Sample records for corn rootworm management

  1. Evidence of resistance to Cry34/35Ab1 corn by western corn rootworm: root injury in the field and larval survival in plant-based bioassays

    USDA-ARS?s Scientific Manuscript database

    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn in the United States and recent management of western corn rootworm has included planting of Bt corn. Beginning in 2009, western corn rootworm populations with resistance to Cry3Bb1 c...

  2. Corn rootworm areawide management program: United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Chandler, Laurence D

    2003-01-01

    The corn rootworm areawide management program was implemented by USDA-ARS in 1995 at five locations across the USA. This program is based on the use of a semiochemical insecticide bait applied to maize (Zea mays L) during peak adult corn rootworm activity. Managing adult rootworms minimizes the number of eggs laid, resulting in fewer larvae available to economically damage maize roots in the following growing season. To date, rootworm populations have been significantly reduced at all participating locations and new bait products have been developed and evaluated for use in rootworm-infested areas.

  3. Geographic information systems in corn rootworm management

    USDA-ARS?s Scientific Manuscript database

    Corn rootworms (Diabrotica spp. Coleoptera: Chrysomelidae) are serious pests of corn (Zea mays) in the United States and Europe. Control measures for corn rootworms (CRW) were historically based upon chemical pesticides and crop rotation. Pesticide use created environmental and economic concerns. In...

  4. Effect of transgenic corn hybrids and a soil insecticide on corn rootworm (Coleoptera: Chrysomelidae) beetle emergence in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Northern, Diabrotica barberi Smith & Lawrence, and western corn rootworms, D. virgifera virgifera LeConte, are economic pests of corn, Zea mays L. (Poaceae) in North Dakota. Many area corn growers rely on transgenic Bt (Bacillus thuringiensis) corn hybrids to manage corn rootworms. Our objective was...

  5. Minnesota field population of western corn rootworm (Coleoptera: Chrysomelidae) shows incomplete resistance to Cry34Ab1/Cry35Ab1 and Cry3Bb1

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is commonly managed with corn (Zea mays L.) expressing insecticidal proteins from the bacteria Bacillus thuringiensis (Bt). Under laboratory conditions, populations of western corn rootworm have been selected for resistance to each c...

  6. Field-based assessment of resistance to Bt Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a serious pest of corn and is managed with Bt corn that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Beginning in 2009, severe injury to Bt corn producing Cry3Bb1 was observed in some cornfields ...

  7. Susceptibility of Nebraska Western Corn Rootworm (Coleoptera: Chrysomelidae) Populations to Bt Corn Events

    USDA-ARS?s Scientific Manuscript database

    Transgenic plants have been widely adopted by growers to manage the western corn rootworm, Diabrotica virgifera virgifera LeConte, in field corn. Because of reduced efficacy in some Nebraska fields after repeated use of Cry3Bb1 expressing hybrids, single plant bioassays were conducted in 2012 and 20...

  8. Fitness of Bt-resistant Western Corn Rootworm on Mon863 and Isoline Corn

    USDA-ARS?s Scientific Manuscript database

    Abstract: To help ensure that insect resistance management plans mandated by the US Environmental Protection Agency are based on the best science available, we evaluated fitness costs associated with resistance development in artificially selected laboratory lines of the western corn rootworm, Diabr...

  9. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm (WCR), Diabrotica virgifera virgifera, is an insect pest of corn, and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency among WCR populations, resulting in...

  10. Entomopathogenic fungi in cornfields and their potential to manage larval western corn rootworm Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic Ascomycete fungi are ubiquitous in soil and on phylloplanes, and are important natural enemies of many arthropods, including larval western corn rootworm, Diabrotica virgifera virgifera, which is a major pest of corn. We measured the prevalence of Beauveria bassiana and Metarhizium...

  11. Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm.

    PubMed

    Davis-Vogel, Courtney; Ortiz, Angel; Procyk, Lisa; Robeson, Jonathan; Kassa, Adane; Wang, Yiwei; Huang, Emily; Walker, Carl; Sethi, Amit; Nelson, Mark E; Sashital, Dipali G

    2018-05-18

    Western corn rootworm (Diabrotica virgifera virgifera) is a serious agricultural pest known for its high adaptability to various management strategies, giving rise to a continual need for new control options. Transgenic maize expressing insecticidal RNAs represents a novel mode of action for rootworm management that is dependent on the RNA interference (RNAi) pathways of the insect for efficacy. Preliminary evidence suggests that western corn rootworm could develop broad resistance to all insecticidal RNAs through changes in RNAi pathway genes; however, the likelihood of field-evolved resistance occurring through this mechanism remains unclear. In the current study, eight key genes involved in facilitating interference in the microRNA and small interfering RNA pathways were targeted for knockdown in order to evaluate impact on fitness of western corn rootworm. These genes include drosha, dicer-1, dicer-2, pasha, loquacious, r2d2, argonaute 1, and argonaute 2. Depletion of targeted transcripts in rootworm larvae led to changes in microRNA expression, decreased ability to pupate, reduced adult beetle emergence, and diminished reproductive capacity. The observed effects do not support evolution of resistance through changes in expression of these eight genes due to reduced insect fitness.

  12. POLYMORPHIC MICROSATELLITE LOCI FROM NORTHERN AND MEXICAN CORN ROOTWORMS (INSECTA: COLEOPTERA: CHRYSOMELIDAE) AND CROSS-AMPLIFICATION WITH OTHER DIABROTICA SPP

    EPA Science Inventory

    The northern corn rootworm (Diabrotica barberi) and Mexican corn rootworm (Diabrotica virgifera zeae) are significant agricultural pests. For the northern corn rootworm, and to a lesser extent, the Mexican corn rootworm, high resolution molecular markers are needed. Here we pres...

  13. Selection for resistance to the Cry3Bb1 protein in a genetically diverse population of non-diapausing Western Corn Rootworm

    EPA Science Inventory

    The western corn rootworm (WCR, Diabrotica virgifera virgifera) is a serious economic pest of corn, and historically has evolved resistance to many chemical insecticides when used to manage their populations. In 2003 the U.S. Environmental Protection Agency (EPA) approved for com...

  14. Corn rootworms and Bt resistance

    USDA-ARS?s Scientific Manuscript database

    Corn rootworms have been a major pest of corn for many years. As their name suggests, corn rootworms damage corn plants by feeding on the roots. Western and northern corn rootworms have overcome practices farmers use to keep their population numbers down, such as insecticides and crop rotation. Cor...

  15. Genetics of United States Populations of Western Corn Rootworm ( Diabrotica virgifera virgifera) and Implications for Bacillus thuringiensis (Bt) Corn Management

    USDA-ARS?s Scientific Manuscript database

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) were sampled from across much of their US range for population genetic analyses. We assayed allelic variation at microsatellite loci, including markers within a cadherin-like gene, a locus shown to be correlated with resistance to Bacillus...

  16. Evidence of field-evolved resistance to bifenthrin in western corn rootworm (Diabrotica virgifera virgifera LeConte) populations in western Nebraska and Kansas

    USDA-ARS?s Scientific Manuscript database

    Pyrethroid insecticides are widely used to control larvae or adult western corn rootworm, a key pest of corn in the United States. In response to reports of reduced efficacy of pyrethroids in WCR management programs in southwestern areas of Nebraska and Kansas the present research was designed to es...

  17. Screening of botanical extracts for repellence against western corn rootworm larvae

    USDA-ARS?s Scientific Manuscript database

    The ability of Western corn rootworm (WCR) to develop resistance to various management practices enforces the development of new control options. Repellent substances can act as efficacy enhancing agents in WCR control with biological control agents. The present study investigated the potential repe...

  18. Semi field trials to evaluate undersowings in maize for management of western corn rootworm larvae

    USDA-ARS?s Scientific Manuscript database

    Western corn rootworm larvae (Diabrotica virgifera virgifera) need to feed on maize roots after hatching from overwintering eggs. It was hypothesized that the roots of undersown plants mixed with maize roots disrupt the host finding of the larvae, lowering their survival and subsequently reducing la...

  19. Framework to Delay Corn Rootworm Resistance

    EPA Pesticide Factsheets

    This proposed framework is intended to delay the corn rootworm pest becoming resistant to corn genetically engineered to produce Bt proteins, which kill corn rootworms but do not affect people or wildlife. It includes requirements on Bt corn manufacturers.

  20. Screening for corn rootworm (Coleoptera: Chrysomelidae) resistance to transgenic Bt corn in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Western (WCR), Diabrotica virgifera virgifera LeConte, and northern corn rootworms (NCR), D. barberi Smith & Lawrence, are major economic pests of corn in much of the U.S. Corn Belt. Western corn rootworm resistance to transgenic corn expressing Bt (Bacillus thuringiensis) endotoxins has been confi...

  1. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm

    PubMed Central

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.

    2011-01-01

    Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470

  2. Protandry of western corn rootworm (Coleoptera: Chrysomelidae) beetle emergence partially due to earlier egg hatch of males

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, exhibits protandry. The contribution of pre-hatch development to protandry in western corn rootworm was previously investigated with a small set of data from one population. To verify the contribution of pre-hatch development to prot...

  3. The effect of western corn rootworm (Coleoptera: Chrysomelidae) and water deficit on maize performance under controlled conditions

    USDA-ARS?s Scientific Manuscript database

    A series of greenhouse experiments using three infestation levels of the western corn rootworm, Diabrotica virgifera virgifera LeConte, under well-watered, moderately dry, and very dry soil moisture levels were conducted to quantify the interaction of western corn rootworm and soil water deficit on ...

  4. IPM Use With the Deployment of a Non-High Dose Bt Pyramid and Mitigation of Resistance for Western Corn Rootworm (Diabrotica virgifera virgifera).

    PubMed

    Martinez, J C; Caprio, M A

    2016-03-27

    Recent detection of western corn rootworm resistance to Bt (Bacillus thuringiensis) corn prompted recommendations for the use of integrated pest management (IPM) with planting refuges to prolong the durability of Bt technologies. We conducted a simulation experiment exploring the effectiveness of various IPM tools at extending durability of pyramided Bt traits. Results indicate that some IPM practices have greater merits than others. Crop rotation was the most effective strategy, followed by increasing the non-Bt refuge size from 5 to 20%. Soil-applied insecticide use for Bt corn did not increase the durability compared with planting Bt with refuges alone, and both projected lower durabilities. When IPM participation with randomly selected management tools was increased at the time of Bt commercialization, durability of pyramided traits increased as well. When non-corn rootworm expressing corn was incorporated as an IPM option, the durability further increased.For corn rootworm, a local resistance phenomenon appeared immediately surrounding the resistant field (hotspot) and spread throughout the local neighborhood in six generations in absence of mitigation. Hotspot mitigation with random selection of strategies was ineffective at slowing resistance, unless crop rotation occurred immediately; regional mitigation was superior to random mitigation in the hotspot and reduced observed resistance allele frequencies in the neighborhood. As resistance alleles of mobile pests can escape hotspots, the scope of mitigation should extend beyond resistant sites. In the case of widespread resistance, regional mitigation was less effective at prolonging the life of the pyramid than IPM with Bt deployment at the time of commercialization. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.

  5. Effects of cysteine proteinase inhibitors scN and E-64 on southern corn rootworm larval development

    USDA-ARS?s Scientific Manuscript database

    The southern corn rootworm (SCRW) can be a serious pest of peanut pods. A laboratory bioassay was developed to test feeding cysteine proteinase inhibitors soyacystatin N (scN) and E-64 against southern corn rootworm reared on artificial diet to determine the effects on larvae development and mortal...

  6. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    PubMed

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm.

    PubMed

    Paolino, Aubrey R; Gassmann, Aaron J

    2017-05-11

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry) toxins derived from the bacterium Bacillus thuringiensis (Bt). To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  8. Susceptibility of northern corn rootworm Diabrotica barberi (Coleoptera: Chrysomelidae) to mCry3A and eCry3.1Ab Bacillus thuringiensis proteins.

    PubMed

    Oyediran, Isaac O; Matthews, Phillip; Palekar, Narendra; French, Wade; Conville, Jared; Burd, Tony

    2016-12-01

    The susceptibility of the northern corn rootworm Diabrotica barberi (Smith & Lawrence) to mCry3A and eCry3.1Ab proteins derived from Bacillus thuringiensis (Bt) was determined using a diet bioassay. Northern corn rootworm neonates were exposed to different concentrations of mCry3A and eCry3.1Ab, incorporated into artificial diet. Larval mortality was evaluated after 7 d. The mCry3A and eCry3.1Ab proteins were found to be toxic to the northern corn rootworm larvae. The LC 50 and LC 99 values for mCry3A were 5.13 and 2482.31 μg/mL, respectively. For eCry3.1Ab, the LC 50 and LC 99 values were 0.49 and 213.01 μg/mL. Based on the estimated lethal concentrations, eCry3.1Ab protein was more efficacious to northern corn rootworm larvae than mCry3A. These lethal concentration values will be used as diagnostic doses for routine annual monitoring for change in susceptibility of field collected northern corn rootworm to mCry3A, and eCry3.1Ab toxins. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  9. Corn rootworms (Coleoptera: Chrysomelidae) in space and time

    NASA Astrophysics Data System (ADS)

    Park, Yong-Lak

    Spatial dispersion is a main characteristic of insect populations. Dispersion pattern provides useful information for developing effective sampling and scouting programs because it affects sampling accuracy, efficiency, and precision. Insect dispersion, however, is dynamic in space and time and largely dependent upon interactions among insect, plant and environmental factors. This study investigated the spatial and temporal dynamics of corn rootworm dispersion at different spatial scales by using the global positioning system, the geographic information system, and geostatistics. Egg dispersion pattern was random or uniform in 8-ha cornfields, but could be aggregated at a smaller scale. Larval dispersion pattern was aggregated regardless of spatial scales used in this study. Soil moisture positively affected corn rootworm egg and larval dispersions. Adult dispersion tended to be aggregated during peak population period and random or uniform early and late in the season and corn plant phenology was a major factor to determine dispersion patterns. The dispersion pattern of root injury by corn rootworm larval feeding was aggregated and the degree of aggregation increased as the root injury increased within the range of root injury observed in microscale study. Between-year relationships in dispersion among eggs, larvae, adult, and environment provided a strategy that could predict potential root damage the subsequent year. The best prediction map for the subsequent year's potential root damage was the dispersion maps of adults during population peaked in the cornfield. The prediction map was used to develop site-specific pest management that can reduce chemical input and increase control efficiency by controlling pests only where management is needed. This study demonstrated the spatio-temporal dynamics of insect population and spatial interactions among insects, plants, and environment.

  10. crw1- A novel maize mutant highly susceptible to foliar damage by the Western corn rootworm beetle

    USDA-ARS?s Scientific Manuscript database

    Western corn rootworm (WCR), Diabrotica virgifera virgifera Leconte (Coleoptera: Chrysomelidae), is the most destructive insect pest of corn (Zea mays L) in the United States. The adult WCR beetles derive their nourishment from multiple sources including corn pollen and silks as well as the pollen o...

  11. A novel method for estimating soybean herbivory in western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Seiter, Nicholas J; Richmond, Douglas S; Holland, Jeffrey D; Krupke, Christian H

    2010-08-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the key pest of corn, Zea mays L., in North America. The western corn rootworm variant is a strain found in some parts of the United States that oviposits in soybean, Glycine max (L.) Merr., thereby circumventing crop rotation. Soybean herbivory is closely associated with oviposition; therefore, evidence of herbivory could serve as a proxy for rotation resistance. A digital image analysis method based on the characteristic green abdominal coloration of rootworm adults with soybean foliage in their guts was developed to estimate soybean herbivory rates of adult females. Image analysis software was used to develop and apply threshold limits that allowed only colors within the range that is characteristic of soybean herbivory to be displayed. When this method was applied to adult females swept from soybean fields in an area with high levels of rotation resistance, 54.3 +/- 2.1% were estimated to have fed on soybean. This is similar to a previously reported estimate of 54.8%. Results when laboratory-generated negative controls were analyzed showed an acceptably low frequency of false positives. This method could be developed into a management tool if user-friendly software were developed for its implementation. In addition, researchers may find the method useful as a rapid, standardized screen for measuring frequencies of soybean herbivory.

  12. Multiple transatlantic introductions of the western corn rootworm.

    PubMed

    Miller, Nicholas; Estoup, Arnaud; Toepfer, Stefan; Bourguet, Denis; Lapchin, Laurent; Derridj, Sylvie; Kim, Kyung Seok; Reynaud, Philippe; Furlan, Lorenzo; Guillemaud, Thomas

    2005-11-11

    The invasion of Europe by the western corn rootworm, North America's most destructive corn pest, is ongoing and represents a serious threat to European agriculture. Because this pest was initially introduced in Central Europe, it was believed that subsequent outbreaks in Western Europe originated from this area. Using model-based Bayesian analyses of the genetic variability of the western corn rootworm, we demonstrate that this belief is false: There have been at least three independent introductions from North America during the past two decades. This result raises questions about changing circumstances that have enabled a sudden burst of transatlantic introductions.

  13. Larval mortality and development for rotation-resistant and rotation-susceptible populations of the western corn rootworm on Bt corn

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is one of the most economically important insect pests threatening the production of corn, Zea mays (L.), in the United States. Throughout its history, this insect has displayed considerable adaptability by overcoming a variety of pe...

  14. Diet improvement for western corn rootworm (Coleoptera: Chrysomelidae) larvae

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is the most serious insect pest of corn (Zea mays L.) in the United States and parts of Europe, and arguably the world’s most expensive pest to control. Several diet formulations are currently used by industry and researchers t...

  15. Evaluation of Cuphea as a rotation crop for control of western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Behle, Robert W; Isbell, Terry A

    2005-12-01

    The ability to prevent significant root feeding damage to corn, Zea mays L., by the western corn rootworm, Diabrotica virgifera virgifera LeConte, by crop rotation with soybean, Glycine max (L.) Merr., has been lost in portions of the Corn Belt because this pest has adapted to laying eggs in soybean fields. Cuphea spp. has been proposed as a new broadleaf crop that may provide an undesirable habitat for rootworm adults because of its sticky surface and therefore may reduce or prevent oviposition in these fields. A 4-yr study (1 yr to establish seven rotation programs followed by 3 yr of evaluation) was conducted to determine whether crop rotation with Cuphea would provide cultural control of corn rootworm. In support of Cuphea as a rotation crop, fewer beetles were captured by sticky traps in plots of Cuphea over the 4 yr of this study compared with traps in corn and soybean, suggesting that fewer eggs may be laid in plots planted to Cuphea. Also, corn grown after Cuphea was significantly taller during vegetative growth, had significantly lower root damage ratings for 2 of 3 yr, and had significantly higher yields for 2 of 3 yr compared with continuous corn plots. In contrast to these benefits, growing Cuphea did not prevent economic damage to subsequent corn crops as indicated by root damage ratings > 3.0 recorded for corn plants in plots rotated from Cuphea, and sticky trap catches that exceeded the threshold of five beetles trap(-1) day(-1). Beetle emergence from corn plots rotated from Cuphea was significantly lower, not different and significantly higher compared with beetle emergence from continuous corn plots for 2002, 2003 and 2004 growing seasons, respectively. A high number of beetles were captured by emergence cages in plots planted to Cuphea, indicating that rootworm larvae may be capable of completing larval development by feeding on roots of Cuphea, although peak emergence lagged approximately 4 wk behind peak emergence from corn. Based on these data, it is unlikely that crop rotation with Cuphea will provide consistent, economical, cultural control of corn rootworm.

  16. Selection for Cry3Bb1 resistance in a genetically diverse population of nondiapausing Western Corn Rootworm (Coleoptera: Chrysomelidae)

    EPA Science Inventory

    Five short-diapause laboratory lines of western corn rootworm (Diabrotica virgifera virgifera) were selected for resistance to MON863, a variety of corn genetically modified with the Bacillus thuringiensis (Bt) transgene that expresses the Cry3Bb1 endotoxin. Three of the selecte...

  17. Field Trial Performance of Herculex XTRA (Cry34Ab1/Cry35Ab1) and SmartStax (Cry34Ab1/Cry35Ab1 + Cry3Bb1) Hybrids and Soil Insecticides Against Western and Northern Corn Rootworms (Coleoptera: Chrysomelidae).

    PubMed

    Johnson, K D; Campbell, L A; Lepping, M D; Rule, D M

    2017-06-01

    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), and northern corn rootworm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae), are important insect pests in corn, Zea mays L. For more than a decade, growers have been using transgenic plants expressing proteins from the bacterium Bacillus thuringiensis (Bt) to protect corn roots from feeding. In 2011, western corn rootworm populations were reported to have developed resistance to Bt hybrids expressing Cry3Bb1 and later found to be cross-resistant to hybrids expressing mCry3A and eCry3.1Ab. The identification of resistance to Cry3 (Cry3Bb1, mCry3A, and eCry3.1Ab) hybrids led to concerns about durability and efficacy of products with single traits and of products containing a pyramid of a Cry3 protein and the binary Bt proteins Cry34Ab1 and Cry35Ab1. From 2012 to 2014, 43 field trials were conducted across the central United States to estimate root protection provided by plants expressing Cry34Ab1/Cry35Ab1 alone (Herculex RW) or pyramided with Cry3Bb1 (SmartStax). These technologies were evaluated with and without soil-applied insecticides to determine if additional management measures provided benefit where Cry3 performance was reduced. Trials were categorized for analysis based on rootworm damage levels on Cry3-expressing hybrids and rootworm feeding pressure within each trial. Across scenarios, Cry34Ab1/Cry35Ab1 hybrids provided excellent root protection. Pyramided traits provided greater root and yield protection than non-Bt plus a soil-applied insecticide, and only in trials where larval feeding pressure exceeded two nodes of damage did Cry34Ab1/Cry35Ab1 single-trait hybrids and pyramided hybrids show greater root protection from the addition of soil-applied insecticides. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Response of maize hybrids with and without rootworm-and drought-tolerance to rootworm infestation under well-watered and drought conditions

    USDA-ARS?s Scientific Manuscript database

    Anecdotal data have suggested that the effect of the western corn rootworm, Diabrotica virgifera virgifera LeConte, is greater under drought and the effect of drought is greater under rootworm infestations, but few experiments have controlled both moisture and rootworm levels. Field studies were con...

  19. A new artificial diet for western corn rootworm larvae is compatible with and detects resistance to all current Bt toxins

    USDA-ARS?s Scientific Manuscript database

    Insect resistance to transgenic crops expressing one or more genes from Bacillus thuringiensis Berliner (Bt) is a growing concern for farmers, regulatory agencies, the seed industry, and researchers alike. Western corn rootworm (Diabrotica virgifera virgifera LeConte) is a pest of corn (Zea mays L.)...

  20. Selection for Cry3Bb1 resistance in a genetically diverse population of non-diapausing western corn rootworm (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    Five short-diapause laboratory lines of western corn rootworm (Diabrotica virgifera virgifera) were selected for resistance to MON863, a variety of corn genetically modified with the Bacillus thuringiensis (Bt) transgene that expresses the Cry3Bb1 d-endotoxin. Three of the selected lines were develo...

  1. Monogalactosyldiacylglycerols as host recognition cues for western corn rootworm larvae (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    Monogalactosyldiacylglycerol (MGDG) was identified as a host recognition cue for larvae of the western corn rootworm Diabrotica virgifera virgifera LeConte. An active glycolipid fraction obtained from an extract of germinating maize roots was isolated with thin layer chromatography using a bioassay-...

  2. Historical and contemporary demography of United States populations of Western Corn Rootworm (Diabrotica virgifera virgifera)

    EPA Science Inventory

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) was sampled across much of its U.S. range for population genetic analyses. We assayed sequence variation at the mitochondrial cytochrome oxidase subunit I (COI) locus and allelic variation at eleven microsatellite loci. ...

  3. A Western Corn Rootworm Cadherin-like Protein is not Involved in the Binding and Toxicity of Cry34/35Ab1 and Cry3Aa Bacillus Thuringiensis Proteins

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is an important insect pest of corn. Bacillus thuringiensis (Bt) insecticidal proteins Cry3Aa (as mCry3A) and Cry34Ab1/Cry35Ab1 have been expressed in transgenic corn and are used to control the insect in the U.S. To date, there ...

  4. Synthetic feeding stimulants enhance insecticide activity against western corn rootworm larvae, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    In behavioral bioassays, the addition of a synthetic feeding stimulant blend improved the efficacy of the insecticide thiamethoxam against neonate western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae. In 4-h bioassays, the concentration of thiamethoxam required for 50% mortality (LC...

  5. Genome sequence of the first coleopteran iflavirus isolated from western corn rootworm, Diabrotica virgifera virgifera LeConte

    USDA-ARS?s Scientific Manuscript database

    Western corn rootworm (WCR), Diabrotica virgifera virgifera, adults were collected from cornfields in the United States (Iowa, Arizona, Pennsylvania), and Europe (Hungary, Croatia, Austria). Total RNA was extracted from ~100 individuals from different locations, and putative viral RNA was isolated f...

  6. Assessment of fitness costs in Cry3Bb1 resistant and susceptible western corn rootworm (Coleoptera:Chrysomelidae) laboratory colonies

    EPA Science Inventory

    Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Varieties of Bt maize expressing Cry3Bb endotoxins that specifically target corn rootworms (genus Diabrotica) have proven highly efficacious. Howeve...

  7. A Simple and Sensitive Plant-Based Western Corn Rootworm Bioassay Method for Resistance Determination and Event Selection.

    PubMed

    Wen, Zhimou; Chen, Jeng Shong

    2018-05-26

    We report here a simple and sensitive plant-based western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), bioassay method that allows for examination of multiple parameters for both plants and insects in a single experimental setup within a short duration. For plants, injury to roots can be visually examined, fresh root weight can be measured, and expression of trait protein in plant roots can be analyzed. For insects, in addition to survival, larval growth and development can be evaluated in several aspects including body weight gain, body length, and head capsule width. We demonstrated using the method that eCry3.1Ab-expressing 5307 corn was very effective against western corn rootworm by eliciting high mortality and significantly inhibiting larval growth and development. We also validated that the method allowed determination of resistance in an eCry3.1Ab-resistant western corn rootworm strain. While data presented in this paper demonstrate the usefulness of the method for selection of events of protein traits and for determination of resistance in laboratory populations, we envision that the method can be applied in much broader applications.

  8. Isolation of transcripts from Diabrotica virgifera virgifera LeConte responsive to the Bacillus thuringiensis toxin Cry3Bb1

    EPA Science Inventory

    Crystal proteins derived from Bacillus thuringiensis (Bt) have been widely used as a method of insect pest management for several decades. In recent years, a transgenic corn expressing the Cry3Bb1 toxin has been successfully used for protection against corn rootworm larvae (Genus...

  9. Toxic and behavioral effects of free fatty acids on western corn rootworm (Coleoptera: Chrysomelidae) larvae

    USDA-ARS?s Scientific Manuscript database

    Feeding behavior, feeding intensity and staying behavior of neonate western corn rootworm (Diabrotica virgifera virgifera LeConte) larvae were evaluated in response to synthetic feeding stimulant blends. All of the treatments contained a 3-sugar blend (glucose:fructose:sucrose, 30:4:4 mg per ml) an...

  10. Preliminary Mapping of the Western Corn Rootworm (Diabrotica virgifera virgifera) Genome and Quantitative Trait Locus (QTL) Interval Mapping for Growth

    USDA-ARS?s Scientific Manuscript database

    Preliminary investigations into the organization of the western corn rootworm (Diabrotica virgifera virgifera; WCR) genome have resulted in low to moderate density gender-specific maps constructed from progeny of a backcrossed, short-diapause WCR family. Maps were based upon variation at microsatel...

  11. Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi

    USDA-ARS?s Scientific Manuscript database

    While many studies have characterized the transcriptome of plants attacked by herbivorous insect pests, few have undertaken an examination of the genes affected by root pests. We have subjected maize seedlings to infestation by southern corn rootworm (SCR) Diabrotica undecimpunctata howardi and usin...

  12. A core set of microsatellite markers for Western Corn Rootworm (Coleoptera: Chrysomelidae) population genetics studies

    EPA Science Inventory

    Interest in the ecological and population genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, has grown rapidly in the last few years in North America and Europe. This interest is a result of a number of converging issues related to increasing difficult...

  13. Assessment of fitness costs in Cry3Bb1 resistant and susceptible western corn rootworm (Coleoptera: Chrysomelidae) laboratory colonies

    USDA-ARS?s Scientific Manuscript database

    Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Varieties of Bt maize expressing Cry3Bb d endotoxins that specifically target corn rootworms (genus Diabrotica) have proven highly efficacious. However, development of ...

  14. Discovery of a novel aquaporin ZmPIP2-8 from southern corn rootworm infested maize

    USDA-ARS?s Scientific Manuscript database

    A common paradigm of infestation by chewing insects is a jasmonic acid (JA) cascade that results in the induction of JA responsive genes. However examination of several maize genes induced by Southern corn rootworm (SCR) infestation, an insect that chews into and significantly damages maize roots, ...

  15. A NOVEL CADHERIN-LIKE GENE FROM WESTERN CORN ROOTWORM, DIABROTICA VIRGIFERA VIRGIFERA (COLEOPTERA: CHRYSOMELIDAE), LARVAL MIDGUT TISSUE

    EPA Science Inventory

    A cadherin-like gene and its mRNA were cloned from western corn rootworm (Diabrotica virgifera virgifera: Coleoptera), an economically important agricultural pest in North America and Europe. The full length cDNA (5371 bp in length) encodes an open reading frame for a 1688 amino ...

  16. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Coates, B S; Alves, A P; Wang, H; Zhou, X; Nowatzki, T; Chen, H; Rangasamy, M; Robertson, H M; Whitfield, C W; Walden, K K; Kachman, S D; French, B W; Meinke, L J; Hawthorne, D; Abel, C A; Sappington, T W; Siegfried, B D; Miller, N J

    2016-02-01

    The western corn rootworm, Diabrotica virgifera virgifera, is an insect pest of corn and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency amongst D. v. virgifera populations, resulting in the reduced efficacy in many corn-growing regions of the USA. We used comparative functional genomic and quantitative trait locus (QTL) mapping approaches to investigate the genetic basis of D. v. virgifera resistance to the organophosphate methyl-parathion. RNA from adult methyl-parathion resistant and susceptible adults was hybridized to 8331 microarray probes. The results predicted that 11 transcripts were significantly up-regulated in resistant phenotypes, with the most significant (fold increases ≥ 2.43) being an α-esterase-like transcript. Differential expression was validated only for the α-esterase (ST020027A20C03), with 11- to 13-fold greater expression in methyl-parathion resistant adults (P < 0.05). Progeny with a segregating methyl-parathion resistance trait were obtained from a reciprocal backcross design. QTL analyses of high-throughput single nucleotide polymorphism genotype data predicted involvement of a single genome interval. These data suggest that a specific carboyxesterase may function in field-evolved corn rootworm resistance to organophosphates, even though direct linkage between the QTL and this locus could not be established. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  17. Control of Larval Northern Corn Rootworm. (Diabrotica barberi) with Two Steinernematid Nematode Species

    PubMed Central

    Thurston, G. S.; Yule, W. N.

    1990-01-01

    The entomogenous nematodes Steinerema feltiae and S. bibionis did not penetrate the roots of corn, Zea mays, to infect larval northern corn rootworm (NCR), Diabrotica barberi, feeding within. Laboratory bioassays against first instar NCR indicated that S. feltiae, Mexican strain (LD₅₀ = 49 nematodes/insect) is more virulent than S. bibionis (LD₅₀ = 100). Numbers of NCR larvae in a grain corn crop were reduced by both nematode species applied at corn seeding time at the rate of 10,000 infective-stage juveniles per linear meter of corn row. The chemical insecticide fonofos provided significantly better control than either nematode species. PMID:19287699

  18. Examining Cuphea as a potential host for western corn rootworm (Coleoptera: Chrysomelidae): larval development.

    PubMed

    Behle, Robert W; Hibbard, Bruce E; Cermak, Steven C; Isbell, Terry A

    2008-06-01

    In previous crop rotation research, adult emergence traps placed in plots planted to Cuphea PSR-23 (a selected cross of Cuphea viscosissma Jacq. and Cuphea lanceolata Ait.) caught high numbers of adult western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), suggesting that larvae may have completed development on this broadleaf plant. Because of this observation, a series of greenhouse and field experiments were conducted to test the hypothesis that Cuphea could serve as a host for larval development. Greenhouse-grown plants infested with neonates of a colonized nondiapausing strain of the beetle showed no survival of larvae on Cuphea, although larvae did survive on the positive control (corn, Zea mays L.) and negative control [sorghum, Sorghum bicolor (L.) Moench] plants. Soil samples collected 20 June, 7 July, and 29 July 2005 from field plots planted to Cuphea did not contain rootworm larvae compared with means of 1.28, 0.22, and 0.00 rootworms kg(-1) soil, respectively, for samples collected from plots planted to corn. Emergence traps captured a peak of eight beetles trap(-1) day(-1) from corn plots on 8 July compared with a peak of 0.5 beetle trap(-1) day(-1) on 4 August from Cuphea plots. Even though a few adult beetles were again captured in the emergence traps placed in the Cuphea plots, it is not thought to be the result of successful larval development on Cuphea roots. All the direct evidence reported here supports the conventional belief that rootworm larvae do not survive on broadleaf plants, including Cuphea.

  19. Development and characterization of MIR604 resistance in a western corn rootworm population (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    mCry3A is one of only four proteins licensed for commercial use in Diabrotica control. Utilizing a colony of western corn rootworm, Diabrotica virgifera virgifera LeConte, selected for resistance to mCry3A, we evaluated how mCry3A resistance was inherited and whether fitness costs were associated wi...

  20. Quantitative trait loci mapping of western corn rootworm (Coleoptera: Chrysomelidae) host plant resistance in two populations of doubled haploid lines in maize (Zea mays L.)

    USDA-ARS?s Scientific Manuscript database

    Over the last 70 years, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Sele...

  1. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm

    PubMed Central

    Chu, Chia-Ching; Spencer, Joseph L.; Curzi, Matías J.; Zavala, Jorge A.; Seufferheld, Manfredo J.

    2013-01-01

    Insects are constantly adapting to human-driven landscape changes; however, the roles of their gut microbiota in these processes remain largely unknown. The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) (Coleoptera: Chrysomelidae) is a major corn pest that has been controlled via annual rotation between corn (Zea mays) and nonhost soybean (Glycine max) in the United States. This practice selected for a “rotation-resistant” variant (RR-WCR) with reduced ovipositional fidelity to cornfields. When in soybean fields, RR-WCRs also exhibit an elevated tolerance of antiherbivory defenses (i.e., cysteine protease inhibitors) expressed in soybean foliage. Here we show that gut bacterial microbiota is an important factor facilitating this corn specialist’s (WCR's) physiological adaptation to brief soybean herbivory. Comparisons of gut microbiota between RR- and wild-type WCR (WT-WCR) revealed concomitant shifts in bacterial community structure with host adaptation to soybean diets. Antibiotic suppression of gut bacteria significantly reduced RR-WCR tolerance of soybean herbivory to the level of WT-WCR, whereas WT-WCR were unaffected. Our findings demonstrate that gut bacteria help to facilitate rapid adaptation of insects in managed ecosystems. PMID:23798396

  2. Multiple assays indicate varying levels of cross resistance of Cry3Bb1-selected field populations of the western corn rootworm to mCry3A, eCry3.1Ab, and Cry34/35Ab1

    USDA-ARS?s Scientific Manuscript database

    Minnesota populations of the western corn rootworm (WCR) surviving Cry3Bb1-expressing corn in the field and WCR populations assumed to be susceptible to all Bt proteins were evaluated for susceptibility to Cry3Bb1, mCry3A, eCry3.1Ab, and Cry34/35Ab1 in diet assays and three different plant-based ass...

  3. Effect of seed blends and soil-insecticide on western and northern corn rootworm emergence from mCry3A + eCry3.1Ab Bt maize

    USDA-ARS?s Scientific Manuscript database

    Blended seed mixtures containing various ratios of transgenic Bt maize expressing the mCry3A + eCry3.1Ab proteins and non-Bt maize (near-isoline maize) were deployed alone and in combination with a soil applied insecticide (Force CS) to evaluate the survivorship of the western corn rootworm, Diabrot...

  4. Fitness Costs Related To Selection for Resistance to the Cry3Bb1 Protein in a Genetically Diverse Population of Non-diapausing Western Corn Rootworm

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm (Diabrotica virgifera virgifera LeConte) is an important pest of maize in North America. Since approved for commercial use in 2003, the acreage planted to maize (Zea mays L.) expressing the Bt derived Cry3Bb1 protein has significantly increased each year in the United State...

  5. Metathesis-mediated synthesis of (R)-10-methyl-2-tridecanone, the southern corn rootworm pheromone.

    PubMed

    Shikichi, Yasumasa; Mori, Kenji

    2012-01-01

    (R)-10-Methyl-2-tridecanone, the female sex pheromone of the southern corn rootworm (Diabrotica undecimpunctata howardi Barber), was synthesized in 9 steps from methyl (S)-3-hydroxy-2-methylpropanoate in a 15.7% overall yield. Olefin cross metathesis between (R)-6-methyl-1-nonene and 5-hexen-2-one employing Grubbs' first-generation catalyst was the key step of the synthesis.

  6. Secondary Contact and Admixture between Independently Invading Populations of the Western Corn Rootworm, Diabrotica virgifera virgifera in Europe

    PubMed Central

    Bermond, Gérald; Ciosi, Marc; Lombaert, Eric; Blin, Aurélie; Boriani, Marco; Furlan, Lorenzo; Toepfer, Stefan; Guillemaud, Thomas

    2012-01-01

    The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a Bayesian analysis of the population structure and in an approximate Bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed. PMID:23189184

  7. Corn insect pests

    USDA-ARS?s Scientific Manuscript database

    Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...

  8. Selecting for resistance to the Cry3Bb1 protein in a genetically diverse population of non-diapausing Western Corn Rootworm

    EPA Science Inventory

    Abstract published in Resistant Pest Management Newsletter, a biannual newsletter of the Center for Integrated Plant Systems (CIPS) in cooperation with the Insecticide Resistance Action Committee (IRAC) and the Western Regional Coordinating Committee (WRCC-60).

  9. Dynamic precision phenotyping reveals mechanism of crop tolerance to root herbivory

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm, Diabrotica virgifera virgifera (LeConte) is a major pest of maize, Zea mays L. Over the years, this pest has repeatedly shown its resilience and adaptability not only to traditional crop management strategies including chemical pesticides and crop rotation, but also to de...

  10. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores.

    PubMed

    Bernal, Julio S; Medina, Raul F

    2018-04-01

    We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Bt maize and integrated pest management--a European perspective.

    PubMed

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests. Copyright © 2011 Society of Chemical Industry.

  12. Meeting Materials for the December 4-6, 2013 Scientific Advisory Panel

    EPA Pesticide Factsheets

    Meeting Materials for the December 4-6, 2013 Scientific Advisory Panel on Scientific Uncertainties Associated with Corn Rootworm Resistance Monitoring for Bt Corn Plant Incorporated Protectants (PIPs)

  13. Selection for Cry3Bb1 resistance in a genetically diverse population of nondiapausing western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Oswald, Kenneth J; French, B Wade; Nielson, Chad; Bagley, Mark

    2011-06-01

    Five short-diapause laboratory lines of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), were selected for resistance to MON863, a variety of corn genetically modified with the Bacillus thuringiensis Berliner (Bt) transgene that expresses the Cry3Bb1 delta-endotoxin. Three of the selected lines were developed by incremental increase in the duration of exposure to MON863 over 11 generations (moderate selected lines). Two selected lines were developed from a control group by constant exposure to MON863 for at least 14 d posthatch over seven generations (intense selected lines). At the end of the experiment, survivorship, as measured by adult emergence, was approximately 4 times higher in each of the selected lines reared on MON863 compared with control lines. Estimates of realized heritabilities (h2) were 0.16 and 0.15 for the moderate and intense selected lines, respectively, and are consistent with h2 estimates reported previously from a variety of pest insects. These lines provide data necessary for evaluating the potential for Bt resistance within diabroticite beetles and will be useful for developing improved insect resistance management strategies.

  14. Attraction of Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae) to eugenol-baited traps in soybean

    USDA-ARS?s Scientific Manuscript database

    Diabrotica barberi Smith and Lawrence (the northern corn rootworm) is a native North American leaf beetle and a major pest of corn. However, adult D. barberi forage in various habitats outside of corn, including soybean, roadside vegetation, and prairie. Eugenol is a common floral volatile that ha...

  15. Genetic Markers for Western Corn Rootworm Resistance to Bt Toxin

    PubMed Central

    Flagel, Lex E.; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L.; Michel, Andrew P.; Head, Graham P.; Goldman, Barry S.

    2015-01-01

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies. PMID:25566794

  16. Kernel compositions of glyphosate-tolerant and corn rootworm-protected MON 88017 sweet corn and insect-protected MON 89034 sweet corn are equivalent to that of conventional sweet corn (Zea mays).

    PubMed

    Curran, Kassie L; Festa, Adam R; Goddard, Scott D; Harrigan, George G; Taylor, Mary L

    2015-03-25

    Monsanto Co. has developed two sweet corn hybrids, MON 88017 and MON 89034, that contain biotechnology-derived (biotech) traits designed to enhance sustainability and improve agronomic practices. MON 88017 confers benefits of glyphosate tolerance and protection against corn rootworm. MON 89034 provides protection against European corn borer and other lepidopteran insect pests. The purpose of this assessment was to compare the kernel compositions of MON 88017 and MON 89034 sweet corn with that of a conventional control that has a genetic background similar to the biotech sweet corn but does not express the biotechnology-derived traits. The sweet corn samples were grown at five replicated sites in the United States during the 2010 growing season and the conventional hybrid and 17 reference hybrids were grown concurrently to provide an estimate of natural variability for all assessed components. The compositional analysis included proximates, fibers, amino acids, sugars, vitamins, minerals, and selected metabolites. Results highlighted that MON 88017 and MON 89034 sweet corns were compositionally equivalent to the conventional control and that levels of the components essential to the desired properties of sweet corn, such as sugars and vitamins, were more affected by growing environment than the biotech traits. In summary, the benefits of biotech traits can be incorporated into sweet corn with no adverse effects on nutritional quality.

