were decreased in SLPs, but were unaltered in MVM except for IAP. The activities of maltase, trehalase, Leucine aminopeptidase and γ-glutamyltranspeptidase, were unaffected both in SLPs and MVM under these conditions. SLPs are more susceptible to oxidative damage than are the underlying MVMs. This may reflect results of a hostile luminal environment. It is not clear whether SLPs are acting as a lipid 'sink' to protect the MVM from greater oxidation, or are providing an initial stimulus for apoptosis of villus tip enterocytes, or both.

  19. Using survival analysis for assessing resistance to Phytophthora lateralis in Port-Orford-Cedar families

    Treesearch

    Sylvia R. Mori; Richard A. Sniezko; Angelia Kegley; Jim Hamlin

    2012-01-01

    In a greenhouse trial to examine genetic resistance among seedling families (half-sib, full-sib, and selfed) of Port-Orford-cedar (Chamaecyparis lawsoniana (A. Murr.) Parl.) to the root pathogen Phytophthora lateralis, the root tips of seedlings were inoculated, and the subsequent mortality was followed over a 3 year period....

  20. Ectomycorrihizae of Table Mountain Pine and the Influence of Prescribed Burning on their Survival

    Treesearch

    Lisa E. Ellis; Thomas A. Waldrop; Frank H. Tainter

    2002-01-01

    High-intensity prescribed fires have been recommended to regenerate Table Mountain pine (Pinus pungens). However, tests of these burns produced few seedlings, possibly due to soil sterilization. This study examined abundance of mycorrhizal root tips in the field after a high-intensity fire and in the laboratory after exposing rooting media to...

  1. [Effect of adaptogenic preparations on Na+/H+-antiporter function in plasma membrane of corn root cells under salinity conditions].

    PubMed

    Kovalenko, N O; Bilyk, Zh I; Palladina, T O

    2014-01-01

    Salinity is a hard stress factor for plant organisms which negative effect is caused chiefly by sodium toxic for plants. Plant cells try to remove Na+ from their cytoplasm outside and to vacuolar space by secondary active Na+/H+-antiporters. Their functions can be intensified by gene engineering methods however we try do it with the help of non-toxic bioactive preparations. A comparison of their effect on the plasma membrane of Na+/H+-antiporters was carried out on corn seedling roots of Zea mays L. exposed at 0.1 M NaCl. Before we have established that Methyure used by seed pretreating possesses a high salt protective ability as against Ivine. It was found that without NaCl exposition Na+/H+-antiporter activity in root plasma membrane was nearly unnoticeable but increased slightly with seedling age. Methyure and Ivine did not influence its activity in control root seedling. One day 0.1 M NaCl exposition evoked a considerable increasing of Na+/H+-antiporter activity and its gene expression but these effects disappeared at 10 day NaCl exposition. Methyure use reinforced Na+/H+-antiporter activity and prolonged it at NaCl exposition without effect on its gene expression whereas Ivine effects on these indexes were insignificant. Obtained results showed that the salt protective capability of Methyure is connected with plasma membrane Na+/H+-antiporter activation which is realized on molecular level.

  2. Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic

    NASA Technical Reports Server (NTRS)

    Moore, R.; Evans, M. L.; Fondren, W. M.

    1990-01-01

    Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.

  3. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode.

    PubMed

    Han, Chao; Ren, Jinghua; Tang, Hao; Xu, Di; Xie, Xianchuan

    2016-11-01

    Oxygen (O2) availability within the sediment-root interface is critical to the survival of macrophytes in O2-deficient sediment; however, our knowledge of the fine-scale impact of macrophyte roots upon the spatiotemporal dynamics of O2 is relatively limited. In this study, a non-invasive imaging technology was utilized to map O2 micro-distribution around Vallisneria spiralis. Long-term imaging results gathered during a 36day-period revealed an abundance of O2 spatiotemporal patterns ranging from 0 to 250μmolL(-1). The root-induced O2 leakage and consequent oxygenated area were stronger in the vicinity of the basal root compared to that found in the root tip. The O2 images revealed V. spiralis exhibited radial O2 loss (ROL) along the entire root, and the O2 distribution along the root length showed a high degree of small-scale spatial heterogeneity decreasing from 80% at the basal root surface to 10% at the root tip. The oxygenated zone area around the roots increased as O2 levels increased with root growth and irradiance intensities ranging from 0 to 216μmol photons m(-2)s(-1). A weak ROL measuring <20% air saturation around the basal root surface was maintained in darkness, which was presumably attributed to the O2 supply from overlying water via plant aerenchyma. The estimated total O2 release to the rhizosphere of V. spiralis was determined to range from 8.80±7.32 to 30.34±17.71nmolm(-2)s(-1), which is much higher than many other macrophyte species. This O2 release may be an important contribution to the high-capacity of V. spiralis for quickly colonizing anaerobic sediment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere.

