Sample records for corn soybeans wheat

  1. 76 FR 41048 - Agricultural Commodity Definition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... becomes fiber. Category two would include high fructose corn syrup, but not corn- based products such as... the CEA, including such things as wheat, cotton, corn, the soybean complex, livestock, etc.; 2. A... MGEX's various wheat, corn, and soybean cash-bid indexes) should remain outside of the definition of...

  2. EXCESS CANCER MORTALITY IN AGRICULTURAL REGIONS OF MINNESOTA

    EPA Science Inventory

    Because of its unique geology, Minnesota can be divided into four agricultural regions: south-central region one (corn, soybeans); west-central region two (wheat, corn, soybeans); northwest region three (wheat, sugar beets, potatoes); and northeast region four (forested and urban...

  3. Comparison of CRD, APU, and state models for Iowa corn and soybeans and North Dakota barley and spring wheat

    NASA Technical Reports Server (NTRS)

    French, V.

    1983-01-01

    A comparison was made among the CEAS crop reporting district (CRD), agrophysical unit (APU), and state level multiple regression yield models for corn and soybeans in Iowa and barley and spring wheat in North Dakota. The best predictions were made by the state model for North Dakota spring wheat, by the APU models for barley, by the CRD models for Iowa soybeans, and by APU covariance models for Iowa corn. Because of this lack of consistency of model performance, CRD models would be recommended due to the availability of the data.

  4. Measurement of true ileal digestibility of phosphorus in some feed ingredients for broiler chickens.

    PubMed

    Mutucumarana, R K; Ravindran, V; Ravindran, G; Cowieson, A J

    2014-12-01

    An experiment was conducted to estimate the true ileal digestibility of P in wheat, sorghum, soybean meal, and corn distiller's dried grains with solubles (DDGS) in broiler chickens. Four semipurified diets were formulated from each ingredient (wheat and sorghum: 236.5, 473, 709.5, and 946 g/kg; soybean meal and corn DDGS: 135, 270, 405, and 540 g/kg) to contain graded concentrations of nonphytate P. The experiment was conducted as a randomized complete block design with 4 weight blocks of 16 cages each (5 birds per cage). A total of 320 21-d-old broilers (Ross 308) were assigned to the 16 test diets with 4 replicates per diet. Apparent ileal digestibility coefficients of P were determined by the indicator method and the linear regression method was used to determine the true P digestibility coefficients. The results showed that the apparent ileal P digestibility coefficients of wheat-based diets were not influenced (P>0.05) by increasing dietary P concentrations, whereas those of diets based on sorghum, soybean meal, and corn DDGS differed (P<0.05) at different P concentrations. Apparent ileal P digestibility in broilers fed diets with soybean meal and corn DDGS linearly (P<0.001) increased with increasing P concentrations. True ileal P digestibility coefficients of wheat, sorghum, soybean meal, and corn DDGS were determined to be 0.464, 0.331, 0.798, and 0.727, respectively. Ileal endogenous P losses in birds fed diets with wheat, soybean meal, and corn DDGS were estimated to be 0.080, 0.609, and 0.418 g/kg DMI, respectively. In birds fed sorghum-based diets, endogenous P losses were estimated to be negative (-0.087 g/kg DMI). True digestible P contents of wheat, sorghum, soybean meal, and corn DDGS were determined to be 1.49, 0.78, 5.16, and 5.94 g/kg, respectively. The corresponding nonphytate P contents in wheat, sorghum, soybean meal, and corn DDGS were 1.11, 0.55, 2.15, and 4.36 g/kg, respectively. These differences between digestible P and nonphytate P contents may be suggestive, at least in part, of overestimation of P digestibility under the calcium-deficient conditions used in the regression method.

  5. 40 CFR 180.439 - Thifensulfuron methyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million Barley, grain 0.05 Barley, hay 0.8 Barley, straw 0.10 Canola, seed 0.02 Corn, field, forage 0.10 Corn, field, grain 0.05 Corn, field, stover 0.10 Cotton, gin byproducts 0.02 Cotton, undelinted seed 0... Soybean 0.10 Wheat, forage 2.5 Wheat, grain 0.05 Wheat, hay 0.7 Wheat, straw 0.10 (b) Section 18 emergency...

  6. Impact of alcohol fuel production on agricultural markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.H.

    1986-01-01

    Production of alcohol from biomass feedstocks, such as corn, was given Federal and State support which resulted in alcohol production rising from 20 million gallons in 1979 to 430 million gallons in 1984. This study estimates the impacts of alcohol production from corn on selected agricultural markets. The tool of analysis was a three region (United States, the European Community and the rest of the world) econometric model of the markets for corn, soybeans, soybean meal, soybean oil, wheat and corn byproduct feeds. Three alternative growth paths for alcohol production (totalling 1.1, 2.0, and 3.0 billion gallons) were analyzed withmore » the model in the context of three different trade environments. The results of this analysis indicate that alcohol production of 1.1 billion gallons by 1980 would have caused moderate adjustments to commodity markets while 3.0 billion gallons would have caused major adjustments. Corn prices rose sharply with increased alcohol production as did wheat prices but to a somewhat lesser extent. The substitution of corn for soybeans on the supply side was not sufficient to offset the demand depressing effects of corn byproduct feeds on soybean meal which translated into slightly lower soybean prices. A quota limiting imports of corn gluten feed into the EC to three million tons annually would cause reductions in export earnings for corn millers.« less

  7. Normal crop calendars. Volume 3: The corn and soybean states of Illinois, Indiana, and Iowa

    NASA Technical Reports Server (NTRS)

    West, W. L., III (Principal Investigator)

    1981-01-01

    The state and crop reporting district crop calendars for Iowa, Illinois, and Indiana are presented. Crop calendars for corn, soybeans, sorghum, oats, wheat, barley, clover, flax, sugar beets, and tobacco are included.

  8. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R.; Crist, E.; Kauth, R. J.; Pont, W.

    1980-01-01

    Classification and technology development for area estimation of corn, soybeans, wheat, barley, and sunflowers are outlined. Supporting research for corn and soybean foreign commodity production forecasting is highlighted. Graphs profiling the greenness and brightness of the crops are presented.

  9. 17 CFR 19.01 - Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., soybean meal or cotton. 19.01 Section 19.01 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... MERCHANTS AND DEALERS IN COTTON § 19.01 Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat, corn, oats, soybeans, soybean oil, soybean meal or cotton. (a) Information...

  10. 17 CFR 19.01 - Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., soybean meal or cotton. 19.01 Section 19.01 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... MERCHANTS AND DEALERS IN COTTON § 19.01 Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat, corn, oats, soybeans, soybean oil, soybean meal or cotton. (a) Information...

  11. 17 CFR 19.01 - Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., soybean meal or cotton. 19.01 Section 19.01 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... MERCHANTS AND DEALERS IN COTTON § 19.01 Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat, corn, oats, soybeans, soybean oil, soybean meal or cotton. (a) Information...

  12. 17 CFR 19.01 - Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., soybean meal or cotton. 19.01 Section 19.01 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... MERCHANTS AND DEALERS IN COTTON § 19.01 Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat, corn, oats, soybeans, soybean oil, soybean meal or cotton. (a) Information...

  13. 17 CFR 19.01 - Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., soybean meal or cotton. 19.01 Section 19.01 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... MERCHANTS AND DEALERS IN COTTON § 19.01 Reports on stocks and fixed price purchases and sales pertaining to futures positions in wheat, corn, oats, soybeans, soybean oil, soybean meal or cotton. (a) Information...

  14. 7 CFR 810.602 - Definition of other terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...

  15. 7 CFR 810.602 - Definition of other terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...

  16. 7 CFR 810.602 - Definition of other terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...

  17. 75 FR 31785 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... 5.96%. Propose uses: Barley, corn, dried shelled peas and beans, edible podded legumes vegetables... peas and beans, edible podded legume vegetables, oat, peanut, rye, sorghum, soybean, sunflower, wheat..., edible podded legume vegetables, oat, peanut, rye, sorghum, soybean, sunflower, wheat, and triticale seed...

  18. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.

    1981-01-01

    Progress and technical issues are reported in the development of corn/soybeans area estimation procedures for use on data from South America, with particular emphasis on Argentina. Aspects related to the supporting research section of the AgRISTARS Project discussed include: (1) multisegment corn/soybean estimation; (2) through the season separability of corn and soybeans within the U.S. corn belt; (3) TTS estimation; (4) insights derived from the baseline corn and soybean procedure; (5) small fields research; and (6) simulating the spectral appearance of wheat as a function of its growth and development. To assist the foreign commodity production forecasting, the performance of the baseline corn/soybean procedure was analyzed and the procedure modified. Fundamental limitations were found in the existing guidelines for discriminating these two crops. The temporal and spectral characteristics of corn and soybeans must be determined because other crops grow with them in Argentina. The state of software technology is assessed and the use of profile techniques for estimation is considered.

  19. 40 CFR 180.585 - Pyraflufen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../revocation date Almond, hulls 0.02 None. Cattle, meat byproducts 0.02 10/15/12 Corn, field, forage 0.01 None..., undelinted seed 0.04 None Fruit, pome, group 11-10 0.01 None. Fruit, stone, group 12 0.01 None. Grape 0.01... Soybean, forage 0.05 None Soybean, hay 0.10 None Soybean, seed 0.01 None Wheat, forage 0.02 None Wheat...

  20. 40 CFR 180.585 - Pyraflufen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../revocation date Almond, hulls 0.02 None. Cattle, meat byproducts 0.02 10/15/12 Corn, field, forage 0.01 None..., undelinted seed 0.04 None Fruit, pome, group 11-10 0.01 None. Fruit, stone, group 12 0.01 None. Grape 0.01... Soybean, forage 0.05 None Soybean, hay 0.10 None Soybean, seed 0.01 None Wheat, forage 0.02 None Wheat...

  1. 17 CFR 32.2 - Prohibited transactions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... interstate commerce involving wheat, cotton, rice, corn, oats, barley, rye, flaxseed, grain sorghums, mill..., peanuts, soybeans, soybean meal, livestock, livestock products, and frozen concentrated orange juice if...

  2. 17 CFR 32.2 - Prohibited transactions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... interstate commerce involving wheat, cotton, rice, corn, oats, barley, rye, flaxseed, grain sorghums, mill..., peanuts, soybeans, soybean meal, livestock, livestock products, and frozen concentrated orange juice if...

  3. Direct and regression methods do not give different estimates of digestible and metabolizable energy of wheat for pigs.

    PubMed

    Bolarinwa, O A; Adeola, O

    2012-12-01

    Digestible and metabolizable energy contents of feed ingredients for pigs can be determined by direct or indirect methods. There are situations when only the indirect approach is suitable and the regression method is a robust indirect approach. This study was conducted to compare the direct and regression methods for determining the energy value of wheat for pigs. Twenty-four barrows with an average initial BW of 31 kg were assigned to 4 diets in a randomized complete block design. The 4 diets consisted of 969 g wheat/kg plus minerals and vitamins (sole wheat) for the direct method, corn (Zea mays)-soybean (Glycine max) meal reference diet (RD), RD + 300 g wheat/kg, and RD + 600 g wheat/kg. The 3 corn-soybean meal diets were used for the regression method and wheat replaced the energy-yielding ingredients, corn and soybean meal, so that the same ratio of corn and soybean meal across the experimental diets was maintained. The wheat used was analyzed to contain 883 g DM, 15.2 g N, and 3.94 Mcal GE/kg. Each diet was fed to 6 barrows in individual metabolism crates for a 5-d acclimation followed by a 5-d total but separate collection of feces and urine. The DE and ME for the sole wheat diet were 3.83 and 3.77 Mcal/kg DM, respectively. Because the sole wheat diet contained 969 g wheat/kg, these translate to 3.95 Mcal DE/kg DM and 3.89 Mcal ME/kg DM. The RD used for the regression approach yielded 4.00 Mcal DE and 3.91 Mcal ME/kg DM diet. Increasing levels of wheat in the RD linearly reduced (P < 0.05) DE and ME to 3.88 and 3.79 Mcal/kg DM diet, respectively. The regressions of wheat contribution to DE and ME in megacalories against the quantity of wheat DM intake in kilograms generated 3.96 Mcal DE and 3.88 Mcal ME/kg DM. In conclusion, values obtained for the DE and ME of wheat using the direct method (3.95 and 3.89 Mcal/kg DM) did not differ (0.78 < P < 0.89) from those obtained using the regression method (3.96 and 3.88 Mcal/kg DM).

  4. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus.

    PubMed

    Sharma Ghimire, Prakriti; Ouyang, Haomiao; Wang, Qian; Luo, Yuanming; Shi, Bo; Yang, Jinghua; Lü, Yang; Jin, Cheng

    2016-12-02

    Lignocelluloses contained in animal forage cannot be digested by pigs or poultry with 100% efficiency. On contrary, Aspergillus fumigatus, a saprophytic filamentous fungus, is known to harbor 263 glycoside hydrolase encoding genes, suggesting that A. fumigatus is an efficient lignocellulose degrader. Hence the present study uses corn, wheat, or soybean as a sole carbon source to culture A. fumigatus under animal physiological condition to understand how cellulolytic enzymes work together to achieve an efficient degradation of lignocellulose. Our results showed that A. fumigatus produced different sets of enzymes to degrade lignocelluloses derived from corn, wheat, or soybean cell wall. In addition, the cellulolytic enzymes produced by A. fumigatus were stable under acidic condition or at higher temperatures. Using isobaric tags for a relative and absolute quantification (iTRAQ) approach, a total of ∼600 extracellular proteins were identified and quantified, in which ∼50 proteins were involved in lignocellulolysis, including cellulases, hemicellulases, lignin-degrading enzymes, and some hypothetical proteins. Data are available via ProteomeXchange with identifier PXD004670. On the basis of quantitative iTRAQ results, 14 genes were selected for further confirmation by RT-PCR. Taken together, our results indicated that the expression and regulation of lignocellulolytic proteins in the secretome of A. fumigatus were dependent on both nature and complexity of cellulose, thus suggesting that a different enzyme system is required for degradation of different lignocelluloses derived from plant cells. Although A. fumigatus is a pathogenic fungus and cannot be directly used as an enzyme source, as an efficient lignocellulose degrader its strategy to synergistically degrade various lignocelluloses with different enzymes can be used to design enzyme combination for optimal digestion and absorption of corn, wheat, or soybean that are used as forage of pig and poultry.

  5. Recommended data sets, corn segments and spring wheat segments, for use in program development

    NASA Technical Reports Server (NTRS)

    Austin, W. W. (Principal Investigator)

    1981-01-01

    The sets of Large Area Crop Inventory Experiment sites, crop year 1978, which are recommended for use in the development and evaluation of classification techniques based on LANDSAT spectral data are presented. For each site, the following exists: (1) accuracy assessment digitized ground truth; (2) a minimum of 5 percent of the scene ground truth identified as corn or spring wheat; and (3) at least four acquisitions of acceptable data quality during the growing season of the crop of interest. The recommended data sets consist of 41 corn/soybean sites and 17 spring wheat sites.

  6. Economic Benefits of Improved Information on Worldwide Crop Production: An Optimal Decision Model of Production and Distribution with Application to Wheat, Corn, and Soybeans

    NASA Technical Reports Server (NTRS)

    Andrews, J.

    1977-01-01

    An optimal decision model of crop production, trade, and storage was developed for use in estimating the economic consequences of improved forecasts and estimates of worldwide crop production. The model extends earlier distribution benefits models to include production effects as well. Application to improved information systems meeting the goals set in the large area crop inventory experiment (LACIE) indicates annual benefits to the United States of $200 to $250 million for wheat, $50 to $100 million for corn, and $6 to $11 million for soybeans, using conservative assumptions on expected LANDSAT system performance.

  7. Digestion of feed amino acids in the rumen and intestine of steers measured using a mobile nylon bag technique.

    PubMed

    Taghizadeh, A; Danesh Mesgaran, M; Valizadeh, R; Shahroodi, F Eftekhar; Stanford, K

    2005-05-01

    The disappearance of dry matter (DM), crude protein (CP), and amino acids (AA) in steers after rumen incubation and intestinal passage of alfalfa hay, barley hay, corn silage, barley grain, corn grain, wheat bran, meat meal, fish meal, cottonseed meal, and soybean meal were measured in 3 steers using a mobile nylon bag technique. Ruminal degradation of individual AA differed between feedstuffs. For barley hay and corn silage, the ruminal disappearance of total AA was higher and lower than the other feedstuffs, respectively. The intestinal digestibility of total AA in alfalfa hay was lower than the digestion of CP. The intestinal digestibility of Arg and His was higher than that of total AA in alfalfa hay, meat meal, cottonseed meal, soybean meal, barley hay, and wheat bran. In addition, the intestinal digestibility of Lys was higher than that of total AA in alfalfa hay, meat meal, cottonseed meal, soybean meal, barley hay, corn silage, and wheat bran. The intestinal disappearance of CP in most cases was higher than that of DM. The results indicated that feedstuffs with lower ruminal disappearance of DM, CP, total AA, essential AA, and nonessential AA generally had a higher intestinal disappearance, resulting in a relatively constant total tract disappearance. These results could be used to improve the current system of diet formulation in ruminants.

  8. The effects of whole grains on nutrient digestibilities, growth performance, and cecal short-chain fatty acid concentrations in young chicks fed ground corn-soybean meal diets.

    PubMed

    Biggs, P; Parsons, C M

    2009-09-01

    Five experiments were conducted to evaluate the effects of whole wheat, whole sorghum, or whole barley on nutrient digestibility, growth performance, and cecal short-chain fatty acid concentrations when supplemented primarily at the expense of corn in ground corn-soybean meal control diets. The first 4 experiments utilized New Hampshire x Columbian male chicks. In the first 2 experiments, feeding 5, 10, 15, or 20% whole wheat had no effect on growth performance at 21 d when compared with chicks fed the control diet. The third experiment tested 20, 35, and 50% whole wheat fed from 0 to 21 d of age and showed that a 50% whole wheat diet decreased (P<0.05) 21-d growth and feed efficiency when compared with chicks fed the control diet. In experiment 4, 10 and 20% whole sorghum reduced (P<0.05) growth at 21 d, whereas chicks fed 10 and 20% whole barley had similar weight gains to chicks fed a ground corn-soybean meal diet. The fifth experiment with commercial Ross x Ross male broiler chicks evaluated 10 and 20% whole sorghum or whole barley and 20 and 35% whole wheat. Growth at 21 d was unaffected by any dietary treatment. Feed efficiency was decreased (P<0.05) at 21 d with 20% whole wheat and improved (P<0.05) with 10% whole barley. Feeding whole grains to chicks resulted in an increase in gizzard weight, even as early as 7 d, in all experiments. Chicks fed diets containing 10 to 20% whole wheat generally had increased MEn values at 3 to 4, 7, 14, and 21 d and also had increased amino acid digestibility at 21 d in one experiment. At 21 d, cecal pH and short-chain fatty acid concentrations in all experiments were unaffected by feeding whole grains to chicks. The results of this study indicated that feeding whole wheat, sorghum, or barley increased gizzard weight, and feeding 10 to 20% whole wheat may increase ME and amino acid digestibility.

  9. The Success Factors to Defeat Insurgency in the Philippines and Its Applicability in the Colombian Context

    DTIC Science & Technology

    2013-12-01

    airport. 174. The main agricultural products in Colombia are rice, barley, corn, wheat, sorghum, sesame, cotton, soy, kidney bean, potato, banana ...cocoa, sugar cane, tobacco, oil palm, vegetables, fruits and flowers . Agro-industrial production crops predominate over of food crops. The forest...of poverty, misery, social inequality, 223. Domestic consumer products: rice, barley, corn, wheat, sorghum, sesame, cotton, soybeans, beans, bananas

  10. Rotational Effects of Cuphea on Corn, Spring Wheat, and Soybean

    USDA-ARS?s Scientific Manuscript database

    Agricultural diversity is lacking in the northern Corn Belt. Adding crop diversity to rotations can give economic and environmental benefits. Cuphea (Cuphea viscosissima Jacq. x C. lanceolata W.T. Aiton; PSR23), which grows well in the northern Corn Belt, is a new oilseed crop and a source of medium...

  11. Source of carbohydrate and metabolizable lysine and methionine in the diet of recently weaned dairy calves on digestion and growth.

    PubMed

    Hill, T M; Quigley, J D; Bateman, H G; Aldrich, J M; Schlotterbeck, R L

    2016-04-01

    Two 56-d trials with weaned Holstein dairy calves (initially 72 ± 1.8 kg of body weight, 58 to 60 d of age) fed 95% concentrate and 5% chopped grass hay diets were conducted. Each trial used 96 calves (4 calves/pen). During 15 of the last 21 d of the first trial and 10 of 14 d of the second and third week of the second trial, fecal samples were taken to estimate digestibility using acid-insoluble ash as an internal marker. Digestibility estimates along with 56-d average daily gain (ADG), hip width change, body condition score, and fecal score were analyzed with pen as the experimental unit. In trial 1, a textured diet (19% crude protein) with high starch [52% starch, 13% neutral detergent fiber (NDF)] based on whole corn and oats or a pelleted low-starch (20% starch, 35% NDF), high-digestible fiber diet were used. Within starch level, diets were formulated from supplemental soybean meal or soybean meal with blood meal and Alimet (Novus International Inc., St. Charles, MO) to provide 2 metabolizable protein levels (1 and 1.07% metabolizable lysine plus methionine). The 4 treatments were analyzed as a completely randomized design with a 2 by 2 factorial arrangement (6 pens/diet). In trial 2, all pelleted diets (19% crude protein) were fed. Diets were based on soybean hulls, wheat middlings, or corn, which contained increasing concentrations of starch (13, 27, and 42% starch and 42, 23, and 16% NDF, respectively; 8 pens/diet). Contrast statements were constructed to separate differences in the means (soybean hulls plus wheat middlings vs. corn; soybean hulls vs. wheat middlings). In trial 1, intake of organic matter (OM) did not differ. Digestibility of OM was greater in calves fed high- versus low starch-diets. Digestibility of NDF and starch were less in calves fed the high- versus low-starch diets. Calf ADG and hip width change were greater for high- versus low-starch diets. Source of protein did not influence digestibility or ADG. In trial 2, intake of OM was not different. Digestibility of OM was greater in calves fed corn versus other diets. Digestibility of NDF was greater for calves fed soybean hulls versus wheat middlings. Starch digestibility was not different among treatments. Calf ADG and hip width change were greater in calves fed corn versus other diets. High-starch diets were more digestible and supported more growth in 2- to 4-mo-old dairy calves than replacing starch with digestible fiber. Manipulating metabolizable protein compared with a control diet that was predominately corn and soybean meal did not alter growth or digestibility. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Spectral-agronomic relationships of corn, soybean and wheat canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Vanderbilt, V. C.

    1981-01-01

    During the past six years several thousand reflectance spectra of corn, soybean, and wheat canopies were acquired and analyzed. The relationships of biophysical variables, including leaf area index, percent soil cover, chlorophyll and water content, to the visible and infrared reflectance of canopies are described. The effects on reflectance of cultural, environmental, and stress factors such as planting data, seeding rate, row spacing, cultivar, soil type and nitrogen fertilization are also examined. The conclusions are that several key agronomic variables including leaf area index, development stage and degree of stress are strongly related to spectral reflectance and that it should be possible to estimate these descriptions of crop condition from satellite acquired multispectral data.

  13. AgRISTARS: Foreign commodity production forecasting. Minutes of the annual formal project manager's review, including preliminary technical review reports of FY80 experiments. [wheat/barley and corn/soybean experiments

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The U.S./Canada wheat/barley exploratory experiment is discussed with emphasis on labeling, machine processing using P1A, and the crop calendar. Classification and the simulated aggregation test used in the U.S. corn/soybean exploratory experiment are also considered. Topics covered regarding the foreign commodity production forecasting project include: (1) the acquisition, handling, and processing of both U.S. and foreign agricultural data, as well as meteorological data. The accuracy assessment methodology, multicrop sampling and aggregation technology development, frame development, the yield project interface, and classification for area estimation are also examined.

  14. Apparent phosphorus availabilities of selected traditional and alternative feedstuffs for channel catfish

    USDA-ARS?s Scientific Manuscript database

    A digestibility trial with channel catfish Ictalurus punctatus was conducted to determine apparent availability coefficients (AACs) of phosphorus for selected common feedstuffs: soybean meal, cottonseed meal, wheat middlings, corn gluten feed (CGF), and corn distillers dried grains with solubles (DD...

  15. In vitro induction of lipo-chitooligosaccharide production in Bradyrhizobium japonicum cultures by root extracts from non-leguminous plants.

    PubMed

    Lian, Bin; Souleimanov, Alfred; Zhou, Xiaomin; Smith, Donald L

    2002-01-01

    Bradyrhizobium japonicum can form a N2-fixing symbiosis with compatible leguminous plants. It can also act as a plant-growth promoting rhizobacterium (PGPR) for non-legume plants, possibly through production of lipo-chitooligosaccharides (LCOs), which should have the ability to induce disease resistance responses in plants. The objective of this work was to determine whether non-leguminous crop plants can induce LCO formation by B. japonicum cultures. Cultures treated with root extracts of soybean, corn, cotton or winter wheat were assayed for presence and level of LCO. Root extracts of soybean, corn and winter wheat all induced LCO production, with extracts of corn inducing the greatest amounts. Root washings of corn also induced LCO production, but less than the root extract. These results indicated that the stimulation of non-legume plant growth by B. japonicum could be through the production of LCOs, induced by materials excreted by the roots of non-legume plants.

  16. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls.

    PubMed

    Jaworski, N W; Stein, H H

    2017-02-01

    Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed diets containing distillers dried grains with solubles (DDGS), wheat middlings, or soybean hulls was determined. A second objective was to test the hypothesis that physical characteristics of dietary fiber in diets are correlated with the digestibility of nutrients and energy. Eight barrows (initial BW = 37.3 ± 1.0 kg) with a T-cannula in the distal ileum and another T-cannula in the proximal colon were allotted to a replicated 4 × 4 Latin square design with 4 diets and 4 periods in each square. The basal diet was a corn-soybean meal diet and 3 additional diets were formulated by substituting 30% of the basal diet with DDGS, wheat middlings, or soybean hulls. Following an 8-d adaptation period, fecal samples were collected on d 9 and 10, and samples from the colon and the ileum were collected on d 11 and 12, and d 13 and 14, respectively. Values for apparent ileal digestibility (AID), apparent cecal digestibility (ACD), and apparent total tract digestibility (ATTD) of nutrients and energy were calculated. Results indicated that ACD and ATTD of soluble dietary fiber was not different regardless of diet indicating that the soluble dietary fiber is mostly fermented in the small intestine or in the cecum. Pigs fed the wheat middlings diet had greater ( ≤ 0.05) ACD of insoluble dietary fiber compared with pigs fed diets containing DDGS or soybean hulls indicating that the insoluble fiber in wheat middlings may be more fermentable than insoluble fiber in DDGS or soybean hulls. Insoluble dietary fiber disappearance in the colon of pigs fed the soybean hulls diet was greater ( ≤ 0.05) compared with the DGGS containing diet indicating that insoluble fiber in DDGS are more resistant to fermentation than insoluble fiber in soybean hulls. The ATTD of total dietary fiber in wheat middlings was greater ( ≤ 0.05) than in DDGS and soybean hulls further indicating that fiber in wheat middlings are more fermentable than fiber in DDGS and soybean hulls. Water binding capacity, bulk density, and viscosity of dietary fiber were not correlated with digestibility of nutrients and energy regardless of the diet. In conclusion, soluble dietary fiber is mostly fermented before reaching the colon whereas insoluble dietary fiber is mostly fermented in the colon, but fiber in wheat middlings is more fermentable than fiber in DDGS or soybean hulls.

  17. 1977 Kansas Field Crop Insect Control Recommendations.

    ERIC Educational Resources Information Center

    Brooks, Leroy; Gates, Dell E.

    This publication is prepared to aid producers in selecting methods of insect population management that have proved effective under Kansas conditions. Topics covered include insect control on alfalfa, soil insects attacking corn, insects attacking above-ground parts of corn, and sorghum, wheat, and soybean insect control. The insecticides…

  18. The microwave propagation and backscattering characteristics of vegetation. [wheat, sorghum, soybeans and corn fields in Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Wilson, E. A.

    1984-01-01

    A semi-empirical model for microwave backscatter from vegetation was developed and a complete set of canope attenuation measurements as a function of frequency, incidence angle and polarization was acquired. The semi-empirical model was tested on corn and sorghum data over the 8 to 35 GHz range. The model generally provided an excellent fit to the data as measured by the correlation and rms error between observed and predicted data. The model also predicted reasonable values of canopy attenuation. The attenuation data was acquired over the 1.6 to 10.2 GHz range for the linear polarizations at approximately 20 deg and 50 deg incidence angles for wheat and soybeans. An attenuation model is proposed which provides reasonable agreement with the measured data.

  19. Soil organic carbon and land use in Veneto and Friuli Venezia Giulia (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Renzi, Gianluca; Benedetti, Anna

    2014-05-01

    The Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF) has set up a statistical survey aimed to provide the national forecast of yields and areas related to the main Italian agricultural crops (AGRIT). The methodology is based on field surveys and remote-sensed data, covers yearly the whole national territory, and is based on 100,000 observations which are statistically selected from a predefined grid made up of about 1,200,000 georeferenced points. In 2011-2012 we determined the soil organic carbon content (SOC) of 1,160 sampling points situated in Northern Italy in the plains and hills of Veneto (VEN) and Friuli Venezia Giulia (FVG), for which the land use in the period 2008-2010 was known. Samples have been subdivided in three main classes: arable crops, orchards and fodder crops. SOC was higher in FVG samples (2.48%, n=266) than in VEN samples (1.90%, n=894). The average value (2.03%) is clearly affected by the higher number of VEN samples. FVG data have been aggregated in continuous crops (maize, soybean, wheat), 2-yr rotations (maize-wheat, soybean wheat, maize-soybean), 3-yr rotations, vineyards (totally, partially and no-grassed), alfalfa, and permanent fodder crops. No significant differences were detected among the land uses due to the low number of samples in some classes, but some important findings do exist from the agronomic point of view. Fodder crops (5.65%), alfalfa (3.41%) and vineyards (2.72%) showed the higher SOC content. SOC was 2.94% and 1.39 % in the grassed and no-grassed vineyards respectively. In the arable crops the average SOC was 2.18%, ranging from 2.32% (soybean-wheat rotation) to 2.03% (continuous soybean). SOC was 2.19% in the continuous maize, with 2.23% in corn and 1.87% in silage maize. The lower values were in the maize-wheat rotation (1.53%) and the continuous wheat (1.47%). VEN data have been aggregated in continuous crops (maize, soybean and wheat), 2-yr rotations (maize-wheat, soybean-wheat, maize-soybean, soybean-alfalfa, wheat-alfalfa, maize-alfalfa), 3-yr rotations, orchards (mulched, totally, partially and no-grassed), alfalfa, permanent fodder crops, and land use change (from arable to fodder crops and vice versa). The mean value was 1.57% in arable crops, 2.46% in orchards (including vineyards, olive groves, and fruit crops), 3.13% in fodder crops. SOC in orchards was 1.82% (no grassed), 2.46% (grassed), 2.69% (mulched); 2.10 and 2.08% in the 2-yr rotations soybean-wheat and soybean-alfalfa respectively. SOC in the other arable crops was between 1.79% (land use change) and 1.37% (continuous soybean). A higher SOC was shown in VEN samples also when comparing continuous corn (1.69%) and continuous silage maize (1.43%). Data, even limited to two Regions, have clearly shown the positive contribution to SOC storage of orchards (mainly in grassed and mulched systems) and fodder crops, which are more conservative systems due to the lower soil disturbance from tillage operations; and to a lower extent of cropping systems with alfalfa or other legume crops.

  20. Effect of bedding materials on concentration of odorous compounds and Escherichia coli in beef cattle bedded manure packs

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine the effect of bedding material (corn stover, soybean stover, wheat straw, switchgrass, wood chips, wood shavings, corn cobs, and shredded paper) on concentration of odorous volatile organic compounds (VOC) in bedded pack material, and to determine the e...

  1. Climate vulnerabilities in the southern plains

    USDA-ARS?s Scientific Manuscript database

    The value of agricultural production in the Southern Plains exceeded $59 bil (2012 Agricultural Census) with livestock accounting for 58% of total agricultural sales. Crop and livestock commodities exceeding $1 bil include wheat, corn, horticultural crops, cotton, hay and forages, sorghum, soybean, ...

  2. Agriculture in Pending U.S. Free Trade Agreements with Colombia, Panama, and South Korea

    DTIC Science & Technology

    2010-02-04

    coffee, pineapple, bananas , and bakery products (Table 1). Agricultural imports accounted for 15% of total U.S. merchandise imports from Panama in...21.1% Raw Cane Sugar 15.9 29.1% Soybean Meal 59.0 13.7% Coffee a 15.3 27.9% Wheat 42.3 9.8% Fresh Pineapple 5.8 10.6% Rice 23.7 5.5% Fresh Bananas 3.4...Total Corn 625.7 37.3% Unroasted Coffee 805.0 45.5% Wheat 330.0 19.7% Fresh Roses 239.9 13.6% Soybean Meal 98.9 5.9% Fresh Bananas 162.7 9.2

  3. Enhancement effects of dietary wheat distiller's dried grains with solubles on growth, immunology, and resistance to Edwardsiella ictaluri challenge of channel catfish, Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effects of the inclusion of wheat distiller’s dried grains with solubles (WDDGS) at levels of 0 (control), 10, 20, 30 and 40% without (diets 2-5) and with (diets 6-9) lysine supplementation, as substitutes of soybean meal and corn meal mixture on growth, body composition, he...

  4. Future generation energy crops

    USDA-ARS?s Scientific Manuscript database

    Although cropping systems in the Midwest that emphasize corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) are some of the most highly productive in the US, the growing lack of agricultural diversity in this region threatens to jeopardize long-term sustainability. Added to this co...

  5. The differential effects of rail rate deregulation : U.S. corn, wheat, and soybean markets

    DOT National Transportation Integrated Search

    2003-06-01

    It is important to understand the distribution and incidence of influences associated with deregulation of rail rates. The objective of this research was to provide insight into inter- and intra-commodity rail rate differentials observed since rates ...

  6. RNA interference reduces aflatoxin accumulation by Aspergillus flavus in peanut seeds

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are among the most powerful carcinogens in nature. They are produced by the fungal pathogen Aspergillus flavus Link and other Aspergillus species. Aflatoxins accumulate in many crops, including rice, wheat, oats, pecans, pistachios, soybean, cassava, almonds, peanuts, beans, corn and cot...

  7. Reflectance and internal structure of leaves from several crops during a growing season.

    NASA Technical Reports Server (NTRS)

    Sinclair, T. R.; Hoffer, R. M.; Schreiber, M. M.

    1971-01-01

    Measurements of spectral reflectance characteristics during a growing season of leaves from six crops are reported. These crops include soybeans, wheat, oats, sorghum, corn, and sudangrass. The characteristics measured are related to changes in leaf structure and water content.

  8. Processing of Brassica seeds for feedstock in biofuels production

    USDA-ARS?s Scientific Manuscript database

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  9. Perennial plan establishment and productivity can be influenced by previous annual crops

    USDA-ARS?s Scientific Manuscript database

    Developing efficient, economical methods of perennial mixture establishment is needed for grazing and conservation purposes. Study objectives were to evaluate different perennial monocultures and mixtures planted into spring wheat (Triticum aestivum L.), corn (Zea mays L.), soybean (Glycine max L. ...

  10. A Free Entry and Exit Experiment.

    ERIC Educational Resources Information Center

    Garratt, Rod

    2000-01-01

    Describes a two-stage experiment where students play the role of farmers who must select one of four markets (corn, wheat, rice, or soybeans). Demonstrates the process leading to equilibrium in a multimarket setting. Includes an appendix with the farmer profit chart and homework exercises. (CMK)

  11. Effects of withdrawing high-fiber ingredients before marketing on finishing pig growth performance, carcass characteristics, and intestinal weights.

    PubMed

    Coble, Kyle F; DeRouchey, Joel M; Tokach, Mike D; Dritz, Steve S; Goodband, Robert D; Woodworth, Jason C

    2018-02-15

    Two experiments were conducted to determine the duration of high-fiber ingredient removal from finishing pig diets before marketing to restore carcass yield and carcass fat iodine value (IV), similar to pigs continuously fed a corn-soybean meal diet. In experiment 1, 288 pigs (initially 38.4 ± 0.3 kg body weight [BW]) were used in an 88-d study and fed either a low-fiber corn-soybean meal diet from day 0 to 88 or a high-fiber diet containing 30% corn distillers dried grains with solubles and 19% wheat middlings until day 20, 15, 10, 5, or 0 before slaughter and switched to the low-fiber corn-soybean meal diet thereafter. Diets were not balanced for net energy. From day 0 to 88, pigs continuously fed the high-fiber diet tended to have increased average daily feed intake (P = 0.072) and decreased G:F and carcass yield (P = 0.001) compared with pigs fed the low-fiber corn-soybean meal diet. Pigs continuously fed the high-fiber diet had greater (P < 0.010) IV of jowl, backfat, belly, and ham collar fat than those fed the low-fiber corn-soybean meal diet throughout. As days of withdrawal increased, pigs previously fed the high-fiber diet had increased carcass yield (quadratic; P = 0.039). Pigs continuously fed the high-fiber diet had heavier (percentage of hot carcass weight [HCW]) full large intestines (P = 0.003) than pigs fed the corn-soybean meal diet. Full large intestine weight decreased (linear; P = 0.018) as withdrawal time increased. Belly fat IV tended (linear; P = 0.080) to improve as withdrawal time increased. In experiment 2, a total of 1,089 pigs (initially 44.5 ± 0.1 kg BW) were used in a 96-d study with the same dietary treatments as in experiment 1, except pigs were fed the high-fiber diet until day 24, 19, 14, 9, or 0 before slaughter and then switched to the corn-soybean meal diet. Pigs fed the high-fiber diet throughout had decreased average daily gain and G:F (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet. For pigs initially fed the high-fiber diet and then switched to the low-fiber corn-soybean meal diet, G:F tended to improve (linear; P = 0.070) as withdrawal period increased. Pigs fed the high-fiber diet throughout had decreased HCW (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet and HCW marginally increased (quadratic; P = 0.077) as withdrawal period increased. In summary, switching pigs from a high-fiber diet to a corn-soybean meal diet for up to 24 d before market increased carcass yield (experiment 1) or HCW (experiment 2) with the improvement most prominent during the first 5 to 9 d after withdrawal.

  12. Correlation between agricultural markets in dynamic perspective-Evidence from China and the US futures markets

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Lin; Wang, Dong-Hua; Tu, Jing-Qing; Li, Sai-Ping

    2016-12-01

    Emerging as the earliest futures markets, agricultural futures markets play an important role in risk aversion and price discovery. With the integration of global economy, the linkage between domestic and international futures markets becomes closer than ever. By using the thermal optimal path (TOP) method, this paper selects soybean, corn and wheat as the representatives to study the dynamic lead-lag relationship between the Chinese and American markets in both returns and volatility. The results indicate that: (1) For the futures return, different kinds of agricultural futures lead-lag relationship between China and the US varied before 2014 both in direction and order in different time periods. However, China leads the US for all the three kinds we study after 2014. (2) Agricultural commodities subject to less import restrictions and government regulations in China such as soybean are more susceptible to the fluctuations from the international markets. On the other hand, lower foreign trade openness and more government regulation species such as wheat are less affected by fluctuations from outside. (3) The volatility transmission from the US to China wheat futures market takes longer time than soybean, which suggests that China's soybean futures market is more closely linked to the international agricultural futures market than wheat.

  13. 7 CFR 810.1002 - Definition of other terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...

  14. 7 CFR 810.1002 - Definition of other terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...

  15. 7 CFR 810.1002 - Definition of other terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...

  16. Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff.

    PubMed

    Shipitalo, Martin J; Malone, Robert W; Owens, Lloyd B

    2008-01-01

    Residual herbicides used in the production of soybean [Glycine max (L.) Merr] and corn (Zea mays L.) are often detected in surface runoff at concentrations exceeding their maximum contaminant levels (MCL) or health advisory levels (HAL). With the advent of transgenic, glyphosate-tolerant soybean and glufosinate-tolerant corn this concern might be reduced by replacing some of the residual herbicides with short half-life, strongly sorbed, contact herbicides. We applied both herbicide types to two chiseled and two no-till watersheds in a 2-yr corn-soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat (Triticum aestivum L.)-red clover (Trifolium pratense L.) rotation and monitored herbicide losses in runoff water for four crop years. In soybean years, average glyphosate loss (0.07%) was approximately 1/7 that of metribuzin (0.48%) and about one-half that of alachlor (0.12%), residual herbicides it can replace. Maximum, annual, flow-weighted concentration of glyphosate (9.2 microg L(-1)) was well below its 700 microg L(-1) MCL and metribuzin (9.5 microg L(-1)) was well below its 200 microg L(-1) HAL, whereas alachlor (44.5 microg L(-1)) was well above its 2 microg L(-1) MCL. In corn years, average glufosinate loss (0.10%) was similar to losses of alachlor (0.07%) and linuron (0.15%), but about one-fourth that of atrazine (0.37%). Maximum, annual, flow-weighted concentration of glufosinate (no MCL) was 3.5 microg L(-1), whereas atrazine (31.5 microg L(-1)) and alachlor (9.8 microg L(-1)) substantially exceeded their MCLs of 3 and 2 microg L(-1), respectively. Regardless of tillage system, flow-weighted atrazine and alachlor concentrations exceeded their MCLs in at least one crop year. Replacing these herbicides with glyphosate and glufosinate can reduce the occurrence of dissolved herbicide concentrations in runoff exceeding drinking water standards.

  17. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  18. 7 CFR 810.1002 - Definition of other terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures...-damaged, or otherwise materially damaged. (g) Wild oats. Seeds of Avena fatua L. and A. sterillis L...

  19. 7 CFR 810.1002 - Definition of other terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures...-damaged, or otherwise materially damaged. (g) Wild oats. Seeds of Avena fatua L. and A. sterillis L...

  20. Agronomic characterization of the Argentina Indicator Region. [U.S. corn belt and Argentine pampas

    NASA Technical Reports Server (NTRS)

    Hicks, D. R. (Principal Investigator)

    1982-01-01

    An overview of the Argentina indicator region including information on topography, climate, soils and vegetation is presented followed by a regionalization of crop livestock land use. Corn/soybean production and exports as well as agricultural practices are discussed. Similarities and differences in the physical agronomic scene, crop livestock land use and agricultural practices between the U.S. corn belt and the Argentine pampa are considered. The Argentine agricultural economy is described. Crop calendars for the Argentina indicator region, an accompanying description, notes on crop-livestock zones, wheat production, field size, and agricultural problems and practices are included.

  1. The CITARS effort by the environmental research institute of Michigan

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Rice, D. P.; Cicone, R. C.

    1975-01-01

    The objectives of the research task for crop identification technology assessment for remote sensing are outlined. Data gathered by the Landsat 1 multispectral scanner over the U.S. Corn Belt during 1973 is described, and procedures for recognition processing of the data is discussed in detail. The major crops of prime interest were corn and soybeans; they were recognized with different levels of accuracy throughout the growing season, but particularly during late August. Wheat was the major crop of interest in early June.

  2. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    PubMed

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  3. Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA.

    PubMed

    Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville; Kravchenko, Alexandra N; Robertson, G Philip

    2016-11-01

    Differences in soil nitrous oxide (N 2 O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2 O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn-soybean-wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2 O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2 O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30-80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop × management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2 O-N ha -1  yr -1 and were best predicted by IPCC Tier 1 and ΔEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NO3- pools (r 2  = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2 O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  5. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure.

    PubMed

    Jaworski, N W; Liu, D W; Li, D F; Stein, H H

    2016-07-01

    An experiment was conducted to determine effects on DE, ME, and NE for growing pigs of adding 15 or 30% wheat bran to a corn-soybean meal diet and to compare values for DE, ME, and NE calculated using the difference procedure with values obtained using linear regression. Eighteen barrows (54.4 ± 4.3 kg initial BW) were individually housed in metabolism crates. The experiment had 3 diets and 6 replicate pigs per diet. The control diet contained corn, soybean meal, and no wheat bran. Two additional diets were formulated by mixing 15 or 30% wheat bran with 85 or 70% of the control diet, respectively. The experimental period lasted 15 d. During the initial 7 d, pigs were adapted to their experimental diets and housed in metabolism crates and fed 573 kcal ME/kg BW per day. On d 8, metabolism crates with the pigs were moved into open-circuit respiration chambers for measurement of O consumption and CO and CH production. The feeding level was the same as in the adaptation period, and feces and urine were collected during this period. On d 13 and 14, pigs were fed 225 kcal ME/kg BW per day, and pigs were then fasted for 24 h to obtain fasting heat production. Results of the experiment indicated that the apparent total tract digestibility of DM, GE, crude fiber, ADF, and NDF linearly decreased ( ≤ 0.05) as wheat bran inclusion increased in the diets. The daily O consumption and CO and CH production by pigs fed increasing concentrations of wheat bran linearly decreased ( ≤ 0.05), resulting in a linear decrease ( ≤ 0.05) in heat production. The DE (3,454, 3,257, and 3,161 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively for diets containing 0, 15, and 30% wheat bran, respectively), ME (3,400, 3,209, and 3,091 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively), and NE (1,808, 1,575, and 1,458 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively) of diets decreased (linear, ≤ 0.05) as wheat bran inclusion increased. The DE, ME, and NE of wheat bran determined using the difference procedure were 2,168, 2,117, and 896 kcal/kg, respectively, and these values were within the 95% confidence interval of the DE (2,285 kcal/kg), ME (2,217 kcal/kg), and NE (961 kcal/kg) estimated by linear regression. In conclusion, increasing the inclusion of wheat bran in a corn-soybean meal based diet reduced energy and nutrient digestibility and heat production as well as DE, ME, and NE of diets, but values for DE, ME, and NE for wheat bran determined using the difference procedure were not different from values determined using linear regression.

  6. Transport and transformation of nutrients and sediment in two agricultural watersheds in northeast Arkansas

    USDA-ARS?s Scientific Manuscript database

    Agriculture is vital to Arkansas economy as it contributes $20 billion annually, double the average national contribution to the state GDP. Arkansas is ranked in the top 5 in rice, cotton seed and sorghum, and top 20 in soybean, corn for grain, and wheat production nationally. Despite the importance...

  7. 7 CFR 1421.7 - Requesting marketing assistance loans and loan deficiency payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... harvested: barley, canola, flaxseed, oats, rapeseed, crambe, sesame seed, and wheat. (2) May 31 of the year following the year in which the following crops are normally harvested: corn, grain sorghum, mustard seed, rice, safflower, soybeans, sunflower seed, dry peas, lentils, and chickpeas. (3) January 31 of the year...

  8. 7 CFR 1421.7 - Requesting marketing assistance loans and loan deficiency payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... harvested: barley, canola, flaxseed, oats, rapeseed, crambe, sesame seed, and wheat. (2) May 31 of the year following the year in which the following crops are normally harvested: corn, grain sorghum, mustard seed, rice, safflower, soybeans, sunflower seed, dry peas, lentils, and chickpeas. (3) January 31 of the year...

  9. Relating stream microbial ecology to land-use in the Choptank River Watershed

    USDA-ARS?s Scientific Manuscript database

    The Choptank River is an estuary and tributary on the Eastern Shore of the Chesapeake Bay whose mouth is a tidal embayment that spans 2057 km2. Approximately 60% of land use in the Choptank River Watershed is agricultural, with large acreages of corn (Zea mays), soybean (Glycine max), wheat (Tritic...

  10. Specialty oilseed crops provide an attractive source of pollen for beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The continuing pollinator crisis is due, in part, to the lack of year-round floral resources. In intensive farming regions, such as the Upper Midwest (UMW) of the USA, natural and pastoral vegetation largely has been replaced by annual crops such as corn, soybean, and wheat. Neither the energy (nect...

  11. Long-term impacts of cropping systems and landscape positions on grain crop production on claypan soils

    USDA-ARS?s Scientific Manuscript database

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  12. Potential benefits of remote sensing: Theoretical framework and empirical estimate

    NASA Technical Reports Server (NTRS)

    Eisgruber, L. M.

    1972-01-01

    A theoretical framwork is outlined for estimating social returns from research and application of remote sensing. The approximate dollar magnitude is given of a particular application of remote sensing, namely estimates of corn production, soybeans, and wheat. Finally, some comments are made on the limitations of this procedure and on the implications of results.

  13. Effects of broiler litter ash, layer manure ash and calcium phosphate on corn, wheat and soybean growth, phosphorus and arsenic uptake

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is being incinerated in order to reduce excess litter and to increase the percentage of renewable fuel used to generate electricity. Ash from incinerated litter has been effective in increasing crop growth. However, there is no current literature comparing phosphorus availability fr...

  14. Selection of the Argentine indicator region

    NASA Technical Reports Server (NTRS)

    Ramirez, C. J.; Reed, C. R. (Principal Investigator)

    1982-01-01

    Determined from available Argentine crop statistics, selection of the Indicator Region was based on the highest wheat, corn, and soybean producing provinces, which were: Buenos Aires, Cordoba, Entre Rios, and Santa Fe. Each province in Argentina was examined for the availability of LANDSAT data; area, yield and production statistics; crop calendars; and other ancillary data. The Argentine Indicator Region is described.

  15. Combined active and passive microwave remote sensing of soil moisture for vegetated surfaces at L-band

    USDA-ARS?s Scientific Manuscript database

    The distorted Born approximation (DBA) combined with the numerical solutions of Maxwell equations (NMM3D) has been used for the radar backscattering model for the SMAP mission. The models for vegetated surfaces such as wheat, grass, soybean and corn have been validated with the Soil Moisture Active ...

  16. The Research and Application of Sustainable Long-release Carbon Material with Agricultural Waste

    NASA Astrophysics Data System (ADS)

    Wen, Z.

    2017-12-01

    (1) The element analysis shown that ten kinds of agricultural wastes containing a certain amount of C, N, H elements, the highest content of C element, and t value ranges from 36.02% 36.02%, and the variation of C, N, H elements content in difference materials was not significant. The TOC concentration of sugar cane was up to 38.66 mg·g-1, and quality ratio was 39‰, significantly lower than C elements content. The released TOC quality of the rest materials were 2.36 2.36 mg·g-1, and the order from high to low were the soybean straw, rice straw, corn straw, rice husk, poplar branches, wheat straw, reeds, corn cob and wood chips respectively. The long-term leaching experiment of selected Optimized agricultural waste showed that the TOC content in leaching solution rise rapidly to peak value and was stable afterwards, with the concentration of 4.59 19.46 mg·g-1. The TOC releasing amount order was same with the short-term leaching experiment. (2) The releasing of nitrate nitrogen in ten kinds of agricultural waste was low (< 0.08mg·g-1), among which corn straw was up to 0.12mg·g-1, and the rest were all below 0.04mg·g-1 without accumulation. Most of the ammonia nitrogen concentration in leachate was lower than 0.3mg·g-1. The kjeldahl nitrogen in the corn straw, soybean straw, rice straw, reed, rice husk, and sugar cane leachate (0.81 1.65mg·g-1) were higher than that of poplar branches, corn cob and wood chips (< 0.30mg·g-1). The organic composition analysis of above carbon source shown that organic acid in leachate was mainly formic acid, acetic acid, oxalic acid, fumaric acid and other small molecule organic acids, and sugars was mainly cellobiose, glucose, fructose and xylose. Substance concentration was higher in sugar cane leachate, and the small molecular organic acid concentration was higher in the corn straw, rice husk and wheat straw leachate. Above all, it can be concluded that the sugar cane, corn straw, rice husk, wheat straw, corn cob, wood were ideal carbon source material in ten kinds of agricultural.