  17. First-instar western corn rootworm (Coleoptera: chrysomelidae) response to carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strnad, S.P.; Bergman, M.K.; Fulton, W.C.

    1986-08-01

    Responses of first-instar western corn rootworm to CO/sub 2/ and N/sub 2/ gas gradients were studied in a laboratory test arena. Number of larvae reaching the gas source, number of turns toward and away from the gas source, larval velocity, and number of turns per cm traveled were recorded. Larvae exhibited a positive chemotactic response to CO/sub 2/ but not N/sub 2/ or air. There was no indication that a kinesis of any type was involved because velocities and turning rates were not significantly different among treatments. Results indicate that newly hatched larve may use CO/sub 2/ to locate cornmore » roots.« less

  18. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations.

    PubMed

    Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E

    2013-04-01

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize.

  19. Corn rootworm-active RNA DvSnf7: Repeat dose oral toxicology assessment in support of human and mammalian safety.

    PubMed

    Petrick, Jay S; Frierdich, Gregory E; Carleton, Stephanie M; Kessenich, Colton R; Silvanovich, Andre; Zhang, Yuanji; Koch, Michael S

    2016-11-01

    Genetically modified (GM) crops have been developed and commercialized that utilize double stranded RNAs (dsRNA) to suppress a target gene(s), producing virus resistance, nutritional and quality traits. MON 87411 is a GM maize variety that leverages dsRNAs to selectively control corn rootworm through production of a 240 base pair (bp) dsRNA fragment targeting for suppression the western corn rootworm (Diabrotica virgifera virgifera) Snf7 gene (DvSnf7). A bioinformatics assessment found that endogenous corn small RNAs matched ∼450 to 2300 unique RNA transcripts that likely code for proteins in rat, mouse, and human, demonstrating safe dsRNA consumption by mammals. Mice were administered DvSnf7 RNA (968 nucleotides, including the 240 bp DvSnf7 dsRNA) at 1, 10, or 100 mg/kg by oral gavage in a 28-day repeat dose toxicity study. No treatment-related effects were observed in body weights, food consumption, clinical observations, clinical chemistry, hematology, gross pathology, or histopathology endpoints. Therefore, the No Observed Adverse Effect Level (NOAEL) for DvSnf7 RNA was 100 mg/kg, the highest dose tested. These results demonstrate that dsRNA for insect control does not produce adverse health effects in mammals at oral doses millions to billions of times higher than anticipated human exposures and therefore poses negligible risk to mammals. Copyright © 2016 Monsanto Company. Published by Elsevier Inc. All rights reserved.

  20. A maize inbred exhibits resistance against western corn root worm, Diabrotica vergifera vergifera.

    USDA-ARS?s Scientific Manuscript database

    Plants respond to insect infestations with a suite of natural defenses that vary depending on their genetic and phenotypic traits. Insect resistance traits against root herbivores like western corn rootworm (WCR, Diabrotica virgifera) are not well understood in non-transgenic maize. Using biomechani...

  1. Predator community structure and trophic linkage strength to a focal prey.

    PubMed

    Lundgren, Jonathan G; Fergen, Janet K

    2014-08-01

    Predator abundance and community structure can affect the suppression of lower trophic levels, although studies of these interactions under field conditions are relatively few. We investigated how the frequency of consumption (measured using PCR-based gut content analysis) is affected by predator abundance, community diversity and evenness under realistic conditions. Soil arthropod communities in sixteen maize fields were measured (number of predators, diversity [Shannon H] and evenness [J]), and predator guts were searched for DNA of the focal subterranean herbivore, the corn rootworm (Diabrotica virgifera). Predator abundance and diversity were positively correlated with trophic linkage strength (the proportion positive for rootworm DNA), although the latter characteristic was not significantly so. The diversity and evenness of the predator community with chewing mouthparts were strongly correlated with their linkage strength to rootworms, whereas the linkage strength of fluid-feeding predators was unaffected by their community characteristics. Within this community, chewing predators are more affected by the rootworm's hemolymph defence. This research clearly shows that predator abundance and diversity influence the strength of a community's trophic linkage to a focal pest and that these community characteristics may be particularly important for less palatable or protected prey species. We also make the case for conserving diverse and abundant predator communities within agroecosystems as a form of pest management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  2. Prediction of pest pressure on corn root nodes: the POPP-Corn model.

    PubMed

    Agatz, Annika; Ashauer, Roman; Sweeney, Paul; Brown, Colin D

    2017-01-01

    A model for the corn rootworm Diabrotica spp. combined with a temporally explicit model for development of corn roots across the soil profile was developed to link pest ecology, root damage and yield loss. Development of the model focused on simulating root damage from rootworm feeding in accordance with observations in the field to allow the virtual testing of efficacy from management interventions in the future. We present the model and demonstrate its applicability for simulating root damage by comparison between observed and simulated pest development and root damage (assessed according to the node injury scale from 0 to 3) for field studies from the literature conducted in Urbana, Illinois (US), between 1991 and 2014. The model simulated the first appearance of larvae and adults to within a week of that observed in 88 and 71 % of all years, respectively, and in all cases to within 2 weeks of the first sightings recorded for central Illinois. Furthermore, in 73 % of all years simulated root damage differed by <0.5 node injury scale points compared to the observations made in the field between 2005 and 2014 even though accurate information for initial pest pressure (i.e. number of eggs in the soil) was not measured at the sites or available from nearby locations. This is, to our knowledge, the first time that pest ecology, root damage and yield loss have been successfully interlinked to produce a virtual field. There are potential applications in investigating efficacy of different pest control measures and strategies.

  3. Distribution of genes and repetitive elements in the Diabrotica virgifera virgifera genome estimated using BAC sequencing

    USDA-ARS?s Scientific Manuscript database

    Feeding damage caused by the corn rootworm, Diabrotica virgifera virgifera, is destructive to corn plants in North America and Europe where control remains challenging due to evolution of resistance traits that allow survival when exposed to chemical and transgenic toxins. Genome sequencing of an i...

  4. Development of a CO2 -releasing coformulation based on starch, Saccharomyces cerevisiae and Beauveria bassiana attractive towards western corn rootworm larvae.

    PubMed

    Vemmer, Marina; Schumann, Mario; Beitzen-Heineke, Wilhelm; French, Bryan W; Vidal, Stefan; Patel, Anant V

    2016-11-01

    CO 2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO 2 -emitting formulations need to be developed. The aim of the present work was to develop a slow-release bead system in order to bridge the gap between application and hatching of western corn rootworm larvae. We compared different Ca-alginate beads containing Saccharomyces cerevisiae for their potential to release CO 2 over a period of several weeks. The addition of starch improved CO 2 release, resulting in significantly higher CO 2 concentrations in soil for at least 4 weeks. The missing amylase activity was compensated for either by microorganisms present in the soil or by coencapsulation of Beauveria bassiana. Formulations containing S. cerevisiae, starch and B. bassiana were attractive for western corn rootworm larvae within the first 4 h following exposure; however, when considering the whole testing period, the maize root systems remained more attractive for the larvae. Coencapsulation of S. cerevisiae, starch and B. bassiana is a promising approach for the development of attractive formulations for soil applications. For biological control strategies, the attractiveness needs to be increased by phagostimuli to extend contact between larvae and the entomopathogenic fungus growing out of these formulations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Wing shape and size of the western corn rootworm (Coleoptera: Chrysomelidae) is related to sex and resistance to soybean-maize crop rotation.

    PubMed

    Mikac, K M; Douglas, J; Spencer, J L

    2013-08-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is a major pest of maize in the United States and more recently, Europe. Understanding the dispersal dynamics of this species will provide crucial information for its management. This study used geometric morphometric analysis of hind wing venation based on 13 landmarks in 223 specimens from nine locations in Illinois, Nebraska, Iowa, and Missouri, to assess whether wing shape and size differed between rotated and continuously grown maize where crop rotation-resistant and susceptible individuals are found, respectively. Before assessing differences between rotation-resistant and susceptible individuals, sexual dimorphism was investigated. No significant difference in wing (centroid) size was found between males and females; however, females had significantly different shaped (more elongated) wings compared with males. Wing shape and (centroid) size were significantly larger among individuals from rotated maize where crop-rotation resistance was reported; however, cross-validation of these results revealed that collection site resistance status was an only better than average predictor of shape in males and females. This study provides preliminary evidence of wing shape and size differences in D. v. virgifera from rotated versus continuous maize. Further study is needed to confirm whether wing shape and size can be used to track the movement of rotation-resistant individuals and populations as a means to better inform management strategies.

  6. Role of a gamma-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides

    USDA-ARS?s Scientific Manuscript database

    An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. The corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was partially controlled by ...

  7. Knockdown of RNA interference pathway genes in western corn rootworm, Diabrotica virgifera virgifera, identifies no fitness costs associated with Argonaute 2 or Dicer-2.

    PubMed

    Camargo, Carolina; Wu, Ke; Fishilevich, Elane; Narva, Kenneth E; Siegfried, Blair D

    2018-06-01

    The use of transgenic crops that induce silencing of essential genes using double-stranded RNA (dsRNA) through RNA interference (RNAi) in western corn rootworm, Diabrotica virgifera virgifera, is likely to be an important component of new technologies for the control of this important corn pest. Previous studies have demonstrated that the dsRNA response in D. v. virgifera depends on the presence of RNAi pathway genes including Dicer-2 and Argonaute 2, and that downregulation of these genes limits the lethality of environmental dsRNA. A potential resistance mechanism to lethal dsRNA may involve loss of function of RNAi pathway genes. Howver, the potential for resistance to evolve may depend on whether these pathway genes have essential functions such that the loss of function of core proteins in the RNAi pathway will have fitness costs in D. v. virgifera. Fitness costs associated with potential resistance mechanisms have a central role in determining how resistance can evolve to RNAi technologies in western corn rootworm. We evaluated the effect of dsRNA and microRNA pathway gene knockdown on the development of D. v. virgifera larvae through short-term and long-term exposures to dsRNA for Dicer and Argonaute genes. Downregulation of Argonaute 2, Dicer-2, Dicer-1 did not significantly affect larval survivorship or development through short and long-term exposure to dsRNA. However, downregulation of Argonaute 1 reduced larval survivorship and delayed development. The implications of these results as they relate to D. v. virgifera resistance to lethal dsRNA are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Impact of Cry3Bb1-expressing Bt maize on adults of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

    PubMed

    Meissle, Michael; Hellmich, Richard L; Romeis, Jörg

    2011-07-01

    Genetically engineered maize producing insecticidal Cry3Bb1 protein from Bacillus thuringiensis (Bt) is protected from root damage by corn rootworm larvae. An examination was made to establish whether western corn rootworm (Diabrotica virgifera virgifera) adults are affected by Cry3Bb1-expressing maize (MON88017) when feeding on above-ground tissue. In laboratory bioassays, adult D. v. virgifera were fed for 7 weeks with silk, leaves or pollen from Bt maize or the corresponding near-isoline. Male, but not female, survival was reduced in the Bt-leaf treatment compared with the control. Female weight was lower when fed Bt maize, and egg production was reduced in the Bt-silk treatment. ELISA measurements demonstrated that beetles feeding on silk were exposed to higher Cry3Bb1 concentrations than beetles collected from Bt-maize fields in the United States. In contrast to silk and pollen, feeding on leaves resulted in high mortality and low fecundity. Females feeding on pollen produced more eggs than on silk. C:N ratios indicated that silk does not provide enough nitrogen for optimal egg production. Direct effects of Cry3Bb1 on adult beetles could explain the observed effects, but varietal differences between Bt and control maize are also possible. The impact of Bt maize on adult populations, however, is likely to be limited. Copyright © 2011 Society of Chemical Industry.

  9. A multi-year field study to evaluate the environmental fate and agronomic effects of insecticide mixtures.

    PubMed

    Whiting, Sara A; Strain, Katherine E; Campbell, Laura A; Young, Bryan G; Lydy, Michael J

    2014-11-01

    A mixture of insecticides used in corn production was monitored over a three-year period in a field study to determine how long each persists in the environment, where each insecticide travels within the corn field, and the efficacy of using soil-applied insecticides with genetically modified corn. The genetically modified corn contained the insecticidal Cry1Ab and Cry3Bb1 proteins (Bt corn) and the Cry1Ab protein was found to persist only during the corn growing season in soil, runoff water, and runoff sediment with highest concentrations measured during pollination. Very low concentrations of Cry1Ab proteins were measured in soil collected in the non-Bt corn field, and no Cry1Ab proteins were detected in shallow groundwater or soil pore water. Clothianidin, a neonicotinoid insecticide used as a seed coating, was detected in all matrices and remained persistent throughout the year in soil pore water. Tefluthrin, a pyrethroid insecticide applied at planting to control corn rootworm larvae (Diabrotica spp., Coleoptera: Chrysomelidae) populations, was consistently detected in soil, runoff water, and runoff sediment during the corn growing season, but was not detected in groundwater or soil pore water. Tefluthrin did not have an effect on root damage from corn rootworm larvae feeding to Bt corn, but did prevent damage to non-Bt corn. A slight reduction in grain yield was observed in the non-Bt, no tefluthrin treatment when compared to all other treatments, but no significant difference in grain yield was observed among Bt corn treatments regardless of soil insecticide application. In the current study, the use of tefluthrin on Bt corn did not significantly affect crop damage or yield, and tefluthrin may travel off-site in runoff water and sediment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. EPA Registers Innovative Tool to Control Corn Rootworm

    EPA Pesticide Factsheets

    Ribonucleic acid interference (RNAi) based Plant Incorporated Protectant (PIP) technology is a new and innovative scientific tool utilized by U.S. growers. Learn more about RNAi technology and the 4 new products containing the RNAi based PIP called SMARTST

  11. Discovery of a novel insecticidal protein from Chromobacterium piscinae, with activity against Western Corn Rootworm, Diabrotica virgifera virgifera.

    PubMed

    Sampson, Kimberly; Zaitseva, Jelena; Stauffer, Maria; Vande Berg, Brian; Guo, Rong; Tomso, Daniel; McNulty, Brian; Desai, Nalini; Balasubramanian, Deepa

    2017-01-01

    Western corn rootworm (WCR), Diabrotica virgifera virgifera, is one of the most significant pests of corn in the United States. Although transgenic solutions exist, increasing resistance concerns make the discovery of novel solutions essential. In order to find a novel protein with high activity and a new mode of action, a large microbial collection was surveyed for toxicity to WCR using in vitro bioassays. Cultures of strain ATX2024, identified as Chromobacterium piscinae, had very high activity against WCR larvae. The biological activity from the strain was purified using chromatographic techniques and fractions were tested against WCR larvae. Proteins in the final active fraction were identified by mass spectrometry and N-terminal sequencing and matched to the genome of ATX2024. A novel 58.9kDa protein, identified by this approach, was expressed in a recombinant expression system and found to have specific activity against WCR. Transgenic corn events containing this gene showed good protection against root damage by WCR, with average scores ranging between 0.01 and 0.04 on the Iowa State node injury scale. Sequence analysis did not reveal homology to any known insecticidal toxin, suggesting that this protein may act in a novel way to control WCR. The new WCR active protein is named GNIP1Aa, for Gram Negative Insecticidal Protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests.

    PubMed

    Tan, Jianguo; Levine, Steven L; Bachman, Pamela M; Jensen, Peter D; Mueller, Geoffrey M; Uffman, Joshua P; Meng, Chen; Song, Zihong; Richards, Kathy B; Beevers, Michael H

    2016-02-01

    The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double-stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no-observed-adverse-effect levels. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  13. Dietary risk assessment of v-ATPase A dsRNAs on monarch butterfly larvae

    USDA-ARS?s Scientific Manuscript database

    The goal of this study is to assess the risks of RNA interference (RNAi)-based genetically engineered crops on a non-target arthropod, monarch butterfly, Danaus plexippus. We hypothesize that an insecticidal double-stranded (ds) RNA targeting western corn rootworm, Diabrotica virgifera virgifera, ha...

  14. Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm

    USDA-ARS?s Scientific Manuscript database

    The use of entomopathogenic nematodes in the biological control of soil insect pests is hampered by the costly and inadequate application techniques. As a possible solution we evaluated an encapsulation approach that offers effective application and may possibly attract the pest by adding attractant...

  15. Evaluation of corn grain with the genetically modified input trait DAS-59122-7 fed to growing-finishing pigs.

    PubMed

    Stein, H H; Rice, D W; Smith, B L; Hinds, M A; Sauber, T E; Pedersen, C; Wulf, D M; Peters, D N

    2009-04-01

    A growth performance experiment was conducted to assess the feeding value of a double-stacked transgenic corn grain for growing-finishing pigs. The genetically modified corn grain contained event DAS-59122-7, which expresses the Cry34/35Ab1 binary insecticidal protein for the control of corn rootworm. This modified transgenic grain is resistant to western corn rootworm and is also tolerant to herbicides containing the active ingredient glufosinate-ammonium. The modified grain (59122), a nontransgenic near-isoline grain (control corn), and a commercial corn (Pioneer brand hybrid 35P12) were grown in a 2005 production trial in individually isolated plots that were located 201 m apart. A total of 108 pigs were allotted to corn-soybean meal diets containing 1 of the 3 grains as the sole source of corn. There were 3 pigs per pen and 12 replicate pens per treatment. Pigs were fed grower diets from 37 to 60 kg, early finisher diets from 60 to 90 kg, and late finisher diets from 90 to 127 kg. Within each phase, data for ADG, ADFI, and G:F were calculated. At the conclusion of the experiment, pigs were slaughtered and data for carcass quality were collected. Differences between 59122 and the control corn were evaluated, with statistical significance at P<0.05. No differences in ADG, ADFI, or G:F between pigs fed the control corn and pigs fed the modified corn were observed during the grower, early finisher, or late finisher phases. For the entire experimental period, no difference between pigs fed the control and the 59122 corn were observed for final BW (128.9 vs. 127.1 kg), ADG (1.02 vs. 1.00 kg), ADFI (2.88 vs. 2.80 kg), or G:F (0.356 vs. 0.345 kg/kg). Likewise, no differences in dressing percentage (76.48 vs. 76.30%), LM area (49.8 vs. 50.4 cm(2)), 10th-rib back fat (2.20 vs. 2.12 cm), and carcass lean content (52.9 vs. 53.4%) were observed between pigs fed the control and the 59122 corn grain. It was concluded that the nutritional value of the modified transgenic corn grain containing event DAS-59122-7 was similar to that of the nontransgenic near-isoline control.

  16. Male lifetime mating success in relation to body size in Diabrotica barberi

    USDA-ARS?s Scientific Manuscript database

    Body size is often an important component of male lifetime mating success in insects, especially when males are capable of mating several times over their lifespan. We paired either a large or small male northern corn rootworm with a female of random size and noted copulation success. We observed co...

  17. RNA interference as a method for target-site screening in the Western Corn Rootworm, Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi) is one of the most powerful and extraordinarily-specific means by which to silence genes. The ability of RNAi to silence genes makes it possible to ascertain function from genomic data, thereby making it an excellent choice for target-site screening. To test the efficacy of...

  18. Neonate larvae of the specialist herbivore Diabrotica virgifera virgifera do not exploit the defensive volatile (E)-ß-caryophyllene in locating maize roots

    USDA-ARS?s Scientific Manuscript database

    The behavior of the neonate larvae of Diabrotica virgifera virgifera LeConte (western corn rootworm, WCR) was assessed in presence of maize root constitutively emitting (E)-ß-caryophylene (EßC). This root volatile has been shown to attract both second instar WCR and insect-killing nematodes, offerin...

  19. Evaluation of potential fitness costs associated with eCry3.1Ab resistance in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    Both an eCry3.1Ab resistant and paired control western corn rootworm, Diabrotica virgifera virgifera colony were tested for adult longevity, egg oviposition, egg viability, and larval development in order to evaluate the potential fitness costs associated with eCry3.1Ab resistance in the western cor...

  20. Human health and ecological risk assessments for SmartStax PRO (MON 89034 x TC1507 x MON 87411 x DAS-59122-7), a plant-incorporated protectant intended to control corn rootworm through ribonucleic acid (RNA) interference

    EPA Science Inventory

    The use of RNA interference (RNAi) gene silencing technology, particularly RNAi for pesticidal purposes to control macroorganism pests, is a relatively recent innovation. Post-transcriptional silencing of gene function is a very rapid process where double-stranded RNA (dsRNA) dir...

  1. Development of a CO2 releasing co-formulation 1 based on starch, Saccharomyces cerevisiae and Beauveria bassiana attractive towards western corn rootworm larvae

    USDA-ARS?s Scientific Manuscript database

    CO2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO2 emitting formulations need to be developed. This work aimed at the development of a slow release bead system in order to bridge the gap between application and hatching of...

  2. Germline transformation of the western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Chu, F; Klobasa, W; Wu, P; Pinzi, S; Grubbs, N; Gorski, S; Cardoza, Y; Lorenzen, M D

    2017-08-01

    The western corn rootworm (WCR), a major pest of maize, is notorious for rapidly adapting biochemically, behaviourally and developmentally to a variety of control methods. Despite much effort, the genetic basis of WCR adaptation remains a mystery. Since transformation-based applications such as transposon tagging and enhancer trapping have facilitated genetic dissection of model species such as Drosophila melanogaster, we developed a germline-transformation system for WCR in an effort to gain a greater understanding of the basic biology of this economically important insect. Here we report the use of a fluorescent-marked Minos element to create transgenic WCR. We demonstrate that the transgenic strains express both an eye-specific fluorescent marker and piggyBac transposase. We identified insertion-site junction sequences via inverse PCR and assessed insertion copy number using digital droplet PCR (ddPCR). Interestingly, most WCR identified as transgenic via visual screening for DsRed fluorescence proved to carry multiple Minos insertions when tested via ddPCR. A total of eight unique insertion strains were created by outcrossing the initial transgenic strains to nontransgenic WCR mates. Establishing transgenic technologies for this beetle is the first step towards bringing a wide range of transformation-based tools to bear on understanding WCR biology. © 2017 The Royal Entomological Society.

  3. Impact of Bt-corn MON88017 in comparison to three conventional lines on Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) field densities.

    PubMed

    Rauschen, Stefan; Schultheis, Eva; Pagel-Wieder, Sibylle; Schuphan, Ingolf; Eber, Sabine

    2009-04-01

    In Europe, Bt-corn resistant against the European Corn Borer has until now been the only genetically modified plant to be grown commercially. With the advent of the Western Corn Rootworm Bt-corn varieties with resistance against Coleoptera will become important. The cultivation of Bt-plants may have negative impacts on non-target organisms, i.e. all species not explicitly targeted by a given Bt-crop. One prominent non-target group in corn are the herbivorous plant bugs (Heteroptera: Miridae). They are common, abundant and exposed to the Cry-protein. We therefore assessed the potential impact of the cultivation of the Cry3Bb1-expressing Bt-corn variety MON88017 and three conventional varieties on this group. Trigonotylus caelestialium (Kirkaldy) was the most abundant plant bug at the experimental field. There was no evidence for a negative impact of MON88017 on this species, despite its considerable exposure to Cry3Bb1 demonstrated with ELISA. The conventional corn varieties, however, had a consistent and significant influence on the field densities of this species over all three growing seasons.

  4. Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm.

    PubMed

    Bachman, Pamela M; Huizinga, Kristin M; Jensen, Peter D; Mueller, Geoffrey; Tan, Jianguo; Uffman, Joshua P; Levine, Steven L

    2016-11-01

    MON 87411 maize, which expresses DvSnf7 RNA, was developed to provide an additional mode of action to confer protection against corn rootworm (Diabrotica spp.). A critical step in the registration of a genetically engineered crop with an insecticidal trait is performing an ecological risk assessment to evaluate the potential for adverse ecological effects. For MON 87411, an assessment plan was developed that met specific protection goals by characterizing the routes and levels of exposure, and testing representative functional taxa that would be directly or indirectly exposed in the environment. The potential for toxicity of DvSnf7 RNA was evaluated with a harmonized battery of non-target organisms (NTOs) that included invertebrate predators, parasitoids, pollinators, soil biota as well as aquatic and terrestrial vertebrate species. Laboratory tests evaluated ecologically relevant endpoints such as survival, growth, development, and reproduction and were of sufficient duration to assess the potential for adverse effects. No adverse effects were observed with any species tested at, or above, the maximum expected environmental concentration (MEEC). All margins of exposure for NTOs were >10-fold the MEEC. Therefore, it is reasonable to conclude that exposure to DvSnf7 RNA, both directly and indirectly, is safe for NTOs at the expected field exposure levels. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Increased expression of a cGMP-dependent protein kinase in rotation-adapted western corn rootworm (Diabrotica virgifera virgifera L.).

    PubMed

    Garabagi, Freydoun; Wade French, B; Schaafsma, Arthur W; Peter Pauls, K

    2008-07-01

    A new 'variant' behavior in western corn rootworm (WCR) has resulted in egg-laying into non-cornfields, compared to 'normal' deposition of eggs in cornfields, allowing these insects to circumvent crop rotation. No morphological or genetic characteristics have been defined to differentiate between the normal and variant biotypes. Cyclic GMP-dependent protein kinases (PKG) have been implicated in the regulation of behaviors in vertebrates, insects, and nematodes, including foraging behavior in Drosophila. A cDNA with homology to the Drosophila melanogaster foraging gene (called Dvfor1) was cloned from WCR. The deduced DvFOR1 protein is approximately 70% similar to FOR proteins in Drosophila, silkworm (Bombyx mori) and honeybee (Apis mellifera). It contains a coiled-coil region, two tandem cyclic nucleotide-binding domains, a serine/threonine kinase catalytic domain, and a serine/threonine kinase catalytic domain extension, which are all characteristically found in PKG proteins. Real-time PCR assays of foraging transcript levels in heads of normal and rotation adapted females of WCR obtained from lab-reared insect colonies indicated that the variants had higher levels (25%) of PKG expression than normals. The magnitude of this increase is similar to that observed in Drosophila rover phenotypes compared to sitter phenotypes. However, Diabrotica contains at least two different foraging gene transcripts, which complicates establishing a direct link between the level of gene expression and insect behavior.

  6. Comparison of the forage and grain composition from insect-protected and glyphosate-tolerant MON 88017 corn to conventional corn (Zea mays L.).

    PubMed

    McCann, Melinda C; Trujillo, William A; Riordan, Susan G; Sorbet, Roy; Bogdanova, Natalia N; Sidhu, Ravinder S

    2007-05-16

    The next generation of biotechnology-derived products with the combined benefit of herbicide tolerance and insect protection (MON 88017) was developed to withstand feeding damage caused by the coleopteran pest corn rootworm and over-the-top applications of glyphosate, the active ingredient in Roundup herbicides. As a part of a larger safety and characterization assessment, MON 88017 was grown under field conditions at geographically diverse locations within the United States and Argentina during the 2002 and 2003-2004 field seasons, respectively, along with a near-isogenic control and other conventional corn hybrids for compositional assessment. Field trials were conducted using a randomized complete block design with three replication blocks at each site. Corn forage samples were harvested at the late dough/early dent stage, ground, and analyzed for the concentration of proximate constituents, fibers, and minerals. Samples of mature grain were harvested, ground, and analyzed for the concentration of proximate constituents, fiber, minerals, amino acids, fatty acids, vitamins, antinutrients, and secondary metabolites. The results showed that the forage and grain from MON 88017 are compositionally equivalent to forage and grain from control and conventional corn hybrids.

  7. Monitoring presence and advance of the alien invasive western corn rootworm beetle in eastern Slovenia with highly sensitive Metcalf traps.

    PubMed

    Hummel, H E; Urek, G; Modic, S; Hein, D F

    2005-01-01

    The American Chrysomelid beetle Diabrotica virgifera virgifera LeConte (D.v.v.), also called the western corn rootworm, spread from the location of its original introduction into Europe, Belgrade airport (BACA 1993), in all directions. Within a decade it occupied almost all countries of South-eastern and Central Europe. However, it reached Slovenia as late as 2003: Only 19 specimen were found in maize fields of the eastern and also western provinces. Already in the summer of 2004, their number had risen to 386 which were mainly found in the eastern provinces near the borders to Croatia, Austria and Hungary. For their monitoring, a simple trap is being described which can be acquired in high numbers at a very low price and can guaranty a most sensitive detection of beetles. The Metcalf cup trap which in Slovenia so far has been unknown performed the task of monitoring quite well at five locations. It will also facilitate the future search for new and increasing infestations. Comparing 2004 with the year 2003, D.v.v. expanded its range in eastern Slovenia by about 15 km. These new infestations will include territories in which fields of the regionally Important oil seed pumpkin Cucurbita pepo are located. With important traffic connections between South-eastern and Central Europe, Slovenia will occupy a bridgehead function in the preventive protection of maize from D.v.v. spreading into more northerly European regions including western Austria and southern Germany.

  8. Abnormally high digestive enzyme activity and gene expression explain the contemporary evolution of a Diabrotica biotype able to feed on soybeans

    PubMed Central

    Curzi, Matías J; Zavala, Jorge A; Spencer, Joseph L; Seufferheld, Manfredo J

    2012-01-01

    Western corn rootworm (Diabrotica virgifera) (WCR) depends on the continuous availability of corn. Broad adoption of annual crop rotation between corn (Zea mays) and nonhost soybean (Glycine max) exploited WCR biology to provide excellent WCR control, but this practice dramatically reduced landscape heterogeneity in East-central Illinois and imposed intense selection pressure. This selection resulted in behavioral changes and “rotation-resistant” (RR) WCR adults. Although soybeans are well defended against Coleopteran insects by cysteine protease inhibitors, RR-WCR feed on soybean foliage and remain long enough to deposit eggs that will hatch the following spring and larvae will feed on roots of planted corn. Other than documenting changes in insect mobility and egg laying behavior, 15 years of research have failed to identify any diagnostic differences between wild-type (WT)- and RR-WCR or a mechanism that allows for prolonged RR-WCR feeding and survival in soybean fields. We documented differences in behavior, physiology, digestive protease activity (threefold to fourfold increases), and protease gene expression in the gut of RR-WCR adults. Our data suggest that higher constitutive activity levels of cathepsin L are part of the mechanism that enables populations of WCR to circumvent soybean defenses, and thus, crop rotation. These new insights into the mechanism of WCR tolerance of soybean herbivory transcend the issue of RR-WCR diagnostics and management to link changes in insect gut proteolytic activity and behavior with landscape heterogeneity. The RR-WCR illustrates how agro-ecological factors can affect the evolution of insects in human-altered ecosystems. PMID:22957201

  9. Monitoring Diabrotica v. virgifera (Col.: Chrysomelidae) in southeastern Slovenia: increasing population trend and host spectrum expansion.

    PubMed

    Ulrichs, C; Dinnesen, S; Nedelev, T; Hummel, H E; Modic, S; Urek, G

    2008-01-01

    Ever since the western corn rootworm (WCR) (Diabrotica virgifera virgifera), an alien invasive species from North America, has been introduced into Europe on at least 3 separate occasions, it spread within 15 years over the entire area of south-eastern and central Europe (except Denmark). Until quite recently, Zea mays L. was the only known host plant whereas in North America WCR also attacks members of the plant family Cucurbitaceae. In August of 2006, we were able to validate these findings also in the Old World by observing WCR visiting blossoms of oil pumpkin (Cucurbita pepo L.). Beside this first report of WCR on this regionally and economically important crop, a population increase in Gaberje near Lendava, Eastern Slovenia, was observed. Some future consequences of multiple hosts for integrated pest management (IPM) of WCR are being discussed.

  10. Influence of calcareous soil on Cry3Bb1 expression and efficacy in the field.

    PubMed

    Wangila, David S; Valencia J, Arnubio; Wang, Haichuan; Siegfried, Blair D; Meinke, Lance J

    2017-06-01

    Greater than expected injury by western corn rootworm (WCR) (Diabrotica virgifera virgifera LeConte) to Cry3Bb1 expressing maize hybrids (Zea mays L.) has been reported in southwestern Nebraska. Affected areas of some fields are often associated with high pH calcareous soils where maize growth is poor and iron chlorosis is common. As part of a comprehensive study to understand potential causes of unexpected injury, experiments were conducted during 2013 and 2014 to ascertain whether the calcareous soil conditions and associated poor maize growth negatively affect the expression of Cry3Bb1. Quantitative determination of Cry3Bb1 protein expression levels in root tissues was carried out on plants at V5-V6 growth stage using the enzyme-linked immunosorbent assay. Cry3Bb1 and non-Bt near isoline maize hybrids were artificially infested with Cry3Bb1-susceptible WCR eggs to measure survival and efficacy of Cry3Bb1 maize in calcareous and non-calcareous soils. Results showed that there was not a significant difference in expression of Cry3Bb1 protein between plants from calcareous and non-calcareous soils (18.9-21.2 µg/g fresh weight). Western corn rootworm survival was about sevenfold greater from the non-Bt isoline than Cry3Bb1 maize indicating that Cry3Bb1 performed as expected when infested with a Cry3Bb1 susceptible rootworm population. When survival from calcareous and non-calcareous soils was compared, no significant differences were observed in each soil. A significant positive correlation between soil pH and expression of Cry3Bb1 protein in roots was detected from samples collected in 2014 but not in 2013. No such correlation was found between soil pH and survival of WCR. Results suggest that Cry3Bb1 expression levels were sufficient to provide adequate root protection against WCR regardless of soil environment, indicating that lowered Cry3Bb1 expression is not a contributing factor to the greater than expected WCR injury observed in some southwestern Nebraska maize fields.

  11. Composition of grain and forage from insect-protected and herbicide-tolerant corn, MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax), is equivalent to that of conventional corn (Zea mays L.).

    PubMed

    Lundry, Denise R; Burns, J Austin; Nemeth, Margaret A; Riordan, Susan G

    2013-02-27

    Monsanto Company and Dow AgroSciences LLC have developed the combined-trait corn product MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax, a registered trademark of Monsanto Technology LLC). The combination of four biotechnology-derived events into a single corn product (stacking) through conventional breeding provides broad protection against lepidopteran and corn rootworm insect pests as well as tolerance to the glyphosate and glufosinate-ammonium herbicide families. The purpose of the work described here was to assess whether the nutrient, antinutrient, and secondary metabolite levels in grain and forage tissues of the combined-trait product are comparable to those in conventional corn. Compositional analyses were conducted on grain and forage from SmartStax, a near-isogenic conventional corn hybrid (XE6001), and 14 conventional reference hybrids, grown at multiple locations across the United States. No statistically significant differences between SmartStax and conventional corn were observed for the 8 components analyzed in forage and for 46 of the 52 components analyzed in grain. The six significant differences observed in grain components (p < 0.05) were assessed in context of the natural variability for that component. These results demonstrate that the stacked product, SmartStax, produced through conventional breeding of four single-event products containing eight proteins, is compositionally equivalent to conventional corn, as previously demonstrated for the single-event products.

  12. Cross-resistance and synergism bioassays suggest multiple mechanisms of pyrethroid resistance in western corn rootworm populations

    PubMed Central

    Souza, Dariane; Zukoff, Sarah N.; Meinke, Lance J.; Siegfried, Blair D.

    2017-01-01

    Recently, resistance to the pyrethroid bifenthrin was detected and confirmed in field populations of western corn rootworm, Diabrotica virgifera virgifera LeConte from southwestern areas of Nebraska and Kansas. As a first step to understand potential mechanisms of resistance, the objectives of this study were i) to assess adult mortality at diagnostic concentration-LC99 to the pyrethroids bifenthrin and tefluthrin as well as DDT, ii) estimate adult and larval susceptibility to the same compounds as well as the organophosphate methyl-parathion, and iii) perform synergism experiments with piperonyl butoxide (PBO) (P450 inhibitor) and S,S,S-tributyl-phosphorotrithioate (DEF) (esterase inhibitor) in field populations. Most of the adult field populations exhibiting some level of bifenthrin resistance exhibited significantly lower mortality to both pyrethroids and DDT than susceptible control populations at the estimated LC99 of susceptible populations. Results of adult dose-mortality bioassays also revealed elevated LC50 values for bifenthrin resistant populations compared to the susceptible control population with resistance ratios ranging from 2.5 to 5.5-fold for bifenthrin, 28 to 54.8-fold for tefluthrin, and 16.3 to 33.0 for DDT. These bioassay results collectively suggest some level of cross-resistance between the pyrethroids and DDT. In addition, both PBO and DEF reduced the resistance ratios for resistant populations although there was a higher reduction in susceptibility of adults exposed to PBO versus DEF. Susceptibility in larvae varied among insecticides and did not correlate with adult susceptibility to tefluthrin and DDT, as most resistance ratios were < 5-fold when compared to the susceptible population. These results suggest that both detoxifying enzymes and target site insensitivity might be involved as resistance mechanisms. PMID:28628635

  13. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing nontransgenic maize grain.

    PubMed

    Jacobs, C M; Utterback, P L; Parsons, C M; Rice, D; Smith, B; Hinds, M; Liebergesell, M; Sauber, T

    2008-03-01

    An experiment using 216 Hy-Line W-36 pullets was conducted to evaluate transgenic maize grain containing the cry34Ab1 and cry35Ab1 genes from a Bacillus thuringiensis (Bt) strain and the phosphinothricin ace-tyltransferase (pat) gene from Streptomyces viridochromogenes. Expression of the cry34Ab1 and cry35Ab1 genes confers resistance to corn rootworms, and the pat gene confers tolerance to herbicides containing glufosinate-ammonium. Pullets (20 wk of age) were placed in cage lots (3 hens/cage, 2 cages/lot) and were randomly assigned to 1 of 3 corn-soybean meal dietary treatments (12 lots/treatment) formulated with the following maize grains: near-isogenic control (control), conventional maize, and transgenic test corn line 59122 containing event DAS-59122-7. Differences between 59122 and control group means were evaluated with statistical significance at P < 0.05. Body weight and gain, egg production, egg mass, and feed efficiency for hens fed the 59122 corn were not significantly different from the respective values for hens fed diets formulated with control maize grain. Egg component weights, Haugh unit measures, and egg weight class distribution were similar regardless of the corn source. This research indicates that performance of hens fed diets containing 59122 maize grain, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with near-isogenic corn grain.

  14. Distribution patterns of MCA-coated granules aerially applied to corn fields of Southern Hungary between 2000 and 2002.

    PubMed

    Wennemann, L; Hummel, H E

    2003-01-01

    Field studies in corn (Zea mays L.) were conducted to evaluate distribution patterns of 4-methoxy-cinnamaldehyde (MCA) coated corn grits after aerial application with a Dromader fixed wing aircraft. The kairomone mimic MCA is synthetically available and a quite specific and efficient adult attractant for the invasive alien maize pest western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. Orientation disruptive properties of MCA for WCR when applied at unphysiologically high concentrations are currently under investigation. For successful implementation of the MCA disruption technique, the distribution patterns of MCA coated corn granules ('grits') in the field are important. Grits are degrained corn cobs, shredded to different sizes, coated with MCA and used as a carrier material to disseminate MCA vapors into corn fields. Granules of 10-12 mesh size were aerially applied eight times at rates ranging from 12.4 to 25.0 kg/ha. The goal is to evaluate distribution patterns of corn grits treated with MCA in three fields located at Csanadpalota, Kardoskút and Mezöhegyes in Southern Hungary between 2000 and 2002. Increasing rates reflect our attempts in finding and optimising the most even distribution of granules in the field. Field experiments were evaluated by collecting grits in 30-cm plastic saucers and by counting grits accumulated on corn plant parts. Variation in grit number per unit area and frequency of corn granule number per plant showed some transient technical application problems. Analysis of grits collected in the saucers revealed some statistical difference between the different application dates as well as differences in rates applied. Altogether grits in saucers were more evenly distributed in comparison to the grits collected on plant parts. As the corn plants age, their leaves and whorls present a smaller and smaller surface area where granules can accumulate. Altogether, however, grit distribution patterns indicate that aerial application is a viable tool for disseminating MCA in corn fields.

  15. Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field.

    PubMed

    Xue, Kai; Serohijos, Raquel C; Devare, Medha; Thies, Janice E

    2011-02-01

    Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.

  16. Physiological time model for predicting adult emergence of western corn rootworm (Coleoptera: Chrysomelidae) in the Texas High Plains.

    PubMed

    Stevenson, Douglass E; Michels, Gerald J; Bible, John B; Jackman, John A; Harris, Marvin K

    2008-10-01

    Field observations at three locations in the Texas High Plains were used to develop and validate a degree-day phenology model to predict the onset and proportional emergence of adult Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Climatic data from the Texas High Plains Potential Evapotranspiration network were used with records of cumulative proportional adult emergence to determine the functional lower developmental temperature, optimum starting date, and the sum of degree-days for phenological events from onset to 99% adult emergence. The model base temperature, 10 degrees C (50 degrees F), corresponds closely to known physiological lower limits for development. The model uses a modified Gompertz equation, y = 96.5 x exp (-(exp(6.0 - 0.00404 x (x - 4.0), where x is cumulative heat (degree-days), to predict y, cumulative proportional emergence expressed as a percentage. The model starts degree-day accumulation on the date of corn, Zea mays L., emergence, and predictions correspond closely to corn phenological stages from tasseling to black layer development. Validation shows the model predicts cumulative proportional adult emergence within a satisfactory interval of 4.5 d. The model is flexible enough to accommodate early planting, late emergence, and the effects of drought and heat stress. The model provides corn producers ample lead time to anticipate and implement adult control practices.