    PubMed

    Gaspardo, B; Del Zotto, S; Torelli, E; Cividino, S R; Firrao, G; Della Riccia, G; Stefanon, B

    2012-12-01

    Fourier transform near infrared (FT-NIR) spectroscopy is an analytical procedure generally used to detect organic compounds in food. In this work the ability to predict fumonisin B(1)+B(2) contents in corn meal using an FT-NIR spectrophotometer, equipped with an integration sphere, was assessed. A total of 143 corn meal samples were collected in Friuli Venezia Giulia Region (Italy) and used to define a 15 principal components regression model, applying partial least square regression algorithm with full cross validation as internal validation. External validation was performed to 25 unknown samples. Coefficients of correlation, root mean square error and standard error of calibration were 0.964, 0.630 and 0.632, respectively and the external validation confirmed a fair potential of the model in predicting FB(1)+FB(2) concentration. Results suggest that FT-NIR analysis is a suitable method to detect FB(1)+FB(2) in corn meal and to discriminate safe meals from those contaminated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Wind blade spar cap and method of making

    DOEpatents

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  6. Rotor with Flattened Exit Pressure Profile

    NASA Technical Reports Server (NTRS)

    Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)

    2015-01-01

    A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.

  7. Impact behavior of filament wound graphite/epoxy fan blades

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1978-01-01

    The fabrication and impact tests of graphite/epoxy filament wound fan blades are discussed. Blades which were spin tested at tip speeds up to 305 meters per second retained their structural integrity. Two blades were each impacted with a 454 gram slice of a 908 gram simulated bird at a tip speed of 263 meters per second and impact angles of 22 and 32 deg. The impact tests were recorded with high-speed movie film. The blade which was impacted at 22 deg sustained some root delamination but remained intact. The 32 deg impact separated the blade from the root. No local damage other than leading edge debonding was observed for either blade. Results of a failure mode analysis are also discussed.

  8. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba.

    PubMed

    Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z

    2000-07-20

    Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.

  9. Ancestral QTL Alleles from Wild Emmer Wheat Enhance Root Development under Drought in Modern Wheat.

    PubMed

    Merchuk-Ovnat, Lianne; Fahima, Tzion; Ephrath, Jhonathan E; Krugman, Tamar; Saranga, Yehoshua

    2017-01-01

    A near-isogenic line (NIL-7A-B-2), introgressed with a quantitative trait locus (QTL) on chromosome 7AS from wild emmer wheat ( Triticum turgidum ssp. dicoccoides ) into the background of bread wheat ( T. aestivum L.) cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environments. Here we tested the hypothesis that root-system modifications play a major role in NIL-7A-B-2's agronomical superiority. Root-system architecture (dry matter and projected surface area) and shoot parameters of NIL-7A-B-2 and 'BarNir' were evaluated at 40, 62, and 82 days after planting (DAP) in a sand-tube experiment, and root tip number was assessed in a 'cigar-roll' seedling experiment, both under well-watered and water-limited (WL) treatments. At 82 DAP, under WL treatment, NIL-7A-B-2 presented greater investment in deep roots (depth 40-100 cm) than 'BarNir,' with the most pronounced effect recorded in the 60-80 cm soil depth (60 and 40% increase for root dry matter and surface area, respectively). NIL-7A-B-2 had significantly higher root-tip numbers (∼48%) per plant than 'BarNir' under both treatments. These results suggest that the introgression of 7AS QTL from wild emmer wheat induced a deeper root system under progressive water stress, which may enhance abiotic stress resistance and productivity of domesticated wheat.

  10. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  11. Endosomal Interactions during Root Hair Growth.

    PubMed

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.

  12. Genotoxicity and growth inhibition effects of aniline on wheat.

    PubMed

    Tao, Nan; Liu, Guanyi; Bai, Lu; Tang, Lu; Guo, Changhong

    2017-02-01

    Aniline is a synthetic compound widely used in industrial and pesticide production, which can lead to environmental pollution. Its high concentration in rivers and lakes is hazardous to aquatic species. Although the mechanism of aniline toxicity has been studied extensively in animals and algae, little is known about its genotoxicity in plants. In this study, we investigated the genotoxicity effects of aniline on wheat root tip cells. The mitotic index of wheat root tip cells decreased when the aniline test concentration was higher than 10 mg L -1 . The frequency of micronucleus and chromosomal aberrations increased at aniline concentrations ranging between 5 and 100 mg L -1 , and reached 23.3‰ ± 0.3‰ and 8.9‰ ± 0.68‰, respectively, at an aniline concentration of 100 mg L -1 . These values were sevenfold higher than those in the control group. The wheat seedlings showed various growth toxicity effects under different concentrations of aniline. The shoot height, root length, fresh weight, and dry weight of wheat seedlings decreased at aniline test concentrations ranging between 25 and 200 mg L -1 . At 200 mg L -1 aniline, the dry weight was only one-third that of the control group. Overall, the findings of this study provide evidence that aniline is a serious environmental pollutant causing deleterious genotoxic effects on wheat root tip cells and growth toxic effects on wheat seedlings. However, understanding the mechanisms that underlie aniline genotoxicity in plants needs further study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism

    PubMed Central

    Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie

    2016-01-01

    Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. PMID:27473572

  14. The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism.

    PubMed

    Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie

    2016-10-01

    Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Characterization of stuA mutants in the mycotoxigenic maize pathogen Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a major pathogen of maize, causing root, stalk and ear rots and seedling blight. It also produces fumonisin mycotoxins. Ingestion of fumonisin-contaminated corn causes acute toxicity in livestock and is a potential carcinogen to humans. StuA, an APSES protein class transc...