  17. Modeling the backscattering and transmission properties of vegetation canopies

    NASA Technical Reports Server (NTRS)

    Allen, C. T.; Ulaby, F. T.

    1984-01-01

    Experimental measurements of canopy attenuation at 10.2 GHz (X-band) for canopies of wheat and soybeans, experimental observations of the effect upon the microwave backscattering coefficient (sigma) of free water in a vegetation canopy, and experimental measurements of sigma (10.2 GHz, 50 deg, VV and VH polarization) of 30 agricultural fields over the growing season of each crop are discussed. The measurements of the canopy attenuation through wheat independently determined the attenuation resulting from the wheat heads and that from the stalks. An experiment conducted to simulate the effects of rain or dew on sigma showed that sigma increases by about 3 dB as a result of spraying a vegetation canopy with water. The temporal observations of sigma for the 30 agricultural fields (10 each of wheat, corn, and soybeans) indicated fields of the same crop type exhibits similar temporal patterns. Models previously reported were tested using these multitemporal sigma data, and a new model for each crop type was developed and tested. The new models proved to be superior to the previous ones.

  18. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.

    PubMed

    Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip

    2017-01-31

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.

  19. Weight Maintenance: Determinants of Success

    DTIC Science & Technology

    2005-12-15

    inundating the general public. In addition, the heavily promoted sweetened breakfast cereals, salty snacks, candy, desserts, fast food and sugar -containing...34Each year about $20 billion of our taxes are spent to subsidize the production of rice, soybeans, sugar , wheat and -- above all -- corn. No such subsidy...FE R E N C E S ............................................................................... . . 35 LIST OF TABLES Table Page I Increase in

  20. 7 CFR 810.1202 - Definition of other terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. (f) Sieve—0.064 × 3/8 oblong-hole sieve. A metal sieve 0.032 inch thick with oblong perforations 0.064 by 0.375 (3/8) inch. (g) Thin rye. Rye and other matter that passes through a 0.064 × 3/8 oblong-hole sieve after...

  1. 7 CFR 810.1202 - Definition of other terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. (f) Sieve—0.064 × 3/8 oblong-hole sieve. A metal sieve 0.032 inch thick with oblong perforations 0.064 by 0.375 (3/8) inch. (g) Thin rye. Rye and other matter that passes through a 0.064 × 3/8 oblong-hole sieve after...

  2. 7 CFR 810.1202 - Definition of other terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. (f) Sieve—0.064 × 3/8 oblong-hole sieve. A metal sieve 0.032 inch thick with oblong perforations 0.064 by 0.375 (3/8) inch. (g) Thin rye. Rye and other matter that passes through a 0.064 × 3/8 oblong-hole sieve after...

  3. 7 CFR 810.1202 - Definition of other terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. (f) Sieve—0.064 × 3/8 oblong-hole sieve. A metal sieve 0.032 inch thick with oblong perforations 0.064 by 0.375 (3/8) inch. (g) Thin rye. Rye and other matter that passes through a 0.064 × 3/8 oblong-hole sieve after...

  4. 17 CFR Appendix B to Part 43 - Enumerated Physical Commodity Contracts and Other Contracts

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Commodity Contracts and Other Contracts Enumerated Physical Commodity Contracts Agriculture ICE Futures U.S. Cocoa ICE Futures U.S. Coffee C Chicago Board of Trade Corn ICE Futures U.S. Cotton No. 2 ICE Futures U... Soybean Oil ICE Futures U.S. Sugar No. 11 ICE Futures U.S. Sugar No. 16 Chicago Board of Trade Wheat...

  5. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    NASA Astrophysics Data System (ADS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-12-01

    Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  6. Overview: Risk factors and historic levels of pressure from insect pests of seedling corn, cotton, soybean, and wheat in the U.S.

    USDA-ARS?s Scientific Manuscript database

    The use of neonicotinoid insecticides in the U.S. has grown by about a factor of four since the mid-2000s. Seed treatments account for a significant fraction of overall insecticide application to crops and a large proportion of major U.S. crops are now planted using seed treated with neonicotinoids....

  7. Optimization of dietary zinc for egg production and antioxidant capacity in Chinese egg-laying ducks fed a diet based on corn-wheat bran and soybean meal.

    PubMed

    Chen, W; Wang, S; Zhang, H X; Ruan, D; Xia, W G; Cui, Y Y; Zheng, C T; Lin, Y C

    2017-07-01

    The aim of this study was to evaluate the effect of zinc supplementation on productive performance and antioxidant status in laying ducks. Five-hundred-four laying ducks were divided into 7 treatments, each containing 6 replicates of 12 ducks. The ducks were caged individually and fed a corn-soybean meal and wheat bran basal diet (37 mg Zn/kg) or the basal diet supplemented with 15, 30, 45, 60, 75, or 90 mg Zn/kg (as zinc sulfate). During the early laying period of 10 d (daily egg production <80%), egg production, daily egg mass, and FCR increased quadratically with increasing dietary Zn levels (P < 0.05). The highest egg production and daily egg weight were obtained when 30 or 45 mg Zn/kg diet was supplemented, with lowest FCR. Similarly, the highest egg production and daily egg mass were observed in the group supplemented with 30 or 45 mg Zn/kg during the peak laying period of the subsequent 120 d (daily egg production >80%). Average egg weight and feed intake did not differ among the groups of graded Zn supplementation.The egg quality was not affected by dietary Zn, including the egg shape index, Haugh unit, yolk color score, egg composition, and shell thickness. The activities of plasma activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) increased in a quadratic manner (P < 0.001) with increasing supplemental Zn. Plasma concentration of Zn increased quadratically (P < 0.05) as dietary Zn increased. The hepatic activity of Cu/Zn-SOD and GSH-PX increased quadratically (P < 0.05) with increasing dietary Zn. Plasma Zn concentrations were positively correlated with activities of T-SOD (P < 0.05), and positively with plasma Cu. Plasma concentration of reduced glutathione was correlated with plasma Cu. In conclusion, supplementation of Zn at 30 or 45 mg/kg to a corn-wheat bran and soybean basal diet may improve the productive performance and enhance the antioxidant capacity. © 2017 Poultry Science Association Inc.

  8. Establishment trial of an oak-pine/soybean-corn-wheat alley-cropping system in the upper coastal plain of North Carolina

    Treesearch

    H.D. Stevenson; D.J. Robison; F.W. Cubbage; J.P. Mueller; M.G. Burton; M.H. Gocke

    2013-01-01

    Alley cropping may prove useful in the Southeast United States, providing multiple products and income streams, as well as affording sustainable land use alternatives to conventional farming. An alley-cropping system may be a good alternative in agriculture because of the benefits provided by trees to crops and soils, as well as the income generated from wood products...

  9. JPRS Report, China

    DTIC Science & Technology

    1989-10-31

    technology of deep and inclined well drilling on land and sea, and the popularization of break spinning and air-jet weaving. Apart from this, 70 percent of...husked sorghum; millet and millet con- verted to husked millet , and other raw grains and raw grains converted to grain products. Tubers included sweet...threshed, but that had not yet been milled, and that could be directly eaten without being processed. Wheat, paddy, soybeans, sorghum, millet , corn, broad

  10. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  11. Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.

    PubMed

    Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2014-01-01

    The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2.

  12. Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images

    NASA Astrophysics Data System (ADS)

    Shang, Jiali; Liu, Jiangui; Huffman, Ted; Qian, Budong; Pattey, Elizabeth; Wang, Jinfei; Zhao, Ting; Geng, Xiaoyuan; Kroetsch, David; Dong, Taifeng; Lantz, Nicholas

    2014-01-01

    This study investigates the use of two different optical sensors, the multispectral imager (MSI) onboard the RapidEye satellites and the operational land imager (OLI) onboard the Landsat-8 for mapping within-field variability of crop growth conditions and tracking the seasonal growth dynamics. The study was carried out in southern Ontario, Canada, during the 2013 growing season for three annual crops, corn, soybeans, and winter wheat. Plant area index (PAI) was measured at different growth stages using digital hemispherical photography at two corn fields, two winter wheat fields, and two soybean fields. Comparison between several conventional vegetation indices derived from concurrently acquired image data by the two sensors showed a good agreement. The two-band enhanced vegetation index (EVI2) and the normalized difference vegetation index (NDVI) were derived from the surface reflectance of the two sensors. The study showed that EVI2 was more resistant to saturation at high biomass range than NDVI. A linear relationship could be used for crop green effective PAI estimation from EVI2, with a coefficient of determination (R2) of 0.85 and root-mean-square error of 0.53. The estimated multitemporal product of green PAI was found to be able to capture the seasonal dynamics of the three crops.

  13. Evaluation of limit feeding varying levels of distillers dried grains with solubles in non-feed-withdrawal molt programs for laying hens.

    PubMed

    Mejia, L; Meyer, E T; Studer, D L; Utterback, P L; Utterback, C W; Parsons, C M; Koelkebeck, K W

    2011-02-01

    An experiment was conducted with 672 Hy-Line W-36 Single Comb White Leghorn hens (69 wk of age) to evaluate the effects of feeding varying levels of corn distillers dried grains with solubles (DDGS) with corn, wheat middlings, and soybean hulls on long-term laying hen postmolt performance. The control molt treatment consisted of a 47% corn:47% soybean hulls (C:SH) diet fed ad libitum for 28 d. Hens fed the other 7 treatments were limit fed 65 g/hen per day for 16 d, and then fed 55 g/hen per day for 12 d. Hens on treatments 2 and 3 were fed 49% C:35% wheat middlings (WM) or SH:10% DDGS diets (C:WM:10DDGS, C:SH:10DDGS). Hens on treatments 4 and 5 were fed 49% C:25% WM or SH:20% DDGS diets (C:WM:20DDGS, C:SH:20DDGS). Those on treatments 6 and 7 were fed 47% C:47% DDGS (C:DDGS) or 47% WM:47% DDGS (WM:DDGS) diets. Those on treatment 8 were fed a 94% DDGS diet. At 28 d, all hens were fed a corn-soybean meal layer diet (16% CP) and production performance was measured for 36 wk. None of the hens fed the molt diets went completely out of production, and only the C:SH and C:SH:10DDGS molt diets decreased hen-day egg production to below 5% by wk 4 of the molt period. Postmolt egg production was lowest (P < 0.05) for the C:WM:20DDGS treatment. No differences (P > 0.05) in egg weights were detected among treatments throughout the postmolt period. In addition, no consistent differences were observed among treatments for egg mass throughout the postmolt period. Overall results of this study indicated that limit feeding diets containing DDGS at levels of 65 or 55 g/hen per day during the molt period did not cause hens to totally cease egg production.

  14. Importing food damages domestic environment: Evidence from global soybean trade.

    PubMed

    Sun, Jing; Mooney, Harold; Wu, Wenbin; Tang, Huajun; Tong, Yuxin; Xu, Zhenci; Huang, Baorong; Cheng, Yeqing; Yang, Xinjun; Wei, Dan; Zhang, Fusuo; Liu, Jianguo

    2018-05-22

    Protecting the environment and enhancing food security are among the world's Sustainable Development Goals and greatest challenges. International food trade is an important mechanism to enhance food security worldwide. Nonetheless, it is widely concluded that in international food trade importing countries gain environmental benefits, while exporting countries suffer environmental problems by using land and other resources to produce food for exports. Our study shows that international food trade can also lead to environmental pollution in importing countries. At the global level, our metaanalysis indicates that there was increased nitrogen (N) pollution after much farmland for domestically cultivated N-fixing soybeans in importing countries was converted to grow high N-demanding crops (wheat, corn, rice, and vegetables). The findings were further verified by an intensive study at the regional level in China, the largest soybean-importing country, where the conversion of soybean lands to corn fields and rice paddies has also led to N pollution. Our study provides a sharp contrast to the conventional wisdom that only exports contribute substantially to environmental woes. Our results suggest the need to evaluate environmental consequences of international trade of all other major goods and products in all importing countries, which have significant implications for fundamental rethinking in global policy-making and debates on environmental responsibilities among consumers, producers, and traders across the world.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville

    Differences in soil nitrous oxide (N 2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop 9 management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and DEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NOmore » $$-\\atop{3}$$ pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.« less

  16. A Decade of Carbon Flux Measurements with Annual and Perennial Crop Rotations on the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Tenuta, M.; Gao, X.; Gervais, M.

    2016-12-01

    The Fluxnet database has over 100 cropland sites, some of which have long-term (over a decade) measurements. Carbon neutrality is one goal of sustainable agriculture, although measurements over many annual cropping systems have indicated that soil carbon is often lost. Croplands are complex systems because the CO2 exchange depends on the type of crop, soil, weather, and management decisions such as planting date, nutrient fertilization and pest management strategy. Crop rotations are often used to decrease pest pressure, and can range from a simple 2-crop system, to have 4 or more crops in series. Carbon dioxide exchange has been measured using the flux-gradient technique since 2006 in agricultural systems in Manitoba, Canada. Two cropping systems are being followed: one that is a rotation of annual crops (corn, faba bean, spring wheat, rapeseed, barley, spring wheat, corn, soybean, spring wheat, soybean); and the other with a perennial phase of alfalfa/grass in years 3 to 6. Net ecosystem production ranged from a gain of 330 g C m-2 y-1 in corn to a loss of 75 g C m-2 y-1 in a poor spring-wheat crop. Over a decade, net ecosystem production for the annual cropping system was not significantly different from zero (carbon neutral), but the addition of the perennial phase increased the sink to 130 g C m-2 y-1. Once harvest removals were included, there was a net loss of carbon ranging from 77 g C m-2 y-1 in the annual system to 52 g C m-2 y-1 in the annual-perennial system; but neither of these were significantly different from zero. Termination of the perennial phase of the rotation only caused short-term increases in respiration. We conclude that both these systems were close to carbon-neutral over a decade even though they were tilled with a short growing season (90 to 130 days). We discuss the need for more datasets on agricultural systems to inform management options to increase the soil carbon sink.

  17. Louisville, KY, USA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The meandering Ohio River bisecting this image is the border between Kentucky and Indiana. Louisville, KY (38.5N, 86.0W) on the south shore, is the main city seen in this predominately agricultural region where much of the native hardwood forests have been preserved in the hilly terrain. The main crops in this region include corn, alfalfa, wheat and soybeans. The dark rectangle in south Indiana near the river is The U.S. Army's Jefferson Proving Ground.

  18. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 30 Corn, pop, grain 0.02 Corn, pop, stover 30 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  19. NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn

    NASA Technical Reports Server (NTRS)

    Stuckey, M. R.; Anderson, E. N.

    1975-01-01

    Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery.

  20. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Corn, pop, grain 0.02 Corn, pop, stover 4.5 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  1. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Corn, pop, grain 0.02 Corn, pop, stover 4.5 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  2. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing Class I heat shock protein GroESL.

    PubMed

    Suo, Yukai; Fu, Hongxin; Ren, Mengmeng; Yang, Xitong; Liao, Zhengping; Wang, Jufang

    2018-02-01

    Lignocellulosic biomass is the most abundant and renewable substrate for biological fermentation, but the inhibitors present in the lignocellulosic hydrolysates could severely inhibit the cell growth and productivity of industrial strains. This study confirmed that overexpressing of native groESL in Clostridium tyrobutyricum could significantly improve its tolerance to lignocellulosic hydrolysate-derived inhibitors, especially for phenolic compounds. Consequently, ATCC 25755/groESL showed a better performance in butyric acid fermentation with hydrolysates of corn cob, corn straw, rice straw, wheat straw, soybean hull and soybean straw, respectively. When corn straw and rice straw hydrolysates, which showed strong toxicity to C. tyrobutyricum, were used as the substrates, 29.6 g/L and 30.1 g/L butyric acid were obtained in batch fermentation, increased by 26.5% and 19.4% as compared with the wild-type strain, respectively. And more importantly, the butyric acid productivity reached 0.31 g/L·h (vs. 0.20-0.21 g/L·h for the wild-type strain) due to the shortened lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pest Control in Corn and Soybeans: Weeds - Insects - Diseases.

    ERIC Educational Resources Information Center

    Doersch, R. E.; And Others

    This document gives the characteristics and application rates for herbicides used to control annual weeds in corn, annual and perennial broadleaf weeds in corn, quackgrass and yellow nutsedge in corn, and annual weeds in soybeans. It also gives insecticide use information for corn and soybeans. A brief discussion of disease control in corn and…

  4. Corn and soybean rotation under reduced tillage management: impacts on soil properties, yield, and net return

    USDA-ARS?s Scientific Manuscript database

    A 4-yr field study was conducted from 2007 to 2010 at Stoneville, MS to examine the effects of rotating corn and soybean under reduced tillage conditions on soil properties, yields, and net return. The six rotation systems were continuous corn (CCCC), continuous soybean (SSSS), corn-soybean (CSCS),...

  5. Potential for the use of germinated wheat and soybeans to enhance human nutrition.

    PubMed

    Finney, P L

    1978-01-01

    Wheat and soybeans are the major agricultural exports of the United States. The U.S. sells more of each crop than any other nation. Soybeans are the main staple in China, but the U.S. sells more soybeans than China grows. For hundreds of millions of other people, wheat is the main staple. And yet, most Americans eat whole grains of neither wheat nor soybeans. In the United States, many nutrients of wheat and soybeans are lost in processing or are fed to animals. A highly significant share of the wheat nutrients are lost from the main foodstream when the germ and bran (with aleurone) portions are separated. Whole soybeans are carefully processed for food by only a handful of Americans.

  6. Using a time-series statistical framework to quantify trends and abrupt change in US corn, soybean, and wheat yields from 1970-2016

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ives, A. R.; Turner, M. G.; Kucharik, C. J.

    2017-12-01

    Previous studies have identified global agricultural regions where "stagnation" of long-term crop yield increases has occurred. These studies have used a variety of simple statistical methods that often ignore important aspects of time series regression modeling. These methods can lead to differing and contradictory results, which creates uncertainty regarding food security given rapid global population growth. Here, we present a new statistical framework incorporating time series-based algorithms into standard regression models to quantify spatiotemporal yield trends of US maize, soybean, and winter wheat from 1970-2016. Our primary goal was to quantify spatial differences in yield trends for these three crops using USDA county level data. This information was used to identify regions experiencing the largest changes in the rate of yield increases over time, and to determine whether abrupt shifts in the rate of yield increases have occurred. Although crop yields continue to increase in most maize-, soybean-, and winter wheat-growing areas, yield increases have stagnated in some key agricultural regions during the most recent 15 to 16 years: some maize-growing areas, except for the northern Great Plains, have shown a significant trend towards smaller annual yield increases for maize; soybean has maintained an consistent long-term yield gains in the Northern Great Plains, the Midwest, and southeast US, but has experienced a shift to smaller annual increases in other regions; winter wheat maintained a moderate annual increase in eastern South Dakota and eastern US locations, but showed a decline in the magnitude of annual increases across the central Great Plains and western US regions. Our results suggest that there were abrupt shifts in the rate of annual yield increases in a variety of US regions among the three crops. The framework presented here can be broadly applied to additional yield trend analyses for different crops and regions of the Earth.

  7. Assessment of soil attributes and crop productivity after diversification of the ubiquitous corn-soybean rotation in the northwestern U.S. Corn Belt

    USDA-ARS?s Scientific Manuscript database

    Highly specialized cash-grain production systems based upon corn-soybean rotations under tilled soil management are common in the northwestern U.S. Corn Belt. This study, initiated in 1997, was conducted to determine if diversification of this ubiquitous corn-soybean rotation would affect soil char...

  8. Maniac Talk - Cynthia Rosenzweig

    NASA Image and Video Library

    2016-06-22

    Cynthia Rosenzweig Maniac Lecture, June 22, 2016 NASA climate scientist Cynthia Rosenzweig presented a Maniac lecture entitled, "What If and So What? Climate Change and Corn/Wheat/Rice/Soybeans (and a few words on Cities)." Cynthia narrated how her background as agronomist set her on a path to investigate how a change in climate due to increased carbon dioxide would impact food security and how NASA missions and models have been valuable at every step of the way. Cynthia also touched briefly on climate change and cities.

  9. Louisville, KY, USA

    NASA Image and Video Library

    1973-06-22

    SL2-10-260 (22 June 1973) --- The meandering Ohio River bisecting this image is the border between Kentucky and Indiana. Louisville, KY (38.5N, 86.0W) on the south shore, is the main city seen in this predominately agricultural region where much of the native hardwood forests have been preserved in the hilly terrain. The main crops in this region include corn, alfalfa, wheat and soybeans. The dark rectangle in south Indiana near the river is The U.S. Army's Jefferson Proving Ground. Photo credit: NASA

  10. Physical properties of five grain dust types.

    PubMed Central

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  11. Change of digestive physiology in sea cucumber Apostichopus japonicus (Selenka) induced by corn kernels meal and soybean meal in diets

    NASA Astrophysics Data System (ADS)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Hou, Yiran; Wen, Bin

    2016-08-01

    The present study was conducted to determine the change of digestive physiology in sea cucumber Apostichopus japonicus (Selenka) induced by corn kernels meal and soybean meal in diets. Four experimental diets were tested, in which Sargassum thunbergii was proportionally replaced by the mixture of corn kernels meal and soybean meal. The growth performance, body composition and intestinal digestive enzyme activities in A. japonicus fed these 4 diets were examined. Results showed that the sea cucumber exhibited the maximum growth rate when 20% of S. thunbergii in the diet was replaced by corn kernels meal and soybean meal, while 40% of S. thunbergii in the diet can be replaced by the mixture of corn kernels meal and soybean meal without adversely affecting growth performance of A. japonicus. The activities of intestinal trypsin and amylase in A. japonicus can be significantly altered by corn kernels meal and soybean meal in diets. Trypsin activity in the intestine of A. japonicus significantly increased in the treatment groups compared to the control, suggesting that the supplement of corn kernels meal and soybean meal in the diets might increase the intestinal trypsin activity of A. japonicus. However, amylase activity in the intestine of A. japonicus remarkably decreased with the increasing replacement level of S. thunbergii by the mixture of corn kernels meal and soybean meal, suggesting that supplement of corn kernels meal and soybean meal in the diets might decrease the intestinal amylase activity of A. japonicus.

  12. Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.

    PubMed

    Xu, Junyi; Cao, Jijuan; Cao, Dongmei; Zhao, Tongtong; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2013-05-01

    In order to establish a specific identification method for genetically modified (GM) wheat, exogenous insert DNA and flanking sequence between exogenous fragment and recombinant chromosome of GM wheat B73-6-1 were successfully acquired by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. Newly acquired exogenous fragment covered the full-length sequence of transformed genes such as transformed plasmid and corresponding functional genes including marker uidA, herbicide-resistant bar, ubiquitin promoter, and high-molecular-weight gluten subunit. The flanking sequence between insert DNA revealed high similarity with Triticum turgidum A gene (GenBank: AY494981.1). A specific PCR detection method for GM wheat B73-6-1 was established on the basis of primers designed according to the flanking sequence. This specific PCR method was validated by GM wheat, GM corn, GM soybean, GM rice, and non-GM wheat. The specifically amplified target band was observed only in GM wheat B73-6-1. This method is of high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of GM wheat B73-6-1.

  13. Comparative growth characteristics and yield attributes of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) on different substrates in India.

    PubMed

    Jandaik, Savita; Singh, Rajender; Sharma, Mamta

    2013-01-01

    The present study investigated the effects of four forestry byproducts (sawdust of oak, mango, khair, and tuni) and three agricultural residues (paddy straw, wheat straw, and soybean waste) along with four supplements (wheat bran, rice bran, corn flour, and gram powder) on growth characteristics (spawn run and primordial formation) and yield of Ganoderma lucidum. There were significant differences (P=0.05) in yield regardless of substrates and supplements used in experimentation. Among substrates, agriculture residues supported better yield and biological efficiency of G. lucidum compared to forestry byproducts irrespective of the supplements. The highest yield (82.5 g) and biological efficiency (27.5%) were recorded from paddy straw supplemented with wheat bran, which invariably resulted in significantly higher yield compared to the unsupplemented check(s) or other supplements used in this study.

  14. Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA

    DOE PAGES

    Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville; ...

    2016-08-11

    Differences in soil nitrous oxide (N 2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop 9 management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and DEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NOmore » $$-\\atop{3}$$ pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.« less

  15. Effects of Crop Canopies on Rain Splash Detachment

    PubMed Central

    Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi

    2014-01-01

    Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2·h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields. PMID:24992386

  16. 78 FR 38483 - Area Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Area Risk Protection Insurance (ARPI) Basic Provisions, ARPI Barley Crop Insurance Provisions, ARPI Corn Crop Insurance Provisions, ARPI Cotton Crop Insurance Provisions, ARPI Forage Crop Insurance Provisions, ARPI Grain Sorghum Crop Insurance Provisions, ARPI Peanut Crop Insurance Provisions, ARPI Soybean Crop Insurance Provisions, and ARPI Wheat Crop Insurance Provisions to provide area yield protection and area revenue protection. These provisions will replace the Group Risk Plan (GRP) provisions in 7 CFR part 407, which includes the: GRP Basic Provisions, GRP Barley Crop Provisions, GRP Corn Crop Provisions, GRP Cotton Crop Provisions, GRP Forage Crop Provisions, GRP Peanut Crop Provisions, GRP Sorghum Crop Provisions, GRP Soybean Crop Provisions, and GRP Wheat Crop Provisions. The ARPI provisions will also replace the Group Risk Income Protection (GRIP) Basic Provisions, the GRIP Crop Provisions, and the GRIP-Harvest Revenue Option (GRIP-HRO). The GRP and GRIP plans of insurance will no longer be available. The intended effect of this action is to offer producers a choice of Area Revenue Protection, Area Revenue Protection with the Harvest Price Exclusion, or Area Yield Protection, all within one Basic Provision and the applicable Crop Provisions. This will reduce the amount of information producers must read to determine the best risk management tool for their operation and will improve the provisions to better meet the needs of insureds. The changes will apply for the 2014 and succeeding crop years.

  17. Effects of crop canopies on rain splash detachment.

    PubMed

    Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi

    2014-01-01

    Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2 · h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields.

  18. An analysis of spectral discrimination between corn and soybeans using a row crop reflectance model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.

    1983-01-01

    Reflectance calculations of soybeans and corn crops at two times during the growing season indicate that the high sensitivity of the thematic mapper mid-infrared band to exposed bare soil between soybean rows is most likely responsible for early season spectral discrimination of corn and soybean crops by this band.

  19. An analysis of spectral discrimination between corn and soybeans using a row crop reflectance model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.

    1985-01-01

    Reflectance calculations of soybeans and corn crops at two times during the growing season indicate that the high sensitivity of the thematic mapper mid-infrared band to exposed bare soil between soybean rows is most likely responsible for early season spectral discrimination of corn and soybean crops by this band.

  20. Dietary lysine requirement for 7-16 kg pigs fed wheat-corn-soybean meal-based diets.

    PubMed

    Kahindi, R K; Htoo, J K; Nyachoti, C M

    2017-02-01

    Two experiments were conducted to determine the lysine requirement of weaned pigs [Duroc × (Yorkshire × Landrace)] with an average initial BW of 7 kg and fed wheat-corn-soybean meal-based diets. The experiments were conducted for 21 days during which piglets had free access to diets and water. Average daily gain (ADG), average daily feed intake (ADFI) and gain to feed ratio (G:F) were determined on day 7, 14 and 21. Blood samples were collected on day 0 and 14 to determine plasma urea nitrogen (PUN) concentration. In experiment 1, 96 weaned pigs were housed four per pen and allocated to four dietary treatments with six replicates per treatment. The diets contained 0.99%, 1.23%, 1.51% and 1.81% standardized ileal digestible (SID) lysine, respectively, corrected analysed values. The rest of the AA were provided to meet the ideal AA ratio for protein accretion. Increasing dietary lysine content linearly increased (p < 0.05) ADG and G:F. In experiment 2, 90 piglets were housed three per pen and allocated to five dietary treatments with six replicates per treatment. The five diets contained 1.03%, 1.25%, 1.31%, 1.36% and 1.51% SID lysine, respectively, corrected analysed values. Increasing dietary lysine content linearly increased (p < 0.05) G:F, linearly decreased (p < 0.05) day-14 PUN and quadratically (p < 0.05) increased ADG and ADFI. The ADG data from experiment 2 were subjected to linear and quadratic broken-lines regression analyses, and the SID lysine requirement was determined to be 1.29% and 1.34% respectively. On average, optimal dietary SID lysine content for optimal growth of 7-16 kg weaned piglets fed wheat-corn-SBM-based diets was estimated to be 1.32%; at this level, the ADG and ADFI were 444 and 560 g, respectively, thus representing an SID lysine requirement, expressed on daily intake basis as, 7.4 g/day or 16.76 mg/g gain. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  1. Fiscal year 1981 US corn and soybeans pilot preliminary experiment plan, phase 1

    NASA Technical Reports Server (NTRS)

    Livingston, G. P.; Nedelman, K. S.; Norwood, D. F.; Smith, J. H. (Principal Investigator)

    1981-01-01

    A draft of the preliminary experiment plan for the foreign commodity production forecasting project fiscal year 1981 is presented. This draft plan includes: definition of the phase 1 and 2 U.S. pilot objectives; the proposed experiment design to evaluate crop calendar, area estimation, and area aggregation components for corn and soybean technologies using 1978/1979 crop-year data; a description of individual sensitivity evaluations of the baseline corn and soybean segment classification procedure; and technology and data assessment in support of the corn and soybean estimation technology for use in the U.S. central corn belt.

  2. 40 CFR 180.429 - Chlorimuron ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., except strawberry, subgroup 13-07H 0.02 Corn, field, forage 0.5 Corn, field, grain 0.01 Corn, field, stover 2.0 Grain, aspirated fractions 3.0 Peanut 0.02 Soybean, forage 0.45 Soybean, hay 1.8 Soybean, seed...

  3. 40 CFR 180.478 - Rimsulfuron; tolerances for residues

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the commodities. Commodity Parts per million Almond, hulls 0.09 Corn, field, forage 0.4 Corn, field, grain 0.1 Corn, field, stover 2.5 Fruit, citrus, group 10 0.01 Fruit, pome, group 11 0.01 Fruit, stone....1 Soybean, forage 0.25 Soybean, hay 1.2 Soybean, hulls 0.04 Soybean, seed 0.01 Tomato 0.05 (b...

  4. Corn ethanol production, food exports, and indirect land use change.

    PubMed

    Wallington, T J; Anderson, J E; Mueller, S A; Kolinski Morris, E; Winkler, S L; Ginder, J M; Nielsen, O J

    2012-06-05

    The approximately 100 million tonne per year increase in the use of corn to produce ethanol in the U.S. over the past 10 years, and projections of greater future use, have raised concerns that reduced exports of corn (and other agricultural products) and higher commodity prices would lead to land-use changes and, consequently, negative environmental impacts in other countries. The concerns have been driven by agricultural and trade models, which project that large-scale corn ethanol production leads to substantial decreases in food exports, increases in food prices, and greater deforestation globally. Over the past decade, the increased use of corn for ethanol has been largely matched by the increased corn harvest attributable mainly to increased yields. U.S. exports of corn, wheat, soybeans, pork, chicken, and beef either increased or remained unchanged. Exports of distillers' dry grains (DDG, a coproduct of ethanol production and a valuable animal feed) increased by more than an order of magnitude to 9 million tonnes in 2010. Increased biofuel production may lead to intensification (higher yields) and extensification (more land) of agricultural activities. Intensification and extensification have opposite impacts on land use change. We highlight the lack of information concerning the magnitude of intensification effects and the associated large uncertainties in assessments of the indirect land use change associated with corn ethanol.

  5. 40 CFR 180.1071 - Peanuts, Tree Nuts, Milk, Soybeans, Eggs, Fish, Crustacea, and Wheat; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Eggs, Fish, Crustacea, and Wheat; exemption from the requirement of a tolerance. 180.1071 Section 180... Peanuts, Tree Nuts, Milk, Soybeans, Eggs, Fish, Crustacea, and Wheat; exemption from the requirement of a..., tree nuts, milk, soybeans, eggs (including putrescent eggs), fish, crustacea, and wheat are exempted...

  6. 40 CFR 180.1071 - Peanuts, Tree Nuts, Milk, Soybeans, Eggs, Fish, Crustacea, and Wheat; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Eggs, Fish, Crustacea, and Wheat; exemption from the requirement of a tolerance. 180.1071 Section 180... Peanuts, Tree Nuts, Milk, Soybeans, Eggs, Fish, Crustacea, and Wheat; exemption from the requirement of a..., tree nuts, milk, soybeans, eggs (including putrescent eggs), fish, crustacea, and wheat are exempted...

  7. 40 CFR 180.609 - Fluoxastrobin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., subgroup 13-07G 1.9 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Leaf petioles subgroup 4B 4.0 Peanut 0.010 Peanut, hay 20.0 Peanut, refined oil 0.030 Soybean, forage 9.0 Soybean, hay 1.2 Soybean, hulls 0.20 Soybean, seed 0.05 Tomato, paste 1.5 Vegetable, fruiting, group 8 1.0...

  8. Effect of winter cover crops on nematode population levels in north Florida.

    PubMed

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P

  9. Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation.

    PubMed

    Liu, Y F; Zhao, H B; Liu, X M; You, W; Cheng, H J; Wan, F C; Liu, G F; Tan, X W; Song, E L; Zhang, X L

    2016-10-01

    The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle.

  10. An evaluation of corn earworm damage and thresholds in soybean

    NASA Astrophysics Data System (ADS)

    Adams, Brian Patrick

    Interactions between corn earworm, Helicoverpa zea (Boddie), and soybean, Glycine max L. (Merrill), were investigated in the Mid-South to evaluate thresholds and damage levels. Field studies were conducted in both indeterminate and determinate modern cultivars to evaluate damage, critical injury levels, and soybean response to simulated corn earworm injury. Field studies were also conducted to evaluate the response of indeterminate cultivars to infestations of corn earworm. Field studies were also conducted to investigate the relationship between pyrethroid insecticide application and corn earworm oviposition in soybean. Results of field studies involving simulated corn earworm damage indicated the need for a dynamic threshold that becomes more conservative as soybean phenology progressed through the reproductive growth stages. This suggested that soybean was more tolerant to fruit loss during the earlier reproductive stages and was able to compensate for fruit loss better during this time than at later growth stages. Results of field studies involving infestations of corn earworm indicated that current thresholds are likely too liberal. This resulted in economic injury level tables being constructed based upon a range of crop values and control costs, however, a general action threshold was also recommended for indeterminate soybean in the Mid-South. Field study results investigating the relationship of pyrethroid application and corn earworm oviposition indicated that even in the presence of an insecticide, corn earworm prefers to oviposit in the upper portion of the canopy, as well as on the leaves as opposed to all other plant parts, consistent with all previous literature.

  11. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  12. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    NASA Astrophysics Data System (ADS)

    Dold, C.; Hatfield, J.; Prueger, J. H.; Wacha, K.

    2017-12-01

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE) than soybean due to increased carboxylation efficiency and different crop management. The conjoined NEE may be measured with eddy covariance (EC) stations covering both crops, however, it is often unclear what the contribution of each crop is, as the CO2 source area remains unknown. The aim of this study was to quantify the contribution of CO2 fluxes from each crop for a conventional corn-soybean rotation system from 2007 - 2015. Therefore, the combined CO2 flux of three adjacent fields with annual corn-soybean rotation was measured with a 9.1 m EC tower (Flux 30). In the center of two of these fields, additional EC towers (Flux 10 and Flux 11) were positioned above the corn and soybean canopy to validate Flux 30 NEE. For each EC system the annual 90% NEE footprint area was calculated, footprints were partitioned among fields, and NEE separated accordingly. The average annual 90% footprint area of Flux 30, and Flux 10/11 corn and soybean was estimated to 206, 11 and 7 ha, respectively. The annual average (±SE) NEE of Flux 30 was -693 ± 47 g CO2 m-2 yr-1, of which 83% out of 90% originated from the three adjacent fields. Corn and soybean NEE measured at Flux 10 and 11 was -1124 ± 95 and 173 ± 73 g CO2 m-2 yr-1, respectively, and 89% and 90% originated from these fields. That demonstrates, that Flux 30 represents the combined NEE of a corn-soybean rotation, and Flux 10 and 11 measured NEE from a single crop. However, the share of Flux 30 NEE originating from corn and soybean grown on the Flux 10/11 fields was -192 ± 16 and -205 ± 18 g CO2 m-2 yr-1, indicating a substantial difference to single crop NEE. While it was possible to measure the NEE of a corn-soybean rotation with a tall EC tower, footprint partitioning could not retrieve NEE for each crop, probably due to differences in measurement height and footprint source area.

  13. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practicesmore » [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].« less

  14. Historical Agricultural Nitrogen Fertilizer Management in the Contiguous United States during 1850-2015.

    NASA Astrophysics Data System (ADS)

    Lu, C.; Cao, P.; Yu, Z.

    2017-12-01

    The United States has a century-long history of managing anthropogenic nitrogen (N) fertilizer to booster the crop production. Accurate characterization of N fertilizer use history could provide essential implications for N use efficiency (NUE) enhancement and N loss reduction. However, a spatially explicit time-series data remains lacking to describe how N fertilizer use varied among crop types, regions, and time periods. In this study, we therefore developed long-term gridded N management maps depicting N fertilizer application rate, timing, and ratio of fertilizer forms in nine major crops (i.e. corn, soybean, winter wheat, spring wheat, cotton, sorghum, rice, barley, and durum wheat) in the contiguous U.S. at a resolution of 1 km × 1 km during 1850-2015. We found that N application rates of the U.S. increased by approximately 34 times since 1940. Nonetheless, spatial analysis revealed that N-use hotspots have shifted from the West and Southeast to the Midwest and the Great Plains since 1900. Specifically, corn of the Corn Belt region received the most intensive N input in spring, followed by large N application amount in fall, implying a high N loss risk in this region. Moreover, spatiotemporal patterns of NH4+/NO3- ratio varied largely among regions. Generally, farmers have increasingly favored NH4+-form fertilizers over NO3- fertilizers since the 1940s. The N fertilizer use data developed in this study could serve as an essential input for modeling communities to fully assess the N addition impacts, and improve N management to alleviate environmental problems.

  15. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    USDA-ARS?s Scientific Manuscript database

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE, that is the annual sum of CO2 fluxes, the total carbon uptake minus total carbon respired by the plants-soil-ecosystem) than soybean due to increased carbon uptake efficiency...

  16. Comparison of corn, grain sorghum, soybean, and sunflower under limited irrigation.

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] constitute a large share of the annual total irrigated planted area in the central Great Plains. This study aimed to determine the effect of limited irrigation on grain yield, water use, and profitability of corn and soybean in comparison with ...

  17. 40 CFR 180.579 - Fenamidone; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of application of fenamidone to the crops in paragraph (a)(1). Commodity Parts per million Corn, field, forage 0.25 Corn, field, grain 0.02 Corn, field, stover 0.40 Corn, sweet, forage 0.15 Corn, sweet, kernel plus cob with husks removed 0.02 Corn, sweet, stover 0.20 Soybean, forage 0.15 Soybean, hay 0.25...

  18. Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges

    PubMed Central

    Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593

  19. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges.

    PubMed

    Venugopal, P Dilip; Coffey, Peter L; Dively, Galen P; Lamp, William O

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  20. 40 CFR 180.580 - Iodosulfuron-Methyl-Sodium; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Parts per million Corn, field, forage 0.05 Corn, field, grain 0.03 Corn, field, stover 0.05 Wheat, forage 0.10 Wheat, grain 0.02 Wheat, hay 0.05 Wheat, straw 0.05 (b) Section 18 emergency exemptions...

  1. Improved discrimination among similar agricultural plots using red-and-green-based pseudo-colour imaging

    NASA Astrophysics Data System (ADS)

    Doi, Ryoichi

    2016-04-01

    The effects of a pseudo-colour imaging method were investigated by discriminating among similar agricultural plots in remote sensing images acquired using the Airborne Visible/Infrared Imaging Spectrometer (Indiana, USA) and the Landsat 7 satellite (Fergana, Uzbekistan), and that provided by GoogleEarth (Toyama, Japan). From each dataset, red (R)-green (G)-R-G-blue yellow (RGrgbyB), and RGrgby-1B pseudo-colour images were prepared. From each, cyan, magenta, yellow, key black, L*, a*, and b* derivative grayscale images were generated. In the Airborne Visible/Infrared Imaging Spectrometer image, pixels were selected for corn no tillage (29 pixels), corn minimum tillage (27), and soybean (34) plots. Likewise, in the Landsat 7 image, pixels representing corn (73 pixels), cotton (110), and wheat (112) plots were selected, and in the GoogleEarth image, those representing soybean (118 pixels) and rice (151) were selected. When the 14 derivative grayscale images were used together with an RGB yellow grayscale image, the overall classification accuracy improved from 74 to 94% (Airborne Visible/Infrared Imaging Spectrometer), 64 to 83% (Landsat), or 77 to 90% (GoogleEarth). As an indicator of discriminatory power, the kappa significance improved 1018-fold (Airborne Visible/Infrared Imaging Spectrometer) or greater. The derivative grayscale images were found to increase the dimensionality and quantity of data. Herein, the details of the increases in dimensionality and quantity are further analysed and discussed.

  2. Profiling agricultural land cover change in the North Central U.S. using ten years of the Cropland Data Layer

    NASA Astrophysics Data System (ADS)

    Sandborn, A.; Ebinger, L.

    2016-12-01

    The Cropland Data Layer (CDL), produced by the USDA/National Agricultural Statistics Service, provides annual, georeferenced crop specific land cover data over the contiguous United States. Several analyses were performed on ten years (2007-2016) of CDL data in order to visualize and quantify agricultural change over the North Central region (North Dakota, South Dakota, and Minnesota). Crop masks were derived from the CDL and layered to produce a ten-year time stack of corn, soybeans, and spring wheat at 30m spatial resolution. Through numerous image analyses, a temporal profile of each crop type was compiled and portrayed cartographically. For each crop, analyses included calculating the mean center of crop area over the ten year sequence, identifying the first and latest year the crop was grown on each pixel, and distinguishing crop rotation patterns and replacement statistics. Results show a clear north-western expansion trend for corn and soybeans, and a western migration trend for spring wheat. While some change may be due to commonly practiced crop rotation, this analysis shows that crop footprints have extended into areas that were previously other crops, idle cropland, and pasture/rangeland. Possible factors contributing to this crop migration pattern include profit advantages of row crops over small grains, improved crop genetics, climate change, and farm management program changes. Identifying and mapping these crop planting differences will better inform agricultural best practices, help to monitor the latest crop migration patterns, and present researchers with a way to quantitatively measure and forecast future agricultural trends.

  3. Twin- or single-screw extrusion of raw soybeans and preconditioned soybean meal and corn as individual ingredients or as corn-soybean product blends in diets for weanling swine.

    PubMed

    Veum, T L; Serrano, X; Hsieh, F H

    2017-03-01

    Two 28-d experiments were conducted to evaluate the effects of extrusion of ground yellow corn, solvent-extracted soybean meal (SBM), and cracked whole soybeans (CWS) individually or as corn-soybean product blends on growth performance of weanling pigs. For Exp. 1, ground corn, SBM, and the corn-SBM blend were extruded at 137.5°C, 131.5°C, and 135.0°C, respectively, in a twin-screw extruder. Transit time was 60 s. Water was injected at 125 gmin during extrusion. The 5 treatments were the corn-SBM control diet and the diets with extruded (EX) corn + SBM, EX-SBM + corn, EX-corn + EX-SBM, and the EX-blend of corn-SBM. Ninety crossbred pigs with an initial average BW of 5.98 kg were allotted to 9 treatment replications with a barrow and gilt per pen. For Exp. 2, ground corn was preconditioned with water (10.0% of corn weight), and SBM was preconditioned with water and soybean oil (each at 20.0% of SBM weight) before extrusion. Raw CWS were not preconditioned. The corn, SBM, CWS, corn-SBM blend, and corn-CWS blend were extruded at 113.0°C, 132.0°C, 132.0°C, 88.0°C, and 102°C, respectively, with a single-screw extruder. Transit time was 30 s. The 8 isocaloric treatments were the corn-SBM control diet and the diets with EX-corn + SBM, EX-SBM + corn, EX-corn + EX-SBM, the EX-blend of corn-SBM, EX-CWS + corn, EX-CWS + EX-corn, and the EX-blend of corn-CWS. A total of 296 crossbred pigs with an initial average BW of 6.56 kg were allotted to 10 treatment replications. Sex and pigs per pen (3 or 4) were equalized within replication. Results for both experiments indicate that single- or twin-screw extrusion of ground corn or SBM as individual ingredients or as corn-SBM blends in diets for weanling pigs did not improve 28-d growth performance. However, for Exp. 2 weanling pigs fed the diets with EX-CWS + corn and EX-CWS + EX-corn had greater ( < 0.01) ADG and G:F, respectively, than pigs fed the corn-SBM control diet. The extrusion temperature of 102°C for the corn-CWS blend did not inactivate adequate protease inhibitors in CWS, and pigs fed that diet had poor growth performance. In conclusion, single-screw extrusion of CWS (132°C for 30 s) in diets for weanling pigs improved growth performance compared with pigs fed the corn-SBM control diet. However, twin- or single-screw extrusion of ground yellow corn or solvent-extracted SBM as individual ingredients or as corn-SBM blends in diets for weanling pigs did not improve growth performance compared with pigs fed the corn-SBM control diets.

  4. Regression and direct methods do not give different estimates of digestible and metabolizable energy values of barley, sorghum, and wheat for pigs.

    PubMed

    Bolarinwa, O A; Adeola, O

    2016-02-01

    Direct or indirect methods can be used to determine the DE and ME of feed ingredients for pigs. In situations when only the indirect approach is suitable, the regression method presents a robust indirect approach. Three experiments were conducted to compare the direct and regression methods for determining the DE and ME values of barley, sorghum, and wheat for pigs. In each experiment, 24 barrows with an average initial BW of 31, 32, and 33 kg were assigned to 4 diets in a randomized complete block design. The 4 diets consisted of 969 g barley, sorghum, or wheat/kg plus minerals and vitamins for the direct method; a corn-soybean meal reference diet (RD); the RD + 300 g barley, sorghum, or wheat/kg; and the RD + 600 g barley, sorghum, or wheat/kg. The 3 corn-soybean meal diets were used for the regression method. Each diet was fed to 6 barrows in individual metabolism crates for a 5-d acclimation followed by a 5-d period of total but separate collection of feces and urine in each experiment. Graded substitution of barley or wheat, but not sorghum, into the RD linearly reduced ( < 0.05) dietary DE and ME. The direct method-derived DE and ME for barley were 3,669 and 3,593 kcal/kg DM, respectively. The regressions of barley contribution to DE and ME in kilocalories against the quantity of barley DMI in kilograms generated 3,746 kcal DE/kg DM and 3,647 kcal ME/kg DM. The DE and ME for sorghum by the direct method were 4,097 and 4,042 kcal/kg DM, respectively; the corresponding regression-derived estimates were 4,145 and 4,066 kcal/kg DM. Using the direct method, energy values for wheat were 3,953 kcal DE/kg DM and 3,889 kcal ME/kg DM. The regressions of wheat contribution to DE and ME in kilocalories against the quantity of wheat DMI in kilograms generated 3,960 kcal DE/kg DM and 3,874 kcal ME/kg DM. The DE and ME of barley using the direct method were not different (0.3 < < 0.4) from those obtained using the regression method (3,669 vs. 3,746 and 3,593 vs. 3,647 kcal/kg DM, respectively). The direct method-derived DE and ME of sorghum were not different (0.5 < < 0.7) from those obtained using the regression method (4,097 vs. 4,145 and 4,042 vs. 4,066 kcal/kg DM, respectively). The direct method- and regression method-derived DE (3,953 and 3,960 kcal/kg DM, respectively) and ME (3,889 and 3,874 kcal/kg DM, respectively) of wheat were not different (0.8 < < 0.9). Results of these 3 experiments suggest that regression and direct methods do not give different estimates of DE and ME in barley, sorghum, and wheat for pigs.

  5. Effect of corn- and soybean hull-based creep feed and backgrounding diets on lifelong performance and carcass traits of calves from pasture and rangeland conditions

    USDA-ARS?s Scientific Manuscript database

    Three separate studies were conducted to investigate the life-long effect of creep feeding, creep feeding energy source (soybean hulls, SC, or corn, CC) and interactive effects of creep feed with backgrounding dietary energy source (soybean hulls, SBR, or corn, CBR) on calf growth performance, carca...

  6. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    Directional reflectance distributions spanning the entire existent hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using the rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Analysis of field data showed unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends were proposed. A 3-D model was developed and is unique in that it predicts: (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy; (2) the spectral absorption as a function of location within the scene; and (3) the directional spectral radiance as a function of the sensor's location within the scene. Initial verification of the model as applied to a soybean row crop showed that the simulated directional data corresponded relatively well in gross trends to the measured data. The model was expanded to include the anisotropic scattering properties of leaves as a function of the leaf orientation distribution in both the zenith and azimuth angle modes.

  7. Effects on performance of ground wheat with or without insoluble fiber or whole wheat in sequential feeding for laying hens.

    PubMed

    Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P

    2013-09-01

    Sequential feeding (SF) is an innovative system for laying hens consisting of nutrients separating energy, protein, and calcium supplies to fulfill nutrient requirements at the relevant time of day. In previous studies, hens received whole wheat in the morning and a balancer diet (rich in protein and calcium) in the afternoon. To improve SF utilization, the aim was to substitute whole wheat in the morning by an alternative energy supply: ground wheat and ground corn, with or without a proportion of whole wheat and insoluble fiber. The goal was to obtain the advantages observed in previous experiments with whole wheat [bigger gizzard, thinner hens, reduced feed conversion ratio (FCR)]. Four hundred thirty-two ISA Brown hens were housed in collective cages from 20 to 35 wk of age divided into 8 different treatments: a continuous control diet, a sequential diet with whole wheat in the morning, 3 wheat-based diets (ground wheat, ground wheat and 20% whole wheat, and ground wheat with 5% insoluble fiber) and 3 ground corn-based (ground corn, ground corn and 20% whole wheat, and ground corn with 5% insoluble fiber) provided in the morning. All sequential regimens received the same balancer diet rich in protein and calcium in the afternoon. Whole wheat SF gave the best results with an improved FCR compared with continuous control and all other SF diets. Wheat- and corn-based diets showed intermediate results between whole wheat SF and continuous feeding. Gizzard weight was higher and hens were lighter than with conventional continuous feeding, leading to an average FCR improvement of 3.2% compared with a continuous control. Thus, it is possible in SF diets to substitute, at least partially, whole wheat by ground wheat or ground corn with added insoluble fiber or some whole wheat, allowing more flexibility and economic optimization.