  17. Differential effects of RNAi treatments on field populations of the western corn rootworm.

    PubMed

    Chu, Chia-Ching; Sun, Weilin; Spencer, Joseph L; Pittendrigh, Barry R; Seufferheld, Manfredo J

    2014-03-01

    RNA interference (RNAi) mediated crop protection against insect pests is a technology that is greatly anticipated by the academic and industrial pest control communities. Prior to commercialization, factors influencing the potential for evolution of insect resistance to RNAi should be evaluated. While mutations in genes encoding the RNAi machinery or the sequences targeted for interference may serve as a prominent mechanism of resistance evolution, differential effects of RNAi on target pests may also facilitate such evolution. However, to date, little is known about how variation of field insect populations could influence the effectiveness of RNAi treatments. To approach this question, we evaluated the effects of RNAi treatments on adults of three western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) populations exhibiting different levels of gut cysteine protease activity, tolerance of soybean herbivory, and immune gene expression; two populations were collected from crop rotation-resistant (RR) problem areas and one from a location where RR was not observed (wild type; WT). Our results demonstrated that RNAi targeting DvRS5 (a highly expressed cysteine protease gene) reduced gut cysteine protease activity in all three WCR populations. However, the proportion of the cysteine protease activity that was inhibited varied across populations. When WCR adults were treated with double-stranded RNA of an immune gene att1, different changes in survival among WT and RR populations on soybean diets occurred. Notably, for both genes, the sequences targeted for RNAi were the same across all populations examined. These findings indicate that the effectiveness of RNAi treatments could vary among field populations depending on their physiological and genetic backgrounds and that the consistency of an RNAi trait's effectiveness on phenotypically different populations should be considered or tested prior to wide deployment. Also, genes that are potentially subjected to differential selection in the field should be avoided for RNAi-based pest control. Published by Elsevier Inc.

  18. Report of an Expert Panel on the reanalysis by of a 90-day study conducted by Monsanto in support of the safety of a genetically modified corn variety (MON 863).

    PubMed

    Doull, J; Gaylor, D; Greim, H A; Lovell, D P; Lynch, B; Munro, I C

    2007-11-01

    MON 863, a genetically engineered corn variety that contains the gene for modified Bacillus thuringiensis Cry3Bb1 protein to protect against corn rootworm, was tested in a 90-day toxicity study as part of the process to gain regulatory approval. This study was reanalyzed by Séralini et al. who contended that the study showed possible hepatorenal effects of MON 863. An Expert Panel was convened to assess the original study results as analyzed by the Monsanto Company and the reanalysis conducted by Séralini et al. The Expert Panel concludes that the Séralini et al. reanalysis provided no evidence to indicate that MON 863 was associated with adverse effects in the 90-day rat study. In each case, statistical findings reported by both Monsanto and Séralini et al. were considered to be unrelated to treatment or of no biological or clinical importance because they failed to demonstrate a dose-response relationship, reproducibility over time, association with other relevant changes (e.g., histopathology), occurrence in both sexes, difference outside the normal range of variation, or biological plausibility with respect to cause-and-effect. The Séralini et al. reanalysis does not advance any new scientific data to indicate that MON 863 caused adverse effects in the 90-day rat study.

  19. Volatile chemicals associated with host plants of the strawberry rootworm

    USDA-ARS?s Scientific Manuscript database

    The strawberry rootworm (SRW), Paria fragariae Wilcox (Coleoptera: Chrysomelidae: Eumolpinae), hinders profitable production of azaleas and other containerized ornamental crops at nurseries throughout the Southeast. Properly timed early-season insecticide applications are critical to reducing poten...

  20. Performance of lactating dairy cows fed corn as whole plant silage and grain produced from genetically modified corn containing event DAS-59122-7 compared to a nontransgenic, near-isogenic control.

    PubMed

    Brouk, M J; Cvetkovic, B; Rice, D W; Smith, B L; Hinds, M A; Owens, F N; Iiams, C; Sauber, T E

    2011-04-01

    The nutritional equivalency of grain plus whole plant silage from genetically modified corn plants containing the DAS-59122-7 (59122) event expressing the Cry34Ab1 and Cry35Ab1 proteins to grain and silage from a near-isogenic corn hybrid without this trait (control) was assessed using lactating dairy cows. Corn plants with event 59122 are resistant to western corn rootworm and tolerant to the herbicide active ingredient glufosinate-ammonium. Effects on feed intake, milk production, and milk composition were determined. The 59122 grain and the control grain were produced in 2005 from isolated plots in Richland, Iowa. Whole plant corn silage for the 59122 and control treatments were grown in isolated plots at the Kansas State University Dairy Center and ensiled in Ag-Bags. Thirty lactating Holstein cows blocked by lactation number, day of lactation, and previous energy-corrected milk production were used in a switchback design. All cows were fed diets that contained 22.7% grain plus 21.3% whole plant silage from either the 59122 or the control hybrid, in addition to 21% wet corn gluten feed, 12.3% protein mix, 8.0% whole cottonseed, and 14.7% alfalfa hay. Each period of the switchback trial included 2 wk for diet adjustment followed by 4 wk for data and sample collection. Milk samples (a.m. and p.m.) collected from 2 consecutive milkings of each collection wk were analyzed for fat, protein, lactose, solids-not-fat, milk urea nitrogen, and somatic cell count. Percentages of milk fat, protein, lactose, and solids-not-fat were not affected by dietary treatment. Yields of milk, 4% fat-corrected milk, energy-corrected milk, solids-corrected milk, and the concentrations and yields of milk fat, milk protein, milk solids, and milk lactose were not significantly different between treatments. Efficiencies of milk, fat-corrected milk, energy-corrected milk, and solids-corrected milk production also were not different when cows were fed crops from 59122 than when they were fed the control hybrid. Milk production efficiency averaged 1.48 and 1.50 kg/kg of dry matter intake for cows fed diets containing the control and 59122 corn, respectively. These data indicate that the nutritional value for milk production was not different between a diet containing grain plus whole plant corn silage produced from a 59122 corn hybrid versus a diet containing grain and corn silage from its near-isogenic control corn hybrid. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Mating Success, Longevity, and Fertility of Diabrotica virgifera virgifera LeConte (Chrysomelidae: Coleoptera) in Relation to Body Size and Cry3Bb1-Resistant and Cry3Bb1-Susceptible Genotypes

    PubMed Central

    French, Bryan Wade; Hammack, Leslie; Tallamy, Douglas W.

    2015-01-01

    Insect resistance to population control methodologies is a widespread problem. The development of effective resistance management programs is often dependent on detailed knowledge regarding the biology of individual species and changes in that biology associated with resistance evolution. This study examined the reproductive behavior and biology of western corn rootworm beetles of known body size from lines resistant and susceptible to the Cry3Bb1 protein toxin expressed in transgenic Bacillus thuringiensis maize. In crosses between, and within, the resistant and susceptible genotypes, no differences occurred in mating frequency, copulation duration, courtship duration, or fertility; however, females mated with resistant males showed reduced longevity. Body size did not vary with genotype. Larger males and females were not more likely to mate than smaller males and females, but larger females laid more eggs. Moderately strong, positive correlation occurred between the body sizes of successfully mated males and females; however, weak correlation also existed for pairs that did not mate. Our study provided only limited evidence for fitness costs associated with the Cry3Bb1-resistant genotype that might reduce the persistence in populations of the resistant genotype but provided additional evidence for size-based, assortative mating, which could favor the persistence of resistant genotypes affecting body size. PMID:26569315

  2. Assessment of acute toxicity tests and rhizotron experiments to characterize lethal and sublethal control of soil-based pests.

    PubMed

    Agatz, Annika; Schumann, Mario M; French, Bryan W; Brown, Colin D; Vidal, Stefan

    2018-03-24

    Characterizing lethal and sublethal control of soil-based pests with plant protection products is particularly challenging due to the complex and dynamic interplay of the system components. Here, we present two types of studies: acute toxcity experiments (homogenous exposure of individuals in soil) and rhizotron experiments (heterogeneous exposure of individuals in soil) to investigate their ability to strengthen our understanding of mechanisms driving the effectivness of the plant protection product. Experiments were conducted using larvae of the western corn rootworm Diabrotica virgifera LeConte and three pesticide active ingredients: clothianidin (neonicotinoid), chlorpyrifos (organophosphate) and tefluthrin (pyrethroid). The order of compound concentrations needed to invoke a specific effect intensity (EC 50 values) within the acute toxicity tests was chlorpyrifos > tefluthrin > clothianidin. This order changed for the rhizotron experiments because application type, fate and transport of the compounds in the soil profile, and sublethal effects on larvae also influence their effectiveness in controlling larval feeding on corn roots. Beyond the pure measurement of efficacy through observing relative changes in plant injury to control plants, the tests generate mechanistic understanding for drivers of efficacy apart from acute toxicity. The experiments have the potential to enhance efficacy testing and product development, and might be useful tools for assessing resistance development in the future. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Cry3Bb1-Resistant Western Corn Rootworm, Diabrotica virgifera virgifera (LeConte) Does Not Exhibit Cross-Resistance to DvSnf7 dsRNA.

    PubMed

    Moar, William; Khajuria, Chitvan; Pleau, Michael; Ilagan, Oliver; Chen, Mao; Jiang, Changjian; Price, Paula; McNulty, Brian; Clark, Thomas; Head, Graham

    2017-01-01

    There is a continuing need to express new insect control compounds in transgenic maize against western corn rootworm, Diabrotica virgifera virgifera (LeConte) (WCR). In this study three experiments were conducted to determine cross-resistance between the new insecticidal DvSnf7 dsRNA, and Bacillus thuringiensis (Bt) Cry3Bb1; used to control WCR since 2003, with field-evolved resistance being reported. Laboratory susceptible and Cry3Bb1-resistant WCR were evaluated against DvSnf7 dsRNA in larval diet-incorporation bioassays. Additionally, the susceptibility of seven field and one field-derived WCR populations to DvSnf7 (and Cry3Bb1) was assessed in larval diet-overlay bioassays. Finally, beetle emergence of laboratory susceptible and Cry3Bb1-resistant WCR was evaluated with maize plants in the greenhouse expressing Cry3Bb1, Cry34Ab1/Cry35Ab1, or DvSnf7 dsRNA singly, or in combination. The Cry3Bb1-resistant colony had slight but significantly (2.7-fold; P<0.05) decreased susceptibility to DvSnf7 compared to the susceptible colony, but when repeated using a field-derived WCR population selected for reduced Cry3Bb1 susceptibility, there was no significant difference (P<0.05) in DvSnf7 susceptibility compared to that same susceptible population. Additionally, this 2.7-fold difference in susceptibility falls within the range of DvSnf7 susceptibility among the seven field populations tested. Additionally, there was no correlation between susceptibility to DvSnf7 and Cry3Bb1 for all populations evaluated. In greenhouse studies, there were no significant differences (P<0.05) between beetle emergence of susceptible and Cry3Bb1-resistant colonies on DvSnf7 and Cry34Ab1/Cry35Ab1, and between DvSnf7 and MON 87411 (DvSnf7 + Cry3Bb1) for the Cry3Bb1-resistant colony. These results demonstrate no cross-resistance between DvSnf7 and Cry3Bb1 against WCR. Therefore, pyramiding DvSnf7 with Bt proteins such as Cry3Bb1 and Cry34Ab1/Cry35Ab1 will provide a valuable IRM tool against WCR that will increase the durability of these Bt proteins. These results also illustrate the importance of using appropriate bioassay methods when characterizing field-evolved resistant WCR populations.

  4. Cry3Bb1-Resistant Western Corn Rootworm, Diabrotica virgifera virgifera (LeConte) Does Not Exhibit Cross-Resistance to DvSnf7 dsRNA

    PubMed Central

    Khajuria, Chitvan; Pleau, Michael; Ilagan, Oliver; Chen, Mao; Jiang, Changjian; Price, Paula; McNulty, Brian; Clark, Thomas; Head, Graham

    2017-01-01

    Background and Methodology There is a continuing need to express new insect control compounds in transgenic maize against western corn rootworm, Diabrotica virgifera virgifera (LeConte) (WCR). In this study three experiments were conducted to determine cross-resistance between the new insecticidal DvSnf7 dsRNA, and Bacillus thuringiensis (Bt) Cry3Bb1; used to control WCR since 2003, with field-evolved resistance being reported. Laboratory susceptible and Cry3Bb1-resistant WCR were evaluated against DvSnf7 dsRNA in larval diet-incorporation bioassays. Additionally, the susceptibility of seven field and one field-derived WCR populations to DvSnf7 (and Cry3Bb1) was assessed in larval diet-overlay bioassays. Finally, beetle emergence of laboratory susceptible and Cry3Bb1-resistant WCR was evaluated with maize plants in the greenhouse expressing Cry3Bb1, Cry34Ab1/Cry35Ab1, or DvSnf7 dsRNA singly, or in combination. Principal Findings and Conclusions The Cry3Bb1-resistant colony had slight but significantly (2.7-fold; P<0.05) decreased susceptibility to DvSnf7 compared to the susceptible colony, but when repeated using a field-derived WCR population selected for reduced Cry3Bb1 susceptibility, there was no significant difference (P<0.05) in DvSnf7 susceptibility compared to that same susceptible population. Additionally, this 2.7-fold difference in susceptibility falls within the range of DvSnf7 susceptibility among the seven field populations tested. Additionally, there was no correlation between susceptibility to DvSnf7 and Cry3Bb1 for all populations evaluated. In greenhouse studies, there were no significant differences (P<0.05) between beetle emergence of susceptible and Cry3Bb1-resistant colonies on DvSnf7 and Cry34Ab1/Cry35Ab1, and between DvSnf7 and MON 87411 (DvSnf7 + Cry3Bb1) for the Cry3Bb1-resistant colony. These results demonstrate no cross-resistance between DvSnf7 and Cry3Bb1 against WCR. Therefore, pyramiding DvSnf7 with Bt proteins such as Cry3Bb1 and Cry34Ab1/Cry35Ab1 will provide a valuable IRM tool against WCR that will increase the durability of these Bt proteins. These results also illustrate the importance of using appropriate bioassay methods when characterizing field-evolved resistant WCR populations. PMID:28060922

  5. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    PubMed

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  6. Analysis of plant-derived miRNAs in animal small RNA datasets

    PubMed Central

    2012-01-01

    Background Plants contain significant quantities of small RNAs (sRNAs) derived from various sRNA biogenesis pathways. Many of these sRNAs play regulatory roles in plants. Previous analysis revealed that numerous sRNAs in corn, rice and soybean seeds have high sequence similarity to animal genes. However, exogenous RNA is considered to be unstable within the gastrointestinal tract of many animals, thus limiting potential for any adverse effects from consumption of dietary RNA. A recent paper reported that putative plant miRNAs were detected in animal plasma and serum, presumably acquired through ingestion, and may have a functional impact in the consuming organisms. Results To address the question of how common this phenomenon could be, we searched for plant miRNAs sequences in public sRNA datasets from various tissues of mammals, chicken and insects. Our analyses revealed that plant miRNAs were present in the animal sRNA datasets, and significantly miR168 was extremely over-represented. Furthermore, all or nearly all (>96%) miR168 sequences were monocot derived for most datasets, including datasets for two insects reared on dicot plants in their respective experiments. To investigate if plant-derived miRNAs, including miR168, could accumulate and move systemically in insects, we conducted insect feeding studies for three insects including corn rootworm, which has been shown to be responsive to plant-produced long double-stranded RNAs. Conclusions Our analyses suggest that the observed plant miRNAs in animal sRNA datasets can originate in the process of sequencing, and that accumulation of plant miRNAs via dietary exposure is not universal in animals. PMID:22873950

  7. Late-season corn measurements to assess soil residual nitrate and nitrogen management

    USDA-ARS?s Scientific Manuscript database

    Evaluation of corn (Zea mays L.) nitrogen (N) management and soil residual nitrate (NO3-N) late in the growing season could provide important management information for subsequent small grain crops and about potential NO3-N loss. Our objective was to evaluate the ability of several late-season corn...

  8. Evaluation of simulated corn yields and associated uncertainty in different climate zones of China using Daycent Model

    NASA Astrophysics Data System (ADS)

    Fu, A.; Xue, Y.

    2017-12-01

    Corn is one of most important agricultural production in China. Research on the simulation of corn yields and the impacts of climate change and agricultural management practices on corn yields is important in maintaining the stable corn production. After climatic data including daily temperature, precipitation, solar radiation, relative humidity, and wind speed from 1948 to 2010, soil properties, observed corn yields, and farmland management information were collected, corn yields grown in humidity and hot environment (Sichuang province) and cold and dry environment (Hebei province) in China in the past 63 years were simulated by Daycent, and the results was evaluated based on published yield record. The relationship between regional climate change, global warming and corn yield were analyzed, the uncertainties of simulation derived from agricultural management practices by changing fertilization levels, land fertilizer maintenance and tillage methods were reported. The results showed that: (1) Daycent model is capable to simulate corn yields under the different climatic background in China. (2) When studying the relationship between regional climate change and corn yields, it has been found that observed and simulated corn yields increased along with total regional climate change. (3) When studying the relationship between the global warming and corn yields, It was discovered that newly-simulated corn yields after removing the global warming trend of original temperature data were lower than before.

  9. Interactions of Nitrogen Source and Rate and Weed Removal Timing Relative to Nitrogen Content in Corn and Weeds and Corn Grain Yield.

    PubMed

    Knight, Alexandra M; Everman, Wesley J; Jordan, David L; Heiniger, Ronnie W; Smyth, T Jot

    2017-01-01

    Adequate fertility combined with effective weed management is important in maximizing corn ( Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth ( Amaranthus palmeri S. Wats.) and large crabgrass ( Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.

  10. Interactions of Nitrogen Source and Rate and Weed Removal Timing Relative to Nitrogen Content in Corn and Weeds and Corn Grain Yield

    PubMed Central

    Knight, Alexandra M.; Heiniger, Ronnie W.; Smyth, T. Jot

    2017-01-01

    Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield. PMID:28487878

  11. Improving nitrogen management for corn in southern Idaho and southwest Oregon

    USDA-ARS?s Scientific Manuscript database

    Funding is being sought from multiple sources to update nitrogen fertilizer recommendations for irrigated corn in southern Idaho and southwest Oregon. This paper summarizes the justifications and main objectives of this proposed research. Nitrogen needs to be correctly managed in corn production sys...

  12. Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska

    USGS Publications Warehouse

    Sherfy, M.H.; Anteau, M.J.; Bishop, A.A.

    2011-01-01

    Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005-2007, we measured residual corn density in randomly selected harvested cornfields during early (n=188) and late migration (n=143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005-2007 (42.4 kg/ha; 95% CI=35.2-51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields. ?? 2011 The Wildlife Society.

  13. Response of corn to organic matter quantity and distribution in soil

    USDA-ARS?s Scientific Manuscript database

    The objectives of this experiment were to: 1. Quantify the agronomic response of corn to tillage and cover crop management, 2. Determine soil quality changes following cropping of previous land in pasture, and 3. Estimate economics of corn production in response to tillage and cover crop management....

  14. Understanding successful resistance management: The European corn borer and Bt corn in the United States

    USDA-ARS?s Scientific Manuscript database

    European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn that expresses toxins from Bacillus thuringiensis, referred to as Bt c...

  15. Combinations of corn glutel meal, clove oil, and sweep cultivation are ineffective for weed control in organic peanut production

    USDA-ARS?s Scientific Manuscript database

    Weed control in organic peanut is difficult and lack of residual weed control complicates weed management efforts. Weed management systems using corn gluten meal in combination with clove oil and sweep cultivation were evaluated in a series of irrigated field trials. Corn gluten meal applied in a ...

  16. Prevalence of Helicoverpa zea (Lepidoptera: Noctuidae) on late season volunteer corn in Mississippi: implications on Bt resistance management

    USDA-ARS?s Scientific Manuscript database

    The southern United States has a long growing period between corn harvest and first winter frost, so volunteer corn which germinates after corn harvest has a growing period sufficient for corn earworm, Helicoverpa zea (Boddie) to feed on these plants. However, lower air temperatures can limit larval...

  17. Assessment of soil attributes and crop productivity after diversification of the ubiquitous corn-soybean rotation in the northwestern U.S. Corn Belt

    USDA-ARS?s Scientific Manuscript database

    Highly specialized cash-grain production systems based upon corn-soybean rotations under tilled soil management are common in the northwestern U.S. Corn Belt. This study, initiated in 1997, was conducted to determine if diversification of this ubiquitous corn-soybean rotation would affect soil char...

  18. Structural and Biophysical Characterization of Bacillus thuringiensis Insecticidal Proteins Cry34Ab1 and Cry35Ab1

    PubMed Central

    Kelker, Matthew S.; Berry, Colin; Evans, Steven L.; Pai, Reetal; McCaskill, David G.; Wang, Nick X.; Russell, Joshua C.; Baker, Matthew D.; Yang, Cheng; Pflugrath, J. W.; Wade, Matthew; Wess, Tim J.; Narva, Kenneth E.

    2014-01-01

    Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Å and 1.80 Å resolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins. PMID:25390338

  19. Resistance Management Monitoring for the US Corn Crop to the Illinois Corn Growers Association

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  20. Effects of Long-Term Nitrogen Management on Nitrogen Budgets of Irrigated No-till Corn

    USDA-ARS?s Scientific Manuscript database

    Effects of nitrogen management on irrigated no-till (NT) corn (Zea Mays L) yields were studied from the 1999 to 2015 growing seasons in a Fort Collins clay loam soil at the CSU ARDEC near Fort Collins, CO. The NT N fertilizer rates averaged 0, 34, 67, 134, 202 and 246 kg N ha-1. Fifteen corn plants...

  1. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    PubMed

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D; Hussein, Hany M; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

  2. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic

    PubMed Central

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D.; Hussein, Hany M.; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009–2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  3. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    USDA-ARS?s Scientific Manuscript database

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  4. Double-Mutated 5-Enol Pyruvylshikimate-3-phosphate Synthase Protein Expressed in MZHG0JG Corn (Zea mays L.) Has No Impact on Toxicological Safety and Nutritional Composition.

    PubMed

    Matthews, Bethany A; Launis, Karen L; Bauman, Patricia A; Juba, Nicole C

    2017-09-27

    MZHG0JG corn will offer growers the flexibility to alternate between herbicides with two different modes of action in their weed-management programs, helping to mitigate and manage the evolution of herbicide resistance in weed populations. The proteins conferring herbicide tolerence in MZHG0JG corn, double-mutated 5-enol pyruvylshikimate-3-phosphate synthase protein (mEPSPS) and phosphinothricin acetyltransferase (PAT), as well as the MZHG0JG corn event, have been assessed by regulatory authorities globally and have been determined to be safe for humans, animals, and the environment. In addition to the safety data available for these proteins, further studies were conducted on MZHG0JG corn to assess levels of mEPSPS as compared to previously registered genetically modified (GM) corn. The results support the conclusion of no impact on toxicological safety or nutritional composition.

  5. Detection of European corn borer infestation in rainfed and irrigated corn using airborne hyperspectral imaging: implications for resistance management

    EPA Science Inventory

    Recently, corn grown for grain in the United States has increased from 28 million ha in 2006 to more than 35 million ha in 2007 with a production value of over $52 billion dollars. Transgenic corn expressing the plant incorporated protectant Bacillus thuringiensis toxin represen...

  6. Corn and soybean rotation under reduced tillage management: impacts on soil properties, yield, and net return

    USDA-ARS?s Scientific Manuscript database

    A 4-yr field study was conducted from 2007 to 2010 at Stoneville, MS to examine the effects of rotating corn and soybean under reduced tillage conditions on soil properties, yields, and net return. The six rotation systems were continuous corn (CCCC), continuous soybean (SSSS), corn-soybean (CSCS),...

  7. Notification: Evaluation of Office of Pesticide Programs’ Genetically Engineered Corn Insect Resistance Management

    EPA Pesticide Factsheets

    Project #OPE-FY15-0055, July 09, 2015. The EPA OIG plans to begin preliminary research on the EPA's ability to manage and prevent increased insect resistance to genetically engineered Bacillus thuringiensis (Bt) corn.

  8. Resistance Management Monitoring For the US Corn Crop

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  9. Risk Management of GM Crops

    EPA Science Inventory

    Driven by biofuel demand, a significant increase in GM corn acreage is anticipated for the 2007 growing season with future planted GM corn acreage approaching 80% of the corn crop by 2009. As demand increases, grower non-compliance with mandated planting requirements is likely to...

  10. Nitrogen management for first-year corn after alfalfa

    USDA-ARS?s Scientific Manuscript database

    Rotating alfalfa with corn can increase corn yield potential due to improved soil physical properties that enhance water infiltration and root extension, altered soil microbial communities, and reduced pest pressure. In addition, fertilizer nitrogen (N) requirements are commonly reduced by about 100...

  11. Mycotoxin Management Studies by USDA-"Ag Lab" in 2008

    USDA-ARS?s Scientific Manuscript database

    Studies again included several popcorn fields in 2008, in order to continue gathering data for modification of the previously developed management strategies for mycotoxins in field corn (the mycotoxin predictive computer program). Weather conditions were generally good for growing corn, but excess...

  12. Mycotoxin Management Studies by USDA-ARS, NCAUR in 2009

    USDA-ARS?s Scientific Manuscript database

    Studies again included several popcorn fields in 2009 in order to continue gathering data for modification of the previously developed management strategies for mycotoxins in field corn (including the mycotoxin predictive computer program). Without an attempt for optimization, the field corn model ...

  13. Winter cover crop effect on corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  14. Nitrogen and tillage management affect corn cellulosic yield, composition, and ethanol potential

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) stover and cobs remaining after grain harvest can serve as a feedstock for cellulosic ethanol production. Field trials were conducted at two locations in Minnesota over three years to determine how corn cellulosic yield composition and ethanol yield are influenced by tillage syste...

  15. Survey of nitrogen fertilizer use on corn in Minnesota

    USDA-ARS?s Scientific Manuscript database

    A survey was conducted in the spring of 2010 to characterize the use of N fertilizer on corn (Zea mays L.) by Minnesota farmers in the 2009 growing season. Detailed information on N fertilizer management practices was collected from interviews with 1496 farmers distributed across all of the corn gro...

  16. Propelled abrasive grit for weed control in organic silage corn

    USDA-ARS?s Scientific Manuscript database

    Weed management in organic farming requires many strategies to accomplish acceptable control and maintain crop yields. This two-year field study used air propelled abrasive grit for in-row weed control in a silage corn system. Corncob grit was applied as a single application at corn vegetative growt...

  17. Enhanced efficiency fertilizers: Effects on agronomic performance of corn in Iowa

    USDA-ARS?s Scientific Manuscript database

    Management of N in corn (Zea mays L.) production systems attempts to increase crop yields and minimize environment impact. This study evaluated enhanced efficiency fertilizers (EEFs) compared to their non-EEF forms on grain yield and corn biomass at the beginning of the grain-filling period, leaf ch...

  18. Efficacy of silk channel injections with insecticides for management of Lepidopteran pests of sweet corn

    USDA-ARS?s Scientific Manuscript database

    The primary Lepidopteran pests of sweet corn in Georgia are the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J.E. Smith). Control of these pests typically requires multiple insecticide applications from first silking until harvest, with commercial growers fre...

  19. Do plant population and planting date make a difference in corn production?

    USDA-ARS?s Scientific Manuscript database

    One management practice that can positively or negatively impact corn yield is plant population. Yield potential can also be influenced by the date of planting, which is strongly linked to the at-planting and in-season weather and climatic conditions. Even when considering management changes, we nee...

  20. Fitness costs associated with Cry1F resistance in the European corn borer

    USDA-ARS?s Scientific Manuscript database

    Crops producing insecticidal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely planted in order to manage key insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn b...

  1. Is Corn Stover Harvest Predictable Using Farm Operation, Technology, and Management Variables?

    USDA-ARS?s Scientific Manuscript database

    Crop residue management, provision of animal feed or bedding, and increased income potential are some reasons for harvesting corn (Zea mays L.) stover. Reasons for not doing so are that crop residue is essential for restoring soil organic matter, protecting against wind and water erosion, and cyclin...

  2. Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges

    PubMed Central

    Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593

  3. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges.

    PubMed

    Venugopal, P Dilip; Coffey, Peter L; Dively, Galen P; Lamp, William O

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  4. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and nomore » tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant. In a scenario with conventional tillage and a 30% stover removal rate, life-cycle GHG emissions for a combined gallon of corn grain and stover ethanol without cover crop adoption or manure application are 49 g CO2eq MJ-1, in comparison with 91 g CO2eq MJ-1 for petroleum gasoline. Adopting a cover crop or applying manure reduces the former ethanol life-cycle GHG emissions by 8% and 10%, respectively. We considered two different life cycle analysis approaches to develop estimates of life-cycle GHG emissions for corn stover ethanol, marginal analysis and energy allocation. In the same scenario, this fuel has GHG emissions of 12 – 20 g CO2eq MJ-1 (for manure and cover crop application, respectively) and 45 – 48 g CO2eq MJ-1 with the marginal approach and the energy allocation approach, respectively.« less

  5. DEVELOPMENT OF A MULTI-TIERED INSECT RESISTANCE MANAGEMENT PROGRAM FOR GENETICALLY MODIFIED CORN HYBRIDS EXPRESSING THE PLANT INCORPORATED PROTECTANT, BACILLUS THURINGIENSIS

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for the 2007 growing season with future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with ma...

  6. Agroecology of corn production in Tlaxcala, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, M.A.; Trujillo, J.

    1987-06-01

    The primary components of Tlaxcalan corn agriculture are described, including cropping patterns employed, resource management strategies, and interactions of human and biological factors. Tlaxcalan farmers grow corn in an array of polyculture and agroforestry designs that result in a series of ecological processes important for insect pest and soil fertility management. Measurements derived from a few selected fields show that trees integrated into cropping systems modify the aerial and soil environment of associated understory corn plants, influencing their growth and yields. With decreasing distance from trees, surface concentrations of most soil nutrients increase. Certain tree species affect corn yields moremore » than others. Arthropod abundance also varies depending on their degree of association with one or more of the vegetational components of the system. Densities of predators and the corn pest Macrodactylus sp. depend greatly on the presence and phenology of adjacent alfalfa strips. Although the data were derived from nonreplicated fields, they nevertheless point out some important trends, information that can be used to design new crop association that will achieve sustained soil fertility and low pest potentials.« less

  7. Crop advisor perceptions of giant ragweed distribution, herbicide-resistance, and management in the Corn Belt

    USDA-ARS?s Scientific Manuscript database

    Giant ragweed has been increasing as a major weed of row crops in North America. We conducted a web-based survey of Certified Crop Advisors in the Corn Belt to determine the current distribution of giant ragweed, the distribution of herbicide resistant populations, and management and ecological fact...

  8. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    USDA-ARS?s Scientific Manuscript database

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, a...

  9. COMPARISON OF ALTERNATIVE MANURE MANAGEMENT SYSTEMS: EFFECT ON THE ENVIRONMENT, TOTAL ENERGY REQUIREMENT, NUTRIENT CONSERVATION, CONTRIBUTION TO CORN SILAGE PRODUCTION AND ECONOMICS

    EPA Science Inventory

    This study compares alternative dairy manure management systems operated under full scale commercial conditions. The study investigates weight of manure handled per cow per year, labor and energy requirements, effect on the environment, nutrient conservation, corn silage producti...

  10. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    USDA-ARS?s Scientific Manuscript database

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, ...

  11. Composition of forage and grain from second-generation insect-protected corn MON 89034 is equivalent to that of conventional corn (Zea mays L.).

    PubMed

    Drury, Suzanne M; Reynolds, Tracey L; Ridley, William P; Bogdanova, Natalia; Riordan, Susan; Nemeth, Margaret A; Sorbet, Roy; Trujillo, William A; Breeze, Matthew L

    2008-06-25

    Insect-protected corn hybrids containing Cry insecticidal proteins derived from Bacillus thuringiensis have protection from target pests and provide effective management of insect resistance. MON 89034 hybrids have been developed that produce both the Cry1A.105 and Cry2Ab2 proteins, which provide two independent modes of insecticidal action against the European corn borer ( Ostrinia nubilalis ) and other lepidopteran insect pests of corn. The composition of MON 89034 corn was compared to conventional corn by measuring proximates, fiber, and minerals in forage and by measuring proximates, fiber, amino acids, fatty acids, vitamins, minerals, antinutrients, and secondary metabolites in grain collected from 10 replicated field sites across the United States and Argentina during the 2004-2005 growing seasons. Analyses established that the forage and grain from MON 89034 are compositionally comparable to the control corn hybrid and conventional corn reference hybrids. These findings support the conclusion that MON 89034 is compositionally equivalent to conventional corn hybrids.

  12. Nitrogen fertilizer recommendations for corn grown on soils amended with oily food waste.

    PubMed

    Rashid, M T; Voroney, R P

    2005-01-01

    Soil and plant indices of soil fertility status have traditionally been developed using conventional soil and crop management practices. Data on managing N fertilizer for corn (Zea mays L.) produced on soils amended with C-rich organic materials, such as oily food waste (OFW) is scarce. Identification of a reliable method for making N fertilizer recommendations under these conditions is imperative. The objective of this research was to evaluate soil NO(3)-N (0- to 30-cm depth) at preplant and presidedress (PSNT) times of sampling for predicting N requirements for corn grown on fields receiving OFW. Experiments were conducted at two locations in Ontario, Canada over 3 yr (1995-1997) where OFW was applied at different rates (0, 10, and 20 Mg ha(-1)), times (fall and spring), and slope positions (upper, mid, and lower) within the same field. Presidedress soil NO(3)-N contents were higher compared with preplant time of sampling under all OFW management conditions. Corn grain yields were significantly affected by OFW management and N fertilizer application rates. Maximum economic rate of N application (MERN) varied depending on OFW management conditions. Presidedress soil NO(3)-N contents had a higher inverse relationship with MERN (r = -0.88) compared with soil NO(3)-N at preplant (r = -0.74) time of sampling. A linear regression model (Y = 180.1 - 8.22 NO(3)-N at PSNT) is proposed for making N fertilizer recommendations to corn grown on soils amended with OFW in this geographical region.

  13. Reducing Freshwater Toxicity while Maintaining Weed Control, Profits, And Productivity: Effects of Increased Crop Rotation Diversity and Reduced Herbicide Usage.

    PubMed

    Hunt, Natalie D; Hill, Jason D; Liebman, Matt

    2017-02-07

    Increasing crop rotation diversity while reducing herbicide applications may maintain effective weed control while reducing freshwater toxicity. To test this hypothesis, we applied the model USEtox 2.0 to data from a long-term Iowa field experiment that included three crop rotation systems: a 2-year corn-soybean sequence, a 3-year corn-soybean-oat/red clover sequence, and 4-year corn-soybean-oat/alfalfa-alfalfa sequence. Corn and soybean in each rotation were managed with conventional or low-herbicide regimes. Oat, red clover, and alfalfa were not treated with herbicides. Data from 2008-2015 showed that use of the low-herbicide regime reduced freshwater toxicity loads by 81-96%, and that use of the more diverse rotations reduced toxicity and system dependence on herbicides by 25-51%. Mean weed biomass in corn and soybean was <25 kg ha -1 in all rotation × herbicide combinations except the low-herbicide 3-year rotation, which contained ∼110 kg ha -1 of weed biomass. Corn and soybean yields and net returns were as high or higher for the 3- and 4-year rotations managed with the low-herbicide regime as for the conventional-herbicide 2-year rotation. These results indicate that certain forms of cropping system diversification and alternative weed management strategies can maintain yield, profit, and weed suppression while delivering enhanced environmental performance.

  14. Evaluation of Bt Corn with Pyramided Genes on Efficacy and Insect Resistance Management for the Asian Corn Borer in China.

    PubMed

    Jiang, Fan; Zhang, Tiantao; Bai, Shuxiong; Wang, Zhenying; He, Kanglai

    2016-01-01

    A Bt corn hybrid (AcIe) with two Bt genes (cry1Ie and cry1Ac) was derived by breeding stack from line expressing Cry1Ie and a line expressing Cry1Ac. Efficacy of this pyramided Bt corn hybrid against the Asian corn borer (ACB), Ostrinia furnacalis, was evaluated. We conducted laboratory bioassays using susceptible and resistant ACB strains fed on artificial diet or fresh plant tissues. We also conducted field trials with artificial infestations of ACB neonates at the V6 and silk stages. The toxin-diet bioassay data indicated that mixtures of Cry1Ac and Cry1Ie proteins had synergistic insecticidal efficacy. The plant tissue bioassay data indicated that Bt corn hybrids expressing either a single toxin (Cry1Ac or Cry1Ie) or two toxins had high efficacy against susceptible ACB. Damage ratings in the field trials indicated that the Bt corn hybrids could effectively protect against 1st and the 2nd generation ACB in China. The hybrid line with two Bt genes showed a higher efficacy against ACB larvae resistant to Cry1Ac or CryIe than the hybrid containing one Bt gene, and the two gene hybrid would have increased potential for managing or delaying the evolution of ACB resistance to Bt corn plants.

  15. Nutritive value of corn silage as affected by maturity and mechanical processing: a contemporary review.

    PubMed

    Johnson, L; Harrison, J H; Hunt, C; Shinners, K; Doggett, C G; Sapienza, D

    1999-12-01

    Stage of maturity at harvest and mechanical processing affect the nutritive value of corn silage. The change in nutritive value of corn silage as maturity advances can be measured by animal digestion and macro in situ degradation studies among other methods. Predictive equations using climatic data, vitreousness of corn grain in corn silage, starch reactivity, gelatinization enthalpy, dry matter (DM) of corn grain in corn silage, and DM of corn silage can be used to estimate starch digestibility of corn silage. Whole plant corn silage can be mechanically processed either pre- or postensiling with a kernel processor mounted on a forage harvester, a recutter screen on a forage harvester, or a stationary roller mill. Mechanical processing of corn silage can improve ensiling characteristics, reduce DM losses during ensiling, and improve starch and fiber digestion as a result of fracturing the corn kernels and crushing and shearing the stover and cobs. Improvements in milk production have ranged from 0.2 to 2.0 kg/d when cows were fed mechanically processed corn silage. A consistent improvement in milk protein yield has also been observed when mechanically processed corn silage has been fed. With the advent of mechanical processors, alternative strategies are evident for corn silage management, such as a longer harvest window.

  16. Tile Drainage Nitrate Losses and Corn Yield Response to Fall and Spring Nitrogen Management.

    PubMed

    Pittelkow, Cameron M; Clover, Matthew W; Hoeft, Robert G; Nafziger, Emerson D; Warren, Jeffery J; Gonzini, Lisa C; Greer, Kristin D

    2017-09-01

    Nitrogen (N) management strategies that maintain high crop productivity with reduced water quality impacts are needed for tile-drained landscapes of the US Midwest. The objectives of this study were to determine the effect of N application rate, timing, and fall nitrapyrin addition on tile drainage nitrate losses, corn ( L.) yield, N recovery efficiency, and postharvest soil nitrate content over 3 yr in a corn-soybean [ (L.) Merr.] rotation. In addition to an unfertilized control, the following eight N treatments were applied as anhydrous ammonia in a replicated, field-scale experiment with both corn and soybean phases present each year in Illinois: fall and spring applications of 78, 156, and 234 kg N ha, fall application of 156 kg N ha + nitrapyrin, and sidedress (V5-V6) application of 156 kg N ha. Across the 3-yr study period, increases in flow-weighted NO concentrations were found with increasing N rate for fall and spring N applications, whereas N load results were variable. At the same N rate, spring vs. fall N applications reduced flow-weighted NO concentrations only in the corn-soybean-corn rotation. Fall nitrapyrin and sidedress N treatments did not decrease flo8w-weighted NO concentrations in either rotation compared with fall and spring N applications, respectively, or increase corn yield, crop N uptake, or N recovery efficiency in any year. This study indicates that compared with fall N application, spring and sidedress N applications (for corn-soybean-corn) and sidedress N applications (for soybean-corn-soybean) reduced 3-yr mean flow-weighted NO concentrations while maintaining yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. The overwhelming role of soil N2O emissions in net greenhouse gas balance of the U.S. Corn Belt: Modeling estimate of nitrogen fertilizer impacts

    NASA Astrophysics Data System (ADS)

    Lu, C.; Yu, Z.; Cao, P.; Tian, H.

    2017-12-01

    The Corn Belt of the Midwestern U.S. is one of the most productive systems in the world during the growing season, with gross primary production exceeding even that of the Amazon forests. Fueled by increased commodity prices in the late 2000s, the area in corn and soybean in the U.S. has reached record highs with most of the newly added cropland converted from grasslands, wetland, and Conservation Reserve Program land. Intensive management practices, such as fertilizer use, irrigation, tillage, residue removal etc., have been implemented following cropland expansion to maximize crop yield from converted marginal land or from more monoculture production. The Corn Belt has been recognized as one of the major contributors to carbon sinks in the U.S., partially because crop harvest and residue removal reduced soil respiration. In the meanwhile, 75% of the total N2O emission in the U.S. comes from agriculture, among which the Corn Belt is the major source due to nitrogen management, and has large potential of climate mitigation. However, it remains far from certain how intensive cropland expansion and management practices in this region have affected soil carbon accumulation and non-CO2 GHG emissions. In this study, by using a process-based land ecosystem model, Dynamic Land Ecosystem Model (DLEM), we investigated the impacts of nitrogen fertilizer use on soil carbon accumulation and direct N2O emissions across the U.S. Corn Belt. Surprisingly, we found N fertilizer-induced SOC storage continued shrinking after the 1980s while N2O emissions remains relatively constant. The N fertilizer use led to a net greenhouse gas release since 2000 in both the western and eastern Corn Belt, contributing to climate warming. This study implies an increasing importance of nitrogen management for both agricultural production and climate mitigation.

  18. Effects of ruminally degradable N in diets containing wet corn distiller's grains and steam-flaked corn on feedlot cattle performance and carcass characteristics

    USDA-ARS?s Scientific Manuscript database

    Assessment of degradable nitrogen (N) needs in diets containing wet corn distiller's grains with solubles (WCDGS) is needed to aid the cattle feeding industry in managing feed costs and potential environmental issues. Yearling steers (n = 525; initial weight = 822 +/- 28 lb) were housed in 56 pens (...

  19. Effects of irrigation, cover crop, and manure on soil greenhouse gas emissions after stover removal in no-till continuous corn

    USDA-ARS?s Scientific Manuscript database

    Corn stover is used widely for livestock co-feed and is targeted as a near-term feedstock for the developing cellulosic ethanol industry. High biomass production in intensely managed systems, such as irrigated continuous corn, may have a greater potential to provide stover for either livestock or bi...

  20. Nitrate leaching, water-use efficiency and yield of corn with different irrigation and nitrogen management systems in coastal plains, USA

    USDA-ARS?s Scientific Manuscript database

    Irrigation management for corn (Zea mays L.) production on the typical low water holding capacity soil of the southeastern USA needs to be improved to increase irrigation efficiency and reduce losses of nitrate from fields. A three-year (2012-2014) field study was conducted to compare the effects of...