  16. Dynamic precision phenotyping reveals mechanism of crop tolerance to root herbivory

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm, Diabrotica virgifera virgifera (LeConte) is a major pest of maize, Zea mays L. Over the years, this pest has repeatedly shown its resilience and adaptability not only to traditional crop management strategies including chemical pesticides and crop rotation, but also to de...

  17. Using an optimal CC-PLSR-RBFNN model and NIR spectroscopy for the starch content determination in corn

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Lu, Jiangang

    2018-05-01

    Corn starch is an important material which has been traditionally used in the fields of food and chemical industry. In order to enhance the rapidness and reliability of the determination for starch content in corn, a methodology is proposed in this work, using an optimal CC-PLSR-RBFNN calibration model and near-infrared (NIR) spectroscopy. The proposed model was developed based on the optimal selection of crucial parameters and the combination of correlation coefficient method (CC), partial least squares regression (PLSR) and radial basis function neural network (RBFNN). To test the performance of the model, a standard NIR spectroscopy data set was introduced, containing spectral information and chemical reference measurements of 80 corn samples. For comparison, several other models based on the identical data set were also briefly discussed. In this process, the root mean square error of prediction (RMSEP) and coefficient of determination (Rp2) in the prediction set were used to make evaluations. As a result, the proposed model presented the best predictive performance with the smallest RMSEP (0.0497%) and the highest Rp2 (0.9968). Therefore, the proposed method combining NIR spectroscopy with the optimal CC-PLSR-RBFNN model can be helpful to determine starch content in corn.

  18. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.

    PubMed

    Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki

    2018-05-15

    To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Clonal propagation of Stevia rebaudiana Bertoni by stem-tip culture.

    PubMed

    Tamura, Y; Nakamura, S; Fukui, H; Tabata, M

    1984-10-01

    Clonal propagation of Stevia rebaudiana has been established by culturing stem-tips with a few leaf primordia on an agar medium supplemented with a high concentration (10 mg/l) of kinetin. Anatomical examination has suggested that these multiple shoots originate from a number of adventitious buds formed on the margin of the leaf. Innumerable shoots can be obtained by repeating the cycle of multiple-shoot formation from a single stem-tip of Stevia. These shoots produce roots when transferred to a medium containing NAA (0.1 mg/l) without kinetin. The regenerated plantlets can be transplanted to soil.

  20. Role of pectolytic enzymes in the programmed separation of cells from the root cap of higher plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawes, M.C.

    1995-03-01

    The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less

  1. Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.)

    PubMed Central

    Yang, Zhong-Bao; Eticha, Dejene; Rao, Idupulapati Madhusudana; Horst, Walter Johannes

    2010-01-01

    Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al3+, La3+, Sr2+, and Rb+ binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al3+ compared with other cations (Al3+ >> La3+ > Sr2+ > Rb+). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast. PMID:20511277

  2. Performance of STICS model to predict rainfed corn evapotranspiration and biomass evaluated for 6 years between 1995 and 2006 using daily aggregated eddy covariance fluxes and ancillary measurements.

    NASA Astrophysics Data System (ADS)

    Pattey, Elizabeth; Jégo, Guillaume; Bourgeois, Gaétan

    2010-05-01

    Verifying the performance of process-based crop growth models to predict evapotranspiration and crop biomass is a key component of the adaptation of agricultural crop production to climate variations. STICS, developed by INRA, was part of the models selected by Agriculture and Agri-Food Canada to be implemented for environmental assessment studies on climate variations, because of its built-in ability to assimilate biophysical descriptors such as LAI derived from satellite imagery and its open architecture. The model prediction of shoot biomass was calibrated using destructive biomass measurements over one season, by adjusting six cultivar parameters and three generic plant parameters to define two grain corn cultivars adapted to the 1000-km long Mixedwood Plains ecozone. Its performance was then evaluated using a database of 40 years-sites of corn destructive biomass and yield. In this study we evaluate the temporal response of STICS evapotranspiration and biomass accumulation predictions against estimates using daily aggregated eddy covariance fluxes. The flux tower was located in an experimental farm south of Ottawa and measurements carried out over corn fields in 1995, 1996, 1998, 2000, 2002 and 2006. Daytime and nighttime fluxes were QC/QA and gap-filled separately. Soil respiration was partitioned to calculate the corn net daily CO2 uptake, which was converted into dry biomass. Out of the six growing seasons, three (1995, 1998, 2002) had water stress periods during corn grain filling. Year 2000 was cool and wet, while 1996 had heat and rainfall distributed evenly over the season and 2006 had a wet spring. STICS can predict evapotranspiration using either crop coefficients, when wind speed and air moisture are not available, or resistance. The first approach provided higher prediction for all the years than the resistance approach and the flux measurements. The dynamic of evapotranspiration prediction of STICS was very good for the growing seasons without water stress and was overestimated by 12-34% when rainfall deficit occurred. The preliminary comparison with intra-seasonal biomass accumulation showed that the total corn biomass derived from eddy fluxes was closer to the shoot biomass predicted by STICS than to the total biomass. The root to shoot ratio predicted by STICS was higher (30-40%) than the ratio reported in the literature (~20%). Some of the parameters controlling root growth might need a better calibration. The assembled database will help us identify the areas of greater uncertainty requiring improvement.

  3. Response of long, flexible cantilever beams applied root motions. [spacecraft structures

    NASA Technical Reports Server (NTRS)

    Fralich, R. W.