  8. A temporal/spectral analysis of small grain crops and confusion crops. [North Dakota

    NASA Technical Reports Server (NTRS)

    Johnson, W. R. (Principal Investigator)

    1981-01-01

    Spectral data from the LANDSAT-2 satellite were used to study the growth cycles of fields of wheat, barley, alfalfa, corn, sunflowers, soybeans, rye, flax, oats, millet, grass, and hay. Signatures of pastures, trees, and idle fallow were also studied. The growth cycles were portrayed in the form of temporal plots of the greeness-brightness transformation vector applied to average channel pixel values within the fields, all of which were in three counties in North Dakota. The plots of each crop reveal characteristics which can be used in crop classification procedures.

  9. Crop identification and area estimation over large geographic areas using LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. LANDSAT MSS data was adequate to accurately identify wheat in Kansas; corn and soybean estimates in Indiana were less accurate. Computer-aided analysis techniques were effectively used to extract crop identification information from LANDSAT data. Systematic sampling of entire counties made possible by computer classification methods resulted in very precise area estimates at county, district, and state levels. Training statistics were successfully extended from one county to other counties having similar crops and soils if the training areas sampled the total variation of the area to be classified.

  10. Tile Drainage Nitrate Losses and Corn Yield Response to Fall and Spring Nitrogen Management.

    PubMed

    Pittelkow, Cameron M; Clover, Matthew W; Hoeft, Robert G; Nafziger, Emerson D; Warren, Jeffery J; Gonzini, Lisa C; Greer, Kristin D

    2017-09-01

    Nitrogen (N) management strategies that maintain high crop productivity with reduced water quality impacts are needed for tile-drained landscapes of the US Midwest. The objectives of this study were to determine the effect of N application rate, timing, and fall nitrapyrin addition on tile drainage nitrate losses, corn ( L.) yield, N recovery efficiency, and postharvest soil nitrate content over 3 yr in a corn-soybean [ (L.) Merr.] rotation. In addition to an unfertilized control, the following eight N treatments were applied as anhydrous ammonia in a replicated, field-scale experiment with both corn and soybean phases present each year in Illinois: fall and spring applications of 78, 156, and 234 kg N ha, fall application of 156 kg N ha + nitrapyrin, and sidedress (V5-V6) application of 156 kg N ha. Across the 3-yr study period, increases in flow-weighted NO concentrations were found with increasing N rate for fall and spring N applications, whereas N load results were variable. At the same N rate, spring vs. fall N applications reduced flow-weighted NO concentrations only in the corn-soybean-corn rotation. Fall nitrapyrin and sidedress N treatments did not decrease flo8w-weighted NO concentrations in either rotation compared with fall and spring N applications, respectively, or increase corn yield, crop N uptake, or N recovery efficiency in any year. This study indicates that compared with fall N application, spring and sidedress N applications (for corn-soybean-corn) and sidedress N applications (for soybean-corn-soybean) reduced 3-yr mean flow-weighted NO concentrations while maintaining yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. 40 CFR 180.477 - Flumiclorac pentyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Cotton, gin byproducts 3.0 Cotton, undelinted seed 0.2 Soybean, hulls 0.02 Soybean, seed 0.01 (b) Section 18 emergency...

  12. Monitoring corn and soybean crop development by remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1978-01-01

    A system for spectrally monitoring the stages of crop development for corn and soybeans based upon red and photographic infrared spectral radiances is proposed. The red and photographic infrared spectral radiance, highly correlated with the green leaf area index or green leaf biomass, enable nondestructive monitoring of the crop canopy throughout the growing season. Five distinct periods are apparent which are related to crop development for corn and soybeans.

  13. Narasin effects on energy, nutrient, and fiber digestibility in corn-soybean meal or corn-soybean meal-dried distillers grains with soluble diets fed to 16-, 92-, and 141-kg pigs

    USDA-ARS?s Scientific Manuscript database

    Three experiments were conducted determine the effect of narasin on growth performance, and on GE and nutrient digestibility in nursery, grower, and finishing pigs fed either a corn-soybean (CSBM) diet or a CSBM diet supplemented with distillers dried grains with solubles (DDGS), in combination with...

  14. Analysis of the profile characteristics of corn and soybeans using field reflectance data

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    The typical patterns of spectral development (profiles) for corn and soybeans are presented, based on field-collected reflectance data transformed to correspond to LANDSAT-MSS Tasseled Cap coordinates. Reasonable variations in field conditions and cultural practices are shown to significantly influence profile features. The separability of the two crops is determined to be primarily related to the maximum value of the reflectance equivalent of Greenness, and to the plateau effect seen in corn Greenness profiles. The impact of changes in conditions on separability is described. In addition, association is made between profile features and stages of development for corn and soybeans. Corn is shown to peak at a stage well before tasseling or maximum LAI, while the characteristics of the soybean profile are shown to be unrelated to any particular stage of development.

  15. Ingestive Behavior and Nitrogen Balance of Confined Santa Ines Lambs Fed Diets Containing Soybean Hulls

    PubMed Central

    Bastos, Milena Patrícia Viana; de Carvalho, Gleidson Giordano Pinto; Pires, Aureliano José Vieira; Silva, Robério Rodrigues; Filho, Antônio Eustáquio; dos Santos, Edileusa de Jesus; Chagas, Daiane Maria Trindade; Barroso, Daniele Soares; Filho, George Abreu

    2014-01-01

    The objective of this study was to assess the effect of substituting corn with soybean hulls on the ingestive behavior and nitrogen balance of Santa Ines lambs. A total of 25 lambs with an initial body weight of 20±2 kg at approximately six months of age, sheltered individually in stalls (1.10 m×1.0 m), considering an entirely casual experimental delineation. Soybean hulls were substituted for corn at 0, 250, 500, 750, and 1,000 g/kg of dry matter (DM). The time spent feeding, ruminating, masticating, and resting was not affected by the substitution of corn with soybean hulls. In fact, the feeding efficiency in g DM/h and the rumination efficiency in g DM/bolus increased linearly with soybean hull substitution in the feed. Although the nitrogen balance was not altered by the use of soybean hulls as a substitute for corn in the diets of Santa Ines lambs, the N ingested and N digested expressed in g/d, N retained as a percentage of that ingested, and N retained as a percentage of that digested displayed quadratic behavior. In conclusion, corn can be substituted with soybean hulls up to 1,000 g/kg of dry matter in the concentrate, without changing the ingestive behavior and nitrogen balance. PMID:25049922

  16. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems

    PubMed Central

    Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip

    2017-01-01

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409

  17. 40 CFR 180.645 - Thiencarbazone-methyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... food and feed commodities: Commodity Parts per million Corn, field, forage 0.04 Corn, field, grain 0.01 Corn, field, stover 0.02 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Wheat, forage 0.10 Wheat, grain...

  18. 40 CFR 180.645 - Thiencarbazone-methyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... food and feed commodities: Commodity Parts per million Corn, field, forage 0.04 Corn, field, grain 0.01 Corn, field, stover 0.02 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Wheat, forage 0.10 Wheat, grain...

  19. 40 CFR 180.645 - Thiencarbazone-methyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... food and feed commodities: Commodity Parts per million Corn, field, forage 0.04 Corn, field, grain 0.01 Corn, field, stover 0.02 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Wheat, forage 0.10 Wheat, grain...

  20. 40 CFR 180.645 - Thiencarbazone-methyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... food and feed commodities: Commodity Parts per million Corn, field, forage 0.04 Corn, field, grain 0.01 Corn, field, stover 0.02 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.05 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.05 Wheat, forage 0.10 Wheat, grain...

  1. Impact of narasin on manure composition and microbial ecology, and gas emissions from finishing pigs fed either a corn-soybean meal or a corn-soybean meal-dried distillers grains with solubles diets

    USDA-ARS?s Scientific Manuscript database

    An experiment was conducted to determine the effect of feeding finishing pigs either a corn-soybean (CSBM) diet or a CSBM diet supplemented with 30.34% distillers dried grains with solubles (DDGS), in combination with either 0 or 30 mg narasin/kg of diet, on subsequent manure composition, manure mic...

  2. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat

    USDA-ARS?s Scientific Manuscript database

    In this study, we assessed the adaptive effects of irrigation on climatic risks for three crops (maize, soybean, and wheat) at the regional scale from 1981 to 2012 in the Central US. Based on yields of 183 counties for maize, 121 for soybean and 101 for wheat, statistical models were developed for i...

  3. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm

    PubMed Central

    Chu, Chia-Ching; Spencer, Joseph L.; Curzi, Matías J.; Zavala, Jorge A.; Seufferheld, Manfredo J.

    2013-01-01

    Insects are constantly adapting to human-driven landscape changes; however, the roles of their gut microbiota in these processes remain largely unknown. The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) (Coleoptera: Chrysomelidae) is a major corn pest that has been controlled via annual rotation between corn (Zea mays) and nonhost soybean (Glycine max) in the United States. This practice selected for a “rotation-resistant” variant (RR-WCR) with reduced ovipositional fidelity to cornfields. When in soybean fields, RR-WCRs also exhibit an elevated tolerance of antiherbivory defenses (i.e., cysteine protease inhibitors) expressed in soybean foliage. Here we show that gut bacterial microbiota is an important factor facilitating this corn specialist’s (WCR's) physiological adaptation to brief soybean herbivory. Comparisons of gut microbiota between RR- and wild-type WCR (WT-WCR) revealed concomitant shifts in bacterial community structure with host adaptation to soybean diets. Antibiotic suppression of gut bacteria significantly reduced RR-WCR tolerance of soybean herbivory to the level of WT-WCR, whereas WT-WCR were unaffected. Our findings demonstrate that gut bacteria help to facilitate rapid adaptation of insects in managed ecosystems. PMID:23798396

  4. Survey of Crop Losses in Response to Phytoparasitic Nematodes in the United States for 1994

    PubMed Central

    Koenning, S. R.; Overstreet, C.; Noling, J. W.; Donald, P. A.; Becker, J. O.; Fortnum, B. A.

    1999-01-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema. PMID:19270925

  5. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994.

    PubMed

    Koenning, S R; Overstreet, C; Noling, J W; Donald, P A; Becker, J O; Fortnum, B A

    1999-12-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema.

  6. A Study of the Relation Between Crop Growth and Spectra Reflectance Parameters

    NASA Technical Reports Server (NTRS)

    Badhwar, G.

    1984-01-01

    A differential equation describing the temporal behavior of greenness, G(t), with time was developed. The basic equation, dG(t)/dt=k(t)(1-G/G sub m) where G sub m is the saturation value of greenness at time, t sub p. It demonstrated that k(t) is linearly proportional to the rate of change of leaf area index. It was also demonstrated that G sub m, t sub p and profile width, are the key to vegetation identification and that the inflection points of the profile are related to the ontogenic state of the plant. These profile features were shown to hold not only throughout the United States corn/soybean growing area, but for the first time in Argentina. A mathematical technique that maximizes the sensitivity of spectral transformation to Leaf Area Index and simultaneously minimizes the sensitivity to all other variables was formulated. Initial results on corn and wheat were obtained.

  7. In growing pigs, the true ileal and total tract digestibility of acid hydrolyzed ether extract in extracted corn oil is greater than in intact sources of corn oil or soybean oil.

    PubMed

    Kim, B G; Kil, D Y; Stein, H H

    2013-02-01

    An experiment was conducted to determine the true ileal digestibility (TID) and the true total tract digestibility (TTTD) of acid-hydrolyzed ether extract (AEE) in extracted corn oil, high-oil corn, distillers dried grains with solubles (DDGS), corn germ, and high protein distillers dried grains (HP DDG) and to compare these values to the TID and TTTD of AEE in full-fat soybeans. Nineteen barrows with an initial BW of 52.2 kg (SD = 3.8) were fitted with a T-cannula in the distal ileum and allotted to a 19 × 11 Youden square design with 19 diets and 11 periods. A basal diet based on cornstarch, casein, sucrose, and corn bran was formulated. Eighteen additional diets were formulated by adding 3 levels of extracted corn oil, high-oil corn, DDGS, corn germ, HP DDG, or full-fat soybeans to the basal diet. The apparent ileal and the apparent total tract digestibility of AEE were calculated for each diet. The endogenous flow of AEE associated with each ingredient and values for TID and TTTD were calculated using the regression procedure. Results indicated that digested AEE in ileal digesta and feces linearly increased as AEE intake increased regardless of ingredient (P < 0.001) and the regression of ileal and fecal AEE output against AEE intake was significant for all ingredients (P < 0.001; r(2) > 0.77). However, the ileal and fecal endogenous losses of AEE were different (P < 0.05) from 0 only for extracted corn oil, HP DDG, and full-fat soybeans. The TID of AEE was greater (P < 0.05) for extracted corn oil (95.4%) than for all other ingredients. The TID of AEE in HP DDG (76.5%) was not different from the TID of AEE in full-fat soybeans (85.2%) but greater (P < 0.05) than high-oil corn, DDGS, and corn germ (53.0, 62.1, and 50.1%, respectively). The TTTD of AEE was greater (P < 0.05) for extracted corn oil (94.3%) than for all other ingredients, and the TTTD in full-fat soybeans (79.7%) was greater (P < 0.05) than the TTTD of AEE in high-oil corn, DDGS, corn germ, and HP DDG (41.4, 51.9, 43.9, and 70.2%, respectively). The TTTD of AEE in HP DDG was also greater (P < 0.05) than in high-oil corn, DDGS, and corn germ. In conclusion, the intact sources of oil originating from high-oil corn, DDGS, corn germ, or HP DDG are much less digestible than extracted corn oil, and with the exception of HP DDG, these sources of corn oil are also less digestible than the intact oil in full fat soybeans.

  8. Corn and soybean Landsat MSS classification performance as a function of scene characteristics

    NASA Technical Reports Server (NTRS)

    Batista, G. T.; Hixson, M. M.; Bauer, M. E.

    1982-01-01

    In order to fully utilize remote sensing to inventory crop production, it is important to identify the factors that affect the accuracy of Landsat classifications. The objective of this study was to investigate the effect of scene characteristics involving crop, soil, and weather variables on the accuracy of Landsat classifications of corn and soybeans. Segments sampling the U.S. Corn Belt were classified using a Gaussian maximum likelihood classifier on multitemporally registered data from two key acquisition periods. Field size had a strong effect on classification accuracy with small fields tending to have low accuracies even when the effect of mixed pixels was eliminated. Other scene characteristics accounting for variability in classification accuracy included proportions of corn and soybeans, crop diversity index, proportion of all field crops, soil drainage, slope, soil order, long-term average soybean yield, maximum yield, relative position of the segment in the Corn Belt, weather, and crop development stage.

  9. Digestion and nitrogen balance using swine diets containing increasing proportions of coproduct ingredients and formulated using the net energy system.

    PubMed

    Acosta, J A; Boyd, R D; Patience, J F

    2017-03-01

    Rising feed expenditures demand that our industry pursues strategies to lower the cost of production. One option is the adoption of the NE system, although many producers are hesitant to proceed without proof that NE estimates are reliable. The objective of this experiment was to compare the apparent total tract digestibility (ATTD) of energy and nutrients and the N retention (NR) of diets formulated using the NE system with increasing quantities of coproduct ingredients. The 5 dietary treatments included a control corn-soybean meal diet (CTL); the CTL plus 6% each of corn distiller's dried grains with solubles (DDGS), corn germ meal, and wheat middlings and NE equal to the CTL by adding soybean oil (CONS-18); the CONS-18 diet, without oil added, with NE content lower than the CTL (DECL-18); the CTL plus 12% each of corn DDGS, corn germ meal, and wheat middlings and NE equal to the CTL by adding soybean oil (CONS-36); and the CONS-36 diet, without oil added, with NE content lower than the CTL (DECL-36). Diets were formulated for both the growing period (GP; 40 to 70 kg) and the finishing period (FP; 70 to 110 kg). Forty gilts (PIC 337 × C22 or C29; 38.5 ± 0.4 kg initial BW) were randomly assigned to treatment and received feed and water ad libitum (8 pigs per treatment). For the last 13 d of the GP and FP, pigs were transferred to metabolism crates, where 2 total urine and fecal collections (d 4 to 6 and d 11 to 13) were performed. The GP fed diets with coproduct ingredients had lower ATTD of DM, N, and GE than those fed the CTL ( < 0.050). The ATTD of N and GE progressively decreased as coproduct inclusion increased from 0 to 18 to 36% in the FP ( < 0.010). In the GP and FP, there were no differences in ATTD of DM, N, or GE between CONS-18 and DECL-18 or between CONS-36 and DECL-36 ( > 0.050). The NR declined on all coproduct diets in the GP ( = 0.010) and tended to decline in the FP ( = 0.079). There were no differences in NR between CONS-18 and DECL-18 or between CONS-36 and DECL-36 ( > 0.050). In conclusion, digestion of diets containing up to 36% coproducts and formulated using NE resulted in expected DE and ME values; NR of diets with coproducts was lower than that of the simple CTL, which is not related to the accuracy of the energy estimations but rather to other factors such as imbalances in the AA concentrations or to postabsorptive energy metabolism, factors not accounted for by the current energy systems approach.

  10. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    USGS Publications Warehouse

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  11. Impact of grazing dairy steers on winter rye (Secale cereale) versus winter wheat (Triticum aestivum) and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef

    PubMed Central

    Phillips, Hannah N.; Delate, Kathleen; Turnbull, Robert

    2017-01-01

    Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye. PMID:29099863

  12. Impact of grazing dairy steers on winter rye (Secale cereale) versus winter wheat (Triticum aestivum) and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef.

    PubMed

    Phillips, Hannah N; Heins, Bradley J; Delate, Kathleen; Turnbull, Robert

    2017-01-01

    Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.

  13. Crop identification from radar imagery of the Huntington County, Indiana test site

    NASA Technical Reports Server (NTRS)

    Batlivala, P. P.; Ulaby, F. T. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Like polarization was successful in discriminating corn and soybeans; however, pasture and woods were consistently confused as soybeans and corn, respectively. The probability of correct classification was about 65%. The cross polarization component (highest for woods and lowest for pasture) helped in separating the woods from corn, and pasture from soybeans, and when used with the like polarization component, the probability of correct classification increased to 74%.

  14. Reducing Freshwater Toxicity while Maintaining Weed Control, Profits, And Productivity: Effects of Increased Crop Rotation Diversity and Reduced Herbicide Usage.

    PubMed

    Hunt, Natalie D; Hill, Jason D; Liebman, Matt

    2017-02-07

    Increasing crop rotation diversity while reducing herbicide applications may maintain effective weed control while reducing freshwater toxicity. To test this hypothesis, we applied the model USEtox 2.0 to data from a long-term Iowa field experiment that included three crop rotation systems: a 2-year corn-soybean sequence, a 3-year corn-soybean-oat/red clover sequence, and 4-year corn-soybean-oat/alfalfa-alfalfa sequence. Corn and soybean in each rotation were managed with conventional or low-herbicide regimes. Oat, red clover, and alfalfa were not treated with herbicides. Data from 2008-2015 showed that use of the low-herbicide regime reduced freshwater toxicity loads by 81-96%, and that use of the more diverse rotations reduced toxicity and system dependence on herbicides by 25-51%. Mean weed biomass in corn and soybean was <25 kg ha -1 in all rotation × herbicide combinations except the low-herbicide 3-year rotation, which contained ∼110 kg ha -1 of weed biomass. Corn and soybean yields and net returns were as high or higher for the 3- and 4-year rotations managed with the low-herbicide regime as for the conventional-herbicide 2-year rotation. These results indicate that certain forms of cropping system diversification and alternative weed management strategies can maintain yield, profit, and weed suppression while delivering enhanced environmental performance.

  15. Thlaspi arvense (Pennycress): An off-season energy crop within the corn-soybean rotation

    USDA-ARS?s Scientific Manuscript database

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  16. Intensifying production in the northern Corn Belt by incorporating cash cover crops

    USDA-ARS?s Scientific Manuscript database

    Relay cropping soybean with winter camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) in corn and soybean rotations in the northern Corn Belt, USA provides ecosystem services and is economically viable. However, questions remain regarding the optimum time to interseed these cov...

  17. 40 CFR 180.442 - Bifenthrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., leaves 6.0 Coriander, seed 5.0 Corn, field, forage 3.0 Corn, field, grain 0.05 Corn, field, stover 5.0... husk removed 0.05 Corn, sweet, stover 5.0 Cotton, undelinted seed 0.5 Eggplant 0.05 Egg 0.05 Fruit..., seed 0.05 Sheep, fat 1.0 Sheep, meat byproducts 0.1 Sheep, meat 0.5 Soybean, hulls 0.50 Soybean...

  18. 40 CFR 180.442 - Bifenthrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., leaves 6.0 Coriander, seed 5.0 Corn, field, forage 3.0 Corn, field, grain 0.05 Corn, field, stover 5.0... husk removed 0.05 Corn, sweet, stover 5.0 Cotton, undelinted seed 0.5 Eggplant 0.05 Egg 0.05 Fruit..., seed 0.05 Sheep, fat 1.0 Sheep, meat byproducts 0.1 Sheep, meat 0.5 Soybean, hulls 0.50 Soybean...

  19. Relative partitioning of N from alfalfa silage, corn silage, corn grain and soybean meal into milk, urine, and feces, using stable 15N isotope

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the relative partitioning of nitrogen (N) in alfalfa silage (AS), corn silage (CS), corn grain (CG) and soybean meal (SBM) in milk, urinary and fecal N in lactating dairy cows. For eleven days, twelve multiparous late-lactation Holstein cows (means ± SD; ...

  20. Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Bizzell, R. M.

    1975-01-01

    A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.

  1. Comparison of wheat or corn dried distillers grains with solubles on rumen fermentation and nutrient digestibility by feedlot heifers.

    PubMed

    Walter, L J; McAllister, T A; Yang, W Z; Beauchemin, K A; He, M; McKinnon, J J

    2012-04-01

    A 5 × 5 Latin square design trial was conducted to evaluate rumen fermentation and apparent nutrient digestibility in 5 rumen-cannulated heifers (420 ± 6 kg) fed a barley-based finishing diet supplemented with 20 or 40% wheat or corn dried distillers grains with solubles (DDGS). The composition of the control diet was 88.7% rolled barley grain, 5.5% supplement, and 5.8% barley silage (DM basis). Increasing the quantity of corn DDGS in the ration resulted in a quadratic decrease in DMI (P = 0.04) and OM intake (P = 0.05). Rumen pH, pH duration, and area under rumen pH thresholds of 5.8 or 5.5 were not affected (P > 0.05) by treatment. Inclusion of wheat DDGS resulted in a quadratic increase (P = 0.05) in pH area below the cutoff value of 5.2, with the most pronounced effect at 20% inclusion. Wheat DDGS linearly increased (P = 0.01) rumen NH(3)-N concentrations. Increasing the inclusion rate of wheat and corn DDGS resulted in quadratic (P = 0.05) and linear (P = 0.04) decreases in rumen propionate, whereas butyrate increased quadratically (P < 0.01) and linearly (P < 0.01), respectively. Feeding wheat DDGS linearly decreased (P < 0.01) DM and OM digestibility values. Inclusion of corn DDGS increased the digestibility values of ether extract (P = 0.05; quadratic response) and CP (P < 0.01; linear response). Neutral detergent fiber digestibility increased in a linear fashion (P = 0.01) as both wheat and corn DDGS inclusion increased, whereas ADF digestibility increased linearly (P = 0.03) for wheat and quadratically (P = 0.02) for corn DDGS. Increased inclusion of wheat DDGS resulted in a linear decrease in GE digestibility (P = 0.01), whereas increasing corn DDGS inclusion linearly increased (P < 0.01) the DE content of the diet. Feeding both wheat and corn DDGS linearly increased (P = 0.01) the excretion of N and P. In summary, replacement of barley grain with up to 40% wheat or corn DDGS did not mitigate rumen pH conditions associated with mild to moderate acidosis in heifers fed a barley-based finishing diet. Supplementing corn DDGS increased nutrient digestibility of all nutrients and, as a result, led to greater DE content. Supplementation of wheat DDGS reduced DM and OM digestibility values, with no effect on DE content. Increased N and P excretion by heifers fed DDGS at 20 or 40% of dietary DM presents a challenge for cattle feeders with respect to nutrient management.

  2. Response of double cropping suitability to climate change in the United States

    NASA Astrophysics Data System (ADS)

    Seifert, Christopher A.; Lobell, David B.

    2015-02-01

    In adapting US agriculture to the climate of the 21st century, a key unknown is whether cropping frequency may increase, helping to offset projected negative yield impacts in major production regions. Combining daily weather data and crop phenology models, we find that cultivated area in the US suited to dryland winter wheat-soybeans, the most common double crop (DC) system, increased by up to 28% from 1988 to 2012. Changes in the observed distribution of DC area over the same period agree well with this suitability increase, evidence consistent with climate change playing a role in recent DC expansion in phenologically constrained states. We then apply the model to projections of future climate under the RCP45 and RCP85 scenarios and estimate an additional 126-239% increase, respectively, in DC area. Sensitivity tests reveal that in most instances, increases in mean temperature are more important than delays in fall freeze in driving increased DC suitability. The results suggest that climate change will relieve phenological constraints on wheat-soy DC systems over much of the United States, though it should be recognized that impacts on corn and soybean yields in this region are expected to be negative and larger in magnitude than the 0.4-0.75% per decade benefits we estimate here for double cropping.

  3. Automated mapping of soybean and corn using phenology

    NASA Astrophysics Data System (ADS)

    Zhong, Liheng; Hu, Lina; Yu, Le; Gong, Peng; Biging, Gregory S.

    2016-09-01

    For the two of the most important agricultural commodities, soybean and corn, remote sensing plays a substantial role in delivering timely information on the crop area for economic, environmental and policy studies. Traditional long-term mapping of soybean and corn is challenging as a result of the high cost of repeated training data collection, the inconsistency in image process and interpretation, and the difficulty of handling the inter-annual variability of weather and crop progress. In this study, we developed an automated approach to map soybean and corn in the state of Paraná, Brazil for crop years 2010-2015. The core of the approach is a decision tree classifier with rules manually built based on expert interaction for repeated use. The automated approach is advantageous for its capacity of multi-year mapping without the need to re-train or re-calibrate the classifier. Time series MODerate-resolution Imaging Spectroradiometer (MODIS) reflectance product (MCD43A4) were employed to derive vegetation phenology to identify soybean and corn based on crop calendar. To deal with the phenological similarity between soybean and corn, the surface reflectance of the shortwave infrared band scaled to a phenological stage was used to fully separate the two crops. Results suggested that the mapped areas of soybean and corn agreed with official statistics at the municipal level. The resultant map in the crop year 2012 was evaluated using an independent reference data set, and the overall accuracy and Kappa coefficient were 87.2% and 0.804 respectively. As a result of mixed pixel effect at the 500 m resolution, classification results were biased depending on topography. In the flat, broad and highly-cropped areas, uncultivated lands were likely to be identified as soybean or corn, causing over-estimation of cropland area. By contrast, scattered crop fields in mountainous regions with dense natural vegetation tend to be overlooked. For future mapping efforts, it has great potential to apply the automated mapping algorithm to other image series at various scales especially high-resolution images.

  4. A novel method for estimating soybean herbivory in western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Seiter, Nicholas J; Richmond, Douglas S; Holland, Jeffrey D; Krupke, Christian H

    2010-08-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the key pest of corn, Zea mays L., in North America. The western corn rootworm variant is a strain found in some parts of the United States that oviposits in soybean, Glycine max (L.) Merr., thereby circumventing crop rotation. Soybean herbivory is closely associated with oviposition; therefore, evidence of herbivory could serve as a proxy for rotation resistance. A digital image analysis method based on the characteristic green abdominal coloration of rootworm adults with soybean foliage in their guts was developed to estimate soybean herbivory rates of adult females. Image analysis software was used to develop and apply threshold limits that allowed only colors within the range that is characteristic of soybean herbivory to be displayed. When this method was applied to adult females swept from soybean fields in an area with high levels of rotation resistance, 54.3 +/- 2.1% were estimated to have fed on soybean. This is similar to a previously reported estimate of 54.8%. Results when laboratory-generated negative controls were analyzed showed an acceptably low frequency of false positives. This method could be developed into a management tool if user-friendly software were developed for its implementation. In addition, researchers may find the method useful as a rapid, standardized screen for measuring frequencies of soybean herbivory.

  5. Monitoring Agricultural Drought Using Geographic Information Systems and Remote Sensing on the Primary Corn and Soybean Belt in the United States

    NASA Astrophysics Data System (ADS)

    Al-Shomrany, Adel

    The study aims to evaluate various remote sensing drought indices to assess those most fitting for monitoring agricultural drought. The objectives are (1) to assess and study the impact of drought effect on (corn and soybean) crop production by crop mapping information and GIS technology; (2) to use Geographical Weighted Regression (GWR) as a technical approach to evaluate the spatial relationships between precipitation vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought detection based on remote sensing measurements to determine the relationship between US county-level yields versus relatively common variables collected. Extreme drought creates low corn and soybean production where irrigation systems are not implemented. This results in a lack of moisture in soil leading to dry land and stale crop yields. When precipitation and moisture is found across all states, corn and soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation management methods assist in strong crop yields throughout SPI monthly averages. The data gathered on irrigation consisted of using drought indices gathered by the national agricultural statistics service website. For the SPI levels ranging between one-month and nine-months, Kansas and Nebraska performed the best out of all 12-states contained in the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and Nebraska's results was due to a more efficient and sustainable irrigation system, where upon South Dakota lacked. South Dakota was leveled by strong correlations throughout all SPI periods for corn only. Kansas showed its strongest correlations for the two-month and three-month averages, for both corn and soybean. Precipitation regression with irrigated and non-irrigated maize (corn) and soybean levels show yields as a function of precipitation. The GWR models predicted that yields were significantly better than OLS performances for maize (corn) and soybean. The OLS regression model when used showed a general trend of correlation between observed yields and long-term mean precipitation totals, with 84% and 63% of the variability in mean yield explained by the mean annual precipitation for the non-irrigated crops. The GWR technique performance in predicting yields was significantly better than OLS performances. For instance in the months of June, July, and August precipitations had greater impacts on maize (corn) yields than soybeans under non-irrigated conditions as a result of the greater sensitivity maize (corn) had to water stress. SPI is capable of offering various time-scales enabling it to show initial warning signs of drought conditions and accompanying severity levels. SPI calculation techniques used for various locations are reflected upon the precipitation records acquired during those periods. Over the 3, 6, and 9-month periods, NDII6 performed the best out of all of the MODIS indices as shown in its results in monitoring vegetation moisture and drought detection. NDII6 performed the best due to its detection abilities. The 9-month SPI provides an indication of inter-seasonal precipitation patterns over medium timescale duration. A new approach used is to average corn and soybean yields for all counties of the study area in comparison with average anomalies of the MODIS indices for the growing season between May through September from 2006-2012. There was a strong correlation between average corn yields versus MODIS NDII6 averages for these years with R2 equaling 0.62. That means NDII6 is the best indicator to show drought conditions and vegetation moisture monitoring. There was a weak correlation with R2 = 0.16 between averages of soybean yields and averages of precipitation. Irrigation and management systems, technological improvements from hybrids, producer management techniques, and other management practices have an impact on crop yield productions. (Abstract shortened by ProQuest.).

  6. Attraction of Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae) to eugenol-baited traps in soybean

    USDA-ARS?s Scientific Manuscript database

    Diabrotica barberi Smith and Lawrence (the northern corn rootworm) is a native North American leaf beetle and a major pest of corn. However, adult D. barberi forage in various habitats outside of corn, including soybean, roadside vegetation, and prairie. Eugenol is a common floral volatile that ha...

  7. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    NASA Astrophysics Data System (ADS)

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  8. Comparing N2O emissions at varying N rates from irrigated and rainfed corn in the US Midwest

    NASA Astrophysics Data System (ADS)

    Millar, N.; Kahmark, K.; Basso, B.; Robertson, G. P.

    2011-12-01

    Global N2O emissions from agriculture are estimated to be ~2.8 Pg CO2e yr-1 accounting for 60% of total anthropogenic emissions. N2O is the largest contributor to the GHG burden of cropping systems in the US, with annual estimated emissions of ~0.5 Tg primarily due to N fertilizer inputs and other soil management activities. Currently 23 million acres of corn, soybean and wheat are irrigated annually in the US with increased N2O emissions due to the practice likely under-reported in GHG inventories. Here we compare N2O emissions and yield from irrigated and rainfed corn at varying N rates between 0 and 246 kg N ha-1 from the Kellogg Biological Station in SW Michigan. Initial results show that N2O emissions increase with increasing N rate and are significantly higher from irrigated corn compared to rainfed corn at the same N rate. At increasing N rates daily emissions following an irrigation event were between 2.4 - 77.5 g N2O-N ha-1 from irrigated corn and 1.6 - 13.0 g N2O-N ha-1 from rainfed corn. Emissions data from automated and static chambers will be presented and trade-offs between N2O emissions, N fertilizer rate, crop yield and irrigation practice will be evaluated from an environmental and economic standpoint.

  9. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. From field to region yield predictions in response to pedo-climatic variations in Eastern Canada

    NASA Astrophysics Data System (ADS)

    JÉGO, G.; Pattey, E.; Liu, J.

    2013-12-01

    The increase in global population coupled with new pressures to produce energy and bioproducts from agricultural land requires an increase in crop productivity. However, the influence of climate and soil variations on crop production and environmental performance is not fully understood and accounted for to define more sustainable and economical management strategies. Regional crop modeling can be a great tool for understanding the impact of climate variations on crop production, for planning grain handling and for assessing the impact of agriculture on the environment, but it is often limited by the availability of input data. The STICS ("Simulateur mulTIdisciplinaire pour les Cultures Standard") crop model, developed by INRA (France) is a functional crop model which has a built-in module to optimize several input parameters by minimizing the difference between calculated and measured output variables, such as Leaf Area Index (LAI). STICS crop model was adapted to the short growing season of the Mixedwood Plains Ecozone using field experiments results, to predict biomass and yield of soybean, spring wheat and corn. To minimize the numbers of inference required for regional applications, 'generic' cultivars rather than specific ones have been calibrated in STICS. After the calibration of several model parameters, the root mean square error (RMSE) of yield and biomass predictions ranged from 10% to 30% for the three crops. A bit more scattering was obtained for LAI (20%

  11. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided measurements for 15 fields. One field was planted in corn; three were pasture; six were soybeans; three were wheat; and two were winter wheat. The average RVI for each field was determined for each PALS overpass, with sampled radar data confined to the field dimensions. A linear interpolation was conducted between measured values of VWC to estimate a daily VWC value. A linear regression was conducted between the average VWC and the RVI, for each vegetation type. A positive linear relationship was found for all crops, with the exception of pasture. The correlation between the RVI and VWC was strong for corn and pasture, but moderate for soybeans and winter wheat; however, the correlation for corn was not significant. The developed models were utilized to provide a calculated VWC which was inputted into a modified version of the Land Parameter Retrieval Model (LPRM) to determine the error associated with using a calculated VWC from the RVI versus measured VWC data. The LPRM outputs for both scenarios were compared to the PALS radiometer measurements of brightness temperature.

  12. Development of Single-Seed Near-Infrared Spectroscopic Predictions of Corn and Soybeans Constituents Using Bulk Teference Values and Mean Spectra

    USDA-ARS?s Scientific Manuscript database

    Near-Infrared reflectance spectroscopic prediction models were developed for common constituents of corn and soybeans using bulk reference values and mean spectra from single-seeds. The bulk reference model and a true single-seed model for soybean protein were compared to determine how well the bul...

  13. Apparent metabolizable and net energy values of corn and soybean meal for broiler breeding cocks.

    PubMed

    Liu, W; Liu, G H; Liao, R B; Chang, Y L; Huang, X Y; Wu, Y B; Yang, H M; Yan, H J; Cai, H Y

    2017-01-01

    The AME and net energy (NE) values of 4 corn varieties, including 2 normal corn varieties (Zheng Dan 958 and Xian Yu 335), and one each of waxy corn and sweet corn, and 2 soybean meal samples including regular (RSBM) and dehulled soybean meal (DSBM), were determined in 2 experiments for broiler breeding cocks using the indirect calorimetry method. The 4 test diets in Experiment 1 consisted of each test corn, which replaced 40% of the corn-soybean meal basal diet, and the test diets in Experiment 2 contained 25% RSBM or DSBM, which was used to replace the corn basal diet. Thirty (Experiment 1) or 18 (Experiment 2) 50-week-old Arbor Acre (AA) broiler breeding cocks were used in a completely randomized design. After a 7 d dietary adaptation period, 6 birds as replicates from each treatment were assigned to individual respiration chambers for energy measurement via gaseous exchange and total excreta collection for 10 d. In Experiment 1, the AME, ME intake (MEI), retained energy (RE), NE, and NE:AME ratio values were higher (P < 0.001) in the test diets as compared with the corn-soybean meal basal diet. The AME and NE values in the sweet corn diet were higher (P < 0.05) than those values in the other 3 test diets. The heat production (HP), fasting heat production (FHP), and respiration quotient (RQ) were not influenced by the various experimental diets. The respective AME and NE values were 3,785, 3,775, 3,738, and 3,997 kcal/kg (DM basis), and 2,982, 3,006, 2,959, and 3,146 kcal/kg (DM basis) for Zheng Dan 958, Xian Yu 335, waxy corn, and sweet corn. Birds fed a corn basal diet in Experiment 2 had higher AME, MEI, RE, NE, and NE:AME ratio values (P < 0.001). Soybean meal substitution had no effect on HP, FHP, or RQ. The average AME and NE content was 2,492 and 1,581 kcal/kg (DM basis) for RSBM, and 2,580 and 1,654 kcal/kg (DM basis) for DSBM, respectively. © 2016 Poultry Science Association Inc.

  14. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    PubMed

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to be 36% higher than those predicted during the second period. The climate projections of the PCM model had more positive impact on soil C sequestration than those predicted with the HadCM3 model.

  16. Application of Thematic Mapper data to corn and soybean development stage estimation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Henderson, K. E.

    1985-01-01

    A model, utilizing direct relationship between remotely sensed spectral data and the development stage of both corn and soybeans has been proposed and published previously (Badhwar and Henderson, 1981; and Henderson and Badhwar, 1984). This model was developed using data acquired by instruments mounted on trucks over field plots of corn and soybeans as well as satellite data from Landsat. In all cases, the data was analyzed in the spectral bands equivalent to the four bands of Landsat multispectral scanner (MSS). In this study the same model has been applied to corn and soybeans using Landsat-4 Thematic Mapper (TM) data combined with simulated TM data to provide a multitemporal data set in TM band intervals. All data (five total acquisitions) were acquired over a test site in Webster County, Iowa from June to October 1982. The use of TM data for determining development state is as accurate as with Landsat MSS and field plot data in MSS bands. The maximum deviation of 0.6 development stage for corn and 0.8 development stage for soybeans is well within the uncertainty with which a field can be estimated with procedures used by observers on the ground in 1982.

  17. Soil water dynamics and nitrate leaching under corn-soybean rotation, continuous corn, and kura clover

    USDA-ARS?s Scientific Manuscript database

    Improving the water quantity and water quality impacts of corn (Zea mays L.)- and soybean (Glycine max L.)-based cropping systems is a key challenge for agriculture in the US Midwest and similar regions around the world. Long-term field experiments are important for documenting those effects and exp...

  18. 17 CFR 150.2 - Position limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Oats 600 1,400 2,000 Soybeans and Mini-Soybeans 1 600 6,500 10,000 Wheat and Mini-Wheat 1 600 5,000 6... Spring Wheat 600 5,000 6,500 New York Board of Trade Cotton No. 2 300 3,500 5,000 Kansas City Board of Trade Hard Winter Wheat 600 5,000 6,500 1 For purposes of compliance with these limits, positions in the...

  19. Glycemic potency of muffins made with wheat, rice, corn, oat and barley flours: a comparative study between in vivo and in vitro.

    PubMed

    Soong, Yean Yean; Quek, Rina Yu Chin; Henry, Christiani Jeyakumar

    2015-12-01

    Muffins made with wheat flour are a popular snack consumed in western and emerging countries. This study aimed to examine the content of amylose, glycemic response (GR) and glycemic index (GI) of muffins baked with refined wheat and rice flours, as well as wholegrain corn, oat and barley flours. This study adopted a randomized, controlled, crossover, non-blind design. Twelve healthy participants consumed wheat, rice, corn, oat and barley muffins once and the reference glucose solution three times in a random order on non-consecutive day. Capillary blood samples were taken every 15 min in the first 60 min and every 30 min for the remaining 60 min for blood glucose analysis. The Megazyme amylose/amylopectin assay procedure was employed to measure amylose content. The GR elicited from the consumption of wheat, rice and corn muffins was comparable between these samples but significantly greater when compared with oat and barley muffins. Consumption of wholegrain muffins, apart from corn muffin, blunted postprandial GR when compared with muffins baked with refined cereal flours. Muffins baked with wheat, rice, corn, oat and barley flours gave rise to GI values of 74, 79, 74, 53 and 55, respectively. The content of amylose was significantly higher in corn, oat and barley muffins than wheat and rice muffins. The greater content of amylose and fibre may play a part in the reduced glycemic potency of oat and barley muffins. Wheat flour can be substituted with oat and barley flours for healthier muffins and other bakery products.

  20. 40 CFR 180.497 - Clofencet; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., except rice, sweet corn, wheat, and wild rice; forage 4.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; hay 15.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; stover 1.0 7/14/12 Grain, cereal...

  1. 40 CFR 180.497 - Clofencet; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., except rice, sweet corn, wheat, and wild rice; forage 4.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; hay 15.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; stover 1.0 7/14/12 Grain, cereal...

  2. 40 CFR 180.497 - Clofencet; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., except rice, sweet corn, wheat, and wild rice; forage 4.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; hay 15.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; stover 1.0 7/14/12 Grain, cereal...

  3. In vivo protein quality of selected cereal-based staple foods enriched with soybean proteins.

    PubMed

    Acevedo-Pacheco, Laura; Serna-Saldívar, Sergio O

    2016-01-01

    One way to diminish protein malnutrition in children is by enriching cereal-based flours for the manufacturing of maize tortillas, wheat flour tortillas, and yeast-leavened breads, which are widely consumed among low socio-economic groups. The aim was to determine and compare the essential amino acid (EAA) scores, protein digestibility corrected amino acid scores (PDCAAS), and in vivo protein quality (protein digestibility, protein efficiency ratio (PER), biological values (BV), and net protein utilization (NPU) values) of regular versus soybean-fortified maize tortillas, yeast-leavened bread, and wheat flour tortillas. To comparatively assess differences in protein quality among maize tortillas, wheat flour tortillas, and yeast-leavened breads, EAA compositions and in vivo studies with weanling rats were performed. The experimental diets based on regular or soybean-fortified food products were compared with a casein-based diet. Food intake, weight gains, PER, dry matter and protein digestibility, BV, NPU, and PDCAAS were assessed. The soybean-fortified tortillas contained 6% of defatted soybean flour, whereas the yeast-leavened bread flour contained 4.5% of soybean concentrate. The soybean-fortified tortillas and bread contained higher amounts of lysine and tryptophan, which improved their EAA scores and PDCAAS. Rats fed diets based on soybean-fortified maize or wheat tortillas gained considerably more weight and had better BV and NPU values compared with counterparts fed with respective regular products. As a result, fortified maize tortillas and wheat flour tortillas improved PER from 0.73 to 1.64 and 0.69 to 1.77, respectively. The PER improvement was not as evident in rats fed the enriched yeast-leavened bread because the formulation contained sugar that decreased lysine availability possibly to Maillard reactions. The proposed enrichment of cereal-based foods with soybean proteins greatly improved PDCAAS, animal growth, nitrogen retention, and PER primarily in both maize and wheat flour tortillas. Therefore, these foods can help to diminish protein malnutrition among children who greatly depend on cereals as the main protein dietary source.

  4. AgRISTARS: Foreign commodity production forecasting. The 1980 US corn and soybeans exploratory experiment

    NASA Technical Reports Server (NTRS)

    Malin, J. T.; Carnes, J. G. (Principal Investigator)

    1981-01-01

    The U.S. corn and soybeans exploratory experiment is described which consisted of evaluations of two technology components of a production forecasting system: classification procedures (crop labeling and proportion estimation at the level of a sampling unit) and sampling and aggregation procedures. The results from the labeling evaluations indicate that the corn and soybeans labeling procedure works very well in the U.S. corn belt with full season (after tasseling) LANDSAT data. The procedure should be readily adaptable to corn and soybeans labeling required for subsequent exploratory experiments or pilot tests. The machine classification procedures evaluated in this experiment were not effective in improving the proportion estimates. The corn proportions produced by the machine procedures had a large bias when the bias correction was not performed. This bias was caused by the manner in which the machine procedures handled spectrally impure pixels. The simulation test indicated that the weighted aggregation procedure performed quite well. Although further work can be done to improve both the simulation tests and the aggregation procedure, the results of this test show that the procedure should serve as a useful baseline procedure in future exploratory experiments and pilot tests.

  5. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    PubMed

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Effect of different binders on the physico-chemical, textural, histological, and sensory qualities of retort pouched buffalo meat nuggets.

    PubMed

    Devadason, I Prince; Anjaneyulu, A S R; Babji, Y

    2010-01-01

    The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.

  7. [Effect of addition of instant corn flour on rheological characteristics of wheat flour and breadmaking III].

    PubMed

    Martínez, F; el-Dahs, A A

    1993-12-01

    The instant corn flour prepared by the hydrothermal process using corn grits soaked in water at room temperature (28-30 degrees C) for 5 hours and steaming for 1 minute at 118 degrees C presented characteristics similar to that of flours prepared with grits soaked in water at temperature higher than room temperature and different steaming time (5 and 15 minutes). The addition of instant corn flour up of a 25% mixture with wheat flour reduced the peak of maximum viscosity during the heating cycle; however, the final viscosity during the cooling cycle was increased. The water absorption was increased with the increase of substitution in the level of wheat flour. Extensibility, maximum resistance and values of area were reduced with an increase in the level of instant corn flour in the mixture. However, extension resistance and proportional number were increased. Bread prepared from a mixture of instant corn flour and wheat flour showed higher weight with low loaf volume, color and texture of the crumb related to bread wheat.

  8. [Effect of soybean lipoxygenae on baking properties of wheat flour].

    PubMed

    Permiakova, M D; Trufanov, V A

    2011-01-01

    Changes in bread-baking properties of wheat flour caused by soybean lipoxygenase and polyunsaturated fatty acids were studied. A positive effect of soybean flour added during dough kneading in an amount of 2% was demonstrated. A method for dough fermentation increasing the loaf volume and improving organoleptic characteristics and total bread-baking estimate is recommended.

  9. [Use of flour from sunflower oil cake in the biosynthesis of antigungal antibiotics].

    PubMed

    Sukharevich, V M; Shvetsova, N N; Prodan, S I; Malkov, M A

    1977-04-01

    The possibility of replacing soybean meal and corn-steep liquor by food wastes of the oilpress industry and the meal of the sunflower oil cake in particular is discussed as applied to the fermentation media for production of antifungal antibiotics, such as levorin, mycoheptin, amphotericin. The studies showed that replacement of soybean meal by sunflower oil cake meal with simultaneous increasing of the amount of carbohydrates in the medium increased the levorin levels by 60--70 per cent as compared to the media used at present. When soybean meal and corn-steep liquor were simultaneously replaced by sunflower oil cake meal in amounts of 3--4 per cent the levels of mycoheptin in the fermentation broth increased by 30--65 per cent respectively. Replacement of soybean meal and corn-steep liquor by 3 per cent of sunflow oil cake meal in the medium used presently increased the amphotericin levels by 27 percent as compared to the control. Therefore, sunflower oil cake meal is a substitute of full value for soybean meal and corn-steep liquor in the fermentation media for production of antifungal antibiotics.

  10. Fermentation of soybean hulls to ethanol while retaining protein value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielenz, Jonathan R; Wyman, Professor Charles E; John, Bardsley

    2009-01-01

    Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with S. cerevisiae D5A. The impact of cellulase, -glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25-30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3-4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybeanmore » hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.« less

  11. Field measurements, simulation modeling and development of analysis for moisture stressed corn and soybeans, 1982 studies

    NASA Technical Reports Server (NTRS)

    Blad, B. L.; Norman, J. M.; Gardner, B. R.

    1983-01-01

    The experimental design, data acquisition and analysis procedures for agronomic and reflectance data acquired over corn and soybeans at the Sandhills Agricultural Laboratory of the University of Nebraska are described. The following conclusions were reached: (1) predictive leaf area estimation models can be defined which appear valid over a wide range of soils; (2) relative grain yield estimates over moisture stressed corn were improved by combining reflectance and thermal data; (3) corn phenology estimates using the model of Badhwar and Henderson (1981) exhibited systematic bias but were reasonably accurate; (4) canopy reflectance can be modelled to within approximately 10% of measured values; and (5) soybean pubescence significantly affects canopy reflectance, energy balance and water use relationships.

  12. Effects of air, ozone, and nitrogen dioxide exposure on the oxidation of corn and soybean lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, R.I.; Csallany, A.S.

    1978-01-01

    Whole, halves and ground samples of soybean seeds and whole corn kernels were exposed to air, 15 ppm NO2, or 1.5 ppm O3 continuously for 100 h at room temperature. Lipid oxidation was measured by polyunsaturated fatty acid (PUFA) and tocopherol destruction and formation of fluorescent lipofuscin-like pigments. Exposure of whole soybean and corn seeds to air, 15 ppm NO2, or 1.5 ppm O3 was found to induce no PUFA and tocopherol destruction and no formation of lipofuscin-like pigments. Tocopherol and PUFA destruction and lipofuscin-like pigment formation were detected in samples of soybean seed halves exposed to 15 ppm NO2more » or 1.5 ppm O3; however, only tocopherol destruction occurred in soybean halves exposed to air. Ground soybean samples exposed to air, 15 ppm NO2, or 1.5 ppm O3 incurred the greatest PUFA and tocopherol destruction and lipofuscin-like pigment formation. 25 references, 3 figures, 4 tables.« less

  13. Measurement of 226Ra, 232Th, 137Cs and 40K activities of Wheat and Corn Products in Ilam Province – Iran and Resultant Annual Ingestion Radiation Dose

    PubMed Central

    CHANGIZI, Vahid; SHAFIEI, Elham; ZAREH, Mohammad Reza

    2013-01-01

    Background: Background: Natural background radiation is the main source of human exposure to radioactive material. Soils naturally have radioactive mineral contents. The aim of this study is to determine natural (238 U, 232 Th, 40 K) and artificial (137 Cs) radioactivity levels in wheat and corn fields of Eilam province. Methods: HPGe detector was used to measure the concentration activity of 238 U and 232 Th series, 40 K and 137 Cs in wheat and corn samples taken from different regions of Eilam province, in Iran. Results: In wheat and corn samples, the average activity concentrations of 226 Ra, 232 Th, 40 K and 137 Cs were found to be 1, 67, 0.5, 91.73, 0.01 and 0.81, 0.85, 101.52, 0.07 Bq/kg (dry weight), respectively. H ex and H in in the present work are lower than 1. The average value of H ex was found to be 0.02 and 0.025 and average value of H in to be found 0.025 and 0.027 in wheat fields samples and corn samples in Eilam provinces, respectively. The obtained values of AGDE are 30.49 mSv/yr for wheat filed samples and 37.89 mSv/yr for corn samples; the AEDE rate values are 5.28 mSv/yr in wheat filed samples and this average value was found to be 6.13 mSv/yr in corn samples in Eilam. Transfer factors (TFs) of long lived radionuclide such as 137 Cs, 226 Ra, 232 Th and 40 K from soils to corn and wheat plants have been studied by radiotracer experiments. Conclusion: The natural radioactivity levels in Eilam province are not at the range of high risk of morbidity and are under international standards. PMID:26056646

  14. 75 FR 65586 - Agricultural Commodity Definition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... processed from cellulose before it becomes fiber. Category two would include high fructose corn syrup, but... wheat, cotton, rice, corn, oats, barley, rye, flaxseed, grain sorghum, mill feeds, butter, eggs, and... remained unchanged since the 1974 amendments: ``The term ``commodity'' means wheat, cotton, rice, corn...

