Science.gov

Sample records for corneal edema induced

  1. Corneal edema induced by cold in trigeminal nerve palsy

    SciTech Connect

    Thorgaard, G.L.; Holland, E.J.; Krachmer, J.H.

    1987-05-15

    We examined a 34-year-old man who complained of decreased visual acuity in the right eye when exposed to cold environmental temperatures. Although examination at room temperature was unremarkable, he developed prominent unilateral corneal edema of the right eye when placed in a cold room at 4 C. Corneal thickness increased from 525 to 789 microns in the affected eye. Further examination disclosed a right-sided trigeminal nerve palsy. He was eventually found to have a 3 X 2-cm tentorial ridge meningioma on the right.

  2. Oxygen-deficient metabolism and corneal edema.

    PubMed

    Leung, B K; Bonanno, J A; Radke, C J

    2011-11-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem-Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema.

  3. Oxygen-deficient metabolism and corneal edema

    PubMed Central

    Leung, B.K.; Bonanno, J.A.; Radke, C.J.

    2014-01-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem–Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  4. Vessel Cauterization as a Therapeutic Adjunct in Persistent Disciform Corneal Stromal Edema

    PubMed Central

    Muideen, Lasisi Akinola; Shiela, Ezeronye Ugochi

    2014-01-01

    This is a case report of a symptomatic non-clearing, vascularized, disciform, corneal stromal edema with a feeder vessel that has remained refractory to medical therapy of antiviral, steroid, and antibiotics, for a period of three weeks, but showed a rapid improvement in visual acuity of 0.1 Log mar within five days of feeder vessel cauterization, together with improvement of two psychometric scales in corneal cloudiness on a scale range of 0 to 3, clinical evidence of resolution of corneal edema, and subjective resolution of the patient's symptoms. Cauterization was done under magnification with a ball cautery point warmed in a spirit lamp following topical anesthesia. This intervention may become handy in difficult non-clearing corneal edema and prevent blinding consequences, in a low-resource facility, in selected applicable cases. PMID:25191102

  5. Corneal Biomechanical Findings in Contact Lens Induced Corneal Warpage

    PubMed Central

    Letafatnejad, Mojgan; Beheshtnejad, Amir Hooshang; Ghaffary, Seyed Reza; Hassanpoor, Narges; Yaseri, Mehdi

    2016-01-01

    Purpose. To evaluate the difference in biomechanical properties between contact lens induced corneal warpage and normal and keratoconic eyes. Method. Prospective observational case control study, where 94 eyes of 47 warpage suspicious and 46 eyes of 23 keratoconic patients were included. Warpage suspected cases were followed until a definite diagnosis was made (warpage, normal, or keratoconus). Results. 44 eyes of 22 patients had contact lens related corneal warpage. 46 eyes of 23 people were diagnosed as nonwarpage normal eyes. 46 eyes of 23 known keratoconus patients were included for comparison. The mean age of the participants was 23.8 ± 3.8 years, and 66.2% of the subjects were female. The demographic and refractive data were not different between warpage and normal groups but were different in the keratoconus group. The biomechanical properties (corneal hysteresis or CH and corneal resistance factor or CRF) were different with the highest value in the warpage group followed by normal and keratoconus groups. CRF was 10.08 ± 1.75, 9.23 ± 1.22, and 7.38 ± 2.14 and CH was 10.21 ± 1.57, 9.59 ± 1.21, and 8.69 ± 2.34 in the warpage, normal, and keratoconus groups, respectively. Conclusion. Corneal biomechanics may be different in people who develop contact lens induced warpage. PMID:27688908

  6. A Surprising Cause for Corneal Edema after Cataract Surgery: A Missed Posterior Chamber Intraocular Lens Haptic Remnant.

    PubMed

    Elyashiv, Sivan; Barequet, Irina

    2015-01-01

    We present a case of retained intraocular lens (IOL) haptic segment in the anterior chamber, diagnosed seven months following a reportedly uneventful cataract surgery due to manifestation of inferior corneal edema. Specular microscopy revealed low endothelial counts of 513/mm(2). Upon diagnosis, prompt surgical removal of the IOL haptic segment resulted in rapid resolution of the corneal edema within a week. Despite the clearing of the cornea, no improvement in the visual acuity occurred and cystoid macular edema was diagnosed and treated with topical anti-inflammatory agents and two intra-vitreal anti-VEGF injections, followed by complete resolution of ocular findings and improvement of the visual acuity.

  7. Comparison of the effects of bevacizumab and ranibizumab injection on corneal angiogenesis in an alkali burn induced model

    PubMed Central

    Dursun, Ayhan; Arici, Mustafa Kemal; Dursun, Feyza; Ozec, Ayse Vural; Toker, Mustafa Ilker; Erdogan, Haydar; Topalkara, Aysen

    2012-01-01

    AIM To investigate the effects of bevacizumab and ranibizumab on corneal neovascularization in an alkali burn-induced model of corneal angiogenesis. METHODS Fifteen Wistar albino rats were divided randomly into 3 groups after chemical cauterization of the cornea. The first group received a single dose of 0.1mL saline solution as a control group whereas second and third groups received a single dose of 2.5mg bevacizumab or 1mg ranibizumab by subconjunctival injection, respectively. After three weeks, the rat corneas were evaluated by biomicroscopy and corneal photographs were taken. The percentage of neovascularization area, length of the longest new vessel, corneal edema and corneal opacity scores were assessed. RESULTS The analysis of digital photographs showed that the percentage of neovascularization area to the total corneal area, the length of the longest new vessel, corneal edema and opacity scores were significantly lower in both study groups compared to the control group (P<0.05). Additionally, the percentage of corneal neovascularization area, the length of the longest new vessel and corneal opacity score were less with bevacizumab than ranibizumab. CONCLUSION Subconjunctival bevacizumab and ranibizumab treatments may be effective methods in reducing corneal neovascularization. Furthermore, bevacizumab is more effective than ranibizumab in the inhibition of corneal neovascularization. PMID:22937503

  8. Chlorpromazine-induced corneal endothelial phototoxicity

    SciTech Connect

    Hull, D.S.; Csukas, S.; Green, K.

    1982-04-01

    Chlorpromazine, which has been used extensively for the treatment of psychiatric disorders, is known to accumulate in the posterior corneal stroma, lens, and uveal tract. Because it is a phototoxic compound, the potential exists for it to cause cellular damage after light exposure. Specular microscopic perfusion of corneal endothelial cells in darkness with 0.5 mM chlorpromazine HCl resulted in a swelling rate of 18 +/- 2 micrometer/hr, whereas corneas exposed to long-wavelength ultraviolet light for 3 min in the presence of 0.5 mM chlorpromazine swelled at 37 +/- 9 micrometer/hr (p less than 0.01). Preirradiation of 0.5 mM chlorpromazine solution with ultraviolet light for 30 min and subsequent corneal perfusion with the solution resulted in a corneal swelling rate of 45 +/- 19 micrometer/hr. Cornea endothelial cells perfused with 0.5 mM chlorpromazine that was preirradiated with ultraviolet light showed marked swelling on scanning electron microscopic examination, whereas those perfused with nonirradiated chlorpromazine were flat and showed a normal mosaic pattern. Combining either 500 U/ml catalase or 290 U/ml superoxide dismutase with chlorpromazine did not alter photoinduction of corneal swelling. The data suggest that corneal endothelial chlorpromazine phototoxicity is secondary to cytotoxic products resulting from the photodynamically induced decomposition of chlorpromazine and is not caused by hydrogen peroxide or superoxide anion generated during the phototoxic reaction.

  9. Pulmonary edema induced by intravenous ethchlorvynol.

    PubMed

    Conces, D J; Kreipke, D L; Tarver, R D

    1986-11-01

    The intravenous injection of ethchlorvynol is an uncommon cause of noncardiac pulmonary edema. Two cases of intravenous ethchlorvynol-induced pulmonary edema are presented. The patients fell asleep after injecting the liquid contents of Placydil capsules (ethchlorvynol) and awoke several hours later with severe dyspnea. Arterial blood gases demonstrated marked hypoxia. Chest radiographs revealed bilateral diffuse alveolar densities. The patients' symptoms and radiographic findings resolved after several days of supportive care. Changes in the lung caused by ethchlorvynol may be the result of direct effect of the drug on the lung.

  10. Edema

    MedlinePlus

    ... Schedules Nutrient Shortfall Questionnaire Home Diseases and Conditions Edema Edema Condition Family HealthSeniors Share Edema Table of Contents1. Overview2. Causes3. Diagnosis4. Treatment5. Questions ...

  11. Sudden corneal edema due to retained lens nuclear fragment presenting 8.5 years after cataract surgery.

    PubMed

    Pandit, Rahul T; Coburn, Amy G

    2011-06-01

    A 79-year-old woman presented with a 1-week history of sudden onset of decreased vision, pain, and redness in the right eye. Ocular history included uneventful cataract surgery in both eyes more than 8 years prior to presentation. Slitlamp examination revealed significant corneal edema and mild iritis. Gonioscopy revealed a retained lens nuclear fragment in the inferior angle. Surgical removal of the fragment improved the patient's condition. The retained nuclear fragment presumably lodged behind the iris at the time of the initial surgery and spontaneously moved forward more than 8 years later. To our knowledge, this is the longest reported delay between phacoemulsification and presentation of a retained nuclear fragment. Before this case, retained nuclear fragments had been associated with complications within a year of surgery only. We recommend gonioscopy in cases of sudden-onset corneal edema extending to the inferior limbus in patients with a history of phacoemulsification.

  12. Edema

    MedlinePlus

    Edema means swelling caused by fluid in your body's tissues. It usually occurs in the feet, ankles ... it can involve your entire body. Causes of edema include Eating too much salt Sunburn Heart failure ...

  13. Edema

    MedlinePlus

    ... one position for too long Eating too much salty food Premenstrual signs and symptoms Pregnancy Edema can ... Do you restrict your intake of salt and salty foods? Do you drink alcohol? Do you seem ...

  14. Drug-induced pulmonary edema and acute respiratory distress syndrome.

    PubMed

    Lee-Chiong, Teofilo; Matthay, Richard A

    2004-03-01

    Noncardiogenic pulmonary edema, and, to a lesser extent, acute respiratory distress syndrome (ARDS), are common clinical manifestations of drug-induced lung diseases. Clinical features and radiographic appearances are generally indistinguishable from other causes of pulmonary edema and ARDS. Typical manifestations include dyspnea, chest discomfort, tachypnea, and hypoxemia. Chest radiographs commonly reveal interstitial and alveolar filling infiltrates. Unlike pulmonary edema that is due to congestive heart failure, cardiomegaly and pulmonary vascular redistribution are generally absent in cases that are drug-related. Rare cases of drug-induced myocarditis with heart failure and pulmonary edema have been described. Results from laboratory evaluation and respiratory function tests are nonspecific.

  15. Lipopolysaccharide induced acute red eye and corneal ulcers.

    PubMed

    Schultz, C L; Morck, D W; McKay, S G; Olson, M E; Buret, A

    1997-01-01

    Using a new animal model, the aims of this study were to assess the role played by purified lipopolysaccharide (LPS) and neutrophils in the pathogenesis of acute red-eye reactions (ARE) and corneal ulcers. In addition, IL-1 alpha was assessed for its implications in the formation of corneal ulcers. Following corneal abrasion, eyes of rabbits underwent single or double exposures to various doses of LPS from Pseudomonas aeruginosa or Serratia marcescens. This protocol induced ARE symptoms, and their severity depended on the dosage, number of LPS exposures, and type of LPS used (LPS from S. marcescens showing highest virulence). Corneal ulcers were induced by delivering a high dose of Serratia LPS (100 micrograms) followed by a low dose (10 micrograms). Histopathological examination revealed that both ARE and corneal ulceration were associated with prominent neutrophil infiltration. In addition, many lymphocytes and other monocytic cells infiltrated ulcerated ocular tissue. Tear fluids obtained from ulcerated eyes contained high concentrations of a protein recognized by anti-rabbit IL-1 alpha antibodies as demonstrated by immunoblotting studies. The results indicate that LPS can induce ARE and corneal ulceration in the absence of any live bacteria. Moreover, the findings implicate the accumulation of neutrophils and IL-1 alpha-related proteins in the pathogenesis of ARE and corneal ulcers.

  16. Exercise-Induced Pulmonary Edema in a Triathlon

    PubMed Central

    Yamanashi, Hirotomo; Koyamatsu, Jun; Nobuyoshi, Masaharu; Murase, Kunihiko; Maeda, Takahiro

    2015-01-01

    Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE) or swimming-induced pulmonary edema (SIPE). Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise. PMID:26229538

  17. Effects of metformin treatment on glioma-induced brain edema

    PubMed Central

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5’-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo. PMID:27648126

  18. Effects of metformin treatment on glioma-induced brain edema.

    PubMed

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5'-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo.

  19. Staphylococcus aureus Blepharitis Associated with Multiple Corneal Stromal Microabscess, Stromal Edema, and Uveitis.

    PubMed

    Boto-de-los-Bueis, Ana; del Hierro Zarzuelo, Almudena; García Perea, Adela; de Pablos, Manuela; Pastora, Natalia; Noval, Susana

    2015-04-01

    We report a case of an immunocompetent woman with atypical marginal keratitis. She presented with recurrent episodes of multiples microabscess distributed in a triangular pattern associated with stromal oedema and anterior chamber uveitis, affecting both eyes, but not simultaneously. The episodes responded to steroid drops, corneal inflammation was coincidental with a worsening of her blepharitis in the affected eye and S. aureus was isolated from the lids.

  20. Chlorpromazine-induced skin pigmentation with corneal and lens opacities.

    PubMed

    Huff, Laura S; Prado, Renata; Pederson, Jon F; Dunnick, Cory A; Lucas, Lisa M

    2014-05-01

    Chlorpromazine is known to cause abnormal oculocutaneous pigmentation in sun-exposed areas. We present the case of a psychiatric patient who developed blue-gray pigmentation of the skin as well as corneal and lens opacities following 7 years of chlorpromazine treatment. Ten months after discontinuation of chlorpromazine, the skin discoloration and anterior lens deposits showed partial improvement, but the corneal deposits remained unchanged. A review of the literature on the reversibility of chlorpromazine-induced abnormal oculocutaneous pigmentation also is provided.

  1. Effect of Corneal Nerve Ablation on Immune Tolerance Induced by Corneal Allografts, Oral Immunization, or Anterior Chamber Injection of Antigens

    PubMed Central

    Mo, Juan; Neelam, Sudha; Mellon, Jessamee; Brown, Joseph R.; Niederkorn, Jerry Y.

    2017-01-01

    Purpose Severing corneal nerves during corneal transplantation does not affect first corneal transplants, but abolishes immune privilege of subsequent corneal allografts. This abrogation of immune privilege is attributable to the disabling of T regulatory cells (T regs) induced by corneal transplantation. The goal of this study was to determine if severing corneal nerves induces the development of contrasuppressor (CS) cells, which disable T regs that impair other forms of immune tolerance. Methods Effect of corneal nerve ablation on immune tolerance was assessed in four forms of immune tolerance: anterior chamber–associated immune deviation (ACAID); oral tolerance; corneal transplantation, and intravenously (IV) induced immune tolerance. T regulatory cell activity was assessed by adoptive transfer and by local adoptive transfer (LAT) of suppression assays. Results Corneal nerve ablation prevented ACAID and oral tolerance, but did not affect IV-induced immune tolerance. Contrasuppressor cells blocked the action of T regs that were generated by anterior chamber injection, oral tolerance, or orthotopic corneal transplantation. The neuropeptide substance P (SP) was crucial for contrasuppressor activity as CS cells could not be induced in SP−/− mice and the SP receptor inhibitor, Spantide II, prevented the expression of CS cell activity in vivo. Contrasuppressor cells expressed CD11c surface marker that identifies dendritic cells (DC). Conclusions The loss of immune privilege produced by corneal nerve ablation following corneal transplantation extends beyond the eye and also affects immune tolerance induced through mucosal surfaces and appears to be mediated by a novel cell population of CD11c+ CS cells that disables T regs. PMID:28114571

  2. Noncardiac Pulmonary Edema induced by Sitagliptin Treatment

    PubMed Central

    Belice, Tahir; Yuce, Suleyman; Kizilkaya, Bayram; Kurt, Aysel; Cure, Erkan

    2014-01-01

    A 74-year-old male patient with type 2 diabetes mellitus admitted to the emergency department with the complaints of progressive breathlessness, dry cough, and swollen lower extremities. Our patient had type 2 diabetes mellitus and hypertension for 3 years. His HbA1c was not within the target range so sitagliptin was added to on-going therapy. After 1 week of starting sitagliptin therapy, even though the patient had not heart failure he applied to the emergency department with a complaint of dyspnea. The cardiovascular safety and efficacy of many anti-hyperglycemic agents such as sitagliptin, saxagliptin are unclear. Our case has shown that dipeptidyl peptidase 4 inhibitors may cause pulmonary edema. Hence, it should be used with cautious, especially in patients with heart failure. PMID:25657966

  3. Pulmonary edema induced by calcium-channel blockade for tocolysis.

    PubMed

    Bal, Laurence; Thierry, Stéphane; Brocas, Elsa; Adam, Marie; Van de Louw, Andry; Tenaillon, Alain

    2004-09-01

    Nicardipine is used in the treatment of premature labor. There are no previous reports in the anesthesia literature of serious side effects associated with this drug. We report a case of pulmonary edema induced by nicardipine therapy for tocolysis in a pregnant 27-yr-old patient admitted to our hospital for preterm labor with intact membranes at 27 wk of gestation.

  4. Ultraviolet Irradiation-Induced Volume Alteration of Corneal Epithelial Cells

    PubMed Central

    Wang, Ling; Lu, Luo

    2016-01-01

    Purpose The purpose of the study is to understand how extracellular stresses, such as ultraviolet (UV) irradiation, affect corneal epithelial cells. Cell volume changes, damage to corneal epithelial integrity, and cellular responses were assessed after exposure to UVC stresses. Methods Primary human and rabbit corneal epithelial cells were exposed to UVC light in culture conditions. Ultraviolet C irradiation–induced changes in cell size and volume were measured by real-time microscopy and self-quenching of the fluorescent dye calcein, respectively. The effects of UVC irradiation on Src and focal adhesion kinase (FAK) phosphorylation and FAK-dependent integrin signaling were detected by ELISA, immunoblotting, and immunostaining. Results Ultraviolet C irradiation induced both size and volume shifts in human and rabbit corneal epithelial cells. Ultraviolet C irradiation-induced decrease of cell volume elicited activation of Src and FAK, characterized by increased phosphorylations of SrcY416, FAKY397, and FAKY925. In addition, immunostaining studies showed UVC irradiation–induced increases in phosphorylation of FAK and formation of integrin β5 clustering. Application of Kv channel blockers, including 4-aminopyridine (4-AP), α-DTX, and depressing substance-1 (BDS-1), effectively suppressed UVC irradiation–induced cell volume changes, and subsequently inhibited UVC irradiation–induced phosphorylation of Src/FAK, and formation of integrin β5 clustering, suggesting UVC irradiation–induced volume changes and Src/FAK activation. Hyperosmotic pressure–induced volume decreases were measured in comparison with effects of UVC irradiation on volume and Src/FAK activation. However, Kv channel blocker, 4-AP, had no effect on hyperosmotic pressure–induced responses. Conclusions The present study demonstrates that UVC irradiation–induced decreases in cell volume lead to Src/FAK activation due to a rapid loss of K ions through membrane Kv channels. PMID:27978555

  5. Multipurpose Care Solution–Induced Corneal Surface Disruption and Pseudomonas aeruginosa Internalization in the Rabbit Corneal Epithelium

    PubMed Central

    Posch, Leila C.; Zhu, Meifang; Robertson, Danielle M.

    2014-01-01

    Purpose. To evaluate the effects of a chemically preserved multipurpose contact lens care solution (MPS) on the corneal epithelial surface and Pseudomonas aeruginosa (PA) internalization in the rabbit corneal epithelium. Methods. Rabbits were fit in one eye with a silicone hydrogel lens (balafilcon A) soaked overnight in a borate-buffered MPS (BioTrue). The contralateral eye was fit with a lens removed directly from the blister pack containing borate-buffered saline (control). Lenses were worn for 2 hours. Upon lens removal, corneas were challenged ex vivo with invasive PA strain 6487 and assessed for PA internalization. Ultrastructural changes were assessed using scanning electron (SEM) and transmission electron microscopy (TEM). Results. Scanning electron microscopy showed frank loss of surface epithelium in MPS-exposed eyes, while control eyes exhibited occasional loss of surface membranes but retention of intact junctional borders. Transmission electron microscopy data supported and extended SEM findings, demonstrating the presence of epithelial edema in MPS-treated eyes. There was a 12-fold increase in PA uptake into the corneal epithelium following wear of the MPS-treated lens compared to control (P = 0.008). Conclusions. These data demonstrate that corneal exposure to MPS during lens wear damages the surface epithelium and are consistent with our previous clinical data showing an increase in bacterial binding to exfoliated epithelial cells following MPS use with resultant increased risk for lens-mediated infection. These findings also demonstrate that the PA invasion assay may provide a highly sensitive quantitative metric for assessing the physiological impact of lens-solution biocompatibility on the corneal epithelium. PMID:24876286

  6. Feline corneal disease.

    PubMed

    Moore, Phillip Anthony

    2005-05-01

    The cornea is naturally transparent. Anything that interferes with the cornea's stromal architecture, contributes to blood vessel migration, increases corneal pigmentation, or predisposes to corneal edema, disrupts the corneas transparency and indicates corneal disease. The color, location, and shape and pattern of a corneal lesion can help in determining the underlying cause for the disease. Corneal disease is typically divided into congenital or acquired disorders. Congenital disorders, such as corneal dermoids are rare in cats, whereas acquired corneal disease associated with nonulcerative or ulcerative keratitis is common. Primary ocular disease, such as tear film instability, adenexal disease (medial canthal entropion, lagophthalmus, eyelid agenesis), and herpes keratitis are associated with the majority of acquired corneal disease in cats. Proliferative/eosinophilic keratitis, acute bullous keratopathy, and Florida keratopathy are common feline nonulcerative disorders. Nonprogressive ulcerative disease in cats, such as chronic corneal epithelial defects and corneal sequestration are more common than progressive corneal ulcerations.

  7. Cannabinoid-Induced Chemotaxis in Bovine Corneal Epithelial Cells

    PubMed Central

    Murataeva, Natalia; Li, Shimin; Oehler, Olivia; Miller, Sally; Dhopeshwarkar, Amey; Hu, Sherry Shu-Jung; Bonanno, Joseph A.; Bradshaw, Heather; Mackie, Ken; McHugh, Douglas; Straiker, Alex

    2015-01-01

    Purpose. Cannabinoid CB1 receptors are found in abundance in the vertebrate eye, with most tissue types expressing this receptor. However, the function of CB1 receptors in corneal epithelial cells (CECs) is poorly understood. Interestingly, the corneas of CB1 knockout mice heal more slowly after injury via a mechanism proposed to involve protein kinase B (Akt) activation, chemokinesis, and cell proliferation. The current study examined the role of cannabinoids in CEC migration in greater detail. Methods. We determined the role of CB1 receptors in corneal healing. We examined the consequences of their activation on migration and proliferation in bovine CECs (bCECs). We additionally examined the mRNA profile of cannabinoid-related genes and CB1 protein expression as well as CB1 signaling in bovine CECs. Results. We now report that activation of CB1 with physiologically relevant concentrations of the synthetic agonist WIN55212-2 (WIN) induces bCEC migration via chemotaxis, an effect fully blocked by the CB1 receptor antagonist SR141716. The endogenous agonist 2-arachidonoylglycerol (2-AG) also enhances migration. Separately, mRNA for most cannabinoid-related proteins are present in bovine corneal epithelium and cultured bCECs. Notably absent are CB2 receptors and the 2-AG synthesizing enzyme diglycerol lipase-α (DAGLα). The signaling profile of CB1 activation is complex, with inactivation of mitogen-activated protein kinase (MAPK). Lastly, CB1 activation does not induce bCEC proliferation, but may instead antagonize EGF-induced proliferation. Conclusions. In summary, we find that CB1-based signaling machinery is present in bovine cornea and that activation of this system induces chemotaxis. PMID:26024113

  8. Exposure Stress Induces Reversible Corneal Graft Opacity in Recipients With Herpes Simplex Virus-1 Infections

    PubMed Central

    Rowe, Alexander M.; Yun, Hongmin; Hendricks, Robert L.

    2017-01-01

    Purpose Most of the inflammation in murine herpes simplex virus type 1 (HSV-1)-induced stromal keratitis (HSK) is due to exposure stress resulting from loss of corneal nerves and blink reflex. Corneal grafts often fail when placed on corneal beds with a history of HSK. We asked if corneal exposure contributes to the severe pathology of corneal grafts on HSV-1–infected corneal beds. Methods Herpes simplex virus type 1–infected corneas were tested for blink reflex. Opacity and vascularization were monitored in allogeneic and syngeneic corneal grafts that were transplanted to corneal beds with no blink reflex or to those that retained blink reflex in at least one quadrant following infection. Results Retention of any level of blink reflex significantly reduced inflammation in HSV-1–infected corneas. Corneal allografts placed on HSV-1–infected beds lacking corneal blink reflex developed opacity faster and more frequently than those placed on infected beds that partially or completely retained blink reflex. Corneal grafts placed on infected corneal beds with no blink reflex rapidly became opaque to a level that would be considered rejection. However, protecting these grafts from exposure by tarsorrhaphy prevented or reversed the opacity in both syngeneic and allogenic grafts. Conclusions Exposure due to HSV-1–engendered hypoesthesia causes rapid, severe, persistent, but reversible opacification of both allogeneic and syngeneic corneal grafts. This opacity should not be interpreted as immunologic rejection. Exposure stress may contribute to the high rate of corneal graft pathology in patients with recurrent HSK. PMID:28055100

  9. Thermoelectrically controlled device for studies of temperature-induced corneal shrinkage

    NASA Astrophysics Data System (ADS)

    Borja, David; Manns, Fabrice; Fernandez, Viviana; Lamar, Peggy; Soederberg, Per G.; Parel, Jean-Marie A.

    2002-06-01

    The purpose of this study was to design and calibrate a device to measure the dynamics of thermal shrinkage in corneal and scleral strips. The apparatus consists of a thermoelectric cell controlled by a temperature controller designed to generate temperatures up to 90 degree(s)C in rectangular corneal strips; a copper cuvette filled with Dextran solution that holds the corneal strip and a displacement sensor that measures the change in length of the tissue during heat-induced shrinkage. The device was tested on corneal tissue from Florida Eye-Bank eyes that were cut into 2x4mm rectangular strips. Preliminary results indicate that our system can reproducibly create and accurately measure thermally induced corneal shrinkage. Shrinkage experiments will be used to optimize laser parameters for corneal shrinkage during laser thermokeratoplasty and laser scleral buckling.

  10. PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury

    PubMed Central

    Kim, Dae Won; Lee, Sung Ho; Shin, Min Jea; Kim, Kibom; Ku, Sae Kwang; Youn, Jong Kyu; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Son, Ora; Sohn, Eun Jeong; Cho, Sung-Woo; Park, Jong Hoon; Kim, Hyun Ah; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-01-01

    FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI. [BMB Reports 2015; 48(11): 618-623] PMID:25817214

  11. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells

    PubMed Central

    Naylor, Richard W.; McGhee, Charles N. J.; Cowan, Chad A.; Davidson, Alan J.; Holm, Teresa M.; Sherwin, Trevor

    2016-01-01

    Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However, treatment is restricted to corneal transplantation, which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study, hiPSCs were successfully differentiated into neural crest cells (NCCs), the embryonic precursor to keratocytes, and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies. PMID:27792791

  12. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury

    NASA Astrophysics Data System (ADS)

    Xu, Zhun; Zhu, Quing; Wang, Lihong V.

    2011-06-01

    For the first time, we have implemented photoacoustic tomography (PAT) to image the water content of an edema in vivo. We produced and imaged a cold-induced cerebral edema transcranially, then obtained blood vessel and water accumulation images at 610 and 975 nm, respectively. We tracked the changes at 12, 24, and 36 h after the cold injury. The blood volume decreased after the cold injury, and the maximum area of edema was observed 24 h after the cold injury. We validated PAT of the water content of the edema through magnetic Resonance Imaging and the water spectrum from the spectrophotometric measurement.

  13. Select noxious stimuli induce changes on corneal nerve morphology.

    PubMed

    Hegarty, Deborah M; Hermes, Sam M; Yang, Katherine; Aicher, Sue A

    2017-06-01

    The surface of the cornea contains the highest density of nociceptive nerves of any tissue in the body. These nerves are responsive to a variety of modalities of noxious stimuli and can signal pain even when activated by low threshold stimulation. Injury of corneal nerves can lead to altered nerve morphology, including neuropathic changes which can be associated with chronic pain. Emerging technologies that allow imaging of corneal nerves in vivo are spawning questions regarding the relationship between corneal nerve density, morphology, and function. We tested whether noxious stimulation of the corneal surface can alter nerve morphology and neurochemistry. We used concentrations of menthol, capsaicin, and hypertonic saline that evoked comparable levels of nocifensive eye wipe behaviors when applied to the ocular surface of an awake rat. Animals were sacrificed and corneal nerves were examined using immunocytochemistry and three-dimensional volumetric analyses. We found that menthol and capsaicin both caused a significant reduction in corneal nerve density as detected with β-tubulin immunoreactivity 2 hr after stimulation. Hypertonic saline did not reduce nerve density, but did cause qualitative changes in nerves including enlarged varicosities that were also seen following capsaicin and menthol stimulation. All three types of noxious stimuli caused a depletion of CGRP from corneal nerves, indicating that all modalities of noxious stimuli evoked peptide release. Our findings suggest that studies aimed at understanding the relationship between corneal nerve morphology and chronic disease may also need to consider the effects of acute stimulation on corneal nerve morphology.

  14. Involvement of COX2-Thromboxane Pathway in TCDD-Induced Precardiac Edema in Developing Zebrafish

    PubMed Central

    Teraoka, Hiroki; Okuno, Yuki; Nijoukubo, Daisuke; Yamakoshi, Ayumi; Peterson, Richard E.; Stegeman, John J.; Kitazawa, Takio; Hiraga, Takeo; Kubota, Akira

    2015-01-01

    The cardiovascular system is one of the most characteristic and important targets for developmental toxicity by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in fish larvae. However, knowledge of the mechanism of TCDD-induced edema after heterodimerization of aryl hydrocarbon receptor type 2 (AHR2) and AHR nuclear translocator type 1 (ARNT1) is still limited. In the present study, microscopic analysis with a high-speed camera revealed that TCDD increased the size of a small cavity between the heart and body wall in early eleutheroembryos, a toxic effect that we designate as precardiac edema. A concentration-response curve for precardiac edema at 2 days post fertilization (dpf) showed close similarity to that for conventional pericardial edema at 3 dpf. Precardiac edema caused by TCDD was reduced by morpholino knockdown of AHR2 and ARNT1, as well as by an antioxidant (ascorbic acid). A selective inhibitor of cyclooxygenase type 2 (COX2), NS398, also markedly inhibited TCDD-induced precardiac edema. A thromboxane receptor (TP) antagonist, ICI-192,605 almost abolished TCDD-induced precardiac edema and this effect was cancelled by U46619, a TP agonist, which was not influential in the action of TCDD by itself. Knockdown of COX2b and thromboxane A synthase 1 (TBXS), but not COX2a, strongly reduced TCDD-induced precardiac edema. Knockdown of COX2b was without effect on mesencephalic circulation failure caused by TCDD. The edema by TCDD was also inhibited by knockdown of c-mpl, a thrombopoietin receptor necessary for thromobocyte production. Finally, induction of COX2b, but not COX2a, by TCDD was seen in eleutheroembryos at 3 dpf. These results suggest a role of the COX2b-thromboxane pathway in precardiac edema formation following TCDD exposure in developing zebrafish. PMID:24858302

  15. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice.