    1976-01-01

    Results are presented for an analysis of the response of long, flexible cantilever beams to applied root rotational accelerations. Maximum values of deformation, slope, bending moment, and shear are found as a function of magnitude and duration of acceleration input. Effects of tip mass and its eccentricity and rotatory inertia on the response are also investigated. It is shown that flexible beams can withstand large root accelerations provided the period of applied acceleration can be kept small relative to the beam fundamental period.

  4. Fine-Root Ecology Database (FRED): A Global Collection of Root Trait Data with Coincident Site, Vegetation, Edaphic, and Climatic Data, Version 2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, C.M.; Powell, A.S.; McCormack, M.L.

    The second version of the Fine-Root Ecology Database is available for download! Download the full FRED 2.0 data set, user guidance document, map, and list of data sources here. Prior to downloading the data, please read and follow the Data Use Guidelines, and it's worth checking out some tips for using FRED before you begin your analyses. Also, see here for an updating list of corrections to FRED 2.0.

  5. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  6. Springback in Root Gravitropism 1

    PubMed Central

    Leopold, A. Carl; Wettlaufer, Scott H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as `springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalmaic acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a `memory' effect carried over from a prior gravistimulation. PMID:11537456

  7. Multiple piece turbine rotor blade

    DOEpatents

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  8. Transposition of branches of radial nerve innervating supinator to posterior interosseous nerve for functional reconstruction of finger and thumb extension in 4 patients with middle and lower trunk root avulsion injuries of brachial plexus.

    PubMed

    Wu, Xia; Cong, Xiao-Bing; Huang, Qi-Shun; Ai, Fang-Xin; Liu, Yu-Tian; Lu, Xiao-Cheng; Li, Jin; Weng, Yu-Xiong; Chen, Zhen-Bing

    2017-12-01

    This study aimed to investigate the reconstruction of the thumb and finger extension function in patients with middle and lower trunk root avulsion injuries of the brachial plexus. From April 2010 to January 2015, we enrolled in this study 4 patients diagnosed with middle and lower trunk root avulsion injuries of the brachial plexus via imaging tests, electrophysiological examinations, and clinical confirmation. Muscular branches of the radial nerve, which innervate the supinator in the forearm, were transposed to the posterior interosseous nerve to reconstruct the thumb and finger extension function. Electrophysiological findings and muscle strength of the extensor pollicis longus and extensor digitorum communis, as well as the distance between the thumb tip and index finger tip, were monitored. All patients were followed up for 24 to 30 months, with an average of 27.5 months. Motor unit potentials (MUP) of the extensor digitorum communis appeared at an average of 3.8 months, while MUP of the extensor pollicis longus appeared at an average of 7 months. Compound muscle action potential (CMAP) appeared at an average of 9 months in the extensor digitorum communis, and 12 months in the extensor pollicis longus. Furthermore, the muscle strength of the extensor pollicis longus and extensor digitorum communis both reached grade III at 21 months. Lastly, the average distance between the thumb tip and index finger tip was 8.8 cm at 21 months. In conclusion, for patients with middle and lower trunk injuries of the brachial plexus, transposition of the muscular branches of the radial nerve innervating the supinator to the posterior interosseous nerve for the reconstruction of thumb and finger extension function is practicable and feasible.

  9. Impact of needle insertion depth on the removal of hard-tissue debris.

    PubMed

    Perez, R; Neves, A A; Belladonna, F G; Silva, E J N L; Souza, E M; Fidel, S; Versiani, M A; Lima, I; Carvalho, C; De-Deus, G

    2017-06-01

    To evaluate the effect of depth of insertion of an irrigation needle tip on the removal of hard-tissue debris using micro-computed tomographic (micro-CT) imaging. Twenty isthmus-containing mesial roots of mandibular molars were anatomically matched based on similar morphological dimensions using micro-CT evaluation and assigned to two groups (n = 10), according to the depth of the irrigation needle tip during biomechanical preparation: 1 or 5 mm short of the working length (WL). The preparation was performed with Reciproc R25 file (tip size 25, .08 taper) and 5.25% NaOCl as irrigant. The final rinse was 17% EDTA followed by bidistilled water. Then, specimens were scanned again, and the matched images of the canals, before and after preparation, were examined to quantify the amount of hard-tissue debris, expressed as the percentage volume of the initial root canal volume. Data were compared statistically using the Mann-Whitney U-test. None of the tested needle insertion depths yielded root canals completely free from hard-tissue debris. The insertion depth exerted a significant influence on debris removal, with a significant reduction in the percentage volume of hard-tissue debris when the needle was inserted 1 mm short of the WL (P < 0.05). The insertion depth of irrigation needles significantly influenced the removal of hard-tissue debris. A needle tip positioned 1 mm short of the WL resulted in percentage levels of hard-tissue debris removal almost three times higher than when positioned 5 mm from the WL. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Gravistimulus Production in Roots of Corn

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1985-01-01

    Because of the similarities in structure of known growth regulators, specifically abscisic acid and xanthoxin, with portions of the violaxanthin molecule, it was suggested that these growth substances normally arise from the breakdown or turnover of carotenoid. The light-induced disappearance of violaxanthin occurs in a time frame coincident with an increase in the levels in cap tissue of substances with growth inhibitor properties. One of the ways by which light may regulate root development, including aspects of gravitropism, is through the production of inhibitory growth substances arising from the turnover of carotenoids.