  1. Integrated weed management strategies in cover crop-based, organic rotational no-till corn and soybean in the mid-Atlantic region

    USDA-ARS?s Scientific Manuscript database

    Cover crop-based, organic rotational no-till (CCORNT) corn and soybean systems have been developed in the mid-Atlantic region to build soil health, increase management flexibility, and reduce labor. In this system, a roll-crimped cover crop mulch provides within-season weed suppression in no-till co...

  2. Insecticidal Management and Movement of the Brown Stink Bug, Euschistus servus, in Corn

    PubMed Central

    Reisig, Dominic D.

    2011-01-01

    In eastern North Carolina, some brown stink bugs, Euschistus servus (Say) (Hemiptera: Pentatomidae) are suspected to pass the F1 generation in wheat (Triticum aestivum L.) (Poales: Poaceae) before moving into corn (Zea mays L.) (Poales: Poaceae). These pests can injure corn ears as they develop. To test their effectiveness as a management tactic, pyrethroids were aerially applied to field corn in two experiments, one with 0.77 ha plots and another with 85 ha plots. Euschistus servus population abundance was monitored over time in both experiments and yield was assessed in the larger of the two experiments. In the smaller experiment, the populations were spatially monitored in a 6.3 ha area of corn adjacent to a recently harvested wheat field (352 sampling points of 6.1 row-meters in all but the first sampling event). Overall E. servus abundance decreased throughout the monitoring period in the sampling area of the smaller experiment, but remained unchanged over time in the large-scale experiment. During all sampling periods in both experiments, abundance was the same between treatments. Yield was unaffected by treatment where it was measured in the larger experiment. In the smaller experiment, E. servus were initially aggregated at the field edge of the corn (two, six and 13 days following the wheat harvest). Sixteen days following the wheat harvest they were randomly distributed in the corn. Although it was not directly measured, stink bugs are suspected to move the cornfield edge as a result of the adjacent wheat harvest. More study of the biology of E. servus is needed, specifically in the area of host preference, phenology and movement to explain these phenomena and to produce better management strategies for these pests. PMID:22950984

  3. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    PubMed

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  4. USEPA Resistance Management Research

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future planted acreages approaching 80% of total corn plantings in 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is...

  5. Resistance Management Research for PIP Crops

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future planted acreages approaching 80% of total corn plantings in 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is...

  6. Baseline sensitivity of lepidopteran corn pests in India to Cry1Ab insecticidal protein of Bacillus thuringiensis.

    PubMed

    Jalali, Sushil K; Lalitha, Yadavalli; Kamath, Subray P; Mohan, Komarlingam S; Head, Graham P

    2010-08-01

    Genetically engineered corn (Bt corn) expressing Bacillus thuringiensis Berliner insecticidal protein Cry1Ab is a biotechnological option being considered for management of lepidopteran corn pests in India. As a resistance management practice it was essential to determine the sensitivity of multiple populations of the stalk borer Chilo partellus (Swinhoe), pink borer Sesamia inferens (Walker) and the cob borer Helicoverpa armigera (Hübner) to Cry1Ab protein through bioassays. The insect populations were collected during growing seasons of Rabi 2005 (October 2005 to February 2006) and Kharif 2006 (May to September 2006). Multiple populations of the three lepidopteran corn pests were found to be susceptible to Cry1Ab. Median lethal concentrations (LC(50)) ranged between 0.008 and 0.068 microg Cry1Ab mL(-1) diet for 18 populations of C. partellus (across two seasons), between 0.12 and 1.99 microg mL(-1) for seven populations of H. armigera and between 0.46 and 0.56 microg mL(-1) for two populations of S. inferens. Dose-response concentrations for lethality and growth inhibition have been determined to mark baseline sensitivity of multiple populations of key lepidopteran corn pests in India to Cry1Ab protein. These benchmark values will be referenced while monitoring resistance to Cry1Ab should Bt corn hybrids expressing Cry1Ab be approved for commercial cultivation in India. Copyright (c) 2010 Society of Chemical Industry.

  7. Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes ( Zea mays L.). Part 2: Sowing Time.

    PubMed

    Giordano, Debora; Beta, Trust; Gagliardi, Federica; Blandino, Massimo

    2018-05-02

    Among the agronomic practices carried out in corn cultivation, the early sowing time is increasingly used by farmers of temperate regions to improve yield and reduce mycotoxin contamination of corn grains. The present study determined the influence of sowing time on the phytochemical content of grains of 10 colored genotypes of corn. There was a significant improvement of both grain yield (+26%), thousand kernel weight (+3%), and test weight (+2%) in plots sown early. The early sowing also significantly influenced the chemical composition of corn grains, with an increase in the concentration of cell-wall-bound phenolic acids (+5%) and β-cryptoxanthin (+23%) and a decrease in the concentration of lutein (-18%) and total anthocyanins (-21%). Environmental conditions that occurred during grain development significantly influenced the phytochemical content of corn grain, and early spring sowing could impart advantages in terms of both productivity and content of some antioxidants of whole-meal corn flour.

  8. A systems approach to identify adaptation strategies for Midwest US cropping systems under increased climate variability and change.

    NASA Astrophysics Data System (ADS)

    Basso, B.; Dumont, B.

    2015-12-01

    A systems approach was implemented to assess the impact of management strategies and climate variability on crop yield, nitrate leaching and soil organic carbon across the the Midwest US at a fine scale spatial resolution. We used the SALUS model which designed to simulated yield and environmental outcomes of continous crop rotations under different agronomic management, soil, weather. We extracted soil parameters from the SSURGO (Soil Survey Geographic) data of nine Midwest states (IA, IL, IN, MI, MN, MO, OH, SD, WI) and weather from NARR (North American Regional Reanalysis). State specific management itineraries were extracted from USDA-NAS. We present the results different cropping systems (continuous corn, corn-soybean and extended rotations) under different management practices (no-tillage, cover crops and residue management). Simulations were conducted under both the baseline (1979-2014) and projected climatic projections (RCP2.5, 6). Results indicated that climate change would likely have a negative impact on corn yields in some areas and positive in others. Soil N, and C losses can be reduced with the adoption of conservation practices.

  9. Corn Response to Competition: Growth Alteration vs. Yield Limiting Factors

    USDA-ARS?s Scientific Manuscript database

    Understanding competition mechanisms among adjacent plants can improve site-specific management recommendations. This 2-yr study compared two hypotheses, yield limiting factors vs. behavior modification, to explain plant interactions. Corn was grown under different levels of stress by varying light ...

  10. Application of Near-Surface Remote Sensing and computer algorithms in evaluating impacts of agroecosystem management on Zea mays (corn) phenological development in the Platte River - High Plains Aquifer Long Term Agroecosystem Research Network field sites.

    NASA Astrophysics Data System (ADS)

    Okalebo, J. A.; Das Choudhury, S.; Awada, T.; Suyker, A.; LeBauer, D.; Newcomb, M.; Ward, R.

    2017-12-01

    The Long-term Agroecosystem Research (LTAR) network is a USDA-ARS effort that focuses on conducting research that addresses current and emerging issues in agriculture related to sustainability and profitability of agroecosystems in the face of climate change and population growth. There are 18 sites across the USA covering key agricultural production regions. In Nebraska, a partnership between the University of Nebraska - Lincoln and ARD/USDA resulted in the establishment of the Platte River - High Plains Aquifer LTAR site in 2014. The site conducts research to sustain multiple ecosystem services focusing specifically on Nebraska's main agronomic production agroecosystems that comprise of abundant corn, soybeans, managed grasslands and beef production. As part of the national LTAR network, PR-HPA participates and contributes near-surface remotely sensed imagery of corn, soybean and grassland canopy phenology to the PhenoCam Network through high-resolution digital cameras. This poster highlights the application, advantages and usefulness of near-surface remotely sensed imagery in agroecosystem studies and management. It demonstrates how both Infrared and Red-Green-Blue imagery may be applied to monitor phenological events as well as crop abiotic stresses. Computer-based algorithms and analytic techniques proved very instrumental in revealing crop phenological changes such as green-up and tasseling in corn. This poster also reports the suitability and applicability of corn-derived computer based algorithms for evaluating phenological development of sorghum since both crops have similarities in their phenology; with sorghum panicles being similar to corn tassels. This later assessment was carried out using a sorghum dataset obtained from the Transportation Energy Resources from Renewable Agriculture Phenotyping Reference Platform project, Maricopa Agricultural Center, Arizona.

  11. Simulation of corn yields and parameters uncertainties analysis in Hebei and Sichuang, China

    NASA Astrophysics Data System (ADS)

    Fu, A.; Xue, Y.; Hartman, M. D.; Chandran, A.; Qiu, B.; Liu, Y.

    2016-12-01

    Corn is one of most important agricultural production in China. Research on the impacts of climate change and human activities on corn yields is important in understanding and mitigating the negative effects of environmental factors on corn yields and maintaining the stable corn production. Using climatic data, including daily temperature, precipitation, and solar radiation from 1948 to 2010, soil properties, observed corn yields, and farmland management information, corn yields in Sichuang and Hebei Provinces of China in the past 63 years were simulated using the Daycent model, and the results was evaluated using Root mean square errors, bias, simulation efficiency, and standard deviation. The primary climatic factors influencing corn yields were examined, the uncertainties of climatic factors was analyzed, and the uncertainties of human activity parameters were also studied by changing fertilization levels and cultivated ways. The results showed that: (1) Daycent model is capable to simulate corn yields in Sichuang and Hebei provinces of China. Observed and simulated corn yields have the similar increasing trend with time. (2) The minimum daily temperature is the primary factor influencing corn yields in Sichuang. In Hebei Province, daily temperature, precipitation and wind speed significantly affect corn yields.(3) When the global warming trend of original data was removed, simulated corn yields were lower than before, decreased by about 687 kg/hm2 from 1992 to 2010; When the fertilization levels, cultivated ways were increased and decreased by 50% and 75%, respectively in the Schedule file in Daycent model, the simulated corn yields increased by 1206 kg/hm2 and 776 kg/hm2, respectively, with the enhancement of fertilization level and the improvement of cultivated way. This study provides a scientific base for selecting a suitable fertilization level and cultivated way in corn fields in China.

  12. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    PubMed Central

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  13. Derivation of a regional active-optical reflectance sensor corn algorithm

    USDA-ARS?s Scientific Manuscript database

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  14. Distribution of energy content in corn plants as influenced by corn residue management

    USDA-ARS?s Scientific Manuscript database

    Economic, environmental, climate change and energy independence issues are contributing to rising fossil fuel prices and creating a growing interest in the development and utilization of biomass feedstocks for renewable energy. Potential feedstocks include perennial grasses, timber, and annual grain...

  15. Tillage and Irrigation Management of Cotton in a Corn/Cotton Rotation

    USDA-ARS?s Scientific Manuscript database

    A research study was undertaken to evaluate the yield of cotton in a corn-cotton rotation under two tillage treatments, conventional and minimum/conservation, and two irrigation treatments, irrigated and non-irrigated. Crops were grown under four treatments, irrigated-conventional tillage, irrigate...

  16. Report: EPA Needs Better Data, Plans and Tools to Manage Insect Resistance to Genetically Engineered Corn

    EPA Pesticide Factsheets

    Report #16-P-0194, June 1, 2016. Bt crops have reduced insecticide applications by 123 million pounds. The EPA can preserve this significant public benefit through enhanced monitoring and preparation to address insect resistance in Bt corn.

  17. Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.

    PubMed

    Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A

    2011-07-01

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.

  18. Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn

    PubMed Central

    Ni, Xinzhi; Wilson, Jeffrey P.; Buntin, G. David; Guo, Baozhu; Krakowsky, Matthew D.; Lee, R. Dewey; Cottrell, Ted E.; Scully, Brian T.; Huffaker, Alisa; Schmelz, Eric A.

    2011-01-01

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed. PMID:22069748

  19. Field screening of experimental corn hybrids and inbred lines for multiple ear-feeding insect resistance.

    PubMed

    Ni, Xinzhi; Xu, Wenwei; Krakowsky, Matthew D; Buntin, G David; Brown, Steve L; Lee, R Dewey; Coy, Anton E

    2007-10-01

    Identifying and using native insect resistance genes is the core of integrated pest management. In this study, 10 experimental corn, Zea mays L., hybrids and 10 inbred lines were screened for resistance to major ear-feeding insects in the southeastern Coastal Plain region of the United States during 2004 and 2005. Ear-feeding insect damage was assessed at harvest by visual damage rating for the corn earworm, Helicoverpa zea (Boddie), and by the percentage of kernels damaged by the maize weevil, Sitophilus zeamais Motschulsky, and stink bugs [combination of Euschistus servus (Say) and southern green stink bug, Nezara viridula (L.)]. Among the eight inbred lines and two control populations examined, C3S1B73-5b was resistant to corn earworm, maize weevil, and stink bugs. In contrast, C3S1B73-4 was resistant to corn earworm and stink bugs, but not to maize weevil. In a similar manner, the corn hybrid S1W*CML343 was resistant to all three ear-feeding insects, whereas hybrid C3S1B73-3*Tx205 was resistant to corn earworm and maize weevil in both growing seasons, but susceptible to stink bugs in 2005. The silk-feeding bioassay showed that corn earworm developed better on corn silk than did fall armyworm. Among all phenotypic traits examined (i.e., corn ear size, husk extension, and husk tightness), only corn ear size was negatively correlated to corn earworm damage in the inbred lines examined, whereas only husk extension (i.e., coverage) was negatively correlated to both corn earworm and maize weevil damage on the experimental hybrids examined. Such information could be used to establish a baseline for developing agronomically elite corn germplasm that confers multiple ear-feeding insect resistance.

  20. 1977 Kansas Field Crop Insect Control Recommendations.

    ERIC Educational Resources Information Center

    Brooks, Leroy; Gates, Dell E.

    This publication is prepared to aid producers in selecting methods of insect population management that have proved effective under Kansas conditions. Topics covered include insect control on alfalfa, soil insects attacking corn, insects attacking above-ground parts of corn, and sorghum, wheat, and soybean insect control. The insecticides…

  1. Corn response and soil nutrient concentration from subsurface application of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer management is vital to corn (Zea mays L.) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally surface broadcast, potentially causing volatilization of NH3. Recently a new application method was devel...

  2. Monitoring Agricultural Drought Using Geographic Information Systems and Remote Sensing on the Primary Corn and Soybean Belt in the United States

    NASA Astrophysics Data System (ADS)

    Al-Shomrany, Adel

    The study aims to evaluate various remote sensing drought indices to assess those most fitting for monitoring agricultural drought. The objectives are (1) to assess and study the impact of drought effect on (corn and soybean) crop production by crop mapping information and GIS technology; (2) to use Geographical Weighted Regression (GWR) as a technical approach to evaluate the spatial relationships between precipitation vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought detection based on remote sensing measurements to determine the relationship between US county-level yields versus relatively common variables collected. Extreme drought creates low corn and soybean production where irrigation systems are not implemented. This results in a lack of moisture in soil leading to dry land and stale crop yields. When precipitation and moisture is found across all states, corn and soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation management methods assist in strong crop yields throughout SPI monthly averages. The data gathered on irrigation consisted of using drought indices gathered by the national agricultural statistics service website. For the SPI levels ranging between one-month and nine-months, Kansas and Nebraska performed the best out of all 12-states contained in the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and Nebraska's results was due to a more efficient and sustainable irrigation system, where upon South Dakota lacked. South Dakota was leveled by strong correlations throughout all SPI periods for corn only. Kansas showed its strongest correlations for the two-month and three-month averages, for both corn and soybean. Precipitation regression with irrigated and non-irrigated maize (corn) and soybean levels show yields as a function of precipitation. The GWR models predicted that yields were significantly better than OLS performances for maize (corn) and soybean. The OLS regression model when used showed a general trend of correlation between observed yields and long-term mean precipitation totals, with 84% and 63% of the variability in mean yield explained by the mean annual precipitation for the non-irrigated crops. The GWR technique performance in predicting yields was significantly better than OLS performances. For instance in the months of June, July, and August precipitations had greater impacts on maize (corn) yields than soybeans under non-irrigated conditions as a result of the greater sensitivity maize (corn) had to water stress. SPI is capable of offering various time-scales enabling it to show initial warning signs of drought conditions and accompanying severity levels. SPI calculation techniques used for various locations are reflected upon the precipitation records acquired during those periods. Over the 3, 6, and 9-month periods, NDII6 performed the best out of all of the MODIS indices as shown in its results in monitoring vegetation moisture and drought detection. NDII6 performed the best due to its detection abilities. The 9-month SPI provides an indication of inter-seasonal precipitation patterns over medium timescale duration. A new approach used is to average corn and soybean yields for all counties of the study area in comparison with average anomalies of the MODIS indices for the growing season between May through September from 2006-2012. There was a strong correlation between average corn yields versus MODIS NDII6 averages for these years with R2 equaling 0.62. That means NDII6 is the best indicator to show drought conditions and vegetation moisture monitoring. There was a weak correlation with R2 = 0.16 between averages of soybean yields and averages of precipitation. Irrigation and management systems, technological improvements from hybrids, producer management techniques, and other management practices have an impact on crop yield productions. (Abstract shortened by ProQuest.).

  3. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Blackstone River Watershed. Appendices.

    DTIC Science & Technology

    1981-08-01

    immediately within the flood plain; the Owens - Corning Fiberglass Company at Ashton; and the Berkshire-Hathaway Mill Complex at Albion. Within the remaining...this reach, three of which have been built since 1955. Recurring damages to the Owens - Corning Fiberglas Co. amount to over $900,000 at current price...the Corps are as follow: 26 March 1968 -- Plant Manager, Owens - Corning Corp., Ashton, Rhode Island reported a total loss of $100,000 in damages after a

  4. The innovative characteristics and obstruction of technology adoption for management of integrated plants (PTT) of corn in Gowa Regency Indonesia

    NASA Astrophysics Data System (ADS)

    Jamil, M. H.; Musa, Y.; Tenriawaru, A. N.; Rahayu, N. E.

    2018-05-01

    The research aimed to analyze the effects of the farmer’s characteristic, innovation characteristics, and the obstruction faced in the technology adoption for the management of integrated plants corn in Gowa Regency. The method used was explanative in character. Respondents comprised 80 corn farmers chosen randomly. Data were collected using the interviews method which were then quantified using likers scale. The data was analyzed by logistic binary regression. The research results indicated that the farmer’s characteristics which consisted of the age, education, experience, and the land area had no significant effect on the technology adoption of maize integrated crops management (PTT). The obstruction of the adoption, which consisted of the limited capital, availability of inputs, and intensity of counseling had a significant effect on the adoption of maize integrated crops management. While the farmer’s knowledge had no significant effect on the adoption of maize integrated crops management. The variable of the limited capital had a positive coefficient, the more available the farmer’s capital the higher was the chance of farmers to adopt technology integrated crops management. The higher of the extension intensity, the higher of farmer’s chance to adopt the technology of the maize integrated corps management.

  5. Geographical and Temporal Dynamics of Chaetocnema Pulicaria and Their Role in Stewart's Disease of Corn in Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esker, Paul David

    2001-01-01

    This thesis investigated the biology and importance of the corn flea beetle vector and its role in the Stewart's disease of corn pathosystem. This was accomplished by determining the number of corn flea beetle generations that occur in Iowa and by quantifying the proportions of those populations found to be infested with the causal agent of Stewart's disease, pantoea stewartii. In addition, a preliminary study was conducted to determine how soil temperature was influenced by air temperature and how this may be applied to forecasting for Stewart's disease of corn. Research using yellow sticky cards and sweep netting demonstrated thatmore » there are overwintering, first, and second field generations of the corn flea beetle in Iowa. It was also observed that there was a period during June of both 1999 and 2000 when corn flea beetles were not found, which is important new management information. This research has also demonstrated that the incidence of P. stewartii-infested corn flea beetles can be monitored by ELISA testing and that the incidence fluctuates greatly throughout the corn growing season. The initial level of inoculum (P. stewartii-infested corn flea beetles in the adult overwintering generation) does not remain static during the spring as was previously hypothesized. This signals that additional research is needed concerning the mechanisms of fluctuation in the proportion of beetles infested with P. stewartii.« less

  6. Fungicide seed treatments for evaluating the corn seedling disease complex following a winter rye cover crop

    USDA-ARS?s Scientific Manuscript database

    Seed treatments have been used to manage corn seedling diseases since the 1970’s and they contain a combination of active ingredients with specificity towards different pathogens. We hypothesized that using different seed treatment combinations and assessing seedling disease incidence and severity ...

  7. Using Computer Models to Explore Alternative Scenarios for Managing Limited Irrigation Water

    USDA-ARS?s Scientific Manuscript database

    Crop water stress due to low precipitation and high temperatures are the main limiting factors for agricultural production in the Great Plains. Corn is grown under either rainfed or irrigated regimes. Irrigation can improve corn profitability in this region, but over-irrigation accelerates depletio...

  8. Corn response to nitrogen management under fully-irrigated vs. water-stressed conditions

    USDA-ARS?s Scientific Manuscript database

    Characterizing corn grain yield response to nitrogen (N) fertilizer rate is critical for maximizing profits, optimizing N use efficiency and minimizing environmental impacts. Although a large data base of yield response to N has been compiled for highly productive soils in the upper Midwest U.S., f...

  9. Corn yield under subirrigation and future climate scenarios in the Maumee river basin

    USDA-ARS?s Scientific Manuscript database

    Subirrigation has been proposed as a water table management practice to maintain appropriate soil water content during periods of high crop water demand on subsurface drained croplands in the Corn Belt. Subirrigation takes advantage of the subsurface drainage systems already installed on drained agr...

  10. Soil-test biological activity in corn production systems: II. Greenhouse growth bioassay

    USDA-ARS?s Scientific Manuscript database

    Soil N mineralization is variably affected by management and edaphic conditions. A routine soil test is needed to make better predictions for N fertilizer recommendations to cereal grains on different soil types and landscape settings. We collected soils from 47 corn production fields in North Car...

  11. No-till corn response and soil nutrient concentrations from subsurface banding of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer management is vital to no-till corn (Zea mays) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally land applied by surface broadcast, potentially causing volatilization of ammonia (NH3)-N. Recently a...

  12. Enhancement of silage sorghum and corn production using best management practices

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor), and Silage Corn (Zea mays) production is not sufficient in irrigated eastern areas of Jordan and so families cannot afford sufficient animal feeds. This is due to two main reasons: the first is lower crop productivity related to poor agricultural practices including no use...

  13. Alternatives to atrazine for weed management in processing sweet corn

    USDA-ARS?s Scientific Manuscript database

    Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed man...

  14. Regression-kriged soil organic carbon stock changes in manured corn silage-alfalfa production systems

    USDA-ARS?s Scientific Manuscript database

    Accurately measuring soil organic C (SOC) stock changes over time is essential for verifying agronomic management effects on C sequestration. This study quantified the spatial and temporal changes in SOC stocks on adjacent 65-ha corn silage-alfalfa production fields receiving liquid dairy manure in...

  15. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm.

    PubMed

    Venugopal, P Dilip; Dively, Galen P

    2017-06-01

    Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop-pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996-2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes.

  16. Western bean cutworm survival and the development of economic injury levels and economic thresholds in field corn.

    PubMed

    Paula-Moraes, S; Hunt, T E; Wright, R J; Hein, G L; Blankenship, E E

    2013-06-01

    Western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a native pest of dry beans (Phaseolus vulgaris L.) and corn (Zea mays L.). Historically, the western bean cutworm was distributed in the western United States, but since 1999 eastward expansion has been observed. In corn, economic impact is caused by larval ear feeding. Information on western bean cutworm biology, ecology, and economic impact is relatively limited, and the development of economic injury levels (EILs) and economic thresholds (ETs) is required for more effective management. Studies during 2008-2011, across three ecoregions of Nebraska, sought to characterize western bean cutworm survival and development of EILs and ETs. Calculations of EILs and ETs incorporated the dynamics of corn price, management cost, and pest survival. The results from the current study demonstrated low larval survival of this species (1.51-12.82%). The mean yield loss from one western bean cutworm larva per plant was 945.52 kg/ha (15.08 bu/acre), based on 74,100 plants per ha. Economic thresholds are expressed as a percentage of plants with at least one egg mass. This study is the first study that explicitly incorporates variable management costs and crop values into western bean cutworm EIL calculations, and larval survival into ET calculations.

  17. Effect of tillage and crop residue management on nematode densities on corn.

    PubMed

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P

  18. Evaluation of the Community Land Model (CLM-Crop) in the United States Corn Belt

    NASA Astrophysics Data System (ADS)

    Chen, M.; Griffis, T.

    2013-12-01

    An accurate representation of crop phenology in land surface models is crucial for predicting the carbon, water and energy budgets of managed ecosystems. Soybean and corn are cultivated in approximately 600,000 km2 in the Corn Belt- an area greater than the entire State of California. Accurate prediction of the radiation, energy, and carbon budgets of this region is especially important for understanding its influence on radiative forcing, the thermodynamic properties of the atmospheric boundary layer, and changes in climate. Recently, key algorithms describing crop biophysics and interactive crop management (planting, fertilization, irrigation, harvesting) have been implemented in the Community Land Model (CLM-Crop). CLM-Crop provides a framework for prognostic simulation of crop phenology and evaluation of human management decisions under future climate scenarios. However, there is an important need to evaluate CLM-Crop against a broad range of agricultural site observations in order to understand its limitations and to help optimize the crop biophysical parameterization. Here we evaluated CLM-Crop version 4.5 at 9 AmeriFlux corn/soybean sites that are located within the United States Corn Belt. The following questions were addressed: 1) How well does CLM perform for the 9 crop sites with different management techniques (e.g., tillage vs. no-till, rainfed vs. irrigated)? 2) What are the model's strengths and weaknesses of simulating crop phenology, energy fluxes and carbon fluxes? 3) What steps are needed in order to improve the reliability of the CLM-Crop simulations? Our preliminary results indicate that CLM-Crop can simulate the radiation, energy, and carbon fluxes with reasonable accuracy during the mid growing season. The model performance degrades substantially during the early and late growing seasons, which we attribute to a bias in crop phenology. For instance, we observed that the simulated corn and soybean phenology (LAI) has an earlier phase than the observations by about 15 days at many sites. Here, we show how the optimization of carbon allocation and crop phenology influences the modeled radiation, energy, and carbon fluxes and discuss other model deficiencies associated with the crop biophysics scheme.

  19. Different Effects of Corn Ethanol and Switchgrass-Based Biofuels on Soil Erosion and Nutrients Loads in the Iowa River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liu, S.

    2010-12-01

    Biofuels have become important alternative energy resources and their use is likely to expand in the foreseeable future. The expansion of corn-based ethanol production has resulted in a tightening of the global corn supply-and-demand balance. Perennial grasses such as switchgrass (Panicum virgatum) are also being considered as candidates for biofuel feedstocks. Expansion of biofuel production will generate diverse impacts on the economy and environment. How to optimize land use activities to address the need for biofuel production while protecting the environment is still a grand challenge. Unfortunately, little is known about the effects of biofuel-oriented alternative land uses on water quality. Can we produce the same amount or more biofuels by converting some cornfields to switchgrass, for example, while reducing environmental pressure? The objective of this study was to evaluate the potential impacts of land cover change from corn to switchgrass (e.g., on marginal lands) and related management activities on water quality in the Iowa River Basin (drainage area of 32,360 km2) using the Soil and Water Assessment Tool (SWAT). The model was calibrated and validated under baseline conditions using daily streamflow and sediment, and monthly nutrients at Wapello, Iowa (near the outlet of the watershed). The preliminary results show that both the annual average sediment yield and nitrate nitrogen load would decrease when marginal corn areas are converted to switchgrass. However, the magnitude of change depends greatly on the detailed management practices, such as techniques and amount of fertilization, harvesting practices, and residue management.

  20. Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops.

    PubMed

    Bressler, Alison; Vidon, Philippe; Hirsch, Paul; Volk, Timothy

    2017-04-01

    The development of shrub willow as a bioenergy feedstock contributes to renewable energy portfolios in many countries with temperate climates and marginal croplands due to excessive moisture. However, to fully understand the potential of shrub willow as an alternative crop on marginal cropland, more research is needed to understand the potential of shrub willow for providing a variety of ecosystem services. At the same time, there is much need for research developing strategies to value ecosystem services beyond conventional valuation systems (e.g., monetary, intrinsic). In this context, this project investigates the ecosystem services of shrub willow woody biomass from an environmental science perspective, and proposes a new avenue to assess ecosystem services for management purposes based on the relative value of key ecosystem services under various land management strategies (i.e., willow vs. corn vs. hay). On marginal cropland in the US Northeast, shrub willow may be used to replace crops like corn or hay. Transitioning from conventional corn or hay to willow tends to reduce nutrient loss and erosion, improve biodiversity and adaptability to climate change, and increase access to recreational activities. However, it is unlikely to change soil carbon pools or greenhouse gas emissions at the soil-atmosphere interface. By encouraging decision makers to weigh the pros and cons of each management decision (i.e., willow vs. corn vs. hay) based on the situation, the ecosystems services valuation method used here provides a clear framework for decision making in a watershed management context.

  1. Impact of irrigation scheduling on pore water nitrate and phosphate in coastal plains soils with corn production

    USDA-ARS?s Scientific Manuscript database

    Agriculture is one of the most important sources of nutrient contamination, mainly inorganic nitrogen (N) fertilization of intensive crops, such as corn (Zea mays L). Proper irrigation and nutrient management can reduce nutrient leaching while maintaining crop yield, which is critical in enhancing t...

  2. Spatiotemporal soil organic carbon dynamics in irrigated corn silage-alfalfa production systems receiving liquid dairy manure

    USDA-ARS?s Scientific Manuscript database

    Accurately measuring soil organic C (SOC) stock changes over time is essential for verifying agronomic management effects on C sequestration. This study quantified the spatial and temporal changes in SOC stocks on adjacent 65-ha corn silage-alfalfa production fields receiving liquid dairy manure in...

  3. Ammonia flux above fertilized corn in central Illinois, USA, using relaxed eddy accumulation

    USDA-ARS?s Scientific Manuscript database

    The objective of this research is to quantify NH3 flux above an intensively managed cornfield in the Midwestern United States to improve understanding of NH3 emissions and evaluations of new and existing emission models. A relaxed eddy accumulation (REA) system was deployed above a corn canopy in ce...

  4. Corn nitrogen management influences nitrous oxide emissions in drained and undrained soils

    USDA-ARS?s Scientific Manuscript database

    Tile-drainage and nitrogen (N) fertilization are important for corn (Zea mays L.) production. To date, no studies have evaluated nitrous oxide (N2O) emissions of single vs. split-N fertilizer application under different soil drainage conditions. The objective of this study was to quantify season-lon...

  5. Propelled abrasive grit applications for weed management in transitional corn grain production systems

    USDA-ARS?s Scientific Manuscript database

    Weed control is challenging to farmers who are transitioning from production systems that use synthetic herbicides to organic systems. A two-year field study examined weed control efficacy and corn grain yield of air-propelled corncob grit abrasion for in-row weed control. Grits were applied based o...

  6. Effect of topsoil thickness on soil water infiltration in corn-soybean rotation and switchgrass production systems

    USDA-ARS?s Scientific Manuscript database

    Switchgrass and corn are sometimes used as a resource for biofuel production. The effect of production management systems on water infiltration is very critical in claypan landscape to increase production as well as minimize economic and environmental risks. The objective of this study was to evalua...

  7. A public-industry partnership for enhancing corn nitrogen research and datasets: project description, methodology, and outcomes

    USDA-ARS?s Scientific Manuscript database

    Due to economic and environmental consequences of nitrogen (N) lost from fertilizer applications in corn (Zea mays L.), considerable public and industry attention has been devoted to development of N decision tools. Now a wide variety of tools are available to farmers for managing N inputs. However,...

  8. Overview of a public-industry partnership for enhancing corn nitrogen research and datasets

    USDA-ARS?s Scientific Manuscript database

    Due to economic and environmental consequences of nitrogen (N) lost from fertilizer applications in corn (Zea mays L.), considerable public and industry attention has been devoted to development of N decision tools. Now a wide variety of tools are available to farmers for managing N inputs. However,...

  9. Using extension phosphorus uptake research to improve Idaho's nutrient management planning program

    USDA-ARS?s Scientific Manuscript database

    Irrigated silage corn is the main crop used for phosphorus removal; however little is known about the actual amounts of phosphorus removed under southern Idaho growing conditions. The purpose of this study was to survey phosphorus removal by irrigated corn grown for silage in southern Idaho under va...

  10. Drought genetics have varying influence on corn water stress under differing water availability

    USDA-ARS?s Scientific Manuscript database

    Irrigated corn (Zea mays L.) in the Great Plains will be increasingly grown under limited irrigation management and greater water stress. Hybrids with drought genetics may decrease the impacts of water stress on yield. The objective of this experiment was to evaluate the effect of drought genetics o...

  11. Establishment of Cry9C susceptibility baselines for European corn borer and southwestern corn borer (Lepidoptera: Crambidae).

    PubMed

    Reed, J P; Halliday, W R

    2001-04-01

    In 1997 and 1998, Cry9C susceptibility baselines were established for field-collected populations of European corn borer, Osrinia nubilalis (Hubner), and southwestern corn borer, Diatraea grandiosella Dyar. Bioassay of neonate European corn borer larvae of 16 colonies collected from the midwestern United States indicated LC50 values ranging from 13.2 to 65.1 ng of Cry9C protein per square centimeter. Neonate European corn borer LC50 values ranged from 46.5 to 214 ng/cm2. Neonate larvae of three colonies of southwestern corn borer collected from the southern and southwestern United States exhibited LC50 values from 16.9 to 39.9 ng of Cry9C protein per square centimeter. Southwestern corn borer neonate LC90 confidence limit values ranged from 40.3 to 157 ng of Cry9C protein per centimeter. The most sensitive southwestern corn borer colony was collected from the Mississippi delta exhibiting an LC50 value of 22.6 ng of Cry9C per cm2 and also displayed the widest LC0 confidence limits of 40.3-94.8 ng of Cry9C per cm2. Geographic baseline susceptibility data establishes the natural genetic variation and provides the foundation for future testing of insect populations exposed to increased use of Bacillus thuringiensis-based crops. Insect resistance management and stewardship of Cry9C will rely upon baseline data for the validation of discriminating dose assays for European corn borer and southwestern corn borer.

  12. Dietary Risk Assessment of v-ATPase A dsRNAs on Monarch Butterfly Larvae.

    PubMed

    Pan, Huipeng; Yang, Xiaowei; Bidne, Keith; Hellmich, Richard L; Siegfried, Blair D; Zhou, Xuguo

    2017-01-01

    By suppressing the expression of genes with essential biological functions, in planta RNAi can negatively affect the development and survival of target pests. As a part of a concerted effort to assess the risks of RNAi transgenic crops on non-target organisms, we developed an in vivo toxicity assay to examine the impacts of ingested dsRNAs incurred to the monarch butterfly, Danaus plexippus (L.), an iconic eco-indicator in North America. To create the worst case scenario, the full-length v-ATPase A cDNAs from the target pest, western corn rootworm, Diabrotica virgifera virgifera , and the non-target D. plexippus were respectively cloned. A 400 bp fragment with the highest sequence similarity between the two species was used as the template to synthesize dsRNAs for the subsequent dietary RNAi toxicity assay. Specifically, newly hatched neonates were provisioned with leaf disks surface-coated with v-ATPase A dsRNAs synthesized from D. v. virgifera and D. plexippus , respectively, a control dsRNA, β -glucoruronidase , from plants, and H 2 O. The endpoint measurements included gene expressions and life history traits. The 2283 bp D. plexippus v-ATPase A cDNA contains a 99 bp 5'-untranslated region, a 330 bp 3'-untranslated region, and an 1851 bp ORF encoding 617 amino acids. The temporal RNAi study did not detect any impact to D. plexippus v-ATPase A expression by the assay days and treatments. This was reflected in the phenotypic impacts of dietary RNAi, in which both survival rate and development time were not affected by the uptake of ingested dsRNAs. These combined results suggest that D. plexippus larvae are not susceptible to dietary RNAi, therefore, the impact of transgenic RNAi plants on this non-target organism is, likely, negligible.

  13. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  14. Evolution of Resistance by Helicoverpa zea (Lepidoptera: Noctuidae) Infesting Insecticidal Crops in the Southern United States

    PubMed Central

    Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura

    2016-01-01

    We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton. PMID:26637533

  15. Within-Plant Distribution of Adult Brown Stink Bug (Hemiptera: Pentatomidae) in Corn and Its Implications on Stink Bug Sampling and Management in Corn.

    PubMed

    Babu, Arun; Reisig, Dominic D

    2018-05-29

    Brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidae), has emerged as a significant pest of corn, Zea mays L., in the southeastern United States. A 2-year study was conducted to quantify the within-plant vertical distribution of adult E. servus in field corn, to examine potential plant phenological characteristics associated with their observed distribution, and to select an efficient partial plant sampling method for adult E. servus population estimation. Within-plant distribution of adult E. servus was influenced by corn phenology. On V4- and V6-stage corn, most of the individuals were found at the base of the plant. Mean relative vertical position of adult E. servus population in corn plants trended upward between the V6 and V14 growth stages. During the reproductive corn growth stages (R1, R2, and R4), a majority of the adult E. servus were concentrated around developing ears. Based on the multiple selection criteria, during V4-V6 corn growth stages, either the corn stalk below the lowest green leaf or basal stratum method could employ for efficient E. servus sampling. Similarly, on reproductive corn growth stages (R1-R4), the plant parts between two leaves above and three leaves below the primary ear leaf were found to be areas to provide the most precise and cost-efficient sampling method. The results from our study successfully demonstrate that in the early vegetative and reproductive stages of corn, scouts can replace the current labor-intensive whole-plant search method with a more efficient, specific partial plant sampling method for E. servus population estimation.

  16. Feeding ecology of sandhill cranes during spring migration in Nebraska

    USGS Publications Warehouse

    Reinecke, K.J.; Krapu, G.L.

    1986-01-01

    We studied the food habits of midcontinent sandhill cranes (Grus canadensis) during spring 1978 and 1979 at their primary staging area along the Platte River and compared population food and foraging habitat requirements with availability. Crane diets varied among the 3 principal foraging habitats, but not between sexes, ages, or years. Cranes feeding in cornfields ate >99% corn (total dry wt); those feeding in native grasslands and alfalfa fields consumed 79-99% invertebrates. The composite diet of cranes was 97% corn and 3% invertebrates, including 2% earthworms, 0.5% snails, and 0.5% insects. Presumably, corn provided energy, whereas invertebrates from grasslands and alfalfa fields provided supplemental nutrients to compensate for protein and calcium deficiencies in corn. The mean density of waste corn decreased (P 50%. Management by burning, haying, and grazing is compatible with crane use of grasslands, and reduced-till farming could benefit cranes by increasing invertebrate populations.

  17. Estimating E-Race European Corn Borer (Lepidoptera: Crambidae) Adult Activity in Snap Bean Fields Based on Corn Planting Intensity and Their Activity in Corn in New York Agroecosystems.

    PubMed

    Schmidt-Jeffris, Rebecca A; Huseth, Anders S; Nault, Brian A

    2016-07-24

    European corn borer, Ostrinia nubilalis (Hübner), is a major pest of processing snap bean because larvae are contaminants in pods. The incidence of O. nubilalis-contaminated beans has become uncommon in New York, possibly because widespread adoption of Bt field corn has suppressed populations. Snap bean fields located where Bt corn has been intensively grown in space and time may be at lower risk for O. nubilalis than fields located where Bt corn is not common. To manage O. nubilalis infestation risk, growers determine insecticide application frequency in snap bean based on pheromone-trapping information in nearby sweet corn fields; adult activity is presumed equivalent in both crops. Our goal was to determine if corn planting intensity and adult activity in sweet corn could be used to estimate O. nubilalis populations in snap bean in New York in 2014-2015. Numbers of O nubilalis adults captured in pheromone-baited traps located in snap bean fields where corn was and was not intensively grown were similar, suggesting that O. nubilalis does not respond to local levels of Bt corn in the landscape. Numbers of Ostrinia nubilalis captured in pheromone-baited traps placed by snap bean fields and proximal sweet corn fields were not related, indicating that snap bean growers should no longer make control decisions based on adult activity in sweet corn. Our results also suggest that the risk of O. nubilalis infestations in snap bean is low (∼80% of the traps caught zero moths) and insecticide applications targeting this pest should be reduced or eliminated. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas L. Karlen; Stuart J. Birell; J. Richard Hess

    Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubblemore » height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner.« less

  19. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  20. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. Thismore » report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.« less

  1. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition.

  2. Corn Yield and Soil Nitrous Oxide Emission under Different Fertilizer and Soil Management: A Three-Year Field Experiment in Middle Tennessee.

    PubMed

    Deng, Qi; Hui, Dafeng; Wang, Junming; Iwuozo, Stephen; Yu, Chih-Li; Jima, Tigist; Smart, David; Reddy, Chandra; Dennis, Sam

    2015-01-01

    A three-year field experiment was conducted to examine the responses of corn yield and soil nitrous oxide (N2O) emission to various management practices in middle Tennessee. The management practices include no-tillage + regular applications of urea ammonium nitrate (NT-URAN); no-tillage + regular applications of URAN + denitrification inhibitor (NT-inhibitor); no-tillage + regular applications of URAN + biochar (NT-biochar); no-tillage + 20% applications of URAN + chicken litter (NT-litter), no-tillage + split applications of URAN (NT-split); and conventional tillage + regular applications of URAN as a control (CT-URAN). Fertilizer equivalent to 217 kg N ha(-1) was applied to each of the experimental plots. Results showed that no-tillage (NT-URAN) significantly increased corn yield by 28% over the conventional tillage (CT-URAN) due to soil water conservation. The management practices significantly altered soil N2O emission, with the highest in the CT-URAN (0.48 mg N2O m(-2) h(-1)) and the lowest in the NT-inhibitor (0.20 mg N2O m(-2) h(-1)) and NT-biochar (0.16 mg N2O m(-2) h(-1)) treatments. Significant exponential relationships between soil N2O emission and water filled pore space were revealed in all treatments. However, variations in soil N2O emission among the treatments were positively correlated with the moisture sensitivity of soil N2O emission that likely reflects an interactive effect between soil properties and WFPS. Our results indicated that improved fertilizer and soil management have the potential to maintain highly productive corn yield while reducing greenhouse gas emissions.