  15. Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves.

    PubMed

    Khan, M A; Lee, H J; Lee, W S; Kim, H S; Kim, S B; Ki, K S; Park, S J; Ha, J K; Choi, Y J

    2007-11-01

    Holstein calves were fed pelleted iso-starch (25% of starter dry matter) diets containing barley (n = 16), corn (n = 16), oat (n = 16), and wheat (n = 16) starch for 12 wk of age. Feed consumption, nutrient intake, body weight (BW) gain, skeletal growth, and selected blood metabolites in calves during preweaning (d 1 to 49) and postweaning (d 50 to 84) periods were measured. Average daily starter consumption during pre-weaning and postweaning periods was the greatest in calves fed corn died followed by those fed a wheat diet and then in those fed barley and oat diets. During the preweaning period, the calves provided corn and wheat diets consumed greater amount of mixed grass hay than those fed barley and oat diets. During the postweaning period, mixed grass hay intake was the greatest in calves provided corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Nutrients (dry matter, crude protein, starch, and neutral detergent fiber) intake followed the solid feed consumption pattern in calves. Body weight and body measurements (body length, body barrel, heart girth, wither height, and hip height) at birth and at weaning (d 49) in calves fed different starch sources were similar. Body weight and body measurements at postweaning (d 84) were the greatest in calves fed a corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Overall average BW gain and total dry matter intake were the greatest in calves fed a corn diet than in those fed wheat, barley, and oat diets. Feed efficiency was greater in calves fed corn and wheat diets than in those fed barley and oat diets. Blood glucose, blood urea N, triglycerides, cholesterol, and creatinine were reduced with the advancing age of calves. Lesser blood glucose and greater blood urea N concentrations at wk 8, 10, and 12 of age were noticed in calves fed corn diet than in those fed barley, oat, and wheat diets. Occurrence of diarrhea was more frequent in calves fed oat diet than in those provided barley, corn, and wheat diets. Starch sources did not influence respiratory score, rectal temperature, and general appearance score. In conclusion, the calves on corn diet consumed more solid feed and gained greater BW than those fed barley, oat, and wheat diets.

  16. A dubious success: The NGO campaign against GMOs

    PubMed Central

    Paarlberg, Robert

    2014-01-01

    Genetically engineered agricultural crops are widely grown for animal feed (yellow corn, soybean meal) and for industrial purposes (such as cotton for fabric, or yellow corn for ethanol), but almost nobody grows GMO food staple crops. The only GMO food staple crop planted anywhere is white maize, and only in one country – the Republic of South Africa. It has been two decades now since GMO crops were first planted commercially, yet it is still not legal anywhere to plant GMO wheat or GMO rice. When it comes to GMO food crops, anti-GMO campaigners have thus won a remarkable yet dubious victory. They have not prevented rich countries from using GMO animal feed or GMO cotton, yet farmers and consumers in poor countries need increased productivity for food crops, not animal feed or industrial crops. Today's de facto global ban on GMO food crops therefore looks suspiciously like an outcome designed by the rich and for the rich, with little regard for the interests of the poor. PMID:25437241

  17. A dubious success: the NGO campaign against GMOs.

    PubMed

    Paarlberg, Robert

    2014-07-03

    Genetically engineered agricultural crops are widely grown for animal feed (yellow corn, soybean meal) and for industrial purposes (such as cotton for fabric, or yellow corn for ethanol), but almost nobody grows GMO food staple crops. The only GMO food staple crop planted anywhere is white maize, and only in one country--the Republic of South Africa. It has been two decades now since GMO crops were first planted commercially, yet it is still not legal anywhere to plant GMO wheat or GMO rice. When it comes to GMO food crops, anti-GMO campaigners have thus won a remarkable yet dubious victory. They have not prevented rich countries from using GMO animal feed or GMO cotton, yet farmers and consumers in poor countries need increased productivity for food crops, not animal feed or industrial crops. Today's de facto global ban on GMO food crops therefore looks suspiciously like an outcome designed by the rich and for the rich, with little regard for the interests of the poor.

  18. US corn and soybeans exploratory experiment

    NASA Technical Reports Server (NTRS)

    Carnes, J. G. (Principal Investigator)

    1981-01-01

    The results from the U.S. corn/soybeans exploratory experiment which was completed during FY 1980 are summarized. The experiment consisted of two parts: the classification procedures verification test and the simulated aggregation test. Evaluations of labeling, proportion estimation, and aggregation procedures are presented.

  19. Temporal variation (seasonal and interannual) of vegetation indices of maize and soybeans across multiple years in central Iowa

    NASA Astrophysics Data System (ADS)

    Prueger, J. H.; Hatfield, J. L.

    2015-09-01

    Remotely sensed reflectance parameters from corn and soybean surfaces can be correlated to crop production. Surface reflectance of a typical Upper Midwest corn /soybean region in central Iowa across multiple years reveal subtle dynamics in vegetative surface response to a continually varying climate. From 2006 through 2014 remotely sensed data have been acquired over production fields of corn and soybeans in central IA, U.S.A. with the fields alternating between corn and soybeans. The data have been acquired using ground-based radiometers with 16 wavebands covering the visible, near infrared, shortwave infrared wavebands and combined into a series of vegetative indices. These data were collected on clear days with the goal of collecting data at a minimum of once per week from prior to planting until after fall tillage operations. Within each field, five sites were established and sampled during the year to reduce spatial variation and allow for an assessment of changes in the vegetative indices throughout the growing season. Ancillary data collected for each crop included the phenological stage at each sampling date along with biomass sampled at the onset of the reproductive stage and at physiological maturity. Evaluation of the vegetative indices for the different years revealed that patterns were related to weather effects on corn and soybean growth. Remote sensing provides a method to evaluate changes within and among growing seasons to assess crop growth and development as affected by differences in weather variability.

  20. Four-year surveillance for ochratoxin a and fumonisins in retail foods in Japan.

    PubMed

    Aoyama, Koji; Nakajima, Masahiro; Tabata, Setsuko; Ishikuro, Eiichi; Tanaka, Toshitsugu; Norizuki, Hiroko; Itoh, Yoshinori; Fujita, Kazuhiro; Kai, Shigemi; Tsutsumi, Toru; Takahashi, Masanori; Tanaka, Hiroki; Iizuka, Seiichiro; Ogiso, Motoki; Maeda, Mamoru; Yamaguchi, Shigeaki; Sugiyama, Kei-Ichi; Sugita-Konishi, Yoshiko; Kumagai, Susumu

    2010-02-01

    Between 2004 and 2007 we examined foods from Japanese retail shops for contamination with ochratoxin A (OTA) and fumonisins B(1), B(2), and B(3). A total of 1,358 samples of 27 different products were examined for OTA, and 831 samples of 16 different products were examined for fumonisins. The limits of quantification ranged from 0.01 to 0.5 microg/kg for OTA and 2 to 10 microg/kg for the fumonisins. OTA was detected in amounts higher than limits of quantification in wheat flour, pasta, oatmeal, rye, buckwheat flour and dried buckwheat noodles, raisins, wine, beer, coffee beans and coffee products, chocolate, cocoa, and coriander. OTA was found in more than 90% of the samples of instant coffee and cocoa, and the highest concentration of OTA, 12.5 microg/kg, was detected in raisins. The concentration of OTA in oatmeal, rye, raisins, wine, and roasted coffee beans varied remarkably from year to year. Fumonisins were detected in frozen and canned corn, popcorn grain, corn grits, cornflakes, corn soups, corn snacks, beer, soybeans, millet, and asparagus. The highest concentrations of fumonisins B(1), B(2), and B(3) were detected in corn grits (1,670, 597, and 281 microg/kg, respectively). All of the samples of corn grits were contaminated with fumonisins, and more than 80% of the samples of popcorn grain and corn snacks contained fumonisins. OTA and fumonisins were detected in several food products in Japan; however, although Japan has not set regulatory levels for these mycotoxins, their concentrations were relatively low.

  1. Comparison of wheat- versus corn-based dried distillers' grains with solubles on meat quality of feedlot cattle.

    PubMed

    Aldai, N; Aalhus, J L; Dugan, M E R; Robertson, W M; McAllister, T A; Walter, L J; McKinnon, J J

    2010-03-01

    A considerable amount of information has been generated on the feeding value and impact of corn dried distillers' grains with solubles (DDGS) on meat quality, whereas little is known about the effects of wheat DDGS on meat quality, and no direct comparison of these two sources of DDGS has been completed. The current study was conducted to examine the objective and subjective carcass and meat quality traits of cattle fed diets containing corn or wheat (20% or 40%) DDGS (DM basis) as compared to a standard barley-based finishing diet (control). In general, meat obtained from animals fed the barley-based control diet was slightly darker in colour (lower chroma and hue at 24 h, P<0.01) and less tender (highest proportion of tough shears at 2 d and lowest proportion of tender shears at 20 d). Meat from corn DDGS was rated as more tender and palatable than control samples (P<0.05), and 20% corn samples were rated better for beef flavour intensity (P<0.01) and desirability (P<0.05) than 40% corn DDGS samples. In contrast, meat from steers fed wheat DDGS showed intermediate characteristics between steers fed control and corn DDGS diets. Hence, feeding wheat DDGS had no negative effects, and feeding corn DDGS had some positive effects on meat quality characteristics of beef. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  2. Variation of Evaporation Across a Corn-Soybean Production Region in Central Iowa

    NASA Astrophysics Data System (ADS)

    Prueger, J. H.; Hatfield, J. L.; Kustas, W. P.

    2003-12-01

    Evaporation from production corn-soybean surfaces is often assumed to be uniform across a regional extent such as the Upper Midwest in the U.S.; however, there are few direct measurements of the spatial and temporal variation of evaporation to support this assumption. During a soil moisture remote sensing study in the summer of 2002 (SMEX02), fourteen energy balance stations complete with net radiometers, soil heat flux plates, a three-dimensional sonic anemometer, and fast response CO2-H2O sensors (eddy covariance) were deployed across an 25-kilometer corn-soybean production watershed in central Iowa south of Ames, Iowa. Data were collected beginning in mid-May through August and summarized into half-hourly and daily intervals. Two intercomparisons of all eddy covariance systems were conducted, one prior to the SMEX02 study (May 2002) over an alfalfa field and one after the study over a grass surface in August (2002). The coefficient of variation among the eddy covariance instruments was less than 7%. Latent heat flux values among corn and soybean fields that were greater than 7% were considered to be real differences in evaporation among fields. Diurnal differences in net radiation and latent heat fluxes were evident among both corn and soybean fields and when seasonal totals were evaluated the differences persisted. Variation in latent heat flux among corn and soybeans was attributed to soil type, water availability and spatial variation of precipitation across the watershed. The results from fourteen eddy covariance stations provide a measure of the spatial variation in latent heat flux across a region that is considered to be relatively homogenous. This information will aid in evaluating regional evaporation models.

  3. Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation.

    PubMed

    Wheelock, M J; Rey, K P; O'Neal, M E

    2016-10-01

    Although corn (Zea mays L.) and soybeans (Glycine max L.) do not require pollination, they offer floral resources used by insect pollinators. We asked if a similar community of insect pollinators visits these crops in central Iowa, a landscape dominated by corn and soybean production. We used modified pan traps (i.e., bee bowls) in both corn and soybean fields during anthesis and used nonmetric multidimensional scaling (NMS) to compare the communities found in the two crops. Summed across both crops, 6,704 individual insects were captured representing at least 60 species, morphospecies, or higher-level taxa. Thirty-four species were collected in both crops, 19 collected only in corn and seven were collected only in soybean. The most abundant taxa were Lasioglossum [Dialictus] spp., Agapostemon virescens Cresson, Melissodes bimaculata (Lepeletier), and Toxomerus marginatus (Say), which accounted for 65% of the insect pollinators collected from both crops. Although social bees (Apis mellifera L. and Bombus spp.) were found in both crops, they accounted for only 0.5% of all insects captured. The NMS analysis revealed a shared community of pollinators composed of mostly solitary, ground nesting bees. Many of these species have been found in other crop fields throughout North America. Although corn and soybean are grown in landscapes that are often highly disturbed, these data suggest that a community of pollinators can persist within them. We suggest approaches to conserving this community based on partnering with activities that aim to lessen the environmental impact of annual crop production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Estimation of the proportion of feed protein digested in the small intestine of cattle consuming wet corn gluten feed.

    PubMed

    Kononoff, P J; Ivan, S K; Klopfenstein, T J

    2007-05-01

    The objectives of this study were to expand the database and determine the intestinal digestibility of rumen undegradable protein (dRUP) of common dairy feeds and to determine the effects of feeding 37.9% wet corn gluten feed on these estimates. Two ruminally and duodenally fistulated steers were assigned randomly to a crossover design with 4-wk periods. The mobile bag technique was used to determine rumen undegradable protein (RUP), dRUP, total tract digestible protein, and total tract digestible dry matter of alfalfa hay, brome hay, alfalfa haylage, corn silage, whole cottonseed, soybean meal, soyhulls, ground corn, nonenzymatically browned soybean meal, and dried distillers grains. There was no consistent effect of diet on RUP, dRUP, total tract digestible protein, and total tract digestible dry matter. The RUP (% of crude protein) ranged from 5.97% for alfalfa haylage to 75.6% for nonenzymatically browned soybean meal. The dRUP ranged from 15.3% for alfalfa haylage to 96.5% for nonenzymatically browned soybean meal. The dRUP for alfalfa hay (33.9%), brome hay (39.1%), alfalfa haylage (15.5%), and corn silage (19.9%) were lower than National Research Council reported values. The higher dRUP of the nonenzymatically browned soybean meal is reflective of more total protein reaching the small intestine. The large range in dRUP was not reflected in total tract digestible protein (% of crude protein), with corn silage being the lowest at 85.2% and nonenzymatically browned soybean meal the highest at 97.9%. In this study, diet had little effect on intestinal digestibility of protein or dry matter.

  5. Inclusion of wheat and triticale silage in the diet of lactating dairy cows.

    PubMed

    Harper, M T; Oh, J; Giallongo, F; Roth, G W; Hristov, A N

    2017-08-01

    The objective of this experiment was to partially replace corn silage with 2 alternative forages, wheat (Triticum aestivum) or triticale (X Triticosecale) silages at 10% of the diet dry matter (DM), and investigate the effects on dairy cow productivity, nutrient utilization, enteric CH 4 emissions, and farm income over feed costs. Wheat and triticale were planted in the fall as cover crops and harvested in the spring at the boot stage. Neutral- and acid-detergent fiber and lignin concentrations were higher in the wheat and triticale silages compared with corn silage. The forages had similar ruminal in situ effective degradability of DM. Both alternative forages had 1% starch or less compared with the approximately 35% starch in corn silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, wheat or triticale silages were included at 10% of dietary DM, replacing corn silage. Dry matter intake was not affected by diet, but both wheat and triticale silage decreased yield of milk (41.4 and 41.2 vs. 42.7 ± 5.18 kg/d) and milk components, compared with corn silage. Milk fat from cows fed the alternative forage diets contained higher concentrations of 4:0, 6:0, and 18:0 and tended to have lower concentrations of total trans fatty acids. Apparent total-tract digestibility of DM and organic matter was decreased in the wheat silage diet, and digestibility of neutral-and acid-detergent fiber was increased in the triticale silage diet. The wheat and triticale silage diets resulted in higher excretion of urinary urea, higher milk urea N, and lower milk N efficiency compared with the corn silage diet. Enteric CH 4 emission per kilogram of energy-corrected milk was highest in the triticale silage diet, whereas CO 2 emission was decreased by both wheat and triticale silage. This study showed that, at milk production of around 42 kg/d, wheat silage and triticale silage can partially replace corn silage DM and not affect DM intake, but milk yield may decrease slightly. For dairy farms in need of more forage, triticale or wheat double cropped with corn silage may be an appropriate cropping strategy. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Toxicity of biosolids-derived triclosan and triclocarban to six crop species.

    PubMed

    Prosser, Ryan S; Lissemore, Linda; Solomon, Keith R; Sibley, Paul K

    2014-08-01

    Biosolids are an important source of nutrients and organic matter, which are necessary for the productive cultivation of crop plants. Biosolids have been found to contain the personal care products triclosan and triclocarban at high concentrations relative to other pharmaceuticals and personal care products. The present study investigates whether exposure of 6 plant species (radish, carrot, soybean, lettuce, spring wheat, and corn) to triclosan or triclocarban derived from biosolids has an adverse effect on seed emergence and/or plant growth parameters. Plants were grown in soil amended with biosolids at a realistic agronomic rate. Biosolids were spiked with triclosan or triclocarban to produce increasing environmentally relevant exposures. The concentration of triclosan and triclocarban in biosolids-amended soil declined by up to 97% and 57%, respectively, over the course of the experiments. Amendment with biosolids had a positive effect on the majority of growth parameters in radish, carrot, soybean, lettuce, and wheat plants. No consistent triclosan- or triclocarban-dependent trends in seed emergence and plant growth parameters were observed in 5 of 6 plant species. A significant negative trend in shoot mass was observed for lettuce plants exposed to increasing concentrations of triclocarban (p<0.001). If best management practices are followed for biosolids amendment, triclosan and triclocarban pose a negligible risk to seed emergence and growth of crop plants. © 2014 SETAC.

  7. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.

  8. Effects of dietary carbohydrates sources on lipids compositions in abalone, Haliotis discus hannai Ino

    NASA Astrophysics Data System (ADS)

    Wang, Weifang; Mai, Kangsen; Zhang, Wenbing; Xu, Wei; Ai, Qinghui; Yao, Chunfeng; Li, Huitao

    2009-09-01

    A study was conducted to evaluate the effects of dietary carbohydrates on triglyceride, cholesterol and fatty acid concentrations in abalone, Haliotis discus hannai Ino. Six semi-purified diets with different carbohydrates (dextrin, heat-treated wheat starch, wheat starch, corn starch, tapioca starch and potato starch, respectively), all containing a carbohydrate level of 33.5%, were fed to abalone (initial shell length: 29.98 mm ± 0.09 mm; initial weight: 3.42 g ± 0.02 g) for 24 weeks in a recirculation system. The results indicate that serum triglyceride concentrations were significantly ( P < 0.05) higher in the abalone fed with dextrin, heat-treated wheat starch and wheat starch than those fed with corn starch, and serum cholesterol concentrations were significantly ( P < 0.05) higher in the abalone fed with dextrin, heat-treated wheat starch than those fed with corn starch. Fatty acid C20:4n-6 in the foot muscles were significantly ( P < 0.05) lower in the abalone fed with dextrin than those fed with wheat starch, corn starch, tapioca starch and potato starch. Fatty acid C20:4n-6 in hepatopancreas was significantly ( P < 0.05) lower in abalone fed with heat-treated wheat starch than those fed with corn starch, tapioca starch and potato starch. Fatty acid C22:6n-3 in the foot muscles were significantly ( P < 0.05) lower in the abalone fed with dextrin and heat-treated wheat starch than those fed with wheat starch and potato starch.

  9. Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.

    2008-12-01

    Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.

  10. Statistical analysis of the photodegradation of imazethapyr on the surface of extracted soybean (Glycine max) and corn (Zea mays) epicuticular waxes.

    PubMed

    Anderson, Scott C; Christiansen, Amy; Peterson, Alexa; Beukelman, Logan; Nienow, Amanda M

    2016-10-12

    The photodegradation rate of the herbicide imazethapyr on epicuticular waxes of soybean and corn plants was investigated. Plant age, relative humidity, temperature, and number of light banks were varied during plant growth, analyzed statistically, and examined to determine if these factors had an effect on the photodegradation of imazethapyr. Through ultraviolet/visible (UV-Vis) and fluorescence spectroscopy, epicuticular wax characteristics of soybean and corn plants were explored, were used to confirm observations determined statistically, and explain correlations between the rate constants and the composition of the epicuticular waxes. Plant age, the interaction between plant age and light, and the quadratic dependence on temperature were all determined to have a significant impact on the photodegradation rate of imazethapyr on the epicuticular waxes of soybean plants. As for the photodegradation rate on the epicuticular waxes of corn plants, the number of light banks used during growing and temperature were significant factors.

  11. Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1984-01-01

    The techniques used initially for the identification of cultivated crops from Landsat imagery depended greatly on the iterpretation of film products by a human analyst. This approach was not very effective and objective. Since 1978, new methods for crop identification are being developed. Badhwar et al. (1982) showed that multitemporal-multispectral data could be reduced to a simple feature space of alpha and beta and that these features would separate corn and soybean very well. However, there are disadvantages related to the use of alpha and beta parameters. The present investigation is concerned with a suitable method for extracting the required features. Attention is given to a profile model for crop discrimination, corn-soybean separation using profile parameters, and an automatic labeling (target recognition) method. The developed technique is extended to obtain a procedure which makes it possible to estimate the crop proportion of corn and soybean from Landsat data early in the growing season.

  12. Rapid corn and soybean mapping in US Corn Belt and neighboring areas

    PubMed Central

    Zhong, Liheng; Yu, Le; Li, Xuecao; Hu, Lina; Gong, Peng

    2016-01-01

    The goal of this study was to promptly map the extent of corn and soybeans early in the growing season. A classification experiment was conducted for the US Corn Belt and neighboring states, which is the most important production area of corn and soybeans in the world. To improve the timeliness of the classification algorithm, training was completely based on reference data and images from other years, circumventing the need to finish reference data collection in the current season. To account for interannual variability in crop development in the cross-year classification scenario, several innovative strategies were used. A random forest classifier was used in all tests, and MODIS surface reflectance products from the years 2008–2014 were used for training and cross-year validation. It is concluded that the fuzzy classification approach is necessary to achieve satisfactory results with R-squared ~0.9 (compared with the USDA Cropland Data Layer). The year of training data is an important factor, and it is recommended to select a year with similar crop phenology as the mapping year. With this phenology-based and cross-year-training method, in 2015 we mapped the cropping proportion of corn and soybeans around mid-August, when the two crops just reached peak growth. PMID:27811989

  13. Rapid corn and soybean mapping in US Corn Belt and neighboring areas

    NASA Astrophysics Data System (ADS)

    Zhong, Liheng; Yu, Le; Li, Xuecao; Hu, Lina; Gong, Peng

    2016-11-01

    The goal of this study was to promptly map the extent of corn and soybeans early in the growing season. A classification experiment was conducted for the US Corn Belt and neighboring states, which is the most important production area of corn and soybeans in the world. To improve the timeliness of the classification algorithm, training was completely based on reference data and images from other years, circumventing the need to finish reference data collection in the current season. To account for interannual variability in crop development in the cross-year classification scenario, several innovative strategies were used. A random forest classifier was used in all tests, and MODIS surface reflectance products from the years 2008-2014 were used for training and cross-year validation. It is concluded that the fuzzy classification approach is necessary to achieve satisfactory results with R-squared ~0.9 (compared with the USDA Cropland Data Layer). The year of training data is an important factor, and it is recommended to select a year with similar crop phenology as the mapping year. With this phenology-based and cross-year-training method, in 2015 we mapped the cropping proportion of corn and soybeans around mid-August, when the two crops just reached peak growth.

  14. Efficiency of a zinc lignosulfonate as Zn source for wheat (Triticum aestivum L.) and corn (Zea mays L.) under hydroponic culture conditions.

    PubMed

    Martín-Ortiz, Diego; Hernández-Apaolaza, Lourdes; Gárate, Agustin

    2009-01-14

    The objective of this study was to evaluate the efficiency of a zinc lignosulfonate (ZnLS) as Zn source for wheat and corn plants under hydroponic conditions. The Zn-complexing capacity of three commercial lignosulfonates (byproducts of the paper and pulp industry) was tested, and a LS-NH4, from spruce wood, was selected. Its efficacy as Zn fertilizer for wheat and corn plants was assessed at different pH values (7.0 and 8.0) in comparison with a chelate (ZnEDTA) and an inorganic salt (ZnSO4). For wheat at pH 7.0, it was concluded that the efficacy of the Zn fertilizers followed the sequence Zn-EDTA > Zn-LS approximately ZnSO4 > zero-Zn; and for wheat and corn at pH 8.0, similar results were obtained: Zn-LS > ZnSO4 approximately 0 Zn. These data give evidence that ZnLS could be used as Zn source to the roots of wheat and corn and seems to be more efficient than ZnSO4 to correct Zn deficiency in both plants.

  15. Effects of exogenous enzymes in corn-based and Canadian pearl millet-based diets with reduced soybean meal on growth performance, intestinal nutrient digestibility, villus development, and selected microbial populations in broiler chickens.

    PubMed

    Baurhoo, N; Baurhoo, B; Zhao, X

    2011-12-01

    An experiment was conducted to compare a commercial corn-soybean meal diet with a pearl millet diet containing less soybean meal (-27%), alone or in combination with exogenous enzymes, on growth performance, jejunal villus development, ileal CP, and AA digestibility, and cecal microbial populations in broilers. One hundred sixty 1-d-old male Ross 508 broilers (5/cage) were randomly allocated to one of the following dietary treatments: 1) a standard corn-soybean meal control diet (CTL); 2) a pearl millet-soybean meal diet (PM); 3) CTL + exogenous enzymes (CE); and 4) PM + exogenous enzymes (PE) with 8 replicate cages/treatment. The PM and PE diets contained less soybean meal because of greater CP and AA contents of pearl millet. All diets were isonitrogenous and isocaloric. Body weight and feed intake were recorded weekly over 35 d. At d 21 and 35, 8 broilers per treatment were euthanized for sample collection and analyses. Gain-to-feed was greater (P < 0.01) for pearl millet- than corn-based diets. Apparent ileal digestibility (AID) of CP and most AA was similar between corn-based and pearl millet-based diets, and enzyme supplementation improved AID of CP (P < 0.01) and most AA at both d 21 and 35. However, for AID of some AA at d 21, the response to enzyme supplementation was less pronounced in broilers fed pearl millet-based diets than those fed corn-based diets (grain × enzyme, P ≤ 0.05). The villus was longer (P < 0.01) in broilers fed PM and PE than CTL and CE at d 35. Similarly, at d 35, lactobacilli loads were greater (P < 0.01) in broilers fed PM and PE than CTL and CE. It is concluded that, in comparison with corn, broiler diets formulated with pearl millet require less soybean meal and can be used to improve growth performance traits, intestinal lactobacilli populations, and villus development, whereas enzyme supplementation increases AID of CP and AA.

  16. Evaluation of results of US corn and soybeans exploratory experiment: Classification procedures verification test. [Missouri, Iowa, Indiana, and Illinois

    NASA Technical Reports Server (NTRS)

    Carnes, J. G.; Baird, J. E. (Principal Investigator)

    1980-01-01

    The classification procedure utilized in making crop proportion estimates for corn and soybeans using remotely sensed data was evaluated. The procedure was derived during the transition year of the Large Area Crop Inventory Experiment. Analysis of variance techniques were applied to classifications performed by 3 groups of analysts who processed 25 segments selected from 4 agrophysical units (APU's). Group and APU effects were assessed to determine factors which affected the quality of the classifications. The classification results were studied to determine the effectiveness of the procedure in producing corn and soybeans proportion estimates.

  17. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains.

    PubMed

    Jaworski, N W; Lærke, H N; Bach Knudsen, K E; Stein, H H

    2015-03-01

    The objectives of this work were to determine carbohydrate composition and in vitro digestibility of DM and nonstarch polysaccharides (NSP) in corn, wheat, and sorghum and coproducts from these grains. In the initial part of this work, the carbohydrate composition of 12 feed ingredients was determined. The 12 ingredients included 3 grains (corn, sorghum, and wheat), 3 coproducts from the dry grind industry (corn distillers dried grains with solubles [DDGS] and 2 sources of sorghum DDGS), 4 coproducts from the wet milling industry (corn gluten meal, corn gluten feed, corn germ meal, and corn bran), and 2 coproducts from the flour milling industry (wheat middlings and wheat bran). Results indicated that grains contained more starch and less NSP compared with grain coproducts. The concentration of soluble NSP was low in all ingredients. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 22, 49, and 29% (DM basis), respectively, of the NSP in corn and corn coproducts and approximately 25, 43, and 32% (DM basis), respectively, of the NSP in sorghum and sorghum DDGS. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 16, 64, and 20% (DM basis), respectively, of the NSP in wheat and wheat coproducts. The concentration of lignin in grains was between 0.8 and 1.8% (DM basis), whereas coproducts contained between 2.2 and 11.5% lignin (DM basis). The in vitro ileal digestibility of NSP was close to zero or negative for all feed ingredients, indicating that pepsin and pancreas enzymes have no effect on in vitro degradation of NSP. A strong negative correlation ( = 0.97) between in vitro ileal digestibility of DM and the concentration of NSP in feed ingredients was observed. In vitro total tract digestibility of NSP ranged from 6.5% in corn bran to 57.3% in corn gluten meal. In conclusion, grains and grain coproducts contain mostly insoluble NSP and arabinoxylans make up the majority of the total NSP fraction. The in vitro digestibility of NSP depends on the amount and type of NSP and degree of lignification in the feed ingredient. The NSP composition of grains and grain coproducts plays an important role in determining the extent of fermentation of NSP; therefore, NSP composition influences the energy value of grains and grain coproducts.

  18. In vivo protein quality of selected cereal-based staple foods enriched with soybean proteins

    PubMed Central

    Acevedo-Pacheco, Laura; Serna-Saldívar, Sergio O.

    2016-01-01

    Background One way to diminish protein malnutrition in children is by enriching cereal-based flours for the manufacturing of maize tortillas, wheat flour tortillas, and yeast-leavened breads, which are widely consumed among low socio-economic groups. Objective The aim was to determine and compare the essential amino acid (EAA) scores, protein digestibility corrected amino acid scores (PDCAAS), and in vivo protein quality (protein digestibility, protein efficiency ratio (PER), biological values (BV), and net protein utilization (NPU) values) of regular versus soybean-fortified maize tortillas, yeast-leavened bread, and wheat flour tortillas. Design To comparatively assess differences in protein quality among maize tortillas, wheat flour tortillas, and yeast-leavened breads, EAA compositions and in vivo studies with weanling rats were performed. The experimental diets based on regular or soybean-fortified food products were compared with a casein-based diet. Food intake, weight gains, PER, dry matter and protein digestibility, BV, NPU, and PDCAAS were assessed. The soybean-fortified tortillas contained 6% of defatted soybean flour, whereas the yeast-leavened bread flour contained 4.5% of soybean concentrate. Results The soybean-fortified tortillas and bread contained higher amounts of lysine and tryptophan, which improved their EAA scores and PDCAAS. Rats fed diets based on soybean-fortified maize or wheat tortillas gained considerably more weight and had better BV and NPU values compared with counterparts fed with respective regular products. As a result, fortified maize tortillas and wheat flour tortillas improved PER from 0.73 to 1.64 and 0.69 to 1.77, respectively. The PER improvement was not as evident in rats fed the enriched yeast-leavened bread because the formulation contained sugar that decreased lysine availability possibly to Maillard reactions. Conclusions The proposed enrichment of cereal-based foods with soybean proteins greatly improved PDCAAS, animal growth, nitrogen retention, and PER primarily in both maize and wheat flour tortillas. Therefore, these foods can help to diminish protein malnutrition among children who greatly depend on cereals as the main protein dietary source. PMID:27765143

  19. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching will also be examined.

  20. Three-dimensional temporal and spatial distribution of adult Rhyzopertha dominica in stored wheat and corn under different temperatures, moisture contents, and adult densities.

    PubMed

    Jian, Fuji; Larson, Ron; Jayas, Digvir S; White, Noel D G

    2012-08-01

    Three-dimensional temporal and spatial distributions of adult Rhyzopertha dominica (F.) at adult densities of 1.0, 5.0, and 10.0 adults per kg grain and at 20 +/- 1, 25 +/- 1, and 30 +/- 1 degrees C were determined in 1.5 t bins filled with wheat (Triticum aestivum L.) with 11.0 +/- 0.8, 13.0 +/- 0.6, and 15.0 +/- 0.5% moisture content (wet basis) or corn (Zea mays L.) with 13.0 +/- 0.2% moisture content (wet basis). At each of five sampled locations, grain was separated into three 15-kg vertical layers, and adult numbers in each layer were counted. Inside both corn and wheat, adults did not prefer any location in the same layer except at high introduced insect density in wheat. The adults were recovered from any layer of the corn and >12, 65, and 45% of adults were recovered in the bottom layer of the corn at 20, 25, and 30 degrees C; respectively. However, <1% of adults were recovered in the bottom layer of wheat. Numbers of adults correlated with those in adjacent locations in both vertical and horizontal directions, and the temporal continuous property existed in both wheat and corn. Adults had highly clumped distribution at any grain temperature and moisture content. This aggregation behavior decreased with the increase of adult density and redistribution speed. Grain type influenced their redistribution speed, and this resulted in the different redistribution patterns inside wheat and corn bulks. These characterized distribution patterns could be used to develop sampling plans and integrated pest management programs in stored grain bins.

  1. Ethanol and agriculture: Effect of increased production on crop and livestock sectors. Agricultural economic report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.; Peters, M.; Baumes, H.

    1993-05-01

    Expanded ethanol production could increase US farm income by as much as $1 billion (1.4 percent) by 2000. Because corn is the primary feedstock for ethanol, growers in the Corn Belt would benefit most from improved ethanol technology and heightened demand. Coproducts from the conversion process (corn gluten meal, corn gluten feed, and others) compete with soybean meal, soybean growers in the South may see revenues decline. The US balance of trade would improve with increased ethanol production as oil import needs decline.

  2. Developing a computer-controlled simulated digestion system to predict the concentration of metabolizable energy of feedstuffs for rooster.

    PubMed

    Zhao, F; Ren, L Q; Mi, B M; Tan, H Z; Zhao, J T; Li, H; Zhang, H F; Zhang, Z Y

    2014-04-01

    Four experiments were conducted to evaluate the effectiveness of a computer-controlled simulated digestion system (CCSDS) for predicting apparent metabolizable energy (AME) and true metabolizable energy (TME) using in vitro digestible energy (IVDE) content of feeds for roosters. In Exp. 1, the repeatability of the IVDE assay was tested in corn, wheat, rapeseed meal, and cottonseed meal with 3 assays of each sample and each with 5 replicates of the same sample. In Exp. 2, the additivity of IVDE concentration in corn, soybean meal, and cottonseed meal was tested by comparing determined IVDE values of the complete diet with values predicted from measurements on individual ingredients. In Exp. 3, linear models to predict AME and TME based on IVDE were developed with 16 calibration samples. In Exp. 4, the accuracy of prediction models was tested by the differences between predicted and determined values for AME or TME of 6 ingredients and 4 diets. In Exp. 1, the mean CV of IVDE was 0.88% (range = 0.20 to 2.14%) for corn, wheat, rapeseed meal, and cottonseed meal. No difference in IVDE was observed between 3 assays of an ingredient, indicating that the IVDE assay is repeatable under these conditions. In Exp. 2, minimal differences (<21 kcal/kg) were observed between determined and calculated IVDE of 3 complete diets formulated with corn, soybean meal, and cottonseed meal, demonstrating that the IVDE values are additive in a complete diet. In Exp. 3, linear relationships between AME and IVDE and between TME and IVDE were observed in 16 calibration samples: AME = 1.062 × IVDE - 530 (R(2) = 0.97, residual standard deviation [RSD] = 146 kcal/kg, P < 0.001) and TME = 1.050 × IVDE - 16 (R(2) = 0.97, RSD = 148 kcal/kg, P < 0.001). Differences of less than 100 kcal/kg were observed between determined and predicted values in 10 and 9 of the 16 calibration samples for AME and TME, respectively. In Exp. 4, differences of less than 100 kcal/kg between determined and predicted values were observed in 3 and 4 of the 6 ingredient samples for AME and TME, respectively, and all 4 diets showed the differences of less than 25 kcal/kg between determined and predicted AME or TME. Our results indicate that the CCSDS is repeatable and additive. This system accurately predicted AME or TME on 17 of the 26 samples and may be a promising method to predict the energetic values of feed for poultry.

  3. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    PubMed

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd

  4. Soil profile organic carbon as affected by tillage and cropping systems

    USDA-ARS?s Scientific Manuscript database

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  5. AmeriFlux US-Bo1 Bondville

    DOE Data Explorer

    Meyers, Tilden [NOAA/ARL

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bo1 Bondville. Site Description - Agriculture, continuous no-till since 1986, Annual rotation between corn (C4) and soybeans (C3). The field was planted with corn during 2005 and 2007, with soybeans during 2006 and 2008.

  6. Rolled cover crop mulches for organic corn and soybean production

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crop mulches has increased out of both economic and soil conservation concerns. The number of tractor passes required to produce corn and a soybean organically is expensive and logistically challenging. Farmers currently use blind cultivators, such as a rotary hoe or flex-tine harr...

  7. Apex simulation: environmental benefits of agroforestry and grass buffers for corn-soybean watersheds

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental Extender (APEX) model is used to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. A long-term paired watershed study under corn (Zea mays L-soybean [Glycine max (L.) Merr.] rotation with agroforestr...

  8. Hydraulic properties affected by topsoil thickness in switchgrass and corn-soybean cropping systems

    USDA-ARS?s Scientific Manuscript database

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  9. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains.

    PubMed

    Hachmeister, K A; Fung, D Y

    1993-01-01

    A variety of indigenous fermented foods exist today; however, tempeh has been one of the most widely accepted and researched mold-modified fermented products. Tempeh is a traditional fermented food made from soaked and cooked soybeans inoculated with a mold, usually of the genus Rhizopus. After fermentation has occurred, the soybeans are bound together into a compact cake by dense cottony mycelium. An important function of the mold in the fermentation process is the synthesis of enzymes, which hydrolyze soybean constituents and contribute to the development of a desirable texture, flavor, and aroma of the product. Enzymatic hydrolysis also may decrease or eliminate antinutritional constituents; consequently, the nutritional quality of the fermented product may be improved. Current technology and new scientific advancements have enabled researchers to examine specific strains of Rhizopus and new substrates such as cereal grains. Because Kansas produces numerous cereal grains, production of a fermented tempeh-like product using wheat, sorghum (milo), oats, rye, barley, corn, and triticale is a definite possibility for generating a Kansas Value-Added Product. In this study, several different tempeh-like products were produced using various cereal grains inoculated with Rhizopus oligosporus NRRL 2549 or R. oligosporus NRRL 2710. Grains used included hard red winter wheat, triticale, yellow sorghum (milo), and red sorghum (milo). The grain source as well as the strain of R. oligosporus used influenced the product's appearance, flavor, and patty integrity. Results showed that R. oligosporus NRRL 2549 produced more mycelium at a more rapid rate than did the R. oligosporus NRRL 2710 strain. The combination of red sorghum and R. oligosporus NRRL 2549 yielded a product with good patty texture, aroma, and appearance. Furthermore, the red sorghum fermented product was well suited for slicing. On the other hand, yellow sorghum inoculated with either R. oligosporus NRRL 2549 or R. oligosporus NRRL 2710 failed to produce an organoleptically suitable product. Triticale also was found to be an unacceptable substrate for the production of a tempeh-like product. Although the fermented wheat product had a desirable aroma and flavor, it lacked patty integrity and crumbled when sliced. Further research is needed to evaluate the economic significance and industrial applications of these tempeh-like products.

  10. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    PubMed

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  11. Effect of replacing maize grain and soybean meal with a xylose-treated wheat grain on feed intake and performance of dairy cows.

    PubMed

    Benninghoff, Jens; Hamann, Gregor; Steingaß, Herbert; Romberg, Franz-Josef; Landfried, Karl; Südekum, Karl-Heinz

    2017-06-01

    This study evaluated wheat grain which was treated with xylose in aqueous Ca-Mg lignosulphonate solution at elevated temperatures (WeiPass®) in order to reduce ruminal degradation of starch and crude protein. The two tested isoenergetic and isonitrogenous diets contained on dry matter (DM) basis either 16% maize grain and 6.4% soybean meal (Diet CON) or 17.8% xylose-treated wheat and 4.6% soybean meal (Diet Wheat). Thirty-six German Holstein dairy cows were assigned to one of the two groups according to parity, body weight after calving, and milk yield during the previous lactation. Data collection started at 21 d before the expected calving date until 120 d in milk. The average of DM intake, energy-corrected milk (ECM) yield, and milk fat and protein yields (all given as kg/d) were 18.9, 28.7, 1.25, and 1.02 for Diet CON and 19.3, 32.5, 1.36, and 1.11 for Diet Wheat, respectively. Only ECM and milk protein yields were greater (p < 0.05) for cows receiving Diet Wheat. In conclusion, the xylose-treated wheat grain can replace maize grain and part of soybean meal in diets for lactating dairy cows and may be an alternative feedstuff depending on overall ration composition and availability and costs of grain sources.

  12. Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.

    PubMed

    Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab

    2009-12-01

    Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.

  13. Effects of dietary fiber and reduced crude protein on nitrogen balance and egg production in laying hens.

    PubMed

    Roberts, S A; Xin, H; Kerr, B J; Russell, J R; Bregendahl, K

    2007-08-01

    Ammonia emission is a major concern for the poultry industry and can be lowered by dietary inclusion of fibrous ingredients and by lowering the dietary CP content. The objectives of this research were to determine the effects of dietary fiber and reduced-CP diets, which may lower NH(3) emission, on egg production and N balance in laying hens. A total of 256 Hy-Line W-36 hens were fed diets with 2 contents of CP (normal and reduced) and 4 fiber treatments in a 2 x 4 factorial arrangement from 23 to 58 wk of age. The fiber treatments included a corn and soybean meal-based control diet and diets formulated with either 10.0% corn dried distillers grains with solubles (DDGS), 7.3% wheat middlings (WM), or 4.8% soybean hulls (SH) added to contribute equal amounts of neutral detergent fiber. The CP contents of the reduced-CP diets were approximately 1 percentage unit lower than that of the normal-CP diets. All diets were formulated on a digestible amino acid basis to be isoenergetic. There were no effects (P > 0.05) of including corn DDGS, WM, or SH in the diet on egg production, egg weight, egg mass, yolk color, feed consumption, feed utilization, or BW gain. Although the corn DDGS and WM diets resulted in an increase (P < 0.001) in N consumption, N excretion was not affected (P > 0.10) compared with hens fed the control diet. The reduced-CP diets did not affect egg weight, feed consumption, or BW gain (P > 0.05); however, egg production, egg mass, feed utilization, N consumption, and N excretion were lower than that from the hens fed the normal-CP diets (P < 0.05). The results of this study show that the diets containing 10% corn DDGS, 7% WM, or 5% SH did not affect egg production or N excretion. However, the 1% lower CP diets caused a lower egg production and lower N excretion.

  14. Climate change impacts on dryland cropping systems in the central Great Plains, USA

    USDA-ARS?s Scientific Manuscript database

    Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of GCM projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) at Akro...

  15. Requirements of shrimp, Penaeus chinensis O'sbeck for potassium, sodium, magnesium and iodine

    NASA Astrophysics Data System (ADS)

    Liu, Fa-Yi; Li, He-Fang; Wang, Hui-Liang; Liang, De-Hai; Tian, Yu-Chuan

    1995-06-01

    Potassium, sodium, magnesium and iodine requirements of shrimp, Penaeus chinensis were studied. Orthogonal design was employed in this experiment. The composition of the basal diet consisted of fish meal, peanut cake, corn meal, soybean cake, wheat bran, vitamin mix and mineral mix, and supplementations of potassium, sodium, magnesium and iodine in the basal diet were made according to the L9(34) orthogonal table. The results indicated that iodine supplementation improved growth of the shrimp significantly and raised survival very significantly, iodine requirement of the shrimp was 0.003%; sodium requirement was 0.87% or less; and that 1.1 1.3% potassium and 0.18 0.38% magnesium in the diet were proper nutrition supplements for the shrimp.

  16. Data documentation for the 1981 summer vegetation experiment. [Kansas River floodplain

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Brisco, B.; Allen, C.

    1982-01-01

    The mobile agricultural radar sensor was used to collect data from 31 fields in the floodplain of the Kansas River east of Lawrence, Kansas during the summer of 1981. Corn, soybeans, and wheat crops were observed from May 1 to November 11. Radar backscattering measurements were acquired at 10.2 GHz for VV and VH polarizations at 50 deg incidence angles for all fields and at 30 deg, 40 deg, 50 deg, 60 deg, and 70 deg for nine of the 31 fields. Target parameters describing the vegatation and soil characteristics, such as plant moisture, plant height, soil moisture, etc., were also measured. The methodology, radar backscatter data and associated ground-truth data obtained during this experiment are documented.

  17. The 1981 Argentina ground data collection

    NASA Technical Reports Server (NTRS)

    Horvath, R.; Colwell, R. N. (Principal Investigator); Hicks, D.; Sellman, B.; Sheffner, E.; Thomas, G.; Wood, B.

    1981-01-01

    Over 600 fields in the corn, soybean and wheat growing regions of the Argentine pampa were categorized by crop or cover type and ancillary data including crop calendars, historical crop production statistics and certain cropping practices were also gathered. A summary of the field work undertaken is included along with a country overview, a chronology of field trip planning and field work events, and the field work inventory of selected sample segments. LANDSAT images were annotated and used as the field work base and several hundred ground and aerial photographs were taken. These items along with segment descriptions are presented. Meetings were held with officials of the State Secretariat of Agriculture (SEAG) and the National Commission on Space Investigations (CNIE), and their support to the program are described.

  18. Summary of reported agriculture and irrigation water use in Lee County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lee County, Arkansas. The number of withdrawal registrations for Lee County was 1,582 (1,533 groundwater and 49 surface water). Water withdrawals reported during the registration process total 3.77 Mgal/d (3.39 Mgal/d groundwater and 0.38 Mgal/d surface water) for agriculture and 169.25 Mgal/d (166.79 Mgal/d groundwater and 2.46 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 97,029 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, and nuts as well as for the agricultural uses of animal aquaculture and ducks.

  19. Summary of reported agriculture and irrigation water use in Pulaski County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Pulaski County, Arkansas. The number of withdrawal registrations for Pulaski County was 291 (170 groundwater and 121 surface water). Water withdrawals reported during the registration process total 0.91 Mgal/d (0.71 Mgal/d groundwater and 0.20 Mgal/d surface water) for agriculture and 37.42 Mgal/d (28.53 Mgal/d groundwater and 8.89 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 28,088 acres of land to irrigate wheat, rice, sorghum, corn, soybeans, milo, cash grains, cotton, vegetables, and sod, as well as for the agricultural uses of animal aquaculture, timber, and ducks.

  20. Summary of reported agriculture and irrigation water use in Woodruff County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Woodruff County, Arkansas. The number of withdrawal registrations for Woodruff County was 1,930 (1,755 groundwater and 175 surface water). Water withdrawals reported during the registration process total 0.91 Mgal/d (0.91 Mgal/d groundwater and none from surface water) for agriculture and 284.20 Mgal/d (258.13 Mgal/d groundwater and 26.07 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 138,452 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, and vegetables, as well as for the agricultural uses of animal aquaculture and ducks.

  1. Summary of reported agriculture and irrigation water use in Drew County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Drew County, Arkansas. The number of withdrawal registrations for Drew County was 505 (342 groundwater and 163 surface water). Water withdrawals reported during the registration process total 0.32 Mgal/d (0.32 Mgal/d groundwater and none from surface water) for agriculture and 43.04 Mgal/d (37.43 Mgal/d groundwater and 5.61 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 23,775 acres of land to irrigate wheat, rice, corn, soybeans, milo, cash grains, cotton, and hay as well as for the agricultural use of animal aquaculture and catfish.

  2. Summary of reported agriculture and irrigation water use in Phillips County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Phillips County, Arkansas. The number of withdrawal registrations for Phillips County was 1,109 (1,103 groundwater and 6 surface water). Water withdrawals reported during the registration process total 0.15 Mgal/d (0.15 Mgal/d groundwater and none from surface water) for agriculture and 123.75 Mgal/d (122.66 Mgal/d groundwater and 1.09 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 96,502 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, grapes, nuts, fruit trees, and sod, as well as for the agricultural use of animal aquaculture.

  3. Chromium concentrations in ruminant feed ingredients.

    PubMed

    Spears, J W; Lloyd, K E; Krafka, K

    2017-05-01

    Chromium (Cr), in the form of Cr propionate, has been permitted for supplementation to cattle diets in the United States at levels up to 0.50 mg of Cr/kg of DM since 2009. Little is known regarding Cr concentrations naturally present in practical feed ingredients. The present study was conducted to determine Cr concentrations in feed ingredients commonly fed to ruminants. Feed ingredients were collected from dairy farms, feed mills, grain bins, and university research farms. Mean Cr concentrations in whole cereal grains ranged from 0.025 mg/kg of DM for oats to 0.041 mg/kg of DM for wheat. Grinding whole samples of corn, soybeans, and wheat through a stainless steel Wiley mill screen greatly increased analyzed Cr concentrations. Harvested forages had greater Cr concentrations than concentrates, and alfalfa hay or haylage had greater Cr concentrations than grass hay or corn silage. Chromium in alfalfa hay or haylage (n = 13) averaged 0.522 mg/kg of DM, with a range of 0.199 to 0.889 mg/kg of DM. Corn silage (n = 21) averaged 0.220 mg of Cr/kg of DM with a range of 0.105 to 0.441 mg of Cr/kg of DM. By-product feeds ranged from 0.040 mg of Cr/kg of DM for cottonseed hulls to 1.222 mg of Cr/kg of DM for beet pulp. Of the feed ingredients analyzed, feed grade phosphate sources had the greatest Cr concentration (135.0 mg/kg). Most ruminant feedstuffs and feed ingredients had less than 0.50 mg of Cr/kg of DM. Much of the analyzed total Cr in feed ingredients appears to be due to Cr contamination from soil or metal contact during harvesting, processing, or both. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Shortwave infrared detection of vegetation

    NASA Technical Reports Server (NTRS)

    Goward, S. N. (Principal Investigator)

    1985-01-01

    The potential of short wave infrared (SWIR) measurements in vegetation discrimination is further substantiated through a discussion of field studies and an examination of the physical bases which cause SWIR measurements to vary with the vegetation type observed. The research reported herein supported the AGRISTARS program objective to incorporate TM measurements in the analysis of agricultural activity. Field measurements on corn and soybeans in Iowa were conducted, and the mean and variance of canopy reflectance were computed for each observation date. The Suits canopy reflectance model was used to evaluate possible explanations of the observed corn/soybeans reflectance patterns /39/. The SWIR measurements were shown to effectively discriminate corn and soybeans on the basis of leaf absorption properties.