  11. Gel-Free/Label-Free Proteomic Analysis of Endoplasmic Reticulum Proteins in Soybean Root Tips under Flooding and Drought Stresses.

    PubMed

    Wang, Xin; Komatsu, Setsuko

    2016-07-01

    Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.

  12. Genomic Analysis of the DNA Replication Timing Program during Mitotic S Phase in Maize (Zea mays) Root Tips[OPEN

    PubMed Central

    LeBlanc, Chantal; Lee, Tae-Jin; Mulvaney, Patrick; Allen, George C.; Martienssen, Robert A.; Thompson, William F.

    2017-01-01

    All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the “Repli-seq” assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase. PMID:28842533

  13. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    NASA Astrophysics Data System (ADS)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases, and the induced drag increases, reducing overall efficiency. To complement the high aspect ratio wing case, a slender wing model is formulated so that the lift and drag can be estimated for this limiting case as well. We analyze the stability performance of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing by using experimental method and simulation software. The experimental method includes fabrication of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing which making material is Gamahr wood. Testing this model wing in wind tunnel test and after getting expected data we also compared this value with analyzing software data for furthermore experiment.

  14. [Effects of Different Residue Part Inputs of Corn Straws on CO2 Efflux and Microbial Biomass in Clay Loam and Sandy Loam Black Soils].

    PubMed

    Liu, Si-yi; Liang, Ai-zhen; Yang, Xue-ming; Zhang, Xiao-ping; Jia, Shu-xia; Chen, Xue-wen; Zhang, Shi-xiu; Sun, Bing-jie; Chen, Sheng-long

    2015-07-01

    The decomposed rate of crop residues is a major determinant for carbon balance and nutrient cycling in agroecosystem. In this study, a constant temperature incubation study was conducted to evaluate CO2 emission and microbial biomass based on four different parts of corn straw (roots, lower stem, upper stem and leaves) and two soils with different textures (sandy loam and clay loam) from the black soil region. The relationships between soil CO2 emission, microbial biomass and the ratio of carbon (C) to nitrogen (N) and lignin of corn residues were analyzed by the linear regression. Results showed that the production of CO2 was increased with the addition of different parts of corn straw to soil, with the value of priming effect (PE) ranged from 215. 53 µmol . g-1 to 335. 17 µmol . g -1. Except for corn leaves, the cumulative CO2 production and PE of clay loam soil were significantly higher than those in sandy loam soil. The correlation of PE with lignin/N was obviously more significant than that with lignin concentration, nitrogen concentration and C/N of corn residue. The addition of corn straw to soil increased the contents of MBC and MBN and decreased MBC/MBN, which suggested that more nitrogen rather than carbon was conserved in microbial community. The augmenter of microbial biomass in sandy loam soil was greater than that in clay loam soil, but the total dissolved nitrogen was lower. Our results indicated that the differences in CO2 emission with the addition of residues to soils were primarily ascribe to the different lignin/N ratio in different corn parts; and the corn residues added into the sandy loam soil could enhance carbon sequestration, microbial biomass and nitrogen holding ability relative to clay loam soil.

  15. Interface Symbiotic Membrane Formation in Root Nodules of Medicago truncatula: the Role of Synaptotagmins MtSyt1, MtSyt2 and MtSyt3

    PubMed Central

    Gavrin, Aleksandr; Kulikova, Olga; Bisseling, Ton; Fedorova, Elena E.

    2017-01-01

    Symbiotic bacteria (rhizobia) are maintained and conditioned to fix atmospheric nitrogen in infected cells of legume root nodules. Rhizobia are confined to the asymmetrical protrusions of plasma membrane (PM): infection threads (IT), cell wall-free unwalled droplets and symbiosomes. These compartments rapidly increase in surface and volume due to the microsymbiont expansion, and remarkably, the membrane resources of the host cells are targeted to interface membrane quite precisely. We hypothesized that the change in the membrane tension around the expanding microsymbionts creates a vector for membrane traffic toward the symbiotic interface. To test this hypothesis, we selected calcium sensors from the group of synaptotagmins: MtSyt1, Medicago truncatula homolog of AtSYT1 from Arabidopsis thaliana known to be involved in membrane repair, and two other homologs expressed in root nodules: MtSyt2 and MtSyt3. Here we show that MtSyt1, MtSyt2, and MtSyt3 are expressed in the expanding cells of the meristem, zone of infection and proximal cell layers of zone of nitrogen fixation (MtSyt1, MtSyt3). All three GFP-tagged proteins delineate the interface membrane of IT and unwalled droplets and create a subcompartments of PM surrounding these structures. The localization of MtSyt1 by EM immunogold labeling has shown the signal on symbiosome membrane and endoplasmic reticulum (ER). To specify the role of synaptotagmins in interface membrane formation, we compared the localization of MtSyt1, MtSyt3 and exocyst subunit EXO70i, involved in the tethering of post-Golgi secretory vesicles and operational in tip growth. The localization of EXO70i in root nodules and arbusculated roots was strictly associated with the tips of IT and the tips of arbuscular fine branches, but the distribution of synaptotagmins on membrane subcompartments was broader and includes lateral parts of IT, the membrane of unwalled droplets as well as the symbiosomes. The double silencing of synaptotagmins caused a delay in rhizobia release and blocks symbiosome maturation confirming the functional role of synaptotagmins. In conclusion: synaptotagmin-dependent membrane fusion along with tip-targeted exocytosis is operational in the formation of symbiotic interface. PMID:28265280

  16. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  17. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  18. Cellular specificity of the gravitropic motor response in roots

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Ishikawa, H.