    PubMed

    Guo, Chuanlong; Li, Mengshuang; Qi, Xia; Lin, Guiming; Cui, Fenghua; Li, Fengjie; Wu, Xianggen

    2016-07-11

    Corneal nerves are mainly derived from the ophthalmic branch of the trigeminal ganglion (TG). Corneal neuropathy contributes to epithelial degenerative changes in diabetic keratopathy. Efficient drug delivery to TG may be beneficial for the treatment of diabetic keratopathy. This article described intranasal delivery of nanomicelle curcumin to correct pathophysiological conditions in TG to promote corneal epithelial/nerve wound healing in streptozotocin-induced diabetic mice. A diabetic mice model with corneal epithelium abrasion was established. Ocular topical and/or intranasal nanomicelle curcumin treatments were performed, and treatment efficacy and mechanisms of action were explored. Results showed that intranasal nanomicelle curcumin treatment promoted corneal epithelial wound healing and recovery of corneal sensation. Enhanced accumulation of reactive oxygen species, reduced free radical scavengers, increased mRNA expressions of inflammatory cytokines, and decreased mRNA expressions of neurotrophic factors in the cornea and TG neuron were observed in diabetic mice with corneal epithelium abrasions. Intranasal nanomicelle curcumin treatment effectively recovered these pathophysiological conditions, especially that of the TG neuron, and a strengthened recovery was observed with ocular topical combined with intranasal treatment. These findings indicated that intranasal curcumin treatment effectively helped promote diabetic corneal epithelial/nerve wound healing. This novel treatment might be a promising strengthened therapy for diabetic keratopathy.

  16. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice

    PubMed Central

    Guo, Chuanlong; Li, Mengshuang; Qi, Xia; Lin, Guiming; Cui, Fenghua; Li, Fengjie; Wu, Xianggen

    2016-01-01

    Corneal nerves are mainly derived from the ophthalmic branch of the trigeminal ganglion (TG). Corneal neuropathy contributes to epithelial degenerative changes in diabetic keratopathy. Efficient drug delivery to TG may be beneficial for the treatment of diabetic keratopathy. This article described intranasal delivery of nanomicelle curcumin to correct pathophysiological conditions in TG to promote corneal epithelial/nerve wound healing in streptozotocin-induced diabetic mice. A diabetic mice model with corneal epithelium abrasion was established. Ocular topical and/or intranasal nanomicelle curcumin treatments were performed, and treatment efficacy and mechanisms of action were explored. Results showed that intranasal nanomicelle curcumin treatment promoted corneal epithelial wound healing and recovery of corneal sensation. Enhanced accumulation of reactive oxygen species, reduced free radical scavengers, increased mRNA expressions of inflammatory cytokines, and decreased mRNA expressions of neurotrophic factors in the cornea and TG neuron were observed in diabetic mice with corneal epithelium abrasions. Intranasal nanomicelle curcumin treatment effectively recovered these pathophysiological conditions, especially that of the TG neuron, and a strengthened recovery was observed with ocular topical combined with intranasal treatment. These findings indicated that intranasal curcumin treatment effectively helped promote diabetic corneal epithelial/nerve wound healing. This novel treatment might be a promising strengthened therapy for diabetic keratopathy. PMID:27405815

  17. Efficacy of moclobemide in a rat model of neurotoxicant-induced edema.

    PubMed

    Girard, Philippe; Verniers, Danielle; Pansart, Yannick; Gillardin, Jean-Marie

    2007-05-01

    The potent antidepressant effect of moclobemide, a selective and reversible type A monoamine oxidase (MAO) inhibitor, is clinically established. In view of the ongoing debate on the neuroprotective properties of MAO inhibitors, the present study was undertaken to further define the protective effect of moclobemide in a rat model of neurotoxicant-induced edema. In this model, daily oral triethyltin (TET) administration for 5 consecutive days strongly perturbed the rat behaviour and induced a cerebral edema at the 5th day. Oral coadministration of moclobemide (2 x 100 mg.kg-1.day-1) with TET blocked the development of brain edema and the increase in the cerebral chloride content induced by TET. Moreover, moclobemide reduced the increase in the cerebral sodium content and attenuated the neurological deficit. In conclusion, moclobemide possesses potent protective properties in this rat model of cerebral edema, suggesting potential clinical utility as a neuroprotectant.

  18. Activity of some Mexican medicinal plant extracts on carrageenan-induced rat paw edema.

    PubMed

    Meckes, M; David-Rivera, A D; Nava-Aguilar, V; Jimenez, A

    2004-07-01

    The extracts obtained from 14 plants of the Mexican medicinal flora were assessed for anti-inflammatory activity by carrageenan-induced rat paw edema model. The i.p. administration of the extracts at a dose of 400 mg/kg produced a high reduction of edema with 70% of the plant extracts. Oenothera rosea methanol extract, Sphaeralcea angustifolia chloroform extract, Acaciafarnesiana, Larrea tridentata and Rubus coriifolius methanol extracts as well as the aqueous extract of Chamaedora tepejilote were demonstrated to be particularly active against the induced hind-paw edema. Moderate inhibition of edema formation was also demonstrated with the methanol extracts of Astianthus viminalis, Brickellia paniculata, C. tepejilote and Justicia spicigera.

  19. Complement component C5 deficiency reduces edema formation in murine ligation-induced acute pancreatitis.

    PubMed

    Merriam, L T; Webster, C; Joehl, R J

    1997-01-01

    The complement cascade is activated in humans and animals with acute pancreatitis. Activation of complement component C5 liberates C5a, C5a-desarg, and terminal complement complexes (TCCs) that increase capillary permeability, edema, and leukocyte chemotaxis at injured sites. Complement activation plays a major role in pathogenesis of capillary leak and edema formation in severe acute pancreatitis; however, the contribution of C5 (C5a/C5a-desarg, TCCs) has not been defined. Using He gene mutant mice lacking circulating C5, the role of C5 in ligation-induced acute pancreatitis was evaluated. We performed the following experiments: C5-sufficient (Hc1/Hc1) and C5-deficient (Hc0/Hc0) mice had bile and pancreatic ducts ligated. Sham-operated mice had ducts dissected but not ligated. Mice were killed at 4, 8, and 24 hr after bilepancreatic duct ligation. Serologic and morphologic evidences of acute pancreatitis were evaluated. Pancreatic edema was assessed using analysis of pancreatic water content, histologic edema score, and determination of wet weight ratio. After 4, 8, and 24 hr of bile-pancreatic duct ligation, hyperamylasemia and histologic changes of acute pancreatitis were observed in both C5-deficient and C5-sufficient mice. Edema developed in all mice with acute pancreatitis. However, when compared to C5-sufficient mice, mice deficient in C5 developed significantly less pancreatic edema at both 8 and 24 hr of bile-pancreatic duct ligation. This difference was not observed 4 hr after induction of acute pancreatitis. We conclude that C5 contributes to edema formation in murine ligation-induced acute pancreatitis. The presence of an early C5-independent phase, in conjunction with the observation of significant edema in mice deficient in C5, suggests there are other mediators of edema formation in this acute pancreatitis model.

  20. Aripiprazole induced non-cardiogenic pulmonary edema: a case report.

    PubMed

    Cetin, Mustafa; Celik, Mustafa; Cakıcı, Musa; Polat, Mustafa; Suner, Arif

    2014-01-01

    Aripiprazole is a second-generation antipsychotic drug with partial dopamine agonistic activity. Although the adverse cardiovascular effects of both typical and atypical antipsychotics are well known, similar data on aripiprazole, which was recently introduced, are scarce. Herein we report a 35-year-old female that presented to our emergency department with non-cardiogenic pulmonary edema. Chest X-ray and thoracic CT showed pulmonary edema and bilateral pleural effusion. Anamnesis showed that she had been taking sertraline 200 mg d-1 for obsessive-compulsive disorder for a long time and that aripiprazole10 mg d-1 was added for augmentation 2 months prior to presentation. We think that the CYP 2D6 inhibitor sertraline might have played a role in increasing the plasma concentration and toxicity of aripiprazole in the presented patient.

  1. The Effects of Aquaporin-1 in Pulmonary Edema Induced by Fat Embolism Syndrome

    PubMed Central

    Zhang, Yiwei; Tian, Kun; Wang, Yan; Zhang, Rong; Shang, Jiawei; Jiang, Wei; Wang, Aizhong

    2016-01-01

    This study was designed to investigate the role of aquaporin1 (AQP1) in the pathologic process of pulmonary edema induced by fat embolism syndrome (FES) and the effects of a free fatty acid (FFA) mixture on AQP1 expression in pulmonary microvascular endothelial cells (PMVECs). In vivo, edema was more serious in FES mice compared with the control group. The expression of AQP1 and the wet-to-dry lung weight ratio (W/D) in the FES group were significantly increased compared with the control group. At the same time, inhibition of AQP1 decreased the pathological damage resulting from pulmonary edema. Then we performed a study in vitro to investigate whether AQP1 was induced by FFA release in FES. The mRNA and protein level of AQP1 were increased by FFAs in a dose- and time-dependent manner in PMVECs. In addition, the up-regulation of AQP1 was blocked by the inhibitor of p38 kinase, implicating the p38 MAPK pathway as involved in the FFA-induced AQP1 up-regulation in PMVECs. Our results demonstrate that AQP1 may play important roles in pulmonary edema induced by FES and can be regarded as a new therapy target for treatment of pulmonary edema induced by FES. PMID:27455237

  2. The Effects of Aquaporin-1 in Pulmonary Edema Induced by Fat Embolism Syndrome.

    PubMed

    Zhang, Yiwei; Tian, Kun; Wang, Yan; Zhang, Rong; Shang, Jiawei; Jiang, Wei; Wang, Aizhong

    2016-07-21

    This study was designed to investigate the role of aquaporin1 (AQP1) in the pathologic process of pulmonary edema induced by fat embolism syndrome (FES) and the effects of a free fatty acid (FFA) mixture on AQP1 expression in pulmonary microvascular endothelial cells (PMVECs). In vivo, edema was more serious in FES mice compared with the control group. The expression of AQP1 and the wet-to-dry lung weight ratio (W/D) in the FES group were significantly increased compared with the control group. At the same time, inhibition of AQP1 decreased the pathological damage resulting from pulmonary edema. Then we performed a study in vitro to investigate whether AQP1 was induced by FFA release in FES. The mRNA and protein level of AQP1 were increased by FFAs in a dose- and time-dependent manner in PMVECs. In addition, the up-regulation of AQP1 was blocked by the inhibitor of p38 kinase, implicating the p38 MAPK pathway as involved in the FFA-induced AQP1 up-regulation in PMVECs. Our results demonstrate that AQP1 may play important roles in pulmonary edema induced by FES and can be regarded as a new therapy target for treatment of pulmonary edema induced by FES.

  3. The role of corneal innervation in LASIK-induced neuropathic dry eye.

    PubMed

    Chao, Cecilia; Golebiowski, Blanka; Stapleton, Fiona

    2014-01-01

    Almost half the patients who undergo laser in situ keratomileusis (LASIK) experience dry eye following the procedure. However, the etiology of LASIK-induced dry eye is unclear. The purpose of this review is to examine and summarize the current evidence for the etiology of LASIK-induced dry eye, with a focus on ocular surface sensitivity and corneal innervation. Evidence suggests that the alteration of corneal nerves after LASIK is the most likely cause of the subjective symptoms of LASIK-induced dry eye, even though corneal sensitivity and the clinical indicators of dry eye return to apparently normal values within a year due to the partial recovery of the corneal nerve plexus. The hypothesis is explored that dry eye symptoms following LASIK may result from abnormal sensation due to LASIK-induced corneal neuropathy. Other factors, such as alterations in conjunctival goblet cell density, might also contribute to the symptoms and signs of LASIK-induced dry eye. Inter-relationships between nerve morphology, tear neuropeptide levels and dry eye require further investigation. A better understanding of this phenomenon may result in improved management of post-LASIK dry eye.

  4. Swimming-induced immersion pulmonary edema while snorkeling can be rapidly life-threatening: case reports.

    PubMed

    Cochard, G; Henckes, A; Deslandes, S; Noël-Savina, E; Bedossa, M; Gladu, G; Ozier, Y

    2013-01-01

    It is well known that immersion pulmonary edema can be life-threatening for divers using a self-contained underwater breathing apparatus (scuba). Swimming-induced pulmonary edema in otherwise healthy individuals is not an object of dispute but its real severity is not well known and is probably underestimated. We report two cases of life-threatening acute respiratory distress while swimming and snorkeling, one of which is well documented for swimming-induced pulmonary edema. The interest of these case reports lies in the suddenness of these life-threatening events. Such accidents can mimic a loss of consciousness due to cardiac dysrhythmia and lead to drowning. In the case of swimming-induced pulmonary edema, the prognosis is far better than for a cardiac disorder, but it is also dependent on the efficiency of the supervision. Swimmers, divers, race organizers and supervising physicians should be given knowledge of this pathology and its potentially acute occurrence. Adequate organizational dispositions are mandatory to prevent swimming-induced pulmonary edema-related deaths.

  5. Ibuprofen prevents synthetic smoke-induced pulmonary edema

    SciTech Connect

    Shinozawa, Y.; Hales, C.; Jung, W.; Burke, J.

    1986-12-01

    Multiple potentially injurious agents are present in smoke but the importance of each of these agents in producing lung injury as well as the mechanisms by which the lung injury is produced are unknown. In order to study smoke inhalation injury, we developed a synthetic smoke composed of a carrier of hot carbon particles of known size to which a single known common toxic agent in smoke, in this case HCI, could be added. We then exposed rats to the smoke, assayed their blood for the metabolites of thromboxane and prostacyclin, and intervened shortly after smoke with the cyclooxygenase inhibitors indomethacin or ibuprofen to see if the resulting lung injury could be prevented. Smoke exposure produced mild pulmonary edema after 6 h with a wet-to-dry weight ratio of 5.6 +/- 0.2 SEM (n = 11) compared with the non-smoke-exposed control animals with a wet-to-dry weight ratio of 4.3 +/- 0.2 (n = 12), p less than 0.001. Thromboxane B, and 6-keto-prostaglandin F1 alpha rose to 1660 +/- 250 pg/ml (p less than 0.01) and to 600 +/- 100 pg/ml (p greater than 0.1), respectively, in the smoke-injured animals compared with 770 +/- 150 pg/ml and 400 +/- 100 pg/ml in the non-smoke-exposed control animals. Indomethacin (n = 11) blocked the increase in both thromboxane and prostacyclin metabolites but failed to prevent lung edema.

  6. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  7. New Developments in the Pathogenesis of Smoke Inhalation-Induced Pulmonary Edema

    PubMed Central

    Witten, Mark L.; Quan, Stuart F.; Sobonya, Richard E.; Lemen, Richard J.

    1988-01-01

    Smoke inhalation causes most of the deaths in fire-related injuries, with pulmonary edema as a major determinant in the outcome of smoke-inhalation injury. The pathophysiology of pulmonary edema is thought to be related to the products of incomplete combustion. Damage to the integrity of the alveolar epithelium is one of the determinants of the development of smoke-induced pulmonary edema. In recent studies using lung clearance of aerosolized pentetic acid (DTPA [diethylenetriaminepentaacetic acid]) labeled with technetium Tc 99m to assess the permeability of the alveolar epithelium, several factors were identified that may increase a person's susceptibility to smoke-induced acute lung injury. These are increased initial alveolar permeability and alterations in the number and activity of alveolar macrophages. Clinical measurement of 99mTcDTPA clearance may provide a sensitive and convenient method for the early detection and serial assessment of smoke-induced alveolar epithelial permeability changes. Images PMID:3277334

  8. Celastrol nanoparticles inhibit corneal neovascularization induced by suturing in rats

    PubMed Central

    Li, Zhanrong; Yao, Lin; Li, Jingguo; Zhang, Wenxin; Wu, Xianghua; Liu, Yi; Lin, Miaoli; Su, Wenru; Li, Yongping; Liang, Dan

    2012-01-01

    Purpose Celastrol, a traditional Chinese medicine, is widely used in anti-inflammation and anti-angiogenesis research. However, the poor water solubility of celastrol restricts its further application. This paper aims to study the effect of celastrol nanoparticles (CNPs) on corneal neovascularization (CNV) and determine the possible mechanism. Methods To improve the hydrophilicity of celastrol, celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed. The characterization of CNPs was measured by dynamic light scattering and transmission electron microscopy analysis. Celastrol loading content and release were assessed by ultraviolet-visible analysis and high performance liquid chromatography, respectively. In vitro, human umbilical vein endothelial cell proliferation and capillary-like tube formation were assayed. In vivo, suture-induced CNV was chosen to evaluate the effect of CNPs on CNV in rats. Immunohistochemistry for CD68 assessed the macrophage infiltration of the cornea on day 6 after surgery. Real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were used to evaluate the messenger ribonucleic acid and protein levels, respectively, of vascular endothelial growth factor, matrix metalloproteinase 9, and monocyte chemoattractant protein 1 in the cornea. Results The mean diameter of CNPs with spherical shape was 48 nm. The celastrol loading content was 7.36%. The release behavior of CNPs in buffered solution (pH 7.4) showed a typical two-phase release profile. CNPs inhibited the proliferation of human umbilical vein endothelial cells in a dose-independent manner and suppressed the capillary structure formation. After treatment with CNPs, the length and area of CNV reduced from 1.16 ± 0.18 mm to 0.49 ± 0.12 mm and from 7.71 ± 0.94 mm2 to 2.29 ± 0.61 mm2, respectively. Macrophage infiltration decreased significantly in the CNP-treated corneas. CNPs reduced

  9. Involvement of mast cells and histamine in edema induced in mice by Scolopendra viridicornis centipede venom.

    PubMed

    Távora, Bianca C L F; Kimura, Louise F; Antoniazzi, Marta M; Chiariello, Thiago M; Faquim-Mauro, Eliana L; Barbaro, Katia C

    2016-10-01

    Bites caused by Scolopendra viridicornis centipede are mainly characterized by burning pain, paresthesia and edema. On this regard, the aim of this work was to study the involvement of mast cells and histamine in edema induced by Scolopendra viridicornis (Sv) centipede venom. The edema was analyzed on mice paws. The mice were pretreated with cromolyn (mast cell degranulation inhibitor) and antagonists of histamine receptors, such as promethazine (H1R), cimetidine (H2R) and thioperamide (H3/H4R). The analyses were carried out at different times after the injection of Sv venom (15 μg) or PBS in the footpad of mice. Our results showed a significant inhibition of the edema induced by Sv venom injection in mice previously treated: cromolyn (38-91%), promethazine (50-59%) and thioperamide (around 30%). The treatment with cimetidine did not alter the edema induced by Sv venom. Histopathological analysis showed that Sv venom injection (15 μg) induced edema, leukocyte recruitment and mast cells degranulation, when compared with the PBS-injected mice. Direct effects of the Sv venom on mast cells were studied in PT-18 line (mouse mast cell) and RBL-2H3 cells (rat mast cells). The data showed that higher doses (3.8 and 7.5 μg) of Sv venom were cytotoxic for both cell lineages and induced morphological changes. However, lower doses of the venom induced degranulation of both mast cell lines, as well as the secretion of MCP-1, IL-6 and IL-1β. The production of PGD2 was only observed in the RBL-2H3 line incubated with Sv venom. Taking our results together, we demonstrated that upon Sv venom exposure, mast cells and histamine are crucial for the establishment of the local inflammatory reaction.

  10. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  11. Involvement of NADPH oxidases in alkali burn-induced corneal injury.

    PubMed

    Gu, Xue-Jun; Liu, Xian; Chen, Ying-Ying; Zhao, Yao; Xu, Man; Han, Xiao-Jian; Liu, Qiu-Ping; Yi, Jing-Lin; Li, Jing-Ming

    2016-07-01

    Chemical burns are a major cause of corneal injury. Oxidative stress, inflammatory responses and neovascularization after the chemical burn aggravate corneal damage, and lead to loss of vision. Although NADPH oxidases (Noxs) play a crucial role in the production of reactive oxygen species (ROS), the role of Noxs in chemical burn-induced corneal injury remains to be elucidated. In the present study, the transcription and expression of Noxs in corneas were examined by RT-qPCR, western blot analysis and immunofluorescence staining. It was found that alkali burns markedly upregulated the transcription and expression of Nox2 and Nox4 in human or mouse corneas. The inhibition of Noxs by diphenyleneiodonium (DPI) or apocynin (Apo) effectively attenuated alkali burn-induced ROS production and decreased 3-nitrotyrosine (3-NT) protein levels in the corneas. In addition, Noxs/CD11b double‑immunofluorescence staining indicated that Nox2 and Nox4 were partially co-localized with CD11b. DPI or Apo prevented the infiltration of CD11b-positive inflammatory cells, and inhibited the transcription of inflammatory cytokines following alkali burn-induced corneal injury. In our mouse model of alkali burn-induced corneal injury, corneal neovascularization (CNV) occurred on day 3, and it affected 50% of the whole area of the cornea on day 7, and on day 14, CNV coverage of the cornea reached maximum levels. DPI or Apo effectively attenuated alkali burn‑induced CNV and decreased the mRNA levels of angiogenic factors, including vascular endothelial growth factor (VEGF), VEGF receptors and matrix metalloproteinases (MMPs). Taken together, our data indicate that Noxs play a role in alkali burn-induced corneal injury by regulating oxidative stress, inflammatory responses and CNV, and we thus suggest that Noxs are a potential therapeutic target in the future treatment of chemical-induced corneal injury.

  12. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  13. Ability of eugenol to reduce tongue edema induced by Dieffenbachia picta Schott in mice.

    PubMed

    Dip, Etyene Castro; Pereira, Nuno Alvarez; Fernandes, Patricia Dias

    2004-05-01

    Dieffenbachia picta Schott (Araceae), known in Brazil as "comigo-ninguém-pode" is an ornamental plant with toxic properties. Its juice, when chewed, causes a painful edema of the oral mucous membranes, buccal ulcerations and tongue hypertrophy. This acute inflammation sometimes becomes severe enough to produce glottis obstruction, respiratory compromise and death. Eugenol (4-alil-2-metoxiphenol), the essential oil extracted from Caryophyllus aromaticus (Myrtaceae) is widely used in odontology. In this study, our objective was to standardize, in mice, a measurable methodology for the tongue edema induced by the topical application of the D. picta stem juice; evaluate the effects of eugenol in this model and compare the results with emergency treatment used in hospitals. Our results show that in spite of a small increase in edema a few minutes after administration, emergency treatment reduced by 70% the overall edema. When compared with the combination of the above drugs, eugenol, even at the smallest dose of 5 microg/kg, regardless of the chosen administration route, or the moment the treatment began, presents better results in the reduction and inhibition of the tongue edema induced by the D. picta juice.

  14. Correlation of Vascular Endothelial Growth Factor Production with Photochemical Reaction-induced Retinal Edema

    PubMed Central

    Shan, Liang; Zheng, Mi; Zhang, Yuan; Qu, Yuan; Niu, Tian; Gu, Qing; Liu, Kun; Xia, Xin

    2016-01-01

    Background: Retinal edema is the major complication of retinal vein occlusion and diabetic retinopathy; it can damage visual function by influencing macular region. This study was to establish a rat retinal edema model and explore the related VEGF expression and observe the responses to anti-VEGF drugs in this model. Methods: A rat retinal edema model was established by inducing photochemical reaction using a 532 nm laser after the intravenous injection of Erythrosin B. Immediately after the laser treatment, models were given intravitreal injections of Ranibizumab or Conbercept to inhibit VEGF expression, and the changes of retinal thickness were measured. Retinal edema was observed using fundus photography (FP), optical coherence tomography (OCT), and fluoresce in fundus angiography (FFA) at 0, 1, 2, 4, 7 and 14 days after intervention. The retinal VEGF expression was measured using enzyme-linked immunosorbent assay (ELISA) and western blotting at each time point. The rat retinal edema model was also used to verify the function of anti-VEGF polypeptide ZY1. Results: Both retinal edema and vascular leakage were clearly observed at 1, 2 and 4 days after photochemical induction and the retinal thickness increased notably over the same period. The retinal VEGF expression peaked at day 1 and retina became thickening simultaneously. After the interventions, the VEGF expression of the Ranibizumab and Conbercept groups decreased at each time point compared to the edema group (26.90 ± 3.57 vs. 40.29 ± 6.68, F = 31.269 on day 1 and 22.36 ± 1.12 vs. 29.92 ± 0.93 F = 163.789 on day 2, both P < 0.01); the mean RT (278 ± 4 vs. 288 ± 3, F = 134.190 on day 1 and 274 ± 7 vs. 284 ± 6, F = 64.367 on day 2, both P < 0.05) and vascular leakage in these groups also decreased. The same results were observed in the ZY1 group, particularly at day 2 (P < 0.05). Conclusions: This retinal edema model induced by a photochemical reaction is reliable and repeatable. Induced edema

  15. Corneal topographic changes and surgically induced astigmatism following combined phacoemulsification and 25-gauge vitrectomy

    PubMed Central

    Sayed, Khulood Mohammed; Farouk, Mahmoud M.; Katome, Takashi; Nagasawa, Toshihiko; Naito, Takeshi; Mitamura, Yoshinori

    2017-01-01

    AIM To evaluate corneal topographic changes and surgically induced astigmatism (SIA) after combined phacoemulsification and 25-gauge transconjunctival sutureless vitrectomy (25-G TSV). METHODS A retrospective study on 96 eyes of 87 patients who underwent combined phacoemulsification and 25-G TSV. The different topographic parameters and SIA were analyzed pre- and postoperatively. RESULTS There was no significant changes in corneal topographic parameters at different follow up periods. Only surface regularity index changed significantly in the 2nd postoperative week and then returned to baseline values thereafter. Mean SIA gradually decreased to reach 0.12 D by the 6th postoperative month. CONCLUSION Corneal surface and astigmatic changes are insignificant in either early or late postoperative periods following combined phacoemulsification and 25-G TSV. The SIA was the minimum among previous reports on sutureless vitrectomy alone or combined with phacoemulsification. Improvement of SIA did not stop at the 3rd postoperative month but it continued till the 6th month postoperatively. PMID:28149780

  16. TGF-{beta}2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    SciTech Connect

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-11-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.

  17. Epithelial sodium channel is involved in H2S-induced acute pulmonary edema.

    PubMed

    Jiang, Lei; Wang, Yixin; Su, Chenglei; Sun, Hao; Zhang, Huazhong; Zhu, Baoli; Zhang, Hengdong; Xiao, Hang; Wang, Jun; Zhang, Jinsong

    2015-01-01

    Acute pulmonary edema is one of the major outcomes of exposure to high levels of hydrogen sulfide (H2S). However, the mechanisms involved in H2S-induced acute pulmonary edema are still poorly understood. Therefore, the present study is designed to evaluate the role of epithelial sodium channel (ENaC) in H2S-induced acute pulmonary edema. The Sprague-Dawley rats were exposed to sublethal concentrations of inhaled H2S, then the pulmonary histological and lung epithelial cell injury were evaluated by hematoxylin-eosin staining and electron microscopy, respectively. In addition to morphological investigation, our results also revealed that H2S exposure significantly decreased the alveolar fluid clearance and increased the lung tissue wet-dry ratio. These changes were demonstrated to be associated with decreased ENaC expression. Furthermore, the extracellular-regulated protein kinases 1/2 pathway was demonstrated to be implicated in H2S-mediated ENaC expression, because PD98059, an ERK1/2 antagonist, significantly mitigated H2S-mediated ENaC down-regulation. Therefore, our results show that ENaC might represent a novel pharmacological target for the treatment of acute pulmonary edema induced by H2S and other hazardous gases.

  18. [Transplantation of corneal endothelial cells].

    PubMed

    Amano, Shiro

    2002-12-01

    endothelial cells. Cultured rabbit corneal endothelial cells that endocytosed iron were injected into the anterior chamber of rabbits whose corneal endothelium was cryo-injured, and were pulled to Descemet's membrane by putting a magnet on the eyelid. In these rabbits, corneal edema decreased more quickly than in the control group and no intraocular pressure rise was observed during 8 weeks after the operation, suggesting that the direct delivery of cultured HCECs into the anterior chamber can be an alternative method of choice. The following obstacles should be addressed to make the transplantation of cultured corneal endothelial cells clinically applicable. 1. To reconstruct a cornea that is the same as or superior to the normal cornea, more innovation is necessary in the method of culturing and seeding HCECs. We should consider utilizing HCECs obtained from fetuses after clearing ethical issues. Moreover, we need to develop a method to enhance the cell density and the cell functions. 2. Porcine corneal stroma is promising as a carrier of HCECs instead of human corneal stroma, which is in very limited supply. The usefulness of porcine corneal stroma acellularized to prevent retrovirus infection should be evaluated. 3. To make the self immature cells applicable to corneal transplantation, we should elucidate the corneal endothelial cell specific markers and the factors that are necessary to induce self immature cells to become corneal endothelial cells. 4. The direct delivery of cultured HCECs into the anterior chamber can be an alternative method of choice when its long-term safety is confirmed.

  19. Transient corneal opacification induced by cold in Raynaud's disease.

    PubMed

    McWhae, J A; Andrews, D M

    1991-05-01

    A 48-year-old man presented with longstanding complaints of transient blurring of vision on exposure to cold temperatures. A review of family history was noteworthy in that two of the patient's four sons and the patient's brother had similar complaints. All affected individuals had Raynaud's disease. Results of ophthalmic evaluation showed transient corneal opacities. Slit-lamp video photography under cold stress demonstrated conjunctival vascular changes consistent with Raynaud's phenomenon. An extensive work-up for systemic disease was otherwise negative. To the best of the authors' knowledge, anterior segment changes have not been described previously in idiopathic Raynaud's disease.

  20. Therapeutic and inducing effect of corneal crosslinking on infectious keratitis

    PubMed Central

    Jiang, Liang-Zhu; Qiu, Shi-Yan; Li, Zhi-Wei; Zhang, Xiao; Tao, Xiang-Chen; Mu, Guo-Ying

    2016-01-01

    The corneal crosslinking (CXL) with riboflavin and ultraviolet-A (UVA) is a new therapy method to successfully treat infectious keratitis in clinical practice. However, there are rare reports on the complications of CXL such as the secondary keratitis. The diverse clinical outcomes on keratitis have highlighted the necessity to further evaluate the efficacy and complications of CXL. We reviewed the positive and negative reports on UVA/riboflavin related with keratitis and provided our opinion on the therapeutic and side effect of UVA/riboflavin crosslinking on keratitis. PMID:28003986

  1. Modulation of corneal and stromal matrix metalloproteinase by the mannose-induced Acanthamoeba cytolytic protein

    PubMed Central

    Alizadeh, Hassan; Li, Haochuan; Neelam, Sudha; Niederkorn, Jerry Y.