  5. Using Landsat digital data to detect moisture stress in corn-soybean growing regions

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A.

    1980-01-01

    As a part of a follow-on study to the moisture stress detection effort conducted in the Large Area Crop Inventory Experiment (LACIE), a technique utilizing transformed Landsat digital data was evaluated for detecting moisture stress in humid growing regions using sample segments from Iowa, Illinois, and Indiana. At known growth stages of corn and soybeans, segments were classified as undergoing moisture stress or not undergoing stress. The remote-sensing-based information was compared to a weekly ground-based index (Crop Moisture Index). This comparison demonstrated that the remote sensing technique could be used to monitor the growing conditions within a region where corn and soybeans are the major crop.

  6. Effect of diet composition on vanadium toxicity for the chick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, L.R.

    1966-01-01

    Studies to determine the effect of diet composition on the toxicity of 20 ppm added vanadium for the young chick have shown: growth depression of 25-30% with a corn-soybean meal ration but only 3-7% with a corn-herring fish meal diet. Growth depression of 35-40% with a semi-purified sucrose-soybean meal diet and approximately 50% with a diet of sucrose and herring fish meal. Adding graded levels of corn to the sucrose-fish meal ration and fish meal to the corn-soybean meal ration reduced vanadium toxicity. The corn fractions, ash, oil, starch, zein and gluten did not reduce vanadium toxicity. Removing the addedmore » magnesium (300 ppm) and potassium (2000 ppm) from the sucrose-fish meal ration did not affect growth rate or mortality. However removal of these materials from the basal ration increased growth depression due to added vanadium from 43-56% and increased mortality from 10-80%. 4 references, 9 tables.« less

  7. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks.

    PubMed

    Walugembe, M; Hsieh, J C F; Koszewski, N J; Lamont, S J; Persia, M E; Rothschild, M F

    2015-10-01

    This experiment was conducted to evaluate the effects of feeding dietary fiber on cecal short-chain fatty acid (SCFA) concentration and cecal microbiota of broiler and laying-hen chicks. The lower fiber diet was based on corn-soybean meal (SBM) and the higher fiber diet was formulated using corn-SBM-dried distillers grains with solubles (DDGS) and wheat bran to contain 60.0 g/kg of both DDGS and wheat bran from 1 to 12 d and 80.0 g/kg of both DDGS and wheat bran from 13 to 21 d. Diets were formulated to meet or exceed NRC nutrient requirements. Broiler and laying-hen chicks were randomly assigned to the high and low fiber diets with 11 replicates of 8 chicks for each of the 4 treatments. One cecum from 3 chicks was collected from each replicate: one cecum underwent SCFA concentration analysis, one underwent bacterial DNA isolation for terminal restriction fragment length polymorphism (TRFLP), and the third cecum was used for metagenomics analyses. There were interactions between bird line and dietary fiber for acetic acid (P = 0.04) and total SCFA (P = 0.04) concentration. There was higher concentration of acetic acid (P = 0.02) and propionic acid (P < 0.01) in broiler chicks compared to laying-hen chicks. TRFLP analysis showed that cecal microbiota varied due to diet (P = 0.02) and chicken line (P = 0.03). Metagenomics analyses identified differences in the relative abundance of Helicobacter pullorum and Megamonas hypermegale and the genera Enterobacteriaceae, Campylobacter, Faecalibacterium, and Bacteroides in different treatment groups. These results provide insights into the effect of dietary fiber on SCFA concentration and modulation of cecal microbiota in broiler and laying-hen chicks. © 2015 Poultry Science Association Inc.

  8. The U.S. Soybean Industry. Agricultural Economic Report Number 588.

    ERIC Educational Resources Information Center

    Schaub, James; And Others

    This report describes the U.S. soybean industry from producers to consumers and provides a single source of economic and statistical information on soybeans. Highlights are as follows: U.S. soybean production has increased sevenfold since 1950, making soybeans the second highest valued crop after corn. Soybean production has risen in response to…

  9. A three-part geometric model to predict the radar backscatter from wheat, corn, and sorghum

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Eger, G. W., III; Kanemasu, E. T.

    1982-01-01

    A model to predict the radar backscattering coefficient from crops must include the geometry of the canopy. Radar and ground-truth data taken on wheat in 1979 indicate that the model must include contributions from the leaves, from the wheat head, and from the soil moisture. For sorghum and corn, radar and ground-truth data obtained in 1979 and 1980 support the necessity of a soil moisture term and a leaf water term. The Leaf Area Index (LAI) is an appropriate input for the leaf contribution to the radar response for wheat and sorghum, however the LAI generates less accurate values for the backscattering coefficient for corn. Also, the data for corn and sorghum illustrate the importance of the water contained in the stalks in estimating the radar response.

  10. Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems

    USDA-ARS?s Scientific Manuscript database

    Corn and soybean farmers in the upper Midwest are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion prevention, and weed suppression; however, the effects of winter cover crops on soil quality in this region have ...

  11. 78 FR 34637 - Dow AgroSciences LLC; Notice of Intent To Prepare an Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... of Nonregulated Status of Herbicide Resistant Corn and Soybeans, and Notice of Virtual Public... determination of nonregulated status of three cultivars of herbicide resistant corn and soybeans produced by Dow... certain broadleaf herbicides in the auxin growth regulator group (particularly the herbicide 2,4-D). The...

  12. Development of a corn and soybean labeling procedure for use with profile parameter classification

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1982-01-01

    Some essential processes for the development of a green-number-based logic for identifying (labeling) crops in LANDSAT imagery are documented. The supporting data and subsequent conclusions that resulted from development of a specific labeling logic for corn and soybean crops in the United States are recorded.

  13. Topsoil thickness effects on corn, soybean, and switchgrass production on claypan soils

    USDA-ARS?s Scientific Manuscript database

    Diminished topsoil thickness or depth to claypan (DTC) is a major cause of yield and profit depression in corn (Zea mays L.) and to a lesser extent in soybean (Glycine max [L.]) production on claypan soils. Perennial grasses such as switchgrass (Panicum virgatum L.) may be more resilient to reduced ...

  14. Vertical movement of adult rusty grain beetles, Cryptolestes ferrugineus, in stored corn and wheat at uniform moisture content

    PubMed Central

    Jian, Fuji; Jayas, Digvir S.; White, Noel D. G.

    2006-01-01

    Vertical movement and distribution of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) adults in stored wheat and corn were studied in small (0.1 x 0.1 x 1 m) and large (0.6 m diameter and 1.12 m high) columns. The adults were introduced at the top, middle, and bottom of the small columns with a uniform moisture content (wheat: 14.5 ± 0.1%, corn 13.5 ± 0.1%, 15.5 ± 0.1%, and 17.5 ± 0.1%) at 27.5 ± 0.5°C. When introduced at different locations, adults showed a similar distribution in stored grain bulk with a uniform temperature and moisture content of 14.5% for wheat or 15.5% for corn. Adults showed downward displacement over 24 h when corn moisture was lower than 15.5%, but they did not show downward displacement when moisture content was 17.5%. The upward or downward movement might partially be caused by a drift effect due to beetles sliding between seeds and the displacement of the adults might be the combined effect of walking and falling during their movement. The hydrophilic behavior plus the drift effect explain why the beetles had a faster downward dispersal in the 13.5% corn than in the 15.5% and 17.5% corn and a slight upward displacement in 17.5% corn because they were more active at the lower moisture contents. Adults had a similar movement and distribution in both the small and large wheat columns. PMID:19537976

  15. Study on mycoflora of poultry feed ingredients and finished feed in Iran

    PubMed Central

    Ghaemmaghami, Seyed Soheil; Modirsaneii, Mehrdad; Khosravi, Ali Reza; Razzaghi-Abyaneh, Mehdi

    2016-01-01

    Background and Objectives: Unhygienic poultry feedstuffs can lead to nutrient losses and detrimental effect on poultry production and public health. In the present study, mycobiota and colony-forming units per gram in ingredients and finish poultry feed was evaluated with special reference to potentially mycotoxigenic fungi. Materials and Methods: Eighty five samples of corn, soybean meal and poultry finished feed were collected from nine poultry feed factories located in three provinces i.e. Tehran, Alborz and Qom in Iran from October 2014 to January 2015. Samples were cultured on Sabouraud dextrose agar (SDA), Aspergillus flavus and parasiticus agar (AFPA) and dichloran rosebengal chloramphenicol agar (DRBC) and incubated at 28 °C for 7–10 days. Purified fungal colonies were identified by a combination of macro- and microscopic morphological criteria. For determining the rate of fungal contamination, samples were cultured on SDA and colony forming units (CFUs) were calculated. Results: A total of 384 fungal isolates belonging to 7 genera of filamentous fungi and yeasts were obtained from corn (124 isolates), soybean meal (92 isolates), and feed before (72 isolates), and after pelleting (96 isolates). The most prominent fungal isolate in corn, soybean meal and feed before pelleting (feed as mash form) was Fusarium but in feed after pelleting was Aspergillus. Among 5 Aspergillus species isolated, potentially aflatoxigenic A. flavus isolates was predominant in corn (46.6%), soybean meal (72.7%) and poultry finished feed (75%). CFUs results indicated that 9/22 corn samples (40.9%), none of 22 soybean meal samples, 19/41 finished feed (46.3%) were contaminated higher than the standard limit. Conclusions: Our results indicated that corn, soybean meal and finished feed of poultry feed mill are contaminated with various fungal genera by different levels sometimes higher that the standard limits. Contamination with potentially mycotoxigenic fungi especially Aspergillus species may be considered as a human public health hazard. PMID:27092224

  16. Study on mycoflora of poultry feed ingredients and finished feed in Iran.

    PubMed

    Ghaemmaghami, Seyed Soheil; Modirsaneii, Mehrdad; Khosravi, Ali Reza; Razzaghi-Abyaneh, Mehdi

    2016-02-01

    Unhygienic poultry feedstuffs can lead to nutrient losses and detrimental effect on poultry production and public health. In the present study, mycobiota and colony-forming units per gram in ingredients and finish poultry feed was evaluated with special reference to potentially mycotoxigenic fungi. Eighty five samples of corn, soybean meal and poultry finished feed were collected from nine poultry feed factories located in three provinces i.e. Tehran, Alborz and Qom in Iran from October 2014 to January 2015. Samples were cultured on Sabouraud dextrose agar (SDA), Aspergillus flavus and parasiticus agar (AFPA) and dichloran rosebengal chloramphenicol agar (DRBC) and incubated at 28 °C for 7-10 days. Purified fungal colonies were identified by a combination of macro- and microscopic morphological criteria. For determining the rate of fungal contamination, samples were cultured on SDA and colony forming units (CFUs) were calculated. A total of 384 fungal isolates belonging to 7 genera of filamentous fungi and yeasts were obtained from corn (124 isolates), soybean meal (92 isolates), and feed before (72 isolates), and after pelleting (96 isolates). The most prominent fungal isolate in corn, soybean meal and feed before pelleting (feed as mash form) was Fusarium but in feed after pelleting was Aspergillus. Among 5 Aspergillus species isolated, potentially aflatoxigenic A. flavus isolates was predominant in corn (46.6%), soybean meal (72.7%) and poultry finished feed (75%). CFUs results indicated that 9/22 corn samples (40.9%), none of 22 soybean meal samples, 19/41 finished feed (46.3%) were contaminated higher than the standard limit. Our results indicated that corn, soybean meal and finished feed of poultry feed mill are contaminated with various fungal genera by different levels sometimes higher that the standard limits. Contamination with potentially mycotoxigenic fungi especially Aspergillus species may be considered as a human public health hazard.

  17. Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops

    NASA Astrophysics Data System (ADS)

    Sakamoto, Toshihiro

    2018-04-01

    Crop phenological information is a critical variable in evaluating the influence of environmental stress on the final crop yield in spatio-temporal dimensions. Although the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Dynamics product (MCD12Q2) is widely used in place of crop phenological information, the definitions of MCD12Q2-derived phenological events (e.g. green-up date, dormancy date) were not completely consistent with those of crop development stages used in statistical surveys (e.g. emerged date, harvested date). It has been necessary to devise an alternative method focused on detecting continental-scale crop developmental stages using a different approach. Therefore, this study aimed to refine the Shape Model Fitting (SMF) method to improve its applicability to multiple major U.S. crops. The newly-refined SMF methods could estimate the timing of 36 crop-development stages of major U.S. crops, including corn, soybeans, winter wheat, spring wheat, barley, sorghum, rice, and cotton. The newly-developed calibration process did not require any long-term field observation data, and could calibrate crop-specific phenological parameters, which were used as coefficients in estimated equation, by using only freely accessible public data. The calibration of phenological parameters was conducted in two steps. In the first step, the national common phenological parameters, referred to as X0[base], were calibrated by using the statistical data of 2008. The SMF method coupled using X0[base] was named the rSMF[base] method. The second step was a further calibration to gain regionally-adjusted phenological parameters for each state, referred to as X0[local], by using additional statistical data of 2015 and 2016. The rSMF method using the X0[local] was named the rSMF[local] method. This second calibration process improved the estimation accuracy for all tested crops. When applying the rSMF[base] method to the validation data set (2009-2014), the root mean square error (RMSE) of the rSMF[base]-derived estimates ranged from 7.1 days (corn) to 15.7 days (winter wheat). When using the rSMF[local] method, the RMSE of the rSMF[local]-derived estimates improved and ranged from 5.6 days (corn) to 12.3 days (winter wheat). The results showed that the second calibration step for the rSMF[local] method could correct the region-dependent bias error between the rSMF[base]-derived estimates and the statistical data. A comparison between the performances of the refined SMF methods and the MCD12Q2 products, indicated that both of the rSMF methods were superior to the MCD12Q2 products in estimating all phenological stages, except for the case of the rSMF[base]-derived barley emerged stages. The phenological stages for which the rSMF[local] showed the best estimation accuracy were the corn silking stage (RMSE = 4.3 days); the soybeans dropping leaves stage (RMSE = 4.9 days); the headed stages of winter wheat (RMSE = 11.1 days), barley (RMSE = 6.1 days), and sorghum (RMSE = 9.5 days); the spring-wheat harvested stage (RMSE = 5.5 days); the rice emerged stage (RMSE = 5.5 days), and the cotton squaring stage (RMSE = 6.6 days). These were more accurate than the results achieved by the MCD12Q2 products. In addition, the rSMF[local]-derived estimates were superior in terms of the reproducibility of the annual variation range, particularly of the late reproductive stages, such as the mature and harvested stages. The crop phenology maps derived from the SMF [local] method were also in good agreement with the relevant maps derived from statistics, and could reveal the characteristic spatial pattern of the key phenological stages at the continental scale with fine spatial resolution. For example, the winter-wheat headed stage clearly became later from south to north. The cotton squaring stage became earlier from the central region towards both coastal regions.

  18. Abnormally high digestive enzyme activity and gene expression explain the contemporary evolution of a Diabrotica biotype able to feed on soybeans

    PubMed Central

    Curzi, Matías J; Zavala, Jorge A; Spencer, Joseph L; Seufferheld, Manfredo J

    2012-01-01

    Western corn rootworm (Diabrotica virgifera) (WCR) depends on the continuous availability of corn. Broad adoption of annual crop rotation between corn (Zea mays) and nonhost soybean (Glycine max) exploited WCR biology to provide excellent WCR control, but this practice dramatically reduced landscape heterogeneity in East-central Illinois and imposed intense selection pressure. This selection resulted in behavioral changes and “rotation-resistant” (RR) WCR adults. Although soybeans are well defended against Coleopteran insects by cysteine protease inhibitors, RR-WCR feed on soybean foliage and remain long enough to deposit eggs that will hatch the following spring and larvae will feed on roots of planted corn. Other than documenting changes in insect mobility and egg laying behavior, 15 years of research have failed to identify any diagnostic differences between wild-type (WT)- and RR-WCR or a mechanism that allows for prolonged RR-WCR feeding and survival in soybean fields. We documented differences in behavior, physiology, digestive protease activity (threefold to fourfold increases), and protease gene expression in the gut of RR-WCR adults. Our data suggest that higher constitutive activity levels of cathepsin L are part of the mechanism that enables populations of WCR to circumvent soybean defenses, and thus, crop rotation. These new insights into the mechanism of WCR tolerance of soybean herbivory transcend the issue of RR-WCR diagnostics and management to link changes in insect gut proteolytic activity and behavior with landscape heterogeneity. The RR-WCR illustrates how agro-ecological factors can affect the evolution of insects in human-altered ecosystems. PMID:22957201

  19. Users manual for the US baseline corn and soybean segment classification procedure

    NASA Technical Reports Server (NTRS)

    Horvath, R.; Colwell, R. (Principal Investigator); Hay, C.; Metzler, M.; Mykolenko, O.; Odenweller, J.; Rice, D.

    1981-01-01

    A user's manual for the classification component of the FY-81 U.S. Corn and Soybean Pilot Experiment in the Foreign Commodity Production Forecasting Project of AgRISTARS is presented. This experiment is one of several major experiments in AgRISTARS designed to measure and advance the remote sensing technologies for cropland inventory. The classification procedure discussed is designed to produce segment proportion estimates for corn and soybeans in the U.S. Corn Belt (Iowa, Indiana, and Illinois) using LANDSAT data. The estimates are produced by an integrated Analyst/Machine procedure. The Analyst selects acquisitions, participates in stratification, and assigns crop labels to selected samples. In concert with the Analyst, the machine digitally preprocesses LANDSAT data to remove external effects, stratifies the data into field like units and into spectrally similar groups, statistically samples the data for Analyst labeling, and combines the labeled samples into a final estimate.

  20. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2

    NASA Astrophysics Data System (ADS)

    McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J.

    2014-05-01

    Early and on-going crop production forecasts are important to facilitate food price stability for regions at risk, and for agriculture exporters, to set market value. Most regional and global efforts in forecasting rely on multiple sources of information from the field. With increased access to data from spaceborne Synthetic Aperture Radar (SAR), these sensors could contribute information on crop acreage. But these acreage estimates must be available early in the season to assist with production forecasts. This study acquired TerraSAR-X and RADARSAT-2 data over a region in eastern Canada dominated by economically important corn and soybean production. Using a supervised decision tree classifier, results determined that either sensor was capable of delivering highly accurate maps of corn and soybeans at the end of the growing season. Accuracies far exceeded 90%. Spatial and multi-temporal filtering approaches were compared and small improvements in accuracies were found by applying the multi-temporal filter to the RADARSAT-2 data. Of significant interest, this study determined that by using only three TerraSAR-X images corn could be accurately identified by the end of June, a mere six weeks after planting and at a vegetative growth stage (V6 - sixth leaf collar developed). However, soybeans required additional acquisitions given the variance in planting densities and planting dates in this region of Canada. In this case, accurate soybean classification required TerraSAR-X images until early August at the start of the reproductive stage (R5 - seed development is beginning). Also important, by applying a multi-temporal filter accurate mapping (close to 90%) of corn and soybeans from RADARSAT-2 could occur five weeks earlier (by August 19) than if a spatial filter was used. Thus application of this filtering approach could accelerate delivery of a crop inventory for this region of Canada. Corn and soybeans are important commodities both globally and within Canada. This study makes an important contribution as it demonstrates that TerraSAR-X can deliver acreage estimates of these two crops early enough to assist with in-season production forecasting.

  1. 75 FR 38072 - Notice of a Request for Extension of a Currently Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    .... wheat and corn by the Soviet Union in 1972. To make sure that all parties involved in the production and.... The designated commodities for these daily reports are wheat (by class), barley, corn, grain sorghum... the size of the sales transaction, for all of these commodities, as well as wheat products, rye...

  2. Grain yield response to poultry litter application under a wheat-soybean double cropping system

    USDA-ARS?s Scientific Manuscript database

    Poultry litter application and double cropping are management practices that could be used with conservation tillage systems to increase yields compared to conventional monocropping systems. The objective of this study was to evaluate wheat (Triticum aestivum L.) and soybean [Glycine max (L.) Merr.]...

  3. Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.

    2009-08-01

    Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility duemore » to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.« less

  4. Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover.

    PubMed

    Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab

    2010-01-01

    Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.

  5. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods.

    PubMed

    Salim, Abdalla Ali; Grbavčić, Sanja; Šekuljica, Nataša; Stefanović, Andrea; Jakovetić Tanasković, Sonja; Luković, Nevena; Knežević-Jugović, Zorica

    2017-03-01

    Study on potential of different agro-industrial waste residues for supporting the growth of newly isolated Bacillus sp. TMF-1 strain under solid-state fermentation (SSF) was conducted aiming to produce several industrially valuable enzymes. Since the feasibility of the initial study was confirmed, further objectives included evaluation of several pretreatments of the studied agricultural by-products (soybean meal, sunflower meal, maize bran, maize pericarp, olive oil cake and wheat bran) on the microbial productivity as means of enhancing the yields of produced proteases, α-amylases, cellulases and pectinases. Among acid/alkaline treatment, ultrasound and microwave assisted methods, chemical treatments superiorly affected most of the studied substrates. Highest yields of produced proteases (50.5IUg -1 ) and α-amylases (50.75IUg -1 ) were achieved on alkaline treated corn pericarp. Alkaline treatment also promoted the secretion of cellulases on maize bran (1.19IUg -1 ). Highest yield of pectinases was obtained on untreated soybean meal (64.90IUg -1 ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of incorporation of corn byproducts on quality of baked and extruded products from wheat flour and semolina.

    PubMed

    Sharma, Savita; Gupta, Jatinder Pal; Nagi, H P S; Kumar, Rakesh

    2012-10-01

    The effect of blending level (0, 5, 10, 15 and 20%) of corn bran, defatted germ and gluten with wheat flour on the physico-chemical properties (protein, crude fiber, phosphorus, iron and calcium), baking properties of bread, muffins and cookies, and extrusion properties of noodles and extruded snacks prepared from semolina were examined. Blending of wheat flour and corn byproducts significantly increased the protein, crude fiber, phosphorus, iron and calcium contents. Breads from gluten blends had higher loaf volume as compared to bran and germ breads. Among corn byproducts, gluten cookies were rated superior with respect to top grain. Muffins from germ blends and gluten blends had higher acceptability scores than the bran muffins. Blending of corn bran, defatted germ and gluten at 5 and 10% with wheat flour resulted in satisfactory bread, cookie, and muffin score. Quality of noodles was significantly influenced by addition of corn byproducts and their levels. Corn byproducts blending had significant influence on cooking time, however, gruel solid loss affected non-significantly in case of noodles. Expansion ratio and density of extruded snacks was affected non significantly by blending source and blending level. However, significant effect was observed on amperage, pressure, yield and overall acceptability of extruded snacks. Acceptable extruded products (noodles and extruded snacks) could be produced by blending corn byproducts with semolina upto 10% level.

  7. Supporting Climatic Trends of Corn and Soybean Production in the USA

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cherkauer, K. A.; Verdin, J. P.

    2010-12-01

    The United States of America (USA) is a major source of corn and soybeans, producing about 39 percent of the world’s corn and 50 percent of world’s soybean supply. The north central states, including parts of the Midwestern US and the Great Plains form what is commonly described as the “Corn Belt” and consist of the most productive grain growing region in the United States. Changes in climate, including precipitation and temperature, are being observed throughout the world, and the Corn Belt region of the US is not immune posing a potential threat to global food security. We conducted a retrospective analysis of observed climate variables and crop production statistics to evaluate if observed climatic trends are having a positive or negative effect on corn and soybean production in the US. We selected climate indices based on gridded daily precipitation, maximum and minimum air temperature data from the National Climatic Data Center (NCDC) for the period of 1920-2009 and for 13 states in the Corn Belt region. We used the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for different periods overlapping the important seasons for crop growths, such as the planting (April-May), grain-filling (June-August), and harvesting (September -October) seasons. We estimated the seasonal average of maximum and minimum daily temperatures to identify the historic trends and variability in air temperature during the key crop-growth seasons. Extreme warm temperatures can affect crop growth and yields adversely; therefore, cumulative maximum air temperature above the 90th percentiles (e.g. Cumulative Heat Index) was estimated for each growing period. We evaluated historic trends and variability of areal extents of severe or extreme droughts along with the areal extents facing the high cumulative heat stress. Our results showed that climatic extremes (e.g. droughts and heat stress) that occurred during the period of June - August (JJA), affected the yields of corn and soybeans most severely. High moisture and low heat stress during the JJA period favored crop yields, while low moisture and high heat conditions during the planting season (April-May) increased yields. Results also indicated that this part of the US is trending towards lower heat stress and drought extents, and higher moisture conditions during the JJA period. Therefore, in future, if the present trends persist, we expect the climate will more supportive of increased corn and soybean yields.

  8. A 5-year analysis of crop phenologies from the United States Heartland (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.

    2010-12-01

    Time series imagery data from the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) was intersected with annually updated field-level crop data from the United States Department of Agriculture (USDA) Farm Service Agency (FSA). Phenological metrics were derived for major crop types found in the United States (US) Heartland region. The specific MODIS data consisted of the 16-day composited Normalized Difference Vegetation Index (NDVI) 250 meter spatial resolution imagery from the Terra satellite. Crops evaluated included corn, soybeans, wheat, cotton, sorghum, rice, and other small grains. Charts showing the annual average state-level NDVI phenologies by crop were constructed for the five years between 2006 and 2010. The states of interest covered the intensively cultivated regions in the US Great Plains, Corn Belt, and Mississippi River Alluvial Plain. Results demonstrated the recent biophysical growth cycles of prevalent and widespread US crops and how they varied by geography and year. Linkages between the time series data and planting practices, weather impacts, crop progress reports, and yields were also investigated.

  9. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes

    PubMed Central

    Landis, Douglas A.; Gardiner, Mary M.; van der Werf, Wopke; Swinton, Scott M.

    2008-01-01

    Increased demand for corn grain as an ethanol feedstock is altering U.S. agricultural landscapes and the ecosystem services they provide. From 2006 to 2007, corn acreage increased 19% nationally, resulting in reduced crop diversity in many areas. Biological control of insects is an ecosystem service that is strongly influenced by local landscape structure. Here, we estimate the value of natural biological control of the soybean aphid, a major pest in agricultural landscapes, and the economic impacts of reduced biocontrol caused by increased corn production in 4 U.S. states (Iowa, Michigan, Minnesota, and Wisconsin). For producers who use an integrated pest management strategy including insecticides as needed, natural suppression of soybean aphid in soybean is worth an average of $33 ha−1. At 2007–2008 prices these services are worth at least $239 million y−1 in these 4 states. Recent biofuel-driven growth in corn planting results in lower landscape diversity, altering the supply of aphid natural enemies to soybean fields and reducing biocontrol services by 24%. This loss of biocontrol services cost soybean producers in these states an estimated $58 million y−1 in reduced yield and increased pesticide use. For producers who rely solely on biological control, the value of lost services is much greater. These findings from a single pest in 1 crop suggest that the value of biocontrol services to the U.S. economy may be underestimated. Furthermore, we suggest that development of cellulosic ethanol production processes that use a variety of feedstocks could foster increased diversity in agricultural landscapes and enhance arthropod-mediated ecosystem services. PMID:19075234

  10. Differences in the response of wheat, soybean and lettuce to reduced blue radiation

    NASA Technical Reports Server (NTRS)

    Dougher, T. A.; Bugbee, B.

    2001-01-01

    Although many fundamental blue light responses have been identified, blue light dose-response curves are not well characterized. We studied the growth and development of soybean, wheat and lettuce plants under high-pressure sodium (HPS) and metal halide (MH) lamps with yellow filters creating five fractions of blue light. The blue light fractions obtained were < 0.1, 2 and 6% under HPS lamps, and 6, 12 and 26% under MH lamps. Studies utilizing both lamp types were done at two photosynthetic photon flux levels, 200 and 500 mumol m-2 s-1 under a 16 h photoperiod. Phytochrome photoequilibria was nearly identical among treatments. The blue light effect on dry mass, stem length, leaf area, specific leaf area and tillering/branching was species dependent. For these parameters, wheat did not respond to blue light, but lettuce was highly sensitive to blue light fraction between 0 and 6% blue. Soybean stem length decreased and leaf area increased up to 6% blue, but total dry mass was unchanged. The blue light fraction determined the stem elongation response in soybean, whereas the absolute amount of blue light determined the stem elongation response in lettuce. The data indicate that lettuce growth and development requires blue light, but soybean and wheat may not.

  11. A small variation in diet influences the Lactobacillus strain composition in the crop of broiler chickens.

    PubMed

    Hammons, Susan; Oh, Phaik Lyn; Martínez, Inés; Clark, Kenzi; Schlegel, Vicki L; Sitorius, Emily; Scheideler, Sheila E; Walter, Jens

    2010-08-01

    Feed composition has the potential to influence the activities of bacteria that colonize the digestive tract of broiler chickens with important consequences for animal health, well being, and food safety. In this study, the gut microbiota of two groups of broiler chickens raised in immediate vicinity but fed either a standard corn/soybean meal ration (corn-soy, CS) or a ration high in wheat middlings (high wheat, HW) was characterized. The findings revealed that this small variation in feed composition did not influence the distribution of microbial species present in the microbial community throughout the digestive tract. However, diet variation markedly influenced the Lactobacillus strain composition in the crop. Most striking, the dominant type in birds on the CS diet (Lactobacillus agilis type R5), which comprised 25% of the isolates, was not detected in birds fed the HW diet. The latter birds harbored a different strain of L. agilis (type R1) in a significantly higher ratio than birds on the CS diet. Several other strains were also specific to the particular diet. In conclusion, this study showed that a small variation in the composition of chicken feed that does not result in detectable differences in species composition can still have an impact on which microbial strains become dominant in the digestive tract. This finding has relevance in the application of probiotics and other direct-fed microbials in poultry husbandry. Copyright 2010 Elsevier GmbH. All rights reserved.

  12. Integrated weed management strategies in cover crop-based, organic rotational no-till corn and soybean in the mid-Atlantic region

    USDA-ARS?s Scientific Manuscript database

    Cover crop-based, organic rotational no-till (CCORNT) corn and soybean systems have been developed in the mid-Atlantic region to build soil health, increase management flexibility, and reduce labor. In this system, a roll-crimped cover crop mulch provides within-season weed suppression in no-till co...

  13. AmeriFlux US-Ro5 Rosemount I18_South

    DOE Data Explorer

    Baker, John [USDA-ARS; Griffis, Tim [University of Minnesota

    2018-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ro5 Rosemount I18_South. Site Description - This tower is located in a farm field farmed in accordance with the dominant farming practice in the region: a corn/soybean rotation with chisel plow tillage in the fall following corn harvest and in the spring following soybeans.

  14. AmeriFlux US-Ro3 Rosemount- G19

    DOE Data Explorer

    Baker, John [USDA-ARS; Griffis, Tim [University of Minnesota

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ro3 Rosemount- G19. Site Description - This tower is located in a farm field farmed in accordance with the cominant farming practice in the region: a corn/soybean rotation with chisel plow tillage in the fall following corn harvest and in the spring following soybeans.

  15. AmeriFlux US-Ro1 Rosemount- G21

    DOE Data Explorer

    Baker, John [USDA-ARS; Griffis, Tim [University of Minnesota; Griffis, Timothy [University of Minnesota

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ro1 Rosemount- G21. Site Description - This tower is located in a farm field farmed in accordance with the dominant farming practice in the region: a corn/soybean rotation with chisel plow tillage in the fall following corn harvest and in the spring following soybeans.

  16. AmeriFlux US-Ro2 Rosemount- C7

    DOE Data Explorer

    Baker, John [USDA-ARS; Griffis, Tim [University of Minnesota

    2018-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ro2 Rosemount- C7. Site Description - This tower is located in a farm field farmed in accordance with the dominant farming practice in the region: a corn/soybean/clover rotation with chisel plow tillage in the fall following corn harvest and in the spring following soybeans.

  17. Advanced 13C NMR Analysis of the Light Fraction, Particulate Organic Matter, and Humic Acid Fractions From a Corn-Soybean Soil

    USDA-ARS?s Scientific Manuscript database

    Fractions of soil organic matter (SOM) are usually extracted from soil by either physical (e.g., size, density) or chemical (e.g., base, acid) procedures. Integrated procedures that combine both of these types promise greater insights into SOM chemistry and function. For a corn-soybean soil in Iowa,...

  18. Comparison of the impact of y-oryzanol and corn steryl ferulates on the polymerization of soybean oil during frying

    USDA-ARS?s Scientific Manuscript database

    Corn steryl ferulates (CSF), oryzanol, a combination of equal amounts of CSF and oryzanol, and ferulic acid were added to refined, bleached, deodorized, soybean oil at a concentration of 8.1-8.4 µmol/g oil, which corresponded to 0.5% (w/w) for the steryl ferulates. The rate of polymerized triacylgly...

  19. A diversified no-till crop rotation reduces nitrous oxide emissions, increases soybean yields, and promotes soil C accrual

    USDA-ARS?s Scientific Manuscript database

    We evaluated the impact of crop rotational diversity on greenhouse gas (GHG) emissions, global warming potential (GWP), and crop yields. Under no-till, rain-fed conditions, a two-yr (corn (Zea mays L.)-soybean (Glycine max (L.) Merr.)) rotation and a four-yr (corn-field peas (Pisum sativum L.)-winte...

  20. Impact of broadcasting a cereal rye or oat cover crop before corn and soybean harvest on nitrate leaching

    USDA-ARS?s Scientific Manuscript database

    The corn and soybean rotation in Iowa has no living plants taking up water and nutrients from crop maturity until planting, a period of over six months in most years. In many fields, this results in losses of nitrate in effluent from artificial drainage systems during this time. In a long-term fiel...

  1. Cultural and environmental influences on temporal-spectral development patterns of corn and soybeans

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    A technique for evaluating crop temporal-spectral development patterns is described and applied to the analysis of cropping practices and environmental conditions as they affect reflectance characteristics of corn and soybean canopies. Typical variations in field conditions are shown to exert significant influences on the spectral development patterns, and thereby to affect the separability of the two crops.

  2. Evaluation of corn/soybeans separability using Thematic Mapper and Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G. D.; Thompson, D. R.; Henderson, K. E.; Shen, S. S.; Sorensen, C. T.; Carnes, J. G.

    1984-01-01

    Multitemporal Thematic Mapper, Thematic Mapper Simulator, and detailed ground truth data were collected for a 9- by 11-km sample segment in Webster County, IA, in the summer of 1982. Three dates were acquired each with Thematic Mapper Simulator (June 7, June 23, and July 31) and Thematic Mapper (August 2, September 3, and October 21). The Thematic Mapper Simulator data were converted to equivalent TM count values using TM and TMS calibration data and model based estimates of atmospheric effects. The July 31, TMS image was compared to the August 2, TM image to verify the conversion process. A quantitative measure of proportion estimation variance (Fisher information) was used to evaluate the corn/soybeans separability for each TM band as a function of time during the growing season. The additional bands in the middle infrared allowed corn and soybeans to be separated much earlier than was possible with the visible and near-infrared bands alone. Using the TM and TMS data, temporal profiles of the TM principal components were developed. The greenness and brightness exhibited behavior similar to MSS greenness and brightness for corn and soybeans.

  3. Evaluation of several schemes for classification of remotely sensed data: Their parameters and performance. [Foster County, North Dakota; Grant County, Kansas; Iroquois County, Illinois, Tippecanoe County, Indiana; and Pottawattamie and Shelby Counties, Iowa

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.

  4. Physico-chemical, nutritional and infrared spectroscopy evaluation of an optimized soybean/corn flour extrudate.

    PubMed

    Guzmán-Ortiz, Fabiola Araceli; Hernández-Sánchez, Humberto; Yee-Madeira, Hernani; San Martín-Martínez, Eduardo; Robles-Ramírez, María Del Carmen; Rojas-López, Marlon; Berríos, Jose De J; Mora-Escobedo, Rosalva

    2015-07-01

    A central composite design using RMS (Response Surface Methodology) successfully described the effect of independent variables (feed moisture, die temperature and soybean proportion) on the specific parameters of product quality as expansion index (EI), water absorption index (WAI), water solubility index (WSI) and total color difference (ΔE) studied. The regression model indicated that EI, WAI, WSI and ΔE were significant (p < 0.05) with coefficients of determination (R(2)) of 0.7371, 0.7588, 0.7622, 0.8150, respectively. The optimized processing conditions were obtained with 25.8 % feed moisture, 160 °C die temperature and 58 %/42 % soybean/corn proportion. It was not found statistically changes in amino acid profile due to extrusion process. The electrophoretic profile of extruded soybean/corn mix presented low intensity molecular weight bands, compared to the unprocessed sample. The generation of low molecular weight polypeptides was associated to an increased in In vitro protein digestibility (IVPD) of the extrudate. The FTIR spectra of the soybean/corn mix before and after extrusion showed that the α-helix structure remained unchanged after extrusion. However, the band associated with β-sheet structure showed to be split into two bands at 1624 and 1640 cm(-1) . The changes in the β-sheet structures may be also associated to the increased in IVPD in the extruded sample.

  5. The Challenge Facing Efforts to Encourage Military Use of Biodiesel as a Drop-In Fuel

    DTIC Science & Technology

    2012-05-01

    certain staples, here is a list of additional uses of com and soybean: • Corn Uses: Eaten as "com on a cob " and as kennels; other food combinations are...the blend must not compete with food crops. This last parameter makes traditional materials or "feedstock" such as corn or soy not appropriate...34feedstock" such as corn or soy are not appropriate" (Currents, 2011). The Dept. ofDefense is looking for a dedicated energy feedstock, period. Soybeans

  6. Radar remote sensing for crop classification and canopy condition assessment: Ground-data documentation

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Jung, B.; Gillespie, K.; Hemmat, M.; Aslam, A.; Brunfeldt, D.; Dobson, M. C.

    1983-01-01

    A vegetation and soil-moisture experiment was conducted in order to examine the microwave emission and backscattering from vegetation canopies and soils. The data-acquisition methodology used in conjunction with the mobile radar scatterometer (MRS) systems is described and associated ground-truth data are documented. Test fields were located in the Kansas River floodplain north of Lawrence, Kansas. Ten fields each of wheat, corn, and soybeans were monitored over the greater part of their growing seasons. The tabulated data summarize measurements made by the sensor systems and represent target characteristics. Target parameters describing the vegetation and soil characteristics include plant moisture, density, height, and growth stage, as well as soil moisture and soil-bulk density. Complete listings of pertinent crop-canopy and soil measurements are given.

  7. Area estimation of crops by digital analysis of Landsat data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Hixson, M. M.; Davis, B. J.

    1978-01-01

    The study for which the results are presented had these objectives: (1) to use Landsat data and computer-implemented pattern recognition to classify the major crops from regions encompassing different climates, soils, and crops; (2) to estimate crop areas for counties and states by using crop identification data obtained from the Landsat identifications; and (3) to evaluate the accuracy, precision, and timeliness of crop area estimates obtained from Landsat data. The paper describes the method of developing the training statistics and evaluating the classification accuracy. Landsat MSS data were adequate to accurately identify wheat in Kansas; corn and soybean estimates for Indiana were less accurate. Systematic sampling of entire counties made possible by computer classification methods resulted in very precise area estimates at county, district, and state levels.

  8. Fumonisins B₁, B₂ and B₃ in corn products, wheat flour and corn oil marketed in Shandong province of China.

    PubMed

    Li, Fenghua; Jiang, Dafeng; Zheng, Fengjia; Chen, Jindong; Li, Wei

    2015-01-01

    In this study a total of 522 samples were collected from Shandong province of China in 2014 and analysed for the occurrence of fumonisin B1 (FB1), FB2 and FB3 by isotope dilution ultrahigh performance liquid chromatography-tandem mass spectrometry. Fumonisins were detected in 98.1% of the corn products, with the average total level of 369.2 μg kg(-1). The individual average values of FB1, FB2 and FB3 in corn products were 268.3, 53.7 and 47.2 μg kg(-1), respectively. The simultaneous occurrence of FB1, FB2 and FB3 was observed in 76.7% of the corn products. Especially, the results demonstrated that the difference in the contamination levels for fumonisins in these three types of corn products was apparent. In addition, 6.2% of the wheat flour samples were contaminated with FB1, with concentrations ranging from 0.3 to 34.6 µg kg(-1). No FB2 or FB3 was detected in wheat flour. In corn oil samples no fumonisins were detected.

  9. Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients.

    PubMed

    Dust, Jolene M; Gajda, Angela M; Flickinger, Elizabeth A; Burkhalter, Toni M; Merchen, Neal R; Fahey, George C

    2004-05-19

    An experiment was conducted to determine the effects of extrusion conditions on chemical composition and in vitro hydrolytic and fermentative digestion of barley grits, cornmeal, oat bran, soybean flour, soybean hulls, and wheat bran. Extrusion conditions altered crude protein, fiber, and starch concentrations of ingredients. Organic matter disappearance (OMD) increased for extruded versus unprocessed samples of barley grits, cornmeal, and soybean flour that had been hydrolytically digested. After 8 h of fermentative digestion, OMD decreased as extrusion conditions intensified for barley grits and cornmeal but increased for oat bran, soybean hulls, and wheat bran. Total short-chain fatty acid production decreased as extrusion conditions intensified for barley grits, soybean hulls, and soybean flour. These data suggest that the effects of extrusion conditions on ingredient composition and digestion are influenced by the unique chemical characteristics of individual substrates.

  10. 76 FR 58549 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Approving a Proposed Rule Change To List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... the Teucrium Wheat Fund, the Teucrium Soybean Fund and the Teucrium Sugar Fund Under NYSE Arca... Fund, and the Teucrium Sugar Fund under Commentary .02 to NYSE Arca Equities Rule 8.200. The proposed... trade shares (``Shares'') of the Teucrium Wheat Fund, the Teucrium Soybean Fund, and the Teucrium Sugar...

  11. Cooperation with Commodity Groups and Hands-On Demonstrations Improve the Effectiveness of Commodity-Focused Educational Programs

    ERIC Educational Resources Information Center

    Kandel, Herman J.; Ransom, Joel K.; Torgerson, David A.; Wiersma, Jochum J.

    2010-01-01

    Wheat and soybean producers pay a small amount per bushel produced as a check-off. Funds are used for research, outreach, and crop promotion. Commodity organizations and Extension joined forces to develop multi-state educational outreach on spring wheat and soybean production. Participatory planning involved producers in developing these…

  12. Impact of fiber source and feed particle size on swine manure properties related to spontaneous foam formation during anaerobic decomposition.

    PubMed

    Van Weelden, M B; Andersen, D S; Kerr, B J; Trabue, S L; Pepple, L M

    2016-02-01

    Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure inoculation on foaming characteristics. Animals were fed: (1) C-SBM (corn-soybean meal): (2) C-DDGS (corn-dried distiller grains with solubles); and (3) C-Soybean Hull (corn-soybean meal with soybean hulls) with each diet ground to either fine (374 μm) or coarse (631 μm) particle size. Two sets of 24 pigs were fed and their manure collected. Factors that decreased feed digestibility (larger grind size and increased fiber content) resulted in increased solids loading to the manure, greater foaming characteristics, more particles in the critical particle size range (2-25 μm), and a greater biological activity/potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    PubMed Central

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  14. Flesh colour dominates consumer preference for chicken.

    PubMed

    Kennedy, Orla B; Stewart-Knox, Barbara J; Mitchell, Peter C; Thurnham, David I

    2005-04-01

    Existing research investigating interactions between visual and oral sensory cues has tended to use model food systems. In contrast, this study compared product quality assessments of corn-fed and wheat-fed chicken products among persons recruited in Northern Ireland. Three approaches have been adopted to investigate the effect of colour upon consumer choice of chicken: sensory assessment under normal lighting; focus group discussion; and sensory assessment under controlled lighting conditions. Initial consumer sensory assessment indicated that wheat-fed chicken was perceived to be tenderer and to have a more intense flavour than that which was corn-fed. Qualitative enquiry discerned that this was because consumers perceived the yellow colour of corn-fed chicken negatively. Yellow-coloured corn-fed chicken was therefore again compared with wheat-fed chicken in terms of flavour, texture and overall liking with the flesh colour disguised by means of controlled lighting. Quality ratings for corn-fed chicken were more positive when the yellow flesh colour was disguised, with corn-fed chicken judged to be tenderer than wheat-fed chicken and more flavoursome. This study illustrates the importance of using a combination of methods to gain insight into interactions between different sensory modalities in consumer quality judgements and adds to previous research on the importance of colour upon consumer choice of real foods.

  15. Effects of tallow, choice white grease, palm oil, corn oil, or soybean oil on apparent total tract digestibility of minerals in diets fed to growing pigs.

    PubMed

    Merriman, L A; Walk, C L; Parsons, C M; Stein, H H

    2016-10-01

    An experiment was conducted to determine the effect of supplementing diets fed to growing pigs with fat sources differing in their composition of fatty acids on the apparent total tract digestibility (ATTD) of minerals. A diet based on corn, potato protein isolate, and 7% sucrose was formulated. Five additional diets that were similar to the previous diet with the exception that sucrose was replaced by 7% tallow, choice white grease, palm oil, corn oil, or soybean oil were also formulated. Diets were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P. Growing barrows ( = 60; 15.99 ± 1.48 kg initial BW) were allotted to a randomized complete block design with 2 blocks of 30 pigs, 6 dietary treatments, and 10 replicate pigs per treatment. Experimental diets were provided for 12 d with the initial 5 d being the adaptation period. Total feces were collected for a 5-d collection period using the marker-to-marker approach, and the ATTD of minerals, ether extract, and acid hydrolyzed ether extract was calculated for all diets. Digestibility of DM was greater ( < 0.05) in the diet containing soybean oil compared with the diet containing choice white grease or the basal diet, with all other diets being intermediate. The ATTD of Ca, S, and P was greater ( < 0.05) for pigs fed diets containing soybean oil, corn oil, palm oil, or tallow than for pigs fed the basal diet or the diet containing choice white grease. The ATTD of Mg, Zn, Mn, Na, and K were not different among dietary treatments. The ATTD of ether extract was greater ( < 0.05) in diets containing palm oil, corn oil, or soybean oil compared with the diet containing choice white grease, and the ATTD of acid hydrolyzed ether extract in the diet containing soybean oil was also greater ( < 0.05) than in the diet containing choice white grease. In conclusion, supplementation of a basal diet with tallow, palm oil, corn oil, or soybean oil may increase the ATTD of some macrominerals, but that appears not to be the case if choice white grease is used. There was no evidence of negative effects of the fat sources used in this experiment on the ATTD of any minerals.

  16. Effect of fiber removal from ground corn, distillers dried grains with solubles and soybean meal using the Elusieve process on broiler performance and processing yield

    USDA-ARS?s Scientific Manuscript database

    The Elusieve process, a combination of sieving and elutriation (air classification), has been found to be effective in fiber separation from ground corn, distillers dried grains with solubles (DDGS) and soybean meal (SBM). The objective of this study was to determine the effect of removing fiber fro...

  17. Interactions of corn meal or molasses with a soybean-sunflower meal mix or flaxseed meal on production, milk fatty acids composition, and nutrient utilization in dairy cows fed grass hay-based diets

    USDA-ARS?s Scientific Manuscript database

    We investigated the interactions of molasses or corn meal [nonstructural carbohydrate (NSC) sources] with flaxseed meal or a soybean-sunflower meal protein mix [rumen-degradable protein (RDP) sources] on animal production, milk fatty acids profile, and nutrient utilization in organic Jersey cows fed...

  18. A comparison of corn fiber gum, hydrophobically modified starch, gum arabic and soybean soluble polysaccharide: interfacial dynamics, viscoelastic response at oil/water interfaces and emulsion stabilization mechanisms

    USDA-ARS?s Scientific Manuscript database

    The interfacial rheology of polysaccharide adsorption layers of corn fiber gum (CFG), octenyl succinate anhydride-modified starch (OSA-s), gum arabic (GA) and soybean soluble polysaccharides (SSPS) at the oil/water interface and their emulsifying properties in oil-in-water (O/W) emulsions were compa...

  19. Effect of Phytase on Apparent Total Tract Digestibility of Phosphorus in Corn-Soybean Meal Diets Fed to 100 kg Pigs

    USDA-ARS?s Scientific Manuscript database

    Five experiments were conducted to investigate the ability of different sources of phytase supplemented to the diet at graded levels to improve apparent P digestibility in finishing pigs. A corn-soybean meal basal diet containing 0.50% Ca and 0.32% P (0.06% available P) was used in all experiments a...

  20. The contribution of digestible and metabolizable energy from high-fiber dietary ingredients is not affected by inclusion rate in mixed diets fed to growing pigs.

    PubMed

    Navarro, D M D L; Bruininx, E M A M; de Jong, L; Stein, H H

    2018-05-04

    Effects of inclusion rate of fiber-rich ingredients on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of GE and on the concentration of DE and ME in mixed diets fed to growing pigs were determined. The hypothesis was that increasing the inclusion rate of fiber decreases digestibility of GE, and thus, the contribution of DE and ME from hindgut fermentation because greater concentrations may reduce the ability of microbes to ferment fiber. Twenty ileal-cannulated pigs (BW: 30.64 ± 2.09 kg) were allotted to a replicated 10 × 4 incomplete Latin Square design with 10 diets and four 26-d periods. There were 2 pigs per diet in each period for a total of 8 replications per diet. A basal diet based on corn and soybean meal (SBM) and a corn-SBM diet with 30% corn starch were formulated. Six additional diets were formulated by replacing 15% or 30% corn starch by 15% or 30% corn germ meal, sugar beet pulp, or wheat middlings, and 2 diets were formulated by including 15% or 30% canola meal in a diet containing corn, SBM, and 30% corn starch. Effects of adding 15% or 30% of each fiber source to experimental diets were analyzed using orthogonal contrasts and t-tests were used to compare inclusion rates within each ingredient. The AID and ATTD of GE and concentration of DE and ME in diets decreased (P < 0.05) with the addition of 15% or 30% canola meal, corn germ meal, sugar beet pulp, or wheat middlings compared with the corn starch diet. However, inclusion rate did not affect the calculated DE and ME or AID and ATTD of GE in any of the ingredients indicating that concentration of DE and ME in ingredients was independent of inclusion rate and utilization of energy from test ingredients was equally efficient between diets with 15% and 30% inclusion. Increased inclusion of fiber in the diet did not influence transit time in the small intestine, but reduced the time of first appearance of digesta in the feces indicating that transit time was reduced in the hindgut of pigs fed high-fiber diets. However, this had no impact on DE and ME or ATTD of GE in test ingredients. In conclusion, fiber reduced the DE and ME in the diet. However, inclusion rate of fiber-rich ingredients in diets did not affect calculated values for DE and ME in feed ingredients indicating that microbial capacity for fermentation of fiber in pigs is not overwhelmed by inclusion of 30% high-fiber ingredients in the diets.

  1. Insecticidal Management and Movement of the Brown Stink Bug, Euschistus servus, in Corn

    PubMed Central

    Reisig, Dominic D.