    1997-01-01

    A number of features of the gravitropic response of roots are not readily accounted for by the classical Cholodny-Went theory. These include the observations that (i) in the later stages of the response the growth gradient is reversed with no evident reversal of the auxin gradient; (ii) a major component of the acceleration of growth along the upper side occurs in the distal elongation zone (DEZ), a group of cells located between the meristem and the main elongation, not within the central elongation zone; and (iii) the initiation of differential growth in the DEZ appears to be independent of the establishment of auxin asymmetry. Alternative candidates for mediation of differential growth in the DEZ include calcium ions and protons. Gravi-induced curvature is accompanied by polar movement of calcium toward the lower side of the maize root tip and the DEZ is shown to be particularly sensitive to growth inhibition by calcium. Also, gravistimulation of maize roots causes enhanced acid efflux from the upper side of the DEZ. Evidence for gravi-induced modification of ion movements in the root tip includes changes in intracellular potentials and current flow. It is clear that there is more than one motor region in the root with regard to gravitropic responses and there is evidence that the DEZ itself consists of more than one class of responding cells. In order to gain a more complete understanding of the mechanism of gravitropic curvature, the physiological properties of the sub-zones of the root apex need to be thoroughly characterized with regard to their sensitivity to hormones, calcium, acid pH and electrical perturbations.

  19. Impact behavior of filament-wound graphite/epoxy fan blades. [foreign object damage to turbofan engines

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1978-01-01

    The fabrication and impact tests of graphite/epoxy filament wound fan blades are discussed. Blades which were spin tested at tip speeds up to 305 m/sec retained their structural integrity. Two blades were each impacted with a 454-g slice of a 908-g simulated bird at a tip speed of 263 deg and impact angles of 22 deg and 32 deg. The impact tests were recorded with high-speed movie film. The blade which was impacted at 22 deg sustained some root delamination but remained intact. The 32 deg impact separated the blade from the root. No local damage other than leading-edge debonding was observed for either blade. The results of a failure mode analysis are also discussed.

  20. Performance of Axial-Flow Supersonic Compressor of the XJ55-FF-1 Turbojet Engine. IV - Analysis of Compressor Operation over a Range of Equivalent Tip Speeds from 801 to 1614 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Graham, Robert C.; Hartmann, Melvin J.

    1949-01-01

    An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.

  1. Experimental removal of subgingival calculus with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Keller, Ulrich; Hibst, Raimund

    1996-01-01

    The purpose of this study was to evaluate the effects of the Er:YAG laser removal of subgingival calculi in periodontal treatment and to describe laser-induced cementum surface alterations. Freshly extracted human teeth with adherent plaques and mineralized calculi were laser treated using modified quartz fiber tips in direct contact to the root surface. For the fiber tip tested, the ablation threshold was 6.5 mJ. An effective removal of calculi was possible with 50 mJ resp. 150 mJ for a triple fiber. For the latter, a mass loss with a mean of about 5.1. mg/min was achieved. Histologic examinations of the cementum surface showed smoothed appearance alternately with rough depressions of the fiber tips, which can be discussed as a good precondition for periodontal tissue regeneration. Maximum temperature increase of 1.4 K was reached in the pulp, if an additional water irrigation was applied to the root surface. From these results it can be concluded that with the Er:YAG laser an effective removal of subgingival calculi can be performed without thermal risk for the pulp.

  2. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    PubMed

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    PubMed Central

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  4. Toward Self-Growing Soft Robots Inspired by Plant Roots and Based on Additive Manufacturing Technologies.

    PubMed

    Sadeghi, Ali; Mondini, Alessio; Mazzolai, Barbara

    2017-09-01

    In this article, we present a novel class of robots that are able to move by growing and building their own structure. In particular, taking inspiration by the growing abilities of plant roots, we designed and developed a plant root-like robot that creates its body through an additive manufacturing process. Each robotic root includes a tubular body, a growing head, and a sensorized tip that commands the robot behaviors. The growing head is a customized three-dimensional (3D) printer-like system that builds the tubular body of the root in the format of circular layers by fusing and depositing a thermoplastic material (i.e., polylactic acid [PLA] filament) at the tip level, thus obtaining movement by growing. A differential deposition of the material can create an asymmetry that results in curvature of the built structure, providing the possibility of root bending to follow or escape from a stimulus or to reach a desired point in space. Taking advantage of these characteristics, the robotic roots are able to move inside a medium by growing their body. In this article, we describe the design of the growing robot together with the modeling of the deposition process and the description of the implemented growing movement strategy. Experiments were performed in air and in an artificial medium to verify the functionalities and to evaluate the robot performance. The results showed that the robotic root, with a diameter of 50 mm, grows with a speed of up to 4 mm/min, overcoming medium pressure of up to 37 kPa (i.e., it is able to lift up to 6 kg) and bending with a minimum radius of 100 mm.