    2008-01-01

    The involvement of the mannose-induced Acanthamoeba cytopathic protein (MIP-133) in tissue injury and activation of metalloproteinase of corneal and stromal cells was examined in vitro. Activation of MMP-1, MMP-2, MMP-3, and MMP-9 induced by MIP-133 on human corneal epithelial and stromal cell cultures was examined by reverse transcriptase polymerase chain reaction (RT-PCR), and ELISA. MMP-1, MMP-2, MMP-3, and MMP-9 mRNA were expressed in both cultured human corneal epithelial and stromal cells. When the epithelial cells were exposed to MIP-133 protein, the mRNA expression for MMP-1 and MMP-9 was unchanged. However, the transcript for MMP-2 and MMP-3 was decreased by two fold. By contrast, the expression of MMP-2 and MMP-3 was significantly up-regulated (2–4 fold) in the corneal stromal cells 1, 4, and 8 hours after MIP-133 stimulation. At the protein level, there was no significant difference in the level of MMPs between the corneal epithelial cells before and after stimulation with MIP-133. By contrast, the levels of MMP-2 and MMP-3 were significantly higher in the corneal stromal cells stimulated with MIP-133. The supernatants from corneal stromal cells stimulated with MIP-133 were incubated with PMSF and MIP-133 antibody and the level of MMP-2 was measured by ELISA. Activation of MMP-2 by MIP-133 was inhibited in the supernatants pretreated with the serine protease inhibitor, PMSF, and anti-MIP-133. Supernatants pretreated with the cysteine protease inhibitor E6 or control antibody produced the same amount of MMP-2 as the untreated supernatants. To verify the possible of homology between MMPs and A. castellanii proteases, the mRNA from A. castellanii was prepared and analyzed for the expression of MMP genes by PT-PCR. The results showed that A. castellanii did not express mRNA for MMP-1, MMP-2, MMP-3, or MMP-9. Thus, A. castellanii mRNA does not cross react with human MMPs. Furthermore, ELISA was used to determine the cross reactivity of MMP antibodies with

  2. Dexamethasone exacerbates cerebral edema and brain injury following lithium-pilocarpine induced status epilepticus.

    PubMed

    Duffy, B A; Chun, K P; Ma, D; Lythgoe, M F; Scott, R C

    2014-03-01

    Anti-inflammatory therapies are the current most plausible drug candidates for anti-epileptogenesis and neuroprotection following prolonged seizures. Given that vasogenic edema is widely considered to be detrimental for outcome following status epilepticus, the anti-inflammatory agent dexamethasone is sometimes used in clinic for alleviating cerebral edema. In this study we perform longitudinal magnetic resonance imaging in order to assess the contribution of dexamethasone on cerebral edema and subsequent neuroprotection following status epilepticus. Lithium-pilocarpine was used to induce status epilepticus in rats. Following status epilepticus, rats were either post-treated with saline or with dexamethasone sodium phosphate (10mg/kg or 2mg/kg). Brain edema was assessed by means of magnetic resonance imaging (T2 relaxometry) and hippocampal volumetry was used as a marker of neuronal injury. T2 relaxometry was performed prior to, 48 h and 96 h following status epilepticus. Volume measurements were performed between 18 and 21 days after status epilepticus. Unexpectedly, cerebral edema was worse in rats that were treated with dexamethasone compared to controls. Furthermore, dexamethasone treated rats had lower hippocampal volumes compared to controls 3 weeks after the initial insult. The T2 measurements at 2 days and 4 days in the hippocampus correlated with hippocampal volumes at 3 weeks. Finally, the mortality rate in the first week following status epilepticus increased from 14% in untreated rats to 33% and 46% in rats treated with 2mg/kg and 10mg/kg dexamethasone respectively. These findings suggest that dexamethasone can exacerbate the acute cerebral edema and brain injury associated with status epilepticus.

  3. Chrysin Increases the Therapeutic Efficacy of Docetaxel and Mitigates Docetaxel-Induced Edema.

    PubMed

    Lim, Hyun-Kyung; Kim, Kyoung Mee; Jeong, Seong-Yun; Choi, Eun Kyung; Jung, Joohee

    2016-05-05

    Docetaxel (DTX) is an effective commercial anticancer agent for chemotherapy in non-small cell lung cancer (NSCLC), breast cancer, gastric cancer, and prostate cancer, but its adverse effects including edema, neurotoxicity, and hair loss limit its application. To improve the chemotherapeutic efficacy of DTX and reduce adverse effects, combination therapy is one of the alternative methods. So chrysin, which has various biological activities including anticancer effects, was considered. In vitro, the combination of chrysin and DTX was investigated in A549 cells. Increased cytotoxicity, suppressed cellular proliferation, and induced apoptosis were observed with posttreatment of chrysin following DTX treatment. In vivo, chrysin enhanced the tumor growth delay of DTX and increased DTX-induced apoptosis in the A549-derived xenograft model. Furthermore, chrysin prevented DTX-induced edema in ICR mouse. These results indicated that chrysin strengthened the therapeutic efficacy of DTX and diminished the adverse effect of DTX, suggesting chrysin could be exploited as an adjuvant therapy for NSCLC.

  4. Effect of Liraglutide on Corneal Kindling Epilepsy Induced Depression and Cognitive Impairment in Mice.

    PubMed

    Koshal, Prashant; Kumar, Puneet

    2016-07-01

    GLP-1 play important role in neuroprotection and GLP-1 receptor deficit mice showed decreased seizure threshold and increased cognitive impairment. Therefore, study was premeditated to investigate the effect of liraglutide (GLP-1 analogue) on cornel kindling epilepsy induced co-morbidities in mice. Corneal kindling was induced by electrical stimulation (6 mA, 50 Hz, 3 s); twice daily for 13 days. Liraglutide (75 and 150 µg/kg) and phenytoin (20 mg/kg) were administered in corneal kindled groups. On day 14, elevated plus maze, passive shock avoidance paradigms were performed, and on day 15, retention was taken. On day 16 tail suspension test were performed. On 20th day challenge test was performed with same electrical stimulation and retention was observed on elevated plus maze and passive avoidance paradigm. Animal were sacrificed on 21st day for biochemical (LPO, GSH, and nitrite) and neurochemical (GABA, glutamate, DA, NE, 5-HT and their metabolites) estimation. Electrical stimulation by corneal electrode for 13 days developed generalized clonic seizures, increased cognitive impairment, oxidative stress and neurochemical alteration in mice brain. Co-treatment with liraglutide (75 and 150 μg/kg) significantly prevented the seizure severity, restored behavioural activity, oxidative stress and restored the altered level of neurotransmitters observed in corneal kindled mouse.

  5. Diospyros kaki Extract Inhibits Alkali Burn-Induced Corneal Neovascularization.

    PubMed

    Yang, Sung Jae; Jo, Hyoung; Kim, Kyung-A; Ahn, Hong Ryul; Kang, Suk Woo; Jung, Sang Hoon

    2016-01-01

    The purpose of this study was to evaluate the effect of ethanol extract of Diospyros kaki (EEDK) leaves on corneal neovascularization (CoNV) in rats. One week after the alkali burns in the corneas, the CoNV area coverage in the CoNV-positive control group, 100 mg/kg EEDK group, and 200 mg/kg EEDK group was 43.3% ± 5.5%, 337.7% ± 2.5%, and 27.2% ± 4.3%, respectively. The areas of CoNV in the EEDK-treated groups were significantly different from those of the CoNV group. EEDK significantly attenuated the upregulation of vascular endothelial growth factor, fibroblast growth factor, interleukin-6, and matrix metalloproteinase-2 (MMP-2) protein levels. Orally administrated D. kaki inhibited CoNV development in rats.

  6. ADAM17 Inhibitors Attenuate Corneal Epithelial Detachment Induced by Mustard Exposure

    PubMed Central

    DeSantis-Rodrigues, Andrea; Chang, Yoke-Chen; A. Hahn, Rita; P. Po, Iris; Zhou, Peihong; Lacey, C. Jeffrey; Pillai, Abhilash; C. Young, Sherri; A. Flowers II, Robert; A. Gallo, Michael; D. Laskin, Jeffrey; R. Gerecke, Donald; K. H. Svoboda, Kathy; D. Heindel, Ned; Gordon, Marion K.

    2016-01-01

    Purpose Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial–stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial–stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma. ADAM17 is an enzyme involved in wound healing and is able to cleave collagen XVII. The activity of ADAM17 was inhibited in vesicant-exposed corneas by four different hydroxamates, to evaluate their therapeutic potential when applied 2 hours after exposure, thereby allowing ADAM17 to perform its early steps in wound healing. Methods Rabbit corneal organ cultures exposed to NM for 2 hours were washed, then incubated at 37°C for 22 hours, with or without one of the four hydroxamates (dose range, 0.3–100 nmol in 20 μL, applied four times). Corneas were analyzed by light and immunofluorescence microscopy, and ADAM17 activity assays. Results Nitrogen mustard–induced corneal injury showed significant activation of ADAM17 levels accompanying epithelial–stromal detachment. Corneas treated with hydroxamates starting 2 hours post exposure showed a dose-dependent ADAM17 activity inhibition up to concentrations of 3 nmol. Of the four hydroxamates, NDH4417 (N-octyl-N-hydroxy-2-[4-hydroxy-3-methoxyphenyl] acetamide) was most effective for inhibiting ADAM17 and retaining epithelial–stromal attachment. Conclusions Mustard exposure leads to corneal epithelial sloughing caused, in part, by the activation of ADAM17 at the epithelial–stromal junction. Select hydroxamate compounds applied 2 hours after NM exposure mitigated epithelial–stromal separation. PMID:27058125

  7. Acoustic Radiation Force for Noninvasive Evaluation of Corneal Biomechanical Changes Induced by Cross-linking Therapy

    PubMed Central

    Urs, Raksha; Lloyd, Harriet O.; Silverman, Ronald H.

    2015-01-01

    Objectives To noninvasively measure changes in corneal biomechanical properties induced by ultraviolet-activated riboflavin cross-linking therapy using acoustic radiation force (ARF). Methods Cross-linking was performed on the right eyes of 6 rabbits, with the left eyes serving as controls. Acoustic radiation force was used to assess corneal stiffness before treatment and weekly for 4 weeks after treatment. Acoustic power levels were within US Food and Drug Administration guidelines for ophthalmic safety. Strain, determined from ARF-induced displacement of the front and back surfaces of the cornea, was fit to the Kelvin-Voigt model to determine the elastic modulus (E) and coefficient of viscosity (η). The stiffness factor, the ratio of E after treatment to E before treatment, was calculated for treated and control eyes. At the end of 4 weeks, ex vivo thermal shrinkage temperature analysis was performed for comparison with in vivo stiffness measurements. One-way analysis of variance and Student t tests were performed to test for differences in E, η, the stiffness factor, and corneal thickness. Results Biomechanical stiffening was immediately evident in cross-linking–treated corneas. At 4 weeks after treatment, treated corneas were 1.3 times stiffer and showed significant changes in E(P= .006) and η (P= .007), with no significant effect in controls. Corneal thickness increased immediately after treatment but did not differ significantly from the pretreatment value at 4 weeks. Conclusions Our findings demonstrate a statistically significant increase in stiffness in cross-linking–treated rabbit corneas based on in vivo axial stress/strain measurements obtained using ARF. The capacity to noninvasively monitor corneal stiffness offers the potential for clinical monitoring of cross-linking therapy. PMID:25063407

  8. Complementary treatment of contact lens-induced corneal ulcer using honey: a case report.

    PubMed

    Majtanova, Nora; Vodrazkova, Erika; Kurilova, Veronika; Horniackova, Miroslava; Cernak, Martin; Cernak, Andrej; Majtan, Juraj

    2015-02-01

    The aim of this study was to report the complementary use of honey for treatment of a contact lens-induced corneal ulcer. A 23-year-old contact lens user presented with a corneal ulcer in her left eye. She had visual acuity reduced to hand movement. There was a history of wearing contact lenses while swimming in a lake seven days before presentation. The cultures from corneal scrapings and contact lenses were positive for Klebsiella oxytoca, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Pseudomonas spp. The treatment with topical levofloxacin and 25% (w/v) γ-irradiated honeydew honey solution was effective and the patient achieved final best corrected visual acuity of affected eye. In addition to positive clinical outcome, honeydew honey was shown to be highly effective in vitro against ocular isolates, in particular S. maltophilia. The minimal inhibitory concentrations for honeydew honey ranged from 5% to 10%. These results demonstrate that honey is a promising antibacterial agent in management of corneal ulcers. Moreover, honey exhibits anti-biofilm and anti-inflammatory properties, and thus becomes an interesting ophthalmologic agent.

  9. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    SciTech Connect

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  10. On the Need to Compensate for Edema-Induced Dose Reductions in Preplanned {sup 131}Cs Prostate Brachytherapy

    SciTech Connect

    Chen, Z. Jay Deng Jun; Roberts, Kenneth; Nath, Ravinder

    2008-01-01

    Purpose: Surgical trauma-induced edema and its protracted resolution can lead to significant dose reductions in preplanned {sup 131}Cs prostate brachytherapy. The purpose of this work was to examine whether these dose reductions should be actively compensated for and to estimate the magnitude of the additional irradiation needed for dose compensation. Methods and Materials: The quantitative edema resolution characteristics observed by Waterman et al. were used to examine the physical and radiobiologic effects of prostate edema in preplanned {sup 131}Cs implants. The need for dose compensation was assessed using the dose responses observed in {sup 125}I and {sup 103}Pd prostate implants. The biologically effective dose, calculated with full consideration of edema evolution, was used to estimate the additional irradiation needed for dose compensation. Results: We found that the edema-induced dose reduction in preplanned {sup 131}Cs implants could easily exceed 10% of the prescription dose for implants with moderate or large edema. These dose reductions could lead to a >10% reduction in the biochemical recurrence-free survival for individual patients if the effect of edema was ignored. For a prescribed dose of 120 Gy, the number of 2-Gy external beam fractions needed to compensate for a 5%, 10%, 15%, 20%, and 25% edema-induced dose reduction would be one, four, six, seven, and nine, respectively, for prostate cancer with a median potential doubling time of 42 days. The required additional irradiation increased for fast-growing tumors and/or those less efficient in sublethal damage repair. Conclusion: Compensation of edema-induced dose reductions in preplanned {sup 131}Cs prostate brachytherapy should be actively considered for those implants with moderate or large edema.

  11. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.

    PubMed

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury.

  12. Quantitative analysis of thermally-induced alterations of corneal stroma by second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Matteini, P.; Rossi, F.; Ratto, F.; Cicchi, R.; Kapsokalyvas, D.; Pavone, F. S.; Pini, R.

    2010-02-01

    Thermal modifications induced in the corneal stroma were investigated by means of second harmonic generation (SHG) imaging. Whole fresh cornea samples were heated in a water bath at temperatures in the 35-80 °C range for a 4-min time. SHG images of the structural modifications induced at each temperature were acquired from different areas of cross-sectioned corneal stroma by using an 880 nm linearly- and circularly-polarized excitation light emitted by a mode-locked Ti:Sapphire laser. The SHG images were then analyzed by means of both an empirical approach and a 2D-theoretical model. The proposed analyses provide a detailed description of the changes occurring in the structural architecture of the cornea during the thermal treatment. Our results allow us to depict a temperature-dependent biochemical model for the progressive destructuration occurring to collagen fibrils and nonfibrillar components of the stroma.

  13. Spontaneous Corneal Hydrops in a Patient with a Corneal Ulcer

    PubMed Central

    Batawi, Hatim; Kothari, Nikisha; Camp, Andrew; Bernhard, Luis; Karp, Carol L.; Galor, Anat

    2016-01-01

    Purpose We report the case of a 77-year-old man with no history of keratoconus or other ectatic disorders who presented with corneal hydrops in the setting of a corneal ulcer. The risk factors, pathogenesis and treatment options of corneal hydrops are discussed. Method This is an observational case report study. Results A 77-year-old man presented with a 1-day history of severe pain, redness, mucous discharge and photophobia in the right eye. A slit-lamp examination of the right eye showed an area of focal corneal edema and protrusion. Within the area of edema and protrusion, there was an infiltrate with an overlying epithelial defect consistent with an infectious corneal ulcer. The Seidel test showed no leakage, so a clinical diagnosis of corneal hydrops associated with nonperforated corneal ulcer was made. With appropriate antibiotic treatment, the corneal ulcer and hydrops both resolved over a 1-month period. Conclusion Corneal hydrops can occur in the setting of corneal infections. PMID:26889160

  14. The Effects of Portulaca oleracea on Hypoxia-Induced Pulmonary Edema in Mice

    PubMed Central

    Yue, Tan; Xiaosa, Wen; Ruirui, Qi; Wencai, Shi; Hailiang, Xin

    2015-01-01

    Abstract Tan Yue, Wen Xiaosa, Qi Ruirui, Shi Wencai, Xin Hailiang, and Li Min. The effects of Portulaca oleracea on hypoxia-induced pulmonary edema in mice. High Alt Med Biol 16:43–51, 2015—Portulaca oleracea L. (PO) is known as “a vegetable for long life” due to its antioxidant, anti-inflammatory, and other pharmacological activities. However, the protective activity of the ethanol extract of PO (EEPO) against hypoxia-induced pulmonary edema has not been fully investigated. In this study, we exposed mice to a simulated altitude of 7000 meters for 0, 3, 6, 9, and 12 h to observe changes in the water content and transvascular leakage of the mouse lung. It was found that transvascular leakage increased to the maximum in the mouse lung after 6 h exposure to hypobaric hypoxia. Prophylactic administration of EEPO before hypoxic exposure markedly reduced the transvascular leakage and oxidative stress, and inhibited the upregulation of NF-kB in the mouse lung, as compared with the control group. In addition, EEPO significantly reduced the levels of proinflammatory cytokines and cell adhesion molecules in the lungs of mice, as compared with the hypoxia group. Our results show that EEPO can reduce initial transvascular leakage and pulmonary edema under hypobaric hypoxia conditions. PMID:25761168

  15. Dose dependent cytotoxicity of pranoprofen in cultured human corneal endothelial cells by inducing apoptosis.

    PubMed

    Li, Yi-Han; Wen, Qian; Fan, Ting-Jun; Ge, Yuan; Yu, Miao-Miao; Sun, Ling-Xiao; Zhao, Yu

    2015-01-01

    Pranoprofen (PPF), a non-steroidal anti-inflammatory drugs (NSAIDs), is often used in keratitis treatment in clinic. Several studies have assessed in vitro the cytotoxicity of topical NSAIDs to corneal epithelial cells due to its importance for predicting human corneal toxicity. Damage by cytotoxic drugs can result in excessive loss of human corneal endothelial (HCE) cells which lead to decompensation of the endothelium and eventual loss of visual acuity. However, the endothelial cytotoxicity of PPF has not yet been reported using an in vitro model of HCE cells. This study assessed the cytotoxicity of PPF to HCE cells and its underlying mechanism. Cellular viability was determined using inverted phase contrast light microscopy, and plasma membrane permeability, genomic DNA fragmentation, and ultrastructure were detected by acridine orange/ethidium bromide staining, DNA agarose gel electrophoresis, and transmission electron microscopy (TEM), respectively. The results on cellular viability showed that PPF at concentrations ranging from 0.0625 to 1.0 g/l had poignant cytotoxicity to HCE cells, and the extent of its cytotoxicity was dose- and time-dependent. Further characterization indicated that PPF induced plasma membrane permeability elevation, DNA fragmentation, and apoptotic body formation, proving its apoptosis inducing effect on HCE cells. In conclusion, PPF above 0.0625 g/l has poignant cytotoxicity on HCE cells in vitro by inducing cell apoptosis, and should be carefully employed in eye clinic.

  16. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery

    PubMed Central

    Igarashi, Tsutomu; Ohsawa, Ikuroh; Kobayashi, Maika; Igarashi, Toru; Suzuki, Hisaharu; Iketani, Masumi; Takahashi, Hiroshi

    2016-01-01

    In phacoemulsification, ultrasound induces hydroxyl radical (·OH) formation, damaging corneal endothelium. Whether H2 can prevent such oxidative damage in phacoemulsification was examined by in vitro and in vivo studies. H2 was dissolved in a commercial irrigating solution. The effects of H2 against ·OH generation were first confirmed in vitro by electron-spin resonance (ESR) and hydroxyphenyl fluorescein (HPF). ESR showed a significantly decreased signal magnitude, and fluorescence intensity by oxidized HPF was significantly less in the H2-dissolved solution. The effects of H2 in phacoemulsification were evaluated in rabbits, comparing H2-dissolved and control solutions. Five hours after the procedure, the whole cornea was excised and subjected to image analysis for corneal edema, real-time semiquantitative PCR (qPCR) for heme oxygenase (HO)-1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 mRNA, and immunohistochemistry. Corneal edema was significantly less and the increases in anti-oxidative HO-1, CAT and SOD2 mRNA expressions were significantly suppressed in the H2 group. In addition, corneal endothelial cell expressions of two oxidative stress markers, 4-HNE and 8-OHdG, were significantly lower in the H2 group. In conclusion, H2 dissolved in the ocular irrigating solution protected corneal endothelial cells from phacoemulsification-induced oxidative stress and damage. PMID:27498755

  17. A case of recurrent swimming-induced pulmonary edema in a triathlete: the need for awareness.

    PubMed

    Smith, R; Brooke, D; Kipps, C; Skaria, B; Subramaniam, V

    2016-08-03

    This report discusses a rare case of a 55-year-old female triathlete who developed recurrent episodes of swimming-induced pulmonary edema (SIPE). She had two hospital admissions with pulmonary edema after developing breathlessness while swimming, including a near-drowning experience in an open water swim. With increasing popularity of triathlon and open water sports, this case highlights the importance of a greater awareness of SIPE among health professionals, event organizers, and athletes. This report explores the previous reported cases in triathletes and those who have suffered recurrent episodes. It is paramount that an accurate diagnosis is made as these individuals may be at an increased risk of future life-threatening episodes.

  18. Basiliximab induced non-cardiogenic pulmonary edema in two pediatric renal transplant recipients.

    PubMed

    Dolan, Niamh; Waldron, Mary; O'Connell, Marie; Eustace, Nick; Carson, Kevin; Awan, Atif

    2009-11-01

    We report two cases of non-cardiogenic pulmonary edema as a complication of basiliximab induction therapy in young pediatric renal transplant patients identified following a retrospective review of all pediatric renal transplant cases performed in the National Paediatric Transplant Centre, Childrens University Hospital, Temple Street, Dublin, Ireland. Twenty-eight renal transplantations, of which five were living-related (LRD) and 23 were from deceased donors (DD), were performed in 28 children between 2003 and 2006. In six cases, transplantations were pre-emptive. Immunosuppression was induced pre-operatively using a combination of basiliximab, tacrolimus and methylprednisolone in all patients. Basiliximab induction was initiated 2 h prior to surgery in all cases and, in 26 patients, basiliximab was re-administered on post-operative day 4. Two patients, one LRD and one DD, aged 6 and 11 years, respectively, developed acute non-cardiogenic pulmonary edema within 36 h of surgery. Renal dysplasia was identified as the primary etiological factor for renal failure in both cases. Both children required assisted ventilation for between 4 and 6 days. While both grafts had primary function, the DD transplant patient subsequently developed acute tubular necrosis and was eventually lost within 3 weeks due to thrombotic microangiopathy and severe acute antibody-mediated rejection despite adequate immunosuppression. Non-cardiogenic pulmonary edema is a potentially devastating post-operative complication of basiliximab induction therapy in young pediatric patients following renal transplantation. Early recognition and appropriate supportive therapy is vital for patient and, where possible, graft survival.

  19. Acute ethanol-induced changes in edema and metabolite concentrations in rat brain.

    PubMed

    Liu, Huimin; Zheng, Wenbin; Yan, Gen; Liu, Baoguo; Kong, Lingmei; Ding, Yan; Shen, Zhiwei; Tan, Hui; Zhang, Guishan

    2014-01-01

    The aim of this study is to describe the acute effects of EtOH on brain edema and cerebral metabolites, using diffusion weight imaging (DWI) and proton magnetic resonance spectroscopy ((1)H-MRS) at a 7.0T MR and to define changes in apparent diffusion coefficient (ADC) values and the concentration of metabolites in the rat brain after acute EtOH intoxication. ADC values in each ROI decreased significantly at 1 h and 3 h after ethanol administration. ADC values in frontal lobe were decreased significantly compared with other regions at 3 h. For EtOH/Cr+PCr and cerebral metabolites (Cho, Tau, and Glu) differing over time, no significant differences for Ins, NAA, and Cr were observed in frontal lobes. Regression analysis revealed a significant association between TSEtOH/Cr+PCr and TSCho, TSTau, TSGlu, and TSADC. The changes of ADC values in different brain regions reflect the process of the cytotoxic edema in vivo. The characterization of frontal lobes metabolites changes and the correlations between TSEtOH/Cr+PCr and TSCho, TSTau, and TSGlu provide a better understanding for the biological mechanisms in neurotoxic effects of EtOH on the brain. In addition, the correlations between TSEtOH/Cr+PCr and TSADC will help us to understand development of the ethanol-induced brain cytotoxic edema.

  20. Acute ozone-induced lung injury in rats: Structural-functional relationships of developing alveolar edema

    SciTech Connect

    Paterson, J.F.; Hammond, M.D.; Montgomery, M.R.; Sharp, J.T.; Farrier, S.E.; Balis, J.U. )

    1992-11-01

    As part of a study on the effects of acute ozone stress on the lung surfactant system, we correlated morphometric, biochemical, and functional indices of lung injury using male rats exposed to 3 ppm ozone for 1, 2, 4, and 8 hr. Evaluation of lung mechanics, using the Pulmonary Evaluation and Diagnostic Laboratory System, revealed a significant decrease in dynamic lung compliance (ml/cmH[sub 2]O/kg) from a control value of 0.84 [plus minus] 0.02 (SEM) to 0.72 [plus minus] 0.04 and 0.57 [plus minus] 0.06 at 4 and 8 hr, respectively. At 2 hr there was a transient increase in PaO[sub 2] to 116 torr (control = 92 torr) followed by a decrease at 4 hr (65 torr) and 8 hr (55 torr). Morphometry of lung tissue, fixed by perfusion of fixative via the pulmonary artery at 12 cm H[sub 2]O airway distending pressure, demonstrated an increase in the area of the intravascular compartment at 8 hr, in association with a 65 and 39% replacement of the alveolar area by fluid in ventral and dorsal lung regions, respectively. There was a positive correlation (r = 0.966) between alveolar edema and transudated proteins in lavage fluid. A stepwise multiple regression model, with edema as the dependent variable, suggested that pulmonary vasodilatation, hypoxemia, and depletion of surfactant tubular myelin in lavage fluid were indices for predicting alveolar edema. In a second model, with lavage protein concentration as the dependent variable, decreasing dynamic compliance and hypoxemia were predictors of progressive, intraalveolar transudation of plasma proteins. The above structural-functional relationships support the concept that ozone-induced high-protein alveolar edema is pathogenetically linked to pulmonary hyperemia, deficiency of surfactant tubular myelin, and associated lung dysfunctions.

  1. Edema induced by Bothrops asper (Squamata: Viperidae) snake venom and its inhibition by Costa Rican plant extracts.

    PubMed

    Badilla, Beatriz; Chaves, Fernando; Mora, Gerardo; Poveda, Luis J

    2006-06-01

    We tested the capacity of leaf (Urera baccifera, Loasa speciosa, Urtica leptuphylla, Chaptalia nutans, and Satureja viminea) and root (Uncaria tomentosa) extracts to inhibit edema induced by Bothrops asper snake venom. Edema-forming activity was studied plethysmographically in the rat hind paw model. Groups of rats were injected intraperitoneally with various doses of each extract and, one hour later, venom was injected subcutaneously in the right hind paw. Edema was assessed at various time intervals. The edematogenic activity was inhibited in those animals that received an injection U. tomentosa, C. nutans or L. speciosa extract. The extract of U. baccifera showed a slight inhibition of the venom effect. Extract from S. viminea and, to a lesser extent that of U. leptuphylla, induced a pro-inflammatory effect, increasing the edema at doses of 250 mg/kg at one and two hours.

  2. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization

    PubMed Central

    Jia, Changkai; Zhu, Wei; Ren, Shengwei; Xi, Haijie; Li, Siyuan

    2011-01-01

    Purpose Suture placement and alkali burn to the cornea are often used to induce inflammatory corneal neovascularization (CorNV) models in animals. This study compares the changes in genome-wide gene expression under these two CorNV conditions in mice. Methods CorNV were induced in Balb/c mice by three interrupted 10–0 sutures placed at sites about 1 mm from the corneal apex, or by alkali burns that were 2 mm in size in the central area of the cornea. At the points in time when neovascularization progressed most quickly, some eyeballs were subjected to histological staining to examine CorNV and inflammatory cells infiltration, and some corneas were harvested to extract mRNA for microarray assay. After normalization and filtering, the microarray data were subject to statistical analysis using Significance Analysis of Microarray software, and interested genes were annotated using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) program. The expression change of classical proangiogenic molecule like vascular endothelial growth factor (VEGF) and antiangiogenic molecule like pigment epithelium-derived factor (PEDF) was further verified using western blotting. Results Suture placement induced CorNV in the areas between the suture and limbus, but did not affect the transparency of the yet unvasuclarized areas of the corneas. In contrast, alkali burn caused edema and total loss of transparency of the whole cornea. Histology showed that sutures only caused localized epithelial loss and inflammatory infiltration between the suture and limbus, but chemical burn depleted the whole epithelial layer of the central cornea and caused heavy cellular infiltration of the whole cornea. At day 5 after suture placement, 1,055 differentially expressed probes were identified, out of which 586 probes were upregulated and 469 probes were downregulated. At a comparable time point, namely on day 6 after the alkali burn to the corneas, 472 probes were upregulated

  3. Keratocytes are induced to produce collagen type II: A new strategy for in vivo corneal matrix regeneration.

    PubMed

    Greene, Carol Ann; Green, Colin R; Dickinson, Michelle E; Johnson, Virginia; Sherwin, Trevor

    2016-09-10

    The stroma, the middle layer of the cornea, is a connective tissue making up most of the corneal thickness. The stromal extracellular matrix (ECM) consists of highly organised lamellae which are made up of tightly packed fibrils primarily composed of collagens type I and V. This layer is interspersed with keratocytes, mesenchymal cells of neural crest origin. We have previously shown that adult corneal keratocytes exhibit phenotypic plasticity and can be induced into a neuronal phenotype. In the current study we evaluated the potential of keratocytes to produce collagen type II via phenotypic reprogramming with exogenous chondrogenic factors. The cornea presents a challenge to tissue engineers owing to its high level of organisation and the phenotypic instability of keratocytes. Traditional approaches based on a scar model do not support the engineering of functional stromal tissue. Type II collagen is not found in the adult cornea but is reported to be expressed during corneal development, raising the possibility of using such an approach to regenerate the corneal ECM. Keratocytes in culture and within intact normal and diseased tissue were induced to produce collagen type II upon treatment with transforming growth factor Beta3 (TGFβ3) and dexamethasone. In vivo treatment of rat corneas also resulted in collagen type II deposition and a threefold increase in corneal hardness and elasticity. Furthermore, the treatment of corneas and subsequent deposition of collagen type II did not cause opacity, fibrosis or scarring. The induction of keratocytes with specific exogenous factors and resulting deposition of type II collagen in the stroma can potentially be controlled by withdrawal of the factors. This might be a promising new approach for in vivo corneal regeneration strategies aimed at increasing corneal integrity in diseases associated with weakened ectatic corneal tissue such as keratoconus.

  4. Therapeutic efficacy of milrinone in the management of enterovirus 71-induced pulmonary edema.

    PubMed

    Wang, Shih-Min; Lei, Huan-Yao; Huang, Mei-Chih; Wu, Jing-Min; Chen, Chun-Ta; Wang, Jieh-Neng; Wang, Jen-Ren; Liu, Ching-Chuan

    2005-03-01

    Hand, foot, and mouth disease and herpangina are the major clinical manifestations of enterovirus 71 (EV71) infections. Brain-stem encephalitis and pulmonary edema are severe complications that can lead to death. This study was designed to evaluate the potential therapeutic effect of milrinone, a phosphodiesterase (PDE) inhibitor, in the treatment of patients with EV71-induced pulmonary edema. We conducted a historically controlled trial of 24 children with severe EV71-induced pulmonary edema from April 1998-June 2003 in southern Taiwan. Patients were divided into groups treated before and after the introduction of milrinone therapy. Etiological diagnosis was established by viral cultures and confirmed by specific immunofluorescence and neutralization tests. All 24 patients were below 5 years of age. The mortality was lower in the milrinone-treated vs. nontreated group (36.4% vs. 92.3%, P=0.005). Sympathetic tachycardia was decreased in patients treated with milrinone compared to controls (144 +/- 17/min vs. 206 +/- 26/min, P=0.004). A marked decrease in IL-13 (77 +/- 9 pg/ml vs. 162 +/- 88 pg/ml, P=0.001) was observed in milrinone-treated patients compared to controls. There was a significant reduction in white blood cell (10,838 +/- 4,537/mm3 vs. 19,475 +/- 7,798/mm3, P=0.009) and platelet (257 +/- 45 x 10(3)/mm3 vs. 400 +/- 87 x 10(3)/mm3, P=0.001) counts in milrinone-treated patients compared to controls. These results were associated with improvement in sympathetic regulation and decrease in IL-13 production. Milrinone therapy may provide a useful therapeutic approach for this highly lethal disorder.

  5. Morphine blocks the Mesobuthus tamulus venom-induced augmentation of phenyldiguanide reflex and pulmonary edema in anesthetized rats

    PubMed Central

    Akella, Aparna; Tiwari, Anil K.; Rai, Om P.; Deshpande, Shripad B.