    2011-01-01

    In eastern North Carolina, some brown stink bugs, Euschistus servus (Say) (Hemiptera: Pentatomidae) are suspected to pass the F1 generation in wheat (Triticum aestivum L.) (Poales: Poaceae) before moving into corn (Zea mays L.) (Poales: Poaceae). These pests can injure corn ears as they develop. To test their effectiveness as a management tactic, pyrethroids were aerially applied to field corn in two experiments, one with 0.77 ha plots and another with 85 ha plots. Euschistus servus population abundance was monitored over time in both experiments and yield was assessed in the larger of the two experiments. In the smaller experiment, the populations were spatially monitored in a 6.3 ha area of corn adjacent to a recently harvested wheat field (352 sampling points of 6.1 row-meters in all but the first sampling event). Overall E. servus abundance decreased throughout the monitoring period in the sampling area of the smaller experiment, but remained unchanged over time in the large-scale experiment. During all sampling periods in both experiments, abundance was the same between treatments. Yield was unaffected by treatment where it was measured in the larger experiment. In the smaller experiment, E. servus were initially aggregated at the field edge of the corn (two, six and 13 days following the wheat harvest). Sixteen days following the wheat harvest they were randomly distributed in the corn. Although it was not directly measured, stink bugs are suspected to move the cornfield edge as a result of the adjacent wheat harvest. More study of the biology of E. servus is needed, specifically in the area of host preference, phenology and movement to explain these phenomena and to produce better management strategies for these pests. PMID:22950984

  2. Less waste corn, more land in soybeans, and the switch to genetically modified crops: Trends with important implications for wildlife management

    USGS Publications Warehouse

    Krapu, G.L.; Brandt, D.A.; Cox, R.R.

    2004-01-01

    American agriculture has provided abundant high-energy foods for migratory and resident wildlife populations since the onset of modern wildlife management. Responding to anecdotal evidence that corn residues are declining in cropland, we remeasured waste corn post-harvest in the Central Platte River Valley (CPRV) of Nebraska during 1997 and 1998 to compare with 1978. Post-harvest waste corn averaged 2.6% and 1.8% of yield in 1997 and 1998, respectively. After accounting for a 20% increase in yield, waste corn in 1997 and 1998 was reduced 24% and 47% from 1978. We also evaluated use of soybeans by spring-staging sandhill cranes (Crus canadensis) and waterfowl during spring 1998 and 1999. Despite being widely available in the CPRV, soybeans did not occur in esophageal contents of sandhill cranes (n=174), northern pintails (Anas acuta, n=139), greater white-fronted geese (Anser albifrons, n=198), or lesser snow geese (Chen caerulescens, n=208) collected with food in their esophagi. Lack of soybean consumption by cranes and waterfowl in Nebraska in early spring builds upon previously published findings, suggesting that soybeans are poorly suited for meeting nutrient needs of wildlife requiring a high-energy diet. Given evidence that high-energy food and numerous populations of seed-eating species found on farmland are declining, and the enormous potential risk to game and nongame wildlife populations if high-energy foods were to become scarce, a comprehensive research effort to study the problem appears warranted. Provisions under the Conservation Security subtitle of The Farm Security and Rural Investment Act of 2002 offer a potential mechanism to encourage producers to manage cropland in ways that would replace part of the high-energy foods that have been lost to increasing efficiency of production agriculture.

  3. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments.

  4. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina.

    PubMed

    Russo, María L; Pelizza, Sebastián A; Cabello, Marta N; Stenglein, Sebastián A; Vianna, María F; Scorsetti, Ana C

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. The importance of calf sensory and physical preferences for starter concentrates during pre- and postweaning periods.

    PubMed

    Terré, M; Devant, M; Bach, A

    2016-09-01

    We performed 3 studies to evaluate the effects of feed sensory and form preferences in young calves on performance and rumen fermentation dynamics. In experiment 1, starter feeds containing wheat and soybean meal; wheat and canola meal; and oats and soybean meal were evaluated in 63 calves (9±0.9 d old). In experiment 2, 37 crossbreed female calves were used from 4 to 45 d of age (weaning) in a cafeteria study consisting of 4 different presentations of the same starter feed: meal, pellet, pellet mixed with whole-cereal grains (WHG), and pellet mixed with steamed-rolled cereal grains (SRG). In experiment 3, 63 Holstein male calves (10±1.03 d old) were randomly distributed to 2 treatments that consisted of feeding a pellet concentrate mixed with whole corn and barely grains (WHG) or the same pellet concentrate mixed with steamed-rolled corn and barley grains (SRG). In experiment 1, animals in all 3 treatments had similar intake and performance, and we found no differences in rumen fermentation parameters. In experiment 2, during the first week of study, calves had a greater preference for WHG; after the first week, calves had a greater preference for SRG. In experiment 3, starter concentrate intake was greater in WHG than in SRG concentrates between wk 5 and weaning. However, we observed no differences in growth or gain-to-feed ratio. Calves offered WHG concentrates had greater rumen pH and tended to have lower total rumen volatile fatty acid concentrations than those offered SRG concentrates. We concluded that preweaned calves preferred concentrates based on pellets mixed with steamed-rolled grains. When calves could not choose their starter feed, pellets mixed with steamed-rolled grains reduced concentrate intake and rumen pH compared to pellets mixed with whole grains, but performance was not impaired. Formulating starter concentrates according to calves' sensory and physical preferences had little effect on performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. 40 CFR 180.468 - Flumetsulam; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following raw agricultural commodities: Commodity Parts per million Bean, dry 0.05 Corn, field, grain 0.05 Corn, field, forage 0.05 Corn, field, stover 0.05 Soybean 0.05 [58 FR 57967, Oct. 28, 1993, as amended...

  7. AmeriFlux US-Br1 Brooks Field Site 10- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br1 Brooks Field Site 10- Ames. Site Description - The Brooks Field Site 10 - Ames Site is one of three sites (Brooks Field Site 11 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  8. AmeriFlux US-Br3 Brooks Field Site 11- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br3 Brooks Field Site 11- Ames. Site Description - The Brooks Field Site 11 - Ames Site is one of three sites (Brooks Field Site 10 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  9. AgRISTARS: Foreign commodity production forecasting. Corn/soybean decision logic development and testing

    NASA Technical Reports Server (NTRS)

    Dailey, C. L.; Abotteen, K. M. (Principal Investigator)

    1980-01-01

    The development and testing of an analysis procedure which was developed to improve the consistency and objectively of crop identification using Landsat data is described. The procedure was developed to identify corn and soybean crops in the U.S. corn belt region. The procedure consists of a series of decision points arranged in a tree-like structure, the branches of which lead an analyst to crop labels. The specific decision logic is designed to maximize the objectively of the identification process and to promote the possibility of future automation. Significant results are summarized.

  10. An evaluation of western bean cutworm pheromone trapping techniques (Lepidoptera: Noctuidae) in a corn and soybean agroecosystem.

    PubMed

    Dorhout, David L; Rice, Marlin E

    2008-04-01

    Pheromone traps can be used to monitor for adult western bean cutworms, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), and for the timing of field scouting. Understanding the effect that different trapping techniques have on adult captures could help corn (Zea mays L.) producers make better pest management decisions. Several approaches to trapping adults were evaluated in 2005 and 2006 by using two different pheromone traps (sticky wing and jug traps) in two different environments (corn or corn/soybean [Glycine max (L.) Merr.] at three different heights (0.6, 1.2, and 1.8 m). There was no significant difference in the trap catches by trap type in either 2005 or 2006. There were significantly more adults captured in traps placed between two cornfields than traps placed between corn/soybean fields during both years. Trap height also was significant, with the traps at 1.2 and 1.8 m catching more moths than traps at 0.6 m during both years. These results show that trapping techniques do affect trap catches and that either trap type placed between two cornfields at either 1.2 or 1.8 m above the ground will maximize trap catches.

  11. AmeriFlux US-Ro6 Rosemount I18_North

    DOE Data Explorer

    Baker, John [USDA-ARS; Griffis, Tim [University of Minnesota

    2018-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ro6 Rosemount I18_North. Site Description - This tower is located in a farm field farmed in accordance with a conservation type agricultural practice in the region: a corn/soybean/clover (living mulch/cover crop) rotation with chisel plow tillage in the fall following corn harvest and in the spring following soybeans.

  12. Real-time near-infrared spectroscopic inspection system for adulterated sesame oil

    NASA Astrophysics Data System (ADS)

    Kang, Sukwon; Lee, Kang-jin; Son, Jaeryong; Kim, Moon S.

    2010-04-01

    Sesame seed oil is popular and expensive in Korea and has been often mixed with other less expensive vegetable oils. The objective of this research is to develop an economical and rapid adulteration determination system for sesame seed oil mixed with other vegetable oils. A recently developed inspection system consists of a light source, a measuring unit, a spectrophotometer, fiber optics, and a data acquisition module. A near-infrared transmittance spectroscopic method was used to develop the prediction model using Partial Least Square (PLS). Sesame seed oil mixed with a range of concentrations of corn, or perilla, or soybean oil was measured in 8 mm diameter glass tubes. For the model development, a correlation coefficient value of 0.98 was observed for corn, perilla, and soybean oil mixtures with standard errors of correlation of 6.32%, 6.16%, and 5.67%, respectively. From the prediction model, the correlation coefficients of corn oil, perilla oil, and soybean oil were 0.98, 0.97 and 0.98, respectively. The Standard Error of Prediction (SEP) for corn oil, perilla oil, and soybean oil were 6.52%, 6.89% and 5.88%, respectively. The results indicated that this system can potentially be used as a rapid non-destructive adulteration analysis tool for sesame seed oil mixed with other vegetable oils.

  13. A study of adverse birth outcomes and agricultural land use practices in Missouri.

    PubMed

    Almberg, Kirsten S; Turyk, Mary; Jones, Rachael M; Anderson, Robert; Graber, Judith; Banda, Elizabeth; Waller, Lance A; Gibson, Roger; Stayner, Leslie T

    2014-10-01

    Missouri is an agriculturally intensive state, primarily growing corn and soybeans with additional rice and cotton farming in some southeastern counties. Communities located in close proximity to pesticide-treated fields are known to have increased exposure to pesticides and may be at increased risk of adverse birth outcomes. The study aims were to assess the relationship between county-level measures of crop-specific agricultural production and adverse birth outcomes in Missouri and to evaluate the most appropriate statistical methodologies for doing so. Potential associations between county level data on the densities of particular crops and low birth weight and preterm births were examined in Missouri between 2004-2006. Covariates considered as potential confounders and effect modifiers included gender, maternal race/ethnicity, maternal age at delivery, maternal smoking, access to prenatal care, quarter of birth, county median household income, and population density. These data were analyzed using both standard Poisson regression models as well as models allowing for temporal and spatial correlation of the data. There was no evidence of an association between corn, soybean, or wheat densities with low birth weight or preterm births. Significant positive associations between both rice and cotton density were observed with both low birth weight and preterm births. Model results were consistent using Poisson and alternative models accounting for spatial and temporal variability. The associations of rice and cotton with low birth weight and preterm births warrant further investigation. Study limitations include the ecological study design and limited available covariate information. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Influence of Wheat Straw Pelletizing and Inclusion Rate in Dry Rolled or Steam-flaked Corn-based Finishing Diets on Characteristics of Digestion for Feedlot Cattle.

    PubMed

    Manríquez, O M; Montano, M F; Calderon, J F; Valdez, J A; Chirino, J O; Gonzalez, V M; Salinas-Chavira, J; Mendoza, G D; Soto, S; Zinn, R A

    2016-06-01

    Eight Holstein steers (216±48 kg body weight) fitted with ruminal and duodenal cannulas were used to evaluate effects of wheat straw processing (ground vs pelleted) at two straw inclusion rates (7% and 14%; dry matter basis) in dry rolled or steam-flaked corn-based finishing diets on characteristics of digestion. The experimental design was a split plot consisting of two simultaneous 4×4 Latin squares. Increasing straw level reduced ruminal (p<0.01) and total tract (p = 0.03) organic matter (OM) digestion. As expected, increasing wheat straw level from 7% to 14% decreased (p<0.05) ruminal and total tract digestion of OM. Digestion of neutral detergent fiber (NDF) and starch, per se, were not affected (p>0.10) by wheat straw level. Likewise, straw level did not influence ruminal acetate and propionate molar proportions or estimated methane production (p>0.10). Pelleting straw did not affect (p≥0.48) ruminal digestion of OM, NDF, and starch, or microbial efficiency. Ruminal feed N digestion was greater (7.4%; p = 0.02) for ground than for pelleted wheat straw diets. Although ruminal starch digestion was not affected by straw processing, post-ruminal (p<0.01), and total-tract starch (p = 0.05) digestion were greater for ground than for pelleted wheat straw diets, resulting in a tendency for increased post-ruminal (p = 0.06) and total tract (p = 0.07) OM digestion. Pelleting wheat straw decreased (p<0.01) ruminal pH, although ruminal volatile fatty acids (VFA) concentration and estimated methane were not affected (p≥0.27). Ruminal digestion of OM and starch, and post-ruminal and total tract digestion of OM, starch and N were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal NDF digestion was greater (p = 0.02) for dry rolled than for steam-flaked corn, although total tract NDF digestion was unaffected (p = 0.94). Ruminal microbial efficiency and ruminal degradation of feed N were not affected (p>0.14) by corn processing. However, microbial N flow to the small intestine and ruminal N efficiency (non-ammonia N flow to the small intestine/N intake) were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal pH and total VFA concentration were not affected (p≥ 0.16) by corn processing method. Compared with dry rolled corn, steam-flaked corn-based diets resulted in decreased acetate:propionate molar ratio (p = 0.02). It is concluded that at 7% or 14% straw inclusion rate, changes in physical characteristics of wheat straw brought about by pelleting negatively impact OM digestion of both steam-flaked and dry-rolled corn-based finishing diets. This effect is due to decreased post-ruminal starch digestion. Replacement of ground straw with pelleted straw also may decrease ruminal pH.

  15. The effect of cassava and corn flour utilization on the physicochemical characteristics of cassava leaves snack

    NASA Astrophysics Data System (ADS)

    Ambarsari, I.; Endrasari, R.; Oktaningrum, G. N.

    2018-01-01

    Cassava leaves are nutritious vegetable, but often regarded as an inferior commodity. One of the efforts increasing in the benefit of cassava leaves is through processing it into snack. In order to support the food diversification program and to reduce the dependence on imported commodities, the development of cassava leaves snack could be accompanied by optimizing the use of local materials to minimize the use of wheat flour. The aim of this assessment was to learn the effects of cassava and corn flour substitution on the physicochemical characteristics of cassava-leaves snack. The substitution of local flour (cassava and corn) on the snack production was carried on three levels at 15, 30, and 45%. A control treatment was using 100% wheat flour. The results showed that cassava and corn flour were potential to substitute wheat flour for making cassava-leaves snack. The substitution of cassava and corn flour as much as 45% was able to produce crispy products with a brighter color. The substitution of corn flour was resulting in snacks with the lower content of lipid than the other substitution snacks.

  16. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    NASA Astrophysics Data System (ADS)

    Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.

    2007-12-01

    Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.

  17. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean.

    PubMed

    Feng, Paul C C; Baley, G James; Clinton, William P; Bunkers, Greg J; Alibhai, Murtaza F; Paulitz, Timothy C; Kidwell, Kimberlee K

    2005-11-29

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. Growth-chamber studies demonstrated wheat rust control at multiple plant growth stages with a glyphosate spray dose typically recommended for weed control. Rust control was absent in formulation controls without glyphosate, dependent on systemic glyphosate concentrations in leaf tissues, and not mediated through induction of four common systemic acquired resistance genes. A field test with endemic stripe rust inoculum confirmed the activities of glyphosate pre- and postinfestation. Preliminary greenhouse studies also demonstrated that application of glyphosate in glyphosate-resistant soybeans suppressed Asian soybean rust, caused by Phakopsora pachyrhizi.

  18. Ethylene Production by Plants in a Closed Environment

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    1996-01-01

    Ethylene production by 20-sq m stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml/sq m/day during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 ml/g fresh weight/h. Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  19. Growing season variability in carbon dioxide exchange of irrigated and rainfed soybean in the southern United States

    USDA-ARS?s Scientific Manuscript database

    Measurement of carbon dynamics of soybean (Glycine max L.) ecosystems outside Corn Belt of the United States (U.S.) is lacking. This study reports carbon dioxide (CO2) fluxes from a rainfed soybean field in El Reno, Oklahoma and an irrigated soybean field in Stoneville, Mississippi during the 2016 g...

  20. Effect of phytate, microbial phytase, fiber, and soybean oil on calculated values for apparent and standardized total tract digestibility of calcium and apparent total tract digestibility of phosphorus in fish meal fed to growing pigs.

    PubMed

    González-Vega, J C; Walk, C L; Stein, H H

    2015-10-01

    Two experiments were conducted to determine the effects of phytate, phytase, fiber, and soybean oil on apparent total tract digestibility (ATTD) and standardized total tract digestibility (STTD) of Ca and on ATTD of P in fish meal fed to growing pigs. In Exp. 1, 40 growing pigs (initial average BW: 19.16 ± 2.04 kg) were randomly allotted to 1 of 5 diets with 8 pigs per treatment and placed in metabolism crates. Four diets were used in a 2 ´ 2 factorial design with 2 levels of phytate (0 or 0.7%) and 2 levels of microbial phytase (0 or 500 phytase units/kg). The diet containing no phytate was based on sucrose, cornstarch, fish meal, casein, and soybean oil, and the diet containing 0.7% phytate was based on corn, corn germ, fish meal, casein, and soybean oil. A Ca-free diet was used to determine basal endogenous losses of Ca. Feces were collected from d 6 to 13 after a 5-d adaptation period. Results indicated that the ATTD and STTD of Ca in fish meal and the ATTD of P increased ( < 0.001) if phytase was used and were greater ( < 0.05) in the diets based on corn and corn germ. Experiment 2 was conducted to determine the effects of fiber and soybean oil on the ATTD and STTD of Ca and the ATTD of P in fish meal. Fifty growing pigs (initial average BW: 19.36 ± 0.99 kg) were randomly allotted to 1 of 5 diets with 10 pigs per treatment. Two diets contained sucrose, cornstarch, fish meal, casein, and either 0 or 8% of a synthetic source of fiber. Two additional diets contained fish meal, casein, corn, and either 1 or 7% soybean oil. A Ca-free diet was also used. Pigs were housed individually in metabolism crates and fecal samples were collected. Results indicated that fiber increased ( < 0.001) the ATTD and STTD of Ca and the ATTD of P, but the ATTD and STTD of Ca or the ATTD of P were not affected by soybean oil. In agreement with the results of Exp. 1, the ATTD and STTD of Ca and the ATTD of P in the corn-based diet were greater ( < 0.05) than those in the cornstarch-based diet. In conclusion, phytase and fiber increased the ATTD and STTD of Ca and the ATTD of P in fish meal, but inclusion of soybean oil did not affect digestibility of Ca or P. The observation that values for the ATTD and STTD of Ca and ATTD of P are greater in corn-based diets than in cornstarch-based diets indicates that values for the digestibility of Ca and P obtained in cornstarch-based diets may not always be representative for the digestibility in practical corn-based diets.

  1. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    USDA-ARS?s Scientific Manuscript database

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  2. Impact of applying edible oils to silk channels on ear pests of sweet corn

    USDA-ARS?s Scientific Manuscript database

    The impact of applying vegetable oils to corn silks on ear-feeding insects in sweet corn production was evaluated in 2006 and 2007. Six vegetable oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix' neem oil and Sun...

  3. Comparison of the composting process using ear corn residue and three other conventional bulking agents during cow manure composting under high-moisture conditions.

    PubMed

    Hanajima, Dai

    2014-10-01

    To elucidate the characteristics of ear corn residue as a bulking agent, the composting process using this residue was compared with processes using three other conventional materials such as sawdust, wheat straw and rice husk, employing a bench-scale composting reactor. As evaluated via biochemical oxygen demand (BOD), ear corn residue contains 3.3 and 2.0 times more easily digestible materials than sawdust and rice husk, respectively. In addition, mixing ear corn residue with manure resulted in reduced bulk density, which was the same as that of wheat straw and was 0.58 and 0.67 times lower than that of sawdust and a rice husk mixture, respectively. To evaluate temperature generation during the composting process, the maximum temperature and area under the temperature curve (AUCTEMP) were compared among the mixed composts of four bulking agents. Maximum temperature (54.3°C) as well as AUCTEMP (7310°C●h) of ear corn residue were significantly higher than those of sawdust and rice husk (P<0.05), and they are similar to that of wheat straw mixed compost. Along with the value of AUCTEMP, the highest organic matter losses of 31.1% were observed in ear corn residue mixed compost, followed by wheat straw, saw dust and rice husk. © 2014 Japanese Society of Animal Science.

  4. Evaluation of various extracted vegetable oils, roasted soybeans, medium-chain triglyceride and an animal-vegetable fat blend for postweaning swine.

    PubMed

    Cera, K R; Mahan, D C; Reinhart, G A

    1990-09-01

    A total of 280 crossbred pigs weaned at 21 d of age and weighing approximately 6 kg were utilized in five replicates to evaluate pig growth responses when fed a basal diet or one of several dietary lipid sources during a 4-wk postweaning period. A basal corn-soybean meal-corn starch-dried whey diet was compared with diets supplemented at a 7.75% level with one of the following lipid sources: corn oil, coconut oil, soybean oil, medium-chain triglyceride (MCT) or an animal-vegetable blend. A sixth treatment evaluated a roasted soybean diet formulated to an energy:lysine level equivalent to that of the fat-supplemented diets. In Exp. II, 36 crossbred weanling barrows were used to determine apparent fat and N digestibilities when soybean oil, roasted soybean, coconut oil or the MCT-supplemented diets were fed. Although pigs fed coconut oil grew somewhat faster, fat inclusion generally did not increase pig growth rate or result in lowered feed intake during the initial weeks postweaning; during the latter portion of the starter phase the addition of dietary fat resulted in a higher growth rate but feed intake was unaffected, resulting in an overall improvement in feed-to-gain ratio (P less than .05) for all but the roasted soybean diet. Pigs fed coconut oil had higher serum triglyceride and lower serum urea concentrations than did pigs fed diets containing most other lipid sources. Pigs fed MCT and coconut oil diets had a higher (P less than .01) apparent fat digestibility during the initial 2 wk postweaning than pigs fed soybean oil or roasted soybean diets. Pigs fed MCT and roasted soybeans had poorest growth rates; apparent fat and N digestibilities were lowest (P less than .05) for the roasted soybean diet.

  5. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  6. AgRISTARS. Preliminary technical results review of FY81 experiments, volume 2: Fiscal year 1981/1982 "corn and soybeans pilot" experiment

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The performance of the technology exhibited significant proportion estimation errors, specifically, high mean error in both corn and soybeans area estimation. The data systems, technical approaches, and data assessment of the pilot experiment were reviewed. Results of proportion estimations procedure performance evaluations, and sensitivity evaluations are presented. The role of the pilot experiment in foreign technology development is discussed.

  7. Respiratory health of women selling cassava, corn and soybean flour in Lumbumbashi, Democratic Republic of the Congo.

    PubMed

    Ngombe, L K; Ngatu, R N; Nyembo, C M; Ilunga, B K; Wembonyama, S O; Kakoma, J B S; Danuser, B; Luboya, O N

    2018-02-01

    The aim of this study was to determine the prevalence of respiratory complaints in Congolese women selling grain flours in Lubumbashi. The study enrolled 370 women, including 183 cassava, corn and soybean flour selling women (exposed group) and 187 tax collectors in municipal markets (control group) in Lubumbashi, DRC. A standardized respiratory health questionnaire was used, and a lung function test performed with the use of peak flow-meters. The prevalence of respiratory complaints was markedly higher in dust-exposed women than controls. In addition, peak expiratory flow rate (PEFR) was significantly lower in the exposed group than in controls (342.46 ± 65.62 vs. 410.89 ± 70.91, respectively ; P<0.05). After adjustment for age and education level, women involved in cassava, corn and soybean flour selling business were more likely to develop respiratory complaints ad disorders as compared to controls.

  8. Effect of replacing ground corn and soybean meal with licuri cake on the performance, digestibility, nitrogen metabolism and ingestive behavior in lactating dairy cows.

    PubMed

    Ferreira, A C; Vieira, J F; Barbosa, A M; Silva, T M; Bezerra, L R; Nascimento, N G; de Freitas, J E; Jaeger, S M P L; Oliveira, P de A; Oliveira, R L

    2017-11-01

    Licuri (Syagrus coronate) cake is a biodiesel by-product used in ruminant feed as a beneficial energy source for supplementation in managed pastures. The objective was to evaluate the performance, digestibility, nitrogen balance, blood metabolites, ingestive behavior and diet profitability of eight crossbred Holstein (3/4)×Gyr (5/8) multiparous cows (480±25 kg BW and 100 days milking) grazing and supplemented with licuri cake partially replacing ground corn and soybean meal in concentrate (0, 200, 400 and 600 g/kg in dry matter (DM)), distributed in an experimental duplicated 4×4 Latin square design. Licuri cake partially replacing ground corn and soybean meal increased (P<0.01) the intake and digestibility of ether extract and decreased the non-fiber carbohydrates; however, there were no influences on the intakes of DM, CP, NDF and total digestible nutrients (TDN). The digestibilities of DM, CP and NDF were not influenced by licuri cake addition. There was a decrease trend on TDN digestibility (P=0.08). Licuri cake replacing ground corn and soybean meal in concentrate did not affect the intake; fecal, urinary and mammary excretions; N balance; and triglycerides concentrations. However, the blood urea nitrogen (P=0.04) concentration decreased with the licuri cakes inclusion in cow supplementation. There was an increasing trend for serum creatinine (P=0.07). Licuri cake inclusion did not affect body condition score, production, yield, protein, lactose, total solids and solid non-fat contents of milk and Minas frescal cheese. There was a linear decrease in average daily weight gain (g/day). The milk fat concentration and cheese fat production (P<0.1) presented a linear increase with partial replacement of ground corn and soybean meal with licuri cakes. The addition of licuri cake did not alter the time spent feeding, ruminating or idling. There was an increasing trend in NDF feeding efficiency (P=0.09). The replacing of ground corn and soybean meal with licuri cake up to 600 g/kg decreased the concentrate cost by US$0.45/cow per day. Licuri cake replacing corn and soybeans (400 g/kg) in concentrate promoted a profit of US$0.07/animal per day. Licuri cake is indicated to concentrate the supplementation of dairy cows with average productions of 10 kg/day at levels up to 400 g/kg in the concentrate supplement because it provides an additional profit of US$0.07/animal per day and increased milk and Minas frescal cheese fat without negative effects on productive parameters.

  9. Effects of dietary β-mannanase supplementation on the additivity of true metabolizable energy values for broiler diets.

    PubMed

    Lee, Byung Bo; Yang, Tae Sung; Goo, Doyun; Choi, Hyeon Seok; Pitargue, Franco Martinez; Jung, Hyunjung; Kil, Dong Yong

    2018-04-01

    This experiment was conducted to determine the effects of dietary β-mannanase on the additivity of true metabolizable energy (TME) and nitrogen-corrected true metabolizable energy (TME n ) for broiler diets. A total of 144 21-day-old broilers were randomly allotted to 12 dietary treatments with 6 replicates. Five treatments consisted of 5 ingredients of corn, wheat, soybean meal, corn distillers dried grains with solubles, or corn gluten meal. One mixed diet containing 200 g/kg of those 5 ingredients also was prepared. Additional 6 treatments were prepared by mixing 0.5 g/kg dietary β-mannanase with those 5 ingredients and the mixed diet. Based on a precision-fed chicken assay, TME and TME n values for 5 ingredients and the mixed diet as affected by dietary β-mannanase were determined. Results indicated that when β-mannanase was not added to the diet, measured TME and TME n values for the diet did not differ from the predicted values for the diet, which validated the additivity. However, for the diet containing β-mannanase, measured TME n value was greater (p<0.05) than predicted TME n value, indicating that the additivity was not validated. In conclusion, the additivity of energy values for the mixed diet may not be guaranteed if the diet contains β-mannanase.

  10. Effects of dietary β-mannanase supplementation on the additivity of true metabolizable energy values for broiler diets

    PubMed Central

    Lee, Byung Bo; Yang, Tae Sung; Goo, Doyun; Choi, Hyeon Seok; Pitargue, Franco Martinez; Jung, Hyunjung; Kil, Dong Yong

    2018-01-01

    Objective This experiment was conducted to determine the effects of dietary β-mannanase on the additivity of true metabolizable energy (TME) and nitrogen-corrected true metabolizable energy (TMEn) for broiler diets. Methods A total of 144 21-day-old broilers were randomly allotted to 12 dietary treatments with 6 replicates. Five treatments consisted of 5 ingredients of corn, wheat, soybean meal, corn distillers dried grains with solubles, or corn gluten meal. One mixed diet containing 200 g/kg of those 5 ingredients also was prepared. Additional 6 treatments were prepared by mixing 0.5 g/kg dietary β-mannanase with those 5 ingredients and the mixed diet. Based on a precision-fed chicken assay, TME and TMEn values for 5 ingredients and the mixed diet as affected by dietary β-mannanase were determined. Results Results indicated that when β-mannanase was not added to the diet, measured TME and TMEn values for the diet did not differ from the predicted values for the diet, which validated the additivity. However, for the diet containing β-mannanase, measured TMEn value was greater (p<0.05) than predicted TMEn value, indicating that the additivity was not validated. Conclusion In conclusion, the additivity of energy values for the mixed diet may not be guaranteed if the diet contains β-mannanase. PMID:29381897

  11. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    PubMed

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  12. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  13. Effect of okra-extract on wheat, corn, and rice starches properties

    USDA-ARS?s Scientific Manuscript database

    Seedless okra pods were extracted with 0.05M NaOH. The extract was centrifuged and the supernatant and the precipitate were freeze-dried. Wheat, corn and rice starch blends were prepared by replacing 0, 5, 190, and 15% of the starch with dried supernatant (DSP) or dried precipitate (DPP). The eff...

  14. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    PubMed

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Total antioxidant capacity and starch digestibility of muffins baked with rice, wheat, oat, corn and barley flour.

    PubMed

    Soong, Yean Yean; Tan, Seow Peng; Leong, Lai Peng; Henry, Jeya Kumar

    2014-12-01

    Muffins are a popular snack consumed in western and emerging countries. Increased glycemic load has been implicated in the aetiology of diabetes. This study examined the starch digestibility of muffins baked with rice, wheat, corn, oat and barley flour. Rapidly digested starch (RDS) was greatest in rice (445 mg/g) and wheat (444 mg/g) muffins, followed by oat (416 mg/g), corn (402 mg/g) and barley (387 mg/g). Total phenolic content was found to be positively correlated with total antioxidative capacity and inversely related to the RDS of muffins. The phenolic content was highest in muffin baked with barley flour (1,687 μg/g), followed by corn (1,454 μg/g), oat (945 μg/g), wheat (705 μg/g), and rice (675 μg/g) flour. Browning was shown not to correlate with free radical scavenging capacity and digestibility of muffins. The presence of high phenolic content and low RDS makes barley muffin an ideal snack to modulate glycemic response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    PubMed

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-04-05

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  17. Supplemental soybean oil or corn for beef heifers grazing summer pasture: effects on forage intake, ruminal fermentation, and site and extent of digestion.

    PubMed

    Brokaw, L; Hess, B W; Rule, D C

    2001-10-01

    Nine Angus x Gelbvieh heifers (average BW = 347 +/- 2.8 kg) with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of soybean oil or corn supplementation on intake, OM, NDF, and N digestibility. Beginning June 8, 1998, heifers continually grazed a 6.5-ha predominantly bromegrass pasture and received one of three treatments: no supplementation (Control); daily supplementation of cracked corn (Corn) at 0.345% of BW; or daily supplementation (0.3% of BW) of a supplement containing cracked corn, corn gluten meal, and soybean oil (12.5% of supplemental DM; Oil). Soybean oil replaced corn on a TDN basis and corn gluten meal was included to provide equal quantities of supplemental TDN and N. Three 23-d periods consisted of 14 d of adaptation followed by 9 d of sample collections. Treatment and sampling period effects were evaluated using orthogonal contrasts. Other than crude fat being greater (P = 0.01) for supplemented heifers, chemical and nutrient composition of masticate samples collected via ruminal evacuation did not differ (P = 0.23 to 0.56) among treatments. Masticate NDF and ADF increased quadratically (P < or = 0.003) and N decreased linearly (P = 0.0001) as the grazing season progressed. Supplementation did not influence (P = 0.37 to 0.83) forage OM intake, total and lower tract OM digestibility, ruminal and total tract NDF digestibility, or total ruminal VFA; however, supplemented heifers had lower ruminal molar proportions of acetate (P = 0.01), higher ruminal molar proportions of butyrate (P = 0.007), and greater quantities of OM digested in the rumen (P = 0.10) and total tract (P = 0.02). As the grazing season progressed, total tract OM and N and ruminal NH3 concentrations and NDF digestibility decreased quadratically (P < or = 0.04). Microbial N flow (P = 0.09) and efficiency (P = 0.04) and postruminal N disappearance (P = 0.02) were greater for Control heifers and declined linearly (P < or = 0.02) as the grazing season advanced. Depressed microbial N flow seemed to be more pronounced for Oil than for the Corn treatment. Although total digestible OM intake increased with supplementation, metabolizable protein supply was reduced in supplemented heifers. Therefore, feeding low levels of supplemental grain with or without soybean oil is an effective strategy to increase dietary energy for cattle grazing high-quality forages, but consideration should be given to reduced supply of metabolizable protein.

  18. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans, with...

  19. Soybean Yield and Heterodera glycines Population Dynamics as Affected by Cultural Practices in Major Production Areas of the United States and Canada

    USDA-ARS?s Scientific Manuscript database

    Little information is available on the interactive effects of tillage and row spacing on yield of soybean and population dynamics of H. glycines. This study investigated the effects of rotation of soybean and corn, tillage, row spacing, and cultivar on yield of soybean and population dynamics of H. ...

  20. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat

    PubMed Central

    Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin

    2015-01-01

    Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials. PMID:26061566

  1. Winter cover crop effect on corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  2. Geographical origin of cereal grains based on element analyser-stable isotope ratio mass spectrometry (EA-SIRMS).

    PubMed

    Wu, Yuluan; Luo, Donghui; Dong, Hao; Wan, Juan; Luo, Haiying; Xian, Yanping; Guo, Xindong; Qin, Fangfang; Han, Wanqing; Wang, Li; Wang, Bin

    2015-05-01

    The stable carbon and nitrogen isotopic compositions (δ(13)C and δ(13)N) of different cereal grains from different regions were determined, using element analyser-stable isotope ratio mass spectrometry (EA-SIRMS) as the key method. Systematically, δ(13)C and δ(13)N of 5 kinds of cereal grains of different origins, 30 wheat samples from different cultivation areas and 160 rice samples of different cultivars from Guangdong province of China were examined. The results indicated that the δ(13)C values of rice, soybean, millet, wheat and corn were significantly (P < 0.05) different within different origins (Heilongjiang, Shandong and Jiangsu province of China), respectively, while δ(13)N values were not. Interestingly, there exists discrimination between these 5 kinds of cereals grains, no matter C-3 or C-4 plants. Further study showed that the δ(13)C values of wheat from Australia, the USA, Canada, and Jiangsu and Shandong province of China were also significantly (P < 0.01) different. Furthermore, the P-value test for 160 rice samples of 5 cultivars was not significant (P > 0.05), which indicated that the cultivar of cereal grains was not significant based on δ(13)C value. Thus, the comparison of δ(13)C would be potentially useful for rapid and routine discrimination of geographical origin of cereal grains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Particle size of roasted soybeans and the effect on milk production of dairy cows.

    PubMed

    Dhiman, T R; Korevaar, A C; Satter, L D

    1997-08-01

    Fifteen cows were used in an experiment with a 5 x 5 replicated Latin square design to quantify the effect of particle size of roasted soybeans on milk production and fecal excretion of soybeans. The five experimental periods were each 2 wk long. Diets contained (percentage of dry matter) 33% alfalfa silage, 17% corn silage, 30.6% high moisture ear corn, 18% soybeans, and 1.4% mineral supplement. The five dietary treatments included raw whole soybeans or roasted soybeans in four particle sizes (whole and half, half and quarter, quarter and smaller, and coarsely ground). Mean particle sizes of the raw soybeans and of the roasted soybeans in whole and half sizes were > 4.75 mm. Mean particle sizes of the roasted soybeans in half and quarter, quarter and smaller, and coarsely ground roasted soybeans were 2.92, 2.01, and 1.59, respectively. During the normal handling of roasted soybeans, a large number of seeds was broken into halves in the treatment with whole and half sizes (36%, wt/wt basis). Production of 3.5% fat-corrected milk was 35.4, 37.7, 37.2, 35.1, and 35.4 kg/d for cows fed raw soybeans; roasted soybeans in whole and half, half and quarter, and quarter and smaller sizes; and ground roasted soybeans, respectively. Cows that were fed raw soybeans excreted the largest amount of visible soybean particles in feces, and cows that were fed ground roasted soybeans had the least amount of soybeans in the feces (61.3 vs. 10.6 g of soybeans/kg of fecal dry matter). Roasted soybeans in half and quarter sizes are optimal for milk production.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, D.T.; Flint, E.P.

    Mathematical growth analysis techniques were used to evaluate the effects of CO/sub 2/ concentrations of 350, 600, and 1000 ppm (v/v) on growth and biomass partitioning in corn (Zea mays L. Dekalb (L 395'), itchgrass (Rottboellia exaltata L.f.), soybean (Glycine max L) Merr. Tracy), and velvetleaf (Abutilon theophrasti Medic.). Controlled environment chambers with day/night temperatures of 28/22 C and photosynthetic photon flux densities (PPFD) of 650 ..mu..E (microeinteins) m/sup -2/ s/sup -1/ were used. Dry matter production in the two C/sub 3/ species soybean and velvetleaf) was increased significantly by raising the CO/sub 2/ concentration above 350 ppm. In cornmore » (a C/sub 4/ species), dry matter production was greatest at 600 ppm CO/sub 2/ and did not differ between the 350 and 1000 ppm treatments. Increasing the CO/sub 2/ concentration increased the rate of dry matter production per unit leaf area (net assimilation rate or NAR) in soybean and velvetleaf but either decreased or did not alter NAR in corn and itchgrass. At 45 days after planting, the weed/crop ratios for total dry matter production for velvetleaf/corn and itchgrass/corn were significantly greater at both 600 and 1000 ppm than at 350 ppm CO/sub 2/. The weed/crop ratio for itchgrass/soybean was less at 1000 ppm than at 350 or 600 ppm CO/sub 2/. Compared to the value at 350 ppm, the weed/crop ratio for velvetleaf/soybean was greater at 600 ppm and less at 100 ppm CO/sub 2/.« less

  5. An assessment of LANDSAT data acquisition history on identification and area estimation of corn and soybeans. [U.S. Corn Belti Indiana and Iowa

    NASA Technical Reports Server (NTRS)

    Hixson, M. M.; Bauer, M. E.; Scholz, D. K. (Principal Investigator)

    1980-01-01

    Multitemporally registered LANDSAT MSS data from four acquisitions during the 1978 growing season were used in classification of eight sample segments in Iowa and Indiana. The results illustrate that use of LANDSAT acquisition when corn has tasseled is critical, as this is the optimum time for separation of corn and soybeans. An early season acquisition when the summer crops appear as bare soil can be beneficial in reducing the confusion between these two crops and other cover types. A subset of one visible and one infrared band from each date was found to produce results not significantly different from the use of all bands. Selection of a subset of these bands may also be feasible for multitemporal analysis.

  6. 40 CFR 180.1020 - Sodium chlorate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., forage Sorghum, grain, grain Sorghum, grain, stover Soybean, forage Soybean, hay Soybean, seed Sunflower... in accordance with good agricultural practice on the following crops: Bean, dry, seed Corn, field..., sweet, stover Cotton, undelinted seed Flax, seed Grain, aspirated fractions Guar, seed Pea, southern...

  7. 40 CFR 180.1020 - Sodium chlorate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., forage Sorghum, grain, grain Sorghum, grain, stover Soybean, forage Soybean, hay Soybean, seed Sunflower... in accordance with good agricultural practice on the following crops: Bean, dry, seed Corn, field..., sweet, stover Cotton, undelinted seed Flax, seed Grain, aspirated fractions Guar, seed Pea, southern...

  8. 17 CFR 20.2 - Covered contracts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 2 Heating Oil, New York Harbor. NYMEX Palladium. NYMEX Platinum. NYMEX Sugar No. 11. NYMEX Uranium... Ethanol. CBOT Oats. CBOT Rough Rice. CBOT Soybean Meal. CBOT Soybean Oil. CBOT Soybeans. CBOT Wheat.... NYMEX Brent Financial. NYMEX Central Appalachian Coal. NYMEX Coffee. NYMEX Cotton. NYMEX Crude Oil...

  9. 17 CFR 20.2 - Covered contracts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... 2 Heating Oil, New York Harbor. NYMEX Palladium. NYMEX Platinum. NYMEX Sugar No. 11. NYMEX Uranium... Ethanol. CBOT Oats. CBOT Rough Rice. CBOT Soybean Meal. CBOT Soybean Oil. CBOT Soybeans. CBOT Wheat.... NYMEX Brent Financial. NYMEX Central Appalachian Coal. NYMEX Coffee. NYMEX Cotton. NYMEX Crude Oil...

  10. 17 CFR 20.2 - Covered contracts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... 2 Heating Oil, New York Harbor. NYMEX Palladium. NYMEX Platinum. NYMEX Sugar No. 11. NYMEX Uranium... Ethanol. CBOT Oats. CBOT Rough Rice. CBOT Soybean Meal. CBOT Soybean Oil. CBOT Soybeans. CBOT Wheat.... NYMEX Brent Financial. NYMEX Central Appalachian Coal. NYMEX Coffee. NYMEX Cotton. NYMEX Crude Oil...

  11. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields.

    PubMed

    Henson, Chasity; Market, Patrick; Lupo, Anthony; Guinan, Patrick

    2017-05-01

    An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov "method of cycles" demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April-September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55-70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases.

  12. Evaluation of Cuphea as a rotation crop for control of western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Behle, Robert W; Isbell, Terry A

    2005-12-01

    The ability to prevent significant root feeding damage to corn, Zea mays L., by the western corn rootworm, Diabrotica virgifera virgifera LeConte, by crop rotation with soybean, Glycine max (L.) Merr., has been lost in portions of the Corn Belt because this pest has adapted to laying eggs in soybean fields. Cuphea spp. has been proposed as a new broadleaf crop that may provide an undesirable habitat for rootworm adults because of its sticky surface and therefore may reduce or prevent oviposition in these fields. A 4-yr study (1 yr to establish seven rotation programs followed by 3 yr of evaluation) was conducted to determine whether crop rotation with Cuphea would provide cultural control of corn rootworm. In support of Cuphea as a rotation crop, fewer beetles were captured by sticky traps in plots of Cuphea over the 4 yr of this study compared with traps in corn and soybean, suggesting that fewer eggs may be laid in plots planted to Cuphea. Also, corn grown after Cuphea was significantly taller during vegetative growth, had significantly lower root damage ratings for 2 of 3 yr, and had significantly higher yields for 2 of 3 yr compared with continuous corn plots. In contrast to these benefits, growing Cuphea did not prevent economic damage to subsequent corn crops as indicated by root damage ratings > 3.0 recorded for corn plants in plots rotated from Cuphea, and sticky trap catches that exceeded the threshold of five beetles trap(-1) day(-1). Beetle emergence from corn plots rotated from Cuphea was significantly lower, not different and significantly higher compared with beetle emergence from continuous corn plots for 2002, 2003 and 2004 growing seasons, respectively. A high number of beetles were captured by emergence cages in plots planted to Cuphea, indicating that rootworm larvae may be capable of completing larval development by feeding on roots of Cuphea, although peak emergence lagged approximately 4 wk behind peak emergence from corn. Based on these data, it is unlikely that crop rotation with Cuphea will provide consistent, economical, cultural control of corn rootworm.

  13. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine fecal microbiota in vitro

    USDA-ARS?s Scientific Manuscript database

    Aims: The goal was to determine the effect of starch source (corn, oats and wheat) and concentration on: 1) total amylolytic bacteria, Group D Gram-positive cocci (GPC), lactobacilli, and lactate-utilizing bacteria, and 2) fermentation by equine microflora. Methods and Results: When fecal washed cel...

  14. Molecules that inhibit growth of Fusarium graminearum, a pathogen causing disease in wheat and corn

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum can cause head blight in wheat and stalk or ear rot in corn, which results in crop losses. Discovery of novel antifungal resistance proteins are crucial to mitigating crop losses. We found, via in vitro studies, a small cationic peptide was capable of inhibiting the growth of th...

  15. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... type of starch, the name may alternatively be “Dried ___ sirup” or “___ sirup solids”, the blank to be filled in with the name of the starch; for example, “Dried corn sirup”, “Corn sirup solids”, “Dried wheat sirup”, “Wheat sirup solids”, “Dried tapioca sirup”, “Tapioca sirup solids”. When the starch is derived...

  16. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... type of starch, the name may alternatively be “Dried ___ sirup” or “___ sirup solids”, the blank to be filled in with the name of the starch; for example, “Dried corn sirup”, “Corn sirup solids”, “Dried wheat sirup”, “Wheat sirup solids”, “Dried tapioca sirup”, “Tapioca sirup solids”. When the starch is derived...

  17. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... type of starch, the name may alternatively be “Dried ___ sirup” or “___ sirup solids”, the blank to be filled in with the name of the starch; for example, “Dried corn sirup”, “Corn sirup solids”, “Dried wheat sirup”, “Wheat sirup solids”, “Dried tapioca sirup”, “Tapioca sirup solids”. When the starch is derived...

  18. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... type of starch, the name may alternatively be “Dried ___ sirup” or “___ sirup solids”, the blank to be filled in with the name of the starch; for example, “Dried corn sirup”, “Corn sirup solids”, “Dried wheat sirup”, “Wheat sirup solids”, “Dried tapioca sirup”, “Tapioca sirup solids”. When the starch is derived...

  19. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... type of starch, the name may alternatively be “Dried ___ sirup” or “___ sirup solids”, the blank to be filled in with the name of the starch; for example, “Dried corn sirup”, “Corn sirup solids”, “Dried wheat sirup”, “Wheat sirup solids”, “Dried tapioca sirup”, “Tapioca sirup solids”. When the starch is derived...

  20. Nutrient content of wheat and corn in response to the application of urea and the urease inhibitor NPBT

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted to evaluate the effects of the addition of two different urease inhibitors on the volatilization of ammonia from top dressed ammonia sources on winter wheat and dent corn. Two commercial urease inhibitors (NY and AG) were tested. Treatments included compost, compost+NY, u...

  1. Distribution and Biocontrol Potential of phlD(+) Pseudomonads in Corn and Soybean Fields.

    PubMed

    McSpadden Gardener, Brian B; Gutierrez, Laura J; Joshi, Raghavendra; Edema, Richard; Lutton, Elizabeth

    2005-06-01

    ABSTRACT The abundance and diversity of phlD(+) Pseudomonas spp. colonizing the rhizospheres of young, field-grown corn and soybean plants were assayed over a 3-year period. Populations of these bacteria were detected on the large majority of plants sampled in the state of Ohio, but colonization was greater on corn. Although significant variation in the incidence of rhizosphere colonization was observed from site to site and year to year on both crops, the magnitude of the variation was greatest for soybean. The D genotype was detected on plants collected from all 15 counties examined, and it represented the most abundant subpopulation on both crops. Additionally, six other genotypes (A, C, F, I, R, and S) were found to predominate in the rhizosphere of some plants. The most frequently observed of these were the A genotype and a newly discovered S genotype, both of which were found on corn and soybean roots obtained from multiple locations. Multiple isolates of the most abundant genotypes were recovered and characterized. The S genotype was found to be phylogenetically and phenotypically similar to the D genotype. In addition, the novel R genotype was found to be most similar to the A genotype. All of the isolates displayed significant capacities to inhibit the growth of an oomycete pathogen in vitro, but such phenotypes were highly dependent on media used. When tested against multiple oomycete pathogens isolated from soybean, the A genotype was significantly more inhibitory than the D genotype when incubated on 1/10x tryptic soy agar and 1/5x corn meal agar. Seed inoculation with different isolates of the A, D, and S genotypes indicated that significant root colonization, generally in excess of log 5 cells per gram of root, could be attained on both crops. Field trials of the A genotype isolate Wayne1R indicated the capacity of inoculant populations to supplement the activities of native populations so as to increase soybean stands and yields. The relevance of these findings to natural and augmentative biocontrol of root pathogens by these bacteria is discussed.

  2. 40 CFR 180.666 - Fluxapyroxad; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., meat 0.01 Cattle, meat byproducts 0.03 Corn, field, grain 0.01 Corn, oil 0.03 Corn, pop, grain 0.01 Corn, sweet, kernels plus cobs with husks removed 0.15 Cotton, gin byproducts 0.01 Cotton, undelinted...; except corn, pop, grain; except corn, kernels plus cobs with husks removed; except rice; except wheat 3.0...

  3. 40 CFR 180.666 - Fluxapyroxad; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... corn, pop, grain; except corn, kernels plus cobs with husks removed; except wheat) 3.0 Grain, cereal..., meat byproducts 0.03 Corn, field, grain 0.01 Corn, oil 0.03 Corn, pop, grain 0.01 Corn, sweet, kernels plus cobs with husks removed 0.15 Cotton, gin byproducts 0.01 Cotton, undelinted seed 0.01 Egg 0.002...

  4. Effect of dietary protein source and cereal type on the incidence of sudden death syndrome in broiler chickens.

    PubMed

    Blair, R; Jacob, J P; Gardiner, E E

    1990-08-01

    Three experiments were conducted to compare the incidence of Sudden Death Syndrome (SDS) in male Peterson by Arbor Acre broiler chickens fed diets with either corn or wheat as the grain type and meat meal or soybean meal as the main protein source. In the first two experiments, the broilers were raised in floor pens to 6 wk of age, and in the third experiment they were raised in battery-brooder cages to 4 wk of age. In both floor pen studies, total mortality and the incidence of SDS were significantly higher for wheat-fed birds, while SDS as a percentage of total mortality was not affected by cereal type. In the brooder study, neither total mortality nor mortality from SDS was significantly affected by cereal type. In the floor pen studies, the incidence of SDS as a percentage of the birds housed, was reduced by the inclusion of meat meal in the diet. In the brooder study, total mortality and the incidence of SDS were not affected by protein source, but SDS as a percentage of total mortality was reduced with the inclusion of meat meal in the diet.

  5. The effects of transportation stress on Japanese quail (Coturnix Coturnix japonica) fed corn-based diet in comparison with wheat-based diet supplemented with xylanase and phytase.