  5. Toward Self-Growing Soft Robots Inspired by Plant Roots and Based on Additive Manufacturing Technologies

    PubMed Central

    Mondini, Alessio

    2017-01-01

    Abstract In this article, we present a novel class of robots that are able to move by growing and building their own structure. In particular, taking inspiration by the growing abilities of plant roots, we designed and developed a plant root-like robot that creates its body through an additive manufacturing process. Each robotic root includes a tubular body, a growing head, and a sensorized tip that commands the robot behaviors. The growing head is a customized three-dimensional (3D) printer-like system that builds the tubular body of the root in the format of circular layers by fusing and depositing a thermoplastic material (i.e., polylactic acid [PLA] filament) at the tip level, thus obtaining movement by growing. A differential deposition of the material can create an asymmetry that results in curvature of the built structure, providing the possibility of root bending to follow or escape from a stimulus or to reach a desired point in space. Taking advantage of these characteristics, the robotic roots are able to move inside a medium by growing their body. In this article, we describe the design of the growing robot together with the modeling of the deposition process and the description of the implemented growing movement strategy. Experiments were performed in air and in an artificial medium to verify the functionalities and to evaluate the robot performance. The results showed that the robotic root, with a diameter of 50 mm, grows with a speed of up to 4 mm/min, overcoming medium pressure of up to 37 kPa (i.e., it is able to lift up to 6 kg) and bending with a minimum radius of 100 mm. PMID:29062628

  6. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice

    PubMed Central

    Zhu, Chun Q.; Zhang, Jun H.; Sun, Li M.; Zhu, Lian F.; Abliz, Buhailiqem; Hu, Wen J.; Zhong, Chu; Bai, Zhi G.; Sajid, Hussain; Cao, Xiao C.; Jin, Qian Y.

    2018-01-01

    Hydrogen sulfide (H2S) plays a vital role in Al3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H2S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1, and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1. The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H2O2 content in rice roots, thereby reducing the damage of Al3+ toxicity on membrane integrity in rice. H2S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H2S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots. PMID:29559992

  7. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice.

    PubMed

    Zhu, Chun Q; Zhang, Jun H; Sun, Li M; Zhu, Lian F; Abliz, Buhailiqem; Hu, Wen J; Zhong, Chu; Bai, Zhi G; Sajid, Hussain; Cao, Xiao C; Jin, Qian Y

    2018-01-01

    Hydrogen sulfide (H 2 S) plays a vital role in Al 3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H 2 S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al 3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1 , and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1 . The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H 2 O 2 content in rice roots, thereby reducing the damage of Al 3+ toxicity on membrane integrity in rice. H 2 S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H 2 S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots.

  8. Tray Pack Prototype Plant Design

    DTIC Science & Technology

    1986-06-01

    Creamed Corn o Eggs w/Ham o Blueberry Dessert o Chicken ala king o Cherry Dessert * Egg Loaf w/Mushrooms* o Potato Salad * Orange Nut Cake* * Cherry...Steak o Pork Slices w/Gravy o Turkey Sl.w/Gravy o Swedish Meatballs o Ham Slices o Beef Pot Roast o Franks in Brine o Spaghetti w/ Meatballs o...Beef Tips w/Gravy * Egg Loaf w/Cheese* o Beef and Macaroni o Escalloped Potat. o Spanish Rice 2 6w % % P EI, o Beans w/Pork o Macaroni Salad o

  9. An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    PubMed Central

    Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan

    2013-01-01

    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266

  10. Performance and power regulation characteristics of two aileron-controlled rotors and a pitchable tip-controlled rotor on the Mod-O turbine

    NASA Technical Reports Server (NTRS)

    Corrigan, Robert D.; Ensworth, Clinton B. F., III; Miller, Dean R.

    1987-01-01

    Tests were conducted on the DOE/NASA mod-0 horizontal axis wind turbine to compare and evaluate the performance and the power regulation characteristics of two aileron-controlled rotors and a pitchable tip-controlled rotor. The two aileron-controlled rotor configurations used 20 and 38 percent chord ailerons, while the tip-controlled rotor had a pitchable blade tip. The ability of the control surfaces to regulate power was determined by measuring the change in power caused by an incremental change in the deflection angle of the control surface. The data shows that the change in power per degree of deflection angle for the tip-controlled rotor was four times the corresponding value for the 2- percent chord ailerons. The root mean square power deviation about a power setpoint was highest for the 20 percent chord aileron, and lowest for the 38 percent chord aileron.

  11. Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices

    DTIC Science & Technology

    2016-07-01

    the close interaction of the tip vortex with a following blade . Such vortex interactions are fundamental determinants of rotor performance, loads, and...wing loading distribution differs from a typical loading on a hovering rotor blade in that the maximum bound circulation occurs at the blade root...and not close to the tip; this is similar to a very highly twisted rotor blade , like a tilt-rotor, in hover. The wing-vortex interaction alters the

  12. Effect of UV-B light on total soluble phenolic contents of various whole and fresh-cut specialty crops

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: The effect of ultraviolet-B (UV-B) light treatment on total soluble phenolic contents (TSP) of various whole and fresh-cut specialty crops was evaluated. Whole fruits (strawberries, blueberries, grapes), vegetables (cherry tomatoes, white sweet corn) and root crops (sweet potatoes, colo...