    2016-01-01

    Objective: Pulmonary edema, a manifestation of scorpion envenomation syndrome, is attributed to cardiogenic or noncardiogenic factors. Morphine is a drug used for cardiogenic pulmonary edema and its effect on Mesobuthus tamulus (MBT) venom-induced changes is not known. Therefore, we hypothesized that morphine blocks the MBT venom-induced augmentation of phenyldiguanide (PDG) reflex and pulmonary edema. Materials and Methods: Experiments were performed on anesthetized adult female rats. Trachea and jugular vein were cannulated, and the electrocardiographic potentials were recorded by connecting needle electrodes in limb lead II configuration. PDG (10 ΅g/kg, IV, bolus injection) responses were elicited by bolus injection initially, after saline/morphine (1 mg/kg) and after injecting MBT venom (100 μg/kg). The time-response area of the PDG-induced bradycardiac response after treatment was calculated as % of the initial PDG response area. At the end of experiments, lungs were excised for determination of pulmonary water content. Results: PDG produced bradycardiac response that lasted for >60 s. MBT venom augmented the PDG reflex response by 2.5 times. In morphine pretreated group, augmentation of bradycardiac response induced by MBT venom was absent. MBT venom increased the pulmonary water content, and the increase was absent in morphine pretreated animals. Conclusion: The results reveal that morphine prevents the MBT venom-induced augmentation of PDG reflex response and pulmonary edema. Thus, morphine can be useful in scorpion envenomation syndrome associated with pulmonary edema. PMID:26997727

  6. A Novel Zebrafish Model to Provide Mechanistic Insights into the Inflammatory Events in Carrageenan-Induced Abdominal Edema

    PubMed Central

    Huang, Shi-Ying; Feng, Chien-Wei; Hung, Han-Chun; Chakraborty, Chiranjib; Chen, Chun-Hong; Chen, Wu-Fu; Jean, Yen-Hsuan; Wang, Hui-Min David; Sung, Chun-Sung; Sun, Yu-Min; Wu, Chang-Yi; Liu, Wangta; Hsiao, Chung-Der; Wen, Zhi-Hong

    2014-01-01

    A suitable small animal model may help in the screening and evaluation of new drugs, especially those from natural products, which can be administered at lower dosages, fulfilling an urgent worldwide need. In this study, we explore whether zebrafish could be a model organism for carrageenan-induced abdominal edema. The research results showed that intraperitoneal (i.p.) administration of 1.5% λ-carrageenan in a volume of 20 µL significantly increased abdominal edema in adult zebrafish. Levels of the proinflammatory proteins tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) were increased in carrageenan-injected adult zebrafish during the development of abdominal edema. An associated enhancement was also observed in the leukocyte marker, myeloperoxidase (MPO). To support these results, we further observed that i.p. methylprednisolone (MP; 1 µg), a positive control, significantly inhibited carrageenan-induced inflammation 24 h after carrageenan administration. Furthermore, i.p. pretreatment with either an anti-TNF-α antibody (1∶5 dilution in a volume of 20 µL) or the iNOS-selective inhibitor aminoguanidine (AG; 1 µg) inhibited carrageenan-induced abdominal edema in adult zebrafish. This new animal model is uncomplicated, easy to develop, and involves a straightforward inducement of inflammatory edema for the evaluation of small volumes of drugs or test compounds. PMID:25141004

  7. Exercise-induced interstitial pulmonary edema at sea-level in young and old healthy humans

    PubMed Central

    Taylor, Bryan J.; Carlson, Alex R.; Miller, Andrew D.; Johnson, Bruce D.

    2014-01-01

    We asked whether aged adults are more susceptible to exercise-induced pulmonary edema relative to younger individuals. Lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (Dm) and pulmonary-capillary blood volume (Vc) were measured before and after exhaustive discontinuous incremental exercise in 10 young (YNG; 27±3 yr) and 10 old (OLD; 69±5 yr) males. In YNG subjects, Dm increased (11±7%, P=0.031), Vc decreased (−10±9%, P=0.01) and DLCO was unchanged (30.5±4.1 vs. 29.7±2.9 ml/min/mmHg, P=0.44) pre- to post-exercise. In OLD subjects, DLCO and Dm increased (11±14%, P=0.042; 16±14%, P=0.025) but Vc was unchanged (58±23 vs. 56±23 ml, P=0.570) pre- to post-exercise. Group-mean Dm/Vc was greater after vs. before exercise in the YNG and OLD subjects. However, Dm/Vc was lower post-exercise in 2 of the 10 YNG (−7±4%) and 2 of the 10 OLD subjects (−10±5%). These data suggest that exercise decreases interstitial lung fluid in most YNG and OLD subjects, with a small number exhibiting evidence for exercise-induced pulmonary edema. PMID:24200644

  8. Pulmonary edema

    MedlinePlus

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  9. Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain.

    PubMed

    Higashida, Tetsuhiro; Peng, Changya; Li, Jie; Dornbos, David; Teng, Kailing; Li, Xiaohua; Kinni, Harish; Guthikonda, Murali; Ding, Yuchuan

    2011-02-01

    Brain edema following stroke is a critical clinical problem due to its association with increased morbidity and mortality. Despite its significance, present treatment for brain edema simply provides symptomatic relief due to the fact that molecular mechanisms underlying brain edema remain poorly understood. The present study investigated the role of hypoxia-inducible factor-1α (HIF-1α) and aquaporins (AQP-4 and -9) in regulating cerebral glycerol accumulation and inducing brain edema in a rodent model of stroke. Two-hours of middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in male Sprague-Dawley rats (250-280 g). Anti-AQP-4 antibody, anti-AQP-9 antibody, or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) was given at the time of MCAO. The rats were sacrificed at 1 and 24 hours after reperfusion and their brains were examined. Extracellular and intracellular glycerol concentration of brain tissue was calculated with an enzymatic glycerol assay. The protein expressions of HIF-1α, AQP-4 and AQP-9 were determined by Western blotting. Brain edema was measured by brain water content. Compared to control, edema (p < 0.01), increased glycerol (p < 0.05), and enhanced expressions of HIF-1α, AQP-4, and AQP-9 (p < 0.05) were observed after stroke. With inhibition of AQP-4, AQP-9 or HIF-1α, edema and extracellular glycerol were significantly (p < 0.01) decreased while intracellular glycerol was increased (p < 0.01) 1 hour after stroke. Inhibition of HIF-1α with 2ME2 suppressed (p < 0.01) the expression of AQP-4 and AQP-9. These findings suggest that HIF-1α serves as an upstream regulator of cerebral glycerol concentrations and brain edema via a molecular pathway involving AQP-4 and AQP-9. Pharmacological blockade of this pathway in stroke patients may provide novel therapeutic strategies.

  10. Corneal Disorders

    MedlinePlus

    ... Injuries Dystrophies - conditions in which parts of the cornea lose clarity due to a buildup of cloudy material Treatments of corneal disorders include medicines, corneal transplantation, and corneal laser surgery. NIH: National Eye Institute

  11. Cytotoxicity of atropine to human corneal endothelial cells by inducing mitochondrion-dependent apoptosis.

    PubMed

    Wen, Qian; Fan, Ting-Jun; Tian, Cheng-Lei

    2016-07-01

    Atropine, a widely used topical anticholinergic drug, might have adverse effects on human corneas in vivo. However, its cytotoxic effect on human corneal endothelium (HCE) and its possible mechanisms are unclear. Here, we investigated the cytotoxicity of atropine and its underlying cellular and molecular mechanisms using an in vitro model of HCE cells and verified the cytotoxicity using cat corneal endothelium (CCE) in vivo. Our results showed that atropine at concentrations above 0.3125 g/L could induce abnormal morphology and viability decline in a dose- and time-dependent manner in vitro. The cytotoxicity of atropine was proven by the induced density decrease and abnormality of morphology and ultrastructure of CCE cells in vivo. Meanwhile, atropine could also induce dose- and time-dependent elevation of plasma membrane permeability, G1 phase arrest, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation of HCE cells. Moreover, 2.5 g/L atropine could also induce caspase-2/-3/-9 activation, mitochondrial transmembrane potential disruption, downregulation of anti-apoptotic Bcl-2 and Bcl-xL, upregulation of pro-apoptotic Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor. In conclusion, atropine above 1/128 of its clinical therapeutic dosage has a dose- and time-dependent cytotoxicity to HCE cells in vitro which is confirmed by CCE cells in vivo, and its cytotoxicity is achieved by inducing HCE cell apoptosis via a death receptor-mediated mitochondrion-dependent signaling pathway. Our findings provide new insights into the cytotoxicity and apoptosis-inducing effect of atropine which should be used with great caution in eye clinic.

  12. Cytotoxicity of atropine to human corneal endothelial cells by inducing mitochondrion-dependent apoptosis

    PubMed Central

    Wen, Qian; Tian, Cheng-Lei

    2016-01-01

    Atropine, a widely used topical anticholinergic drug, might have adverse effects on human corneas in vivo. However, its cytotoxic effect on human corneal endothelium (HCE) and its possible mechanisms are unclear. Here, we investigated the cytotoxicity of atropine and its underlying cellular and molecular mechanisms using an in vitro model of HCE cells and verified the cytotoxicity using cat corneal endothelium (CCE) in vivo. Our results showed that atropine at concentrations above 0.3125 g/L could induce abnormal morphology and viability decline in a dose- and time-dependent manner in vitro. The cytotoxicity of atropine was proven by the induced density decrease and abnormality of morphology and ultrastructure of CCE cells in vivo. Meanwhile, atropine could also induce dose- and time-dependent elevation of plasma membrane permeability, G1 phase arrest, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation of HCE cells. Moreover, 2.5 g/L atropine could also induce caspase-2/-3/-9 activation, mitochondrial transmembrane potential disruption, downregulation of anti-apoptotic Bcl-2 and Bcl-xL, upregulation of pro-apoptotic Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor. In conclusion, atropine above 1/128 of its clinical therapeutic dosage has a dose- and time-dependent cytotoxicity to HCE cells in vitro which is confirmed by CCE cells in vivo, and its cytotoxicity is achieved by inducing HCE cell apoptosis via a death receptor-mediated mitochondrion-dependent signaling pathway. Our findings provide new insights into the cytotoxicity and apoptosis-inducing effect of atropine which should be used with great caution in eye clinic. PMID:27022135

  13. Vitamin D Activation and Function in Human Corneal Epithelial Cells During TLR-Induced Inflammation

    PubMed Central

    Reins, Rose Yvonne; Baidouri, Hasna; McDermott, Alison Marie

    2015-01-01

    Purpose Vitamin D is recognized to be an important modulator of the immune system. In the eye, studies have shown that deficiencies and genetic differences in vitamin D–related genes have a significant impact on the development of various ocular diseases. Our current study examines the ability of human corneal epithelial cells (HCEC) to activate vitamin D and the effect of vitamin D treatment on antimicrobial peptide production and cytokine modulation during inflammation, with the ultimate goal of using vitamin D therapeutically for corneal inflammation. Methods Human corneal epithelial cells were treated with 10−7M vitamin D3 (D3) or 25-hydroxyvitamin D3 (25D3) for 24 hours and 1,25-dihydroxyvitamin D3 (1,25D3) detected by immunoassay. Human cathelicidin (LL-37) expression was examined by RT-PCR, immunoblot, and immunostaining following 1,25D3 treatment and antimicrobial activity of 1,25D3-treated cells was determined. Cells were stimulated with TLR3 agonist polyinosinic-polycytidylic acid (Poly[I:C]) for 24 hours and cytokine levels measured by RT-PCR, ELISA, and Luminex. Immunostaining determined expression of vitamin D receptor (VDR) and retinoic acid inducible gene-1 receptor (RIG-1) as well as NF-κB nuclear translocation. Results When treated with inactive vitamin D metabolites, HCEC produced active 1,25D3, leading to enhanced expression of the antimicrobial peptide, LL-37, dependent on VDR. 1,25-D3 decreased the expression of proinflammatory cytokines (IL-1β, IL-6, TNFα, and CCL20) and MMP-9 induced by Poly(I:C) as well as pattern recognition receptor expression (TLR3, RIG-1, MDA5). However, early activation of NF-κB was not affected. Conclusions These studies demonstrate the protective ability of vitamin D to attenuate proinflammatory mediators while increasing antimicrobial peptides and antipseudomonas activity in corneal cells, and further our knowledge on the immunomodulatory functions of the hormone. PMID:26641549

  14. Radiation induced endothelial cell retraction in vitro: correlation with acute pulmonary edema.

    PubMed

    Onoda, J M; Kantak, S S; Diglio, C A

    1999-01-01

    We determined the effects of low dose radiation (<200 cGy) on the cell-cell integrity of confluent monolayers of pulmonary microvascular endothelial cells (PMEC). We observed dose- and time-dependent reversible radiation induced injuries to PMEC monolayers characterized by retraction (loss of cell-cell contact) mediated by cytoskeletal F-actin reorganization. Radiation induced reorganization of F-actin microfilament stress fibers was observed > or =30 minutes post irradiation and correlated positively with loss of cell-cell integrity. Cells of irradiated monolayers recovered to form contact inhibited monolayers > or =24 hours post irradiation; concomitantly, the depolymerized microfilaments organized to their pre-irradiated state as microfilament stress fibers arrayed parallel to the boundaries of adjacent contact-inhibited cells. Previous studies by other investigators have measured slight but significant increases in mouse lung wet weight >1 day post thoracic or whole body radiation (> or =500 cGy). Little or no data is available concerning time intervals <1 day post irradiation, possibly because of the presumption that edema is mediated, at least in part, by endothelial cell death or irreversible loss of barrier permeability functions which may only arise 1 day post irradiation. However, our in vitro data suggest that loss of endothelial barrier function may occur rapidly and at low dose levels (< or =200 cGy). Therefore, we determined radiation effects on lung wet weight and observed significant increases in wet weight (standardized per dry weight or per mouse weight) in < or =5 hours post thoracic exposure to 50 200 cGy x-radiation. We suggest that a single fraction of radiation even at low dose levels used in radiotherapy, may induce pulmonary edema by a reversible loss of endothelial cell-cell integrity and permeability barrier function.

  15. Celastrol nanomicelles attenuate cytokine secretion in macrophages and inhibit macrophage-induced corneal neovascularization in rats

    PubMed Central

    Li, Zhanrong; Li, Jingguo; Zhu, Lei; Zhang, Ying; Zhang, Junjie; Yao, Lin; Liang, Dan; Wang, Liya

    2016-01-01

    The aim of the present study was to investigate the inhibitory effects of celastrol-loaded nanomicelles (CNMs) on activated macrophage-induced corneal neovascularization (CNV) in rats and cytokine secretion in macrophages. Using an angiogenesis assay in vitro, we detected the effects of CNMs on human umbilical vein endothelial cell (HUVEC) migration and invasion. In addition, the expression levels of cytokines secreted from hypoxia-induced macrophages were assessed through cytokine array analysis. The expression of hypoxia-inducible factors-1α (HIF-1α), nuclear factor-kappa B p65 (NF-κB p65), phospho-nuclear factor-kappa B p65 (phospho-NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-ERK1/2 was analyzed by western blotting. Activated macrophages were elicited through mineral oil lumbar injection, labeled with 1,19-dioctadecyl-3-3-39,39-tetramethylindocarbocyanine (DiI) and implanted into the corneal micro-pocket to induce CNV and to assess the antiangiogenic effect in rats. CNV was morphometrically analyzed using ImageJ software. Histopathological features were evaluated by immunofluorescence immunostaining for vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) on day 2 after surgery. In the present study, the results indicated that CNMs significantly inhibited the migration and invasion of HUVECs; remarkably attenuated the expression of VEGF, tumor necrosis factor-α, interleukin-1α, monocyte chemoattractant protein 1, cytokine-induced neutrophil chemoattractant 3, and MMP-9 protein; and downregulated ERK1/2, p38 MAPK, NF-κB activation, and HIF-1α expression in macrophages. The peritoneal cells elicited using mineral oil were highly purified macrophages, and the length and area of CNV were significantly decreased in the CNMs group compared with the control group. There was a significant reduction in the expression of VEGF and MMP-9 in

  16. Celastrol nanomicelles attenuate cytokine secretion in macrophages and inhibit macrophage-induced corneal neovascularization in rats.

    PubMed

    Li, Zhanrong; Li, Jingguo; Zhu, Lei; Zhang, Ying; Zhang, Junjie; Yao, Lin; Liang, Dan; Wang, Liya

    The aim of the present study was to investigate the inhibitory effects of celastrol-loaded nanomicelles (CNMs) on activated macrophage-induced corneal neovascularization (CNV) in rats and cytokine secretion in macrophages. Using an angiogenesis assay in vitro, we detected the effects of CNMs on human umbilical vein endothelial cell (HUVEC) migration and invasion. In addition, the expression levels of cytokines secreted from hypoxia-induced macrophages were assessed through cytokine array analysis. The expression of hypoxia-inducible factors-1α (HIF-1α), nuclear factor-kappa B p65 (NF-κB p65), phospho-nuclear factor-kappa B p65 (phospho-NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-ERK1/2 was analyzed by western blotting. Activated macrophages were elicited through mineral oil lumbar injection, labeled with 1,19-dioctadecyl-3-3-39,39-tetramethylindocarbocyanine (DiI) and implanted into the corneal micro-pocket to induce CNV and to assess the antiangiogenic effect in rats. CNV was morphometrically analyzed using ImageJ software. Histopathological features were evaluated by immunofluorescence immunostaining for vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) on day 2 after surgery. In the present study, the results indicated that CNMs significantly inhibited the migration and invasion of HUVECs; remarkably attenuated the expression of VEGF, tumor necrosis factor-α, interleukin-1α, monocyte chemoattractant protein 1, cytokine-induced neutrophil chemoattractant 3, and MMP-9 protein; and downregulated ERK1/2, p38 MAPK, NF-κB activation, and HIF-1α expression in macrophages. The peritoneal cells elicited using mineral oil were highly purified macrophages, and the length and area of CNV were significantly decreased in the CNMs group compared with the control group. There was a significant reduction in the expression of VEGF and MMP-9 in

  17. Pioglitazone-induced congestive heart failure and pulmonary edema in a patient with preserved ejection fraction

    PubMed Central

    Jearath, Vaneet; Vashisht, Rajan; Rustagi, Vipul; Raina, Sujeet; Sharma, Rajesh

    2016-01-01

    Pioglitazone-induced heart failure is known in patients with underlying heart disease, but is not well documented in patients with normal left ventricular function. Pioglitazone has been very popular as it is an insulin sensitizer and insulin resistance is prevalent among Indians. Fluid retention exacerbates pre-existing heart failure or precipitates heart failure in a patient with underlying left ventricular dysfunction. However, pathogenesis of heart failure in a patient with normal left ventricular function is not known. Probably it is due to dose-related effect on pulmonary endothelial permeability, rather than alterations in left ventricular mass or ejection fraction. We report a patient who developed congestive heart failure and pulmonary edema with normal left ventricular function within 1 year of starting pioglitazone therapy. We have to be careful in monitoring all possible side effects during followup when patients are on pioglitazone therapy. PMID:27127397

  18. Pioglitazone-induced congestive heart failure and pulmonary edema in a patient with preserved ejection fraction.

    PubMed

    Jearath, Vaneet; Vashisht, Rajan; Rustagi, Vipul; Raina, Sujeet; Sharma, Rajesh

    2016-01-01

    Pioglitazone-induced heart failure is known in patients with underlying heart disease, but is not well documented in patients with normal left ventricular function. Pioglitazone has been very popular as it is an insulin sensitizer and insulin resistance is prevalent among Indians. Fluid retention exacerbates pre-existing heart failure or precipitates heart failure in a patient with underlying left ventricular dysfunction. However, pathogenesis of heart failure in a patient with normal left ventricular function is not known. Probably it is due to dose-related effect on pulmonary endothelial permeability, rather than alterations in left ventricular mass or ejection fraction. We report a patient who developed congestive heart failure and pulmonary edema with normal left ventricular function within 1 year of starting pioglitazone therapy. We have to be careful in monitoring all possible side effects during followup when patients are on pioglitazone therapy.

  19. Hypoxia-induced downregulation of ΔNp63α in the corneal epithelium

    PubMed Central

    Robertson, Danielle M.; Zhu, Meifang; Wu, Yu-Chieh; Cavanagh, H. Dwight

    2012-01-01

    Purpose To establish a relationship between hypoxic stress and the expression of ΔNp63α in an established rabbit contact lens model and in cultured corneal epithelial cells. Methods New Zealand White rabbits were fit in one eye with either a non-oxygen transmissible or hyper oxygen permeable rigid contact lens for 24 hours of wear; the contralateral eye was used as a control. All rabbits underwent a bilateral nictitating membranectomy to facilitate lens retention. ΔNp63α expression was analyzed by immunofluorescence and western blot. Telomerase-immortalized human corneal epithelial cells (hTCEpi) were grown in serum-free media and treated with the hypoxia mimetic cobalt chloride to simulate hypoxia for 6 (short term) or 24 (prolonged) hours. Transcriptional activity and protein levels were assessed using luciferase reporter assays, RT-PCR, and western blot. Cell viability was assessed by live/dead assay. Results Compared to the non-lens wearing eye, 24 hours of non-oxygen transmissible lens wear in vivo decreased ΔNp63α protein levels in both the limbal and central corneal epithelium; this decrease was not found in the hyper oxygen transmissible lens group. In hTCEpi cells in vitro, hypoxia increased the activity of the ΔN promoter, but reduced levels of ΔNp63α mRNA after 24 hours of prolonged culture. Similarly, ΔNp63α expression levels were unaffected from short term exposure, but decreased after 24 hours. Live/dead assay confirmed the presence of viable cells following CoCl2 treatment at 6 and 24 hour time points. Cells treated for 24 hours were viable but were smaller and rounded with signs of membrane blebbing, consistent with early stages of apoptosis. Conclusions Hypoxic stress induced by either prolonged wear of a non-oxygen transmissible lens in vivo or hypoxic-mimic conditions by cobalt chloride in vitro down regulates ΔNp63α in the corneal epithelium. The loss of ΔNp63α in response to hypoxic stress may contribute to the disruption of

  20. Reversible Corneal Toxicity of Retained Intracameral Perfluoro-n-octane

    PubMed Central

    Alharbi, Saad S.; Asiri, Mohammed S.

    2016-01-01

    A 58-year-old female presented with intracameral retained perfluoro-n-octane (PFO) following previous retinal reattachment surgery. After 4 years of follow-up without related sequelae, the patient complained of a gradual decrease in vision secondary to corneal edema with whitish corneal precipitate inferiorly corresponding to the area of retained PFO. Three weeks after anterior chamber washout, corneal edema resolved and the patient obtained 20/40 visual acuity. Even though PFO considered to have a relatively good safety profile, early anterior chamber washout may prevent corneal toxicity and avoid later persistent corneal decompensation. PMID:27555718

  1. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    PubMed

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction.

  2. Tissue Engineering of Corneal Endothelium

    PubMed Central

    Mimura, Tatsuya; Yokoo, Seiichi; Yamagami, Satoru

    2012-01-01

    Human corneal endothelial cells (HCECs) do not replicate after wounding. Therefore, corneal endothelial deficiency can result in irreversible corneal edema. Descemet stripping automated endothelial keratoplasty (DSAEK) allows selective replacement of the diseased corneal endothelium. However, DSAEK requires a donor cornea and the worldwide shortage of corneas limits its application. This review presents current knowledge on the tissue engineering of corneal endothelium using cultured HCECs. We also provide our recent work on tissue engineering for DSAEK grafts using cultured HCECs. We reconstructed DSAEK grafts by seeding cultured DiI-labelled HCECs on collagen sheets. Then HCEC sheets were transplanted onto the posterior stroma after descemetorhexis in the DSAEK group. Severe stromal edema was detected in the control group, but not in the DSAEK group throughout the observation period. Fluorescein microscopy one month after surgery showed numerous DiI-labelled cells on the posterior corneal surface in the DSAEK group. Frozen sections showed a monolayer of DiI-labelled cells on Descemet’s membrane. These findings indicate that cultured adult HCECs, transplanted with DSAEK surgery, maintain corneal transparency after transplantation and suggest the feasibility of performing DSAEK with HCECs to treat endothelial dysfunction. PMID:24955745

  3. TRPA1 contributes to the acute inflammatory response and mediates carrageenan-induced paw edema in the mouse.

    PubMed

    Moilanen, Lauri J; Laavola, Mirka; Kukkonen, Meiju; Korhonen, Riku; Leppänen, Tiina; Högestätt, Edward D; Zygmunt, Peter M; Nieminen, Riina M; Moilanen, Eeva

    2012-01-01

    Transient receptor potential ankyrin 1 (TRPA1) is an ion channel involved in thermosensation and nociception. TRPA1 is activated by exogenous irritants and also by oxidants formed in inflammatory reactions. However, our understanding of its role in inflammation is limited. Here, we tested the hypothesis that TRPA1 is involved in acute inflammatory edema. The TRPA1 agonist allyl isothiocyanate (AITC) induced inflammatory edema when injected intraplantarly to mice, mimicking the classical response to carrageenan. Interestingly, the TRPA1 antagonist HC-030031 and the cyclo-oxygenase (COX) inhibitor ibuprofen inhibited not only AITC but also carrageenan-induced edema. TRPA1-deficient mice displayed attenuated responses to carrageenan and AITC. Furthermore, AITC enhanced COX-2 expression in HEK293 cells transfected with human TRPA1, a response that was reversed by HC-030031. This study demonstrates a hitherto unknown role of TRPA1 in carrageenan-induced inflammatory edema. The results also strongly suggest that TRPA1 contributes, in a COX-dependent manner, to the development of acute inflammation.

  4. Comparative effects of two potentiating peptides (KPP and BPP9a) on kinin-induced rat paw edema.

    PubMed

    Fernandes, P D; Guimarães, J A; Assreuy, J

    1991-03-01

    We have previously shown that KPP, a kinin potentiating peptide generated by tryptic digestion of human plasma proteins potentiated kinin effects on isolated smooth muscle preparations like guinea-pig ileum with high potency and specificity. We also obtained evidence suggesting that, unlike other potentiating peptides, KPP exerts its effect by a mechanism different from the inhibition of kinin metabolism by angiotensin converting enzyme, neutral endopeptidase and kininase I. Here we show the potentiating effect of KPP and of BPP9a, a potentiator derived from snake venom, towards the rat paw edema induced by bradykinin (BK). Our results show that: a) KPP is 25-fold more active than BPP9a in potentiating rat paw edema elicited by BK: b) like BPP9a, KPP is specific in potentiating kinin-induced edema, being ineffective in potentiating edema induced by histamine or serotonin; and c) DesArg9-BK (DABK) elicits a small edematogenic response which can be potentiated by both KPP and BPP9a.

  5. Pulmonary Edema

    MedlinePlus

    ... suddenly or develop over time. Sudden (acute) pulmonary edema symptoms Extreme shortness of breath or difficulty breathing ( ... fatal if not treated. Long-term (chronic) pulmonary edema symptoms Having more shortness of breath than normal ...

  6. [Unilateral cystoid macular edema induced by citalopram--a case report].

    PubMed

    Alexík, M

    2011-10-01

    Citamopram is an antidepressant drug with fatigue, sleep disorders, appetite changes and visual impairment being the most common side effects. We are not aware of any published cases of cystoid macular edema following medication of this drug. We present a case of 55 year old woman with medical history of depression placed on Citalopram medication who noticed deterioration of right eye vision. Best corrected visual acuity was 20/120, ophthalmic coherence tomography and fluorescein angiography revealed cystoid macular edema. Two months following drug withdrawal edema disappeared and best corrected visual acuity improved to 20/32. Due to lack of other probable causes of edema and quick disappearance following drug withdrawal it is plausible to think of Citalopram as causative factor of cystoid macular edema in this patient.

  7. Assessment of therapeutic options for reducing alkali burn-induced corneal neovascularization and inflammation.

    PubMed

    Bakunowicz-Łazarczyk, Alina; Urban, Beata

    2016-03-01

    This article aims to review and provide the current knowledge of the possibilities of topical treatment of corneal neovascularization due to alkali burns, evidenced by laboratory experiments, in vitro studies, and clinical trials published in the specialized literature. Authors present clinically relevant treatment of corneal neovascularization used in clinical practice, potential antiangiogenic topical therapeutics against corneal neovascularization, which are under investigation, and anti-angiogenic gene-therapy.

  8. Involvement of water channel Aquaporin 5 in H2S-induced pulmonary edema.

    PubMed

    Xu, Chunyang; Jiang, Lei; Zou, Yuxia; Xing, Jingjing; Sun, Hao; Zhu, Baoli; Zhang, Hengdong; Wang, Jun; Zhang, Jinsong

    2017-01-01

    Acute exposure to hydrogen sulfide (H2S) poses a significant threat to life, and the lung is one of the primary target organs of H2S. However, the mechanisms involved in H2S-induced acute pulmonary edema are poorly understood. This study aims to investigate the effects of H2S on the expression of water channel aquaporin 5 (AQP5) and to elucidate the signaling pathways involved in AQP5 regulation. In an in vivo study, C57BL6 mice were exposed to sub-lethal concentrations of inhaled H2S, and histological injury of the lungs and ultrastructure injury of the epithelial cells were evaluated. With real-time PCR and western blot assays, we found that H2S exposure contributed to a significant decrease in AQP5 expression both in murine lung tissue and the A549 cell line, and the ERK1/2 and p38 MAPK signaling pathways were demonstrated to be implicated in AQP5 regulation. Therefore, adjusting AQP5 protein levels could be considered a therapeutic strategy for the treatment of APE induced by H2S and other hazardous gases.

  9. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats.

    PubMed

    Lv, Qiushi; Fan, Xinying; Xu, Gelin; Liu, Qian; Tian, Lili; Cai, Xiaoyi; Sun, Wenshan; Wang, Xiaomeng; Cai, Qiankun; Bao, Yuanfei; Zhou, Lulu; Zhang, Yao; Ge, Liang; Guo, Ruibing; Liu, Xinfeng

    2013-02-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. Nerve growth factor (NGF) appears to be a viable strategy to treat brain edema and TBI. Unfortunately, due to its poor blood-brain barrier (BBB) permeability, the clinical application of NGF has been greatly limited. We previously demonstrated that intranasal NGF could bypass the BBB and distribute throughout the brain. Here we further studied whether intranasal NGF could attenuate TBI-induced brain edema and its putative mechanisms. TBI was produced by a modified weight-drop model. We found that intranasal administration of NGF (5μg/d) attenuated the brain edema, as assayed by hemisphere water content, at 12h, 24h and 72h after TBI induction. This attenuation was associated with a prominent decrease of the content of aquaporin-4, which plays a pivotal role in the formation of brain edema. By the use of RT-PCR and ELISA, we showed that intranasal NGF markedly inhibited the transcription and expression of pro-inflammatory cytokines including IL-1β and TNF-α. An electrophoretic mobility shift assay (EMSA) displayed a significant activation of nuclear factor-κB following TBI, which was, however, much lowered in the NGF-treated rats. Furthermore, upon intranasal NGF supplementation, mitochondria-mediated apoptosis following TBI was minimized, as indicated by upregulation of Bcl-2 and downregulation of caspase-3. Collectively, our findings suggested that intranasal NGF may be a promising strategy to treat brain edema and TBI.

  10. Swimming-Induced Pulmonary Edema: Pathophysiology and Risk Reduction With Sildenafil

    PubMed Central

    Moon, Richard E.; Martina, Stefanie D.; Peacher, Dionne F.; Potter, Jennifer F.; Wester, Tracy E.; Cherry, Anne D.; Natoli, Michael J.; Otteni, Claire E.; Kernagis, Dawn N.; White, William D.; Freiberger, John J.