    PubMed

    Mehraei Hamzekolaei, M H; Zamani Moghaddam, A K; Tohidifar, S S; Dehghani Samani, A; Heydari, A

    2016-08-01

    Harvesting, handling and transporting quails to the slaughterhouses, other farms and laboratories might covertly reduce their welfare. The aim of this study was to evaluate the effects of two major sources of energy in poultry nutrition on reducing transportation stress in Japanese quail (Coturnix Coturnix japonica). Male quails (n = 60) were divided into two groups. The first group was fed corn-based diet, and the second was fed wheat-based diet supplemented with xylanase and phytase. At the end of the experiment (day 35), quails were subjected to 80 km of transportation. Immediately on arrival and after 24 h, heterophil counts, lymphocyte counts and H:L ratios were measured. On arrival, H counts were lower, L counts were higher, and H:L ratios were lower for corn-fed group. After 24 h, wheat-fed group showed lower increment of H counts, greater increment of L counts and also decrement of H:L ratios rather than corn-fed group which showed increment of H:L ratios. However, these ratios were still lower in corn-fed group. Results indicate that corn-based diets can help Japanese quail to better resist transportation stress, although it seems that feeding wheat-based diets supplemented with xylanase and phytase could have positive effects for coping better with stress after journeys. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  6. 75 FR 51045 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... use on canola, cereals except rice, corn, legume vegetables (dry), sorghum, and soybeans. Contact... fungicide to control foliar and soil-borne plant diseases on canola, cereal grains except rice, corn, legume...

  7. Row width influences wheat yield, but has little effect on wheat quality

    USDA-ARS?s Scientific Manuscript database

    Growers are interested in wide-row wheat production due to reductions in equipment inventory (lack of grain drill) and to allow intercropping of soybean into wheat. A trial was established during the 2012-2013 and 2013-2014 growing seasons in Wayne County and Wood County, Ohio to evaluate the effec...

  8. 7 CFR 810.107 - Special grades and special grade requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... injurious to stored grain. (b) Infested barley, canola, corn, oats, sorghum, soybeans, sunflower seed, and..., soybeans, sunflower seed, and mixed grain are defined according to sampling designations as follows: (1...

  9. 7 CFR 810.107 - Special grades and special grade requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... injurious to stored grain. (b) Infested barley, canola, corn, oats, sorghum, soybeans, sunflower seed, and..., soybeans, sunflower seed, and mixed grain are defined according to sampling designations as follows: (1...

  10. Seasonal canopy reflectance patterns of wheat, sorghum, and soybean

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.

    1974-01-01

    An investigation was conducted of canopy-reflectance patterns as a basis for the determination of surface conditions. Two fields each of wheat, sorghum, and soybeans were selected in a bottom land area. One field contained a dark-colored, silty clay loam and the other a light-colored, silt loam. The study suggests that the reflectance ratio of the 545- to 655-nm-wavelengths may be used as an indicator of crop growth.

  11. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments. PMID:25658914

  12. The Ectopic Expression of the Wheat Puroindoline Genes Increase Germ Size and Seed Oil Content in Transgenic Corn

    PubMed Central

    Zhang, Jinrui; Martin, John M.; Beecher, Brian; Lu, Chaofu; Hannah, L. Curtis; Wall, Michael L.; Altosaar, Illimar; Giroux, Michael J.

    2014-01-01

    Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.) with the wheat (Triticum aestivum L.) puroindoline genes (Pina and Pinb) to assess their effects upon seed oil content and quality. Pina and Pinb coding sequences were introduced into corn under the control of a corn Ubiquitin promoter. Three Pina/Pinb expression positive transgenic events were evaluated over two growing seasons. The results showed that Pin expression increased germ size significantly without negatively impacting seed size. Germ yield increased 33.8% while total seed oil content was increased by 25.23%. Seed oil content increases were primarily the result of increased germ size. This work indicates that higher oil content corn hybrids having increased food or feed value could be produced via puroindoline expression. PMID:20725765

  13. Long-term rotation history and previous crop effects on corn seedling health

    USDA-ARS?s Scientific Manuscript database

    Diverse rotations provide benefits to agroecosystems through changes in the soil environment. A long term experiment was established to study four different four-year rotation sequences in which the crop phase prior to corn was sampled. Soils from rotations ending with soybean, sunflower, corn and p...

  14. Characterization of Pythium spp. collected from corn and soybean soil in Illinois

    USDA-ARS?s Scientific Manuscript database

    Pythium root rot is widely distributed in major soybean (Glycine max) production areas throughout the world. There are many species of Pythium described on soybean and other crops, although not all species are pathogenic on all crops. The objectives of this study were to isolate, identify, and evalu...

  15. Impact of crop rotation and soil amendments on long-term no-tilled soybean yields

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...

  16. The efficacy of a new 6-phytase obtained from Buttiauxella spp. expressed in Trichoderma reesei on digestibility of amino acids, energy, and nutrients in pigs fed a diet based on corn, soybean meal, wheat middlings, and corn distillers' dried grains with solubles.

    PubMed

    Adedokun, S A; Owusu-Asiedu, A; Ragland, D; Plumstead, P; Adeola, O

    2015-01-01

    Sixteen cannulated pigs were used to evaluate the effect of a new 6-phytase derived from Buttiauxella spp. and expressed in Trichoderma reesei on apparent ileal digestibility (AID) of AA and apparent total tract digestibility (ATTD) of DM, N, Ca, P, Na, Mg, K, Cl, and energy. Pigs were fed 4 diets for 2 periods in a crossover design. Within each period, there were 4 blocks of 4 pigs per block with each diet represented within each block. The average initial BW in periods 1 and 2 were 22 and 30 kg, respectively. Each period lasted 9 d with fecal collection on d 5 and 6 and a 12-h ileal digesta collection on d 7, 8, and 9. Pigs received a daily feed allowance of approximately 4.5% of their BW. The experimental diets were based on corn, soybean meal, wheat middlings, and corn distillers dried grain with solubles. Phytase was added at 0; 500; 1,000; or 2,000 phytase units/kg of diet to a basal diet that contained 205, 15, 5.4, and 10 g of CP, Lys, total P (1.6 g of nonphytate P), and Ca/kg diet, respectively. The addition of phytase improved (P < 0.05) AID of DM, N, Ca, and P. Increasing phytase supplementation linearly and quadratically increased (P < 0.05) AID of P and Ca, respectively, with AID of Ca showing a tendency for a linear increase (P = 0.053). Phytase supplementation of the basal diet improved (P < 0.05) AID of P from 46 to 62%. Phytase supplementation increased (P < 0.05) ATTD of DM, N, Ca, P, Mg, K, and energy. Contrasts showed that phytase supplementation of the basal diet increased (P < 0.05) AID for 8 indispensable AA (Arg, His, Ile, Leu, Lys, Phe, Thr, and Val), 6 dispensable AA (Ala, Asp, Cys, Glu, Ser, and Tyr), as well as for total AA. Furthermore, phytase supplementation to the basal diet showed a tendency (P < 0.10) to increase ileal digestibility of Gly. Ileal digestibility of Met, Trp, and Pro were not affected by phytase supplementation. Increasing the level of phytase supplementation resulted in linear increases (P < 0.05) in AID of 6 indispensable AA (Arg, Ile, Leu, Lys, Phe, and Val) and 1 dispensable AA (Asp) with 4 AA (His, Cys, Glu, and Tyr) showing a tendency for linear increase (P < 0.10) in AID of AA. The results from this study showed that in addition to increasing P and Ca utilization, the new Buttiauxella 6-phytase expressed in Trichoderma reesei enhanced ileal digestibility of N and several AA in growing pigs in a dose-dependent manner.

  17. Relating thematic mapper bands TM3, TM4, and TM5 to agronomic variables for corn, cotton, sugarbeet, soybean, sorghum, sunflower and tobacco

    NASA Technical Reports Server (NTRS)

    Fan, C. J. (Principal Investigator)

    1982-01-01

    Red, photographic infrared, near infrared spectral data of corn, cotton, soybeans, sugar beets, sorghum, sunflowers and tobacco were collected throughout the entire growing season by using a three band handheld radiometer. Different radiance patterns were found among these crops based on their morphology, green biomass duration and leaf size. Results show near infrared radiance is a good indicator of water content in plant tissue under small scale experimental conditions.

  18. Canola, corn and vegetable oils as alternative for wheat germ oil in fruit fly liquid larval diets

    USDA-ARS?s Scientific Manuscript database

    Four wheat germ oil alternatives (corn oil, vegetable oil, canola oil with 10% vitamin E, and canola oil with 20% vitamin E) purchased from a Hawaii local supermarket were added into a fruit fly liquid larval diet as a supplement for rearing fruit fly larvae and were evaluated for the possibility to...

  19. Flowability parameters for chopped switchgrass, wheat straw and corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.

    2009-02-01

    A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r2=0.99) determined at pre-consolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on pre-consolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest formore » chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 and 0.75 kPa for chopped switchgrass; 44 and 0.49 kPa for chopped wheat straw; and 48 and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass; 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for development of efficient handling, storage, and transportation systems for biomass in biorefineries.« less

  20. AgRISTARS: Supporting research. Classification of corn: Badhwar profile similarity technique. [us corn belt

    NASA Technical Reports Server (NTRS)

    Austin, W. W. (Principal Investigator)

    1981-01-01

    The same software programs used to classify spring wheat are applied to the classification of corn in 26 segments in the corn belt. Numerical results of the acreage estimation are given. Potential problem areas defined in an earlier application are examined.

  1. Life cycle of the corn-soybean agroecosystem for biobased production.

    PubMed

    Landis, Amy E; Miller, Shelie A; Theis, Thomas L

    2007-02-15

    Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.S. EPA criteria air pollutants that result from processes such as fertilizer production, energy production, and on-farm chemical and equipment use. Agroecosystem material flows were modeled using a combination of GREET (the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model), a linear fractionation model that describes P biogeochemical cycling, and Monte Carlo Analysis. Results show that the dominant air emissions resulted from crop farming, fertilizers, and on-farm nitrogen flows (e.g., N20 and NO). Seed production and irrigation provided no more than 0.002% to any of the inventory emissions or energy flows and may be neglected in future LCAs of corn or soybeans as feedstocks from the U.S. Corn Belt. Lime contributes significantly (17% of total emissions) to air emissions and should not be neglected in bioproduct LCAs.

  2. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation

    PubMed Central

    Kim, Min Jeong; Shim, Chang Ki; Kim, Yong Ki; Hong, Sung Jun; Park, Jong Ho; Han, Eun Jung; Kim, Jin Ho; Kim, Suk Chul

    2015-01-01

    This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO−3-N than NH+4-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition. PMID:26361474

  3. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation.

    PubMed

    Kim, Min Jeong; Shim, Chang Ki; Kim, Yong Ki; Hong, Sung Jun; Park, Jong Ho; Han, Eun Jung; Kim, Jin Ho; Kim, Suk Chul

    2015-09-01

    This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO(-) 3-N than NH(+) 4-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition.

  4. Water table management reduces tile nitrate loss in continuous corn and in a soybean-corn rotation.

    PubMed

    Drury, C F; Tan, C S; Gaynor, J D; Reynolds, W D; Welacky, T W; Oloya, T O

    2001-10-25

    Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR) system was compared over 8 years (1991 to 1999) to a controlled tile drainage/subirrigation (CDS) system on a low-slope (0.05 to 0.1%) Brookston clay loam soil (Typic Argiaquoll) in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation) to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994), continuous corn (Zea mays, L.) was grown with annual nitrogen (N) fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999), a soybean (Glycine max L., Merr.)-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM) nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l(-1)) under DR (11.4 mg N l(-1)), but not under CDS (7.0 mg N l(-1)). In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l(-1)) and CDS (4.0 mg N l(-1)). During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge relative to continuous corn. CDS and crop rotations with reduced N fertilizer inputs can thus improve the quality of tile discharge water substantially.

  5. Physico-chemical quality and homogeneity of folic acid and iron in enriched flour using principal component analysis.

    PubMed

    Soeiro, Bruno T; Boen, Thaís R; Wagner, Roger; Lima-Pallone, Juliana A

    2009-01-01

    The aim of the present work was to determine parameters of the corn and wheat flour matrix, such as protein, lipid, moisture, ash and carbohydrates, folic acid and iron contents. Three principal components explained 91% of the total variance. Wheat flours were characterized by high protein and moisture content. On the other hand, the corn flours had the greater carbohydrates, lipids and folic acid levels. The concentrations of folic acid were lower than the issued value for wheat flours. Nevertheless, corn flours presented extremely high values. The iron concentration was higher than that recommended in Brazilian legislation. Poor homogenization of folic acid and iron was observed in enriched flours. This study could be useful to help the governmental authorities in the enriched food programs evaluation.

  6. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Asgari, Kamran; Najafi, Payam; Cornelis, Wim M.

    2014-05-01

    Constant use of treated wastewater for irrigation over long periods may cause buildup of heavy metals up to toxic levels for plants, animals, and entails environmental hazards in different aspects. However, application of treated wastewater on agricultural land might be an effective and sustainable strategy in arid and semi-arid countries where fresh water resources are under great pressure, as long as potential harmful effects on the environment including soil, plants, and fresh water resources, and health risks to humans are minimized. The aim of this study was to assess the effect of using a deep emitter installation on lowering the potential heavy metal accumulation in soils and grains, and health risk under drip irrigation with treated municipal wastewater. A field experiment was conducted according to a split block design with two treatments (fresh and wastewater) and three sub treatments (0, 15 and 30 cm depth of emitters) in four replicates on a sandy loam soil, in Esfahan, Iran. The annual rainfall is about 123 mm, mean annual ETo is 1457 mm, and the elevation is 1590 m a.s.l.. A two-crop rotation of wheat [Triticum spp.] and corn [Zea mays]) was established on each plot with wheat growing from February to June and corn from July to September. Soil samples were collected before planting (initial value) and after harvesting (final value) for each crop in each year. Edible grain samples of corn and wheat were also collected. Elemental concentrations (Cu, Zn, Cd, Pb, Cr, Ni) in soil and grains were determined using an atomic absorption spectrophotometer. The concentrations of heavy metals in the wastewater-irrigated soils were not significantly different (P>0.05) compared with the freshwater-irrigated soils. The results showed no significant difference (P>0.05) of soil heavy metal content between different depths of emitters. A pollution load index PLI showed that there was not substantial buildup of heavy metals in the wastewater-irrigated soils compared to the freshwater-irrigated soils. Cu, Pb and Zn concentrations in wheat and corn grains were within permissible EPA limits, but concentrations of Cd (in wheat and corn) and Cr (in corn) were above the safe limits of EPA. In addition, concentrations of Ni in wheat and corn seeds were several folds higher than EPA standards. A health risk index (HRI) which is usually adopted to assess the health risk to hazard materials in foods showed values higher than 1 for Cd, particularly for wheat grain (HRI>2.5). Results also showed that intake of a Cu through consumption of edible wheat grains posed a relatively high potential health risk to children (HRI>1.4), whereas children might also be exposed to health risk from Cd and Cr from corn grains (HRI>1.4). Based on aforementioned results, it can be concluded that the of emitter depth in drip irrigation does not play a significant role in the accumulation of heavy metals from treated wastewater in our sandy loam soil. Although their accumulation in the soil was limited and similar to using fresh water, uptake of Cd and Cr by wheat and corn was relatively large hence resulting in health risk. The results suggest that more attention should be directed towards cultivation of other crops with drip irrigation system for a safe and more productive use of wastewater for irrigation. Alternatively, methods that filter the wastewater before it enters the soil environment might be an option that needs further investigation.

  7. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics.

    PubMed

    Gonçalves, Rhayanna P; Março, Paulo H; Valderrama, Patrícia

    2014-11-15

    Edible oils such as colza, corn, sunflower, soybean and olive were analysed by UV-Vis spectroscopy and Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS). When vegetable oils were heated at high temperatures (frying), oxidation products were formed which were harmful to human health in addition to degrading the antioxidants present, and this study aimed to evaluate tocopherol (one antioxidant present in oils) and the behaviour of oxidation products in edible oils. The MCR-ALS results showed that the degradation started at 110°C and 85°C, respectively, for sunflower and colza oils, while tocopherol concentration decreased and oxidation products increased starting at 70°C in olive oil. In soybean and corn oils, tocopherol concentration started to decrease and oxidation products increased at 50°C. The results suggested that sunflower, colza and olive oils offered more resistance to increasing temperatures, while soybean and corn oils were less resistant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Productivity and sustainability of rainfed wheat-soybean system in the North China Plain: results from a long-term experiment and crop modelling

    PubMed Central

    Qin, Wei; Wang, Daozhong; Guo, Xisheng; Yang, Taiming; Oenema, Oene

    2015-01-01

    A quantitative understanding of yield response to water and nutrients is key to improving the productivity and sustainability of rainfed cropping systems. Here, we quantified the effects of rainfall, fertilization (NPK) and soil organic amendments (with straw and manure) on yields of a rainfed wheat-soybean system in the North China Plain (NCP), using 30-years’ field experimental data (1982–2012) and the simulation model-AquaCrop. On average, wheat and soybean yields were 5 and 2.5 times higher in the fertilized treatments than in the unfertilized control (CK), respectively. Yields of fertilized treatments increased and yields of CK decreased over time. NPK + manure increased yields more than NPK alone or NPK + straw. The additional effect of manure is likely due to increased availability of K and micronutrients. Wheat yields were limited by rainfall and can be increased through soil mulching (15%) or irrigation (35%). In conclusion, combined applications of fertilizer NPK and manure were more effective in sustaining high crop yields than recommended fertilizer NPK applications. Manure applications led to strong accumulation of NPK and relatively low NPK use efficiencies. Water deficiency in wheat increased over time due to the steady increase in yields, suggesting that the need for soil mulching increases. PMID:26627707

  9. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems.

    PubMed

    Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S

    2018-06-01

    The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Host Specialization in the Charcoal Rot Fungus, Macrophomina phaseolina.

    PubMed

    Su, G; Suh, S O; Schneider, R W; Russin, J S

    2001-02-01

    ABSTRACT To investigate host specialization in Macrophomina phaseolina, the fungus was isolated from soybean, corn, sorghum, and cotton root tissue and soil from fields cropped continuously to these species for 15 years in St. Joseph, LA. Chlorate phenotype of each isolate was determined after growing on a minimal medium containing 120 mM potassium chlorate. Consistent differences in chlorate sensitivity were detected among isolates from different hosts and from soil versus root. To further explore genetic differentiation among fungal isolates from each host, these isolates were examined by restriction fragment length polymorphism and random amplified polymorphic DNA (RAPD) analysis. No variations were observed among isolates in restriction patterns of DNA fragments amplified by polymerase chain reaction covering the internal transcribed spacer region, 5.8S rRNA and part of 25S rRNA, suggesting that M. phaseolina constitutes a single species. Ten random primers were used to amplify the total DNA of 45 isolates, and banding patterns resulting from RAPD analysis were compared with the neighbor-joining method. Isolates from a given host were genetically similar to each other but distinctly different from those from other hosts. Chlorate-sensitive isolates were distinct from chlorate-resistant isolates within a given host. In greenhouse tests, soybean, sorghum, corn, and cotton were grown separately in soil infested with individual isolates of M. phaseolina that were chosen based on their host of origin and chlorate phenotype. Root colonization and plant weight were measured after harvesting. More colonization of corn roots occurred when corn was grown in soil containing corn isolates compared with isolates from other hosts. However, there was no host specialization in isolates from soybean, sorghum, or cotton. More root colonization in soybean occurred with chlorate-sensitive than with chlorate-resistant isolates.

  11. Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1987-01-01

    A two-stream approximation to the radiative-transfer equation is used to calculate the vegetation indices (simple ratio and normalized difference), the fraction of incident photosynthetically active radiation (PAR) absorbed by the canopy, and the daily mean canopy net photosynthesis under clear-sky conditions. The model calculations are tested against field observations over wheat, cotton, corn, and soybean. The relationships between the vegetation indices and radiation absorption or net photosynthesis are generally found to be curvilinear, and changes in the soil reflectance affected these relationships. The curvilinearity of the relationship between normalized differences and PAR absorption decreases as the magnitude of soil reflectance increases. The vegetation indices might provide the fractional radiation absorption with some a priori knowledge about soil reflectance. The relationship between the vegetation indices and net photosynthesis must be distinguished for C3 and C4 crops. Effects of spatial heterogeneity are discussed.

  12. The ERTS-1 investigation (ER-600). Volume 1: ERTS-1 agricultural analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Agriculture Analysis Team of the Johnson Space Center conducted a 1-year-long investigation of ERTS-1 multispectral data to evaluate how well features of agricultural importance could be detected, identified, and located; and their areal extent measured. Six study areas were selected in cooperation with the U.S. Department of Agriculture. Two basic analytical approaches were used to meet the objectives. The conventional image interpretation technique revealed that a particular color was an indication of the density of vegetative cover, not an indication of crop classification. Computer-aided techniques were used to classify crop types (i.e., small grains, truck farm crops, grasses, summer fallow) to accuracies as high as 95 percent on large (12 hectares or more) well-defined fields. A further breakdown into crop species (wheat, barley, soybeans, oats, corn) reduced the accuracy to 70 to 80 percent for single-date observations.

  13. Global crop production forecasting: An analysis of the data system problems and their solutions

    NASA Technical Reports Server (NTRS)

    Neiers, J.; Graf, H.

    1978-01-01

    Data related problems in the acquisition and use of satellite data necessary for operational forecasting of global crop production are considered for the purpose of establishing a measurable baseline. For data acquisition the world was divided into 37 crop regions in 22 countries. These regions represent approximately 95 percent of the total world production of the selected crops of interest, i.e., wheat, corn, soybeans, and rice. Targets were assigned to each region. Limited time periods during which data could be taken (windows) were assigned to each target. Each target was assigned to a cloud region. The DSDS was used to measure the success of obtaining data for each target during the specified windows for the regional cloud conditions and the specific alternatives being analyzed. The results of this study suggest several approaches for an operational system that will perform satisfactorily with two LANDSAT type satellites.

  14. Summary of reported agriculture and irrigation water use in west-central Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following west-central Arkansas counties: Conway, Crawford, Faulkner, Franklin, Johnson, Logan, Perry, Pope, Scott, Sebastian, and Yell. The number of withdrawal registrations for west-central Arkansas counties was 307 (90 groundwater and 217 surface water). Water withdrawals reported during the registration process total 1.00 Mgal/d (0.15 Mgal/d groundwater and 0.85 Mgal/d surface water) for agriculture and 32.07 Mgal/d (5.67 Mgal/d groundwater and 26.40 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 22,856 acres of land to irrigate rice, corn, sorghum, soybeans, wheat, cash grains, hay, milo, vegetables, sod, berries, grapes, and fruit trees as well as for the agricultural uses of catfish and ducks.

  15. Wheat is more potent than corn or barley for dietary mitigation of enteric methane emissions from dairy cows.

    PubMed

    Moate, P J; Williams, S R O; Jacobs, J L; Hannah, M C; Beauchemin, K A; Eckard, R J; Wales, W J

    2017-09-01

    Wheat is the most common concentrate fed to dairy cows in Australia, but few studies have examined the effects of wheat feeding on enteric methane emissions, and no studies have compared the relative potencies of wheat, corn, and barley for their effects on enteric methane production. In this 35-d experiment, 32 Holstein dairy cows were offered 1 of 4 diets: a corn diet (CRN) of 10.0 kg of dry matter (DM)/d of single-rolled corn grain, 1.8 kg of DM/d of canola meal, 0.2 kg of DM/d of minerals, and 11.0 kg of DM/d of chopped alfalfa hay; a wheat diet (WHT) similar to the CRN diet but with the corn replaced by single-rolled wheat; a barley diet (SRB) similar to the CRN diet but with the corn replaced by single-rolled barley; and a barley diet (DRB) similar to the CRN diet but with the corn replaced by double-rolled barley. Individual cow feed intakes, milk yields, and milk compositions were measured daily but reported for the last 5 d of the experiment. During the last 5 d of the experiment, individual cow methane emissions were measured using the SF 6 tracer technique for all cows, and ruminal fluid pH was continuously measured by intraruminal sensors for 3 cows in each treatment group. The average DM intake of cows offered the CRN, WHT, SRB, and DRB diets was 22.2, 21.1, 22.6, and 22.6 kg/d. The mean energy-corrected milk of cows fed the WHT diet was less than that of cows fed the other diets. This occurred because the milk fat percentage of cows fed the WHT diet was significantly less than that of cows fed the other diets. The mean methane emissions and methane yields of cows fed the WHT diet were also significantly less than those of cows fed the other diets. Indeed, the CRN, SRB, and DRB diets were associated with 49, 73, and 78% greater methane emissions, respectively, compared with the emissions from the WHT diet. Methane yield was found to be most strongly related to the minimum daily ruminal fluid pH. This study showed that although the inclusion of wheat in the diet of dairy cows could be an effective strategy for substantially reducing their methane emissions, it also reduced their milk fat percentage and production of milk fat and energy-corrected milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Valorisation of untreated cane molasses for enhanced phytase production by Bacillus subtilis K46b and its potential role in dephytinisation.

    PubMed

    Rocky-Salimi, Karim; Hashemi, Maryam; Safari, Mohammad; Mousivand, Maryam

    2017-01-01

    The high cost of phytase production is the most limiting factor in its application in animal feeds. The present study aimed to develop a low-cost medium for production of a novel phytase in submerged fermentation using inexpensive agro-industrial by-products. The applicability of phytase in dephytinisation of commonly used food/feed ingredients, i.e. soybean meal and wheat bran, was also investigated. Using a one-factor-at-a-time approach, soybean meal and cane molasses were identified as significant agro-industrial by-products and these factors were subsequently optimised using response surface methodology (RSM). A central composite design was employed to further enhance phytase yield. Under optimum conditions of soybean meal 22.3 g L -1 , cane molasses 100 g L -1 and 39 h fermentation, phytase production increased to 56.562 U mL -1 , indicating more than 28-fold enhancement. The enzyme efficiently dephytinised wheat bran and soybean meal after 24 h incubation at 56.5 °C and increased inorganic phosphate content by 240% and 155%, respectively. Soybean meal and cane molasses were successfully used for enhancement of phytase production as economical carbon, nitrogen and phytic acid sources using RSM. The phytase showed a good capability to dephytinise wheat bran and soybean meal, demonstrating that the enzyme can be considered as a potential candidate for industrial food and feed applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S.

    NASA Technical Reports Server (NTRS)

    Mladenova, Iliana E.; Bolten, John D.; Crow, Wade T.; Anderson, Martha C.; Hain, C. R.; Johnson, David M.; Mueller, Rick

    2017-01-01

    This paper presents an intercomparative study of 12 operationally produced large-scale datasets describing soil moisture, evapotranspiration (ET), and or vegetation characteristics within agricultural regions of the contiguous United States (CONUS). These datasets have been developed using a variety of techniques, including, hydrologic modeling, satellite-based retrievals, data assimilation, and survey in-field data collection. The objectives are to assess the relative utility of each dataset for monitoring crop yield variability, to quantitatively assess their capacity for predicting end-of-season corn and soybean yields, and to examine the evolution of the yield-index correlations during the growing season. This analysis is unique both with regards to the number and variety of examined yield predictor datasets and the detailed assessment of the water availability timing on the end-of-season crop production during the growing season. Correlation results indicate that over CONUS, at state-level soil moisture and ET indices can provide better information for forecasting corn and soybean yields than vegetation-based indices such as normalized difference vegetation index. The strength of correlation with corn and soybean yields strongly depends on the interannual variability in yield measured at a given location. In this case study, some of the remotely derived datasets examined provide skill comparable to that of in situ field survey-based data further demonstrating the utility of these remote sensing-based approaches for estimating crop yield.

  18. Comprehensive nitrogen budgets for controlled tile drainage fields in eastern ontario, Canada.

    PubMed

    Sunohara, M D; Craiovan, E; Topp, E; Gottschall, N; Drury, C F; Lapen, D R

    2014-03-01

    Excessive N loading from subsurface tile drainage has been linked to water quality degradation. Controlled tile drainage (CTD) has the potential to reduce N losses via tile drainage and boost crop yields. While CTD can reduce N loss from tile drainage, it may increase losses through other pathways. A multiple-year field-scale accounting of major N inputs and outputs during the cropping season was conducted on freely drained and controlled tile drained agricultural fields under corn ( L.)-soybean [ (L.) Merr.] production systems in eastern Ontario, Canada. Greater predicted gaseous N emissions for corn and soybean and greater observed lateral seepage N losses were observed for corn and soybean fields under CTD relative to free-draining fields. However, observed N losses from tile were significantly lower for CTD fields, in relation to freely drained fields. Changes in residual soil N were essentially equivalent between drainage treatments, while mass balance residual terms were systematically negative (slightly more so for CTD). Increases in plant N uptake associated with CTD were observed, probably resulting in higher grain yields for corn and soybean. This study illustrates the benefits of CTD in decreasing subsurface tile drainage N losses and boosting crop yields, while demonstrating the potential for CTD to increase N losses via other pathways related to gaseous emissions and groundwater seepage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Soybean response to poultry litter in a rotation

    USDA-ARS?s Scientific Manuscript database

    Soybean yield response to annual poultry litter rates (0, 1.0 and 3.4 tons/acre) on a Leeper silty clay loam soil in corn (M), cotton (C) and soybean (B) rotation system were evaluated. The rotation systems from 2010-2014 were: CMBBMR; CMCBM and CCMMB. This study site had high levels of soil test Ph...

  20. Efficacy of methoprene for multi-year protection of stored wheat, brown rice, rough rice and corn

    USDA-ARS?s Scientific Manuscript database

    Hard red winter wheat, brown rice, rough rice, and corn were treated with the insect growth regulator (IGR) at rates of 1.25 and 2.5 ppm, held for 24 months at ambient conditions at the floor of a grain bin, and sampled every two months. Bioassays were done by exposing 10 mixed-sex adults of Rhyzope...

  1. The control of Asian rust by glyphosate in glyphosate-resistant soybeans.

    PubMed

    Feng, Paul C C; Clark, Celeste; Andrade, Gabriella C; Balbi, Maria C; Caldwell, Pat

    2008-04-01

    Glyphosate is a widely used broad-spectrum herbicide. Recent studies in glyphosate-resistant (GR) crops have shown that, in addition to its herbicidal activity, glyphosate exhibits activity against fungi, thereby providing disease control benefits. In GR wheat, glyphosate has shown both preventive and curative activities against Puccinia striiformis f. sp. tritici (Erikss) CO Johnston and Puccinia triticina Erikss, which cause stripe and leaf rusts respectively. Laboratory studies confirmed earlier observations that glyphosate has activity against Phakopsora pachyrhizi Syd & P Syd which causes Asian soybean rust (ASR) in GR soybeans. The results showed that glyphosate at rates between 0.84 and 1.68 kg ha(-1) delayed the onset of ASR in GR soybeans. However, field trials conducted in Argentina and Brazil under natural infestations showed variable ASR control from application of glyphosate in GR soybeans. Further field studies are ongoing to define the activity of glyphosate against ASR. These results demonstrate the disease control activities of glyphosate against rust diseases in GR wheat and GR soybeans. Copyright (c) 2007 Society of Chemical Industry.

  2. Effects of cashew nut testa levels as an alternative to wheat bran in gestating sow diets.

    PubMed

    Fang, Lin Hu; Hong, Young Gi; Hong, Jin Su; Jeong, Jae Hark; Han, Young Geol; Kwon, In Hyuk; Kim, Yoo Yong

    2018-06-01

    This study was conducted to evaluate the effects of dietary cashew nut testa (CNT) as an alternative feed ingredient to wheat bran on reproductive performance, litter performance, milk composition, and blood profiles of gestating sows. Forth multiparous sows (Yorkshire×Landrace) were fed experimental diets starting at 35 days of pregnancy and an initial average body weight (BW) of 211.53±8.86 kg. Each sow was assigned to a treatment based on BW, backfat thickness (BF) and parity with 10 sows per treatment. Treatments were as follows: i) corn-soybean meal based diet with 6% of wheat bran (C0); ii) basal diet with 2% of CNT and 4% of wheat bran (C2); iii) basal diet with 4% of CNT and 2% of wheat bran (C4); and iv) basal diet with 6% of CNT (C6). There were no statistically significant differences in BW and BF of gestating sows throughout the experimental period. However, changes in BF (p = 0.09) and the daily feed intake of sows (p = 0.09) tended to linearly increase during the lactation period. The weaning to estrus interval (WEI) showed a quadratic response to CNT treatment (p = 0.02), and the C2 diet showed the shortest WEI. Litter birth weight (p = 0.04) and piglet birth weight (p = 0.06) were linearly decreased with increase in CNT. Furthermore, there had no significant differences in piglet weight and litter weight in 21 day. Insulin concentration at day 70 of gestation was linearly reduced with increasing CNT level in diets (p = 0.03). When 6% CNT replaced wheat bran in gestating sow diets, there were no negative effects on sow performance, but litter birth weight and piglet birth weight were decreased when CNT level increased in gestating sow diets.

  3. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    PubMed

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts may be fruitful. The additional information gained from expanding the natural enemy survey into the broader landscape was essential in making these distinctions relevant to conservation biological control, while adding agroecosystem-specific information valuable to classical biological control.

  4. Leaf bidirectional reflectance and transmittance in corn and soybean

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Norman, J. M.; Blad, B. L.

    1989-01-01

    Bidirectional optical properties of leaves must be adequately characterized to develop comprehensive and reliably predictive canopy radiative-transfer models. Directional reflectance and transmittance factors of individual corn and soybean leaves were measured at source incidence angles (SIAs) 20, 45, and 70 deg and numerous view angles in the visible and NIR. Bidirectional reflectance distributions changed with increasing SIA, with forward scattering most pronounced at 70 deg. Directional-hemispherical reflectance generally increased and transmittance decreased with increased SIA. Directional-hemispherical reflectance factors were higher and transmittances were lower than the nadir-viewed reflectance component.

  5. 40 CFR 180.498 - Sulfentrazone; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Parts per million Asparagus 0.15 Bean, lima, succulent 0.15 Cabbage 0.20 Corn, field, forage 0.20 Corn, field, grain 0.15 Corn, field, stover 0.30 Horseradish 0.20 Pea and bean, dried shelled, except soybean... Expiration/revocation date Bean, succulent seed without pod (lima bean & cowpea) 0.1 12/31/07 Flax, seed 0.20...

  6. Land Surface Phenologies and Seasonalities of Croplands and Grasslands in the US Prairie Pothole Region Using Passive Microwave Data (2003-2015)

    NASA Astrophysics Data System (ADS)

    Alemu, W. G.; Henebry, G. M.

    2017-12-01

    Grasslands and wetlands in the Prairie Pothole Region (PPR) have been converted to croplands in recent years. Crops cultivated in the PPR are also changing: spring wheat and alfalfa/hay are being switched to corn and soybean due to biofuel demand. According to the USDA Cropland Data Layer (CDL) from 2003 to 2015, spring wheat significantly decreased (r2 = 0.74), while corn and soybeans significantly increased (r2 = 0.86). We characterized land surface phenologies and land surface seasonalities across the PPR using the finer temporal (twice daily) but much lower spatial (25 km) resolution Advanced Microwave Scanning Radiometer (AMSR: blended from AMSR-E and AMSR2) enhanced land surface parameters for 2003-2015 (DOY 91-330 annual cycles). We tracked the temporal development of these land surface parameters as a function of accumulated growing degree-days (AGDD) based on the AMSR retrieved air temperature data. Growing degree-days (GDD) revealed distinct seasonality typical to temperate grasslands and croplands. GDD peaks were 23°C and it peaks at 1700°C AGDD. Precipitable water vapor (V) displayed seasonality comparable to GDD. Vegetation optical depth (VOD) revealed distinct land surface phenologies for grasslands versus croplands. We explored the changing crop fractions within the 25 km AMSR pixels using the CDL. Crop-dominated sites VOD time series caught the early spring growth, ploughing, and crop growth dynamics. In contrast, the VOD time series at grass-dominated sites exhibited a lower but more extended amplitude throughout the non-frozen season. VODs peaked at 1.6 and 1.3 for croplands and grasslands, respectively. Croplands peaked about a month later than grasslands (2200 °C AGDD vs. 1600 °C AGDD). The other parameters available from the AMSR dataset—soil moisture (sm), and fractional open water (fw)—together with the AGDD time series constructed from the AMSR air temperature data revealed the passage of storm systems during the growing season. Soil moisture and fractional water were slightly higher in early spring compared to the main growing season; however, neither parameter exhibited distinct seasonality. VOD and fw time series curves displayed significant interannual variation that can enable to augment drought-monitoring efforts.

  7. The energy content of wet corn distillers grains for lactating dairy cows.

    PubMed

    Birkelo, C P; Brouk, M J; Schingoethe, D J

    2004-06-01

    Forty-five energy balances were completed with 12 multiparous, lactating Holstein cows in a study designed to determine the energy content of wet corn distillers grains. Treatments were applied in a repeated switchback design and consisted of total mixed diets containing 31.4% corn silage, 18.4% alfalfa hay, and either 30.7% rolled corn and 16.7% soybean meal or 17.0% rolled corn and 31.2% wet corn distillers grains (dry matter basis). Replacement of corn and soybean meal with wet corn distillers grains reduced dry matter intake 10.9% but did not affect milk production. Neither digestible nor metabolizable energy were affected by diet composition. Heat and milk energy output did not differ by diet, but body energy retained was 2.8 Mcal/d less in cows fed the wet corn distillers grains diet. Multiple regression estimates of maintenance metabolizable energy requirement and partial efficiencies of metabolizable energy used for lactation and body energy deposition did not differ by diet. Pooled estimates were 136.2, 0.66, and 0.85, kcal of metabolizable energy/ body weight0.75 per day, respectively. Calculated by difference, wet corn distillers grains was estimated to contain 4.09, 3.36, and 2.27 Mcal/kg of dry matter as digestible, metabolizable, and lactational net energy, respectively. These energy estimates were 7 to 11% and 10 to 15%, respectively, greater than those reported for dried corn distillers grains by the 1989 and 2001 dairy NRC publications.

  8. Cottonseed meal, dehydrated grass and ascorbic acid as dietary factors preventing toxicity of vanadium for the chick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, L.R.; Lawrence, W.W.

    1971-01-01

    Studies have been conducted which show that the replacement of 5% sucrose in a sucrose-fish meal diet for chicks with degossypolized cottonseed meal prevents the toxicity of 20 ppm added vanadium. The addition of 5% dehydrated grass to the same ration markedly reduced the toxicity symptoms. No such reduction in vanadium toxicity resulted when soybean meal, corn gluten meal, meat meal, fish meal, casein, isolated soybean protein, zein or wheat gluten were added to the ration. No evidence was found that the gossypol remaining in the cottonseed meal was the detoxifying agent. The addition of 0.25 to 0.50% ascorbic acidmore » to the sucrose-fish meal basal ration prevented the toxic symptoms resulting from the addition of 20 ppm vanadium derived from HN/sub 4/VO/sub 3/. The vanadium derived from VOSO/sub 4/ and VOCl/sub 2/ (vanadium valence 4) was as toxic as vanadium derived from HN/sub 4/VO/sub 3/ (V = valence 5). This leads one to question that the action of ascorbic acid in reducing vanadium toxicity is through its property of a reducing agent which might change the vanadium in VH/sub 4/VO/sub 3/ to a lower valence, presumably less toxic.« less

  9. Utilization of new naturally occurring strains and supplementation to improve the biological efficiency of the edible mushroom Agrocybe cylindracea.

    PubMed

    Uhart, Marina; Piscera, Juan Manuel; Albertó, Edgardo

    2008-06-01

    To evaluate the importance of searching new naturally occurring strains to raise yields in mushroom production, eight wild and four commercial strains of Agrocybe cylindracea were cultivated on wheat straw. The highest biological efficiencies (BE) (54.5-72.4%) were obtained with three wild and two commercial strains when cultured on non-supplemented wheat straw. Rolled oats or soybean flour supplementation were tested using three selected strains, increasing BEs up to 1.2, 0.5 and 0.7-fold, respectively. This effect of supplementation was stronger in the Asiatic wild strain, yielding up to 41.1 and 30% more than the two other strains with rolled oats and soybean flour, respectively. The Asiatic wild strain cultivated with soybean flour supplementation achieved an average biological efficiency of 179%, to our knowledge, the highest reported for this species. These results show the importance of searching for new naturally occurring strains in combination with supplemented wheat straw substrate for raising yields in A. cylindracea cultivation.

  10. Quantifying cradle-to-farm gate life-cycle impacts associated with fertilizer used for corn, soybean, and stover production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Susan E.

    2005-05-01

    Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production.

  11. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil*

    PubMed Central

    Nourbakhsh, Farshid; Sheikh-Hosseini, Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (C 0) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. PMID:16972320

  12. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States

    USGS Publications Warehouse

    Coupe, Richard H.; Capel, Paul D.

    2016-01-01

    BACKGROUNDGenetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected.RESULTSThere has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops.CONCLUSIONSThe observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis.

  13. Effects of Inclusion Levels of Wheat Bran and Body Weight on Ileal and Fecal Digestibility in Growing Pigs

    PubMed Central

    Huang, Q.; Su, Y. B.; Li, D. F.; Liu, L.; Huang, C. F.; Zhu, Z. P.; Lai, C. H.

    2015-01-01

    The objective of this study was to determine the effects of graded inclusions of wheat bran (0%, 9.65%, 48.25% wheat bran) and two growth stages (from 32.5 to 47.2 kg and 59.4 to 78.7 kg, respectively) on the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD) and hindgut fermentation of nutrients and energy in growing pigs. Six light pigs (initial body weight [BW] 32.5±2.1 kg) and six heavy pigs (initial BW 59.4±3.2 kg) were surgically prepared with a T-cannula in the distal ileum. A difference method was used to calculate the nutrient and energy digestibility of wheat bran by means of comparison with a basal diet consisting of corn-soybean meal (0% wheat bran). Two additional diets were formulated by replacing 9.65% and 48.25% wheat bran by the basal diet, respectively. Each group of pigs was allotted to a 6×3 Youden square design, and pigs were fed to three experimental diets during three 11-d periods. Hindgut fermentation values were calculated as the differences between ATTD and AID values. For the wheat bran diets, the AID and ATTD of dry matter (DM), ash, organic matter (OM), carbohydrates (CHO), gross energy (GE), and digestible energy (DE) decreased with increasing inclusion levels of wheat bran (p<0.05). While only AID of CHO and ATTD of DM, ash, OM, CHO, GE, and DE content differed (p<0.05) when considering the BW effect. For the wheat bran ingredient, there was a wider variation effect (p<0.01) on the nutrient and energy digestibility of wheat bran in 9.65% inclusion level due to the coefficient of variation (CV) of the nutrient and energy digestibility being higher at 9.65% compared to 48.25% inclusion level of wheat bran. Digestible energy content of wheat bran at 48.25% inclusion level (4.8 and 6.7 MJ/kg of DM, respectively) fermented by hindgut was significantly higher (p<0.05) than that in 9.65% wheat bran inclusion level (2.56 and 2.12 MJ/kg of DM, respectively), which was also affected (p<0.05) by two growth stages. This increase in hindgut fermentation caused the difference in ileal DE (p<0.05) to disappear at total tract level. All in all, increasing wheat bran levels in diets negatively influences the digestibility of some nutrients in pigs, while it positively affects the DE fermentation in the hindgut. PMID:25925062

  14. 40 CFR 180.626 - Prothioconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Alfalfa, forage 0.02 Alfalfa, hay 0.02 Beet, sugar, roots 0.25 Corn, sweet kernel plus cob with husks... sweet corn and sorghum 0.35 Pea and bean, dried shelled, except soybean, subgroup 6C 0.9 Peanut 0.02...

  15. 40 CFR 180.626 - Prothioconazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Alfalfa, forage 0.02 Alfalfa, hay 0.02 Beet, sugar, roots 0.25 Corn, sweet kernel plus cob with husks... sweet corn and sorghum 0.35 Pea and bean, dried shelled, except soybean, subgroup 6C 0.9 Peanut 0.02...

  16. Characterization of surface active materials derived from farm products

    USDA-ARS?s Scientific Manuscript database

    Surface active materials obtained by chemical modification of plant protein isolates (lupin, barley, oat), corn starches (dextrin, normal, high amylose, and waxy) and soybean oil (soybean oil based polysoaps, SOPS) were investigated for their surface and interfacial properties using axisymmetric dro...

  17. 17 CFR 150.2 - Position limits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...,500 Soybean Oil 540 5,000 6,500 Soybean Meal 720 5,000 6,500 Minneapolis Grain Exchange Hard Red... Trade Hard Winter Wheat 600 5,000 6,500 1 For purposes of compliance with these limits, positions in the...

  18. The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize.

    PubMed

    Sucher, Justine; Boni, Rainer; Yang, Ping; Rogowsky, Peter; Büchner, Heike; Kastner, Christine; Kumlehn, Jochen; Krattinger, Simon G; Keller, Beat

    2017-04-01

    Maize (corn) is one of the most widely grown cereal crops globally. Fungal diseases of maize cause significant economic damage by reducing maize yields and by increasing input costs for disease management. The most sustainable control of maize diseases is through the release and planting of maize cultivars with durable disease resistance. The wheat gene Lr34 provides durable and partial field resistance against multiple fungal diseases of wheat, including three wheat rust pathogens and wheat powdery mildew. Because of its unique qualities, Lr34 became a cornerstone in many wheat disease resistance programmes. The Lr34 resistance is encoded by a rare variant of an ATP-binding cassette (ABC) transporter that evolved after wheat domestication. An Lr34-like disease resistance phenotype has not been reported in other cereal species, including maize. Here, we transformed the Lr34 resistance gene into the maize hybrid Hi-II. Lr34-expressing maize plants showed increased resistance against the biotrophic fungal disease common rust and the hemi-biotrophic disease northern corn leaf blight. Furthermore, the Lr34-expressing maize plants developed a late leaf tip necrosis phenotype, without negative impact on plant growth. With this and previous reports, it could be shown that Lr34 is effective against various biotrophic and hemi-biotrophic diseases that collectively parasitize all major cereal crop species. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    PubMed

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Transformation of nitrogen contained in alfalfa silage, corn silage, corn grain and soybean meal into milk, manure and recycled back to corn

    USDA-ARS?s Scientific Manuscript database

    To better understand the transformative nature of feed nitrogen (N) on confinement dairy farms (cows fed stored feed in barns), a series of cow, laboratory, and field experiments was undertaken to quantify the relative amounts of N contained in individual ration components that are secreted in milk,...

  1. The evaluation of a semi-automated procedure for classifying corn and soybeans without ground data

    NASA Technical Reports Server (NTRS)

    Metzler, M. D.; Cicone, R. C.; Johnson, K. I.

    1982-01-01

    Since the launch of Landsat 1 in 1973, research has been conducted with the objective to develop technology which would make it possible to achieve large area crop estimates on the basis of Landsat Multispectral Sensor (MSS) data without the benefit of ground observed training data. The present investigation is concerned with the evaluation of a technology which was developed to produce estimates of corn and soybean acreage in the central U.S. Corn Belt (Iowa, Illinois, and Indiana). A description of the employed technique is provided and details regarding the test of the developed technology are discussed. The obtained results show that considerable progress has been made toward creating an automatic, self-adapting procedure which has favorable bias and variance characteristics.

  2. Effects of different physical forms of wheat grain in corn-based starter on performance of young Holstein dairy calves.

    PubMed

    Pezhveh, N; Ghorbani, G R; Rezamand, P; Khorvash, M

    2014-10-01

    The objective of the present study was to examine the effects of partially replacing corn with 2 forms of wheat grain on daily intake of starter feed, average daily gain, feed efficiency, rumen pH, fecal score, weaning weight, skeletal growth, and blood metabolites of dairy calves. Thirty-two male and female Holstein dairy calves (n=8 calves per treatment) were used in a completely randomized block design. At d 3 of age, individually housed calves were randomly allocated to different treatments consisting of a starter diet with 60% ground corn (control), a starter diet with 60% whole corn, a starter diet with 30% ground corn plus 30% ground wheat (GCGW), and a starter with 30% ground corn plus 30% whole wheat (GCWW), with all other components in a meal form. All calves had free access to water and feed throughout the study period and received 4 L of milk replacer/d from d 3 to 50 and 2 L/d from d 50 to 52; weaning occurred at the end of d 52. Feed intake was recorded daily and body weight and skeletal growth measures were recorded on d 10 and every 10 d thereafter. Rumen pH was measured on d 30, 45, and 60. Blood sample were collected on d 30 and every 10 d thereafter through d 70. Data were analyzed using MIXED procedures of SAS (SAS Institute Inc., Cary, NC). Over the experimental period (d 1-70), the starter intake for the GCWW group was significantly different from the control group, but not different from the other groups. Calves fed whole wheat had a significantly greater average daily gain compared with other groups over the experimental period (d 1-70). Feed efficiency was only better in calves fed the GCWW diet than the GCGW group for postweaning and overall periods. No differences were observed for preweaning in body length, hip height, or withers height among the treatments; however, differences were significant in heart girth and body barrel. Postweaning, some of the body measurements were greater in calves fed the GCWW and GCGW starter diets. Blood glucose concentration reduced with age; however, blood urea nitrogen, β-hydroxybutyrate, albumin, and total protein increased with age. Treatment × time effects on blood urea nitrogen and total protein concentrations were detected. Blood urea nitrogen concentration (mg/dL) was affected by dietary treatments on d 30, 40, and 70, but no significant difference was detected on d 50 and 60. Serum total protein concentration (g/dL) was also affected by dietary treatments on d 40 and 70, but no significant difference was detected on d 40, 50, and 60. Whereas rumen pH was significantly reduced for the control compared with the GCWW treatment on d 45, comparison of the fecal scores showed no detectable differences among the treatments. Overall, the results of the current study indicate that starter diets containing whole wheat and ground corn can improve performance in young dairy calves compared with diets containing ground corn/ground wheat, whole corn, or ground corn, under our experimental conditions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    PubMed

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO 2 eq ha -1 yr -1 . Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO 2 eq ha -1 yr -1 . Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  4. Starch degradation and nutrition value improvement in corn grits by solid state fermentation technique with Coriolus versicolor.

    PubMed

    Huang, Mian; Zhang, Song

    2011-10-01

    The study was conducted to evaluate effect of Coriolus versicolor mycelia on degrading starch and improving nutrition value in corn grits through solid state fermentation technique. The results showed that using soybean meal as a nitrogen source, α-amylase secreted from C. versicolor expressed 407.25U/g of activity, leading to 45.15% of starch degraded. The activity grew with fermentation time until the 15(th) day, after that the amylase was deactivated rapidly. An orthogonal experiment designed for the study illustrated that degradation rate of starch in corn grits attained to maximum, 50.51%, when 100g of corn grits, added 16g of soybean meal, were fermented by C. versicolor for 12 days, in an initial pH 5.5. After fermenting, compared to the nonfermented control, contents of amino acids, total sugar, crude fat and crude protein were increased by 21.00%, 38.45%, 55.56%, 69.15% respectively. The significant improvement of nutrition value in corn grits is probably attributed to the intense metabolism of C. versicolor.