  13. Analysis of parameter sensitivity and identifiability of root zone water quality model (RZWQM) for dryland sugerbeet modeling

    USDA-ARS?s Scientific Manuscript database

    Sugarbeet is being considered as one of the most viable feedstock alternatives to corn for biofuel production since herbicide resistant energy beets were deregulated by USDA in 2012. Growing sugarbeets for biofuel production may have significant impacts on soil health and water quality in the north-...

  14. Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays)

    USDA-ARS?s Scientific Manuscript database

    Microbial-based inoculants have been reported to stimulate plant growth and nutrient uptake. However, their effect may vary depending on the growth stage when evaluated and on the chemical fertilizer applied. Thus, the objective of this study was to test the hypothesis that microbial-based inoculant...

  15. Characterization of Pythium spp. collected from corn and soybean soil in Illinois

    USDA-ARS?s Scientific Manuscript database

    Pythium root rot is widely distributed in major soybean (Glycine max) production areas throughout the world. There are many species of Pythium described on soybean and other crops, although not all species are pathogenic on all crops. The objectives of this study were to isolate, identify, and evalu...

  16. Effects of FGD-gypsum, used-wallboard and calcium sulfate on corn and soybean root growth

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization (FGD)-gypsum production has increased 44 percent from 2007 to 2008. The major use of FGD-gypsum today is in the wallboard industry. Reduction in the construction, however, reduces the demand for wallboard. Agriculture could become the second largest user of FGD-gypsum. F...

  17. Interactions between red light, abscisic acid, and calcium in gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; LaFavre, A. K.

    1989-01-01

    The effect of red light on orthogravitropism of Merit corn (Zea mays L.) roots has been attributed to its effects on the transduction phase of gravitropism (AC Leopold, SH Wettlaufer [1988] Plant Physiol 87:803-805). In an effort to characterize the orthogravitropic transduction system, comparative experiments have been carried out on the effects of red light, calcium, and abscisic acid (ABA). The red light effect can be completely satisfied with added ABA (100 micromolar) or with osmotic shock, which is presumed to increase endogenous ABA. The decay of the red light effect is closely paralleled by the decay of the ABA effect. ABA and exogenous calcium show strong additive effects when applied to either Merit or a line of corn which does not require red light for orthogravitropism. Measurements of the ABA content show marked increases in endogenous ABA in the growing region of the roots after red light. The interpretation is offered that red light or ABA may serve to increase the cytoplasmic concentrations of calcium, and that this may be an integral part of orthogravitropic transduction.

  18. Inhibition of Cell Wall-Associated Enzymes in Vitro and in Vivo with Sugar Analogs

    PubMed Central

    Nagahashi, Gerald; Tu, Shu-I; Fleet, George; Namgoong, Sun K.

    1990-01-01

    Sugar analogs were used to study the inhibition of cell wall-associated glycosidases in vitro and in vivo. For in vitro characterization, cell walls were highly purified from corn (Zea mays L.) root cortical cells and methods were developed to assay enzyme activity in situ. Inhibitor dependence curves, mode of inhibition, and specificity were determined for three sugar analogs. At low concentrations of castanospermine (CAS), 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol, and swainsonine, these inhibitors showed competitive inhibition kinetics with β-glucosidase, β-GIcNAcase, and α-mannosidase, respectively. Swainsonine specifically inhibited α-mannosidase activity, and 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol specifically inhibited β-N-acetyl-hexosamindase activity. However, CAS inhibited a broad spectrum of cell wall-associated enzymes. When the sugar analogs were applied to 2 day old corn seedlings, only CAS caused considerable changes in root growth and development. To ensure that the concentration of inhibitors used in vitro also inhibited enzyme activity in vivo, an in vivo method for measuring cell wall-associated activity was devised. PMID:16667291

  19. Phytotoxical effect of Lepidium draba L. extracts on the germination and growth of monocot (Zea mays L.) and dicot (Amaranthus retroflexus L.) seeds.

    PubMed

    Kaya, Yusuf; Aksakal, Ozkan; Sunar, Serap; Erturk, Filiz Aygun; Bozari, Sedat; Agar, Guleray; Erez, Mehmet Emre; Battal, Peyami

    2015-03-01

    Laboratory experiments were performed to determine phytotoxic potentials of white top (Lepidium draba) methanol extracts (root, stem and leaf) on germination and early growth of corn (Zea mays) and redroot pigweed (Amaranthus retroflexus). Furthermore, the effects of different methanol extracts of L. draba on the phytohormone (indole-3-acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and zeatin) levels of corn and redroot pigweed were investigated. It was observed that all concentrations of methanol extracts of root, stem and leaf of L. draba inhibited germination, radicle and plumule elongation when compared with the respective controls. Besides this, the degree of inhibition was increased in concert with increasing concentrations of extracts used. On the other hand, phytohormone levels changed with the application of different extract concentrations. Comparing with the control, the GA levels significantly decreased while the ABA levels increased in all the application groups. Zeatin and IAA levels showed changes depending upon the applied extracts and concentrations. © The Author(s) 2012.

  20. How to Bend a Plant out of Shape.

    ERIC Educational Resources Information Center

    Hardy, Garry R.; Tolman, Marvin N.

    1993-01-01

    Illustrates the concept of phototropism and the development of root systems using a classroom-constructed clinostat. Provides instructions to construct the clinostat and tips to promote plant growth. (MDH)

Top