    2016-01-01

    Background Swimming-induced pulmonary edema (SIPE) occurs during swimming or scuba diving, often in young individuals with no predisposing conditions, and its pathophysiology is poorly understood. This study tested the hypothesis that pulmonary artery and pulmonary artery wedge pressures are higher in SIPE-susceptible individuals during submerged exercise compared to the general population and are reduced by sildenafil. Methods and Results Ten study subjects with a history of SIPE (mean age 41.6 years) and 20 control subjects (mean age 36.2 years) were instrumented with radial artery and pulmonary artery catheters and performed moderate cycle ergometer exercise for 6–7 minutes while submersed in 20°C water. SIPE-susceptible subjects repeated the exercise 150 minutes after oral administration of 50 mg sildenafil. Work rate and mean arterial pressure during exercise were similar in controls and SIPE-susceptibles. Average VO2 and cardiac output (CO) in SIPE-susceptibles and controls were: VO2 2.42 L.min−1 vs. 1.95 L.min−1, P=0.2; CO 17.9 L.min−1 vs. 13.8 L.min−1, P=0.01). Accounting for differences in CO between groups, mean pulmonary artery pressure (MPAP) at CO=13.8 L.min−1 was 22.5 mmHg in controls vs. 34.0 mmHg in SIPE-susceptibles (P=0.004) and the corresponding pulmonary artery wedge pressure (PAWP) 11.0 mmHg vs. 18.8 mmHg (P=0.028). After sildenafil, there were no statistically significant differences in MPAP or PAWP between SIPE-susceptibles and controls. Conclusions These observations confirm that SIPE is a form of hemodynamic pulmonary edema. The reduction in pulmonary vascular pressures after sildenafil with no adverse effect on exercise hemodynamics suggests that it may be useful in SIPE prevention. Clinical Trial Registration Information ClinicalTrials.gov. Identifier: NCT00815646. PMID:26882910

  11. Acute corneal hydrops in keratoconus

    PubMed Central

    Maharana, Prafulla K; Sharma, Namrata; Vajpayee, Rasik B

    2013-01-01

    Acute corneal hydrops is a condition characterized by stromal edema due to leakage of aqueous through a tear in descemet membrane. The patient presents with sudden onset decrease in vision, photophobia, and pain. Corneal thinning and ectasias combined with trivial trauma to the eye mostly by eye rubbing is considered as the underlying cause. With conservative approach self-resolution takes around 2 to 3 months. Surgical intervention is required in cases of non-resolution of corneal edema to avoid complications and for early visual rehabilitation. Intracameral injection of air or gas such as perflouropropane is the most common surgical procedure done. Recent investigative modality such as anterior segment optical coherence tomography is an extremely useful tool for diagnosis, surgical planning, and postoperative follow up. Resolution of hydrops may improve the contact lens tolerance and visual acuity but most cases require keratoplasty for visual rehabilitation. PMID:23925338

  12. Prevention of status epilepticus-induced brain edema and neuronal cell loss by repeated treatment with high-dose levetiracetam.

    PubMed

    Itoh, Kouichi; Inamine, Moriyoshi; Oshima, Wataru; Kotani, Masaharu; Chiba, Yoichi; Ueno, Masaki; Ishihara, Yasuhiro

    2015-05-22

    The management of status epilepticus (SE) is important to prevent mortality and the development of post-SE symptomatic epilepsy. Acquired epilepsy after an initial brain insult by SE can be experimentally reproduced in the murine model of SE induced by pilocarpine. In the present study, we evaluated the possibility of treatment with a high-dose of levetiracetam in this model. Repeated treatment with high-dose levetiracetam after termination of SE by diazepam significantly prevented the incidence of spontaneous recurrent seizures and mortality for at least 28 days. To determine the brain alterations after SE, magnetic resonance imaging was performed. Both T2-weighted imaging and diffusion-weighted imaging showed changes in the limbic regions. These changes in the limbic regions demonstrated the development of cytotoxic edema three hours after SE, followed by the development of vasogenic edema two days after SE. In the pilocarpine-SE model, the incidence of spontaneous recurrent seizures after SE was strongly associated with neuronal damage within a few hours to days after SE by the development of vasogenic edema via the breakdown of the blood-brain barrier in the limbic regions. High-dose levetiracetam significantly suppressed the parameters in the limbic areas. These data indicate that repeated treatment with high-dose levetiracetam for at least two days after SE termination by diazepam is important for controlling the neuronal damage by preventing brain edema. Therefore, these findings suggest that early treatment with high-dose levetiracetam after SE termination by diazepam may protect against adverse sequelae via the inhibition of neurotoxicity induced by brain edema events.

  13. An aqueous extract of Ilex paraguariensis reduces carrageenan-induced edema and inhibits the expression of cyclooxygenase-2 and inducible nitric oxide synthase in animal models of inflammation.

    PubMed

    Schinella, Guillermo; Neyret, Elisa; Cónsole, Gloria; Tournier, Horacio; Prieto, José M; Ríos, José-Luis; Giner, Rosa María

    2014-08-01

    Mate (Ilex paraguariensis) is a highly popular herbal beverage in South America due to its high content of caffeine. Its hypolipidemic and antioxidant properties are of increasing interest in the treatment of cardiovascular disorders and for weight control. In the present study, we show for the first time both the local and systemic anti-inflammatory effects of an aqueous extract of mate in three classic in vivo models, namely acute and chronic 12-O-tetradecanoylphorbol 13-acetate-induced mouse ear edema and acute carrageenan-induced mouse paw edema. Caffeine, rutin, chlorogenic acid, 3,5-dicafeoyl quinic acid, and 4,5-dicafeoyl quinic acid, accompanied by a complex mixture of other simple phenolic acids, were identified in the extract by HPLC-UV analyses. In the acute edema model, mate extract applied topically (1 mg/ear) halved the 12-O-tetradecanoylphorbol 13-acetate-induced acute edema (50 %) and almost suppressed neutrophil infiltration (93 %), while in the 12-O-tetradecanoylphorbol 13-acetate-induced subchronic inflammation, the edema was significantly reduced by 62 % (1 mg/ear/day × seven doses). The oral administration of the mate extract (250 mg/kg) significantly reduced the carrageenan-induced edema at all time points, an effect which was accompanied by a 43 % and 53 % reduction of the expression of cyclooxygenase-2 and inducible nitric oxide synthase, respectively. Histological analyses confirmed a reduction of epithelium thickness, dermis with mild inflammation, hair follicles with some secretory cells of sebaceous glands, and hypodermic adipocytes. In conclusion, mate is endowed with in vivo preventative or therapeutic anti-inflammatory effects in both local and systemic inflammatory processes.

  14. Aplastic anemia induced disc edema and visual loss in pregnancy: a case report

    PubMed Central

    Gupta, Shailesh K; Brar, Vikram S; Keshavamurthy, Ravi; Chalam, Kakarla V

    2008-01-01

    Introduction A case of aplastic anemia diagnosed during pregnancy, which developed bilateral disc edema and acute pre-retinal hemorrhage leading to vision loss. Case Presentation A 20 year old primagravid female developed acute vision loss in her right eye, during hospitalization for treatment of aplastic anemia diagnosed during her pregnancy. Her best-corrected visual acuity (BCVA) was hand motions and fundus evaluation revealed a large pre-macular hemorrhage in the right eye (OD) and bilateral disc edema. Neuro-imaging studies did not reveal any signs of intracranial mass lesion or edema. Conclusion There was resolution of the disc edema with improvement in the pre-macular hemorrhage resulting in 20/50 vision in the right eye, following supportive transfusions. Ophthalmic manifestations developing in a pregnant patient with aplastic anemia can be successfully managed with supportive care including red blood cell and platelet transfusions. PMID:19017378

  15. Lumican induces human corneal epithelial cell migration and integrin expression via ERK 1/2 signaling

    SciTech Connect

    Seomun, Young; Joo, Choun-Ki

    2008-07-18

    Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence that lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.

  16. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes

    PubMed Central

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  17. Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema

    PubMed Central

    Chen, Shao-Jun; Yang, Jia-Fang; Kong, Fan-Ping; Ren, Ji-Long; Hao, Ke; Li, Min; Yuan, Yuan; Chen, Xin-Can; Yu, Ri-Sheng; Li, Jun-Fa; Leng, Gareth; Chen, Xue-Qun; Du, Ji-Zeng

    2014-01-01

    Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1. We also show that, in cultured primary astrocytes: (i) both CRFR1 and AQP4 are expressed; (ii) exogenous CRF, acting through CRFR1, triggers signaling of cAMP/PKA, intracellular Ca2+, and PKCε; and (iii) the up-regulated cAMP/PKA signaling contributes to the phosphorylation and expression of AQP4 to enhance water influx into astrocytes and produces an up-regulation of ET-1 expression. Finally, using CHO cells transfected with CRFR1+ and AQP4+, we show that transfected CRFR1+ contributes to edema via transfected AQP4+. In conclusion, hypoxia triggers cortical release of CRF, which acts on CRFR1 to trigger signaling of cAMP/PKA in cortical astrocytes, leading to activation of AQP4 and cerebral edema. PMID:25146699

  18. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    PubMed

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  19. A 45-Year-Old Man With Recurrent Dyspnea and Hemoptysis during Exercise: Exercise-Induced Pulmonary Hemorrhage/Edema

    PubMed Central

    Kim, Dae Sung; Lee, Minhyeok; Kwon, Oh Jung; Jeong, Inbeom; Son, Ji Woong; Na, Moon Jun

    2015-01-01

    A 45-year-old man presented with dyspnea and hemoptysis during exercise. A chest computed tomography (CT) revealed multifocal diffuse patchy ground glass opacity and interlobular septal thickening in both the lungs. Permeability pulmonary edema or pulmonary hemorrhage was suspected. Serologic studies for autoimmune disorders and vasculitis were negative. There was no laboratory evidence of coagulopathy, other hematopoietic disease or infectious disease. Considering correlation with exercise, we diagnosed exercise-induced pulmonary hemorrhage (EIPH) or exercise-induced pulmonary edema (EIPE). The patient was managed with antifibrinolytics, antibiotics, and antitussive agent. After a week, follow-up chest CT revealed completely resolved pulmonary hemorrhage. About 2 months after the first event, he visited again with dyspnea and hemoptysis during running. In the present study, we report a case of recurrent pulmonary hemorrhage after exercise. PMID:26508928

  20. Corneal Emergencies.

    PubMed

    Belknap, Ellen B

    2015-09-01

    Corneal emergencies can be due to a number of different causes and may be vision threatening if left untreated. In an attempt to stabilize the cornea, it is of benefit to place an Elizabethan collar on the patient to prevent further corneal damage. This article discusses the diagnosis, prognosis, and management of corneal emergencies in dogs and cats.

  1. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus.

    PubMed

    Pérez-Hernández, Mercedes; Fernández-Valle, María Encarnación; Rubio-Araiz, Ana; Vidal, Rebeca; Gutiérrez-López, María Dolores; O'Shea, Esther; Colado, María Isabel

    2017-03-16

    The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X7 receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.5 mg/kg, i.p.) on in vivo edema development associated with changes in the expression of the perivascular astrocytic water channel, AQP4, as well as in the expression of the tight-junction (TJ) protein, claudin-5 and Evans Blue dye extravasation in the hippocampus of adult male Dark Agouti rats. We also evaluated the ability of the MMP-9 inhibitor, SB-3CT (25 mg/kg, i.p.), to prevent these changes in order to validate the involvement of MMP-9 activation in MDMA-induced BBB disruption. The results show that MDMA produces edema of short duration temporally associated with changes in AQP4 expression and a reduction in claudin-5 expression, changes which are prevented by SB-3CT. In addition, MDMA induces a short-term increase in both tPA activity and expression, a serine-protease which is involved in BBB disruption and upregulation of MMP-9 expression. In conclusion, this study provides evidence enough to conclude that MDMA induces edema of short duration due to BBB disruption mediated by MMP-9 activation.

  2. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses

  3. Pattern of fluid accumulation in NO2-induced pulmonary edema in dogs. A morphometric study.

    PubMed Central

    Vassilyadi, M.; Michel, R. P.

    1988-01-01

    To ascertain whether the pattern of fluid accumulation could be altered by an agent introduced through the airways, the authors studied the physiology and morphology of 11 dogs exposed to 150-494 ppm.hr NO2 and compared them with 3 new and 5 previously reported control dogs. NO2 caused a partly reversible decrease in systemic arterial pressure and cardiac output, a fall in arterial PO2, and rapid shallow breathing, while pulmonary arterial and wedge pressures remained normal. Post mortem, lower (LL) and middle (ML) lobes were frozen, sections fixed for light microscopy by freeze-substitution, and wet weight/dry weight (W/D) ratios were measured. Alveolar edema was graded, and the distribution of interstitial edema around arteries and veins and within bronchovascular bundles was studied with morphometry: edema ratios (ER) were calculated as area of interstitium/area of vessel or airway. We found that NO2 produced an exposure-dependent increase in lung water (r = 0.73), and that both LL and ML had similar W/D ratios (7.77 and 8.39, respectively) and percent alveolar edema (30% and 34%). Morphometry of interstitial edema showed that the ER for vessels and airways of edematous LL were essentially similar to controls, while those of the ML were markedly increased. It is concluded that NO2 produces exposure-related lung edema and preferential alveolar flooding with probable secondary interstitial accumulation. The discrepancies in interstitial edema between middle and lower lobes may be due to differences in lung volume or in ventilation. Images Figure 6 Figure 9 PMID:3337206

  4. What Is Macular Edema?

    MedlinePlus Videos and Cool Tools

    ... Español Eye Health / Eye Health A-Z Macular Edema Sections What Is Macular Edema? What Causes Macular ... Edema Diagnosis Macular Edema Treatment What Is Macular Edema? Dec. 01, 2010 Macular edema is swelling or ...

  5. Therapeutic efficiency of tissue-engineered human corneal endothelium transplants on rabbit primary corneal endotheliopathy.

    PubMed

    Fan, Ting-jun; Zhao, Jun; Hu, Xiu-zhong; Ma, Xi-ya; Zhang, Wen-bo; Yang, Chao-zhong

    2011-06-01

    To evaluate the therapeutic efficiency of tissue-engineered human corneal endothelia (TE-HCEs) on rabbit primary corneal endotheliopathy (PCEP), TE-HCEs reconstructed with monoclonal human corneal endothelial cells (mcHCECs) and modified denuded amniotic membranes (mdAMs) were transplanted into PCEP models of New Zealand white rabbits using penetrating keratoplasty. The TE-HCEs were examined using diverse techniques including slit-lamp biomicroscopy observation and pachymeter and tonometer measurements in vivo, and fluorescent microscopy, alizarin red staining, paraffin sectioning, scanning and transmission electron microscopy observations in vitro. The corneas of transplanted eyes maintained transparency for as long as 200 d without obvious edema or immune rejection. The corneal thickness of transplanted eyes decreased gradually after transplanting, reaching almost the thickness of normal eyes after 156 d, while the TE-HCE non-transplanted eyes were turbid and showed obvious corneal edema. The polygonal corneal endothelial cells in the transplanted area originated from the TE-HCE transplant. An intact monolayer corneal endothelium had been reconstructed with the morphology, cell density and structure similar to those of normal rabbit corneal endothelium. In conclusion, the transplanted TE-HCE can reconstruct the integrality of corneal endothelium and restore corneal transparency and thickness in PCEP rabbits. The TE-HCE functions normally as an endothelial barrier and pump and promises to be an equivalent of HCE for clinical therapy of human PCEP.

  6. Cocaine-induced myocardial infarction associated with severe reversible systolic dysfunction and pulmonary edema.

    PubMed

    Arzola-Castañer, Daniel; Johnson, Charles

    2004-12-01

    Myocardial infarction (MI) associated to cocaine use was originally reported in 1982 and cases are being encountered more frequently in our milieu. The literature regarding this diagnosis has included mostly cases of cocaine associated chest pain and MI without serious sequelae. A lesser number of reports however focus on the clinical presentation of severe myocardial dysfunction and severe pulmonary edema, with the mechanism for pulmonary edema still being debated. Although previously described individually, these manifestations are thought to be an uncommon complication of cocaine ingestion. In this article the subject is reviewed and we report our experience with two patients that presented to our care with severe pulmonary edema and concomitant severe left ventricular systolic dysfunction that resolved spontaneously with supportive therapy. It is felt that this clinical picture after cocaine use may be more common than expected. In this article we discuss the possible mechanisms associated to this presentation as well as review the literature regarding this subject.

  7. Immune Modulation of B. terrestris Worker (a Type of Bumblebee), Extract on CFA-induced Paw Edema in Rats

    PubMed Central

    Kim, Soon Ja; Han, Jea Woong; Yoon, Hyung Joo; Hwang, Jae Sam; Yun, Eun Young

    2014-01-01

    To develop a composition for enhancing immunity, based on alcohol extracts of the bumblebee as an active ingredient, bumblebee ethanol extracts were evaluated for their protective effect in chronic models of inflammation, adjuvant induced rat arthritis. B. terrestris worker extract (SDIEX) and, B. hypocrita sapporoensis lava an pupa extract (SPDYBEX), significantly decreased paw edema in arthritic rats, at a dose 100 mg/kg, respectively. The cytokine levels related inflammation of COX-2, sPLA2, VEGF, and TNF-α, were decreased, compared to positive control, indomethacin (5 mg/kg). Histopathological data demonstrated decreases inflammatory activity, hind paw edema, and repaired hyaline articular cartilage in DRG over a 2 wk administration. HPLC and GC-MS analysis of SDIEX and SPDYBEX revealed the presence of cantharidin. PMID:25584147

  8. Nickel dental alloys can induce laryngeal edema attacks: a case report.

    PubMed

    Buyukozturk, Suna; Gelincik, Asli; Demirtürk, Mustafa; Erdoğdu, Derya; Pur, Leyla; Colakoğlu, Bahattin; Deniz, Gunnur; Erdem Kuruca, Serap

    2013-09-01

    Nickel is a strong immunological sensitizer and may result in contact hypersensitivity. Case reports of allergic reactions to intraoral nickel have occasionally been reported in the published work and these allergic reactions are generally of a delayed type (type IV). Here, we present a case of a nickel allergic patient displaying frequent laryngeal edema attacks which required treatment with epinephrine injections followed by parenteral corticosteroid doses. Her complaints ceased after the removal of the dental bridge and the foods containing nickel. In summary, we propose that in the case of recurrent laryngeal edema attacks without any explainable cause, an allergic reaction due to nickel exposure should be taken into consideration.

  9. The fibril core of transforming growth factor beta-induced protein (TGFBIp) facilitates aggregation of corneal TGFBIp

    PubMed Central

    Sørensen, Charlotte S.; Runager, Kasper; Scavenius, Carsten; Jensen, Morten M.; Nielsen, Nadia S.; Christiansen, Gunna; Petersen, Steen V.; Karring, Henrik; Sanggaard, Kristian W.; Enghild, Jan J.

    2016-01-01

    Mutations in the transforming growth factor beta-induced (TGFBI) gene result in a group of hereditary diseases of the cornea that are collectively known as TGFBI corneal dystrophies. These mutations translate into amino acid substitutions mainly within the fourth fasciclin 1 domain (FAS1-4) of the transforming growth factor beta-induced protein (TGFBIp) and cause either amyloid or non-amyloid protein aggregates in the anterior and central parts of the cornea, depending on the mutation. The A546T substitution in TGFBIp causes lattice corneal dystrophy (LCD), which manifests as amyloid-type aggregates in the corneal stroma. We previously showed that the A546T substitution renders TGFBIp and the FAS1-4 domain thermodynamically less stable compared with the wild-type (WT) protein, and the mutant FAS1-4 is prone to amyloid formation in vitro. In the present study, we identified the core of A546T FAS1-4 amyloid fibrils. Significantly, we identified the Y571-R588 region of TGFBIp, which we previously found to be enriched in amyloid deposits in LCD patients. We further found that the Y571-R588 peptide seeded fibrillation of A546T FAS1-4 and, more importantly, we demonstrated that native TGFBIp aggregates in the presence of fibrils formed by the core peptide. Collectively, these data suggest an involvement of the Y571-R588 peptide in LCD pathophysiology. PMID:25910219

  10. Oxidative Stress Markers Induced by Hyperosmolarity in Primary Human Corneal Epithelial Cells

    PubMed Central

    Deng, Ruzhi; Hua, Xia; Li, Jin; Chi, Wei; Zhang, Zongduan; Lu, Fan; Zhang, Lili; Pflugfelder, Stephen C.; Li, De-Quan

    2015-01-01

    Oxidative stress has been known to be involved in pathogenesis of dry eye disease. However, few studies have comprehensively investigated the relationship between hyperosmolarity and oxidative damage in human ocular surface. This study was to explore whether and how hyperosmolarity induces oxidative stress markers in primary human corneal epithelial cells (HCECs). Primary HCECs were established from donor limbal explants. The hyperosmolarity model was made in HCECs cultured in isosmolar (312 mOsM) or hyperosmotic (350, 400, 450 mOsM) media. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and anti-oxidative enzymes were analyzed by DCFDA kit, RT-qPCR, immunofluorescent and immunohistochemical staining and Western blotting. Compared to isosmolar medium, ROS production significantly increased at time- and osmolarity-dependent manner in HCECs exposed to media with increasing osmolarities (350–450 mOsM). Hyperosmolarity significantly induced oxidative damage markers in cell membrane with increased toxic products of lipid peroxidation, 4–hydroxynonenal (4-HNE) and malondialdehyde (MDA), and in nuclear and mitochondria DNA with increased aconitase-2 and 8-OHdG. Hyperosmotic stress also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but reduced the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), and glutathione peroxidase-1 (GPX1). In conclusion, our comprehensive findings demonstrate that hyperosmolarity induces oxidative stress in HCECs by stimulating ROS production and disrupting the balance of oxygenases and antioxidant enzymes, which in turn cause cell damage with increased oxidative markers in membrane lipid peroxidation and mitochondrial DNA damage. PMID:26024535

  11. Imatinib-induced bone edema: case report and review of literature.

    PubMed

    dos Santos, Lucas Vieira; Lima, João Paulo; Abdalla, Kathia Cristina; Bragagnoli, Arinilda Campos; Santos, Florinda Almeida; dos Anjos Jácome, Alexandre; Porto, Fabiano Elias

    2013-10-01

    Imatinib mesylate represents a revolution in the management of patients with metastatic gastrointestinal stromal tumors (GISTs). More recently, postoperative imatinib has been shown to improve both disease-free and overall survivals in patients with a high risk of recurrence. This article presents a well-documented case of a patient with painful and reversible bone edema related to imatinib.

  12. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    SciTech Connect

    Pan, Hong; Wu, Xinyi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  13. Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury.

    PubMed

    Lu, Kwok-Tung; Huang, Tai-Chun; Tsai, Ya-Hsin; Yang, Yi-Ling

    2017-03-01

    Na(+) -K(+) -2Cl(-) co-transporter (NKCC1) plays an important role in traumatic brain injury (TBI)-induced brain edema via the MAPK cascade. The transient receptor potential vanilloid type 4 (TRPV4) channel participates in neurogenic inflammation, pain transmission, and edema. In this study, we investigated the relationship between NKCC1 and TRPV4 and the related signaling pathways in TBI-induced brain edema and neuronal damage. TBI was induced by the calibrated weight-drop device. Adult male Wistar rats were randomly assigned into sham and experimental groups for time-course studies of TRPV4 expression after TBI. Hippocampal TRPV4, NKCC1, MAPK, and PI-3K cascades were analyzed by western blot, and brain edema was also evaluated among the different groups. Expression of hippocampal TRPV4 peaked at 8 h after TBI, and phosphorylation of the MAPK cascade and Akt was significantly elevated. Administration of either the TRPV4 antagonist, RN1734, or NKCC1 antagonist, bumetanide, significantly attenuated TBI-induced brain edema through decreasing the phosphorylation of MEK, ERK, and Akt proteins. Bumetanide injection inhibited TRPV4 expression, which suggests NKCC1 activation is critical to TRPV4 activation. Our results showed that hippocampal NKCC1 activation increased TRPV4 expression after TBI and then induced severe brain edema and neuronal damage through activation of the MAPK cascade and Akt-related signaling pathway.

  14. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Serduc, Raphaël; van de Looij, Yohan; Francony, Gilles; Verdonck, Olivier; van der Sanden, Boudewijn; Laissue, Jean; Farion, Régine; Bräuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda; Segebarth, Christoph; Rémy, Chantal; Lahrech, Hana

    2008-03-01

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org

  15. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser.

    PubMed Central

    Marshall, J; Trokel, S; Rothery, S; Krueger, R R

    1986-01-01

    This paper reviews the potential role of excimer lasers in corneal surgery. The morphology of incisions induced by two wavelengths of excimer laser radiation, 193 nm and 248 nm, are compared with the morphology of incisions produced by diamond and steel knives. Analysis suggests that ablation induced by excimer laser results from highly localised photochemical reactions and that 193 nm is the optimal wavelength for surgery. The only significant complication of laser surgery is loss of endothelial cells when incisions are within 40 micron of Descemet's membrane. Images PMID:3013283

  16. Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-β(2).

    PubMed

    Joko, Takeshi; Shiraishi, Atsushi; Akune, Yoko; Tokumaru, Sho; Kobayashi, Takeshi; Miyata, Kazunori; Ohashi, Yuichi

    2013-03-01

    Because human corneal endothelial cells do not proliferate once the endothelial monolayer is formed, corneal wound healing is thought to be mediated by cell enlargement or migration rather than proliferation. However, the cellular mechanisms involved in corneal wound healing have not been fully determined. Because transforming growth factor-β(2) (TGF-β(2)) isoform is present in high concentrations in normal human aqueous humor, it may play a role in human corneal endothelial cell wound healing. The purpose of this study was to determine the effect of TGF-β(2) on the proliferation and migration of cultured human corneal endothelial cells (HCECs). To achieve this, we first examined the effect of TGF-β(2) on the wound closure rate in an in vitro HCEC wound healing model. However, unexpectedly TGF-β(2) had no effect on the wound closure rate in this model. Therefore, a real-time cell electronic sensing (RT-CES) system and the BrdU incorporation assay were used to determine the effect of TGF-β(2) (0.1-10 ng/ml) on cultured HCEC proliferation during in vitro wound healing. The specificity of this effect was confirmed by adding the TGF-β receptor I kinase inhibitor. TGF-β(2) inhibited the proliferation of HCECs in a dose dependent way and was blocked by TGF-β receptor I kinase inhibitor. Next, the Boyden chamber assay was used to determine how TGF-β(2) (10 ng/ml) affect HCEC migration. Exposure to TGF-β(2) increased cell migration, and a synergistic effect was observed when FGF-2 was added. To determine whether the mitogen-activated protein kinase (MAPK) signaling pathway is involved in the migration of HCECs, western blot analysis and Bio-Plex™ suspension array were used to detect phosphorylation of Erk1/2, p38, and JNK in HCECs stimulated by TGF-β(2) and/or FGF-2. The effect of the p38 MAPK inhibitor, SB239063 (10 μM), on TGF-β(2) and/or FGF-2-induced cellular migration was determined by the Boyden chamber assay. Both TGF-β(2) and FGF-2-induced p38

  17. Anti-thymocyte globulin induced non-cardiogenic pulmonary edema during renal transplantation.

    PubMed

    Parikh, Beena K; Bhosale, Guruprasad P; Shah, Veena R

    2011-10-01

    Non-cardiogenic pulmonary edema (NCPE) is a clinical syndrome characterized by simultaneous presence of severe hypoxemia, bilateral alveolar infiltrates on chest radiograph, without evidence of left atrial hypertension/congestive heart failure/fluid overload. The diagnosis of drugrelated NCPE relies upon documented exclusion of other causes of NCPE like gastric aspiration, sepsis, trauma, negative pressure pulmonary edema. We describe a 28year-old, 50 kg male with ASA risk III posted for laparoscopic renal transplantation, who developed NCPE after 4 hours of administration of rabbit anti-human thymocyte immunoglobulin (ATG). He was successfully treated with mechanical ventilatory support and adjuvant therapy. This report emphasizes that this fatal complication may occur with use of ATG.

  18. Apoptosis of Corneal Epithelial Cells Caused by Ultraviolet B-induced Loss of K(+) is Inhibited by Ba(2.).

    PubMed

    Glupker, Courtney D; Boersma, Peter M; Schotanus, Mark P; Haarsma, Loren D; Ubels, John L

    2016-07-01

    UVB exposure at ambient outdoor levels triggers rapid K(+) loss and apoptosis in human corneal limbal epithelial (HCLE) cells cultured in medium containing 5.5 mM K(+), but considerably less apoptosis occurs when the medium contains the high K(+) concentration that is present in tears (25 mM). Since Ba(2+) blocks several K(+) channels, we tested whether Ba(2+)-sensitive K(+) channels are responsible for some or all of the UVB-activated K(+) loss and subsequent activation of the caspase cascade and apoptosis. Corneal epithelial cells in culture were exposed to UVB at 80 or 150 mJ/cm(2). Patch-clamp recording was used to measure UVB-induced K(+) currents. Caspase-activity and TUNEL assays were performed on HCLE cells exposed to UVB followed by incubation in the presence or absence of Ba(2+). K(+) currents were activated in HCLE cells following UVB-exposure. These currents were reversibly blocked by 5 mM Ba(2+). When HCLE cells were incubated with 5 mM Ba(2+) after exposure to UVB, activation of caspases-9, -8, and -3 and DNA fragmentation were significantly decreased. The data confirm that UVB-induced K(+) current activation and loss of intracellular K(+) leads to activation of the caspase cascade and apoptosis. Extracellular Ba(2+) inhibits UVB-induced apoptosis by preventing loss of intracellular K(+) when K(+) channels are activated. Ba(2+) therefore has effects similar to elevated extracellular K(+) in protecting HCLE cells from UVB-induced apoptosis. This supports our overall hypothesis that elevated K(+) in tears contributes to protection of the corneal epithelium from adverse effects of ambient outdoor UVB.

  19. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  20. Edema-producing activity of group A streptococcal polysaccharide and its possible role in the pathogenesis of cell wall-induced polyarthritis

    PubMed Central

    1983-01-01

    Edematous responses were induced in the limbs of Sprague-Dawley rats by intravenous, intraperitoneal, or intra-articular injections of group- specific polysaccharide (PS) isolated from the cell walls of group A streptococci. After intravenous injection of the edema-producing PS, vascular permeability increase (measured by 125I-human serum albumin) was detected in the limbs, but not in the heart, lungs, spleen, liver, thymus, kidney, skin, skeletal muscle, submandibular lymph nodes, mesenteric lymph nodes, or ascending colon. This indicates a selective effect on vascular endothelium of the joints. Evidence to suggest that the edema-producing activity of the PS might play an important role in the pathogenesis of cell wall-induced polyarthritis included the following: (a) the presence of edema-producing activity in arthropathogenic cell wall preparations; (b) cell wall preparations without edema-producing activity were significantly less active in inducing arthritis than were those which contained edema-producing activity; and (c) the addition of edema-producing PS to cell wall preparations increased both the incidence and the severity of arthritis. PMID:6833951

  1. Aqueous and methanolic extracts of Caulerpa mexicana suppress cell migration and ear edema induced by inflammatory agents.

    PubMed

    Bitencourt, Mariana Angelica Oliveira; Dantas, Gracielle Rodrigues; Lira, Daysianne Pereira; Barbosa-Filho, Jose Maria; de Miranda, George Emmanuel Cavalcanti; Santos, Barbara Viviana de Oliveira; Souto, Janeusa Trindade

    2011-01-01

    The regulation of the inflammatory response is essential to maintaining homeostasis. Several studies have investigated new drugs that may contribute to avoiding or minimizing excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexicana on models inflammation. In mice, the inflammatory peritonitis model is induced by zymosan. Previous treatment of mice with aqueous and methanolic extracts of C. mexicana was able to suppress the cell migration to the peritoneal cavity, in a time-dependent but not in a dose-dependent manner. The treatment of mice with C. mexicana extracts also decreased the xylene-induced ear edema, exerting strong inhibitory leukocyte migration elicited by zymosan into the air pouch. We concluded that administration of the extracts resulted in a reduction of cell migration to different sites as well as a decrease in edema formation induced by chemical irritants. This study demonstrates for the first time the anti-inflammatory effect of aqueous and methanolic extracts from the green marine algae Caulerpa mexicana.