  5. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  6. Starch degradation and nutrition value improvement in corn grits by solid state fermentation technique with Coriolus versicolor

    PubMed Central

    Huang, Mian; Zhang, Song

    2011-01-01

    The study was conducted to evaluate effect of Coriolus versicolor mycelia on degrading starch and improving nutrition value in corn grits through solid state fermentation technique. The results showed that using soybean meal as a nitrogen source, α-amylase secreted from C. versicolor expressed 407.25U/g of activity, leading to 45.15% of starch degraded. The activity grew with fermentation time until the 15th day, after that the amylase was deactivated rapidly. An orthogonal experiment designed for the study illustrated that degradation rate of starch in corn grits attained to maximum, 50.51%, when 100g of corn grits, added 16g of soybean meal, were fermented by C. versicolor for 12 days, in an initial pH 5.5. After fermenting, compared to the nonfermented control, contents of amino acids, total sugar, crude fat and crude protein were increased by 21.00%, 38.45%, 55.56%, 69.15% respectively. The significant improvement of nutrition value in corn grits is probably attributed to the intense metabolism of C. versicolor. PMID:24031762

  7. Physicochemical, nutritional and infrared spectroscopy evaluation of an optimized soybean/corn flour extrudate

    USDA-ARS?s Scientific Manuscript database

    A central composite design using RMS successfully described the effect of independent variables (feed moisture, die temperature and soybean proportion) on the specific parameters of product quality (expansion index, water absorption index, water solubility index and total color difference) studied. ...

  8. Greenhouse gas emissions from traditional and biofuels cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  9. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].

    PubMed

    Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan

    2015-10-01

    Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai Mountains and the south of Lesser Khingan Mountains, measures could be taken to increase the efficiency of resource utilization such as rational close-planting, selection of droughtresistant varieties, proper and timely fertilization, farming for soil water storage, optimization of crop layout and so on.

  10. Replacing Corn and Wheat in Layer Diets with Hulless Oats Shows Effects on Sensory Properties and Yolk Quality of Eggs.

    PubMed

    Winkler, Louisa R; Hasenbeck, Aimee; Murphy, Kevin M; Hermes, James C

    2017-01-01

    US organic poultry producers are under pressure to find feed alternatives to corn and wheat. Hulless oats offer advantages such as wide geographic adaptation of the plant and high concentrations of protein and oil in the grain. They have shown considerable potential in experimental work as a feed grain for poultry, but more research is needed into their influence on the sensory and nutritional properties of eggs. In this study, hulless oats were substituted for corn or wheat at 200 g kg -1 in diets fed to Hy-Line Brown hens and eggs were sampled for sensory evaluation after 8 weeks. Discrimination tests of blended and baked egg samples found evidence of difference between eggs from oat-based diets and those from the oat-free control ( p  < 0.05 for eggs from an oat-corn diet, p  < 0.01 for eggs from an oat-wheat diet). Acceptance tests of similar samples showed that eggs from the oat-wheat diet were significantly less liked than control eggs for their texture ( p  < 0.01) and response to cooking ( p  < 0.01), while eggs from the oat-corn diet were somewhat less liked. Yolk weight was greater ( p  < 0.05) in control eggs (34.1 g) than eggs from oat-corn (31.6 g) or oat-wheat (31.2 g) diets, leading to smaller yolk proportion in the oat-fed eggs. Fatty acid profile differences across treatments were not of nutritional significance, and no evidence was found that the feeding of hulless oats improved storage properties of eggs. In this study, modifying the carbohydrate source in layer diets was shown to change textural properties of cooked eggs in a way that was perceptible to untrained consumers, probably by reducing the yolk proportion. This finding was not commercially relevant owing to small effect size, and results overall add to existing evidence that hulless oats can be fed to poultry at a moderate proportion of the diet with no negative effect on consumer acceptability of eggs. Regardless of the small effect size, however, findings are interesting from the food chemistry perspective because they provide novel evidence of how the thermal properties of eggs can be altered by a change in hen dietary carbohydrate source.

  11. Replacing Corn and Wheat in Layer Diets with Hulless Oats Shows Effects on Sensory Properties and Yolk Quality of Eggs

    PubMed Central

    Winkler, Louisa R.; Hasenbeck, Aimee; Murphy, Kevin M.; Hermes, James C.

    2017-01-01

    US organic poultry producers are under pressure to find feed alternatives to corn and wheat. Hulless oats offer advantages such as wide geographic adaptation of the plant and high concentrations of protein and oil in the grain. They have shown considerable potential in experimental work as a feed grain for poultry, but more research is needed into their influence on the sensory and nutritional properties of eggs. In this study, hulless oats were substituted for corn or wheat at 200 g kg−1 in diets fed to Hy-Line Brown hens and eggs were sampled for sensory evaluation after 8 weeks. Discrimination tests of blended and baked egg samples found evidence of difference between eggs from oat-based diets and those from the oat-free control (p < 0.05 for eggs from an oat-corn diet, p < 0.01 for eggs from an oat-wheat diet). Acceptance tests of similar samples showed that eggs from the oat-wheat diet were significantly less liked than control eggs for their texture (p < 0.01) and response to cooking (p < 0.01), while eggs from the oat-corn diet were somewhat less liked. Yolk weight was greater (p < 0.05) in control eggs (34.1 g) than eggs from oat-corn (31.6 g) or oat-wheat (31.2 g) diets, leading to smaller yolk proportion in the oat-fed eggs. Fatty acid profile differences across treatments were not of nutritional significance, and no evidence was found that the feeding of hulless oats improved storage properties of eggs. In this study, modifying the carbohydrate source in layer diets was shown to change textural properties of cooked eggs in a way that was perceptible to untrained consumers, probably by reducing the yolk proportion. This finding was not commercially relevant owing to small effect size, and results overall add to existing evidence that hulless oats can be fed to poultry at a moderate proportion of the diet with no negative effect on consumer acceptability of eggs. Regardless of the small effect size, however, findings are interesting from the food chemistry perspective because they provide novel evidence of how the thermal properties of eggs can be altered by a change in hen dietary carbohydrate source. PMID:28824917

  12. Commercially available gluten-free pastas elevate postprandial glycemia in comparison to conventional wheat pasta in healthy adults: a double-blind randomized crossover trial.

    PubMed

    Johnston, C S; Snyder, D; Smith, C

    2017-09-20

    Given the popularity of gluten-free diets, research regarding the health implications of gluten-free (GF) products is necessary. This study compared the postprandial glycemic responses to three GF pastas commonly available in the U.S. market to that of wheat pasta in healthy adults. Thirteen healthy non-smoking men and women from a university campus population were enrolled in this randomized 4 × 4 block crossover study and completed all four treatments. Participants followed a standardized diet and activity protocol the day prior to testing, and one week separated testing periods. The test meal (a macaroni and cheese dish prepared with conventional wheat pasta or with GF pasta composed of either brown rice, rice and corn, or corn and quinoa flours) was consumed under observation, and blood was sampled in the fasted state and at one-half hour intervals for the first 2 hours following meal ingestion. A significant pasta × time interaction was observed for the incremental postprandial glycemia curves (p = 0.036, repeated measures ANOVA; effect size [partial eta squared], 0.943). Post-hoc analysis revealed a significant difference for the 30-minute postprandial blood glucose concentrations: the plasma glucose concentration was 57% higher for the GF rice and corn pasta compared to traditional wheat pasta (p = 0.011). Since postprandial glycemia was higher for GF pasta composed of rice and corn flours compared to wheat pasta, more research is needed to understand how the substitute ingredients for GF pastas impact health parameters and disease risk.

  13. Less waste corn, more land in soybeans, and the switch to genetically modified crops: trends with important implications to wildlife management

    USGS Publications Warehouse

    Krapu, G.L.; Brandt, D.A.; Cox, R.R.

    2004-01-01

    An abundance of waste corn, a key food of many wildlife species, has helped make possible the widespread success of wildlife management in the United States over the past half century. We found waste corn post harvest in Nebraska declined by 47% from 1978 to 1998 due primarily to improvements in combine headers resulting in a marked decline in ear loss. The reduction in waste coincided with major declines in fat storage by sandhill cranes and white-fronted geese during spring migration. Sandhill cranes, northern pintails, white-fronted geese, and lesser snow geese avoided soybeans while staging in spring in the Rainwater Basin Area and Central Platte River Valley. These findings and other literature suggest soybeans are a marginal food for wildlife particularly during periods of high energy requirements. Soybean acreage has increased by 600% in the United States since 1950 and now comprises nearly one-quarter of the nation>'s cropland. With over 80% of the soybean crop now in genetically modified varieties and treated with glyphosate, weed seed is becoming scarce in soybean fields leaving limited food for wildlife on 72 million acres of U.S. cropland. We suggest that the combined effect of increasing efficiency of crop harvesting techniques, expansion of soybeans and other crops poorly suited for wildlife nutrient needs, and more efficient weed control through the shift to genetically modified crops may severely limit seed-eating wildlife populations in the future unless ways are found to replace high energy food sources being lost. We encourage more research to gain greater insight into effects of declining food resources on wildlife populations and propose that the conservation title of the 2002 farm bill be used as a mechanism to replace part of the high-energy food being lost due to changes in production agriculture.

  14. Effects of corn gluten feed inclusion at graded levels in a corn-soybean diet on the ileal and fecal digestibility of growing pigs

    PubMed Central

    2014-01-01

    Background This study aimed to determine the effect of the inclusion of corn gluten feed (CGF) on the apparent and standardized ileal digestibility of protein and amino acids and the apparent ileal and total tract digestibility of energy in growing pigs. The study was performed using 16 barrows (weight, 45.3 ± 4.5 kg) that were fitted with a T cannula at the terminal ileum. There were four treatments: a corn-soybean diet without CGF and three corn-soybean diets containing increasing levels of CGF (65, 130, and 195 g/kg). Data were analyzed according to a randomized complete block design, four blocks with four pigs each (one pig per treatment). The trend of the response (linear or quadratic) was determined using orthogonal contrasts, and when a linear effect was determined, a linear equation was obtained. Results The results showed that the inclusion up to 195 g/kg of CGF in the corn-soybean diet did not diminish the ileal digestibility (apparent and standardized) of protein and amino acids (P > 0.05), except that of phenylalanine, cystine, and proline. A linear decrease (P < 0.05) per gram of CGF added to the diet in the apparent and standardized ileal digestibility of phenylalanine (0.011 and 0.015 percentage units, respectively), cystine (0.048 and 0.043 percentage units, respectively), and proline (0.045 and 0.047 percentage units, respectively) was noted. Similarly, ileal digestibility of dry matter and energy were adversely affected (reduced by 0.028 and 0.025 percentage units, respectively, per gram of CGF increment in the diet). A significant (P < 0.05) linear reduction in total tract digestibility with increase in CGF amount in the diet was observed for energy (0.027 percentage units), dry matter (0.027 percentage units), crude protein (0.020 percentage units), and neutral detergent fiber (0.041 percentage units) per gram of CGF added to the diet. Conclusion CGF did not affect the ileal digestibility of protein and most amino acids but reduced the ileal and total tract digestibility of energy. PMID:25279142

  15. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation.

    PubMed

    Asgari, Kamran; Cornelis, Wim M

    2015-07-01

    Constant use of treated wastewater (TWW) for irrigation over prolonged periods may cause buildup of heavy metals up to toxic levels for plants and animals, and entails environmental hazards in different aspects. However, application of TWW on agricultural land might be an effective and sustainable strategy in arid and semi-arid countries where fresh water resources are under great pressure, as long as potential harmful effects on the environment including soil, plants, and fresh water resources, and health risks to humans are minimized. The aim of this study was to assess the effect of deep emitters on limiting potential heavy metal accumulation in soils and grains, and health risk under drip irrigation with treated municipal wastewater. A field experiment was conducted according to a split block design with two treatments (fresh and wastewater) and three sub-treatments (0, 15, and 30 cm depth of emitters) in four replicates on a sandy loam Calcic Argigypsids, in Esfahan, Iran. The annual rainfall is about 123 mm, mean annual ETo is 1457 mm, and the elevation is 1590 m above sea level. A two-crop rotation of wheat (Triticum spp.) and corn (Zea mays) was established on each plot with wheat growing from February to June and corn from July to September. Soil samples were collected before planting and after harvesting for each crop in each year. Edible grain samples of corn and wheat were collected at harvest. Elemental concentrations (Cu, Zn, Cd, Pb, Cr, Ni) in soil and grains were determined using an atomic absorption spectrophotometer. Results showed that the concentrations of heavy metals in the wastewater-irrigated soils were not significantly different (P > 0.05) compared with the freshwater-irrigated soils. No significant difference (P > 0.05) in heavy metal content in soil between different depths of emitters was found. A pollution load index (PLI) showed that there was no substantial buildup of heavy metals in the wastewater-irrigated soils compared to the freshwater-irrigated soils. Cu, Pb, and Zn concentrations in wheat and corn grains were within the permissible US Environmental Protection Agency (EPA) limits, but concentrations of Cd (in wheat and corn) and Cr (in corn) were above the safe limits of the EPA. In addition, concentrations of Ni in wheat and corn seeds were several folds higher than the EPA standards. A health risk index (HRI) which is usually adopted to assess the health risk to hazard materials in foods showed values higher than 1 for Cd, particularly for wheat grain (HRI >2.5). Results also showed that intake of Cu through consumption of edible wheat grains posed a relatively high potential health risk to children (HRI >1.4), whereas children might also be exposed to health risk from Cd and Cr from corn grains (HRI >1.4). Based on aforementioned results, it can be concluded that the emitter depth in drip irrigation does not play a significant role in the accumulation of heavy metals from TWW in our sandy loam soil. Although their accumulation in the soil was limited and similar to using freshwater, uptake of Cd and Cr by wheat and corn was relatively large and hence resulted in health risk. The results suggest that more attention should be directed towards cultivation of other crops with drip irrigation system for a safe and more productive use of wastewater for irrigation. Alternatively, methods that filter the wastewater before it enters the soil environment might be an option that needs further investigation.

  16. Effect of Natural Steryl Ferulates on Frying Oil Degradation

    USDA-ARS?s Scientific Manuscript database

    Steryl ferulates are found naturally in the hull of grains such as wheat, rye, corn, and rice. They consist of a plant sterol esterified to ferulic acid. The steryl ferulates from corn and rice differ in the sterol constituent. Corn steryl ferulates have a much higher percentage of saturated ster...

  17. 5. Anthony Bley, Photographer Summer, 1975 L TO R: CORN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Anthony Bley, Photographer Summer, 1975 L TO R: CORN CRIB-WAGON SHED, BARN, FRAME OF WHEAT BARN, CORN CRIB, PIG BARN - Dundore Farm, State Route 183 & Church Road vicinity, Penn Township (moved to Brownsville vicinity, Lower Heidelberg Township, Berks County), Mount Pleasant, Berks County, PA

  18. Development of a non-dormant germplasm from Thlaspi Arvense (Pennycress)

    USDA-ARS?s Scientific Manuscript database

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  19. 40 CFR 180.626 - Prothioconazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., subgroup 13-07H 0.20 Bushberry, subgroup 13-07B 2.0 Corn, sweet kernel plus cob with husks removed 0.04... sweet corn and sorghum 0.35 Pea and bean, dried shelled, except soybean, subgroup 6C 0.9 Peanut 0.02...

  20. 40 CFR 180.515 - Carfentrazone-ethyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., green 0.10 Corn, field, forage 0.20 Corn, sweet, forage 0.20 Corn, sweet, kernel plus cob with husk... Shellfish 0.30 Sorghum, forage 0.20 Sorghum, grain 0.25 Sorghum, sweet 0.10 Soursop 0.10 Soybean, seed 0.10 Spanish lime 0.10 Star apple 0.10 Starfruit 0.10 Stevia 0.10 Strawberry 0.10 Strawberrypear 0.10 Sugar...

  1. Composition and Palatability of Breads Made with Ground Soybean Products.

    ERIC Educational Resources Information Center

    Klein, Barbara P.; And Others

    1980-01-01

    Ground soy products made from whole soybeans were used in bread as substitutes for 12 percent of the wheat flour to demonstrate that home-prepared soy products can be used to bake palatable breads and supplement their protein content. (Author/SK)

  2. Measuring and modeling the effects of drainage water management on soil greenhouse gas fluxes from corn and soybean fields.

    PubMed

    Nangia, V; Sunohara, M D; Topp, E; Gregorich, E G; Drury, C F; Gottschall, N; Lapen, D R

    2013-11-15

    Controlled tile drainage can boost crop yields and improve water quality, but it also has the potential to increase GHG emissions. This study compared in-situ chamber-based measures of soil CH4, N2O, and CO2 fluxes for silt loam soil under corn and soybean cropping with conventional tile drainage (UTD) and controlled tile drainage (CTD). A semi-empirical model (NEMIS-NOE) was also used to predict soil N2O fluxes from soils using observed soil data. Observed N2O and CH4 fluxes between UTD and CTD fields during the farming season were not significantly different at 0.05 level. Soils were primarily a sink for CH4 but in some cases a source (sources were associated exclusively with CTD). The average N2O fluxes measured ranged between 0.003 and 0.028 kg N ha(-1) day(-1). There were some significantly higher (p ≤ 0.05) CO2 fluxes associated with CTD relative to UTD during some years of study. Correlation analyses indicated that the shallower the water table, the greater the CO2 fluxes. Higher corn plant C for CTD tended to offset estimated higher CTD CO2 C losses via soil respiration by ∼100-300 kg C ha(-1). There were good fits between observed and predicted (NEMIS-NOE) N2O fluxes for corn (R(2) = 0.70) and soybean (R(2) = 0.53). Predicted N2O fluxes were higher for CTD for approximately 70% of the paired-field study periods suggesting that soil physical factors, such as water-filled pore space, imposed by CTD have potentially strong impacts on net N fluxes. Model predictions of daily cumulative N2O fluxes for the agronomically-active study period for corn-CTD and corn-UTD, as a percentage of total N fertilizer applied, were 3.1% and 2.6%, respectively. For predicted N2O fluxes on basis of yield units, indices were 0.0005 and 0.0004 (kg N kg(-1) crop grain yield) for CTD and UTD corn fields, respectively, and 0.0011 and 0.0005 for CTD and UTD soybean fields, respectively. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Effects of inclusion level on nutrient digestibility and energy content of wheat middlings and soya bean meal for growing pigs.

    PubMed

    Huang, Qiang; Piao, Xiangshu; Liu, Ling; Li, Defa

    2013-01-01

    Two experiments were conducted to determine the effects of inclusion level of wheat middlings and soya bean meal on apparent total tract digestibility (ATTD) of energy and chemical components of these ingredients in growing pigs. Furthermore, the effects of the inclusion level on their contents of digestible energy (DE) and metabolisable energy (ME) were also determined by the difference method. In Experiment 1, six diets were fed to 36 growing pigs according to a completely randomised design. The basal diet was a corn-soya bean meal diet while the other five diets contained 9.6%, 19.2%, 28.8%, 38.4% or 48.0% of wheat middlings added at the expense of corn and soya bean meal. The measured digestibility of energy and most nutrients of wheat middlings increased (p < 0.05) with increasing levels of that ingredient. Equations were obtained to predict digestibility by inclusion level. At an inclusion level of 9.6% wheat middlings, their DE contents were significantly lower (8.9 MJ/kg DM) than for the higher levels (10.7 to 11.9 MJ/kg DM, p < 0.01). In Experiment 2, three diets were fed to 18 growing pigs according to a completely randomised block design. The basal diet was a corn-based diet while the other two diets were based on corn and two levels of soya bean meal (22.2% and 33.6%). The content of DE in soya bean meal did not differ at 22.2% and 33.6% inclusion levels (16.2 and 16.3 MJ/kg DM, respectively), but the digestibility of dry matter (DM), organic matter and carbohydrates was increased at a higher inclusion level (p < 0.05). This study revealed that the estimated digestibility of nutrients from soya bean meal and wheat middlings was affected by their dietary inclusion levels. For soya bean meal, the estimated energy contents was independent of its inclusion level, but not for wheat middlings. Therefore, the inclusion level of wheat middlings has to be considered for estimating their energy value.

  4. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase.

    PubMed

    Kiarie, E; Romero, L F; Ravindran, V

    2014-05-01

    Efficacy of supplemental xylanase on growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn- or wheat-based diets was investigated. In experiment 1, 192 male broilers (8 birds/pen; n = 6) were fed 4 diets (corn or wheat without or with 1,250 xylanase units/kg) in 2 phases (starter, d 0-21 and grower, d 22-42). There was no interaction (P > 0.05) between diet and xylanase on performance (d 0-42). Wheat diets resulted (P < 0.01) in better performance than corn diets, whereas xylanase-fed birds had improved (P < 0.01) BW gain (2,457 vs. 2,275 g) and feed per gain (1.677 vs. 1.762) relative to birds not fed xylanase. In experiment 2, TiO2 (0.3%) was added in starter diets used in experiment 1, allocated to 13-d-old broiler chicks (n = 6) housed in cages (6 birds/cage) and fed up to d 21. Excreta samples were obtained from d 17 to 20 and birds were euthanized on d 21 for digesta. Corn diets had a greater concentration (10.7 vs. 9.8%) of insoluble nonstarch polysaccharides (NSP) than wheat diets, which in turn had more than twice the concentration of soluble NSP. There was an interaction (P < 0.03) between diet type and xylanase on jejunal digesta viscosity but not (P > 0.10) on apparent ileal digestibilities of nutrients, cecal volatile fatty acids, and AMEn. In this context, diet type influenced (P < 0.05) cecal volatile fatty acids and retention of nutrients and fiber but did not affect (P = 0.45) AMEn. In contrast, xylanase-fed birds showed higher (P < 0.05) ceca digesta acetic acid, apparent ileal digestibilities of nutrients, and retention of components. As a result, birds fed xylanase had higher AMEn (3,059 vs. 2,995 kcal/kg; P < 0.01) compared with birds not fed xylanase. Although wheat diets had superior growth performance, the AMEn was similar in both diets. Xylanase improved growth performance and AMEn independent of diet type, suggesting hydrolysis of both soluble and insoluble NSP.

  5. Mean age distribution of inorganic soil-nitrogen

    NASA Astrophysics Data System (ADS)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  6. Control Points on Carbon and Nitrogen Cycling in a Beef Cattle CAFO and the Cropland that Supports it

    NASA Astrophysics Data System (ADS)

    Gurwick, N. P.; Tonitto, C.

    2011-12-01

    Although spatially separated in the U.S. agricultural landscape, CAFOs (confined animal feeding operations) and Illinois grain agriculture are interdependent. Therefore, we need to consider both systems to identify methods for reducing inefficiency, GHG losses, and N pollution from them. We construct a budget for an average 30,000 animal beef cattle CAFO. Assuming cattle stay on the CAFO 5 months, we estimate total grain demand at 1.8 M bu yr-1 of corn (21 M kg C) and 0.3 M bu yr-1 of soybean (3.7 M kg C). To grow this feed requires 19,000 acres of cropland (2/3 in corn and 1/3 in soybean). We visualize C and N fluxes for a 4,000 acre farm growing corn and soybeans. Corn and soybeans on this farm fix ˜15 M and 4.5 M kg C yr-1 respectively. Plant and soil respiration return ˜50% of GPP to the atmosphere from the cornfield, and˜70% from the soybean field. Emissions from on-farm equipment are ˜60,000 kg C yr-1. About 5.1 M kg C yr-1 move from this farm to CAFO (4.3 M kg C in corn and 0.8 M kg C in soybean). To meet cattle demand requires 4.75 such farms. Transporting grain from all 19,000 ac releases ˜3 M kg C yr-1. Once at the CAFO, ˜20% of C in grain is converted to steer biomass. Of the remaining grain C (˜20 M kg C), about half leaves the steers as CO2, ˜6.6 M kg C exits the steers as manure, and ˜7% is converted to methane in the rumen. Of the ˜100 M kg C pulled from the atmosphere on the farms, about 2 M kg C exit the CAFO as methane, which increases GWP of the carbon stream by 50%. At typical application rates, a grower adds ˜216,000 kg N yr-1 to the corn field. On the soybean field, we estimate fixation of 64,000 kg N yr-1 and assume no other N additions. Corn and soybeans acquire ˜135,000 and 106,000 kg N respectively. Nitrate leaching from the corn field is ˜43,000 kg N (equivalent to ~20% of fertilizer N) and losses from the soybean field are ˜11,000 kg N. A fraction of N inputs to the fields (˜0.5%) exits as N2O, totaling < 1,500 N2O-N for the farm. Across all farms that support this CAFO, soils release ˜6,500 kg N2O-N (or 2 M kg CO2e yr-1). Additional N losses (N2O and NOx) occur in machinery used for land management, cultivation, and grain transport to CAFOs. For all transport, we estimate NOx and N2O emissions of 14,700 and 700 kg N yr-1 respectively. Most N acquired by the plants on this farm (˜241,000 kg N yr-1) travels with the grain to the CAFO. From all farms, ˜1.1 M kg N yr-1 arrive at the CAFO. Cattle convert much of the N to protein, but N also exits the animals in urine and manure. Typical N2O loss rates from manure are 6 kg N2O-N/steer, which translates into ˜190,000 kg N2O-N yr-1 (or 53 M kg CO2e) for the CAFO. These budgets underscore the power ruminants have on agriculture's contribution to climate change. While diet- and manure management offer opportunities, the biggest mitigation potential probably lies in reducing demand for ruminant meat, by limiting food waste or by changing diets. Either strategy would also reduce N pollution from cropland. N pollution might also be mitigated by shifting beef cattle from CAFOs to pasture, but the outcome depends on pasture management and the importance of urine patches.

  7. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis

    NASA Astrophysics Data System (ADS)

    Feng, Zhaozhong; Kobayashi, Kazuhiko

    Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O 3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O 3] was expressed relative to the yield under base [O 3] (≤26 ppb). With potato, current [O 3] (31-50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O 3], future [O 3] (51-75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O 3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO 2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O 3]. These findings confirm the rising [O 3] as a threat to food security for the growing global population in this century.

  8. Biomass as Feedstock for A Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply

    DTIC Science & Technology

    2005-04-01

    Approximately 20 percent of the corn kernel is not utilized in the production of ethanol and other starch based products, such as sweeteners and high - fructose ...under high yields. The amount of corn and soybeans available for ethanol, biodiesel or other bioproducts was calculated by first subtracting amounts...because of increasing demand for animal feed. This evaluation assumes that corn exports rise by another 10 percent in the high corn yield scenarios

  9. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy optimal plant growth condition for specific areas of the field for the next growing season may be useful indicators for crop management. Analysis of plant constituent qualities and quantities of dead crop materials during the harvesting practice or after harvest could be useful indicators of the previous crop's conditions. These measures could be used as a tool in determining precision farming management practices for site specific areas in a field.

  10. Evaluation of the performance of Hy-Line Brown laying hens fed soybean or soybean-free diets using cage or free-range rearing systems.

    PubMed

    Al-Ajeeli, M N; Leyva-Jimenez, H; Abdaljaleel, R A; Jameel, Y; Hashim, M M; Archer, G; Bailey, C A

    2018-03-01

    This study evaluated egg production and quality variables of caged and free-range Hy-Line Brown laying hens fed soybean meal (SBM) and soybean-meal-free (SBMF) diets. Hens were randomly assigned to the same 2 dietary treatments within 3 location blocks. SBM and SBMF diets with equivalent calculated nutrient content were prepared based on Hy-Line Brown rearing guidelines. The SBMF diets utilized cottonseed meal, corn distillers dried grains with solubles, corn gluten meal, and wheat middlings in place of dehulled soybean meal. The experiment was conducted between August 2015 and January of 2016 within the TAMU Poultry Research Center and data analyzed over 6 consecutive 28-day periods. Data were analyzed as a split-plot with rearing systems designated whole plots and diets designated as subplots. Hens reared in the free-range rearing system peaked a couple of wk later than those hens within the more conventional indoor caged system, and cumulative production data were considerably more variable for hens raised in the free-range environment. Cumulative egg production, feed per dozen eggs and feed conversion ratio (g feed/g egg) were 92 ± 1.23 and 86 ± 1.84%, 1.45 ± 0.02 and 1.89 ± 0.05 kg, and 2.14 ± 0.04 and 2.77 ± 0.08 (P < 0.05), respectively, for the caged vs. free-range rearing systems. Cumulative egg weight, feed per dozen eggs, and feed conversion ratio were 59.9 ± 0.59 and 56.5 ± 0.60 g, 1.57 ± 0.04 and 1.77 ± 0.05 kg, and 2.24 ± 0.06 and 2.67 ± 0.08 kg (P < 0.05) for SBM and SBMF diets, respectively. Diet did not affect cumulative egg production (P > 0.05). With respect to egg quality, there were no differences in cumulative albumen height, Haugh unit, or breaking strength, but there was a significant rearing system by diet interaction for shell thickness, with the free-range hens averaging 40.77 ± 0.19 and 39.86 ± 0.31 μm (P < 0.05), respectively, for the hens fed SBM vs. SBMF diets. In conclusion, the results suggested free-range production is more variable than traditional closed-house cage systems based on standard errors, and SBMF diets containing cottonseed meal can be used in both caged and free-range production systems without affecting egg production, although one might see lower egg weights.

  11. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    PubMed

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on the market today.

  12. [Rapid determination of the components in ternary blended edible oil using near infrared transmission spectroscopy].

    PubMed

    Liu, Fu-Li; Chen, Hua-Cai

    2009-08-01

    The FT-NIR transmission spectra of ternary blended edible oil samples were collected over 10 000-4 200 cm(-1). After being pretreated with different methods, the calibration models of quantitative analysis of soybean oil, peanut oil and corn oil contents in ternary blended edible oil were established using partial least square (PLS) regression. The accuracy and precision of the models for the predicted sample set were examined to make sure of the practicability of the models. After being pretreated with first derivative and multiplicative signal correction (FD+MSC), the optimal soybean oil NIR model was built over 5 450.1-4 597.7 cm(-1). The best prediction model for peanut oil was established between 7 521.3 and 6 098.1 cm(-1) after using first derivative with straight line subtraction (FD+SLS) preprocess method. The best pretreated method and the best spectrum range for corn oil content model were first derivative (FD) and 9 993.7-7 498.2 cm(-1), respectively. The best correlation coefficients (R2) of the three prediction models were 99.89%, 99.88% and 99.76%, respectively. The RMSEP of the soybean oil content model was 1.09%, while the peanut oil prediction model's RMSEP was 1.17%, and 1.48% for the corn oil prediction model. The values of the t-test were between 0.007 9 and 0.371 9, and all values of the relative standard deviation (RSD) were less than 1.50%. The results showed that NIR could be an ideal tool for fast determination of the soybean oil, peanut oil and corn oil contents in ternary blended edible oil.

  13. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998

    PubMed Central

    Souza, Adriana Ferreira; Rodriguez, Dayana M.; Ribeaux, Daylin R.; Luna, Marcos A. C.; Lima e Silva, Thayse A.; Andrade, Rosileide F. Silva; Gusmão, Norma B.; Campos-Takaki, Galba M.

    2016-01-01

    Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. PMID:27669227

  14. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus

    PubMed Central

    Esper, Renata H.; Gonçalez, Edlayne; Marques, Marcia O. M.; Felicio, Roberto C.; Felicio, Joana D.

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 105 spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans. PMID:24926289

  15. An Optimal Dietary Zinc Level of Brown-Egg Laying Hens Fed a Corn-Soybean Meal Diet.

    PubMed

    Qin, Shizhen; Lu, Lin; Zhang, Xichun; Liao, Xiudong; Zhang, Liyang; Guo, Yanli; Luo, Xugang

    2017-06-01

    An experiment was conducted to estimate the optimal dietary zinc (Zn) level of brown-egg laying hens fed a corn-soybean meal diet from 20 to 40 weeks of age. A total of 120 20-week-old Beijing Red commercial laying hens were randomly allotted by bodyweight to one of five treatments with six replicates of four birds each in a completely randomized design, and fed a Zn-unsupplemented corn-soybean meal basal diet containing 27.95 mg Zn/kg by analysis and the basal diets supplemented with 30, 60, 90, or 120 mg Zn/kg as Zn sulfate (reagent grade ZnSO 4 ·7H 2 O) for a duration of 20 weeks. Laying performance, egg quality, tissue Zn concentrations, and activities of serum alkaline phosphatase (AKP), and liver copper-Zn superoxide dismutase (CuZnSOD) were measured. Regression analyses were performed to estimate an optimal dietary Zn level whenever a significant quadratic response (P < 0.05) was observed. Tibia Zn concentration (P = 0.002) and serum AKP activity (P = 0.010) showed significant quadratic responses to dietary supplemental Zn levels. The estimates of dietary Zn requirements for brown-egg laying hens from 20 to 40 weeks of age were 71.95 and 64.63 mg/kg for tibia Zn concentration and serum AKP activity, respectively. The results from this study indicate that the tibia Zn might be a more suitable and reliable parameter for Zn requirement estimation, and the optimal dietary Zn level would be about 72 mg/kg for brown-egg laying hens fed a corn-soybean meal diet from 20 to 40 weeks of age.

  16. 40 CFR 180.34 - Tests on the amount of residue remaining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Carrots, garden beets, sugar beets, horseradish, parsnips, radishes, rutabagas, salsify roots, turnips... corn, popcorn, sweet corn (each in grain form). (23) Milo, sorghum (each in grain form). (24) Wheat...

  17. 40 CFR 180.34 - Tests on the amount of residue remaining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Carrots, garden beets, sugar beets, horseradish, parsnips, radishes, rutabagas, salsify roots, turnips... corn, popcorn, sweet corn (each in grain form). (23) Milo, sorghum (each in grain form). (24) Wheat...

  18. Response of Pennsylvania native plant species, corn and soybean to tank mixes of dicamba and glyphosate

    EPA Science Inventory

    Crops such as soybean are being genetically modified to be tolerant to multiple herbicides, such as dicamba and glyphosate, in order to allow treatment with several herbicides to control the development of herbicide resistance in weeds. However, with increased use of multiple-he...

  19. Advancements of pennycress as a biofuel and the synthesis of estolides thereof

    USDA-ARS?s Scientific Manuscript database

    Pennycress (Thlaspi arvense L.) is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean...

  20. Statistical modeling of yield and variance instability in conventional and organic cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems research was undertaken to address declining crop diversity and verify competitiveness of alternatives to the predominant conventional cropping system in the northern Corn Belt. To understand and capitalize on temporal yield variability within corn and soybean fields, we quantified ...

  1. Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat - corn rotation cropland in the North China Plain

    NASA Astrophysics Data System (ADS)

    Sommar, J.; Zhu, W.; Shang, L.; Lin, C.-J.; Feng, X. B.

    2015-09-01

    Air-surface gas exchange of Hg0 was measured in five approximately bi-weekly campaigns (in total 87 days) over a wheat-corn rotation cropland located in the North China Plain using the relaxed eddy accumulation (REA) technique. The campaigns were separated over duration of a full year period (201-2013) aiming to capture the flux pattern over essential growing stages of the planting system with a low homogeneous topsoil Hg content (~ 45 ng g-1). Contrasting pollution regimes influenced air masses at the site and corresponding Hg0 concentration means (3.3 in late summer to 6.2 ng m-3 in winter) were unanimously above the typical hemispheric background of 1.5-1.7 ng m-3 during the campaigns. Extreme values in bi-directional net Hg0 exchange were primarily observed during episodes of peaking Hg0 concentrations. In tandem with under-canopy chamber measurements, the above-canopy REA measurements provided evidence for a balance between Hg0 ground emissions and uptake of Hg0 by the developed canopies. During the wheat growing season covering ~ 2/3 of the year at the site, net field-scale Hg0 emission was prevailing for periods of active plant growth until canopy senescence (mean flux: 20.0 ng m-3) disclosing the dominance of Hg0 soil efflux during warmer seasons. In the final vegetative stage of corn and wheat, ground and above-canopy Hg0 flux displayed inversed daytime courses with a near mid-day maximum (emission) and minimum (deposition), respectively. In contrast to wheat, Hg0 uptake of the corn canopy at this stage offset ground Hg0 emissions with additional removal of Hg0 from the atmosphere. Differential uptake of Hg0 between wheat (C3 species) and corn (C4 species) foliage is discernible from estimated Hg0 flux (per leaf area) and Hg content in mature cereal leaves being a factor of > 3 higher for wheat (at ~ 120 ng g-1 dry weight). Furthermore, this study shows that intermittent flood irrigation of the air-dry field induced a short pulse of Hg0 emission due to displacement of Hg0 present in the surface soil horizon. A more lingering effect of flood irrigation is however suppressed Hg0 soil emissions, which for wet soil (~ 30 %-vol) beneath the corn canopy was on an average a factor of ~ 3 lower than that for drier soil (< 10 %-vol) within wheat stands. Extrapolation of the campaign Hg0 flux data (mean: 7.1 ng m-2 h-1) to the whole year suggests the wheat-corn rotation cropland a net source of atmospheric Hg0. The observed magnitude of annual wet deposition flux (~ 8.8 μg Hg m-2) accounted for a minor fraction of soil Hg0 evasion flux prevailing over the majority of year. Therefore, we suggest that dry deposition of other forms of airborne Hg constitutes the dominant pathway of Hg input to this local ecosystem and that these deposited forms would be gradually transformed and re-emitted as Hg0 rather than being sequestered here. In addition, after crop harvesting, the practice of burning agricultural residue with considerable Hg content rather than straw return management yields seasonally substantial atmospheric Hg0 emissions from croplands in the NCP region.

  2. Evaluation of the nutritive value of muiumba (Baikiaea plurijuga) seeds: chemical composition, in vitro organic matter digestibility and in vitro gas production.

    PubMed

    Rodrigues, Miguel A M; Lourenço, Ana L; Cone, John W; Nunes, Fernando M; Santos, Ana S; Cordeiro, José M M; Guedes, Cristina M V; Ferreira, Luis M M

    2014-01-01

    One of the main constraints hindering the increase of animal production in semi-arid regions of Africa is the inadequate supply of nutrients during the dry season. Incorporation of alternative feed resources in ruminant diets during this period could be a viable approach to overcome these limitations. The objective of this study was to evaluate the nutritive value of muiumba (Baikiaea plurijuga) tree seeds as an alternative nutrient source for ruminants. Muiumba seeds were compared to other eight feedstuffs including two cereal grains (corn and oat), two wheat by-products (wheat bran and distilled wheat) and four protein meals (coconut meal, sunflower meal, soybean meal and rapeseed meal) as to its chemical composition, in vitro organic matter digestibility (IVOMD) and in vitro gas production. The moderate crude protein concentrations (145 g/kg DM) of muiumba seeds indicate that this feedstuff could not be used as a protein supplement, contrarily to the majority of multipurpose tree seeds. Although the starch content was scarce (15 g/kg DM), the low neutral detergent fibre (235 g/kg DM), low molecular weight sugar (76.1 g/kg DM) and non-starch polysaccharide (510.5 g/kg DM) contents indicate that this feedstuff has potential feeding value. This was confirmed by the IVOMD (0.770) and by the data provided by the in vitro gas production showing that muiumba seeds had high (P < 0.05) maximum gas production and fractional fermentation rates, suggesting that these seeds are characterized by a highly fermentable fraction.

  3. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion mitigation, and weed suppression, however little research has investigated the effects of winter cover crops on soil properties. ...

  4. Establishment and function of cover crops interseeded into corn

    USDA-ARS?s Scientific Manuscript database

    Cover crops can provide ecological services and improve the resiliency of annual cropping systems; however, cover crop use is low in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations in the upper Midwest due to challenges with establishment. Our objective was to compare three planting me...

  5. Cultural and environmental effects on the spectral development patterns of corn and soybeans: Field data analysis

    NASA Technical Reports Server (NTRS)

    Crist, E. P. (Principal Investigator)

    1982-01-01

    An overall approach to crop spectral understanding is presented which serves to maintain a strong link between actual plant responses and characteristics and spectral observations from ground based and spaceborne sensors. A specific technique for evaluating field reflectance data, as a part of the overall approach, is also described. Results of the application of this technique to corn and soybeans reflectance data collected by and at Purdue/LARS indicate that a number of common cultural and environmental factors can significantly affect the temporal spectral development patterns of these crops in tasseled cap greenness (a transformed variable of LANDSAT MSS signals).

  6. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed.

    PubMed

    Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia

    2014-01-01

    Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.

  7. Risk of limb birth defects and mother's home proximity to cornfields.

    PubMed

    Ochoa-Acuña, Hugo; Carbajo, Cristina

    2009-07-15

    Although previous studies have linked proximity to crops and birth defects, they lacked individual-level exposure data and none was based on using planted area instead of linear proximity to crops as the exposure metric. We studied birth defects in relation to the area of corn or soybeans within 500 m of the mother's residence. We selected all singleton births from rural areas conceived during the 2000-2004 spring-summer months (n=48,216). We determined whether the area with corn or soybeans around the home was associated with birth defects using multiple unconditional logistic regression. We found that limb birth defects (ICD-9-CM 754.5, 755) increased in relation to cornfields (Adjusted OR=1.22; 95 % CI=1.01, 1.47 per additional 10 ha planted with corn within 500 m). None of the birth defect types studied was associated with soybeans. In the Midwest, a significant and expanding proportion of the population is now living in close proximity to cornfields. Our results suggest that additional studies should be conducted to identify which factor(s) associated with cornfields are behind the observed increase in limb birth defects.

  8. Radar backscattering properties of corn and soybeans at frequencies of 1.6, 4.75, and 13.3. GHz

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1983-01-01

    The NASA Johnson Space Center made an observational study of the radar-backscattering properties of corn and soybeans in commercial fields in a test site in Webster County, IA. Aircraft-based radar scatterometers measured the backscattering coefficient of the crops at three frequencies, 1.6 GHz (L-band), 4.75 GHz (C-band), and 13.3 GHz (Ku-band), at 10 sensor look-angles (5 to 50 degrees from the nadir in steps of 5 degrees), and with several polarization combinations. Among other findings, it was determined that: (1) row direction differences among fields affected significantly the radar-backscattering coefficient of the fields when the radar system used like-polarization at look-angles from 5 to 25 degrees; (2) row-direction differences had no effect on radar backscattering when the system used either cross-polarization or look-angles greater than 25 degrees regardless of the polarization; (3) wet surface-soil moisture conditions resulted in significantly poorer spectral separability of the two crops as compared to dry-soil conditions; and (4) on the dry-soil date, the best channel for separating corn from soybeans was the C-band cross-polarized measurement at a look-angle of 50 degrees.

  9. Fermentation of Barley by Using Saccharomyces cerevisiae: Examination of Barley as a Feedstock for Bioethanol Production and Value-Added Products ▿

    PubMed Central

    Gibreel, Amera; Sandercock, James R.; Lan, Jingui; Goonewardene, Laksiri A.; Zijlstra, Ruurd T.; Curtis, Jonathan M.; Bressler, David C.

    2009-01-01

    The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller's grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility. PMID:19114516

  10. [Solid-state fermentation with Penicillium sp. PT95 for carotenoid production].

    PubMed

    Han, J; Xu, J

    1999-04-01

    A preliminary study on solid-state fermentation (SSF) with Penicillium sp PT95 for carotenoid production was performed. The results showed that the production of carotenoid in sclerotia of PT95 was more efficient in corn meal medium than in either wheat bran medium or cottonseed hull medium. Addition of nitrogen and carbon sources as well as vegetable oil to media was required for increasing the dry weight of sclerotia and carotenoid yield. Among several tested compounds for nitrogen and carbon sources, sodium nitrate and maltose were the best. Through orthogonal experiments, the optimum culture medium was obtained by supplement of NaNO3 3g, maltose 10 g, soybean oil 2.5 g to per liter of salt solution. Under the optimum culture conditions, the sclerotia dry weight increased from 5.36 g to 9.70 g per 100 g dry substrate, the carotenoid yield from 2149 micrograms to 5260 micrograms per 100 g dry substrate, the proportion of beta-carotene in carotenoids from 61.4% to 71.3%.

  11. Influence of Agricultural Practice on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Czajkowski, K.; Ault, T.; Hayase, R.; Benko, T.

    2006-12-01

    Changes in land uses/covers can have a significant effect on the temperature of the Earth's surface. Agricultural fields exhibit a significant change in land cover within a single year and from year to year as different crops are planted. These changes in agricultural practices including tillage practice and crop type influence the energy budget as reflected in differences in surface temperature. In this project, Landsat 5 and 7 imagery were used to investigate the influence of crop type and tillage practice on surface temperature in Iowa and NW Ohio. In particular, the three crop rotation of corn, soybeans and wheat, as well as no-till, conservation tillage and tradition tillage methods, were investigated. Crop type and conservation tillage practices were identified using supervised classification. Student surface temperature observations from the GLOBE program were used to correct for the effects of the atmosphere for some of the satellite thermal observations. Students took surface temperature observations in field sites near there schools using hand- held infrared thermometers.

  12. Economic feasibility analysis of conventional and dedicated energy crop production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R.G.; Langemeier, M.R.; Krehbiel, L.R.

    Economic feasibilities (net return per acre) associated with conventional agricultural crop production versus that of dedicated bioenergy crop (herbaceous energy crops) were investigated for northeastern Kansas. Conventional agricultural crops examined were corn, soybeans, wheat, sorghum and alfalfa and dedicated herbaceous energy crops included big bluestem/indiangrass, switchgrass, eastern gamagrass, brome, fescue and cane hay. Costs, prices and government program information from public and private sources were used to project the net return per acre over a six-year period beginning in 1997. Three soil productivity levels (low, average and high), which had a direct effect on the net return per acre, weremore » used to model differences in expected yield. In all three soil productivity cases, big bluestem/indiangrass, switchgrass and brome hay provided a higher net return per acre versus conventional crops grown on both program and non-program acres. Eastern gamagrass, fescue hay and cane hay had returns that were similar or less than returns provided by conventional crops.« less

  13. Population ecology of house mice in unstable habitats

    USGS Publications Warehouse

    Stickel, L.F.

    1979-01-01

    (1) The relationships between habitat change and house mouse populations were studied by monthly live trapping in a corn-wheat-hay rotation on a small Maryland farm. (2) Population density reached 53.0/ha in a wheat/hay field in October and 25.4/ha in corn in September. Populations increased by immigration as wheat or corn grew and ripened and decreased by emigration as hay became tall and dense. (3) Survival rates were high in winter in the relatively stable habitat of the wheat/hay field; they were Iow throughout the summer in both fields, and were reduced by corn harvest, less so by wheat harvest. If they were related to population density or increase, or to breeding condition, the relationships were obscured by the overriding influence of habitat change. (4) In the spring, when the population in the hay field 'crashed,' essentially the entire population moved from long-established ranges in the hay field to the field of ripening wheat, where new ranges were established. In the new field, fewer than 30% of the old associations between individuals persisted. (5) Individual mice maintained home ranges (88.1 + 6.1 m in length) in the same general area during their residence in a field. Ranges shifted from month to month, perhaps in response to changes in populations and habitat; exploratory travels and other movements also modified home range behaviour. (6) Minimum life expectancy (residence time) was greater from November (4-5 months) than from June/July (1-2 months). Maximum individual age was 17 months. (7) The demographic pattern fell at the r extreme of the r-K continuum. Mice bred from May to October matured and produced litters rapidly, produced several litters in a season, and had a high turnover rate. (8) It was concluded that migration was a primary mechanism of population regulation in the cropfield mosaic and that it was driven by habitat change, a system in contrast to those described for house mice in confined conditions.

  14. Maize and soybean root front velocity and maximum depth in the Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Quantitative measurements of root traits can improve our understanding of how crops respond to soil-weather conditions. However, such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for corn and soybean crops across a range of growing conditions in the M...

  15. Yield tradeoffs and nitrogen between pennycress, camelina, and soybean in relay- and double-crop systems

    USDA-ARS?s Scientific Manuscript database

    To gain additional value from land during winter fallow periods, growers in the Upper Midwest are considering winter annual oilseed crops such as field pennycress (Thlaspi arvense L.) and winter camelina (Camelina sativa L.) as value-added additions to the corn-soybean rotation. The objective of thi...

  16. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River basin, Maryland

    USGS Publications Warehouse

    McFarland, Randolph E.

    1997-01-01

    In an effort to improve water quality in Chesapeake Bay, agricultural practices are being promoted that are intended to reduce contaminant transport to the Bay. The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River basin, Maryland, during 1986-92. Nitrogen load was larger in ground water than in surface runoff at both sites. At the study site in the Piedmont Province, nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pound per acre per year) as corn under no-till cultivation was replaced by no-till soybeans, continuous alfalfa, and contoured strip crops alternated among corn, alfalfa, and soybeans. At the study site in the Coastal Plain Province, no-till soybeans resulted in a nitrogen load in ground water of 12.55 (lb/acre)/yr, whereas conventional-till soybeans resulted in a nitrogen load in ground water of 11.51 (lb/acre)/yr.

  17. The whole genome sequence assembly of the soybean aphid, Aphis glycines

    USDA-ARS?s Scientific Manuscript database

    Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only two aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, and the Russian wheat aphid, Diuraphis noxia. The soybean aphid (Aphis glycines) is an extreme special...

  18. Impacts of Repeated Glyphosate Use on Wheat-Associated Bacteria Are Small and Depend on Glyphosate Use History

    PubMed Central

    Schlatter, Daniel C.; Yin, Chuntao; Hulbert, Scot; Burke, Ian

    2017-01-01

    ABSTRACT Glyphosate is the most widely used herbicide worldwide and a critical tool for weed control in no-till cropping systems. However, there are concerns about the nontarget impacts of long-term glyphosate use on soil microbial communities. We investigated the impacts of repeated glyphosate treatments on bacterial communities in the soil and rhizosphere of wheat in soils with and without long-term history of glyphosate use. We cycled wheat in the greenhouse using soils from 4 paired fields under no-till (20+-year history of glyphosate) or no history of use. At each cycle, we terminated plants with glyphosate (2× the field rate) or by removing the crowns, and soil and rhizosphere bacterial communities were characterized. Location, cropping history, year, and proximity to the roots had much stronger effects on bacterial communities than did glyphosate, which only explained 2 to 5% of the variation. Less than 1% of all taxa were impacted by glyphosate, more in soils with a long history of use, and more increased than decreased in relative abundance. Glyphosate had minimal impacts on soil and rhizosphere bacteria of wheat, although dying roots after glyphosate application may provide a “greenbridge” favoring some copiotrophic taxa. IMPORTANCE Glyphosate (Roundup) is the most widely used herbicide in the world and the foundation of Roundup Ready soybeans, corn, and the no-till cropping system. However, there have been recent concerns about nontarget impacts of glyphosate on soil microbes. Using next-generation sequencing methods and glyphosate treatments of wheat plants, we described the bacterial communities in the soil and rhizosphere of wheat grown in Pacific Northwest soils across multiple years, different locations, and soils with different histories of glyphosate use. The effects of glyphosate were subtle and much less than those of drivers such as location and cropping systems. Only a small percentage of the bacterial groups were influenced by glyphosate, and most of those were stimulated, probably because of the dying roots. This study provides important information for the future of this important tool for no-till systems and the environmental benefits of reducing soil erosion and fossil fuel inputs. PMID:28864656

  19. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. The known benefits of winter cover crops include reduced nitrate leaching, soil erosion, and weed germination, but evidence of improvements in soil productivity would provide further incentive for famers to implemen...

  20. Effect of topsoil thickness on soil water infiltration in corn-soybean rotation and switchgrass production systems

    USDA-ARS?s Scientific Manuscript database

    Switchgrass and corn are sometimes used as a resource for biofuel production. The effect of production management systems on water infiltration is very critical in claypan landscape to increase production as well as minimize economic and environmental risks. The objective of this study was to evalua...

Top