  3. Corn Yield and Soil Nitrous Oxide Emission under Different Fertilizer and Soil Management: A Three-Year Field Experiment in Middle Tennessee

    PubMed Central

    Deng, Qi; Hui, Dafeng; Wang, Junming; Iwuozo, Stephen; Yu, Chih-Li; Jima, Tigist; Smart, David; Reddy, Chandra; Dennis, Sam

    2015-01-01

    Background A three-year field experiment was conducted to examine the responses of corn yield and soil nitrous oxide (N2O) emission to various management practices in middle Tennessee. Methodology/Principal Findings The management practices include no-tillage + regular applications of urea ammonium nitrate (NT-URAN); no-tillage + regular applications of URAN + denitrification inhibitor (NT-inhibitor); no-tillage + regular applications of URAN + biochar (NT-biochar); no-tillage + 20% applications of URAN + chicken litter (NT-litter), no-tillage + split applications of URAN (NT-split); and conventional tillage + regular applications of URAN as a control (CT-URAN). Fertilizer equivalent to 217 kg N ha-1 was applied to each of the experimental plots. Results showed that no-tillage (NT-URAN) significantly increased corn yield by 28% over the conventional tillage (CT-URAN) due to soil water conservation. The management practices significantly altered soil N2O emission, with the highest in the CT-URAN (0.48 mg N2O m-2 h-1) and the lowest in the NT-inhibitor (0.20 mg N2O m-2 h-1) and NT-biochar (0.16 mg N2O m-2 h-1) treatments. Significant exponential relationships between soil N2O emission and water filled pore space were revealed in all treatments. However, variations in soil N2O emission among the treatments were positively correlated with the moisture sensitivity of soil N2O emission that likely reflects an interactive effect between soil properties and WFPS. Conclusion/Significance Our results indicated that improved fertilizer and soil management have the potential to maintain highly productive corn yield while reducing greenhouse gas emissions. PMID:25923716

  4. Soil-test biological activity with the flush of CO2: III. Corn yield responses to applied nitrogen

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) is an important cereal grain in many states and typically receives large N fertilizer inputs, irrespective of historical management. Tailoring N inputs to soil-specific conditions would help to increase efficiency of N use and avoid environmental contamination. A total of 47 tri...

  5. Evaluating optimum limited irrigation management strategies for corn production in the ogallala aquifer region

    USDA-ARS?s Scientific Manuscript database

    Water is the major factor limiting crop production in the Ogallala Aquifer Region of the U.S. Central High Plains. Seasonal precipitation is highly variable, low in amount, and not enough to meet full corn water needs. The Ogallala Aquifer is the major source of irrigation water for commercial agric...

  6. Tillage and residue management effects on soil carbon and nitrogen under irrigated continuous corn

    USDA-ARS?s Scientific Manuscript database

    Demand for corn (Zea mays L.) stover as forage or as a cellulosic biofuel has increased the importance of determining the effects of residue removal on biomass production and the soil resource. Objectives were to evaluate grain yield, soil organic carbon (SOC), and total soil N (0 to 150 cm) in a t...

  7. Exploring the effects of nitrogen fertilization management alternatives on nitrate loss and crop yields in tile-drained fields in Illinois.

    PubMed

    Jeong, Hanseok; Bhattarai, Rabin

    2018-05-01

    It is vital to manage the excessive use of nitrogen (N) fertilizer in corn production, the single largest consumer of N fertilizer in the United States, in order to achieve more sustainable agroecosystems. This study comprehensively explored the effects of N fertilization alternatives on nitrate loss and crop yields using the Root Zone Water Quality Model (RZWQM) in tile-drained fields in central Illinois. The RZWQM was tested for the prediction of tile flow, nitrate loss, and crop yields using eight years (1993-2000) of observed data and showed satisfactory model performances from statistical and graphical evaluations. Our model simulations demonstrated the maximum return to nitrogen (MRTN) rate (193 kgha -1 ), a newly advised N recommendation by the Illinois Nutrient Loss Reduction Strategy (INLRS), can be further reduced. Nitrate loss was reduced by 10.3% and 29.8%, but corn yields decreased by 0.3% and 1.9% at 156 and 150 kgha -1 of N fertilizer rate in the study sites A and E, respectively. Although adjustment of N fertilization timing presented a further reduction in nitrate loss, there was no optimal timing to ensure nitrate loss reduction and corn productivity. For site A, 100% spring application was the most productive and 40% fall, 10% pre-plant, and 50% side dress application generated the lowest nitrate loss. For site E, the conventional N application timing was verified as the best practice in both corn production and nitrate loss reduction. Compared to surface broadcast placement, injected N fertilizer in spring increased corn yield, but may also escalate nitrate loss. This study presented the need of an adaptive N fertilizer management due to the heterogeneity in agricultural systems, and raised the importance of timing and placement of N fertilizer, as well as further reduction in fertilizer rate to devise a better in-field N management practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Impact of applying edible oils to silk channels on ear pests of sweet corn.

    PubMed

    Ni, Xinzhi; Sparks, Alton N; Riley, David G; Li, Xianchun

    2011-06-01

    The impact of applying edible oils to corn silks on ear-feeding insects in sweet corn, Zea mays L., production was evaluated in 2006 and 2007. Six edible oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix neem oil and nC21 Sunspray Ultrafine, a horticultural mineral oil) were used as the controls for the experiment. Six parameters evaluated in this experiment were corn earworm [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] damage rating, the number of sap beetle [Carpophilus spp. (Coleoptera: Nitidulidae)] adults and larvae, the number of corn silk fly (or picture-winged fly) (Diptera: Ulidiidae) larvae, common smut [Ustilago maydis (D.C.) Corda] infection rate, and corn husk coverage. Among the two control treatments, neem oil reduced corn earworm damage at both pre- and postpollination applications in 2006, but not in 2007, whereas the mineral oil applied at postpollination treatments reduced corn earworm damage in both years. The mineral oil also reduced the number of sap beetle adults, whereas the neem oil applied at postpollination attracted the most sap beetle adults in 2007. Among the six edible oil treatments, the corn and sesame oils applied at postpollination reduced corn earworm damage only in 2007. The application of the peanut oil at postpollination attracted more sap beetle adults in 2006, and more sap beetle larvae in 2007. Olive and neem oils significantly reduced husk coverage compared with the water control in both years. The mineral oil application consistently increased smut infection rate in both 2006 and 2007. Ramifications of using oil treatments in ear pest management also are discussed.

  9. Aflatoxin contamination in corn sold for wildlife feed in texas.

    PubMed

    Dunham, Nicholas R; Peper, Steven T; Downing, Carson D; Kendall, Ronald J

    2017-05-01

    Supplemental feeding with corn to attract and manage deer is a common practice throughout Texas. Other species, including northern bobwhites (Colinus virginianus), are commonly seen feeding around supplemental deer feeders. In many cases, supplemental feeding continues year-round so feed supply stores always have supplemental corn in stock. Fluctuating weather and improper storage of corn can lead to and/or amplify aflatoxin contamination. Due to the recent decline of bobwhites throughout the Rolling Plains ecoregion of Texas, there has been interest in finding factors such as toxins that could be linked to their decline. In this study, we purchased and sampled supplemental corn from 19 locations throughout this ecoregion to determine if aflatoxin contamination was present in individual bags prior to being dispersed to wildlife. Of the 57 bags sampled, 33 bags (approximately 58%) contained aflatoxin with a bag range between 0.0-19.91 parts per billion (ppb). Additionally, three metal and three polypropylene supplemental feeders were each filled with 45.4 kg of triple cleaned corn and placed in an open field to study long-term aflatoxin buildup. Feeders were sampled every 3 months from November 2013-November 2014. Average concentration of aflatoxin over the year was 4.08 ± 2.53 ppb (±SE) in metal feeders, and 1.43 ± 0.89 ppb (±SE) in polypropylene feeders. The concentration of aflatoxins is not affected by the type of feeder (metal vs polypropylene), the season corn was sampled, and the location in the feeder (top, middle, bottom) where corn is sampled. It is unlikely that corn used in supplemental feeders is contributing to the bobwhite decline due to the low levels of aflatoxin found in purchased corn and long-term storage of corn used in supplemental feeders.

  10. Less waste corn, more land in soybeans, and the switch to genetically modified crops: Trends with important implications for wildlife management

    USGS Publications Warehouse

    Krapu, G.L.; Brandt, D.A.; Cox, R.R.

    2004-01-01

    American agriculture has provided abundant high-energy foods for migratory and resident wildlife populations since the onset of modern wildlife management. Responding to anecdotal evidence that corn residues are declining in cropland, we remeasured waste corn post-harvest in the Central Platte River Valley (CPRV) of Nebraska during 1997 and 1998 to compare with 1978. Post-harvest waste corn averaged 2.6% and 1.8% of yield in 1997 and 1998, respectively. After accounting for a 20% increase in yield, waste corn in 1997 and 1998 was reduced 24% and 47% from 1978. We also evaluated use of soybeans by spring-staging sandhill cranes (Crus canadensis) and waterfowl during spring 1998 and 1999. Despite being widely available in the CPRV, soybeans did not occur in esophageal contents of sandhill cranes (n=174), northern pintails (Anas acuta, n=139), greater white-fronted geese (Anser albifrons, n=198), or lesser snow geese (Chen caerulescens, n=208) collected with food in their esophagi. Lack of soybean consumption by cranes and waterfowl in Nebraska in early spring builds upon previously published findings, suggesting that soybeans are poorly suited for meeting nutrient needs of wildlife requiring a high-energy diet. Given evidence that high-energy food and numerous populations of seed-eating species found on farmland are declining, and the enormous potential risk to game and nongame wildlife populations if high-energy foods were to become scarce, a comprehensive research effort to study the problem appears warranted. Provisions under the Conservation Security subtitle of The Farm Security and Rural Investment Act of 2002 offer a potential mechanism to encourage producers to manage cropland in ways that would replace part of the high-energy foods that have been lost to increasing efficiency of production agriculture.

  11. A blinded randomized controlled trial evaluating the usefulness of a novel diet (aminoprotect care) in dogs with spontaneous food allergy.

    PubMed

    Olivry, Thierry; Kurata, Keigo; Paps, Judy S; Masuda, Kenichi

    2007-10-01

    Aminoprotect Care (APC) is a novel diet composed of aminoacids, potato proteins and corn starch. The objectives of this study were to determine whether Maltese-Beagle atopic (MBA) dogs hypersensitive to corn exhibited clinical signs and changes in immunological markers after being fed APC. The study was designed as a blinded randomized controlled crossover experiment. Ten MBA dogs with signs of allergy within five days of ingesting corn were selected. Dogs were randomized to be fed either their maintenance diet with corn or APC for five days. After a washout of two weeks, diets were switched. Before and daily during each intervention, skin lesions were graded by an investigator while pruritus was assessed by another. Before and at the end of each intervention, the percentage of circulating CD4+CCR4+, corn-activated CD4+ T-lymphocytes and serum corn-specific IgE levels were measured and ratios of post:pre values calculated. During this trial, pruritus and skin lesions increased significantly in MBA dogs when ingesting corn while no such increase occurred when fed APC. Total, median and maximal pruritus values were significantly higher in MBA dogs ingesting corn compared to APC. There were no significant differences between interventions in the immunological parameters assessed. In summary, even though APC contains corn starch to which corn-sensitive MBA dogs often react, the ingestion of APC did not lead to significant increases in skin lesions or pruritus. Aminoprotect Care might prove valuable for management of food allergies. These experimental observations must be validated in large field studies.

  12. A Non-Destructive and Direction-Insensitive Method Using a Strain Sensor and Two Single Axis Angle Sensors for Evaluating Corn Stalk Lodging Resistance.

    PubMed

    Guo, Qingqian; Chen, Ruipeng; Sun, Xiaoquan; Jiang, Min; Sun, Haifeng; Wang, Shun; Ma, Liuzheng; Yang, Yatao; Hu, Jiandong

    2018-06-06

    Corn stalk lodging is caused by different factors, including severe wind storms, stalk cannibalization, and stalk rots, and it leads to yield loss. Determining how to rapidly evaluate corn lodging resistance will assist scientists in the field of crop breeding to understand the contributing factors in managing the moisture, chemical fertilizer, and weather conditions for corn growing. This study proposes a non-destructive and direction-insensitive method, using a strain sensor and two single axis angle sensors to measure the corn stalk lodging resistance in the field. An equivalent force whose direction is perpendicular to the stalk is utilized to evaluate the corn lodging properties when a pull force is applied on the corn stalk. A novel measurement device is designed to obtain the equivalent force with the coefficient of variation (CV) of 4.85%. Five corn varieties with two different planting densities are arranged to conduct the experiment using the novel measurement device. The experimental results show that the maximum equivalent force could reach up to 44 N. A strong relationship with the square of the correlation coefficient of 0.88 was obtained between the maximum equivalent forces and the corn field’s stalk lodging rates. Moreover, the stalk lodging angles corresponding to the different pull forces over a measurement time of 20 s shift monotonically along the equivalent forces. Thus, the non-destructive and direction-insensitive method is an excellent tool for rapid analysis of stalk lodging resistance in corn, providing critical information on in-situ lodging dynamics.

  13. Influence of the corn resistance gene Mv on the fitness of Peregrinus maidis (Hemiptera: Delphacidae) and on the transmission of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus).

    PubMed

    Higashi, C H V; Brewbaker, J L; Bressan, A

    2013-08-01

    Crops that are resistant to pests and pathogens are cost-effective for the management of pests and diseases. A corn (Zea mays L.) breeding program conducted in Hawaii has identified a source of heritable resistance to maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus). This resistance is controlled by the gene Mv, which has been shown to have a codominant action. To date, no studies have examined whether the resistance associated with this gene affects only MMV or whether it also affects the insect vector, the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae). Here, we examined the life history of the corn planthopper and its ability to transmit MMV on near isogenic lines that were homozygous dominant (Mv/Mv), homozygous recessive (mv/mv), or heterozygous (Mv/mv) for the gene. A field trial was also conducted to study the colonization of the corn plants with different genotypes by the planthopper. Although field observations revealed slightly lower densities ofplanthoppers on corn with the genotype Mv/Mv than on the inbreds with the genotype mv/mv and their hybrids with the genotype Mv/mv, laboratory assays showed no effects of the gene on planthopper development, longevity, or fecundity. In the field, the corn lines Mv/Mv had a lower incidence of MMV-infected plants. However, in the greenhouse, the transmission of MMV to corn seedlings did not differ across the near isogenic lines, although the corn lines Mv/Mv showed a delayed onset of symptoms compared with the corn lines mv/mv and Mv/mv. The acquisition of MMV by corn planthoppers on the corn genotypes Mv/Mv and Mv/mv averaged 0.2, whereas the acquisition on the corn genotypes mv/mv averaged > 0.3. Our results show that the Mv gene does not influence the fitness of the planthopper vector, suggesting that it may confer resistance by other means, possibly by limiting virus replication or movement within the host plant.

  14. Evaluation of residue management practices effects on corn productivity, soil quality, and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Guzman, Jose German

    The removal of crop residues left after harvest is being considered as a potential feedstock source for bioethanol production which can contribute to the reduction of fossil fuel use and net greenhouse gas (GHG). The objectives of this study were to: (i) examine how tillage, N fertilization rates, residue removal, and their interactions affect crop productivity, (ii) SOC and soil physical properties, and (iii) GHG emissions, and (iv) calculated a soil C budget to determine how much crop residue can be sustainably be removed in Central and Southwest Iowa. After three years of residue removal under different management practices, the findings of this study suggest that a portion of the corn residue that is left on the soil surface after harvest can be removed, with no negative impacts in the short term continuous corn yield in sites at Central and Southwest Iowa. However, significant decreases in SOC sequestration rates, microbial biomass-C, bulk density, soil penetration resistance, wet aggregate stability, and infiltration rates were observed, but varied with soil type and management practices. Additionally, soil surface CO2 and N2O emissions were responsive to management practices; primarily by altering soil temperature, soil water content, soil mineral N, and crop growth. Results from soil C budget show that in 2010 when corn growth was not water stressed (lack of moisture), approximately 35 and 30% of the residue could be sustainably removed in the Central and Southwest sites, respectively. In 2011, drier soil conditions resulted in approximately 2 and 49% of the residue could be sustainably removed in the Central and Southwest sites, respectively.

  15. AmeriFlux US-Br1 Brooks Field Site 10- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br1 Brooks Field Site 10- Ames. Site Description - The Brooks Field Site 10 - Ames Site is one of three sites (Brooks Field Site 11 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  16. AmeriFlux US-Br3 Brooks Field Site 11- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br3 Brooks Field Site 11- Ames. Site Description - The Brooks Field Site 11 - Ames Site is one of three sites (Brooks Field Site 10 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  17. Asymmetric Spread of SRBSDV between Rice and Corn Plants by the Vector Sogatella furcifera (Hemiptera: Delphacidae).

    PubMed

    Li, Pei; Li, Fei; Han, Yongqiang; Yang, Lang; Liao, Xiaolan; Hou, Maolin

    2016-01-01

    Plant viruses are mostly transmitted by sucking insects via their piercing behaviors, which may differ due to host plant species and their developmental stages. We characterized the transmission of a fijivirus, southern rice black-streaked dwarf virus (SRBSDV), by the planthopper vector Sogatella furcifera Horváth (Hemiptera: Delphacidae), between rice and corn plants of varying developmental stages. SRBSDV was transmitted from infected rice to uninfected corn plants as efficiently as its transmission between rice plants, while was acquired by S. furcifera nymphs at a much lower rate from infected corn plants than from infected rice plants. We also recorded a high mortality of S. furcifera nymphs on corn plants. It is evident that young stages of both the virus donor and recipient plants added to the transmission efficiency of SRBSDV from rice to corn plants. Feeding behaviors of the vector recorded by electrical penetration graph showed that phloem sap ingestion, the behavioral event that is linked with plant virus acquisition, was impaired on corn plants, which accounts for the high mortality of and low virus acquisition by S. furcifera nymphs on corn plants. Our results reveal an asymmetric spread of SRBSDV between its two host plants and the underlying behavioral mechanism, which is of significance for assessing SRBSDV transmission risks and field epidemiology, and for developing integrated management approaches for SRBSDV disease.

  18. Model Forecasts of Atrazine in Lake Michigan in Response to Various Sensitivity and Potential Management Scenarios

    EPA Science Inventory

    For more than forty years, the herbicide atrazine has been used on corn crops in the Lake Michigan basin to control weeds. It is usually applied to farm fields in the spring before or after the corn crop emerges. A version of the WASP4 mass balance model, LM2-Atrazine, was used...

  19. Effect of conservation practices on soil carbon and nitrogen accretion and crop yield in a corn production system in the southeastern coastal plain, USA

    USDA-ARS?s Scientific Manuscript database

    We implemented conservation farming practices (winter cover cropping plus strip tillage) for a non-irrigated corn production system in the southern coastal plain of Georgia, USA that had been previously been managed under a plow and harrow tillage regime. Total soil carbon and nitrogen were measure...

  20. Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens.

    PubMed

    Saliu, Bolanle Kudirat; Sani, Alhassan

    2012-01-01

    Corn cob is a major component of agricultural and domestic waste in many parts of the world. It is composed mainly of cellulose which can be converted to energy in form of bioethanol as an efficient and effective means of waste management. Production of cellulolytic enzymes were induced in the fungi Aspergillus niger and Penicillium decumbens by growing them in mineral salt medium containing alkali pre-treated and untreated corn cobs. The cellulases were characterized and partially purified. Alkali pre-treated corn cobs were hydrolysed with the partially purified cellulases and the product of hydrolysis was fermented using the yeast saccharomyces cerevisae to ethanol. Cellulases of A. niger produced higher endoglucanase and exoglucanase activity (0.1698 IU ml(-1) and 0.0461 FPU ml(-1)) compared to that produced by P. decumbens (0.1111 IU ml(-1) and 0.153 FPU ml(-1)). Alkali pre-treated corn cob hydrolysed by cellulases of A. niger yielded 7.63 mg ml(-1) sugar which produced 2.67 % (v/v) ethanol on fermentation. Ethanol yield of the hydrolysates of corn cob by cellulases of P. decumbens was much lower at 0.56 % (v/v). Alkali pre-treated corn cob, hydrolysed with cellulases of A. niger is established as suitable feedstock for bioethanol production.

  1. Implications of Using Corn Stalks as a Biofuel Source: A Joint ARS and DOE Project

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. W.; Cushman, J.

    2003-12-01

    Corn stover is a readily source of biomass for cellulosic ethanol production, and may provide additional income for growers. Published research shows that residue removal changes the rate of soil physical, chemical, and biological processes, and in turn, crop growth. Building a sustainable cellulosic ethanol industry based on corn residue requires residue management practices that do not reduce long-term productivity. To develop such systems, impacts of stover removal on the soil and subsequent crops must be quantified. The ARS/DOE Biofuel Project is the cooperative endeavor among scientists from six western Corn Belt US Dept. of Agriculture, Agricultural Research Service (ARS) locations and US Dept. of Energy. The objectives of the project are to determine the influence of stover removal on crop productivity, soil aggregation, quality, carbon content, and seasonal energy balance, and carbon sequestration. When residue is removed soil temperatures fluctuate more and soil water evaporation is greater. Residue removal reduces the amount of soil organic carbon (SOC), but the degree of reduction is highly dependent on degree of tillage, quantity of stover removed, and frequency of stover removal. Of the three cultural factors (stover removal, tillage, and N fertilization) tillage had the greatest effect on amount of corn-derived SOC. No tillage tends to increase the fraction of aggregates in the 2.00 to 0.25 mm size range at all removal rates. Stover harvest reduces corn-derived SOC by 35% compared to retaining stover on the soil averaged over all tillage systems. Corn stover yield has not differed across stover removal treatments in these studies. In the irrigated study, grain yield increased with stover removal. In the rain-fed studies, grain yield has not differed among residue management treatments. Incorporating the biomass ethanol fermentation by-product into a soil with low SOC showed a positive relationship between the amount of lignin added and the subsequent humic acid concentration and aggregate stability. These and future outcomes from this effort will provide DOE and the developing biomass ethanol industry knowledge and guidelines on the environmental and crop productivity consequences of large-scale collection of corn stover.

  2. Indicators of the statuses of amphibian populations and their potential for exposure to atrazine in four midwestern U.S. conservation areas

    USGS Publications Warehouse

    Sadinski, Walter; Roth, Mark; Hayes, Tyrone; Jones, Perry; Gallant, Alisa

    2014-01-01

    Extensive corn production in the midwestern United States has physically eliminated or fragmented vast areas of historical amphibian habitat. Midwestern corn farmers also apply large quantities of fertilizers and herbicides, which can cause direct and indirect effects on amphibians. Limited field research regarding the statuses of midwestern amphibian populations near areas of corn production has left resource managers, conservation planners, and other stakeholders needing more information to improve conservation strategies and management plans. We repeatedly sampled amphibians in wetlands in four conservation areas along a gradient of proximity to corn production in Illinois, Iowa, Minnesota, and Wisconsin from 2002 to 2005 and estimated site occupancy. We measured frequencies of gross physical deformities in recent metamorphs and triazine concentrations in the water at breeding sites. We also measured trematode infection rates in kidneys of recently metamorphosed Lithobates pipiens collected from nine wetlands in 2003 and 2004. We detected all possible amphibian species in each study area. The amount of nearby row crops was limited in importance as a covariate for estimating site occupancy. We observed deformities in <5% of metamorphs sampled and proportions were not associated with triazine concentrations. Trematode infections were high in metamorphs from all sites we sampled, but not associated with site triazine concentrations, except perhaps for a subset of sites sampled in both years. We detected triazines more often and in higher concentrations in breeding wetlands closer to corn production. Triazine concentrations increased in floodplain wetlands as water levels rose after rainfall and were similar among lotic and lentic sites. Overall, our results suggest amphibian populations were not faring differently among these four conservation areas, regardless of their proximity to corn production, and that the ecological dynamics of atrazine exposure were complex.

  3. Indicators of the Statuses of Amphibian Populations and Their Potential for Exposure to Atrazine in Four Midwestern U.S. Conservation Areas

    PubMed Central

    Sadinski, Walt; Roth, Mark; Hayes, Tyrone; Jones, Perry; Gallant, Alisa

    2014-01-01

    Extensive corn production in the midwestern United States has physically eliminated or fragmented vast areas of historical amphibian habitat. Midwestern corn farmers also apply large quantities of fertilizers and herbicides, which can cause direct and indirect effects on amphibians. Limited field research regarding the statuses of midwestern amphibian populations near areas of corn production has left resource managers, conservation planners, and other stakeholders needing more information to improve conservation strategies and management plans. We repeatedly sampled amphibians in wetlands in four conservation areas along a gradient of proximity to corn production in Illinois, Iowa, Minnesota, and Wisconsin from 2002 to 2005 and estimated site occupancy. We measured frequencies of gross physical deformities in recent metamorphs and triazine concentrations in the water at breeding sites. We also measured trematode infection rates in kidneys of recently metamorphosed Lithobates pipiens collected from nine wetlands in 2003 and 2004. We detected all possible amphibian species in each study area. The amount of nearby row crops was limited in importance as a covariate for estimating site occupancy. We observed deformities in <5% of metamorphs sampled and proportions were not associated with triazine concentrations. Trematode infections were high in metamorphs from all sites we sampled, but not associated with site triazine concentrations, except perhaps for a subset of sites sampled in both years. We detected triazines more often and in higher concentrations in breeding wetlands closer to corn production. Triazine concentrations increased in floodplain wetlands as water levels rose after rainfall and were similar among lotic and lentic sites. Overall, our results suggest amphibian populations were not faring differently among these four conservation areas, regardless of their proximity to corn production, and that the ecological dynamics of atrazine exposure were complex. PMID:25216249

  4. Water table management reduces tile nitrate loss in continuous corn and in a soybean-corn rotation.

    PubMed

    Drury, C F; Tan, C S; Gaynor, J D; Reynolds, W D; Welacky, T W; Oloya, T O

    2001-10-25

    Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR) system was compared over 8 years (1991 to 1999) to a controlled tile drainage/subirrigation (CDS) system on a low-slope (0.05 to 0.1%) Brookston clay loam soil (Typic Argiaquoll) in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation) to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994), continuous corn (Zea mays, L.) was grown with annual nitrogen (N) fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999), a soybean (Glycine max L., Merr.)-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM) nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l(-1)) under DR (11.4 mg N l(-1)), but not under CDS (7.0 mg N l(-1)). In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l(-1)) and CDS (4.0 mg N l(-1)). During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge relative to continuous corn. CDS and crop rotations with reduced N fertilizer inputs can thus improve the quality of tile discharge water substantially.

  5. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It beginsmore » with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.« less

  6. Enzyme Technology for Shipboard Waste Management

    DTIC Science & Technology

    1976-12-01

    converting corn starch to high fructose corn syrups , a product equivalent in sweetness to the conventional cane and beet sugars. Semisynthetic penicillins...catalysts that accelerate virtually all of the known chemical reactions occurring in living cells. These reactions, due to the relatively high energies...affect proteins. Con- sequently, high temperatures, generally in excess of the 400-500 C range, will cause the destruction or denaturation of most

  7. Influence of fertilizer placement on gaseous loss (CO2, CH4, N2O, and NH4) under different tillage management practices in a corn cropping system

    USDA-ARS?s Scientific Manuscript database

    Tillage and fertilizer application methods could alter plant yield and quality of corn production. Thus, a field experiment was conducted at the Sand Mountain Research Station located in the Appalachian Plateau region of Northeast Alabama on a Hartsells fine sandy loam to evaluate tillage (conventi...

  8. Forward chaining method on diagnosis of diseases and pests corn crop

    NASA Astrophysics Data System (ADS)

    Nurlaeli, Subiyanto

    2017-03-01

    Integrated pest management should be done to control the explosion of plants pest and diseases due to climate change is uncertain. This paper is a present implementation of the forward chaining method in the diagnosis diseases and pests of corn crop to help farmers/agricultural facilitators in getting knowledge about disease and pest corn crop. Forward chaining method as inference engine is used to get a disease/pest that attacks the corn crop based on symptoms. The forward chaining method works based on the fact that there is to get a conclusion. Fact in this system derived from the symptoms of the selected user is matched with the premise on every rule in the knowledge base. A rule that matches the facts to be executed to be the conclusion in the form of diagnosis. This validation using 36 data test, 32 data showed the same diagnostic results between systems with an expert. So, the percentage accuracy of results of diagnosis using data test of 88%. Finally, it can be concluded that the diagnosis system of diseases and pests corn crop can be used to help farmers/agricultural facilitators to diagnose diseases and pests corn crop.

  9. Dynamic model-based N management reduces surplus nitrogen and improves the environmental performance of corn production

    NASA Astrophysics Data System (ADS)

    Sela, S.; Woodbury, P. B.; van Es, H. M.

    2018-05-01

    The US Midwest is the largest and most intensive corn (Zea mays, L.) production region in the world. However, N losses from corn systems cause serious environmental impacts including dead zones in coastal waters, groundwater pollution, particulate air pollution, and global warming. New approaches to reducing N losses are urgently needed. N surplus is gaining attention as such an approach for multiple cropping systems. We combined experimental data from 127 on-farm field trials conducted in seven US states during the 2011–2016 growing seasons with biochemical simulations using the PNM model to quantify the benefits of a dynamic location-adapted management approach to reduce N surplus. We found that this approach allowed large reductions in N rate (32%) and N surplus (36%) compared to existing static approaches, without reducing yield and substantially reducing yield-scaled N losses (11%). Across all sites, yield-scaled N losses increased linearly with N surplus values above ~48 kg ha‑1. Using the dynamic model-based N management approach enabled growers to get much closer to this target than using existing static methods, while maintaining yield. Therefore, this approach can substantially reduce N surplus and N pollution potential compared to static N management.

  10. Soil Emissions of N2O and NO in Agricultural Production Systems in the Upper Midwest U.S.: Management Controls and Measurement Issues (Invited)

    NASA Astrophysics Data System (ADS)

    Venterea, R. T.; Baker, J. M.

    2009-12-01

    Cropped fields in the upper Midwest have the potential to emit relatively large quantities of N2O and NO resulting from soil transformation of N fertilizers applied to crops such as corn and potatoes. The mitigation of N2O emissions may be an effective strategy for offsetting greenhouse gas emissions. While the rate of N fertilizer application exerts some control over N trace gas emission rates, a variety of other management practices and environmental factors interact to regulate these emissions. Observation-based studies are essential for improving models, developing accurate inventories, and documenting offsets. Since 2003, we have been examining the effects of management factors including: tillage, crop rotation, irrigation, and fertilizer chemical form and application method on N2O and NO emissions from corn and potato production systems using chamber-based measurement techniques. A summary of our findings will be presented, including: Application of anhydrous ammonia resulted in twice the N2O emissions compared to urea fertilizer, and twice the NO emissions compared to liquid urea ammonium nitrate (UAN) fertilizer. Growing corn continuously compared to in rotation with soybeans did not alter the amount of N2O emitted during the corn growing season. Reduced tillage (RT), often promoted as a means of reducing carbon losses to the atmosphere, also altered soil N2O emissions. However, the impact of RT on N2O emissions was found to vary, in both magnitude and direction, as a function of N fertilizer management. In addition to these studies, our efforts to overcome some of the inherent limitations of chamber-based flux measurement techniques will be discussed.

  11. Herbicide loading to shallow ground water beneath Nebraska's Management Systems Evaluation Area.

    PubMed

    Spalding, Roy F; Watts, Darrell G; Snow, Daniel D; Cassada, David A; Exner, Mary E; Schepers, James S

    2003-01-01

    Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.

  12. Weed manipulation for insect pest management in corn

    NASA Astrophysics Data System (ADS)

    Altieri, M. A.; Whitcomb, W. H.

    1980-11-01

    Populations of insect pests and associated predaceous arthropods were sampled by direct observation and other relative methods in simple and diversified corn habitats at two sites in north Florida during 1978 and 1979. Through various cultural manipulations, characteristic weed communities were established selectively in alternate rows within corn plots. Fall armyworm ( Spodoptera frugiperda J. E. Smith) incidence was consistently higher in the weed-free habitats than in the corn habitats containing natural weed complexes or selected weed associations. Corn earworm ( Heliothis zea Boddie) damage was similar in all weed-free and weedy treatments, suggesting that this insect is not affected greatly by weed diversity. Only the diversification of corn with a strip of soybean significantly reduced corn earworm damage. In one site, distance between plots was reduced. Because predators moved freely between habitats, it was difficult to identify between-treatment differences in the composition of predator communities. In the other site, increased distances between plots minimized such migrations, resulting in greater population densities and diversity of common foliage insect predators in the weed-manipulated corn systems than in the weed-free plots. Trophic relationships in the weedy habitats were more complex than food webs in monocultures. Predator diversity (measured as mean number of species per area) and predator density was higher in com plots surrounded by mature, complex vegetation than at those surrounded by annual crops. This suggests that diverse adjacent areas to crops provide refuge for predators, thus acting as colonization sources.

  13. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River.

    PubMed

    Donner, Simon D; Kucharik, Christopher J

    2008-03-18

    Corn cultivation in the United States is expected to increase to meet demand for ethanol. Nitrogen leaching from fertilized corn fields to the Mississippi-Atchafalaya River system is a primary cause of the bottom-water hypoxia that develops on the continental shelf of the northern Gulf of Mexico each summer. In this study, we combine agricultural land use scenarios with physically based models of terrestrial and aquatic nitrogen to examine the effect of present and future expansion of corn-based ethanol production on nitrogen export by the Mississippi and Atchafalaya Rivers to the Gulf of Mexico. The results show that the increase in corn cultivation required to meet the goal of 15-36 billion gallons of renewable fuels by the year 2022 suggested by a recent U.S. Senate energy policy would increase the annual average flux of dissolved inorganic nitrogen (DIN) export by the Mississippi and Atchafalaya Rivers by 10-34%. Generating 15 billion gallons of corn-based ethanol by the year 2022 will increase the odds that annual DIN export exceeds the target set for reducing hypoxia in the Gulf of Mexico to >95%. Examination of extreme mitigation options shows that expanding corn-based ethanol production would make the already difficult challenges of reducing nitrogen export to the Gulf of Mexico and the extent of hypoxia practically impossible without large shifts in food production and agricultural management.

  14. EPA RESISTANCE MONITORING RESEARCH (NCR)

    EPA Science Inventory

    The 2006 resistance management research program was organized around three components: development of resistance monitoring program for Bt corn using remote sensing, standardization of resistance assays, and testing of resistance management models. Each area of research has shown...

  15. Linkages Among Agronomic, Environmental and Weed Management Characteristics in North American Sweet Corn

    USDA-ARS?s Scientific Manuscript database

    Performance of weed management systems varies greatly across the landscape in both growers’ fields and in experimental trials conducted by agricultural scientists. Using agronomic, environmental, and weed management information from growers’ fields and experimental trials, we identified dominant ch...

  16. Land-use legacies regulate decomposition dynamics following bioenergy crop conversion

    DOE PAGES

    Kallenbach, Cynthia M.; Stuart Grandy, A.

    2014-07-14

    Land-use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land-use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land-use legacies with current management and litter quality. To evaluate how land-use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape-scale litterbag decomposition experiment. We proposed land-use legacies regulate decomposition, but their effects are weakened under higher quality litter andmore » when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management.« less

  17. Evaluation of spatial and temporal patterns of insect damage and aflatoxin level in the pre-harvest corn fields to improve management tactics.

    PubMed

    Ni, Xinzhi; Wilson, Jeffrey P; Toews, Michael D; Buntin, G David; Lee, R Dewey; Li, Xin; Lei, Zhongren; He, Kanglai; Xu, Wenwei; Li, Xianchun; Huffaker, Alisa; Schmelz, Eric A

    2014-10-01

    Spatial and temporal patterns of insect damage in relation to aflatoxin contamination in a corn field with plants of uniform genetic background are not well understood. After previous examination of spatial patterns of insect damage and aflatoxin in pre-harvest corn fields, we further examined both spatial and temporal patterns of cob- and kernel-feeding insect damage, and aflatoxin level with two samplings at pre-harvest in 2008 and 2009. The feeding damage by each of the ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs) and maize weevil population were assessed at each grid point with five ears. Sampling data showed a field edge effect in both insect damage and aflatoxin contamination in both years. Maize weevils tended toward an aggregated distribution more frequently than either corn earworm or stink bug damage in both years. The frequency of detecting aggregated distribution for aflatoxin level was less than any of the insect damage assessments. Stink bug damage and maize weevil number were more closely associated with aflatoxin level than was corn earworm damage. In addition, the indices of spatial-temporal association (χ) demonstrated that the number of maize weevils was associated between the first (4 weeks pre-harvest) and second (1 week pre-harvest) samplings in both years on all fields. In contrast, corn earworm damage between the first and second samplings from the field on the Belflower Farm, and aflatoxin level and corn earworm damage from the field on the Lang Farm were dissociated in 2009. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  18. Energy analysis and agriculture: an application to US Corn Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smil, V.; Nachman, P.; Long, T.V. II

    1983-01-01

    Changes in farming technology have increased the amount and cost of energy used in crop production, raising the question of whether energy efficiency in agriculture has remained constant, decreased, or increased. Despite some studies to the contrary, the authors assert that all essential energy used, both directly and indirectly, in US corn farming has remained constant in relation to crop production during the past two decades. Using a detailed process of energy analysis that takes into account various management and technological changes, they trace and quantify the energy cost of corn production from 1945-1947 and forecast its changes through 1984.more » They conclude that the energy efficiency of corn farming has not declined, and find that future technological and process improvements, led by conservation measures, will likely increase its energy efficiency in the 1980s. 39 references, 33 figures, 88 tables.« less

  19. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    PubMed

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  20. Climate Effects on Corn Yield in Missouri(.

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Buyanovsky, Gregory

    2003-11-01

    Understanding climate effects on crop yield has been a continuous endeavor aiming at improving farming technology and management strategy, minimizing negative climate effects, and maximizing positive climate effects on yield. Many studies have examined climate effects on corn yield in different regions of the United States. However, most of those studies used yield and climate records that were shorter than 10 years and were for different years and localities. Although results of those studies showed various influences of climate on corn yield, they could be time specific and have been difficult to use for deriving a comprehensive understanding of climate effects on corn yield. In this study, climate effects on corn yield in central Missouri are examined using unique long-term (1895 1998) datasets of both corn yield and climate. Major results show that the climate effects on corn yield can only be explained by within-season variations in rainfall and temperature and cannot be distinguished by average growing-season conditions. Moreover, the growing-season distributions of rainfall and temperature for high-yield years are characterized by less rainfall and warmer temperature in the planting period, a rapid increase in rainfall, and more rainfall and warmer temperatures during germination and emergence. More rainfall and cooler-than-average temperatures are key features in the anthesis and kernel-filling periods from June through August, followed by less rainfall and warmer temperatures during the September and early October ripening time. Opposite variations in rainfall and temperature in the growing season correspond to low yield. Potential applications of these results in understanding how climate change may affect corn yield in the region also are discussed.

  1. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn.

    PubMed

    Dively, Galen P; Venugopal, P Dilip; Finkenbinder, Chad

    2016-01-01

    Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. We present field monitoring data using Cry1Ab (1996-2016) and Cry1A.105+Cry2Ab2 (2010-2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab-event Bt11, and Cry1A.105+Cry2Ab2-event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt sweet corn provide strong evidence of field-evolved resistance in H. zea populations to multiple Cry toxins. The high adoption rate of Bt field corn and cotton, along with the moderate dose expression of Cry1Ab and related Cry toxins in these crops, and decreasing refuge compliance probably contributed to the evolution of resistance. Our results have important implications for resistance monitoring, refuge requirements and other regulatory policies, cross-resistance issues, and the sustainability of the pyramided Bt technology.

  2. Comparing N2O emissions at varying N rates from irrigated and rainfed corn in the US Midwest

    NASA Astrophysics Data System (ADS)

    Millar, N.; Kahmark, K.; Basso, B.; Robertson, G. P.

    2011-12-01

    Global N2O emissions from agriculture are estimated to be ~2.8 Pg CO2e yr-1 accounting for 60% of total anthropogenic emissions. N2O is the largest contributor to the GHG burden of cropping systems in the US, with annual estimated emissions of ~0.5 Tg primarily due to N fertilizer inputs and other soil management activities. Currently 23 million acres of corn, soybean and wheat are irrigated annually in the US with increased N2O emissions due to the practice likely under-reported in GHG inventories. Here we compare N2O emissions and yield from irrigated and rainfed corn at varying N rates between 0 and 246 kg N ha-1 from the Kellogg Biological Station in SW Michigan. Initial results show that N2O emissions increase with increasing N rate and are significantly higher from irrigated corn compared to rainfed corn at the same N rate. At increasing N rates daily emissions following an irrigation event were between 2.4 - 77.5 g N2O-N ha-1 from irrigated corn and 1.6 - 13.0 g N2O-N ha-1 from rainfed corn. Emissions data from automated and static chambers will be presented and trade-offs between N2O emissions, N fertilizer rate, crop yield and irrigation practice will be evaluated from an environmental and economic standpoint.

  3. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  4. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  5. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.

    PubMed

    Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip

    2017-01-31

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.

  6. Seed deterioration in flooded agricultural fields during winter

    USGS Publications Warehouse

    Nelms, C.O.; Twedt, D.J.