  2. Novel Peptide for Attenuation of Hyperoxia-induced Disruption of Lung Endothelial Barrier and Pulmonary Edema via Modulating Peroxynitrite Formation*

    PubMed Central

    Kondrikov, Dmitry; Gross, Christine; Black, Stephen M.; Su, Yunchao

    2014-01-01

    Pulmonary damages of oxygen toxicity include vascular leakage and pulmonary edema. We have previously reported that hyperoxia increases the formation of NO and peroxynitrite in lung endothelial cells via increased interaction of endothelial nitric oxide (eNOS) with β-actin. A peptide (P326TAT) with amino acid sequence corresponding to the actin binding region of eNOS residues 326–333 has been shown to reduce the hyperoxia-induced formation of NO and peroxynitrite in lung endothelial cells. In the present study, we found that exposure of pulmonary artery endothelial cells to hyperoxia (95% oxygen and 5% CO2) for 48 h resulted in disruption of monolayer barrier integrity in two phases, and apoptosis occurred in the second phase. NOS inhibitor NG-nitro-l-arginine methyl ester attenuated the endothelial barrier disruption in both phases. Peroxynitrite scavenger uric acid did not affect the first phase but ameliorated the second phase of endothelial barrier disruption and apoptosis. P326TAT inhibited hyperoxia-induced disruption of monolayer barrier integrity in two phases and apoptosis in the second phase. More importantly, injection of P326TAT attenuated vascular leakage, pulmonary edema, and endothelial apoptosis in the lungs of mice exposed to hyperoxia. P326TAT also significantly reduced the increase in eNOS-β-actin association and protein tyrosine nitration. Together, these results indicate that peptide P326TAT ameliorates barrier dysfunction of hyperoxic lung endothelial monolayer and attenuates eNOS-β-actin association, peroxynitrite formation, endothelial apoptosis, and pulmonary edema in lungs of hyperoxic mice. P326TAT can be a novel therapeutic agent to treat or prevent acute lung injury in oxygen toxicity. PMID:25315770

  3. Corneal Hydration Control in Fuchs' Endothelial Corneal Dystrophy

    PubMed Central

    Wacker, Katrin; McLaren, Jay W.; Kane, Katrina M.; Baratz, Keith H.; Patel, Sanjay V.

    2016-01-01

    Purpose To assess corneal hydration control across a range of severity of Fuchs' endothelial corneal dystrophy (FECD) by measuring the percent recovery per hour (PRPH) of central corneal thickness after swelling the cornea and to determine its association with corneal morphologic parameters. Methods Twenty-three corneas of 23 phakic FECD patients and 8 corneas of 8 healthy control participants devoid of guttae were graded (modified Krachmer scale). Effective endothelial cell density (ECDe) was determined from the area of guttae and local cell density in confocal microscopy images. Steady-state corneal thickness (CTss) and standardized central corneal backscatter were derived from Scheimpflug images. Corneal swelling was induced by wearing a low-oxygen transmissible contact lens for 2 hours in the morning. De-swelling was measured over 5 hours after lens removal or until corneal thickness returned to CTss. Percent recovery per hour was 100 × (1 – e−k), where k was determined from CT(t) = (de−kt) + CTss, and where d was the initial change from CTss. Results After contact lens wear, corneas swelled by 9% (95% CI 9–10). Percent recovery per hour was 49%/h (95% CI 41–57) in controls and 37%/h in advanced FECD (95% CI 29–43, P = 0.028). Low PRPH was associated with disease severity, low ECDe, and increased anterior and posterior corneal backscatter. Anterior backscatter was associated with PRPH in a multivariable model (R2 = 0.44). Conclusions Corneal hydration control is impaired in advanced FECD and is inversely related to anterior corneal backscatter. Anterior corneal backscatter might serve as an indicator of impaired endothelium in FECD. PMID:27661858

  4. Effect of diet induced obesity or type 1 or type 2 diabetes on corneal nerves and peripheral neuropathy in C57Bl/6J mice

    PubMed Central

    Yorek, Matthew S.; Obrosov, Alexander; Shevalye, Hanna; Holmes, Amey; Harper, Matthew M.; Kardon, Randy H.; Yorek, Mark A.

    2015-01-01

    We determined the impact diet induced obesity (DIO) and types 1 and 2 diabetes has on peripheral neuropathy with emphasis on corneal nerve structural changes in C57Bl/6J mice. Endpoints examined included nerve conduction velocity, response to thermal and mechanical stimuli and innervation of the skin and cornea. DIO mice and to a greater extent type 2 diabetic mice were insulin resistant. DIO and both types 1 and 2 diabetic mice developed motor and sensory nerve conduction deficits. In the cornea of DIO and type 2 diabetic mice there was a decrease in sub-epithelial corneal nerves, innervation of the corneal epithelium and corneal sensitivity. Type 1 diabetic mice did not present with any significant changes in corneal nerve structure until after 20 weeks of hyperglycemia. DIO and type 2 diabetic mice developed corneal structural damage more rapidly than type 1 diabetic mice even though hemoglobin A1C values were significantly higher in type 1 diabetic mice. This suggests that DIO with or without hyperglycemia contributes to development and progression of peripheral neuropathy and nerve structural damage in the cornea. PMID:25858759

  5. Postoperative Corneal and Surgically Induced Astigmatism following Superior Approach Manual Small Incision Cataract Surgery in Patients with Preoperative Against-the-Rule Astigmatism

    PubMed Central

    Sadik, Ahmed Abdul; Mireku, Felix Agyemang; Asiedu, Frank Yeboah; Ablordeppey, Reynolds Kwame

    2016-01-01

    The aim of the study was to report postoperative corneal and surgically induced astigmatism (SIA) in patients with preoperative against-the-rule (ATR) astigmatism who underwent superior approach manual small incision cataract surgery (MSICS). 58 eyes of 58 cataract patients with preoperative ATR astigmatism were involved in this study. All patients had operable cataracts and underwent superior approach MSICS. Keratometric (K) readings were taken prior to surgery and at 12 weeks after surgery. Centroid values of SIA, preoperative astigmatism, and postoperative astigmatism were calculated using Cartesian coordinates based analysis. Wilcoxon signed rank test was used to compute statistical significance between mean preoperative and postoperative corneal astigmatism. Cohen's d was used as effect size measure. Centroid values of 1.42 D × 179, 2.48 D × 0, and 1.07 D × 1 were recorded, respectively, for preoperative astigmatism, postoperative astigmatism, and SIA. Wilcoxon signed rank test indicated that mean ± SD postoperative corneal astigmatism (2.80 ± 1.40 D) was statistically significantly greater than preoperative corneal astigmatism (1.49 ± 1.34 D), Z = −6.263, p < 0.0001. A high Cohen's d of 1.32 was found. Our results suggest statistical and clinically significant greater postoperative corneal astigmatism than preoperative corneal astigmatism for ATR astigmatism cataract patients who underwent superior approach MSICS. PMID:28116142

  6. Clinical evaluation of surgery-induced astigmatism in cataract surgery using 2.2 mm or 1.8 mm clear corneal micro-incisions

    PubMed Central

    Yang, Jun; Wang, Xiu; Zhang, Hong; Pang, Yi; Wei, Rui-Hua

    2017-01-01

    AIM To evaluate corneal astigmatism after phacoemulsification using 2.2 mm or 1.8 mm clear corneal micro-incisions and its effects on visual function. METHODS Sixty cases (60 eyes) with cataract were randomly divided into groups A (n=30) and B (n=30) respectively underwent 2.2 mm and 1.8 mm clear corneal tunnel incision phacoemulsification combined with folding intraocular lens implantation from the time direction of 11:00. On day 1 and at 1, 4, and 6wk after operation, patients' vision was measured and both the corneal curvature and corneal thickness (CT) were recorded using Pentacam. RESULTS The measured surgery-induced astigmatism (SIA) in both groups A and B peaked on day 1 after operation, and then gradually decreased and eventually stabilized in week 4. No statistically significant difference was found in corneal astigmatism between two groups (P>0.05). The measured corneal astigmatism at 4wk and 6wk postoperatively were 0.28±0.09 D and 0.27±0.10 D for groups A and 0.27±0.09 D and 0.25±0.10 D for groups B without statistically significant difference (P>0.05). In addition, no significant differences in visual acuity and CT were found between groups A and B before or after operation. CONCLUSION Both 2.2 mm and 1.8 mm micro-incision cataract surgeries result in relatively small SIA with no difference in visual function and corneal astigmatism between two surgery approaches. Thus, the two types of surgical systems are safe and efficient for cataract treatment, by which satisfactory uncorrected visual acuity can be regained early postoperatively. PMID:28149779

  7. In situ injury-induced release of basic-fibroblast growth factor from corneal epithelial cells.

    PubMed Central

    Adamis, A. P.; Meklir, B.; Joyce, N. C.

    1991-01-01

    Basic-fibroblast growth factor (b-FGF) binds to heparan sulfate proteoglycan in Bowman's layer of the cornea. The mechanism by which the molecule is deposited in Bowman's layer is the subject of controversy since b-FGF lacks a signal peptide sequence for extracellular secretion. Using immunofluorescence, the authors studied the presence and distribution of b-FGF in the bovine cornea and the conditions under which it could be released and bound to Bowman's layer. The results indicate that corneal epithelium contains b-FGF but that uninjured corneas do not contain detectable levels of b-FGF in Bowman's layer. Injury to the corneal epithelium results in the binding of b-FGF to Bowman's layer. Removal of the intact corneal epithelium without cell injury does not result in the binding of b-FGF to Bowman's layer. These findings suggest that one mechanism for the release of b-FGF from corneal epithelial cells is passive leakage after cell injury with secondary binding to Bowman's layer. Images Figure 1 Figure 2 Figure 3 PMID:1951634

  8. Functional depletion of capsaicin-sensitive primary afferent fibers attenuates rat pain-related behaviors and paw edema induced by the venom of scorpion Buthus martensi Karch.

    PubMed

    Bai, Zhan-Tao; Liu, Tong; Pang, Xue-Yan; Jiang, Feng; Cheng, Ming; Ji, Yong-Hua

    2008-10-01

    The role of capsaicin-sensitive primary afferent fibers in rat pain-related behaviors and paw edema induced by scorpion Buthus martensi Karch (BmK) venom was investigated in this study. It was found that functional depletion of capsaicin-sensitive primary afferent fibers with a single systemic injection of resiniferatoxin (RTX) dramatically decreased spontaneous nociceptive behaviors, prevented the development of primary mechanical and thermal hyperalgesia as well as mirror-image mechanical hyperalgesia. RTX treatment significantly attenuated BmK venom-induced c-Fos expression in all laminaes of bilateral L4-L5 lumbar spinal cord, especially in superficial laminaes. Moreover, RTX treatment markedly reduced the early paw edema induced by BmK venom. Thus, the results indicate that capsaicin-sensitive primary afferent fibers play a critical role in various pain-related behaviors and paw edema induced by BmK venom in rats.

  9. Dynamic Regulation of Barrier Integrity of the Corneal Endothelium

    PubMed Central

    Srinivas, Sangly P.

    2010-01-01

    The corneal endothelium maintains stromal deturgescence, which is a prerequisite for corneal transparency. The principal challenge to stromal deturgescence is the swelling pressure associated with the hydrophilic glycosaminoglycans in the stroma. This negative pressure induces fluid leak into the stroma from the anterior chamber, but the rate of leak is restrained by the tight junctions (TJs) of the endothelium. This role of the endothelium represents its barrier function. In healthy cornea, the fluid leak is counterbalanced by an active fluid pump mechanism associated with the endothelium itself. Although this Pump-Leak hypothesis was postulated several decades ago, the mechanisms underlying regulation of the balance between the pump and leak functions remain largely unknown. In the last couple of decades, the ion transport systems that support the fluid pump activity have been discovered. In contrast, despite significant evidence for corneal edema secondary to endothelial barrier dysfunction, the molecular aspects underlying its regulation are relatively unknown. Recent findings in our laboratory, however, indicate that barrier integrity (i.e., structural and functional integrity of the TJs) of the endothelium is sensitive to remodeling of its peri-junctional actomyosin ring (PAMR), which is located at the apical junctional complex. This review provides a focused perspective on dynamic regulation of the barrier integrity of endothelium vis-à-vis plasticity of the PAMR and its association with cell signaling downstream of small GTPases of the Rho family. Based on findings to date, it appears that development of specific pharmacological strategies to treat corneal edema in response to inflammatory stress would be possible in the near future. PMID:20142793

  10. Keratin 12 missense mutation induces the unfolded protein response and apoptosis in Meesmann epithelial corneal dystrophy

    PubMed Central

    Allen, Edwin H.A.; Courtney, David G.; Atkinson, Sarah D.; Moore, Johnny E.; Mairs, Laura; Poulsen, Ebbe Toftgaard; Schiroli, Davide; Maurizi, Eleonora; Cole, Christian; Hickerson, Robyn P.; James, John; Murgatroyd, Helen; Smith, Frances J.D.; MacEwen, Carrie; Enghild, Jan J.; Nesbit, M. Andrew; Leslie Pedrioli, Deena M.; McLean, W.H. Irwin; Moore, C.B. Tara

    2016-01-01

    Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations. PMID:26758872

  11. Corneal Alternations Induced by Topical Application of Benzalkonium Chloride in Rabbit

    PubMed Central

    Chen, Wensheng; Li, Zhiyuan; Hu, Jiaoyue; Zhang, Zhenhao; Chen, Lelei; Chen, Yongxiong; Liu, Zuguo

    2011-01-01

    Benzalkonium chloride (BAC) is the most common preservative in ophthalmic preparations. Here, we investigated the corneal alternations in rabbits following exposure to BAC. Twenty-four adult male New Zealand albino rabbits were randomly divided into three groups. BAC at 0.01%, 0.05%, or 0.1% was applied twice daily to one eye each of rabbits for 4 days. The contralateral untreated eyes were used as control. Aqueous tear production and fluorescein staining scores of BAC-treated eyes were compared with those of controls. The structure of the central cornea was examined by in vivo confocal microscopy. Expression of mucin-5 subtype AC (MUC5AC) in conjunctiva was detected by immunostainig on cryosections. Corneal barrier function was assessed in terms of permeability to carboxy fluorescein (CF). The distribution and expression of ZO-1, a known marker of tight junction, and reorganization of the perijunctional actomyosin ring (PAMR) were examined by immunofluorescence analysis. Although there were no significant differences between control and BAC-treated eyes in Schirmer scores, corneal fluorescein scores and the number of conjunctival MUC5AC staining cells, in vivo confocal microscopy revealed significant epithelial and stromal defects in all BAC-treated corneas. Moreover, BAC at 0.1% resulted in significant increases in central corneal thickness and endothelial CF permeability, compared with those in control eyes, and endothelial cell damage with dislocation of ZO-1 and disruption of PAMR. Topical application of BAC can quickly impair the whole cornea without occurrence of dry eye. A high concentration of BAC breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR and remodeling of apical junctional complex in vivo. PMID:22022526

  12. Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis.

    PubMed

    Tian, Cheng-Lei; Wen, Qian; Fan, Ting-Jun

    2015-10-01

    Atropine is an anticholinergic drug for mydriasis in eye clinic, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of atropine to the cornea and its cellular and molecular mechanisms remain unknown. In this study, we investigated the cytotoxicity of atropine to corneal epithelium and its underlying mechanisms using an in vitro model of non-transfected human corneal epithelial (HCEP) cells. Our results showed that atropine, above the concentration of 0.3125 g/l (1/32 of its therapeutic dosage in eye clinic), had a dose- and time-dependent toxicity to HCEP cells by inducing morphological abnormality, cytopathic effect, viability decline, and proliferation retardation. Moreover, the proliferation-retarding effect of atropine on the cells was achieved by inducing G1/S phase arrest and downregulation of E-cadherin and β-catenin. Besides, atropine also had an apoptosis-inducing effect on the cells by inducing phosphatidylserine externalization, plasma membrane permeability elevation, DNA fragmentation and apoptotic body formation. Furthermore, atropine could also induce activations of caspase-2, -3 and -9, disruption of mitochondrial transmembrane potential, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor, implying a death receptor-mediated mitochondrion-dependent pathway is most probably involved in the apoptosis of HCEP cells induced by atropine. Taken together, our results suggest that atropine has remarkable cytotoxicity to HCEP cells by inducing cell cycle arrest and death receptor-mediated mitochondrion-dependent apoptosis.

  13. Diabetic macular edema.

    PubMed

    Stefánsson, Einar

    2009-07-01

    A variety of treatment options are available for the treatment of diabetic macular edema. They include laser photocoagulation, anti-VEGF drugs, intravitreal steroids, and vitrectomy with or without release of vitreoretinal traction. A full understanding of the physiological mechanisms of these treatment modalities allows sensible combination of treatment options. Retinal photocoagulation has repeatedly been shown to improve retinal oxygenation, as does vitrectomy. Oxygen naturally reduces VEGF production and thereby decreases leakage of plasma proteins from capillaries into the tissue. In addition, vitrectomy allows faster clearance of cytokines, such as VEGF, from the retina into the vitreous cavity. The VEGF-lowering effect of photocoagulation and vitrectomy can be augmented with anti-VEGF drugs and corticosteroids reduce the effect of VEGF on capillary permeability. Starling's law explains vasogenic edema, which is controlled by osmotic and hydrostatic gradients between vessel and tissue. It explains how VEGF-induced vascular permeability causes plasma protein to leak into the tissue interstitial space, thus decreasing the osmotic pressure gradient between vessel and tissue, resulting in water accumulation, i.e. edema. This is reversed by reducing VEGF production, which is achieved with laser treatment; or by removing VEGF with antibodies or vitrectomy; or by reducing the permeability effect with steroids. At the same time, Starling's law takes into account hemodynamic changes that affect the hydrostatic gradient. High arterial blood pressure and hypoxic vasodilatation increase the hydrostatic pressure in the microcirculation, which increases water flux from vessel to tissue and induce edema. Treatment of arterial hypertension or reversal of retinal hypoxia with laser reverses this pathophysiology and reduces edema. Newton's third law explains, that vitreoretinal traction decreases hydrostatic tissue pressure in the retina, increases the pressure gradient

  14. Prior Corneal Scarification and Injection of Immune Serum are Not Required Before Ocular HSV-1 Infection for UV-B-Induced Virus Reactivation and Recurrent Herpetic Corneal Disease in Latently Infected Mice

    PubMed Central

    BenMohamed, Lbachir; Osorio, Nelson; Khan, Arif A.; Srivastava, Ruchi; Huang, Lei; Krochmal, John J.; Garcia, Jairo M.; Simpson, Jennifer L.; Wechsler, Steven L.

    2017-01-01

    Purpose Blinding ocular herpetic disease in humans is due to spontaneous reactivation of herpes simplex virus type 1 (HSV-1) from latency, rather than to primary acute infection. Mice latently infected with HSV-1 undergo little or no in vivo spontaneous reactivation with accompanying virus shedding in tears. HSV-1 reactivation can be induced in latently infected mice by several in vivo procedures, with UV-B-induced reactivation being one commonly used method. In the UV-B model, corneas are scarified (lightly scratched) just prior to ocular infection to increase efficiency of the primary infection and immune serum containing HSV-1 neutralizing antibodies is injected intraperitoneally (i.p.) to increase survival and decrease acute corneal damage. Since scarification can significantly alter host gene transcription in the cornea and in the trigeminal ganglia (TG; the site of HSV-1 latency) and since injection of immune serum likely modulates innate and adaptive herpes immunity, we investigated eliminating both treatments. Material and Methods Mice were infected with HSV-1 with or without corneal scarification and immune serum. HSV-1 reactivation and recurrent disease were induced by UV-B irradiation. Results When corneal scarification and immune serum were both eliminated, UV-B irradiation still induced both HSV-1 reactivation, as measured by shedding of reactivated virus in tears and herpetic eye disease, albeit at reduced levels compared to the original procedure. Conclusion Despite the reduced reactivation and disease, avoidance of both corneal scarification and immune serum should improve the clinical relevance of the UV-B mouse model. PMID:26398722

  15. Endothelial transient receptor potential conical channel (TRPC)-3 activation induces vasogenic edema formation in the rat piriform cortex following status epilepticus.

    PubMed

    Ryu, Hea Jin; Kim, Ji-Eun; Kim, Yeon-Joo; Kim, Ji-Yang; Kim, Won I L; Choi, So-Yeon; Kim, Min-Ju; Kang, Tae-Cheon

    2013-05-01

    Transient receptor potential canonical channel (TRPC) is a nonselective cation channel permeable to Ca(2+), which express in many cell types, including neurons. However the alterations in TRPC receptor expressions in response to status epilepticus (SE) have not been explored. Therefore, the present study was designated to elucidate the roles of TRPC3 in neuronal death and vasogenic edema within the rat piriform cortex (PC) following SE. In non-SE animals, TRPC3 immunoreactivity was abundantly detected in the PC. Following SE, TRPC3 immunoreactivity was increased in neurons. Furthermore, TRPC3 expression was detected in endothelial cells that did not contain it in non-SE animals. Loss of SMI-71 (a blood-brain barrier antigen) immunoreactivity was also observed in TRPC3 positive endothelial cells. In addition, FJB positive neurons and vasogenic edema were noticeably detected in the PC. To directly determine whether TRPC3 activation is correlated to SE-induced vasogenic edema formation and neuronal damages in the PC, the effect of Pyr-3 (a TRPC3 antagonist) on SE-induced insults were investigated. Pyr-3 infusion effectively attenuated vasogenic edema in the PC as compared to the vehicle. Therefore, our findings indicate that TRPC3 activation/overexpression induced by SE may involve BBB disruption and neuronal damages in the rat PC following SE. Therefore, the present study was TRPC3 may play an important role in SE-induced vasogenic edema formation through BBB disruptions in the rat PC.

  16. Inhibition of surgically induced miosis and prevention of postoperative macular edema with nepafenac

    PubMed Central

    Cervantes-Coste, Guadalupe; Sánchez-Castro, Yuriana G; Orozco-Carroll, Mónica; Mendoza-Schuster, Erick; Velasco-Barona, Cecilio

    2009-01-01

    Objective: To evaluate the effectiveness of prophylactic administration of nepafenac 0.1% in maintaining mydriasis and in preventing postoperative macular edema following cataract surgery. Methods: This was a prospective, randomized, single-masked comparative study in 60 patients undergoing phacoemulsification cataract surgery. Patients were randomized to either the nepafenac or the control group. Nepafenac was administered 3 times daily 1 day before surgery and continued for 6 weeks. The control group received tobramycin-dexamethasone treatment only. Trans-operative mydriasis was measured before surgery, after nuclear emulsification, following cortex aspiration, and at the conclusion of surgery. Macular optical coherence tomography determined central foveal thickness (FT) and total macular volume (TMV) before surgery and at 2 and 6 weeks after surgery. All patients received tobramycin-dexamethasone for 2 weeks after surgery. Results: The difference in mean pupil size, at the end of surgery, between the control group (6.84 ± 0.93 mm) and the nepafenac group (7.91 ± 0.74 mm) was statistically significant (p < 0.001). There were no significant differences in FT values between the two groups at any time point; however, TMV at 2 and at 6 weeks was statistically significantly different (p < 0.001), with higher TMV in the control group. Conclusion: Prophylactic use of nepafenac was effective in reducing macular edema after cataract surgery and in maintaining trans-operative mydriasis. PMID:19668569

  17. Synthetic stigmasterol derivatives inhibit capillary tube formation, herpetic corneal neovascularization and tumor induced angiogenesis: Antiangiogenic stigmasterol derivatives.

    PubMed

    Michelini, Flavia M; Lombardi, María Gabriela; Bueno, Carlos A; Berra, Alejandro; Sales, María Elena; Alché, Laura E

    2016-11-01

    Angiogenesis plays a critical role in initiating and promoting several diseases, such as cancer and herpetic stromal keratitis (HSK). Herein, we studied the inhibitory effect of two synthetic stigmasterol derivatives on capillary tube-like structures and on cell migration in human umbilical vein endothelial cells (HUVEC): (22S,23S)-22,23-dihydroxystigmast-4-en-3-one (compound 1) and (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one (compound 2). We also studied their effect on VEGF expression in IL-6 stimulated macrophages and in LMM3 breast cancer cells. Furthermore, we investigated the antiangiogenic activity of the compounds on corneal neovascularization in the murine model of HSK and in an experimental model of tumor-induced angiogenesis in mice. Both compounds inhibited capillary tube-like formation, but only compound 1 restrained cell migration. Compound 1, unlike compound 2, was able to reduce VEGF expression. Only compound 1 not only reduced the incidence and severity of corneal neovascularization, when administered at the onset of HSK, but it also restrained the development of neovascular response induced by tumor cells in mice skin. Our results show that compound 1 inhibits angiogenesis in vitro and in vivo. Therefore, compound 1 would be a promising drug in the treatment of those diseases where angiogenesis represents one of the main pathogenic events.

  18. Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A.

    PubMed

    Michinaga, Shotaro; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Minami, Shizuho; Kimura, Akimasa; Hatanaka, Shunichi; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Koyama, Yutaka

    2015-09-01

    Brain edema is a potentially fatal pathological state that often occurs after brain injuries such as ischemia and trauma. However, therapeutic agents that fundamentally treat brain edema have not yet been established. We previously found that endothelin ETB receptor antagonists attenuate the formation and maintenance of vasogenic brain edema after cold injury in mice. In this study, the effects of ETB antagonists on matrixmetalloproteinase (MMP)9 and vascular endothelial growth factor (VEGF)-A expression were examined in the cold injury model. Cold injury was performed in the left brain of male ddY mice (5-6 weeks old) for the induction of vasogenic edema. Expression of MMP9 and VEGF-A mRNA in the mouse cerebrum was increased by cold injury. Immunohistochemical observations showed that the MMP9 and VEGF-A were mainly produced in reactive astrocytes in the damaged cerebrum. Intracerebroventricular administration of BQ788 (10 μg) or IRL-2500 (10 μg) (selective ETB antagonists) attenuated brain edema and disruption of the blood-brain barrier after cold injury. BQ788 and IRL-2500 reversed the cold injury-induced increases in MMP9 and VEGF-A expression. The induction of reactive astrocytes producing MMP9 and VEGF-A in the damaged cerebrum was attenuated by BQ788 and IRL-2500. These results suggest that attenuations of astrocytic MMP9 and VEGF-A expression by ETB antagonists may be involved in the amelioration of vasogenic brain edema.

  19. [Anesthetic Management of a Parturient with Eclampsia, Posterior Reversible Encephalopathy Syndrome and Pulmonary Edema due to Pregnancy-induced Hypertension].

    PubMed

    Aida, Junko; Okutani, Hiroai; Oda, Yutaka; Okutani, Ryu

    2015-08-01

    A 27-year-old woman with mental retardation was admitted to a nearby hospital for an abrupt onset of seizure. Physical examination revealed remarkable hypertension and pregnancy with estimated gestational age of 28th week. Severe pulmonary edema and hypoxia led to a diagnosis of pregnancy-induced hypertension (PIH) accompanied by eclampsia. She was orotracheally intubated because of refractory seizure and hypoxemia, and transferred to our hospital for further treatment. Besides severe hypoxia and hypercapnea, an enhanced lesion was detected in the left posterior cerebrum by brain MRI. No abnormal findings were detected in the fetus, with heart rate of 150 beats x min. She was diagnosed with posterior reversible encephalopathy syndrome (PRES) caused by PIH and emergency cesarean section under general anesthesia was scheduled. A male newborn was delivered with Apgar score of 1/4 (1/5 min), followed by starting continuous infusion of nicardipine for controlling hypertension. Chest X-P on completion of surgery revealed remarkably alleviated pulmonary edema. She received intensive treatment and continued positive pressure ventilation for four days after delivery. She recovered with no neurological deficits and her child was well without any complications.

  20. Corneal injury

    MedlinePlus

    ... as sand or dust Ultraviolet injuries: Caused by sunlight, sun lamps, snow or water reflections, or arc- ... a corneal injury if you: Are exposed to sunlight or artificial ultraviolet light for long periods of ...

  1. Corneal Abrasions

    MedlinePlus

    ... Causes a Corneal Abrasion? Your eye has other defenses besides the orbital bone: The eyelids and eyelashes ... The Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...

  2. Corneal Abrasions

    MedlinePlus

    ... fingernails short, too.Use care when putting in contact lenses. Make sure you clean them properly each day.Don’t sleep in your contact lenses.Trim low-hanging tree branches. Corneal abrasion treatment ...

  3. Corneal Abrasions

    MedlinePlus

    ... can damage the cornea. This includes dust, sand, wood shavings, hay, sparks, bugs, pieces of paper, and ... prevent a corneal abrasion, make sure to wear protection for your eyes, such as safety goggles or ...

  4. Corneal transplant

    MedlinePlus

    ... lenses to achieve the best vision. Laser vision correction may be an option if you have nearsightedness, ... Editorial team. Related MedlinePlus Health Topics Corneal Disorders Refractive Errors Browse the Encyclopedia A.D.A.M., Inc. ...

  5. Nicardipine-Induced Acute Pulmonary Edema: A Rare but Severe Complication of Tocolysis

    PubMed Central

    Serena, Claire; Begot, Emmanuelle; Cros, Jérôme; Hodler, Charles; Fedou, Anne Laure; Nathan-Denizot, Nathalie; Clavel, Marc

    2014-01-01

    We report four cases of acute pulmonary edema that occurred during treatment by intravenous tocolysis using nicardipine in pregnancy patients with no previous heart problems. Clinical severity justified hospitalization in intensive care unit (ICU) each time. Acute dyspnea has begun at an average of 63 hours after initiation of treatment. For all patients, the first diagnosis suspected was pulmonary embolism. The patients' condition improved rapidly with appropriate diuretic treatment and by modifying the tocolysis. The use of intravenous nicardipine is widely used for tocolysis in France even if its prescription does not have a marketing authorization. The pathophysiological mechanisms of this complication remain unclear. The main reported risk factors are spontaneous preterm labor, multiple pregnancy, concomitant obstetrical disease, association with beta-agonists, and fetal lung maturation corticotherapy. A better knowledge of this rare but serious adverse event should improve the management of patients. Nifedipine or atosiban, the efficiency of which tocolysis was also studied, could be an alternative. PMID:25215245

  6. Nicardipine-induced acute pulmonary edema: a rare but severe complication of tocolysis.

    PubMed

    Serena, Claire; Begot, Emmanuelle; Cros, Jérôme; Hodler, Charles; Fedou, Anne Laure; Nathan-Denizot, Nathalie; Clavel, Marc

    2014-01-01

    We report four cases of acute pulmonary edema that occurred during treatment by intravenous tocolysis using nicardipine in pregnancy patients with no previous heart problems. Clinical severity justified hospitalization in intensive care unit (ICU) each time. Acute dyspnea has begun at an average of 63 hours after initiation of treatment. For all patients, the first diagnosis suspected was pulmonary embolism. The patients' condition improved rapidly with appropriate diuretic treatment and by modifying the tocolysis. The use of intravenous nicardipine is widely used for tocolysis in France even if its prescription does not have a marketing authorization. The pathophysiological mechanisms of this complication remain unclear. The main reported risk factors are spontaneous preterm labor, multiple pregnancy, concomitant obstetrical disease, association with beta-agonists, and fetal lung maturation corticotherapy. A better knowledge of this rare but serious adverse event should improve the management of patients. Nifedipine or atosiban, the efficiency of which tocolysis was also studied, could be an alternative.

  7. Vortex or whorl formation of cultured human corneal epithelial cells induced by magnetic fields.

    PubMed

    Dua, H S; Singh, A; Gomes, J A; Laibson, P R; Donoso, L A; Tyagi, S

    1996-01-01

    The terms 'vortex keratopathy' and 'hurricane keratopathy' describe two similar conditions affecting the corneal surface. In the former, a vortex or whorl pattern is seen on the corneal surface and is due to the deposition of substances such as pigment, iron or drugs in the epithelial cells. In the latter, a similar pattern is presented by migrating epithelial cells but, unlike the former, the pattern is rendered more visible by fluorescein staining. Both represent the migratory pattern of normal epithelial cells which is otherwise not visible due to the slow rate of epithelial turnover and migration. The whorl pattern has a clockwise predisposition in the majority of cases and is hypothesised to be due to the influence of ocular electro-magnetic fields on the migrating epithelial cells. In this study we tested in vitro the effect of static magnetic fields on corneal epithelial cells. We were able to reproduce dramatic vortex or whorl patterns in response to magnetic fields, but without preferential migration towards the North or South Pole.

  8. Benzo(a)pyrene-induced pulmonary inflammation, edema, surfactant dysfunction, and injuries in rats: alleviation by farnesol.