    1996-01-01

    We determined rate of seed deterioration for 3 crops (corn, rice, and soybean) and 8 weeds commonly found in agricultural fields and moist-soil management units in the Mississippi Alluvial Valley (MAV). The weeds were broadleaf signalgrass (Brachiaria platyphylla), junglerice barnyardgrass (Echinochloa colonum), morningglory (Ipomoea sp.), panic grass (Panicum sp.), bull paspalum (Paspalum boscianum), red rice (Oryza sativa), hemp sesbania (Sesbania exaltata), and bristlegrass (Setaria sp.). Weed seeds, except morningglory, deteriorated slower than corn and soybean, whereas rice decomposed slower than all weed seeds except red rice and bull paspalum. For land managers desiring to provide plant food for wintering waterfowl, rice is clearly the most persistent small grain crop in the MAV. Persistence of weed seeds under flooded conditions throughout winter makes them a cost-effective alternative to traditional crops on land managed for waterfowl.

  7. Survey of predators and sampling method comparison in sweet corn.

    PubMed

    Musser, Fred R; Nyrop, Jan P; Shelton, Anthony M

    2004-02-01

    Natural predation is an important component of integrated pest management that is often overlooked because it is difficult to quantify and perceived to be unreliable. To begin incorporating natural predation into sweet corn, Zea mays L., pest management, a predator survey was conducted and then three sampling methods were compared for their ability to accurately monitor the most abundant predators. A predator survey on sweet corn foliage in New York between 1999 and 2001 identified 13 species. Orius insidiosus (Say), Coleomegilla maculata (De Geer), and Harmonia axyridis (Pallas) were the most numerous predators in all years. To determine the best method for sampling adult and immature stages of these predators, comparisons were made among nondestructive field counts, destructive counts, and yellow sticky cards. Field counts were correlated with destructive counts for all populations, but field counts of small insects were biased. Sticky cards underrepresented immature populations. Yellow sticky cards were more attractive to C. maculata adults than H. axyridis adults, especially before pollen shed, making coccinellid population estimates based on sticky cards unreliable. Field counts were the most precise method for monitoring adult and immature stages of the three major predators. Future research on predicting predation of pests in sweet corn should be based on field counts of predators because these counts are accurate, have no associated supply costs, and can be made quickly.

  8. Best management practices: Managing cropping systems for soil protection and bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  9. Larval western bean cutworm feeding damage encourages the development of Gibberella ear rot on field corn.

    PubMed

    Parker, Nicole S; Anderson, Nolan R; Richmond, Douglas S; Long, Elizabeth Y; Wise, Kiersten A; Krupke, Christian H

    2017-03-01

    A 2 year study was conducted to determine whether western bean cutworm (Striacosta albicosta Smith) (WBC) larval feeding damage increases severity of the fungal disease Gibberella ear rot [Fusarium graminearum (Schwein.) Petch] in field corn (Zea mays L.). The effect of a quinone-outside inhibiting fungicide, pyraclostrobin, on Gibberella ear rot severity and mycotoxin production, both with and without WBC pressure, was also evaluated. The impact of each variable was assessed individually and in combination to determine the effect of each upon ear disease severity. There was a positive correlation between the presence of WBC larvae in field corn and Gibberella ear rot severity under inoculated conditions in the 2 years of the experiment. An application of pyraclostrobin did not impact Gibberella ear rot development when applied at corn growth stage R1 (silks first emerging). Feeding damage from WBC larvae significantly increases the development of F. graminearum in field corn. We conclude that an effective integrated management strategy for Gibberella ear rot should target the insect pest first, in an effort to limit disease severity and subsequent mycotoxin production by F. graminearum in kernels. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. An evaluation of western bean cutworm pheromone trapping techniques (Lepidoptera: Noctuidae) in a corn and soybean agroecosystem.

    PubMed

    Dorhout, David L; Rice, Marlin E

    2008-04-01

    Pheromone traps can be used to monitor for adult western bean cutworms, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), and for the timing of field scouting. Understanding the effect that different trapping techniques have on adult captures could help corn (Zea mays L.) producers make better pest management decisions. Several approaches to trapping adults were evaluated in 2005 and 2006 by using two different pheromone traps (sticky wing and jug traps) in two different environments (corn or corn/soybean [Glycine max (L.) Merr.] at three different heights (0.6, 1.2, and 1.8 m). There was no significant difference in the trap catches by trap type in either 2005 or 2006. There were significantly more adults captured in traps placed between two cornfields than traps placed between corn/soybean fields during both years. Trap height also was significant, with the traps at 1.2 and 1.8 m catching more moths than traps at 0.6 m during both years. These results show that trapping techniques do affect trap catches and that either trap type placed between two cornfields at either 1.2 or 1.8 m above the ground will maximize trap catches.

  11. Corns and Calluses

    MedlinePlus

    ... and Reimbursement Basics APMA Career Center Your APMA Leadership Opportunities Early Career Resources Academic and Scientific Resources Practice Management & Reimbursement Coding Resources Coding Resource Center Reimbursement Resources ...

  12. A suite of models to support the quantitative assessment of spread in pest risk analysis.

    PubMed

    Robinet, Christelle; Kehlenbeck, Hella; Kriticos, Darren J; Baker, Richard H A; Battisti, Andrea; Brunel, Sarah; Dupin, Maxime; Eyre, Dominic; Faccoli, Massimo; Ilieva, Zhenya; Kenis, Marc; Knight, Jon; Reynaud, Philippe; Yart, Annie; van der Werf, Wopke

    2012-01-01

    Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice.

  13. A Suite of Models to Support the Quantitative Assessment of Spread in Pest Risk Analysis

    PubMed Central

    Robinet, Christelle; Kehlenbeck, Hella; Kriticos, Darren J.; Baker, Richard H. A.; Battisti, Andrea; Brunel, Sarah; Dupin, Maxime; Eyre, Dominic; Faccoli, Massimo; Ilieva, Zhenya; Kenis, Marc; Knight, Jon; Reynaud, Philippe; Yart, Annie; van der Werf, Wopke

    2012-01-01

    Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice. PMID:23056174

  14. Entomopathogenic nematodes in the European biocontrol market.

    PubMed

    Ehlers, R U

    2003-01-01

    In Europe total revenues in the biocontrol market have reached approximately 200 million Euros. The sector with the highest turn-over is the market for beneficial invertebrates with a 55% share, followed by microbial agents with approximately 25%. Annual growth rates of up to 20% have been estimated. Besides microbial plant protection products that are currently in the process of re-registration, several microbial products have been registered or are in the process of registration, following the EU directive 91/414. Entomopathogenic nematodes (EPN) are exceptionally safe biocontrol agents. Until today, they are exempted from registration in most European countries, the reason why SMEs were able to offer economically reasonable nematode-based products. The development of technology for mass production in liquid media significantly reduced the product costs and accelerated the introduction of nematode products in tree nurseries, ornamentals, strawberries, mushrooms, citrus and turf. Progress in storage and formulation technology has resulted in high quality products which are more resistant to environmental extremes occurring during transportation to the user. The cooperation between science, industry and extension within the EU COST Action 819 has supported the development of quality control methods. Today four companies produce EPN in liquid culture, offering 8 different nematode species. Problems with soil insects are increasing. Grubs, like Melolontha melolontha and other scarabaeidae cause damage in orchards and turf. Since the introduction of the Western Corn Rootworm Diabrotica virgifera into Serbia in 1992, this pests as spread all over the Balkan Region and has reached Italy, France and Austria. These soil insect pests are potential targets for EPN. The development of insecticide resistance has opened another sector for EPN. Novel adjuvants used to improve formulation of EPN have enabled the foliar application against Western Flower Thrips and Plutella xylostella. To reach these markets, the product costs for EPN will have to further decrease in the future. One possibility to reduce application costs related with the use of EPN is the inoculative application to cause long term effects on pest populations.

  15. A review of insecticide poisonings among domestic livestock in southern Ontario, Canada, 1982-1989

    PubMed Central

    Frank, Richard; Braun, Heinz E.; Wilkie, Ian; Ewing, Ronald

    1991-01-01

    From 1982 to 1989, inclusive, 20 poisonings were investigated by the Ontario Ministry of Agriculture and Food following ingestion by domestic livestock of granular insecticides including terbufos (13 poisonings), disulfoton (two poisonings), fonofos (two poisonings), phorate (two poisonings), and carbofuran (one poisoning); all are used for rootworm (Diabrotica spp.) control in corn. A further three poisonings of livestock occurred following the ingestion of the foliar insecticide, endosulfan (two poisonings), and the seed protectant insecticides diazinon plus lindane (one poisoning). There were six poisoning cases as a result of excessive topical applications of the three insecticides coumpahos, fenthion, and lindane as dusts or sprays to control external parasites. Together, these events caused the deaths of 258 domestic animals of which 200 were cattle, 23 were swine, and 35 were sheep. Not all deaths are reported to the Ministry and the cases reported here may only represent 30-50% of the actual deaths over the period. Based on total populations of livestock, the percent losses were very small but they represent serious losses to individual growers. The economic loss is estimated at $160,000 over the eight years, or $20,000 per annum, and this does not include veterinary costs. Some of the poisoned animals died within as little as three to four hours of ingestion while others were sick but survived for several days. Lethal doses of insecticide were found in the rumen, abomasum, or stomach of dead animals. Signs typical of cholinesterase inhibition caused by organophosphorus poisoning were observed in most cases. Cholinesterase readings were found to be zero in dying animals. Necropsy findings were rarely more than pulmonary edema or myocardial hemorrhage. Where organochlorine insecticides were ingested, convulsions were the major manifestation. Contamination of feed was most often accidental, and chemical analysis was most helpful in identifying both potent and minor sources, thus facilitating cleanup procedures. PMID:17423767

  16. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn

    PubMed Central

    Dively, Galen P.; Finkenbinder, Chad

    2016-01-01

    Background Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. Methodology/Major Findings We present field monitoring data using Cry1Ab (1996–2016) and Cry1A.105+Cry2Ab2 (2010–2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab—event Bt11, and Cry1A.105+Cry2Ab2—event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. Conclusions/Significance After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt sweet corn provide strong evidence of field-evolved resistance in H. zea populations to multiple Cry toxins. The high adoption rate of Bt field corn and cotton, along with the moderate dose expression of Cry1Ab and related Cry toxins in these crops, and decreasing refuge compliance probably contributed to the evolution of resistance. Our results have important implications for resistance monitoring, refuge requirements and other regulatory policies, cross-resistance issues, and the sustainability of the pyramided Bt technology. PMID:28036388

  17. SUSTAINABILITY OF INSECT RESISTANCE MANAGEMENT STRATEGIES FOR TRANSGENIC BT CORN

    EPA Science Inventory

    Increasing interest in the responsible management of technology in the industrial and agricultural sectors of the economy has been met through the development of broadly applicable tools to assess the "sustainability" of new technologies. An arena ripe for application of such ana...

  18. ANALYSIS OF INSECT RESISTANCE MANAGEMENT OPTIONS FOR TRANSGENIC BT CORN,

    EPA Science Inventory

    Increasing interest in the responsible management of technology in the industrial and agricultural sectors of the economy has been met through the development of broadly applicable tools to assess the "sustainability" of new technologies. An arena ripe for application of such ana...

  19. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show howmore » these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.« less

  20. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    NASA Astrophysics Data System (ADS)

    Dold, C.; Hatfield, J.; Prueger, J. H.; Wacha, K.

    2017-12-01

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE) than soybean due to increased carboxylation efficiency and different crop management. The conjoined NEE may be measured with eddy covariance (EC) stations covering both crops, however, it is often unclear what the contribution of each crop is, as the CO2 source area remains unknown. The aim of this study was to quantify the contribution of CO2 fluxes from each crop for a conventional corn-soybean rotation system from 2007 - 2015. Therefore, the combined CO2 flux of three adjacent fields with annual corn-soybean rotation was measured with a 9.1 m EC tower (Flux 30). In the center of two of these fields, additional EC towers (Flux 10 and Flux 11) were positioned above the corn and soybean canopy to validate Flux 30 NEE. For each EC system the annual 90% NEE footprint area was calculated, footprints were partitioned among fields, and NEE separated accordingly. The average annual 90% footprint area of Flux 30, and Flux 10/11 corn and soybean was estimated to 206, 11 and 7 ha, respectively. The annual average (±SE) NEE of Flux 30 was -693 ± 47 g CO2 m-2 yr-1, of which 83% out of 90% originated from the three adjacent fields. Corn and soybean NEE measured at Flux 10 and 11 was -1124 ± 95 and 173 ± 73 g CO2 m-2 yr-1, respectively, and 89% and 90% originated from these fields. That demonstrates, that Flux 30 represents the combined NEE of a corn-soybean rotation, and Flux 10 and 11 measured NEE from a single crop. However, the share of Flux 30 NEE originating from corn and soybean grown on the Flux 10/11 fields was -192 ± 16 and -205 ± 18 g CO2 m-2 yr-1, indicating a substantial difference to single crop NEE. While it was possible to measure the NEE of a corn-soybean rotation with a tall EC tower, footprint partitioning could not retrieve NEE for each crop, probably due to differences in measurement height and footprint source area.

  1. Fall armyworm: Management of a genetically complicated migratory pest

    USDA-ARS?s Scientific Manuscript database

    Fall armyworm (Spodoptera frugiperda) (Lepidoptera: Noctuidae) is a neotropical pest that migrates each spring from locations in south Texas and south Florida to the central and eastern U.S. Management of this pest in Florida sweet corn involves tactics such as chemical control, host plant manageme...

  2. Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress.

    PubMed

    Islam, M Robiul; Hu, Yuegao; Mao, Sishuai; Jia, Pengfei; Eneji, A Egrinya; Xue, Xuzhang

    2011-03-30

    Drought is the most important abiotic stress factor limiting corn (Zea mays L.) growth and productivity. Therefore efficient management of soil moisture and study of metabolic changes in response to drought are important for improved production of corn. The objective of the present study was to gain a better understanding of drought tolerance mechanisms and improve soil water management strategies using a water-saving superabsorbent polymer (SAP) at 30 kg ha(-1) under three irrigation levels (adequate, moderate and deficit) using a new type of hydraulic pressure-controlled auto-irrigator. The results showed that relative water content and leaf water potential were much higher in corn treated with SAP. Although application of SAP reduced biomass accumulation by 11.1% under adequate irrigation, it increased the biomass markedly by 39.0% under moderate irrigation and 98.7% under deficit irrigation. Plants treated with SAP under deficit irrigation showed a significant decrease in superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase activities in leaves compared with control plants. The results of this study suggest that drought stress causes the production of oxygen radicals, leading to increased lipid peroxidation and oxidative stress in plants, and the application of a superabsorbent polymer could conserve soil water, making it available to plants for quenching oxidative stress and increasing biomass accumulation, especially under severe water stress. Copyright © 2010 Society of Chemical Industry.

  3. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system.

  4. Examining the impacts of increased corn production on ...

    EPA Pesticide Factsheets

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥ 5 mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additio

  5. The Crop Evaluation Research for Environmental Strategies (CERES) Remote Sensing 2008 Project Activities

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Glaser, John A.; Copenhaver, Kenneth L.; May, George

    2009-01-01

    In recent years, the use of Plant Incorporated Protectant (PIP) corn by American producers has been increasing dramatically. PIP corn contains genetically inserted traits that produce toxins in the plant that provide narrowly targeted protection against specific insect pests. The plant producing t oxms can offer significant reductions in the application of broad -spectrum pesticides that have ecological and human health consequences. PIP corn as a percentage of total corn acreage planted in the US is expected to continue to increase as these protective traits are "stacked" with other desirable traits by seed companies, and producers are seeing considerable increases in corn yield as a result. The introduction of corn as a bio-fuel source for ethanol has increased production by over 6 million hectares in 2007. The United States Environmental Protection Agency (USEPA), which is responsible for the registration of PIP crops under the Federal Insecticide, Fungicide and Rodenticide Act, views the use of PIP corn as positive. Broad spectrum pesticide use has declined since the PIP traits have been introduced. As the agricultural landscape sees a higher percentage of corn acres using the PIP technology, the risk of the targeted insect pest populations developing resistance to the toxins, thereby rendering the in will increase as well. This result would negate the effectiveness of the PIP corn traits and could reduce production of a US field corn crop valued at $33 billion dollars in 2006 and place US food and now energy security at risk. Concerns over insect pest resistance development to PIP traits have led the USEPA to team with NASA and the Institute for Technology Development (ITD) to develop geo-spatial technologies designed to proactively monitor the corn production landscape for insect pest infestation and possible resistance development. USEPA resistance management simulation models are combined with NASA remote sensi ng products to monitor the corn landscape for resistance development. The two agencies have entered into an agreement which could potentially lead to the development of next generation NASA sensors that will more specifically address the requirements of the USEPA's resistance development strategy and offer opportunities to study the ever changing ecosystem complexities. The USEPA/NASA/ITD team has developed a broad research project entitled CERES (Crop Evaluation Research for Environmental Strategies). CERES is a research effort leading to decision support system tools that are designed to integrate multi-resolution NASA remote sensing data products and USEPA geo -spatial models to monitor the potential for insect pest resistance development from the regional to the landscape and then to the field level.

  6. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching will also be examined.

  7. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales.

    PubMed

    Wendt, Lynn M; Murphy, J Austin; Smith, William A; Robb, Thomas; Reed, David W; Ray, Allison E; Liang, Ling; He, Qian; Sun, Ning; Hoover, Amber N; Nguyen, Quang A

    2018-01-01

    Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in <6% total solid dry matter loss (DML), about five times less than the aerobic storage process and slightly less than half that of the anaerobic modified-Ritter pile method. To further demonstrate the effectiveness of the anaerobic storage, a field demonstration was completed with 272 dry tonnes of corn stover; DML averaged <5% after 6 months. Assessment of sugar release as a result of dilute acid or dilute alkaline pretreatment and subsequent enzymatic hydrolysis suggested that when anaerobic conditions were maintained in storage, sugar release was either similar to or greater than as-harvested material depending on the pretreatment chemistry used. This study demonstrates that wet logistics systems offer practical benefits for commercial corn stover supply, including particle size reduction during harvest, stability in storage, and compatibility with biochemical conversion of carbohydrates for biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery.

  8. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales

    PubMed Central

    Wendt, Lynn M.; Murphy, J. Austin; Smith, William A.; Robb, Thomas; Reed, David W.; Ray, Allison E.; Liang, Ling; He, Qian; Sun, Ning; Hoover, Amber N.; Nguyen, Quang A.

    2018-01-01

    Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in <6% total solid dry matter loss (DML), about five times less than the aerobic storage process and slightly less than half that of the anaerobic modified-Ritter pile method. To further demonstrate the effectiveness of the anaerobic storage, a field demonstration was completed with 272 dry tonnes of corn stover; DML averaged <5% after 6 months. Assessment of sugar release as a result of dilute acid or dilute alkaline pretreatment and subsequent enzymatic hydrolysis suggested that when anaerobic conditions were maintained in storage, sugar release was either similar to or greater than as-harvested material depending on the pretreatment chemistry used. This study demonstrates that wet logistics systems offer practical benefits for commercial corn stover supply, including particle size reduction during harvest, stability in storage, and compatibility with biochemical conversion of carbohydrates for biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery. PMID:29632861

  9. Three-dimensional temporal and spatial distribution of adult Rhyzopertha dominica in stored wheat and corn under different temperatures, moisture contents, and adult densities.

    PubMed

    Jian, Fuji; Larson, Ron; Jayas, Digvir S; White, Noel D G

    2012-08-01

    Three-dimensional temporal and spatial distributions of adult Rhyzopertha dominica (F.) at adult densities of 1.0, 5.0, and 10.0 adults per kg grain and at 20 +/- 1, 25 +/- 1, and 30 +/- 1 degrees C were determined in 1.5 t bins filled with wheat (Triticum aestivum L.) with 11.0 +/- 0.8, 13.0 +/- 0.6, and 15.0 +/- 0.5% moisture content (wet basis) or corn (Zea mays L.) with 13.0 +/- 0.2% moisture content (wet basis). At each of five sampled locations, grain was separated into three 15-kg vertical layers, and adult numbers in each layer were counted. Inside both corn and wheat, adults did not prefer any location in the same layer except at high introduced insect density in wheat. The adults were recovered from any layer of the corn and >12, 65, and 45% of adults were recovered in the bottom layer of the corn at 20, 25, and 30 degrees C; respectively. However, <1% of adults were recovered in the bottom layer of wheat. Numbers of adults correlated with those in adjacent locations in both vertical and horizontal directions, and the temporal continuous property existed in both wheat and corn. Adults had highly clumped distribution at any grain temperature and moisture content. This aggregation behavior decreased with the increase of adult density and redistribution speed. Grain type influenced their redistribution speed, and this resulted in the different redistribution patterns inside wheat and corn bulks. These characterized distribution patterns could be used to develop sampling plans and integrated pest management programs in stored grain bins.

  10. Tillage and planting date effects on weed dormancy, emergence, and early growth in organic corn

    USDA-ARS?s Scientific Manuscript database

    Weed management is a major constraint to adoption of reduced-tillage practices for organic grain production. Tillage, cover crop management, and crop planting date are all factors that influence the periodicity and growth potential of important weed species in these systems. Therefore, we assessed...

  11. Ecologically-based management improves soil health in an organic orchard production system

    USDA-ARS?s Scientific Manuscript database

    Prairie Birthday Farm (PBF), a diversified, organic enterprise on the loess hill landscape in northwestern Missouri, was previously managed as a conventional corn-soybean production system. The soil (Sharpsburg silt loam; fine, montmorillonitic, mesic Typic Argiudolls) is mapped as an ‘eroded soil p...

  12. Use of GIS-based Site-specific Nitrogen Management for Improving Energy Efficiency

    USDA-ARS?s Scientific Manuscript database

    To our knowledge, geographical information system (GIS)-based site-specific nitrogen management (SSNM) techniques have not been used to assess agricultural energy costs and efficiency. This chapter uses SSNM case studies for corn (Zea mays L.) grown in Missouri and cotton (Gossypium hirsutum L.) gro...

  13. Value of fluid fertilizer in bio-energy production

    USDA-ARS?s Scientific Manuscript database

    In field trials, analysis of whole corn plants at V6 and ear leaves at mid-silk showed adequate levels of all macronutrients, which suggests that nutrient management was balanced both for conventional and intensively managed (twin-row) planting scenarios and the amount of stover removed from the fie...

  14. 75 FR 39213 - Extension of Provider Reimbursement Demonstration Project for the State of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... non-institutional individual professional providers in the State of Alaska have been set at a rate... non-institutional providers is extended through December 31, 2012. ADDRESSES: TRICARE Management...- 9066. FOR FURTHER INFORMATION CONTACT: Mr. Glenn J. Corn, TRICARE Management Activity, Medical Benefits...

  15. Dissolved organic carbon in runoff and tile-drain water under corn and forage fertilized with hog manure.

    PubMed

    Royer, Isabelle; Angers, Denis A; Chantigny, Martin H; Simard, Régis R; Cluis, Daniel

    2007-01-01

    Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L(-1)) was higher than in tile-drain water (6.5 mg DOC L(-1)). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L(-1)) than under corn (5.4 mg DOC L(-1)) even though the application rates of LHM were higher in corn plots. We suggest that preferential flow facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface runoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn.

  16. Land management strategies for improving water quality in biomass production under changing climate

    NASA Astrophysics Data System (ADS)

    Ha, Miae; Wu, May

    2017-03-01

    The Corn Belt states are the largest corn-production areas in the United States because of their fertile land and ideal climate. This attribute is particularly important as the region also plays a key role in the production of bioenergy feedstock. This study focuses on potential change in streamflow, sediment, nitrogen, and phosphorus due to climate change and land management practices in the South Fork Iowa River (SFIR) watershed, Iowa. The watershed is covered primarily with annual crops (corn and soybeans). With cropland conversion to switchgrass, stover harvest, and implementation of best management practices (BMPs) (such as establishing riparian buffers and applying cover crops), significant reductions in nutrients were observed in the SFIR watershed under historical climate and future climate scenarios. Under a historical climate scenario, suspended sediment (SS), total nitrogen (N), and phosphorus (P) at the outlet point of the SFIR watershed could decrease by up to 56.7%, 32.0%, and 16.5%, respectively, compared with current land use when a portion of the cropland is converted to switchgrass and a cover crop is in place. Climate change could cause increases of 9.7% in SS, 4.1% in N, and 7.2% in P compared to current land use. Under future climate scenarios, nutrients including SS, N, and P were reduced through land management and practices and BMPs by up to 54.0% (SS), 30.4% (N), and 7.1% (P). Water footprint analysis further revealed changes in green water that are highly dependent on land management scenarios. The study highlights the versatile approaches in landscape management that are available to address climate change adaptation and acknowledged the complex nature of different perspectives in water sustainability. Further study involving implementing landscape design and management by using long-term monitoring data from field to watershed is necessary to verify the findings and move toward watershed-specific regional programs for climate adaptation.

  17. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed.

    PubMed

    Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia

    2014-01-01

    Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.

  18. A Remote Sensing-Derived Corn Yield Assessment Model

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjay Man

    Agricultural studies and food security have become critical research topics due to continuous growth in human population and simultaneous shrinkage in agricultural land. In spite of modern technological advancements to improve agricultural productivity, more studies on crop yield assessments and food productivities are still necessary to fulfill the constantly increasing food demands. Besides human activities, natural disasters such as flood and drought, along with rapid climate changes, also inflect an adverse effect on food productivities. Understanding the impact of these disasters on crop yield and making early impact estimations could help planning for any national or international food crisis. Similarly, the United States Department of Agriculture (USDA) Risk Management Agency (RMA) insurance management utilizes appropriately estimated crop yield and damage assessment information to sustain farmers' practice through timely and proper compensations. Through County Agricultural Production Survey (CAPS), the USDA National Agricultural Statistical Service (NASS) uses traditional methods of field interviews and farmer-reported survey data to perform annual crop condition monitoring and production estimations at the regional and state levels. As these manual approaches of yield estimations are highly inefficient and produce very limited samples to represent the entire area, NASS requires supplemental spatial data that provides continuous and timely information on crop production and annual yield. Compared to traditional methods, remote sensing data and products offer wider spatial extent, more accurate location information, higher temporal resolution and data distribution, and lower data cost--thus providing a complementary option for estimation of crop yield information. Remote sensing derived vegetation indices such as Normalized Difference Vegetation Index (NDVI) provide measurable statistics of potential crop growth based on the spectral reflectance and could be further associated with the actual yield. Utilizing satellite remote sensing products, such as daily NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m pixel size, the crop yield estimation can be performed at a very fine spatial resolution. Therefore, this study examined the potential of these daily NDVI products within agricultural studies and crop yield assessments. In this study, a regression-based approach was proposed to estimate the annual corn yield through changes in MODIS daily NDVI time series. The relationship between daily NDVI and corn yield was well defined and established, and as changes in corn phenology and yield were directly reflected by the changes in NDVI within the growing season, these two entities were combined to develop a relational model. The model was trained using 15 years (2000-2014) of historical NDVI and county-level corn yield data for four major corn producing states: Kansas, Nebraska, Iowa, and Indiana, representing four climatic regions as South, West North Central, East North Central, and Central, respectively, within the U.S. Corn Belt area. The model's goodness of fit was well defined with a high coefficient of determination (R2>0.81). Similarly, using 2015 yield data for validation, 92% of average accuracy signified the performance of the model in estimating corn yield at county level. Besides providing the county-level corn yield estimations, the derived model was also accurate enough to estimate the yield at finer spatial resolution (field level). The model's assessment accuracy was evaluated using the randomly selected field level corn yield within the study area for 2014, 2015, and 2016. A total of over 120 plot level corn yield were used for validation, and the overall average accuracy was 87%, which statistically justified the model's capability to estimate plot-level corn yield. Additionally, the proposed model was applied to the impact estimation by examining the changes in corn yield due to flood events during the growing season. Using a 2011 Missouri River flood event as a case study, field-level flood impact map on corn yield throughout the flooded regions was produced and an overall agreement of over 82.2% was achieved when compared with the reference impact map. The future research direction of this dissertation research would be to examine other major crops outside the Corn Belt region of the U.S.

  19. Historical Agricultural Nitrogen Fertilizer Management in the Contiguous United States during 1850-2015.

    NASA Astrophysics Data System (ADS)

    Lu, C.; Cao, P.; Yu, Z.

    2017-12-01

    The United States has a century-long history of managing anthropogenic nitrogen (N) fertilizer to booster the crop production. Accurate characterization of N fertilizer use history could provide essential implications for N use efficiency (NUE) enhancement and N loss reduction. However, a spatially explicit time-series data remains lacking to describe how N fertilizer use varied among crop types, regions, and time periods. In this study, we therefore developed long-term gridded N management maps depicting N fertilizer application rate, timing, and ratio of fertilizer forms in nine major crops (i.e. corn, soybean, winter wheat, spring wheat, cotton, sorghum, rice, barley, and durum wheat) in the contiguous U.S. at a resolution of 1 km × 1 km during 1850-2015. We found that N application rates of the U.S. increased by approximately 34 times since 1940. Nonetheless, spatial analysis revealed that N-use hotspots have shifted from the West and Southeast to the Midwest and the Great Plains since 1900. Specifically, corn of the Corn Belt region received the most intensive N input in spring, followed by large N application amount in fall, implying a high N loss risk in this region. Moreover, spatiotemporal patterns of NH4+/NO3- ratio varied largely among regions. Generally, farmers have increasingly favored NH4+-form fertilizers over NO3- fertilizers since the 1940s. The N fertilizer use data developed in this study could serve as an essential input for modeling communities to fully assess the N addition impacts, and improve N management to alleviate environmental problems.

  20. Use of geographic information management systems (GIMS) for nitrogen management

    NASA Astrophysics Data System (ADS)

    Diker, Kenan

    1998-11-01

    Geographic Information Management Systems (GIMS) was investigated in this study to develop an efficient nitrogen management scheme for corn. The study was conducted on two experimental corn sites. The first site consisted of six non-replicated plots where the canopy reflectance of corn at six nitrogen fertilizer levels was investigated. The reflectance measurements were conducted for nadir and 75sp° view angles. Data from these plots were used to develop relationships between reflectance data and soil and plant parameters. The second site had four corn plots fertilized by different methods such as spoon-fed, pre-plant and side-dress, which created nitrogen variability within the field. Soil and plant nitrogen as well as leaf area, biomass, percent cover measurements, and canopy reflectance data were collected at various growth stages from both sites during the 1995 and 1996 growing seasons. Relationships were developed between the Nitrogen Reflectance Index (NRI) developed by Bausch et al. (1994) and soil and plant variables. Spatial dependence of data was determined by geostatistical methods; variability was mapped in ArcView. Results of this study indicated that the NRI is a better estimator of plant nitrogen status than chlorophyll meter measurements. The NRI can successfully be used to estimate the spatial distribution of soil nitrogen estimates through the plant nitrogen status as well as plant parameters and the yield potential. GIS mapping of measured and estimated soil nitrogen agreed except in locations where hot spots were measured. The NRI value of 0.95 seemed to be the critical value for plant nitrogen status especially for the 75sp° view. The nadir view tended to underestimate plant and soil parameters, whereas, the 75sp° view slightly overestimated these parameters. If available, the 75sp° view data should be used before the tasseling stage for reflectance measurements to reduce the soil background effect. However, it is sensitive to windy conditions. After tasseling, the nadir view should be used because the 75sp° view is obstructed by tassels. Total soil nitrogen at the V6 growth stage was underestimated by the NRI for both view angles. Results also indicated that a nitrogen prescription could be estimated at various growth stages.

  1. Seeds of change: corn seed mixtures for resistance management and IPM

    USDA-ARS?s Scientific Manuscript database

    The use of mixtures of insecticidal seed and non-toxic seed to provide an in-field refuge for susceptible insects in an insect-resistance-management (IRM) plan has been considered for at least two decades, but the US Environmental Protection Agency has only recently authorized their use in commercia...

  2. Enhancing ecosystem services: Designing for multifunctionality

    Treesearch

    Mike Dosskey; Gary Wells; Gary Bentrup; Doug Wallace

    2012-01-01

    It is increasingly recognized that ecosystem services provide a foundation for the well-being of individuals and society (MEA 2005). Land managers typically strive to enhance particularly desirable services. For example, farmers plant crops and manage the soil and hydrologic conditions to favor crop production. In agricultural regions such as the US Corn Belt,...

  3. Comparison of wheat or corn dried distillers grains with solubles on rumen fermentation and nutrient digestibility by feedlot heifers.

    PubMed

    Walter, L J; McAllister, T A; Yang, W Z; Beauchemin, K A; He, M; McKinnon, J J

    2012-04-01

    A 5 × 5 Latin square design trial was conducted to evaluate rumen fermentation and apparent nutrient digestibility in 5 rumen-cannulated heifers (420 ± 6 kg) fed a barley-based finishing diet supplemented with 20 or 40% wheat or corn dried distillers grains with solubles (DDGS). The composition of the control diet was 88.7% rolled barley grain, 5.5% supplement, and 5.8% barley silage (DM basis). Increasing the quantity of corn DDGS in the ration resulted in a quadratic decrease in DMI (P = 0.04) and OM intake (P = 0.05). Rumen pH, pH duration, and area under rumen pH thresholds of 5.8 or 5.5 were not affected (P > 0.05) by treatment. Inclusion of wheat DDGS resulted in a quadratic increase (P = 0.05) in pH area below the cutoff value of 5.2, with the most pronounced effect at 20% inclusion. Wheat DDGS linearly increased (P = 0.01) rumen NH(3)-N concentrations. Increasing the inclusion rate of wheat and corn DDGS resulted in quadratic (P = 0.05) and linear (P = 0.04) decreases in rumen propionate, whereas butyrate increased quadratically (P < 0.01) and linearly (P < 0.01), respectively. Feeding wheat DDGS linearly decreased (P < 0.01) DM and OM digestibility values. Inclusion of corn DDGS increased the digestibility values of ether extract (P = 0.05; quadratic response) and CP (P < 0.01; linear response). Neutral detergent fiber digestibility increased in a linear fashion (P = 0.01) as both wheat and corn DDGS inclusion increased, whereas ADF digestibility increased linearly (P = 0.03) for wheat and quadratically (P = 0.02) for corn DDGS. Increased inclusion of wheat DDGS resulted in a linear decrease in GE digestibility (P = 0.01), whereas increasing corn DDGS inclusion linearly increased (P < 0.01) the DE content of the diet. Feeding both wheat and corn DDGS linearly increased (P = 0.01) the excretion of N and P. In summary, replacement of barley grain with up to 40% wheat or corn DDGS did not mitigate rumen pH conditions associated with mild to moderate acidosis in heifers fed a barley-based finishing diet. Supplementing corn DDGS increased nutrient digestibility of all nutrients and, as a result, led to greater DE content. Supplementation of wheat DDGS reduced DM and OM digestibility values, with no effect on DE content. Increased N and P excretion by heifers fed DDGS at 20 or 40% of dietary DM presents a challenge for cattle feeders with respect to nutrient management.

  4. Three essays on agricultural price volatility and the linkages between agricultural and energy markets

    NASA Astrophysics Data System (ADS)

    Wu, Feng

    This dissertation contains three essays. In the first essay I use a volatility spillover model to find evidence of significant spillovers from crude oil prices to corn cash and futures prices, and that these spillover effects are time-varying. Results reveal that corn markets have become much more connected to crude oil markets after the introduction of the Energy Policy Act of 2005. Furthermore, crude oil prices transmit positive volatility spillovers into corn prices and movements in corn prices become more energy-driven as the ethanol gasoline consumption ratio increases. Based on this strong volatility link between crude oil and corn prices, a new cross hedging strategy for managing corn price risk using oil futures is examined and its performance studied. Results show that this cross hedging strategy provides only slightly better hedging performance compared to traditional hedging in corn futures markets alone. The implication is that hedging corn price risk in corn futures markets alone can still provide relatively satisfactory performance in the biofuel era. The second essay studies the spillover effect of biofuel policy on participation in the Conservation Reserve Program. Landowners' participation decisions are modeled using a real options framework. A novel aspect of the model is that it captures the structural change in agriculture caused by rising biofuel production. The resulting model is used to simulate the spillover effect under various conditions. In particular, I simulate how increased growth in agricultural returns, persistence of the biofuel production boom, and the volatility surrounding agricultural returns, affect conservation program participation decisions. Policy implications of these results are also discussed. The third essay proposes a methodology to construct a risk-adjusted implied volatility measure that removes the forecasting bias of the model-free implied volatility measure. The risk adjustment is based on a closed-form relationship between the expectation of future volatility and the model-free implied volatility assuming a jump-diffusion model. I use a GMM estimation framework to identify the key model parameters needed to apply the model. An empirical application to corn futures implied volatility is used to illustrate the methodology and demonstrate differences between my approach and the model-free implied volatility using observed corn option prices. I compare the risk-adjusted forecast with the unadjusted forecast as well as other alternatives; and results suggest that the risk-adjusted volatility is unbiased, informationally more efficient, and has superior predictive power over the alternatives considered.

  5. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production.

    PubMed

    Gelfand, Ilya; Zenone, Terenzio; Jasrotia, Poonam; Chen, Jiquan; Hamilton, Stephen K; Robertson, G Philip

    2011-08-16

    Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn-soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt of 10.6 Mg CO(2) equivalents (CO(2)e)·ha(-1) that included agronomic inputs, changes in C stocks, altered N(2)O and CH(4) fluxes, and foregone C sequestration less a fossil fuel offset credit. Total debt, which includes future debt created by additional changes in soil C stocks and the loss of substantial future soil C sequestration, can be constrained to 68 Mg CO(2)e·ha(-1) if subsequent crops are under permanent no-till management. If tilled, however, total debt triples to 222 Mg CO(2)e·ha(-1) on account of further soil C loss. Projected C debt repayment periods under no-till management range from 29 to 40 y for corn-soybean and continuous corn, respectively. Under conventional tillage repayment periods are three times longer, from 89 to 123 y, respectively. Alternatively, the direct use of existing CRP grasslands for cellulosic feedstock production would avoid C debt entirely and provide modest climate change mitigation immediately. Incentives for permanent no till and especially permission to harvest CRP biomass for cellulosic biofuel would help to blunt the climate impact of future CRP conversion.

  6. Regenerative agriculture: merging farming and natural resource conservation profitably.

    PubMed

    LaCanne, Claire E; Lundgren, Jonathan G

    2018-01-01

    Most cropland in the United States is characterized by large monocultures, whose productivity is maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (Schipanski et al., 2016). Despite this, farmers have developed a regenerative model of farm production that promotes soil health and biodiversity, while producing nutrient-dense farm products profitably. Little work has focused on the relative costs and benefits of novel regenerative farming operations, which necessitates studying in situ , farmer-defined best management practices. Here, we evaluate the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity throughout the Northern Plains of the United States. Regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Pests were 10-fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative farms, indicating that farmers who proactively design pest-resilient food systems outperform farmers that react to pests chemically. Regenerative fields had 29% lower grain production but 78% higher profits over traditional corn production systems. Profit was positively correlated with the particulate organic matter of the soil, not yield. These results provide the basis for dialogue on ecologically based farming systems that could be used to simultaneously produce food while conserving our natural resource base: two factors that are pitted against one another in simplified food production systems. To attain this requires a systems-level shift on the farm; simply applying individual regenerative practices within the current production model will not likely produce the documented results.

  7. Establishment of Striacosta albicosta (Lepidoptera: Noctuidae) as a Primary Pest of Corn in the Great Lakes Region.

    PubMed

    Smith, J L; Baute, T S; Sebright, M M; Schaafsma, A W; DiFonzo, C D

    2018-05-30

    Western bean cutworm, Striacosta albicosta Smith (Lepidoptera: Noctuidae), is a pest of corn, Zea maize L., and dry edible beans, Phaseolus sp. L., native to the western United States. Following the range expansion into the U.S. Corn Belt, pheromone trap monitoring began in the Great Lakes region in 2006. The first S. albicosta was captured in Michigan in 2006 and in Ontario, Canada in 2008. Pheromone traps were used to document spread and increasing captures of S. albicosta across Michigan and Ontario until 2012. Trapping confirmed the univoltine life cycle of S. albicosta in this region and identified peak flight, typically occurring in late July. Overwintering of S. albicosta in this region was confirmed by emergence from infested fields and overwintering experiments. Multiple soil textures were infested with prepupae, and recovery was assessed throughout the winter. Overwintering success was not affected by soil texture; however, prepupae were found at greater depths in coarse-textured soils. Soil temperatures at overwintering depths did not reach the supercooling point. Injury to corn by S. albicosta increased in incidence, severity and geographic range from 2010 to 2014 in field plots. Decreasing control of injury by Cry1F corn hybrids was observed over time. These findings show that S. albicosta has established as a perennial corn pest in the Great Lakes region due to observations of overwintering success and unmanaged injury. We recommend S. albicosta obtain primary pest status in this region within regulatory framework and a resistance management plan be required for traits targeting this pest.

  8. Blended Refuge and Insect Resistance Management for Insecticidal Corn

    PubMed Central

    Crespo, Andre L B; Pan, Zaiqi; Crain, Philip R; Thompson, Stephen D; Pilcher, Clinton D; Sethi, Amit

    2018-01-01

    Abstract In this review, we evaluate the intentional mixing or blending of insecticidal seed with refuge seed for managing resistance by insects to insecticidal corn (Zea mays). We first describe the pest biology and farming practices that will contribute to weighing trade-offs between using block refuges and blended refuges. Case studies are presented to demonstrate how the trade-offs will differ in different systems. We compare biological aspects of several abstract models to guide the reader through the history of modeling, which has played a key role in the promotion or denigration of blending in various scientific debates about insect resistance management for insecticidal crops. We conclude that the use of blended refuge should be considered on a case-by-case basis after evaluation of insect biology, environment, and farmer behavior. For Diabrotica virgifera virgifera, Ostrinia nubilalis, and Helicoverpa zea in the United States, blended refuge provides similar, if not longer, delays in the evolution of resistance compared to separate block refuges. PMID:29220481

  9. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern institutions established to evaluate how conservation practices, including cover crops, improve the resilience of Midwest agriculture to future change. Such collaborations can help better quantify long term impacts of conservation practices on the landscape that ultimately lead to more climate-smart management of such agricultural systems.

  10. Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the U.S. Temperate Prairies.

    PubMed

    Wu, Yiping; Liu, Shuguang; Young, Claudia J; Dahal, Devendra; Sohl, Terry L; Davis, Brian

    2015-06-01

    Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7-104.7 TgC as of 2050, 70-101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m(2)/yr (i.e., 6.6-10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.

  11. Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the U.S. Temperate Prairies

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian

    2015-01-01

    Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.

  12. Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the U.S. Temperate Prairies

    PubMed Central

    Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian

    2015-01-01

    Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development. PMID:26027873

  13. What do farmers' weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields.

    PubMed

    Wechsler, Seth J; McFadden, Jonathan R; Smith, David J

    2018-05-01

    The first case of glyphosate-resistant weeds in the United States was documented in 1998, 2 years after the commercialization of genetically engineered herbicide-resistant (HR) corn and soybeans. Currently, over 15 glyphosate-resistant weed species affect US crop production areas. These weeds have the potential to reduce yields, increase costs, and lower farm profitability. The objective of our study is to develop a behavioral model of farmers' weed management decisions and use it to analyze weed resistance to glyphosate in US corn farms. On average, we find that weed control increased US corn yields by 3700 kg ha -1 (worth approximately $US 255 ha -1 ) in 2005 and 3500 kg ha -1 (worth approximately $US 575 ha -1 ) in 2010. If glyphosate resistant weeds were absent, glyphosate killed approximately 99% of weeds, on average, when applied at the label rate in HR production systems. Average control was dramatically lower in states where glyphosate resistance was widespread. We find that glyphosate resistance had a significant impact on weed control costs and corn yields of US farmers in 2005 and 2010. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Crop Rotation and Races of Meloidogyne incognita in Cotton Root-knot Management

    PubMed Central

    Kirkpatrick, T. L.; Sasser, J. N.

    1984-01-01

    The influence o f various crop rotations and nematode inoculum levels on subsequent population densities of Meloidogyne incognita races 1 and 3 were studied in microplots. Ten different 3-year sequences o f cotton, corn, peanut, or soybean, all with cotton as the 3rd-year crop, were grown in microplots infested with each race. Cotton monoculture, two seasons o f corn, or cotton followed by corn resulted in high race 3 population densities and severe root galling on cotton the 3rd year. Peanut for 2 years preceding cotton most effectively decreased the race 3 population and root galls on cotton the 3rd year. Race 1 did not significantly influence cotton growth or yield at initial populations of up to 5,000 eggs/500 cm³ soil. At 5,000 eggs/500 cm³, cotton growth was suppressed by race 3 but yield was not affected. PMID:19294030

  15. Efficacy of water-dispersible formulations of biological control strains of Aspergillus flavus for aflatoxin management in corn.

    PubMed

    Weaver, Mark A; Abbas, Hamed K; Jin, Xixuan; Elliott, Brad

    2016-01-01

    Field experiments were conducted in 2011 and 2012 to evaluate the efficacy of water-dispersible granule (WDG) formulations of biocontrol strains of Aspergillus flavus in controlling aflatoxin contamination of corn. In 2011, when aflatoxin was present at very high levels, there was no WDG treatment that could provide significant protection against aflatoxin contamination. The following year a new WDG formulation was tested that resulted in 100% reduction in aflatoxin in one field experiment and ≥ 49% reduction in all five WDG treatments with biocontrol strain 21882. Large sampling error, however, limited the resolution of various treatment effects. Corn samples were also subjected to microbial analysis to understand better the mechanisms of successful biocontrol. In the samples examined here, the size of the A. flavus population on the grain was associated with the amount of aflatoxin, but the toxigenic status of that population was a poor predictor of aflatoxin concentration.

  16. Cultural Resource Survey and Assessment of Proposed Valley Park Levee Alignment and Borrow Areas, St. Louis County, Missouri. St. Louis District Cultural Resource Management Report Number 10.

    DTIC Science & Technology

    1984-02-01

    these people were not unlike the Old World Upper PaleolIthic cultures occupying much of central AsIa by 15,000 B.C. Paleo-lndlan peoples inhabited an...reconstructions. These large "protein packages" were only a minimal part of their total diet , the major portion probably comprised of modern-day fauna (e.g...the Archaic tradition, corn was Introduced into Woodland diets from Mexico. This was a small-eared "tropical flint" corn with 10 to 16 rows of kernels

  17. Environmental Impacts of Stover Removal in the Corn Belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alicia English; Wallace E. Tyner; Juan Sesmero

    2012-08-01

    When considering the market for biomass from corn stover resources erosion and soil quality issues are important to consider. Removal of stover can be beneficial in some areas, especially when coordinated with other conservation practices, such as vegetative barrier strips and cover crops. However, benefits are highly dependent on several factors, namely if farmers see costs and benefits associated with erosion and the tradeoffs with the removal of biomass. This paper uses results from an integrated RUSLE2/WEPS model to incorporate six different regime choices, covering management, harvest and conservation, into simple profit maximization model to show these tradeoffs.

  18. GHG emissions from corn-soybean rotations and perennial grasses on a Mollisol

    USDA-ARS?s Scientific Manuscript database

    Changes in management can convert agriculture from a net source to a net sink of greenhouse gases. A field study was established in 2003 in Indiana on a Typic Haplaquoll to determine the impact of nitrogen management on trace gas emissions. In the second phase of the experiment (2008-11), there were...

  19. Nitrous oxide, methane emission, and yield-scaled emission from organically and conventionally managed systems

    USDA-ARS?s Scientific Manuscript database

    There is a gap in empirical greenhouse gas (GHG) data from many regions of the USA including the northern Corn Belt. This study compared nitrous oxide (N2O) emission in diverse, low-tillage conventionally- and organically-managed systems. Both systems had a four-year rotation, mole-knife, strip till...

  20. Procedures and best management practices for genetically engineered traits in USDA/ARS germplasm and breeding lines

    USDA-ARS?s Scientific Manuscript database

    Two decades have passed since the commercialization in the U. S. of crops with genetically engineered (GE) traits. Today more than 80% of corn, soybean, canola, sugar beet and cotton acreage in the United States is planted to transgenic cultivars, but concerns exist regarding how best to manage the ...

  1. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida.

    PubMed

    Prasad, Rishi; Hochmuth, George J

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010-2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the strategies to reduce N losses must focus on managing the crop residues, using recommended fertilizer rates, and avoiding late-season application of nitrogen.

  2. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida

    PubMed Central

    Prasad, Rishi; Hochmuth, George J.

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010–2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the strategies to reduce N losses must focus on managing the crop residues, using recommended fertilizer rates, and avoiding late-season application of nitrogen. PMID:27907130

  3. Management practices and forage quality affecting the contamination of milk with anaerobic spore-forming bacteria.

    PubMed

    Zucali, Maddalena; Bava, Luciana; Colombini, Stefania; Brasca, Milena; Decimo, Marilù; Morandi, Stefano; Tamburini, Alberto; Crovetto, G Matteo

    2015-04-01

    Anaerobic spore-forming bacteria (ASFB) in milk derive from the farm environment, and the use of silages and management practices are the main responsible of milk ASFB contamination. The aim of this study was to evaluate the relationships between feeding, milking routine and cow hygiene and milk and Grana Padano cheese (produced with and without lysozyme) ASFB contamination. The study involved 23 dairy farms. ASFB in corn silage were on average 2.34 ± 0.87 log10 MPN g(-1). For grass, Italian ryegrass and alfalfa, ASFB (log10 MPN g(-1)) were numerically higher for silages (3.22) than hays (2.85). The use of corn silages of high quality (high lactic and acetic acids concentrations) decreased the milk ASFB contamination, whilst the use of herbage silages did not affect it. The presence (>40%) of cows with dirty udders increased the ASFB contamination of milk, while forestripping had a positive effect (-9% ASFB). Ripened Grana Padano had an ASFB count below the analytical limit; Clostridium tyrobutyricum DNA was found only in wheels produced without lysozyme, which also showed late blowing. The factors increasing milk spore contamination were corn silage quality, cow udder hygiene and inadequate milking routine. Late blowing was present only in cheeses without lysozyme. © 2014 Society of Chemical Industry.

  4. Critical Zone services as environmental assessment criteria in intensively managed landscapes

    NASA Astrophysics Data System (ADS)

    Richardson, Meredith; Kumar, Praveen

    2017-06-01

    The Critical Zone (CZ) includes the biophysical processes occurring from the top of the vegetation canopy to the weathering zone below the groundwater table. CZ services provide a measure for the goods and benefits derived from CZ processes. In intensively managed landscapes, cropland is altered through anthropogenic energy inputs to derive more productivity, as agricultural products, than would be possible under natural conditions. However, the actual costs of alterations to CZ functions within landscape profiles are unknown. Through comparisons of corn feed and corn-based ethanol, we show that valuation of these CZ services in monetary terms provides a more concrete tool for characterizing seemingly abstract environmental damages from agricultural production systems. Multiple models are combined to simulate the movement of nutrients throughout the soil system, enabling the measurement of agricultural anthropogenic impacts to the CZ's regulating services. Results indicate water quality and atmospheric stabilizing services, measured by soil carbon storage, carbon respiration, and nitrate leaching, among others, can cost more than double that of emissions estimated in previous studies. Energy efficiency in addition to environmental impact is assessed to demonstrate how the inclusion of CZ services is necessary in accounting for the entire life cycle of agricultural production systems. These results conclude that feed production systems are more energy efficient and less environmentally costly than corn-based ethanol.

  5. Evaluation of selected properties of gluten-free instant gruels processed under various extrusion-cook- ing conditions.

    PubMed

    Kręcisz, Magdalena; Wójtowicz, Agnieszka

    2017-01-01

    For consumers suffering with gluten intolerance, the only way to manage the condition is to avoid foods which are high in gluten. Instant gruels, processed from gluten-free corn and rice by extrusion cooking, could be used as a ready meal both for children and for adults on a gluten-free diet. The aim of the study was to evaluate the effects of various processing conditions on selected characteristics of corn-rice instant gruels. Corn-rice mixtures (75:25 and 50:50) were processed at 12, 14, 16 and 18% of initial moisture content, using an extruder with screw speeds of 80, 100 and 120 rpm. Bulk density, water absorption and solubility, gel formation, color and sensory characteristics were assessed, under various pro- cessing conditions and with various corn:rice ratios. The composition of the raw materials, initial moisture content and screw speed applied during processing affected the characteristics of the corn-rice extruded instant gruels. Increasing the amount of rice in the recipe from 25 to 50% resulted in decreased bulk density, water solubility, volumetric gel formation ability and b* value. Increasing the initial moisture content increased the bulk density, L*, a* and b* intensity, and gel formation index values of extrudates made with a 75:25 corn-rice recipe. Increased rpm increased extrudate solubility and water absorption, if the initial moisture content was higher than 14%. The highest scores for overall acceptability were found for milk suspensions of 75:25 and 50:50 corn-rice instant gruels processed at 12 and 14% of initial moisture content, at 120 rpm. Corn-rice instant gruels can be successfully produced by extrusion-cooking. Variable param- eters, like the initial moisture content of raw materials or screw speed during processing significantly affected the properties of the products. An understanding of the effects of processing conditions on some qualities of extruded instant gruels allows more desirable products to be created. Moreover, the various components can be used for extruded products for consumers on gluten-free diets. Functional additives incorporated in the recipe to improve the nutritional value of the extrudates, which will be investigated in our upcoming research.

  6. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system.

    PubMed

    Garcia, Valerie; Cooter, Ellen; Crooks, James; Hinckley, Brian; Murphy, Mark; Xing, Xiangnan

    2017-05-15

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥5mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additionally, the average number of animal feeding operations (AFOs) for these areas was nearly 5 times higher, and the mean N-fertilizer rate was 4 times higher. Finally, we found that areas prone to high groundwater nitrate-N concentrations attributable to the expansion scenario did not occur in new grid cells of irrigated grain-corn croplands, but were clustered around areas of existing corn crops. This application demonstrates the value of the coupled modeling system in developing spatially refined multi-variable models to provide information for geographic locations lacking complete observational data; and in projecting possible groundwater nitrate-N concentration outcomes under alternative future crop production scenarios. Published by Elsevier B.V.

  7. Effect of winter cover crops on nematode population levels in north Florida.

    PubMed

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P

  8. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy.

    PubMed

    Gramig, Benjamin M; Reeling, Carson J; Cibin, Raj; Chaubey, Indrajeet

    2013-02-19

    There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result of using corn stover to satisfy the RFS.

  9. WSR-88D doppler radar detection of corn earworm moth migration.

    PubMed

    Westbrook, J K; Eyster, R S; Wolf, W W

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r2=0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r2=0.56) and wind direction (r2=0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  10. WSR-88D doppler radar detection of corn earworm moth migration

    NASA Astrophysics Data System (ADS)

    Westbrook, J. K.; Eyster, R. S.; Wolf, W. W.

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated ( r 2 = 0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed ( r 2 = 0.56) and wind direction ( r 2 = 0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, D.

    In agricultural crop improvement, yield under various stress conditions and limiting factors is assessed experimentally. Of the stresses on plants which affect yield are those due to insects. Ostrinia nubilalis, the European corn borer (corn borer) is a major pest in sweet and field corn in the U.S. There are many ways to fight crop pests such as the corn borer, including (1) application of chemical insecticides, (2) application of natural predators and, (3) improving crop resistance through plant genetics programs. Randomized field trials are used to determine the effectiveness of pest management programs. These trials frequently consist of randomlymore » selected crop plots to which well-defined input regimes are instituted. For example, corn borers might be released onto crop plots in several densities at various stages of crop development, then sprayed with different levels of pesticide. These experiments are duplicated across regions and, in some cases across the country, to determine, in this instance for example, the best pesticide application rate for a given pest density and crop development stage. In order to release these pests onto crop plots, one must have an adequate supply of the insect pest. In winter months studies are carried out in the laboratory to examine chemical and natural pesticide effectiveness, as well as such things as the role of pheromones in moth behavior. The advantage in field trials is that yield data can be garnered directly. In this country, insects are raised for crop research primarily through the US Department of Agriculture, in cooperation with public Land Grant Universities and, by the private sector agricultural concerns - seed companies and others. This study quantifies the airborne allergen exposure of persons working in a Land Grant University entomology lab were allergy to European corn borer was suspected.« less

  12. Groundwater quality in the Columbia Plateau, Snake River Plain, and Oahu basaltic-rock and basin-fill aquifers in the Northwestern United States and Hawaii, 1992-2010

    USGS Publications Warehouse

    Frans, Lonna M.; Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.

    2012-01-01

    Oahu and the Columbia Plateau had some of the highest percentages of soil fumigant detections in groundwater in the United States. Soil fumigants are volatile organic compounds (VOCs) used as pesticides, which are applied to soils to reduce populations of plant parasitic nematodes (harmful rootworms), weeds, fungal pathogens, and other soil-borne microorganisms. They are used in Oahu and the Columbia Plateau on crops such as pineapple and potatoes. All three areas (Columbia Plateau, Snake River Plain, and Oahu) had fumigant concentrations exceeding human-health benchmarks for drinking water.

  13. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.

  14. Efficacy of Silk Channel Injections with Insecticides for Management of Lepidoptera Pests of Sweet Corn.

    PubMed

    Sparks, A N; Gadal, L; Ni, X

    2015-08-01

    The primary Lepidoptera pests of sweet corn (Zea mays L. convar. saccharata) in Georgia are the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J. E. Smith). Management of these pests typically requires multiple insecticide applications from first silking until harvest, with commercial growers frequently spraying daily. This level of insecticide use presents problems for small growers, particularly for "pick-your-own" operations. Injection of oil into the corn ear silk channel 5-8 days after silking initiation has been used to suppress damage by these insects. Initial work with this technique in Georgia provided poor results. Subsequently, a series of experiments was conducted to evaluate the efficacy of silk channel injections as an application methodology for insecticides. A single application of synthetic insecticide, at greatly reduced per acre rates compared with common foliar applications, provided excellent control of Lepidoptera insects attacking the ear tip and suppressed damage by sap beetles (Nitidulidae). While this methodology is labor-intensive, it requires a single application of insecticide at reduced rates applied ∼2 wk prior to harvest, compared with potential daily applications at full rates up to the day of harvest with foliar insecticide applications. This methodology is not likely to eliminate the need for foliar applications because of other insect pests which do not enter through the silk channel or are not affected by the specific selective insecticide used in the silk channel injection, but would greatly reduce the number of applications required. This methodology may prove particularly useful for small acreage growers. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Resistance Risk Assessment of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 Insecticidal Protein Expressed in Corn.

    PubMed

    Bernardi, Oderlei; Bernardi, Daniel; Amado, Douglas; Sousa, Renan S; Fatoretto, Julio; Medeiros, Fernanda C L; Conville, Jared; Burd, Tony; Omoto, Celso

    2015-12-01

    Transgenic Agrisure Viptera 3 corn that expresses Cry1Ab, Vip3Aa20, and EPSPS proteins and Agrisure Viptera expressing Vip3Aa20 are used for control of Spodoptera frugiperda (J.E. Smith) and Diatraea saccharalis (F.) in Brazil. To support a resistance management program, resistance risk assessment studies were conducted to characterize the dose expression of Vip3Aa20 protein and level of control against these species. The Vip3Aa20 expression in Agrisure Viptera 3 and Agrisure Viptera decreased from V6 to V10 stage of growth. However, Vip3Aa20 expression in Agrisure Viptera 3 at V6 and V10 stages was 13- and 16-fold greater than Cry1Ab, respectively. The Vip3Aa20 expression in lyophilized tissue of Agrisure Viptera 3 and Agrisure Viptera diluted 25-fold in an artificial diet caused complete larval mortality of S. frugiperda and D. saccharalis. In contrast, lyophilized tissue of Bt11 at the same dilution does not provide complete mortality of these species. Agrisure Viptera 3 and Agrisure Viptera also caused a high level of mortality against S. frugiperda and D. saccharalis. Moreover, 100% mortality was observed for S. frugiperda larvae (neonates through fifth-instar larvae) when fed in corn with the Vip trait technology. Viptera corn achieves a high level of control against S. frugiperda and D. saccharalis providing a high dose, which is an important determination to support the refuge strategy for an effective resistance management program. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. 40 CFR 174.502 - Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...

  17. 40 CFR 174.502 - Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...

  18. 40 CFR 174.502 - Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...

  19. Do mitigation strategies reduce global warming potential in the northern U.S. Corn Belt?

    USDA-ARS?s Scientific Manuscript database

    Agriculture is both an anthropogenic source of CO2, CH4, and N2O, and a sink for CO2 and CH4. Management can impact agriculture's net global warming potential (GWP) by changing source and/or sink. This study compared GWP among three crop management systems: business as usual (BAU), optimum greenhous...

  20. Effect of maize lines on larval fitness costs of Cry1F resistance in the European corn borer (Lepidoptera: Crambidae)

    USDA-ARS?s Scientific Manuscript database

    Crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage a number of insect pests. The evolution of Bt resistance diminishes the capacity of Bt crops to manage insect pests. Fitness costs of Bt resistance occur in the absence of Bt toxins when i...

  1. Management of Root-knot Nematodes by Phenamiphos Applied through an Irrigation Simulator with Various Amounts of Water

    PubMed Central

    Johnson, A. W.; Young, J. R.; Wright, W. C.

    1986-01-01

    Phenamiphos (6.7 kg a.i./ha) was applied via an irrigation simulator to squash at planting (AP) and 2 weeks after planting (PP), and to corn AP and 1 week PP to manage root-knot nematodes (Meloidogyne incognita). The nematicide was applied with 0.25, 0.64, 1.27, and 1.91 cm surface water/ ha to a Lakeland sand in which the soil moisture was at or near field capacity. Based on efficacy and crop response, no additional benefits resulted when phenamiphos was applied in volumes of water greater than 0.25 crn/ha. The cost of applying each 0.25 cm of water over a hectare is approximately $1.08, or a 92% reduction in nematicide application cost over conventional methods ($13.50/ha). Low root-gall indices and high yields from squash and corn indicate more effective nematode management when phenamiphos was applied AP rather than PP. Results from this method of applying phenamiphos suggest that certain nematicides could be used as salvage alternatives when nematodes are detected in crops soon after planting. For multiple-pest management, nematicides, other compatible biocides, and fertilizers could be applied simultaneously with sprinkler irrigation. PMID:19294192

  2. Subsurface application enhances benefits of manure redistribution

    USDA-ARS?s Scientific Manuscript database

    Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic (i.e., corn yield) and environmental (i.e., ammonia volatilization and surface nutrient losses) effects of different ...

  3. Modeling effects of climatological variability and management practices on conservation of groundwater from the Mississippi River Valley Shallow Alluvial Aquifer in the Mississippi Delta region

    NASA Astrophysics Data System (ADS)

    Thornton, Robert Frank

    Ninety-eight percent of water taken from the Mississippi River Shallow Alluvial Aquifer, hereafter referred to as "the aquifer" or "MRVA," is used by the agricultural industry for irrigation. Mississippi Delta agriculture is increasingly using more water from the MRVA and the aquifer has been losing about 300,000 acre-feet per year. This research expands on previous work in which a model was developed that simulates the effects of climatic variability, crop acreage changes, and specific irrigation methods on consequent variations in the water volume of the MRVA. This study corrects an identified problem by replacing total growing season precipitation with an irrigation demand driver based on evaporation and crop coefficients and changing the time scale from the entire growing season to a daily resolution. The calculated irrigation demand, as a climatological driver for the model, captures effective precipitation more precisely than the initial growing season precipitation driver. Predictive equations resulting from regression analyses of measured versus calculated irrigation water use showed R2 and correlations of 0.33 and 0.57, 0.77 and 0.88, 0.71 and 0.84, and 0.68 and 0.82 for cotton, corn, soybeans and rice, respectively. Ninety-five percent of the predicted values fall within a range of + or - about 23,000 acre-feet, an error of about 10-percent. The study also adds an additional conservation strategy through the use of surface water from on-farm reservoirs in lieu of groundwater. Analyses show that climate could provide the entire water need of the plants in 70-percent of the years for corn, 65-percent of the years for soybeans and cotton, and even 5-percent of the years for rice. Storing precipitation in on-farm structures is an effective way to reduce reliance of Delta producers on groundwater. If producers adopted, at a minimum, the 97.5:2.5 ratio suggested management practice, this minimal management strategy could potentially conserve 48-percent, 35-percent and 42-percent of groundwater for cotton, corn and soybeans, respectively. Even in extreme drought years such as 2007, cotton, corn and soybeans produced under the 97.5:2.5 management strategy could conserve 32-percent, 46-percent and 38-percent of groundwater, respectively.

  4. Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes ( Zea mays L.). Part 1: Nitrogen Fertilization.

    PubMed

    Giordano, Debora; Beta, Trust; Vanara, Francesca; Blandino, Massimo

    2018-05-02

    In this study, the influence of nitrogen (N) fertilization (170 versus 300 kg of N/ha) on the content of bioactive compounds of whole-meal flour of 10 different colored corn genotypes was investigated. Considerable differences in antioxidant capacity and phytochemical concentrations were observed among genotypes. Higher N fertilization rates significantly ( p < 0.05) increased the content of both total cell-wall-bound phenolics and xanthophylls (lutein and zeaxanthin). Nevertheless, the main phenolic acids (ferulic, p-coumaric, and sinapic acids) as well as the antioxidant capacity and content of β-cryptoxanthin, β-carotene, and total anthocyanins did not show significant differences as far as the N fertilization rate is concerned. For corn cultivation, the application of high N fertilization rates, generally carried out to obtain higher grain yields, could positively influence the content of some bioactives particularly in years characterized by high rainfall levels responsible for N leaching from the soil.

  5. Characteristics of Ambient Black Carbon Mass and Size-Resolved Particle Number Concentrations during Corn Straw Open-Field Burning Episode Observations at a Rural Site in Southern Taiwan.

    PubMed

    Cheng, Yu-Hsiang; Yang, Li-Sing

    2016-07-08

    Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues.

  6. 40 CFR 180.1254 - Aspergillus flavus NRRL 21882; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NRRL 21882 on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover. [75 FR 6576, Feb. 10, 2010] ...

  7. 40 CFR 180.1254 - Aspergillus flavus NRRL 21882; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NRRL 21882 on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover. [75 FR 6576, Feb. 10, 2010] ...

  8. 40 CFR 180.1254 - Aspergillus flavus NRRL 21882; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NRRL 21882 on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover. [75 FR 6576, Feb. 10, 2010] ...

  9. 40 CFR 180.1254 - Aspergillus flavus NRRL 21882; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NRRL 21882 on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover. [75 FR 6576, Feb. 10, 2010] ...

  10. 40 CFR 180.1254 - Aspergillus flavus NRRL 21882; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NRRL 21882 on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover. [75 FR 6576, Feb. 10, 2010] ...

  11. Switching to switchgrass: Pathways and consequences of bioenergy switchgrass entering the Midwestern landscape

    NASA Astrophysics Data System (ADS)

    Krohn, Brian

    The US has the ambitious goal of producing 60 billion liters of cellulosic biofuel by 2022. Researchers and US Federal Agencies have identified switchgrass (Panicum virgatum L.) as a potential feedstock for next generation biofuels to help meet this goal because of its excellent agronomic and environmental characteristics. With national policy supporting the development of a switchgrass to bioenergy industry two key questions arise: 1) Under what economic and political conditions will switchgrass enter the landscape? 2) Where on the landscape will switchgrass be cultivated given varying economic and political conditions? The goal of this dissertation is to answer these questions by analyzing the adoption of switchgrass across the upper Midwestern US at a high spatial resolution (30m) under varying economic conditions. In the first chapter, I model switchgrass yields at a high resolution and find considerable variability in switchgrass yields across space, scale, time, and nitrogen management. Then in the second chapter, I use the spatial results from chapter one to challenge the assumption that low-input (unmanaged) switchgrass systems cannot compete economically with high-input (managed) switchgrass systems. Finally, in the third chapter, I evaluate the economic and land quality conditions required for switchgrass to be competitive with a corn/soy rotation. I find that switchgrass can displace low-yielding corn/soy on environmentally sensitive land but, to be competitive, it requires economic support through payments for ecosystem services equal to 360 ha-1. With a total expenditure of 4.3 billion annually for ecosystem services, switchgrass could displace corn/soy on 12.2 million hectares of environmentally sensitive land and increase ethanol production above that from the existing corn by 20 billion liters. Thus, ecosystem services can be an effective means of meeting both bioenergy and environmental goals. Taking the three chapters in aggregate it is apparent that switchgrass faces many challenges before it will be adopted on the landscape and it is unlikely it will be adopted under traditional market pricing. However, switchgrass does have considerable potential to help meet the US's bioenergy and environmental goals through new mechanisms, such as payments for ecosystem services potentially coupled with low-input management systems.

  12. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest.

    PubMed

    SooHoo, William M; Wang, Cuizhen; Li, Huixuan

    2017-04-01

    Agricultural land use change, especially corn expansion since 2000s, has been accelerating to meet the growing bioenergy demand of the United States. This study identifies the environmentally sensitive lands (ESLs) in the U.S. Midwest using the distance-weighted Revised Universal Soil Loss Equation (RUSLE) associated with bioenergy land uses extracted from USDA Cropland Data Layers. The impacts of soil erosion to downstream wetlands and waterbodies in the river basin are counted in the RUSLE with an inverse distance weighting approach. In a GIS-ranking model, the ESLs in 2008 and 2011 (two representative years of corn expansion) are ranked based on their soil erosion severity in crop fields. Under scenarios of bioenergy land use change (corn to grass and grass to corn) on two land types (ESLs and non-ESLs) at three magnitudes (5%, 10% and 15% change), this study assesses the potential environmental impacts of bioenergy land use at a basin level. The ESL distributions and projected trends vary geographically responding to different agricultural conversions. Results support the idea of re-planting native prairie grasses in the identified High and Severe rank ESLs for sustainable bioenergy management in this important agricultural region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. 40 CFR 180.555 - Trifloxystrobin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pulp 1.0 Citrus, oil 38 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04...

  14. 40 CFR 180.555 - Trifloxystrobin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pulp 1.0 Citrus, oil 38 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04...

  15. 40 CFR 180.555 - Trifloxystrobin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04 Fruit, citrus, group 10 0.6...

  16. 40 CFR 180.555 - Trifloxystrobin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04 Fruit, citrus, group 10 0.6...

  17. Experiences with population dynamics of Diabrotica virgifera virgifera LeConte in the Swiss canton of Ticino up to 2007.

    PubMed

    Bertossa, M; Hummel, Hans E

    2008-01-01

    The Western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a vexing alien invasive insect pest. It occupies the attention of entomologists in most countries of Europe and beyond. In spite of numerous research advances (e.g., Diabrotica symposium at Engelberg, Switzerland 2004) its behavior is still incompletely understood and cannot be predicted for a specific growing season with any degree of certainty. Nonetheless, by comparing several years in sequence a somewhat consistent and coherent picture is emerging that is subject of this contribution. The Ticino province received first beetles from the major infestation in Lombardy in 2000 across the geographically open border at Chiasso. The rapid advance of WCR in northerly direction along the river valleys of Ticino and Misox posed a threat to cantons north of the mountain chain of the Alps and beyond, a scenario outlined by Bertossa (2004), Wudtke et al. (2005) and subsequent papers. Following the Swiss Federal rule of crop rotation obligation around infested regions introduced in 2001, the rapid increase in population density leveled off. Careful monitoring by both Metcalf type pheromone and kairomone baited sticky traps and Hungarian traps provided a reliable tool for judging the success of any quarantine measures taken up until 2007. (1) Trends in population development of 2006 were confirmed. (2) However, for reasons not well understood, the overall population encountered in 2007 was significantly smaller in Ticino and neighboring areas of Lombardy, Italy, but also in other areas south of the Alps. This may be a consequence of the rather mild winter 2006-2007. (3) At the mountain pass of Monte Ceneri (some 600 m above sea level) no beetles were trapped in 2007, while 3 WCR were seen in 2006. (4) No new WCR were encountered in Swiss cantons north of the main chain of the Alps. (5) Metcalf sticky traps proved to be 4-5 times as sensitive as Hungarian traps used for comparison. By and large, mandatory crop rotation was beneficial in reducing WCR populations in Ticino and avoided or delayed northbound spread of WCR.

  18. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore.

    PubMed

    Castano-Duque, Lina; Helms, Anjel; Ali, Jared Gregory; Luthe, Dawn S

    2018-06-21

    In this study we examined global changes in protein expression in both roots and leaves of maize plants attacked by the root herbivore, Western corn rootworm (WCR, Diabrotica virgifera virgifera). The changes in protein expression Are indicative of metabolic changes during WCR feeding that enable the plant to defend itself. This is one of the first studies to look above- and below-ground at global protein expression patterns of maize plants grown in soil and infested with a root herbivore. We used advanced proteomic and network analyses to identify metabolic pathways that contribute to global defenses deployed by the insect resistant maize genotype, Mp708, infested with WCR. Using proteomic analysis, 4878 proteins in roots and leaves were detected and of these 863 showed significant changes of abundance during WCR infestation. Protein abundance patterns were analyzed using hierarchical clustering, protein correlation and protein-protein interaction networks. All three data analysis pipelines showed that proteins such as jasmonic acid biosynthetic enzymes, serine proteases, protease inhibitors, proteins involved in biosynthesis and signaling of ethylene, and enzymes producing reactive oxygen species and isopentenyl pyrophosphate, a precursor for volatile production, were upregulated in roots during WCR infestation. In leaves, highly abundant proteins were involved in signal perception suggesting activation of systemic signaling. We conclude that these protein networks contribute to the overall herbivore defense mechanisms in Mp708. Because the plants were grown in potting mix and not sterilized sand, we found that both microbial and insect defense-related proteins were present in the roots. The presence of the high constitutive levels of reduced ascorbate in roots and benzothiazole in the root volatile profiles suggest a tight tri-trophic interaction among the plant, soil microbiomes and WCR-infested roots suggesting that defenses against insects coexist with defenses against bacteria and fungi due to the interaction between roots and soil microbiota. In this study, which is one of the most complete descriptions of plant responses to root-feeding herbivore, we established an analysis pipeline for proteomics data that includes network biology that can be used with different types of "omics" data from a variety of organisms.

  19. Trap height and orientation of yellow sticky traps affect capture of Chaetocnema pulicaria (Coleoptera: Chrysomelidae).

    PubMed

    Esker, P D; Obrycki, J; Nutter, F W

    2004-02-01

    Field studies were conducted in Iowa during 2001 and 2002 to determine the optimal sampling height and orientation for using yellow sticky cards to monitor populations of Chaetocnema pulicaria Melsheimer, the vector of the bacterial pathogen Pantoea stewartii subsp, stewartii, the causal organism of Stewart's disease of corn, Zea mays L.. Sticky cards were placed at five different heights (0.15, 0.30, 0.45, 0.60, and 0.90 m) and three orientations (horizontal, vertical, and 30 degree angle) at three locations (Ames, Crawfordsville, and Sutherland) in 2001 and two locations (Crawfordsville and Johnston) in 2002. No statistical differences were observed among the placement combinations for individual sampling periods or for the total number of C. pulicaria captured in 2001. In 2002, the 0.30 m and vertical cards captured significantly (1.1-35 times) more C. pulicaria than any other placement combination during sampling throughout August at both Crawfordsville and Johnston. Also, the cumulative number of C. pulicaria captured by the 0.30 m and vertical cards was significantly higher than all other placement combinations. This information is important in the development of sampling protocols to aid growers in making management decisions. These management decisions include where and when to apply foliar insecticides during the corn growing season to control C. pulicaria populations, thereby reducing the risk for Stewart's disease of corn.

  20. Mean age distribution of inorganic soil-nitrogen

    NASA Astrophysics Data System (ADS)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  1. 40 CFR 180.1219 - Foramsulfuron; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pesticide foramsulfuron is exempted from the requirement of a tolerance in corn, field, grain/corn, field, forage/ corn, field, stover/corn, pop, grain/corn, pop, forage/corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; corn, sweet, stover when applied as a herbicide in...

  2. 40 CFR 180.1219 - Foramsulfuron; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pesticide foramsulfuron is exempted from the requirement of a tolerance in corn, field, grain/corn, field, forage/ corn, field, stover/corn, pop, grain/corn, pop, forage/corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; corn, sweet, stover when applied as a herbicide in...

  3. 40 CFR 180.1219 - Foramsulfuron; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pesticide foramsulfuron is exempted from the requirement of a tolerance in corn, field, grain/corn, field, forage/ corn, field, stover/corn, pop, grain/corn, pop, forage/corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; corn, sweet, stover when applied as a herbicide in...

  4. 40 CFR 180.1219 - Foramsulfuron; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pesticide foramsulfuron is exempted from the requirement of a tolerance in corn, field, grain/corn, field, forage/ corn, field, stover/corn, pop, grain/corn, pop, forage/corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; corn, sweet, stover when applied as a herbicide in...

  5. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover, when applied/used as an antifungal agent. [68 FR 41541, July 14...

  6. 40 CFR 180.1219 - Foramsulfuron; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pesticide foramsulfuron is exempted from the requirement of a tolerance in corn, field, grain/corn, field, forage/ corn, field, stover/corn, pop, grain/corn, pop, forage/corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; corn, sweet, stover when applied as a herbicide in...

  7. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Corn, pop, grain 0.05 Corn, pop, stover 1.0 Corn, sweet, forage 6.0 Corn, sweet, kernel plus cob with..., seed 1.0 Cattle, fat 3.0 Cattle, meat 0.2 Cattle, meat byproducts 0.2 Corn, field, flour 0.15 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 1.0 Corn, pop, grain 0.05 Corn, pop, grain...

  8. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Corn, pop, grain 0.05 Corn, pop, stover 1.0 Corn, sweet, forage 6.0 Corn, sweet, kernel plus cob with..., seed 1.0 Cattle, fat 3.0 Cattle, meat 0.2 Cattle, meat byproducts 0.2 Corn, field, flour 0.15 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 1.0 Corn, pop, grain 0.05 Corn, pop, grain...

  9. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Corn, pop, grain 0.05 Corn, pop, stover 1.0 Corn, sweet, forage 6.0 Corn, sweet, kernel plus cob with..., seed 1.0 Cattle, fat 3.0 Cattle, meat 0.2 Cattle, meat byproducts 0.2 Corn, field, flour 0.15 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 1.0 Corn, pop, grain 0.05 Corn, pop, grain...

  10. 40 CFR 180.570 - Isoxadifen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (safener) in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.20 Corn, field, grain 0.08 Corn, field, stover 0.40 Corn, oil 0.50 Corn, pop, grain 0.04 Corn, pop, stover 0.25 Corn, sweet, forage 0.30 Corn, sweet, kernel plus cob with husk removed 0.04 Corn...

  11. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tolerance is established for residues of Aspergillus flavus AF36 in or on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover, when...

  12. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tolerance is established for residues of Aspergillus flavus AF36 in or on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover, when...

  13. 40 CFR 180.570 - Isoxadifen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (safener) in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.20 Corn, field, grain 0.08 Corn, field, stover 0.40 Corn, oil 0.50 Corn, pop, grain 0.04 Corn, pop, stover 0.25 Corn, sweet, forage 0.30 Corn, sweet, kernel plus cob with husk removed 0.04 Corn...

  14. 40 CFR 180.570 - Isoxadifen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (safener) in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.20 Corn, field, grain 0.08 Corn, field, stover 0.40 Corn, oil 0.50 Corn, pop, grain 0.04 Corn, pop, stover 0.25 Corn, sweet, forage 0.30 Corn, sweet, kernel plus cob with husk removed 0.04 Corn...

  15. 40 CFR 180.570 - Isoxadifen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (safener) in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.20 Corn, field, grain 0.08 Corn, field, stover 0.40 Corn, oil 0.50 Corn, pop, grain 0.04 Corn, pop, stover 0.25 Corn, sweet, forage 0.30 Corn, sweet, kernel plus cob with husk removed 0.04 Corn...

  16. 40 CFR 180.570 - Isoxadifen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (safener) in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.20 Corn, field, grain 0.08 Corn, field, stover 0.40 Corn, oil 0.50 Corn, pop, grain 0.04 Corn, pop, stover 0.25 Corn, sweet, forage 0.30 Corn, sweet, kernel plus cob with husk removed 0.04 Corn...

  17. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tolerance is established for residues of Aspergillus flavus AF36 in or on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover, when...

  18. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Corn, pop, grain 0.02 Corn, pop, stover 4.5 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn...

  19. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Corn, pop, grain 0.02 Corn, pop, stover 4.5 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn...

  20. Using the USDA Weekly Crop Progress Record to Document Trends in Corn Planting Date From 1979 to 2005

    NASA Astrophysics Data System (ADS)

    Kucharik, C. J.

    2005-12-01

    Agriculture is a dominant driver of land surface phenology in the United States Corn Belt. The timing of planting and harvest, along with the rate of plant development, are influenced by crop type, technology, land management decisions, and weather and soil conditions. Collectively, these integrated factors affect the spatial and temporal spectral signature of crops captured by remote sensing. While many studies have used the historical satellite record of vegetation activity to detect changes across the land surface, there has been less emphasis on using ground-based or remote sensing data to depict the contemporary phenology of individual US agro-ecosystems. The objectives of this study were twofold: (1) demonstrate how weekly USDA-NASS 'Crop Progress' data and 'Weekly Weather and Crop Bulletins' could be useful to remote sensing science when characterizing changing land surface phenology over the US; and (2) quantify long-term trends in corn planting progress from 1979 to 2005 across 12 states in the US Corn Belt. Examination of the weekly NASS crop progress data shows that the initiation of corn planting has become significantly (P < 0.01) earlier by 6 to 24 days since 1979, potentially contributing to about 10% to 64% of the linear increase in corn yields during this period. The magnitude of earlier planting date trend varies regionally, and not all of this change can be attributed to an earlier arrival of spring or warmer springtime temperatures. Rather, the change appears to be related to increased farmer planting efficiency in spring attributed to the increased adoption of no-tillage or reduced-tillage practices and plowing soils in fall. Regardless of the exact cause of this trend, we have a legitimate reason to suspect that 'greening' of the Corn Belt since about 1980, according to remote sensing observations, is not entirely due to climate change, but rather arises from human land-use change in combination with climate factors. In the future, crop progress data may provide an ideal blueprint for selecting the ideal MODIS scene (i.e., 8-day period) that can separate various crop phenologies (e.g., corn vs. soybean) at high resolution, and offer a means to help validate or parameterize ecosystem model algorithms.

  1. Utilisation of corn (Zea mays) bran and corn fiber in the production of food components.

    PubMed

    Rose, Devin J; Inglett, George E; Liu, Sean X

    2010-04-30

    The milling of corn for the production of food constituents results in a number of low-value co-products. Two of the major co-products produced by this operation are corn bran and corn fiber, which currently have low commercial value. This review focuses on current and prospective research surrounding the utilization of corn fiber and corn bran in the production of potentially higher-value food components. Corn bran and corn fiber contain potentially useful components that may be harvested through physical, chemical or enzymatic means for the production of food ingredients or additives, including corn fiber oil, corn fiber gum, cellulosic fiber gels, xylo-oligosaccharides and ferulic acid. Components of corn bran and corn fiber may also be converted to food chemicals such as vanillin and xylitol. Commercialization of processes for the isolation or production of food products from corn bran or corn fiber has been met with numerous technical challenges, therefore further research that improves the production of these components from corn bran or corn fiber is needed.

  2. 40 CFR 180.431 - Clopyralid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cattle, meat byproducts, except liver 36.0 Corn, field, forage 3.0 Corn, field, grain 1.0 Corn, field, milled byproducts 1.5 Corn, field, stover 10.0 Corn, pop, grain 1.0 Corn, pop, stover 10.0 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 1.0 Corn, sweet, stover 10.0 Cranberry 4.0 Egg...

  3. 40 CFR 180.544 - Methoxyfenozide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Canistel 0.6 Cattle, fat 0.50 Cattle, meat 0.02 Coriander, leaves 30 Corn, field, forage 15 Corn, field, grain 0.05 Corn, field, refined oil 0.20 Corn, field, stover 125 Corn, pop, grain 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 60...

  4. 40 CFR 180.544 - Methoxyfenozide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.6 Cattle, fat 0.50 Cattle, meat 0.02 Cherimoya 0.60 Citrus, oil 100 Corn, field, forage 15 Corn, field, grain 0.05 Corn, field, refined oil 0.20 Corn, field, stover 125 Corn, pop, grain 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet...