    PubMed

    Qamar, Wajhul; Khan, Abdul Quaiyoom; Khan, Rehan; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat

    2012-02-01

    Benzo(a)pyrene (B(a)P) is a well-known environmental contaminant and carcinogen. Its sources include tobacco smoke, automobile exhaust, forest fire, and other combustion processes. Farnesol, an active principle of Vachellia farnesiana and other aromatic plants, possesses preventive properties against various toxicities. Present study was designed to estimate chemopreventive effects of farnesol against B(a)P-induced pulmonary injuries. To determine the protective effects of farnesol, it was administered orally at 2 doses (100 and 200 mg/kg body weight [b.w.]) once daily for 14 days. Rats were exposed intratracheally to B(a)P, 5 mg/kg b.w. on days 12 and 14, thereafter assessed for pulmonary toxicities 24 hours post last dose of B(a)P. B(a)P-induced edema, inflammation, oxidative stress, and consequent damages in lungs were assessed in terms of total protein, total cell count, nitric oxide (NO), lactate dehydrogenase (LDH), alkaline phosphatase, and in bronchoalveolar lavage fluid (BALF). B(a)P also reduced the levels of phospholipids (lung surfactants) in BALF. However, pretreatment with farnesol at both the doses significantly reduced the lung injuries and inflammatory responses. Farnesol also protected the levels of phospholipids to normal when compared with control. It also modified the activities of B(a)P metabolizing enzymes NADPH-cytochrome P450 reductase, microsomal epoxide hydrolase (mEH), and glutathione S-transferase (GST) in lung tissue of rats. Present findings suggest a prominent role of farnesol against B(a)P-induced lung inflammation, edema, surfactant dysfunction, and epithelial damages in Wistar rats. In conclusion, farnesol shows lung protection against B(a)P toxicities in Wistar rats.

  9. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes

    PubMed Central

    Mallet, Justin D.; Bastien, Nathalie; Gendron, Sébastien P.; Rochette, Patrick J.

    2016-01-01

    Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6-4PP). These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced. PMID:27611318

  10. Inhibition of secretory phospholipase A2 activity attenuates acute cardiogenic pulmonary edema induced by isoproterenol infusion in mice after myocardial infarction.

    PubMed

    Kawabata, Kenichi; Fujioka, Daisuke; Kobayashi, Tsuyoshi; Saito, Yukio; Obata, Jun-Ei; Nakamura, Takamitsu; Yano, Toshiaki; Watanabe, Kazuhiro; Watanabe, Yosuke; Mishina, Hideto; Kugiyama, Kiyotaka

    2010-10-01

    Several types of secretory phospholipase A2 (sPLA2) are expressed in lung tissue, yielding various eicosanoids that might cause pulmonary edema. This study examined whether inhibition of sPLA2 activity attenuates acute cardiogenic pulmonary edema in mice. Acute cardiogenic pulmonary edema was induced in C57BL/6J male mice by an increase in heart rate with continuous intravenous infusion of isoproterenol (ISP) (10 mg/kg/h) at 2 weeks after the creation of myocardial infarction by left coronary artery ligation. Just before ISP infusion, a single intraperitoneal injection of 100 mg/kg LY374388, a prodrug of LY329722 that inhibits sPLA2 activity, or vehicle was administered. The ISP infusion after myocardial infarction induced interstitial and alveolar edema on lung histology. Furthermore, it increased the lung-to-body weight ratio, pulmonary vascular permeability evaluated by the Evans blue extravasation method, lung activity of sPLA2, and lung content of thromboxane A2 and leukotriene B4. These changes were significantly attenuated by LY374388 treatment. In Kaplan-Meier analysis, the survival rate during the ISP infusion after myocardial infarction was significantly higher in LY374388- than in vehicle-treated mice. Similar results were obtained with another inhibitor of sPLA2 activity, para-bromophenacyl bromide. In conclusion, inhibition of sPLA2 activity suppressed acute cardiogenic pulmonary edema.

  11. A Case of Transforming Growth Factor-β-Induced Gene-Related Oculorenal Syndrome: Granular Corneal Dystrophy Type II with a Unique Nephropathy

    PubMed Central

    Iwafuchi, Yoichi; Morioka, Tetsuo; Oyama, Yuko; Nozu, Kandai; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    Many types of inherited renal diseases have ocular features that occasionally support a diagnosis. The following study describes an unusual example of a 40-year-old woman with granular corneal dystrophy type II complicated by renal involvement. These two conditions may coincidentally coexist; however, there are some reports that demonstrate an association between renal involvement and granular corneal dystrophy type II. Granular corneal dystrophy type II is caused by a mutation in the transforming growth factor-β-induced (TGFBI) gene. The patient was referred to us because of the presence of mild proteinuria without hematuria that was subsequently suggested to be granular corneal dystrophy type II. A kidney biopsy revealed various glomerular and tubular basement membrane changes and widening of the subendothelial space of the glomerular basement membrane by electron microscopy. However, next-generation sequencing revealed that she had no mutation in a gene that is known to be associated with monogenic kidney diseases. Conversely, real-time polymerase chain reaction, using a simple buccal swab, revealed TGFBI heteromutation (R124H). The TGFBI protein plays an important role in cell-collagen signaling interactions, including extracellular matrix proteins which compose the renal basement membrane. This mutation can present not only as corneal dystrophy but also as renal disease. TGFBI-related oculorenal syndrome may have been unrecognized. It is difficult to diagnose this condition without renal electron microscopic studies. To the best of our knowledge, this is the first detailed report of nephropathy associated with a TGFBI mutation. PMID:27781206

  12. Anti-inflammatory and immunomodulating properties of grape melanin. Inhibitory effects on paw edema and adjuvant induced disease.

    PubMed

    Avramidis, N; Kourounakis, A; Hadjipetrou, L; Senchuk, V

    1998-07-01

    Natural or synthetic melanin (CAS 8049-97-6) is a high molecular weight heteropolymer, product of the enzyme tyrosinase, found to possess radical scavenging and antioxidant functions. It was of interest, therefore, to study in detail the possible anti-inflammatory and/or immunosuppressive properties of a melanin isolated from grapes. The inhibitory effect of melanin on carrageenin-induced edema, as well as on edemas produced by other phlogistics, was remarkable suggesting that melanin interferes with the prostaglandin as well as the leukotriene and/or complement system mediated inflammation. Grape melanin showed potent inhibitory effect on adjuvant induced disease (AID) in rat, suppressing significantly the primary inflammation and almost totally the secondary lesions of arthritis. Melanin under the present experimental conditions not only strongly inhibited the in vitro lipid peroxidation of rat liver microsomal membranes, but furthermore protected the in vivo hepatic peroxidation occurring in AID rats, demonstrating its antioxidant and cytoprotective properties. The serum proinflammatory cytokines IL-1, IL-6 and TNF-a and the serum globulin fraction were elevated in AID rats, parameters which were more or less normalised by melanin treatment in contrast to the reduced serum levels of IL-2 which were not affected. Similarly to other lipoxygenase inhibitors and hydroxyl radical scavenger NSAIDs, melanin treatment did not affect IL-1 neither increased the splenic mitogenic responses, unlike the classical cyclooxygenase inhibitory NSAIDs. The subpopulation Th1 (T4+ or T8+) of lymphocytes is mainly responsible for cellular immune responses and thus their possible inhibition by melanin could lead to suppression of the development of AID, a model for cell-mediated immunity. The effect of melanin on T-cells is exhibited by the reduced spleen mitogenic responses to a T-cell mitogen and the reduced serum levels of IL-2 of treated rats. In conclusion, grape melanin is an

  13. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface.

    PubMed

    Cejkova, Jitka; Trosan, Peter; Cejka, Cestmir; Lencova, Anna; Zajicova, Alena; Javorkova, Eliska; Kubinova, Sarka; Sykova, Eva; Holan, Vladimir

    2013-11-01

    The purpose of this study was to investigate whether rabbit bone marrow-derived mesenchymal stem cells (MSCs) effectively decrease alkali-induced oxidative stress in the rabbit cornea. The alkali (0.15 N NaOH) was applied on the corneas of the right eyes and then rinsed with tap water. In the first group of rabbits the injured corneas remained untreated. In the second group MSCs were applied on the injured corneal surface immediately after the injury and eyelids sutured for two days. Then the sutures were removed. In the third group nanofiber scaffolds seeded with MSCs (and in the fourth group nanofibers alone) were transferred onto the corneas immediately after the injury and the eyelids sutured. Two days later the eyelid sutures were removed together with the nanofiber scaffolds. The rabbits were sacrificed on days four, ten or fifteen after the injury, and the corneas were examined immunohistochemically, morphologically, for the central corneal thickness (taken as an index of corneal hydration) using an ultrasonic pachymeter and by real-time PCR. Results show that in untreated injured corneas the expression of malondialdehyde (MDA) and nitrotyrosine (NT) (important markers of lipid peroxidation and oxidative stress) appeared in the epithelium. The antioxidant aldehyde dehydrogenase 3A1 (ALDH3A1) decreased in the corneal epithelium, particularly in superficial parts, where apoptotic cell death (detected by active caspase-3) was high. (In control corneal epithelium MDA and NT are absent and ALDH3A1 highly present in all layers of the epithelium. Cell apoptosis are sporadic). In injured untreated cornea further corneal disturbances developed: The expressions of matrix metalloproteinase 9 (MMP9) and proinflammatory cytokines, were high. At the end of experiment (on day 15) the injured untreated corneas were vascularized and numerous inflammatory cells were present in the corneal stroma. Vascular endothelial growth factor (VEGF) expression and number of macrophages

  14. Levels of interleukin-6, superoxide dismutase and malondialdehyde in the lung tissue of a rat model of hypoxia-induced acute pulmonary edema

    PubMed Central

    GAO, HENGBO; TIAN, YINGPING; WANG, WEI; YAO, DONGQI; ZHENG, TUOKANG; MENG, QINGBING

    2016-01-01

    The present study aimed to investigate the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and interleukin (IL)-6 in the lung tissue of a rat model of acute pulmonary edema induced by acute hypoxia, and its pathophysiological significance. A total of 48 adult Wistar rats were randomly divided into group A, a normal group; group B, a model of acute pulmonary edema induced by hypoxia for 24 h; group C, a model of acute pulmonary edema induced by hypoxia for 48 h; and group D, a model of acute pulmonary edema induced by hypoxia for 72 h. The rats in groups B-D were intraperitoneally injected with 6% ammonium chloride to establish the model of acute pulmonary edema, and were subsequently sacrificed following successful modeling for 24, 48 and 72 h. The plasma of rats was isolated and the lungs of the rats were removed. Subsequently, a 10% lung homogenate was prepared and the contents and the activities of MDA, SOD and IL-6 in the lung tissue and IL-6 in the plasma were detected by enzyme-linked immunosorbent assay. MDA and IL-6 expression levels increased and SOD activity decreased in the lung tissue in group B as compared with group A; however the difference did not reach significance (P>0.05). MDA, IL-6 and SOD levels in the lung tissue of rats were significantly altered following the increased duration of pulmonary edema in groups C and D, as compared group A (P<0.05). The plasma IL-6 levels of the rats in groups B-D significantly increased, as compared with those in group A (P<0.05). In conclusion, the results of the present study demonstrated that the incidence of acute pulmonary edema may be associated with oxidative stress. Furthermore, decreased antioxidant capacity and increased free radical levels may be associated with pulmonary edema, as in the present study the levels of IL-6, SOD and MDA in the lung tissue were observed to be associated with the pathological changes of the disease. PMID:26998026

  15. Edema disease as a model for systemic disease induced by Shiga toxin-producing E. coli.

    PubMed

    Cornick, N A; Matise, I; Samuel, J E; Bosworth, B T; Moon, H W

    1999-01-01

    Edema disease (ED) is a naturally occurring disease of weaned pigs caused by host adapted strains of E. coli that produce Shiga toxin (STEC). We determined the temporal and quantitative relationships between intestinal colonization by STEC, levels of Shiga toxin (Stx2e) in the gut, in the blood, and clinical manifestations of ED. Bacterial colonization (10(8) CFU/cm ileum) was highest 4 days post inoculation (pi) in animals that did not develop clinical disease and 6 days pi in animals with clinical signs of ED. The mean time for the development of clinical signs of ED was 6 days pi (range 4-10). Average peak titers of Stx2e in the ileum were 1:16,384 in asymptomatic animals and 1:32,768 in clinical animals. Titers of Stx2e in the feces reflected the toxin titers in the ileum but were lower. Intestinal titers of Stx2e and the density of bacterial colonization were predictive of clinical ED for a group of animals but not for individuals. Approximately 50% of the pigs that had Stx2e titers of > or = 1:4096 and a bacterial density of > or = 10(6) CFU/cm in their ileum, had clinical ED. Pigs that had intestinal Stx2e titers < 1:4096 were asymptomatic. Stx2e was detected in the red cell fraction of blood from some of the pigs with clinical ED and in some that were asymptomatic. Stx2e was not detected in the serum of any animals. ED may be a useful model for predicting the temporal and quantitative relationships between bacterial colonization, Stx levels in the gut and blood and systemic disease for STEC in other species.

  16. Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology

    SciTech Connect

    Testylier, Guy . E-mail: guytestylier@crssa.net; Lahrech, Hana; Montigon, Olivier; Foquin, Annie; Delacour, Claire; Bernabe, Denis; Segebarth, Christoph; Dorandeu, Frederic; Carpentier, Pierre

    2007-04-15

    Purpose: In the present study, diffusion-weighted magnetic resonance imaging (DW-MRI) and histology were used to assess cerebral edema and lesions in mice intoxicated by a convulsive dose of soman, an organophosphate compound acting as an irreversible cholinesterase inhibitor. Methods: Three hours and 24 h after the intoxication with soman (172 {mu}g/kg), the mice were anesthetized with an isoflurane/N{sub 2}O mixture and their brain examined with DW-MRI. After the imaging sessions, the mice were sacrificed for histological analysis of their brain. Results: A decrease in the apparent diffusion coefficient (ADC) was detected as soon as 3 h after the intoxication and was found strongly enhanced at 24 h. A correlation was obtained between the ADC change and the severity of the overall brain damage (edema and cellular degeneration): the more severe the damage, the stronger the ADC drop. Anesthesia was shown to interrupt soman-induced seizures and to attenuate edema and cell change in certain sensitive brain areas. Finally, brain water content was assessed using the traditional dry/wet weight method. A significant increase of brain water was observed following the intoxication. Conclusions: The ADC decrease observed in the present study suggests that brain edema in soman poisoning is mainly intracellular and cytotoxic. Since entry of water into Brain was also evidenced, this type of edema is certainly mixed with others (vasogenic, hydrostatic, osmotic). The present study confirms the potential of DW-MRI as a non-invasive tool for monitoring the acute neuropathological consequences (edema and neurodegeneration) of soman-induced seizures.

  17. The genetics of Fuchs′ corneal dystrophy

    PubMed Central

    Iliff, Benjamin W; Riazuddin, S Amer; Gottsch, John D

    2013-01-01

    Fuchs′ corneal dystrophy (FCD) is a common late-onset genetic disorder of the corneal endothelium. It causes loss of endothelial cell density and excrescences in the Descemet membrane, eventually progressing to corneal edema, necessitating corneal transplantation. The genetic basis of FCD is complex and heterogeneous, demonstrating variable expressivity and incomplete penetrance. To date, three causal genes, ZEB1, SLC4A11 and LOXHD1, have been identified, representing a small proportion of the total genetic load of FCD. An additional four loci have been localized, including a region on chromosome 18 that is potentially responsible for a large proportion of all FCD cases. The elucidation of the causal genes underlying these loci will begin to clarify the pathogenesis of FCD and pave the way for the emergence of nonsurgical treatments. PMID:23585771

  18. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    PubMed Central

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  19. Blockade of the intermediate-conductance Ca(2+)-activated K+ channel inhibits the angiogenesis induced by epidermal growth factor in the treatment of corneal alkali burn.

    PubMed

    Yang, Huike; Li, Xiaodong; Ma, Jing; Lv, Xiaohong; Zhao, Shu; Lang, Wen; Zhang, Yafang

    2013-05-01

    Epidermal growth factor (EGF) is used to treat alkali-burned corneas. However, EGF-induced corneal angiogenesis, which is currently untreatable, is a side effect of this therapy. We therefore explored the role of the intermediate-conductance Ca(2+)-activated K(+) channel (KCa3.1) in EGF-induced angiogenesis and tested whether KCa3.1 blockade can suppress EGF-induced corneal angiogenesis. The proliferation, migration and tube formation of HUVECs (human umbilical vein endothelial cells) in response to EGF, the MEK inhibitor PD98059 and the KCa3.1 inhibitor TRAM-34 were analyzed in vitro via MTT, cell counting, scratch and tube formation assays. The protein and mRNA levels of KCa3.1, phosphorylated-ERK (P-ERK), total-ERK (T-ERK), cyclin-dependent kinase 4 (CDK4), vimentin and MMP-2 were assessed via western blotting and RT-PCR. KCa3.1 and vimentin expression were also detected through immunofluorescence staining. Flow cytometry was performed to examine the cell cycle. Further, an in vivo murine alkali-burned cornea model was developed and treated with EGF and TRAM-34 eye drops to analyze the effect of these treatments on corneal healing and angiogenesis. The corneas were also analyzed by histological staining. The in vitro results showed that EGF induces the upregulation of KCa3.1 and P-ERK in HUVECs and that this upregulation is suppressed by PD98059. EGF stimulates proliferation, migration and tube formation in HUVECs, and this effect can be suppressed by TRAM-34. TRAM-34 also arrests HUVECs in the G1 phase of the cell cycle and downregulates CDK4, vimentin and MMP-2 in these cells. The in vivo results indicated that TRAM-34 suppresses EGF-induced corneal angiogenesis without affecting EGF-induced corneal wound healing. In summary, the upregulation of KCa3.1 may be crucial for EGF-induced angiogenesis through the MAPK/ERK signaling pathway. Thus, KCa3.1 may be a potential target for the treatment of EGF-induced corneal angiogenesis.

  20. Lacosamide diminishes dryness-induced hyperexcitability of corneal cold sensitive nerve terminals.

    PubMed

    Kovács, Illés; Dienes, Lóránt; Perényi, Kristóf; Quirce, Susana; Luna, Carolina; Mizerska, Kamila; Acosta, M Carmen; Belmonte, Carlos; Gallar, Juana

    2016-09-15

    Lacosamide is an anti-epileptic drug that is also used for the treatment of painful diabetic neuropathy acting through voltage-gated sodium channels. The aim of this work was to evaluate the effects of acute application of lacosamide on the electrical activity of corneal cold nerve terminals in lacrimo-deficient guinea pigs. Four weeks after unilateral surgical removal of the main lachrimal gland in guinea pigs, corneas were excised and superfused in vitro at 34°C for extracellular electrophysiological recording of nerve terminal impulse activity of cold thermosensitive nerve terminals. The characteristics of the spontaneous and the stimulus-evoked (cooling ramps from 34°C to 15°C) activity before and in presence of lacosamide 100µM and lidocaine 100µM were compared. Cold nerve terminals (n=34) recorded from dry eye corneas showed significantly enhanced spontaneous activity (8.0±1.1 vs. 5.2±0.7imp/s; P<0.05) and cold response (21.2±1.7 vs. 16.8±1.3imp/s; P<0.05) as well as reduced cold threshold (1.5±0.1 vs. 2.8±0.2 Δ°C; P<0.05) to cooling ramps compared to terminals (n=58) from control animals. Both lacosamide and lidocaine decreased spontaneous activity and peak response to cooling ramps significantly (P<0.05). Temperature threshold was increased by the addition of lidocaine (P<0.05) but not lacosamide (P>0.05) to the irrigation fluid. In summary, the application of lacosamide results in a significant decrease of the augmented spontaneous activity and responsiveness to cold of corneal sensory nerves from tear-deficient animals. Based on these promising results we speculate that lacosamide might be used to reduce the hyperexcitability of corneal cold receptors caused by prolonged ocular surface dryness due to hyposecretory or evaporative dry eye disease.

  1. Reduced hippocampal manganese-enhanced MRI (MEMRI) signal during pilocarpine-induced status epilepticus: edema or apoptosis?

    PubMed

    Malheiros, Jackeline Moraes; Persike, Daniele Suzete; Castro, Leticia Urbano Cardoso de; Sanches, Talita Rojas Cunha; Andrade, Lúcia da Conceição; Tannús, Alberto; Covolan, Luciene

    2014-05-01

    Manganese-enhanced MRI (MEMRI) has been considered a surrogate marker of Ca(+2) influx into activated cells and tracer of neuronal active circuits. However, the induction of status epilepticus (SE) by kainic acid does not result in hippocampal MEMRI hypersignal, in spite of its high cell activity. Similarly, short durations of status (5 or 15min) induced by pilocarpine did not alter the hippocampal MEMRI, while 30 min of SE even reduced MEMRI signal Thus, this study was designed to investigate possible explanations for the absence or decrease of MEMRI signal after short periods of SE. We analyzed hippocampal caspase-3 activation (to evaluate apoptosis), T2 relaxometry (tissue water content) and aquaporin 4 expression (water-channel protein) of rats subjected to short periods of pilocarpine-induced SE. For the time periods studied here, apoptotic cell death did not contribute to the decrease of the hippocampal MEMRI signal. However, T2 relaxation was higher in the group of animals subjected to 30min of SE than in the other SE or control groups. This result is consistent with higher AQP-4 expression during the same time period. Based on apoptosis and tissue water content analysis, the low hippocampal MEMRI signal 30min after SE can potentially be attributed to local edema rather than to cell death.

  2. Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema

    PubMed Central

    Sehm, Tina; Fan, Zheng; Ghoochani, Ali; Rauh, Manfred; Engelhorn, Tobias; Minakaki, Georgia; Dörfler, Arnd; Klucken, Jochen; Buchfelder, Michael

    2016-01-01

    The glutamate transporter xCT (SCL7a11, system Xc-, SXC) is an emerging key player in glutamate/cysteine/glutathione homeostasis in the brain and in cancer. xCT expression correlates with the grade of malignancy. Here, we report on the use of the U.S. Food and Drug Administration and EMA-approved xCT inhibitor, sulfasalazine (SAS) in gliomas. SAS does not affect cell viability in gliomas at concentrations below 200 μM. At higher concentrations SAS becomes gliomatoxic. Mechanistically SAS inhibits xCT and induces ferroptotic cell death in glioma cells. There is no evidence for impact on autophagic flux following SAS application. However, SAS can potentiate the efficacy of the standard chemotherapeutic and autophagy-inducing agent temozolomide (Temcat, Temodal or Temodar®). We also investigated SAS in non-transformed cellular constituents of the brain. Neurons and brain tissue are almost non-responding to SAS whereas isolated astrocytes are less sensitive towards SAS toxicity compared to gliomas. In vivo SAS treatment does not affect experimental tumor growth and treated animals revealed comparable tumor volume as untreated controls. However, SAS treatment resulted in reduced glioma-derived edema and, hence, total tumor volume burden as revealed by T2-weighted magnetic resonance imaging. Altogether, we show that SAS can be utilized for targeting the glutamate antiporter xCT activity as a tumor microenvironment-normalizing drug, while crucial cytotoxic effects in brain tumors are minor. PMID:27074570

  3. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  4. Corneal epithelial response of the primate eye to gas permeable corneal contact lenses: a preliminary report.

    PubMed

    Bergmanson, J P; Ruben, M; Chu, L W

    1984-01-01

    The comparative corneal epithelial effects of rigid gas permeable and soft contact lenses are reported in the present preliminary study using two bush baby monkeys (Galago senegalensis). Both types of lenses produced early cell death among the surface squamous cells while internally the epithelium and its nerve fibers remained normal. Sporadically small abnormal groups of cells involving two to three of the surface layers were observed in both the hard and soft lens wearing corneas. It was concluded that this represented superficial punctate keratitis (SPK). Small superficial intracellular epithelial cysts with membranous contents were infrequently noted in the gas permeable lens wearing cornea and it is suggested here that they were mild forms or precursors of those seen clinically in human corneas. Since the gas permeable lens met the corneal oxygen requirement it is postulated that the traumatic effect of the rigidity of the lens caused the cystic formation to occur. The relative hypoxia induced by the soft contact lens resulted in a mild superficial epithelial edema.

  5. Anti-Inflammatory and Antioxidant Effects of Repeated Exposure to Cruciferous Allyl Nitrile in Sensitizer-Induced Ear Edema in Mice

    PubMed Central

    Tanii, Hideji; Sugitani, Kayo; Saijoh, Kiyofumi

    2016-01-01

    Background Skin sensitizers induce allergic reactions through the induction of reactive oxygen species. Allyl nitrile from cruciferous vegetables has been reported to induce antioxidants and phase II detoxification enzymes in various tissues. We assessed the effects of repeated exposure to allyl nitrile on sensitizer-induced allergic reactions. Material/Methods Mice were dosed with allyl nitrile (0–200 μmol/kg), and then received a dermal application of 1 of 3 sensitizers on the left ear or 1 of 2 vehicles on the right ear. Quantitative assessment of edema was carried out by measuring the difference in weight between the portions taken from the right and left ears. We tested enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) in ears. Results Repeated exposure to allyl nitrile reduced edemas induced by glutaraldehyde and by 2, 4-dinitrochlorobenzene (DNCB), but not by formaldehyde. The repeated exposure decreased levels of TBARS, a marker of oxidative stress, induced by glutaraldehyde and by DNCB, but not by formaldehyde. Allyl nitrile elevated SOD levels for the 3 sensitizers, and CAT levels for formaldehyde and DNCB. Allyl nitrile also increased GPx levels for formaldehyde and DNCB, but not for glutaraldehyde. The reduced edemas were associated with changes in oxidative stress levels and antioxidant enzymes. Conclusions Repeated exposure to allyl nitrile reduced allergic reactions induced by glutaraldehyde and by DNCB, but not by formaldehyde. This reduction was associated with changes in ROS levels and antioxidant enzyme activities. PMID:26932717

  6. The role of free radicals in paraquat-induced corneal lesions.

    PubMed

    Nordquist, R E; Nguyen, H; Poyer, J L; Carubelli, R

    1995-07-01

    Paraquat is a synthetic bipyridylium salt widely used as herbicide and defoliant. Enzyme-catalyzed redoxcycling of paraquat generates oxygen radicals. The toxic, even lethal, effects of paraquat are due to free radical-mediated tissue injury. Ocular lesions, sometimes quite severe, have been observed following accidental splashing of paraquat solutions onto the eyes. These studies were designed to document the generation of paraquat free radicals in corneal tissue, and to describe the histological nature of the corneal injuries in experimental animals (rabbits and monkeys). The EPR spectrum of rabbit corneas, 30 min. after intrastromal injection of paraquat, showed the signal of the free radical of paraquat. Ultrastructural studies of corneas 8 days after intrastromal injections (100 microliters) of paraquat solutions showed that the initial lesions occur at the epithelium/basement membrane interface. In rabbit cornea, dose dependent lesions were observed, i.e. whereas 50 mM paraquat caused only minimal damage to the epithelial basement membrane, 75 mM caused complete dissolution to the basement membrane with some damage to stromal collagen, and loss of epithelium with stromal ulceration and severe inflammatory response were observed with 150 mM paraquat. Monkey corneas were less susceptible than those of rabbits to the effects of paraquat. No lesions were observed following intrastromal injections of 50 mM or 75 mM paraquat. With higher concentrations of paraquat (100 mM and 150 mM) the primary injuries were to the proximal and lateral plasma membranes of basal epithelial cells; basement membrane alterations were detected only adjacent to areas of significant plasma membrane damage. The underlying Bowman's membrane and stroma were not affected. Anatomical differences between the corneas of rabbit and monkeys as well as possible biochemical differences may account for the species differences observed.

  7. Terahertz sensing of corneal hydration.

    PubMed

    Singh, Rahul S; Tewari, Priyamvada; Bourges, Jean Louis; Hubschman, Jean Pierre; Bennett, David B; Taylor, Zachary D; Lee, H; Brown, Elliott R; Grundfest, Warren S; Culjat, Martin O

    2010-01-01

    An indicator of ocular health is the hydrodyanmics of the cornea. Many corneal disorders deteriorate sight as they upset the normal hydrodynamics of the cornea. The mechanisms include the loss of endothelial pump function of corneal dystophies, swelling and immune response of corneal graft rejection, and inflammation and edema, which accompany trauma, burn, and irritation events. Due to high sensitivity to changes of water content in materials, a reflective terahertz (300 GHz and 3 THz) imaging system could be an ideal tool to measure the hydration level of the cornea. This paper presents the application of THz technology to visualize the hydration content across ex vivo porcine corneas. The corneas, with a thickness variation from 470 - 940 µm, were successfully imaged using a reflective pulsed THz imaging system, with a maximum SNR of 50 dB. To our knowledge, no prior studies have reported on the use of THz in measuring hydration in corneal tissues or other ocular tissues. These preliminary findings indicate that THz can be used to accurately sense hydration levels in the cornea using a pulsed, reflective THz imaging system.

  8. Essential contribution of CCL3 to alkali-induced corneal neovascularization by regulating vascular endothelial growth factor production by macrophages

    PubMed Central

    Lu, Peirong; Li, Longbiao; Wu, Yu; Mukaida, Naofumi

    2008-01-01

    Purpose To evaluate the roles of CCL3 and its specific chemokine receptors, CCR1 and CCR5, in alkali-induced corneal neovascularization (CNV). Methods Chemical denudation of corneal and limbal epithelium was performed on wild-type (WT) BALB/c mice and CCL3-, CCR1-, and CCR5-deficienct (knockout [KO]) counterparts. Two weeks after injury CNV was quantified by immunostaining with anti-CD31. Angiogenic factor expression and leukocyte accumulation in the early phase after injury were quantified by reverse transcription polymerase chain reaction (RT–PCR) and immunohistochemical analysis, respectively. Results Alkali injury augmented the intraocular mRNA expression of CCL3 and its receptors, CCR1 and CCR5, together with a transient infiltration of F4/80 positive macrophages and Gr-1 positive neutrophils. Compared with WT mice, CCL3-KO and CCR5-KO mice but not CCR1-KO mice exhibited reduced CNV two weeks after injury both macroscopically and microscopically as evidenced by CD31 positive areas. Concomitantly, the infiltration of F4/80 positive macrophages but not Gr-1 positive neutrophils was significantly attenuated in CCL3-KO mice compared with WT mice. Intracorneal infiltration of CCR5 expressing cells was significantly impaired in CCL3-KO mice compared with WT mice. Alkali injury induced a massive increase in the intraocular mRNA expression of a potent angiogenic factor, vascular endothelial growth factor (VEGF), in WT mice whereas these increments were severely retarded in CCL3-KO mice. Moreover, CCL3 enhanced VEGF expression by murine peritoneal macrophages at both the mRNA and the protein level. Furthermore, topical CCL3 application restored CNV, which was macroscopically and microscopically reduced in CCL3-KO mice after two weeks to levels similar to those found in WT mice. Conclusions In alkali-induced CNV, CCL3 induced macrophages to infiltrate and produce VEGF by binding to CCR5 but not to CCR1 and eventually promoted angiogenesis. PMID:18776949

  9. Antioxidant and Anti-inflammatory Activities of a Commercial Noni Juice revealed by Carrageenan-induced Paw Edema.

    PubMed

    Yilmazer, N; Coskun, C; Gurel-Gurevin, E; Yaylim, I; Eraltan, E H; Ikitimur-Armutak, E I

    2016-09-01

    This study aimed to investigate antioxidant and anti-inflammatory activities of a commercial product of noni (Morinda citrifolia) juice. Carrageenan-induced rat paw edema was employed as inflammatory model. One control and three experimental groups were formed. Experimental groups were administered noni juice alone, noni juice+carrageenan, and carrageenan alone. Oxidant and antioxidant capacity were determined by d-ROMs test and BAP test, respectively. Plasma concentrations of endothelin-1 and leptin were measured by ELISA. Measurements were performed at zero time and 2nd hour of inflammation. Oxidant capacity decreased in noni-received groups at 2nd hour (p=0.019). Antioxidant capacity of the group which received noni alone was found to be higher at 2nd hour (p=0.036). Plasma concentrations of endothelin-1 and leptin were notably lower in noni-received groups (p=0.001 and p=0.021, respectively). The results show that the commercial noni juice investigated has pronounced antioxidant and anti-inflammatory activities.