  5. 40 CFR 180.220 - Atrazine; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cattle, meat 0.02 Cattle, meat byproducts 0.02 Corn, field, forage 1.5 Corn, field, grain 0.20 Corn, field, stover 0.5 Corn, pop, forage 1.5 Corn, pop, grain 0.20 Corn, pop, stover 0.5 Corn, sweet, forage 15 Corn, sweet, kernel plus cob with husks removed 0.20 Corn, sweet, stover 2.0 Goat, fat 0.02 Goat...

  6. 40 CFR 180.220 - Atrazine; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cattle, meat 0.02 Cattle, meat byproducts 0.02 Corn, field, forage 1.5 Corn, field, grain 0.20 Corn, field, stover 0.5 Corn, pop, forage 1.5 Corn, pop, grain 0.20 Corn, pop, stover 0.5 Corn, sweet, forage 15 Corn, sweet, kernel plus cob with husks removed 0.20 Corn, sweet, stover 2.0 Goat, fat 0.02 Goat...

  7. 40 CFR 180.220 - Atrazine; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cattle, meat 0.02 Cattle, meat byproducts 0.02 Corn, field, forage 1.5 Corn, field, grain 0.20 Corn, field, stover 0.5 Corn, pop, forage 1.5 Corn, pop, grain 0.20 Corn, pop, stover 0.5 Corn, sweet, forage 15 Corn, sweet, kernel plus cob with husks removed 0.20 Corn, sweet, stover 2.0 Goat, fat 0.02 Goat...

  8. 40 CFR 180.431 - Clopyralid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cattle, meat byproducts, except liver 36.0 Corn, field, forage 3.0 Corn, field, grain 1.0 Corn, field, milled byproducts 1.5 Corn, field, stover 10.0 Corn, pop, grain 1.0 Corn, pop, stover 10.0 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 1.0 Corn, sweet, stover 10.0 Cranberry 4.0 Egg...

  9. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 30 Corn, pop, grain 0.02 Corn, pop, stover 30 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  10. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes

    PubMed Central

    Landis, Douglas A.; Gardiner, Mary M.; van der Werf, Wopke; Swinton, Scott M.

    2008-01-01

    Increased demand for corn grain as an ethanol feedstock is altering U.S. agricultural landscapes and the ecosystem services they provide. From 2006 to 2007, corn acreage increased 19% nationally, resulting in reduced crop diversity in many areas. Biological control of insects is an ecosystem service that is strongly influenced by local landscape structure. Here, we estimate the value of natural biological control of the soybean aphid, a major pest in agricultural landscapes, and the economic impacts of reduced biocontrol caused by increased corn production in 4 U.S. states (Iowa, Michigan, Minnesota, and Wisconsin). For producers who use an integrated pest management strategy including insecticides as needed, natural suppression of soybean aphid in soybean is worth an average of $33 ha−1. At 2007–2008 prices these services are worth at least $239 million y−1 in these 4 states. Recent biofuel-driven growth in corn planting results in lower landscape diversity, altering the supply of aphid natural enemies to soybean fields and reducing biocontrol services by 24%. This loss of biocontrol services cost soybean producers in these states an estimated $58 million y−1 in reduced yield and increased pesticide use. For producers who rely solely on biological control, the value of lost services is much greater. These findings from a single pest in 1 crop suggest that the value of biocontrol services to the U.S. economy may be underestimated. Furthermore, we suggest that development of cellulosic ethanol production processes that use a variety of feedstocks could foster increased diversity in agricultural landscapes and enhance arthropod-mediated ecosystem services. PMID:19075234

  11. Water and energy conservation through efficient irrigation management. Project completion report, January 1, 1975-December 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, L.R.

    An evaluation was made of corn (Zea mays L.) and grain sorghum (Sorghum bicolor (L) Moench) yield and water use efficiency as influenced by irrigation timing. The study was located at Tribune (mean annual rainfall of 17.0 inches) and Manhattan, (mean annual rainfall of 33.5 inches) Kansas. Treatments consisted of no in-season irrigation, a single in-season irrigation at one of three different growth stages, and irrigating at each of the three selected growth stages. Selected growth stages in corn were pre-tassel, silk emergence, and blister; in grain sorghum they were boot, half-bloom, and soft-dough. Each irrigation was 4 inches atmore » Manhattan and 6 inches at Tribune. All Tribune plots received a pre-plant irrigation in April of each year. Water was applied to basin plots using gated pipe. With no in-season irrigation, the 3-year mean grain sorghum yields were greater than corn yields at both Manhattan and Tribune. The largest 3-year mean yield for corn receiving a single in-season irrigation was obtained with the irrigation during silk emergence at both Manhattan and Tribune. Grain sorghum yields from the single in-season irrigation treatments were similar and presented no single time that tended to be superior during the three study years. Corn responded well to the three in-season irrigations. The grain sorghum yield increase for plots receiving three in-season irrigations as opposed to those receiving only one in-season irrigation is insufficient to justify the two additional irrigations.« less

  12. 75 FR 6576 - Exemption from the Requirement of a Tolerance; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... the requirement of a tolerance is established for residues of Aspergillus flavus NRRL 21882 on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain...

  13. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  14. Resistance Management Research Status

    EPA Science Inventory

    Long-term sustainability of genetically modified corn expressing Bt relies on the validity of assumptions underlying IRM models used by the EPA and the ability of EPA to monitor, detect and react to insect resistance when it develops. The EPA is developing a multi-tiered approac...

  15. Soil Moisture Dynamics Under Corn, Soybean, and Perennial Kura Clover

    USDA-ARS?s Scientific Manuscript database

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting th...

  16. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation

    PubMed Central

    Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J.; Moore, Kenneth J.; Thorburn, Peter; Archontoulis, Sotirios V.

    2016-01-01

    Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR’s were within the historical N rate error range (40–50 kg N ha-1). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward agronomic, economic, and environmental sustainability. PMID:27891133

  17. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation.

    PubMed

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J; Moore, Kenneth J; Thorburn, Peter; Archontoulis, Sotirios V

    2016-01-01

    Improved prediction of optimal N fertilizer rates for corn ( Zea mays L. ) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean ( Glycine max L. ) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha -1 ) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR's were within the historical N rate error range (40-50 kg N ha -1 ). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward agronomic, economic, and environmental sustainability.

  18. 40 CFR 180.582 - Pyraclostrobin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 12.5 Citrus, oil 9.0 Coffee, bean, green 0.31 Corn, field, forage 5.0 Corn, field, grain 0.1 Corn, field, refined oil 0.2 Corn, field, stover 17.0 Corn, pop, grain 0.1 Corn, pop, stover 17.0 Corn, sweet, forage 5.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 23.0 Cotton, gin...

  19. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Corn, pop, grain 0.02 Corn, pop, stover 4.5 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  20. 40 CFR 180.220 - Atrazine; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cattle, meat 0.02 Cattle, meat byproducts 0.02 Corn, field, forage 15 Corn, field, grain 0.20 Corn, field, stover 0.5 Corn, pop, forage 1.5 Corn, pop, grain 0.20 Corn, pop, stover 0.5 Corn, sweet, forage 15 Corn, sweet, kernel plus cob with husks removed 0.20 Corn, sweet, stover 2.0 Goat, fat 0.02 Goat, meat 0.02...

  1. 40 CFR 180.582 - Pyraclostrobin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 12.5 Citrus, oil 9.0 Coffee, bean, green 0.31 Corn, field, forage 5.0 Corn, field, grain 0.1 Corn, field, refined oil 0.2 Corn, field, stover 17.0 Corn, pop, grain 0.1 Corn, pop, stover 17.0 Corn, sweet, forage 5.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 23.0 Cotton, gin...

  2. 40 CFR 180.220 - Atrazine; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cattle, meat 0.02 Cattle, meat byproducts 0.02 Corn, field, forage 15 Corn, field, grain 0.20 Corn, field, stover 0.5 Corn, pop, forage 1.5 Corn, pop, grain 0.20 Corn, pop, stover 0.5 Corn, sweet, forage 15 Corn, sweet, kernel plus cob with husks removed 0.20 Corn, sweet, stover 2.0 Goat, fat 0.02 Goat, meat 0.02...

  3. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Corn, pop, grain 0.02 Corn, pop, stover 4.5 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  4. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and amore » 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.« less

  5. Quantitative attribution of major driving forces on soil organic carbon dynamics

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Tan, Zhengxi

    2015-01-01

    Soil organic carbon (SOC) storage plays a major role in the global carbon cycle and is affected by many factors including land use/management changes (e.g., biofuel production-oriented changes). However, the contributions of various factors to SOC changes are not well understood and quantified. This study was designed to investigate the impacts of changing farming practices, initial SOC levels, and biological enhancement of grain production on SOC dynamics and to attribute the relative contributions of major driving forces (CO2 enrichment and farming practices) using a fractional factorial modeling design. The case study at a crop site in Iowa in the United States demonstrated that the traditional corn-soybean (CS) rotation could still accumulate SOC over this century (from 4.2 to 6.8 kg C/m2) under the current condition; whereas the continuous-corn (CC) system might have a higher SOC sequestration potential than CS. In either case, however, residue removal could reduce the sink potential substantially. Long-term simulation results also suggested that the equilibrium SOC level may vary greatly (∼5.7 to ∼11 kg C/m2) depending on cropping systems and management practices, and projected growth enhancement could make the magnitudes higher (∼7.8 to ∼13 kg C/m2). Importantly, the factorial design analysis indicated that residue management had the most significant impact (contributing 49.4%) on SOC changes, followed by CO2 Enrichment (37%), Tillage (6.2%), the combination of CO2Enrichment-Residue removal (5.8%), and Fertilization (1.6%). In brief, this study is valuable for understanding the major forces driving SOC dynamics of agroecosystems and informative for decision-makers when seeking the enhancement of SOC sequestration potential and sustainability of biofuel production, especially in the Corn Belt region of the United States.

  6. Research in biomass production and utilization: Systems simulation and analysis

    NASA Astrophysics Data System (ADS)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept of a mobile juice harvester is not economically viable due to low sugar recovery. The addition of front-end stalk processing/pressing equipment into existing ethanol facilities was found to be economically viable when combined with the plants' use of residuals as a natural gas fuel replacement. Because of high loss of fermentable carbohydrates during ensilage, storage of sweet sorghum in bunkers was not found to be economically viable. The fourth section looks at double cropping winter triticale with late-planted summer corn and compares these scenarios to traditional single cropped corn. Double cropping systems show particular promise for co-production of grain and biomass feedstocks and potentially can allow for greater utilization of grain crop residues. However, additional costs and risks associated with producing two crops instead of one could make biomass-double crops less attractive for producers despite productivity advantages. Detailed evaluation and comparisons show double cropped triticale-corn to be at a significant economic disadvantage relative to single crop corn. The cost benefits associated with using less equipment combined with availability of risk mitigating crop insurance and government subsidies will likely limit farmer interest and clearly indicate that traditional single-crop corn will provide greater financial returns to management. To evaluate the various sweet sorghum, single crop corn and double cropped triticale-corn production scenarios, a detailed but generic model was developed. The primary goal of this generic approach was to develop a modeling foundation that can be rapidly adapted, by an experienced user, to describe new and existing biomass and crop production scenarios that may be of interest to researchers. The foundation model allows input of management practices, crop production characteristics and utilizes standardized machinery performance and cost information, including farm-owned machinery and implements, and machinery and farm production operations provided by custom operators. (Abstract shortened by UMI.)

  7. AgRISTARS: Foreign commodity production forecasting. Minutes of the annual formal project manager's review, including preliminary technical review reports of FY80 experiments. [wheat/barley and corn/soybean experiments

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The U.S./Canada wheat/barley exploratory experiment is discussed with emphasis on labeling, machine processing using P1A, and the crop calendar. Classification and the simulated aggregation test used in the U.S. corn/soybean exploratory experiment are also considered. Topics covered regarding the foreign commodity production forecasting project include: (1) the acquisition, handling, and processing of both U.S. and foreign agricultural data, as well as meteorological data. The accuracy assessment methodology, multicrop sampling and aggregation technology development, frame development, the yield project interface, and classification for area estimation are also examined.

  8. Twin- or single-screw extrusion of raw soybeans and preconditioned soybean meal and corn as individual ingredients or as corn-soybean product blends in diets for weanling swine.

    PubMed

    Veum, T L; Serrano, X; Hsieh, F H

    2017-03-01

    Two 28-d experiments were conducted to evaluate the effects of extrusion of ground yellow corn, solvent-extracted soybean meal (SBM), and cracked whole soybeans (CWS) individually or as corn-soybean product blends on growth performance of weanling pigs. For Exp. 1, ground corn, SBM, and the corn-SBM blend were extruded at 137.5°C, 131.5°C, and 135.0°C, respectively, in a twin-screw extruder. Transit time was 60 s. Water was injected at 125 gmin during extrusion. The 5 treatments were the corn-SBM control diet and the diets with extruded (EX) corn + SBM, EX-SBM + corn, EX-corn + EX-SBM, and the EX-blend of corn-SBM. Ninety crossbred pigs with an initial average BW of 5.98 kg were allotted to 9 treatment replications with a barrow and gilt per pen. For Exp. 2, ground corn was preconditioned with water (10.0% of corn weight), and SBM was preconditioned with water and soybean oil (each at 20.0% of SBM weight) before extrusion. Raw CWS were not preconditioned. The corn, SBM, CWS, corn-SBM blend, and corn-CWS blend were extruded at 113.0°C, 132.0°C, 132.0°C, 88.0°C, and 102°C, respectively, with a single-screw extruder. Transit time was 30 s. The 8 isocaloric treatments were the corn-SBM control diet and the diets with EX-corn + SBM, EX-SBM + corn, EX-corn + EX-SBM, the EX-blend of corn-SBM, EX-CWS + corn, EX-CWS + EX-corn, and the EX-blend of corn-CWS. A total of 296 crossbred pigs with an initial average BW of 6.56 kg were allotted to 10 treatment replications. Sex and pigs per pen (3 or 4) were equalized within replication. Results for both experiments indicate that single- or twin-screw extrusion of ground corn or SBM as individual ingredients or as corn-SBM blends in diets for weanling pigs did not improve 28-d growth performance. However, for Exp. 2 weanling pigs fed the diets with EX-CWS + corn and EX-CWS + EX-corn had greater ( < 0.01) ADG and G:F, respectively, than pigs fed the corn-SBM control diet. The extrusion temperature of 102°C for the corn-CWS blend did not inactivate adequate protease inhibitors in CWS, and pigs fed that diet had poor growth performance. In conclusion, single-screw extrusion of CWS (132°C for 30 s) in diets for weanling pigs improved growth performance compared with pigs fed the corn-SBM control diet. However, twin- or single-screw extrusion of ground yellow corn or solvent-extracted SBM as individual ingredients or as corn-SBM blends in diets for weanling pigs did not improve growth performance compared with pigs fed the corn-SBM control diets.

  9. 40 CFR 180.342 - Chlorpyrifos; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...

  10. 40 CFR 180.342 - Chlorpyrifos; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...

  11. 40 CFR 180.565 - Thiamethoxam; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....20 Corn, field, forage 0.10 Corn, field, stover 0.05 Corn, pop, forage 0.10 Corn, pop, stover 0.05 Corn, sweet, forage 0.10 Corn, sweet, kernel plus cob with husks removed 0.02 Corn, sweet, stover 0.05...

  12. 40 CFR 180.342 - Chlorpyrifos; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...

  13. 40 CFR 180.342 - Chlorpyrifos; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...

  14. 40 CFR 180.565 - Thiamethoxam; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....20 Corn, field, forage 0.10 Corn, field, stover 0.05 Corn, pop, forage 0.10 Corn, pop, stover 0.05 Corn, sweet, forage 0.10 Corn, sweet, kernel plus cob with husks removed 0.02 Corn, sweet, stover 0.05...

  15. 40 CFR 180.342 - Chlorpyrifos; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...

  16. 40 CFR 180.565 - Thiamethoxam; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....05 Corn, field, forage 0.10 Corn, field, stover 0.05 Corn, pop, forage 0.10 Corn, pop, stover 0.05 Corn, sweet, forage 0.10 Corn, sweet, kernel plus cob with husks removed 0.02 Corn, sweet, stover 0.05...

  17. 40 CFR 180.549 - Diflufenzopyr; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diflufenzopyr, in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.05 Corn, field, grain 0.05 Corn, field, stover 0.05 Corn, pop, grain 0.05 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.05...

  18. 40 CFR 180.440 - Tefluthrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commodities: Commodity Parts per million Corn, field, forage 0.06 Corn, field, grain 0.06 Corn, field, stover 0.06 Corn, pop, grain 0.06 Corn, pop, stover 0.06 Corn, sweet, forage 0.06 Corn, sweet, kernel plus cob with husks removed 0.06 Corn, sweet, stover 0.06 (b) Section 18 emergency exemptions. [Reserved...

  19. 40 CFR 180.470 - Acetochlor; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stoichiometric equivalents of acetochlor, in or on the following commodities: Commodity Parts per million Corn, field, forage 4.5 Corn, field, grain 0.05 Corn, field, stover 2.5 Corn, pop, grain 0.05 Corn, pop, stover 2.5 Corn, sweet, forage 1.5 Corn, sweet, kernels plus cob with husks removed 0.05 Corn, sweet...

  20. 40 CFR 180.350 - Nitrapyrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-chloropicolinic acid in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 1.0 Corn, field, grain 0.1 Corn, field, milled byproducts 0.2 Corn, field, stover 1.0 Corn, pop, grain 0.1 Corn, pop, stover 1.0 Corn, sweet, forage 1.0 Corn, sweet, kernel plus cob with husks removed...

  1. 40 CFR 180.350 - Nitrapyrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-chloropicolinic acid in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 1.0 Corn, field, grain 0.1 Corn, field, milled byproducts 0.2 Corn, field, stover 1.0 Corn, pop, grain 0.1 Corn, pop, stover 1.0 Corn, sweet, forage 1.0 Corn, sweet, kernel plus cob with husks removed...

  2. 40 CFR 180.549 - Diflufenzopyr; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diflufenzopyr, in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.05 Corn, field, grain 0.05 Corn, field, stover 0.05 Corn, pop, grain 0.05 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.05...

  3. 40 CFR 180.350 - Nitrapyrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-chloropicolinic acid in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 1.0 Corn, field, grain 0.1 Corn, field, milled byproducts 0.2 Corn, field, stover 1.0 Corn, pop, grain 0.1 Corn, pop, stover 1.0 Corn, sweet, forage 1.0 Corn, sweet, kernel plus cob with husks removed...

  4. 40 CFR 180.469 - Dichlormid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Parts per million Corn, field, forage 0.05 Corn, field, grain 0.05 Corn, field, stover 0.05 Corn, pop, grain 0.05 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.05 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with...

  5. 40 CFR 180.486 - Chlorethoxyfos; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) phosphorothioate, in or on the commodity. Commodity Parts per million Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01 (b) Section 18 emergency...

  6. 40 CFR 180.253 - Methomyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cabbage, Chinese, bok choy 5 Cabbage, Chinese, napa 5 Cauliflower 2 Celery 3 Collards 6 Corn, field, forage 10 Corn, field, grain 0.1 Corn, field, stover 10 Corn, pop, grain 0.1 Corn, pop, stover 10 Corn, sweet, forage 10 Corn, sweet, kernel plus cob with husks removed 0.1(N) Corn, sweet, stover 10 Cotton...

  7. 40 CFR 180.440 - Tefluthrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commodities: Commodity Parts per million Corn, field, forage 0.06 Corn, field, grain 0.06 Corn, field, stover 0.06 Corn, pop, grain 0.06 Corn, pop, stover 0.06 Corn, sweet, forage 0.06 Corn, sweet, kernel plus cob with husks removed 0.06 Corn, sweet, stover 0.06 (b) Section 18 emergency exemptions. [Reserved...

  8. 40 CFR 180.639 - Flubendiamide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... million Almond, hulls 9.0 Apple, wet pomace 5.0 Corn, field, forage 8.0 Corn, field, grain 0.03 Corn, field, stover 15 Corn, pop, grain 0.02 Corn, pop, stover 15 Corn, sweet, forage 9.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 25 Cotton gin byproducts 60 Cotton, undelinted...

  9. 40 CFR 180.549 - Diflufenzopyr; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diflufenzopyr, in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.05 Corn, field, grain 0.05 Corn, field, stover 0.05 Corn, pop, grain 0.05 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.05...

  10. 40 CFR 180.486 - Chlorethoxyfos; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) phosphorothioate, in or on the commodity. Commodity Parts per million Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01 (b) Section 18 emergency...

  11. 40 CFR 180.434 - Propiconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....05 Cattle, meat byproducts, except liver and kidney 0.05 Cilantro, leaves 13 Citrus, oil 1000 Corn, field, forage 12 Corn, field, grain 0.2 Corn, field, stover 30 Corn, pop, grain 0.2 Corn, pop, stover 30 Corn, sweet, forage 6.0 Corn, sweet, kernel plus cob with husks removed 0.1 Corn, sweet, stover 30...

  12. 40 CFR 180.470 - Acetochlor; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stoichiometric equivalents of acetochlor, in or on the following commodities: Commodity Parts per million Corn, field, forage 4.5 Corn, field, grain 0.05 Corn, field, stover 2.5 Corn, pop, grain 0.05 Corn, pop, stover 2.5 Corn, sweet, forage 1.5 Corn, sweet, kernels plus cob with husks removed 0.05 Corn, sweet...

  13. 40 CFR 180.549 - Diflufenzopyr; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diflufenzopyr, in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.05 Corn, field, grain 0.05 Corn, field, stover 0.05 Corn, pop, grain 0.05 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.05...

  14. 40 CFR 180.544 - Methoxyfenozide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....0 Canistel 0.6 Cattle, fat 0.50 Cattle, meat 0.02 Citrus, oil 100 Coriander, leaves 30 Corn, field, forage 15 Corn, field, grain 0.05 Corn, field, refined oil 0.20 Corn, field, stover 125 Corn, pop, grain 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0...

  15. 40 CFR 180.440 - Tefluthrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commodities: Commodity Parts per million Corn, field, forage 0.06 Corn, field, grain 0.06 Corn, field, stover 0.06 Corn, pop, grain 0.06 Corn, pop, stover 0.06 Corn, sweet, forage 0.06 Corn, sweet, kernel plus cob with husks removed 0.06 Corn, sweet, stover 0.06 (b) Section 18 emergency exemptions. [Reserved...

  16. 40 CFR 180.440 - Tefluthrin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commodities: Commodity Parts per million Corn, field, forage 0.06 Corn, field, grain 0.06 Corn, field, stover 0.06 Corn, pop, grain 0.06 Corn, pop, stover 0.06 Corn, sweet, forage 0.06 Corn, sweet, kernel plus cob with husks removed 0.06 Corn, sweet, stover 0.06 (b) Section 18 emergency exemptions. [Reserved...

  17. 40 CFR 180.470 - Acetochlor; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stoichiometric equivalents of acetochlor, in or on the following commodities: Commodity Parts per million Corn, field, forage 4.5 Corn, field, grain 0.05 Corn, field, stover 2.5 Corn, pop, grain 0.05 Corn, pop, stover 2.5 Corn, sweet, forage 1.5 Corn, sweet, kernels plus cob with husks removed 0.05 Corn, sweet...

  18. 40 CFR 180.486 - Chlorethoxyfos; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) phosphorothioate, in or on the commodity. Commodity Parts per million Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01 (b) Section 18 emergency...

  19. 40 CFR 180.440 - Tefluthrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commodities: Commodity Parts per million Corn, field, forage 0.06 Corn, field, grain 0.06 Corn, field, stover 0.06 Corn, pop, grain 0.06 Corn, pop, stover 0.06 Corn, sweet, forage 0.06 Corn, sweet, kernel plus cob with husks removed 0.06 Corn, sweet, stover 0.06 (b) Section 18 emergency exemptions. [Reserved...

  20. 40 CFR 180.169 - Carbaryl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 70 None Corn, field, forage 30 None Corn, field, grain 0.02 None Corn, field, stover 20 None Corn, pop, grain 0.02 None Corn, pop, stover 20 None Corn, sweet, forage 185 None Corn, sweet, kernel plus cob with husks removed 0.1 None Corn, sweet, stover 215 None Cotton, undelinted seed 5.0 10/31/09...

  1. 40 CFR 180.639 - Flubendiamide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following commodities: Commodity Parts per million Almond, hulls 9.0 Apple, wet pomace 2.0 Corn, field, forage 8.0 Corn, field, grain 0.03 Corn, field, stover 15 Corn, pop, grain 0.02 Corn, pop, stover 15 Corn, sweet, forage 9.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 25 Cotton gin...

  2. 40 CFR 180.253 - Methomyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cabbage, Chinese, bok choy 5 Cabbage, Chinese, napa 5 Cauliflower 2 Celery 3 Collards 6 Corn, field, forage 10 Corn, field, grain 0.1 Corn, field, stover 10 Corn, pop, grain 0.1 Corn, pop, stover 10 Corn, sweet, forage 10 Corn, sweet, kernel plus cob with husks removed 0.1(N) Corn, sweet, stover 10 Cotton...

  3. 40 CFR 180.169 - Carbaryl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 70 None Corn, field, forage 30 None Corn, field, grain 0.02 None Corn, field, stover 20 None Corn, pop, grain 0.02 None Corn, pop, stover 20 None Corn, sweet, forage 185 None Corn, sweet, kernel plus cob with husks removed 0.1 None Corn, sweet, stover 215 None Cotton, undelinted seed 5.0 10/31/09...

  4. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flavis AF 36 is temporarily exempt from the requirement of a tolerance on corn, field, forage; corn, field, grain; corn, field, stover; corn, pop, grain; corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; corn, sweet, stover when used in accordance with the Experimental Use...

  5. 40 CFR 180.639 - Flubendiamide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... million Almond, hulls 9.0 Apple, wet pomace 5.0 Corn, field, forage 8.0 Corn, field, grain 0.03 Corn, field, stover 15 Corn, pop, grain 0.02 Corn, pop, stover 15 Corn, sweet, forage 9.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 25 Cotton gin byproducts 60 Cotton, undelinted...

  6. 40 CFR 180.469 - Dichlormid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Parts per million Corn, field, forage 0.05 Corn, field, grain 0.05 Corn, field, stover 0.05 Corn, pop, grain 0.05 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.05 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with...

  7. 40 CFR 180.639 - Flubendiamide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following commodities: Commodity Parts per million Almond, hulls 9.0 Apple, wet pomace 2.0 Corn, field, forage 8.0 Corn, field, grain 0.03 Corn, field, stover 15 Corn, pop, grain 0.02 Corn, pop, stover 15 Corn, sweet, forage 9.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 25 Cotton gin...

  8. 40 CFR 180.469 - Dichlormid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Parts per million Corn, field, forage 0.05 Corn, field, grain 0.05 Corn, field, stover 0.05 Corn, pop, grain 0.05 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.05 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with...

  9. 40 CFR 180.612 - Topramezone; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)methanone) in or on the following commodities: Commodity Parts permillion Cattle, meat byproducts 0.80 Corn, field, forage 0.05 Corn, field, grain 0.01 Corn, field, stover 0.05 Corn, pop, grain 0.01 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet...

  10. 40 CFR 180.469 - Dichlormid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Parts per million Corn, field, forage 0.05 Corn, field, grain 0.05 Corn, field, stover 0.05 Corn, pop, grain 0.05 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.05 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with...

  11. 40 CFR 180.486 - Chlorethoxyfos; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) phosphorothioate, in or on the commodity. Commodity Parts per million Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01 (b) Section 18 emergency...

  12. 40 CFR 180.470 - Acetochlor; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stoichiometric equivalents of acetochlor, in or on the following commodities: Commodity Parts per million Corn, field, forage 4.5 Corn, field, grain 0.05 Corn, field, stover 2.5 Corn, pop, grain 0.05 Corn, pop, stover 2.5 Corn, sweet, forage 1.5 Corn, sweet, kernels plus cob with husks removed 0.05 Corn, sweet...

  13. 40 CFR 180.350 - Nitrapyrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-chloropicolinic acid in or on the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 1.0 Corn, field, grain 0.1 Corn, field, milled byproducts 0.2 Corn, field, stover 1.0 Corn, pop, grain 0.1 Corn, pop, stover 1.0 Corn, sweet, forage 1.0 Corn, sweet, kernel plus cob with husks removed...

  14. 40 CFR 180.169 - Carbaryl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 70 None Corn, field, forage 30 None Corn, field, grain 0.02 None Corn, field, stover 20 None Corn, pop, grain 0.02 None Corn, pop, stover 20 None Corn, sweet, forage 185 None Corn, sweet, kernel plus cob with husks removed 0.1 None Corn, sweet, stover 215 None Cotton, undelinted seed 5.0 10/31/09...

  15. Remote sensing applications in agriculture and forestry. Applications of aerial photography and ERTS data to agricultural, forest and water resources management

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Remote sensing techniques are being used in Minnesota to study: (1) forest disease detection and control; (2) water quality indicators; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) corn defoliation; and (6) alfalfa crop productivity. Results of progress, and plans for future work in these areas, are discussed.

  16. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 6

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    QuEST is a publication of the NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM). This issue contains brief articles on: Risk Identification and Mitigation, Material Management and Substitution Efforts--Hexavalent Chrome-free Coatings and Low volatile organic compounds (VOCs) Coatings, Lead-Free Electronics, Corn-Based Depainting Media; Alternative Energy Efforts Hydrogen Sensors and Solar Air Conditioning. Other TEERM Efforts include: Energy and Water Management and Remediation Technology Collaboration.

  17. Projected climate and agronomic implications for corn production in the Northeastern United States.

    PubMed

    Prasad, Rishi; Gunn, Stephan Kpoti; Rotz, Clarence Alan; Karsten, Heather; Roth, Greg; Buda, Anthony; Stoner, Anne M K

    2018-01-01

    Corn has been a pillar of American agriculture for decades and continues to receive much attention from the scientific community for its potential to meet the food, feed and fuel needs of a growing human population in a changing climate. By midcentury, global temperature increase is expected to exceed 2°C where local effects on heat, cold and precipitation extremes will vary. The Northeast United States is a major dairy producer, corn consumer, and is cited as the fastest warming region in the contiguous U.S. It is important to understand how key agronomic climate variables affect corn growth and development so that adaptation strategies can be tailored to local climate changes. We analyzed potential local effects of climate change on corn growth and development at three major dairy locations in the Northeast (Syracuse, New York; State College, Pennsylvania and Landisville, Pennsylvania) using downscaled projected climate data (2000-2100) from nine Global Climate Models under two emission pathways (Representative Concentration Pathways (RCP) 4.5 and 8.5). Our analysis indicates that corn near the end of the 21st century will experience fewer spring and fall freezes, faster rate of growing degree day accumulation with a reduction in time required to reach maturity, greater frequencies of daily high temperature ≥35°C during key growth stages such as silking-anthesis and greater water deficit during reproductive (R1-R6) stages. These agronomic anomalies differ between the three locations, illustrating varying impacts of climate change in the more northern regions vs. the southern regions of the Northeast. Management strategies such as shifting the planting dates based on last spring freeze and irrigation during the greatest water deficit stages (R1-R6) will partially offset the projected increase in heat and drought stress. Future research should focus on understanding the effects of global warming at local levels and determining adaptation strategies that meet local needs.

  18. Life history attributes of Indian meal moth (Lepidoptera: Pyralidae) and Angoumois grain moth (Lepidoptera: Gelechiidae) reared on transgenic corn kernels.

    PubMed

    Sedlacek, J D; Komaravalli, S R; Hanley, A M; Price, B D; Davis, P M

    2001-04-01

    The Indian meal moth, Plodia interpunctella (Hübner), and Angoumois grain moth, Sitotroga cerealella (Olivier), are two globally distributed stored-grain pests. Laboratory experiments were conducted to examine the impact that corn (Zea mays L.) kernels (i.e., grain) of some Bacillus thuringiensis Berliner (Bt) corn hybrids containing CrylAb Bt delta-endotoxin have on life history attributes of Indian meal moth and Angoumois grain moth. Stored grain is at risk to damage from Indian meal moth and Angoumois grain moth; therefore, Bt corn may provide a means of protecting this commodity from damage. Thus, the objective of this research was to quantify the effects of transgenic corn seed containing CrylAb delta-endotoxin on Indian meal moth and Angoumois grain moth survival, fecundity, and duration of development. Experiments with Bt grain, non-Bt isolines, and non-Bt grain were conducted in environmental chambers at 27 +/- 1 degrees C and > or = 60% RH in continuous dark. Fifty eggs were placed in ventilated pint jars containing 170 g of cracked or whole corn for the Indian meal moth and Angoumois grain moth, respectively. Emergence and fecundity were observed for 5 wk. Emergence and fecundity of Indian meal moth and emergence of Angoumois grain moth were significantly lower for individuals reared on P33V08 and N6800Bt, MON 810 and Bt-11 transformed hybrids, respectively, than on their non-Bt transformed isolines. Longer developmental times were observed for Indian meal moth reared on P33V08 and N6800Bt than their non-Bt-transformed isolines. These results indicate that MON 810 and Bt-11 CrylAb delta-endotoxin-containing kernels reduce laboratory populations of Indian meal moth and Angoumois grain moth. Thus, storing Bt-transformed grain is a management tactic that warrants bin scale testing and may effectively reduce Indian meal moth and Angoumois grain moth populations in grain without application of synthetic chemicals or pesticides.

  19. Reducing nitrogen export from the corn belt to the Gulf of Mexico: agricultural strategies for remediating hypoxia

    USGS Publications Warehouse

    McLellan, Eileen; Robertson, Dale M.; Schilling, Keith; Tomer, Mark; Kostel, Jill; Smith, Douglas G.; King, Kevin

    2015-01-01

    SPAtially Referenced Regression on Watershed models developed for the Upper Midwest were used to help evaluate the nitrogen-load reductions likely to be achieved by a variety of agricultural conservation practices in the Upper Mississippi-Ohio River Basin (UMORB) and to compare these reductions to the 45% nitrogen-load reduction proposed to remediate hypoxia in the Gulf of Mexico (GoM). Our results indicate that nitrogen-management practices (improved fertilizer management and cover crops) fall short of achieving this goal, even if adopted on all cropland in the region. The goal of a 45% decrease in loads to the GoM can only be achieved through the coupling of nitrogen-management practices with innovative nitrogen-removal practices such as tile-drainage treatment wetlands, drainage–ditch enhancements, stream-channel restoration, and floodplain reconnection. Combining nitrogen-management practices with nitrogen-removal practices can dramatically reduce nutrient export from agricultural landscapes while minimizing impacts to agricultural production. With this approach, it may be possible to meet the 45% nutrient reduction goal while converting less than 1% of cropland in the UMORB to nitrogen-removal practices. Conservationists, policy makers, and agricultural producers seeking a workable strategy to reduce nitrogen export from the Corn Belt will need to consider a combination of nitrogen-management practices at the field scale and diverse nitrogen-removal practices at the landscape scale.

  20. 40 CFR 180.361 - Pendimethalin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., oil 0.5 Corn, field, forage 0.1 Corn, field, grain 0.1 Corn, field, stover 0.1 Corn, pop, grain 0.1 Corn, sweet, forage 0.1 Corn, sweet, kernel plus cob with husks removed 0.1 Corn, sweet, stover 0.1...

  1. 40 CFR 180.232 - Butylate; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Corn, field, forage 0.1 Corn, field, grain 0.1 Corn, field, stover 0.1 Corn, pop, forage 0.1 Corn, pop, grain 0.1 Corn, sweet, forage 0.1 Corn, sweet, kernel plus cob with husks removed 0.1 (b) Section 18...

  2. 40 CFR 180.232 - Butylate; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Corn, field, forage 0.1 Corn, field, grain 0.1 Corn, field, stover 0.1 Corn, pop, forage 0.1 Corn, pop, grain 0.1 Corn, sweet, forage 0.1 Corn, sweet, kernel plus cob with husks removed 0.1 (b) Section 18...

  3. Influence of corn residue harvest management on grain, stover, and energy yields

    USDA-ARS?s Scientific Manuscript database

    Economic, environmental, and energy independence issues are contributing to rising fossil fuel prices, petroleum supply concerns, and a growing interest in biomass feedstocks as renewable energy sources. Potential feedstocks include perennial grasses, timber, and annual grain crops with our focus be...

  4. Resistance Management Research Status-May 2008

    EPA Science Inventory

    Long-term sustainability of genetically modified corn expressing Bt relies on the validity of assumptions underlying IRM models used by the EPA and the ability of EPA to monitor, detect and react to insect resistance when it develops. The EPA is developing a multi-tiered approac...

  5. 77 FR 22770 - Termination of Provider Reimbursement Demonstration Project for the State of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Termination of Provider Reimbursement Demonstration... Reimbursement Branch, 16401 East Centretech Parkway, Aurora, CO 80011- 9066. FOR FURTHER INFORMATION CONTACT: Glenn J. Corn, TRICARE Management Activity, Medical Benefits and Reimbursement Branch, telephone (303...

  6. 40 CFR 180.645 - Thiencarbazone-methyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... food and feed commodities: Commodity Parts per million Corn, field, forage 0.04 Corn, field, grain 0.01 Corn, field, stover 0.02 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Wheat, forage 0.10 Wheat, grain...

  7. 40 CFR 180.612 - Topramezone; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Parts per million Cattle, kidney 0.05 Cattle, liver 0.15 Corn, field, forage 0.05 Corn, field, grain 0.01 Corn, field, stover 0.05 Corn, pop, grain 0.01 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Goat, kidney 0.05 Goat...

  8. 40 CFR 180.378 - Permethrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... byproducts 0.10 Cauliflower 0.5 Cherry, sweet 4.0 Cherry, tart 4.0 Corn, field, forage 50 Corn, field, grain 0.05 Corn, field, stover 30 Corn, pop, grain 0.05 Corn, pop, stover 30 Corn, sweet, forage 50 Corn, sweet, kernel plus cob with husks removed 0.10 Corn, sweet, stover 30 Egg 0.10 Eggplant 0.50 Fruit, pome...

  9. 40 CFR 180.464 - Dimethenamid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., sugar, dried pulp 0.01 Beet, sugar, molasses 0.01 Beet, sugar, roots 0.01 Beet, sugar, tops 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, forage 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks...

  10. 40 CFR 180.571 - Mesotrione; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agricultural commodities: Commodity Parts per million Asparagus 0.01 Berry, group 13 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.5 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 1.5 Cranberry...

  11. 40 CFR 180.213 - Simazine; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cherry 0.25 Corn, field, forage 0.20 Corn, field, grain 0.20 Corn, field, stover 0.25 Corn, pop, grain 0.20 Corn, pop, stover 0.25 Corn, sweet, forage 0.20 Corn, sweet, kernel plus cob with husks removed 0.25 Corn, sweet, stover 0.25 Cranberry 0.25 Currant 0.25 Egg 0.03 Goat, meat 0.03 Goat, meat...

  12. 40 CFR 180.571 - Mesotrione; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agricultural commodities: Commodity Parts per million Asparagus 0.01 Berry, group 13 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.5 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 1.5 Cranberry...

  13. 40 CFR 180.470 - Acetochlor; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., sugar, dried pulp 0.50 Beet, sugar, molasses 0.80 Beet, sugar, roots 0.30 Beet, sugar, tops 0.70 Corn, field, forage 4.5 Corn, field, grain 0.05 Corn, field, stover 2.5 Corn, pop, grain 0.05 Corn, pop, stover 2.5 Corn, sweet, forage 1.5 Corn, sweet, kernels plus cob with husks removed 0.05 Corn, sweet...

  14. 40 CFR 180.378 - Permethrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... byproducts 0.10 Cauliflower 0.5 Cherry, sweet 4.0 Cherry, tart 4.0 Corn, field, forage 50 Corn, field, grain 0.05 Corn, field, stover 30 Corn, pop, grain 0.05 Corn, pop, stover 30 Corn, sweet, forage 50 Corn, sweet, kernel plus cob with husks removed 0.10 Corn, sweet, stover 30 Egg 0.10 Eggplant 0.50 Fruit, pome...

  15. 40 CFR 180.612 - Topramezone; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Parts per million Cattle, kidney 0.05 Cattle, liver 0.15 Corn, field, forage 0.05 Corn, field, grain 0.01 Corn, field, stover 0.05 Corn, pop, grain 0.01 Corn, pop, stover 0.05 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Goat, kidney 0.05 Goat...

  16. 40 CFR 180.645 - Thiencarbazone-methyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... food and feed commodities: Commodity Parts per million Corn, field, forage 0.04 Corn, field, grain 0.01 Corn, field, stover 0.02 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Wheat, forage 0.10 Wheat, grain...

  17. 40 CFR 180.645 - Thiencarbazone-methyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... food and feed commodities: Commodity Parts per million Corn, field, forage 0.04 Corn, field, grain 0.01 Corn, field, stover 0.02 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Wheat, forage 0.10 Wheat, grain...

  18. 40 CFR 180.142 - 2,4-D; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....3 Cattle, meat byproducts, except kidney 0.3 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 50 Corn, pop, grain 0.05 Corn, pop, stover 50 Corn, sweet, forage 6.0 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 50 Cranberry 0.5 Fish 0.1 Fruit, citrus, group 10...

  19. 40 CFR 180.565 - Thiamethoxam; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., meat 0.02 Cattle, meat byproducts 0.04 Citrus, dried pulp 0.60 ppm Coffee, bean, green 1 0.05 Corn, field, forage 0.10 Corn, field, grain 0.020 Corn, field, stover 0.05 Corn, pop, forage 0.10 Corn, pop, grain 0.02 Corn, pop, stover 0.05 Corn, sweet, forage 0.10 Corn, sweet, kernel plus cob with husks...

  20. 40 CFR 180.262 - Ethoprop; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cabbage 0.02 Corn, field, forage 0.02 Corn, field, grain 0.02 Corn, field, stover 0.02 Corn, pop, grain 0.02 Corn, pop, stover 0.02 Corn, sweet, forage 0.02 Corn, sweet, kernel plus cob with husks removed 0.02 Corn, sweet, stover 0.02 Cucumber 0.02 Hop, dried cones 0.02 Peppermint, tops 0.02 Pineapple 0.02...

Top