  10. uPA Binding to PAI-1 Induces Corneal Myofibroblast Differentiation on Vitronectin

    PubMed Central

    Wang, Lingyan; Ly, Christine M.; Ko, Chun-Ying; Meyers, Erin E.; Lawrence, Daniel A.; Bernstein, Audrey M.

    2012-01-01

    Purpose. Vitronectin (VN) in provisional extracellular matrix (ECM) promotes cell migration. Fibrotic ECM also includes VN and, paradoxically, strongly adherent myofibroblasts (Mfs). Because fibrotic Mfs secrete elevated amounts of urokinase plasminogen activator (uPA), we tested whether increased extracellular uPA promotes the persistence of Mfs on VN. Methods. Primary human corneal fibroblasts (HCFs) were cultured in supplemented serum-free medium on VN or collagen (CL) with 1ng/mL transforming growth factor β1 (TGFβ1). Adherent cells were quantified using crystal violet. Protein expression was measured by Western blotting and flow cytometry. Transfection of short interfering RNAs was performed by nucleofection. Mfs were identified by α-smooth muscle actin (α-SMA) stress fibers. Plasminogen activator inhibitor (PAI-1) levels were quantified by ELISA. Results. TGFβ1-treated HCFs secreted PAI-1 (0.5uM) that bound to VN, competing with αvβ3/αvβ5 integrin/VN binding, thus promoting cell detachment from VN. However, addition of uPA to cells on VN increased Mf differentiation (9.7-fold), cell-adhesion (2.2-fold), and binding by the VN integrins αvβ3 and -β5 (2.2-fold). Plasmin activity was not involved in promoting these changes, as treatment with the plasmin inhibitor aprotinin had no effect. A dominant negative PAI-1 mutant (PAI-1R) that binds to VN but does not inhibit uPA prevented the increase in uPA-stimulated cell adhesion and reduced uPA-stimulated integrin αvβ3/αvβ5 binding to VN by 73%. Conclusions. uPA induction of TGFβ1-dependent Mf differentiation on VN supports the hypothesis that elevated secretion of uPA in fibrotic tissue may promote cell adhesion and the persistence of Mfs. By blocking uPA-stimulated cell adhesion, PAI-1R may be a useful agent in combating corneal scarring. PMID:22700714

  11. Imaging, Reconstruction, And Display Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Klyce, Stephen D.; Wilson, Steven E.

    1989-12-01

    The cornea is the major refractive element in the eye; even minor surface distortions can produce a significant reduction in visual acuity. Standard clinical methods used to evaluate corneal shape include keratometry, which assumes the cornea is ellipsoidal in shape, and photokeratoscopy, which images a series of concentric light rings on the corneal surface. These methods fail to document many of the corneal distortions that can degrade visual acuity. Algorithms have been developed to reconstruct the three dimensional shape of the cornea from keratoscope images, and to present these data in the clinically useful display of color-coded contour maps of corneal surface power. This approach has been implemented on a new generation video keratoscope system (Computed Anatomy, Inc.) with rapid automatic digitization of the image rings by a rule-based approach. The system has found clinical use in the early diagnosis of corneal shape anomalies such as keratoconus and contact lens-induced corneal warpage, in the evaluation of cataract and corneal transplant procedures, and in the assessment of corneal refractive surgical procedures. Currently, ray tracing techniques are being used to correlate corneal surface topography with potential visual acuity in an effort to more fully understand the tolerances of corneal shape consistent with good vision and to help determine the site of dysfunction in the visually impaired.

  12. Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice

    PubMed Central

    Gupta, Ashok Kumar; Parasar, Devraj; Sagar, Amin; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Renu; Ashish; Khatri, Neeraj

    2015-01-01

    Plasma gelsolin levels significantly decline in several disease conditions, since gelsolin gets scavenged when it depolymerizes and caps filamentous actin released in the circulation following tissue injury. It is well established that our body require/implement inflammatory and analgesic responses to protect against cell damage and injury to the tissue. This study was envisaged to examine analgesic and anti-inflammatory activity of exogenous gelsolin (8 mg/mouse) in mice models of pain and acute inflammation. Administration of gelsolin in acetic acid-induced writhing and tail immersion tests not only demonstrated a significant reduction in the number of acetic acid-induced writhing effects, but also exhibited an analgesic activity in tail immersion test in mice as compared to placebo treated mice. Additionally, anti-inflammatory function of gelsolin (8 mg/mouse) compared with anti-inflammatory drug diclofenac sodium (10 mg/kg)] was confirmed in the carrageenan injection induced paw edema where latter was measured by vernier caliper and fluorescent tomography imaging. Interestingly, results showed that plasma gelsolin was capable of reducing severity of inflammation in mice comparable to diclofenac sodium. Analysis of cytokines and histo-pathological examinations of tissue revealed administration of gelsolin and diclofenac sodium significantly reduced production of pro-inflammatory cytokines, TNF-α and IL-6. Additionally, carrageenan groups pretreated with diclofenac sodium or gelsolin showed a marked decrease in edema and infiltration of inflammatory cells in paw tissue. Our study provides evidence that administration of gelsolin can effectively reduce the pain and inflammation in mice model. PMID:26426535

  13. Butorphanol decreases edema following carrageenan-induced paw inflammation in rats.

    PubMed

    Vachon, Pascal; Moreau, Jean-Pierre

    2002-11-01

    The objectives of this study were to evaluate the anti-inflammatory effects and possible drug interactions of butorphanol by using carrageenan-induced paw inflammation in rats. We injected the right hind footpads of 64 female Sprague-Dawley rats (approximate weight, 100 g) with 50 microL of a 0.5% solution of carrageenan. Indomethacin (0, 1, 2.5, or 5 mg/kg) was administered by gavage to each of four groups 1 h prior to carrageenan injections. Half of the animals in each group received butorphanol (2 mg/kg) subcutaneously 1 h prior to carrageenan injections. Butorphanol decreased paw inflammation following carrageenan injections with or without concurrent administration of indomethacin. No drug interaction with indomethacin was observed. In conclusion, when using butorphanol for its analgesic properties, investigators should be mindful of the drug's anti-inflammatory effects, which may interfere with the experimentation.

  14. pH Induced Conformational Transitions in the Transforming Growth Factor β-Induced Protein (TGFβIp) Associated Corneal Dystrophy Mutants

    PubMed Central

    Murugan, Elavazhagan; Venkatraman, Anandalakshmi; Lei, Zhou; Mouvet, Victoria; Rui Yi Lim, Rayne; Muruganantham, Nandhakumar; Goh, Eunice; Swee Lim Peh, Gary; Beuerman, Roger W.; Chaurasia, Shyam S.; Rajamani, Lakshminarayanan; Mehta, Jodhbir S.

    2016-01-01

    Most stromal corneal dystrophies are associated with aggregation and deposition of the mutated transforming growth factor-β induced protein (TGFβIp). The 4th_FAS1 domain of TGFβIp harbors ~80% of the mutations that forms amyloidogenic and non-amyloidogenic aggregates. To understand the mechanism of aggregation and the differences between the amyloidogenic and non-amyloidogenic phenotypes, we expressed the 4th_FAS1 domains of TGFβIp carrying the mutations R555W (non-amyloidogenic) and H572R (amyloidogenic) along with the wild-type (WT). R555W was more susceptible to acidic pH compared to H572R and displayed varying chemical stabilities with decreasing pH. Thermal denaturation studies at acidic pH showed that while WT did not undergo any conformational transition, the mutants exhibited a clear pH-dependent irreversible conversion from αβ conformation to β-sheet oligomers. The β-oligomers of both mutants were stable at physiological temperature and pH. Electron microscopy and dynamic light scattering studies showed that β-oligomers of H572R were larger compared to R555W. The β-oligomers of both mutants were cytotoxic to primary human corneal stromal fibroblast (pHCSF) cells. The β-oligomers of both mutants exhibit variations in their morphologies, sizes, thermal and chemical stabilities, aggregation patterns and cytotoxicities. PMID:27030015

  15. Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat

    PubMed Central

    Rafiee, Laleh; Hajhashemi, Valiollah; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Objective(s): Fluvoxamine is a well-known selective serotonin reuptake inhibitor (SSRI); Despite its anti-inflammatory effect, little is known about the precise mechanisms involved. In our previous work, we found that IP administration of fluvoxamine produced a noticeable anti-inflammatory effect in carrageenan-induced paw edema in rats. In this study, we aimed to evaluate the effect of fluvoxamine on the expression of some inflammatory genes like intercellular adhesion molecule (ICAM1), vascular cell adhesion molecule (VCAM1), cyclooxygenases2 (COX2), and inducible nitric oxide synthase (iNOS). Materials and Methods: An in vitro model of LPS stimulated human endothelial cells and U937 macrophages were used. Cells were pretreated with various concentrations of fluvoxamine, from 10-8 M to 10-6 M. For in vivo model, fluvoxamine was administered IP at doses of 25 and 50 mg/kg-1, before injection of carrageenan. At the end of experiment, the expression of mentioned genes were measured by quantitative real time (RT)-PCR in cells and in paw edema in rat. Results: The expression of ICAM1, VCAM1, COX2, and iNOS was significantly decreased by fluvoxamine in endothelial cells, macrophages, and in rat carrageenan-induced paw edema. Our finding also confirmed that IP injection of fluvoxamine inhibits carrageenan-induced inflammation in rat paw edema. Conclusion: The results of present study provide further evidence for the anti-inflammatory effect of fluvoxamine. This effect appears to be mediated by down regulation of inflammatory genes. Further studies are needed to evaluate the complex cellular and molecular mechanisms of immunomodulatory effect of fluvoxamine. PMID:27803785

  16. Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization

    PubMed Central

    Han, Kyu-Yeon; Tran, Jennifer A.; Chang, Jin-Hong; Azar, Dimitri T.; Zieske, James D.

    2017-01-01

    Specific factors from the corneal epithelium underlying the stimulation of stromal fibrosis and myofibroblast formation in corneal wound healing have not been fully elucidated. Given that exosomes are known to transfer bioactive molecules among cells and play crucial roles in wound healing, angiogenesis, and cancer, we hypothesized that corneal epithelial cell-derived exosomes may gain access to the underlying stromal fibroblasts upon disruption of the epithelial basement membrane and that they induce signaling events essential for corneal wound healing. In the present study, exosome-like vesicles were observed between corneal epithelial cells and the stroma during wound healing after corneal epithelial debridement. These vesicles were also found in the stroma following anterior stromal keratectomy, in which surgical removal of the epithelium, basement membrane, and anterior stroma was performed. Exosomes secreted by mouse corneal epithelial cells were found to fuse to keratocytes in vitro and to induce myofibroblast transformation. In addition, epithelial cell-derived exosomes induced endothelial cell proliferation and ex vivo aortic ring sprouting. Our results indicate that epithelial cell-derived exosomes mediate communication between corneal epithelial cells and corneal keratocytes as well as vascular endothelial cells. These findings demonstrate that epithelial-derived exosomes may be involved in corneal wound healing and neovascularization, and thus, may serve as targets for potential therapeutic interventions. PMID:28165027

  17. Fungus induces the release of IL-8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways

    PubMed Central

    Peng, Xu-Dong; Zhao, Gui-Qiu; Lin, Jing; Jiang, Nan; Xu, Qiang; Zhu, Cheng-Cheng; Qu, Jian-Qiu; Cong, Lin; Li, Hui

    2015-01-01

    AIM To identify whether Aspergillus fumigatus (A. fumigatus) hyphae antigens induced the release of interleukin-8 (IL-8) in anti-fungal innate immunity of cultured human corneal epithelial cells (HCECs) and determine the involvement of intracellular signalling pathways. METHODS HCECs were treated with A. fumigatus hyphae antigens with different concentrations and time. The cytoplasmic calcium of HCECs were assessed by fluorescence imaging. Western blot was used to detect the expression of Ca2+-dependent protein kinase C (PKC). The IL-8 levels were determined by specific human IL-8 enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR). Using a series of pharmacological inhibitors, we examined the upstream signalling pathway responsible for IL-8 expression in response to A. fumigatus hyphae antigens. RESULTS Cells exposed to A. fumigatus hyphae antigens showed higher level of IL-8 mRNA expression and protein production. We demonstrated here that stimulation of HCECs with A. fumigatus hyphae triggers an intracellular Ca2+ flux and results in the activation of Ca2+-dependent PKC (α, βI and βII) which can be attenuated by pre-treatment of cells with laminarin, suggesting that Dectin-1 signals pathway induced cytoplasmic calcium and influence the activation of PKC in HCECs. Inhibitors of Ca2+-dependent PKC (Ro-31-8220 and Go6976) significantly abolished hyphae-induced expression of IL-8. CONCLUSION Our findings suggest that A. fumigatus hyphae-induced IL-8 expression was regulated by the activation of Dectin-1-mediated Ca2+-dependent PKC in HCECs. PMID:26085988

  18. 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats

    PubMed Central

    Liu, Zhongyang; Xi, Ronggang; Zhang, Zhiran; Li, Wangping; Liu, Yan; Jin, Faguang; Wang, Xiaobo

    2014-01-01

    4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats. PMID:25050781

  19. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production

    PubMed Central

    Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation. PMID:26895409

  20. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    PubMed Central

    Michinaga, Shotaro; Koyama, Yutaka

    2015-01-01

    Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them. PMID:25941935

  1. Two mutations in the transforming growth factor beta-induced gene associated with familial Lattice corneal dystrophy

    PubMed Central

    Cao, Wen-Ping; Yuan, Hai-Gang; Liu, Ping; Li, Xue; Hu, Qi

    2017-01-01

    AIM To report a phenotypic variant pedigree of lattice corneal dystrophy (LCD) associated with two mutations, R124C and A546D, in the transforming growth factor beta-induced gene (TGFBI). METHODS A detailed ocular examination was taken for all participants of a LCD family. Peripheral blood leukocytes from each participant were extracted to obtain the DNA. Polymerase chain reaction (PCR) of all seventeen exons of TGFBI gene was performed. The products were sequenced and analyzed. Histological examination was carried out after a penetrating keratoplasty from the right eye of proband. RESULTS Genetic analysis showed that the proband and all 6 affected individuals harbored both a heterozygous CGC to TGC mutation at codon 124 and a heterozygous GCC to GAC mutation at codon 546 of TGFBI. None of the 100 control subjects and unaffected family members was positive for these two mutations. Ocular examination displayed multiple refractile lattice-like opacities in anterior stroma of the central cornea and small granular deposits in the peripheral cornea. The deposits were stained positively with Congo red indicating be amyloid in nature and situated mainly in the anterior and middle stroma. CONCLUSION We observed a novel LCD family which carried two pathogenic mutations (R124C and A546D) in the TGFBI gene. The phenotypic features were apparently different from those associated with corresponding single mutations. The result reveals that although the definite mutation is the most important genetic cause of the disease, some different modifier alleles may influence the phenotype.

  2. The blink reflex and the corneal reflex are followed by cortical activity resembling the nociceptive potentials induced by trigeminal laser stimulation in man.

    PubMed

    de Tommaso, M; Libro, G; Guido, M; Sciruicchio, V; Puca, F

    2001-09-07

    Laser stimulation of the supraorbital regions evokes brain potentials (LEPs) related to trigeminal nociception. The aim of this study was to record the R2 component of the blink reflex and the corneal reflex in 20 normal subjects, comparing the scalp activity following these reflexes with the nociceptive potentials evoked by CO2 laser stimulation of supraorbital regions. Cortical and muscular reflexes evoked by stimulation of the first trigeminal branch were recorded simultaneously. The R2 component of the blink reflex and the corneal reflex were followed by two cortical peaks, which resembled morphologically N-P waves of LEPs. The two peaks demonstrated a difference in latency of approximately 40 ms, which is consistent with activation time of nociception. This finding suggests that these reflexes are induced by activation of small pain-related fibers.

  3. Mast cells and histamine play an important role in edema and leukocyte recruitment induced by Potamotrygon motoro stingray venom in mice.

    PubMed

    Kimura, Louise F; Prezotto-Neto, José Pedro; Távora, Bianca C L F; Faquim-Mauro, Eliana L; Pereira, Nicole A; Antoniazzi, Marta M; Jared, Simone G S; Teixeira, Catarina F P; Santoro, Marcelo L; Barbaro, Katia C

    2015-09-01

    This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays.

  4. Penetrating keratoplasty restoring vision in an unusual case of corneal opacity following exposure to Euphorbia latex.

    PubMed

    Dutta, Jayanta; Choudhury, Somnath; Lahiri, Kapildeb; Savale, Smruti; Banerjee, Monideepa; Datta, Himadri

    2015-10-01

    The milky sap of the Euphorbia plant is highly toxic and causes inflammation to the skin and eyes. Damage to the eye ranges from superficial epithelial defects, keratoconjunctivitis, mild to moderate corneal edema, anterior uveitis, Descemet membrane folds, raised intraocular pressure and rarely corneal opacity in severe untreated cases. Here we report a case of visual restoration by optical penetrating keratoplasty in a patient with severe corneal opacity following exposure to Euphorbia latex.

  5. Long-Term Treatment by Vitamin B1 and Reduction of Serum Proinflammatory Cytokines, Hyperalgesia, and Paw Edema in Adjuvant-Induced Arthritis

    PubMed Central

    Zaringhalam, Jalal; Akbari, Akhtar; Zali, Alireza; Manaheji, Homa; Nazemian, Vida; Shadnoush, Mahdi; Ezzatpanah, Somayeh

    2016-01-01

    Introduction: Immune system is involved in the etiology and pathophysiology of inflammation and vitamins are important sources of substances inducing nonspecific immunomodulatory effects. Given the proinflammatory role of cytokines in the inflammation and pain induction, this study aimed to assess the effects of long-term administration of vitamin B1 on the proinflammatory cytokines, edema, and hyperalgesia during the acute and chronic phases of adjuvant-induced arthritis. Methods: On the first day of study, inflammation was induced by intraplantar injection of complete Freund's adjuvant (CFA) in the hindpaws of rats. Vitamin B1 at doses of 100, 150, and 200 mg/kg was administrated intraperitoneally during 21 days of the study. Antinociceptive and anti-inflammatory effects of vitamin B1 were also compared to indomethacin (5 mg/kg). Inflammatory symptoms such as thermal hyperalgesia and paw edema were measured by radiant heat and plethysmometer, respectively. Serum TNF-α and IL-1β levels were checked by rat standard enzyme-linked immune sorbent assay (ELISA) specific kits. Results: The results indicated that vitamin B1(150 and 200 mg/kg) attenuated the paw edema, thermal hyperalgesia, and serum levels of TNF-α and IL-1β during both phases of CFA-induced inflammation in a dose-dependent manner. Effective dose of vitamin B1(150 mg/kg) reduced inflammatory symptoms and serum levels of TNF-α and IL-1β compare to indomethacin during the chronic phase of inflammation. Conclusion: Anti-inflammatory and antihyperalgesic effects of vitamin B1 during CFA-induced arthritis, more specifically after chronic vitamin B1 administration, suggest its therapeutic property for inflammation. PMID:27872694

  6. Involvement of the extrinsic and intrinsic pathways in ultraviolet B-induced apoptosis of corneal epithelial cells.

    PubMed

    Ubels, John L; Glupker, Courtney D; Schotanus, Mark P; Haarsma, Loren D

    2016-04-01

    The goal of this study was to elucidate the pathway by which UVB initiates efflux of K(+) and subsequently apoptosis in human corneal limbal epithelial (HCLE) cells. The initial focus of the study was on the extrinsic pathway involving Fas. HCLE cells transfected with Fas siRNA were exposed to 80-150 mJ/cm(2) UVB and incubated in culture medium with 5.5 mM K(+). Knockdown of Fas resulted in limited reduction in UVB-induced caspase-8 and -3 activity. Patch-clamp recordings showed no difference in UVB-induced normalized K(+) currents between Fas transfected and control cells. Knockdown of caspase-8 had no effect on the activation of caspase-3 following UVB exposure, while a caspase-8 inhibitor completely eliminated UVB activation of caspase-3. This suggests that caspase-8 is a robust enzyme, able to activate caspase-3 via residual caspase-8 present after knockdown, and that caspase-8 is directly involved in the UVB activation of caspase-3. Inhibition of caspase-9 significantly decreased the activation of caspases-8 and -3 in response to UVB. Knockdown of Apaf-1, required for activation of caspase-9, resulted in a significant reduction in UVB-induced activation of caspases-9, -8, and -3. Knockdown of Apaf-1 also inhibited intrinsic and UVB-induced levels of apoptosis, as determined by DNA fragmentation measured by TUNEL assay. In UVB exposed cultures treated with caspase-3 inhibitor, the percentage of apoptotic cells was reduced to control levels, confirming the necessity of caspase-3 activation in DNA fragmentation. The lack of effect of Fas knockdown on K(+) channel activation, as well as the limited effect on activation of caspases-8 and -3, strongly suggest that Fas and the extrinsic pathway is not of primary importance in the initiation of apoptosis in response to UVB in HCLE cells. Inhibition of caspase-8 and -3 activation following inhibition of caspase-9, as well as reduction in activation of caspases-9, -8, and -3 and DNA fragmentation in response to Apaf

  7. Quantitative Shotgun Proteomics of HD Induced Corneal Injury and Angiogenesis (Briefing Charts)

    DTIC Science & Technology

    2010-03-10

    Thermo-Finnigan LTQ XL High Performance Linear Ion Trap - Collision Induced Dissociation (CID) for generating peptide fragmentation - Pulsed Q...Quantitation CID Sequence Analysis Ratio 114:117 1.05:1.00 Quantitative Proteomics with Pulsed Q Dissociation and Collision Induced Dissociation Clearance... Dissociation (PQD) for generating more fragments and extending the low mass range Separate Layers / Lyse cells Digest Proteins Label with iTRAQ and

  8. Intrastromal Corneal Ring Implants for Corneal Thinning Disorders

    PubMed Central

    2009-01-01

    refractive surgeons. It involves creating tunnels in the corneal stroma to secure the implants either by a diamond knife or laser calibrated to an approximate depth of 70% of the cornea. Variable approaches have been employed by surgeons in selecting ring segment size, number and position. Generally, two segments of equal thickness are placed superiorly and inferiorly to manage symmetrical patterns of corneal thinning whereas one segment may be placed to manage asymmetric thinning patterns. Following implantation, the major safety concerns are for potential adverse events including corneal perforation, infection, corneal infiltrates, corneal neovascularization, ring migration and extrusion and corneal thinning. Technical results can be unsatisfactory for several reasons. Treatment may result in an over or under-correction of refraction and may induce astigmatism or asymmetry of the cornea. Progression of the corneal cone with corneal opacities is also invariably an indication for progression to corneal transplant. Other reasons for treatment failure or patient dissatisfaction include foreign body sensation, unsatisfactory visual quality with symptoms such as double vision, fluctuating vision, poor night vision or visual side effects related to ring edge or induced or unresolved astigmatism. Evidence-Based Analysis Methods The literature search strategy employed keywords and subject headings to capture the concepts of 1) intrastromal corneal rings and 2) corneal diseases, with a focus on keratoconus, astigmatism, and corneal ectasia. The initial search was run on April 17, 2008, and a final search was run on March 6, 2009 in the following databases: Ovid MEDLINE (1996 to February Week 4 2009), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2009 Week 10), OVID Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. Parallel search strategies were developed for the remaining databases

  9. Comparison of Surgically Induced Astigmatisms after Clear Corneal Incisions of Different Sizes

    PubMed Central

    Mohamed, Tarek; Fine, I. Howard

    2007-01-01

    Purpose This study was performed to assess efficiency and stability of astigmatic change by incision size after cataract surgery. Methods This work was designed as a retrospective, comparative, nonrandomized interventional study. A total of 121 cases of cataract surgery were reviewed in 98 patients performed by one surgeon at the Oregon Eye Institute in Eugene, OR, USA with 3-year follow-ups. All procedures were performed with the temporal approach of self-sealing incisions. The serial change in surgically induced astigmatisms were examined in all cases of three groups: Group A, cartridge injection of a foldable IOL through a 2.5 mm self-sealing incision; Group B, cartridge injection of a foldable IOL through a 3.0 mm self-sealing incision; Group C, cartridge injection of a foldable IOL through a 3.5 mm self-sealing incision. Keratometric data were obtained reoperatively, and 3 weeks, 3 months, 6 months, 9 months, 12 months, 24 months and 36 months postoperatively. Polar value analysis was performed to calculate the surgically induced astigmatism. Results The astigmatic change decreased over time in Group B (P<0.05). The other groups tended to remain in induced astigmatism. All groups showed anticlockwise torque at 3 weeks following surgery. Group B showed a decrease in deviation, but the other groups showed increases in their torque value at postoperative 12 months (P<0.05). Conclusions The 3.0 mm incision size correlated with the least surgically induced astigmatism. PMID:17460424

  10. Corneal ulcers in horses.

    PubMed

    Williams, Lynn B; Pinard, Chantale L

    2013-01-01

    Corneal ulceration is commonly diagnosed by equine veterinarians. A complete ophthalmic examination as well as fluorescein staining, corneal cytology, and corneal bacterial (aerobic) and fungal culture and sensitivity testing are necessary for all infected corneal ulcers. Appropriate topical antibiotics, topical atropine, and systemic NSAIDs are indicated for all corneal ulcers. If keratomalacia (melting) is observed, anticollagenase/antiprotease therapy, such as autologous serum, is indicated. If fungal infection is suspected, antifungal therapy is a necessity. Subpalpebral lavage systems allow convenient, frequent, and potentially long-term therapy. Referral corneal surgeries provide additional therapeutic options when the globe's integrity is threatened or when improvement has not been detected after appropriate therapy.

  11. Corneal Protection for Burn Patients

    DTIC Science & Technology

    2013-10-01

    corneal collagen as a treatment for keratoconus (1) indicating that it is a safe photosensitizer. The maximum percent inhibition using RF and blue light...Seiler (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus . Am J Ophthalmol, 135, 620-7. 2. Fujisato, T

  12. Corneal Protection for Burn Patients

    DTIC Science & Technology

    2010-07-01

    blue light. RF-5P with UVA irradiation has recently been used to crosslink corneal collagen as a treatment for keratoconus (2). Thus, RF-5P appears...induced collagen crosslinking for the treatment of keratoconus . American journal of ophthalmology. 2003 May;135(5):620-7. 3. McCall AS, Kraft S

  13. Influence of corneal hydration on optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Twa, Michael D.; Vantipalli, Srilatha; Singh, Manmohan; Li, Jiasong; Larin, Kirill V.

    2016-03-01

    Corneal biomechanical properties are influenced by several factors, including intraocular pressure, corneal thickness, and viscoelastic responses. Corneal thickness is directly proportional to tissue hydration and can influence corneal stiffness, but there is no consensus on the magnitude or direction of this effect. We evaluated the influence of corneal hydration on dynamic surface deformation responses using optical coherence elastography (OCE). Fresh rabbit eyes (n=10) were prepared by removing the corneal epithelium and dropping with 0.9% saline every 5 minutes for 1 hour, followed by 20% dextran solution every 5 minutes for one hour. Corneal thickness was determined from structural OCT imaging and OCE measurements were performed at baseline and every 20 minutes thereafter. Micron-scale deformations were induced at the apex of the corneal tissue using a spatially-focused (150μm) short-duration (<1ms) air-pulse delivery system. These dynamic tissue responses were measured non-invasively with a phase-stabilized swept source OCT system. The tissue surface deformation response (Relaxation Rate: RR) was quantified as the time constant, over which stimulated tissue recovered from the maximum deformation amplitude. Elastic wave group velocity (GV) was also quantified and correlated with change in corneal thickness due to hydration process. Corneal thickness rapidly increased and remained constant following epithelium removal and changed little thereafter. Likewise, corneal stiffness changed little over the first hour and then decreased sharply after Dextran application (thickness: -46% [-315/682 μm] RR: - 24% [-0.7/2.88 ms-1]; GV: -19% [-0.6/3.2 m/s]). Corneal thickness and corneal stiffness (RR) were well correlated (R2 = .66). Corneal biomechanical properties are highly correlated with tissue hydration over a wide range of corneal thickness and these changes in corneal stiffness are quantifiable using OCE.

  14. Anti-edema effects of brown seaweed (Undaria pinnatifida) extract on phorbol 12-myristate 13-acetate-induced mouse ear inflammation.

    PubMed

    Khan, Mohammed Nurul Absar; Yoon, Seung-Je; Choi, Jae-Suk; Park, Nam Gyu; Lee, Hyung-Ho; Cho, Ji-Young; Hong, Yong-Ki

    2009-01-01

    The brown seaweed Undaria pinnatifida (Harvey) Suringar is used in traditional medicine to treat fever, urination problems, lumps and swelling, and as a dietary supplement for post-childbirth women. We examined the anti-inflammatory activities of the seaweed. The methanol extract of the seaweed was active against mouse ear edema induced by phorbol myristate acetate (PMA), with an IC(50) of 10.3 mg/ml. The extract reduced the edema to a half-maximal level when applied at the concentration of 40 mg/ml within 3 hours before or 2 hours after application of PMA. Extract taken from the blade section of the seaweed demonstrated the highest activity. The Northern form of U. pinnatifida was more active than the Southern form. In the analgesic test, the methanol extract suppressed the acetic acid-induced writhing response, with an IC(50) of 0.48 g/kg body weight. The extract also demonstrated antipyretic activity in yeast-induced hyperthermic mice. Activity-related constituents were arachidonic, eicosapentaenoic, and stearidonic acids.

  15. Corneal response to rigid and hydrogel lenses during eye closure.

    PubMed

    O'Neal, M R; Polse, K A; Sarver, M D

    1984-07-01

    Corneal changes were monitored in 14 subjects following 3 hr of eye closure while wearing selected oxygen permeable rigid and hydrogel lenses. The mean increase in corneal thickness ranged from 82.5 to 29.5 microns for rigid lenses with oxygen transmissibilities (Dk/L) between 0.2 X 10(-9) and 57.0 X 10(-9) (cm/sec) (ml O2/ml X mmHg), respectively, and ranged from 82.5 to 23.5 microns for hydrogel lenses with Dk/L between 2.5 X 10(-9) and 70.0 X 10(-9) (cm/sec) (ml O2/ml X mmHg), respectively. No differences in the amount of swelling between rigid and hydrogel lenses of the same oxygen transmissibility were observed (t-test, P greater than 0.20). Combining the swelling data for both types of lenses shows that a minimum lens oxygen transmissibility of approximately 75 X 10(-9) (cm/sec) (ml O2/ml X mmHg) is necessary during eye closure to prevent contact lens induced edema. The estimated oxygen tension under a lens with this Dk/L value is 40 mmHg. Recovery of the cornea to baseline thickness follows a nonlinear time course, with the rate of dehydration decreasing as the cornea thins. For initial swelling of 40-54 microns, 55-69 microns, and 70 microns and above, the time to reach baseline thickness was 1.5, 2.0, and 2.5 hr, respectively. Effects on vision, corneal curvature, distortion, and epithelial integrity were not clinically significant during this short period of eye closure.

  16. Inhibiting the effect of 90Sr-90Y ophthalmic applicators on rat corneal neovascularization induced by sutures

    PubMed Central

    Zhou, Hong-Yan; Wang, Shuang; Zhang, Hong; Wang, Ling; Zhang, Wen-Song

    2016-01-01

    AIM To investigate a practical technique used to inhibit corneal angiogenesis with a 90Sr-90Y ophthalmic applicator. METHODS A 90Sr-90Y ophthalmic applicator was detected with a radioactive nuclide application treatment healthy protection standard. The applicator used was produced through medical dosimetry research; it had a concave applicator add measured the applicator temperature, serviceable humidity range, applicator appearance status, applicator radiation homogeneity, radioautography, and radiological safety of the original applicator surface. A vessel model was established using newborn rats, with sutures around the corneal limbus. Corneal neovascularization (CNV) were observed with a slit lamp. The new vessel length and response area were measured. RESULTS Low-dose radiation can inhibit CNV after corneal sutures. The absorbed dose of the applicator (0.046 Gy/s) was safe for the treatment of it. The lengths of new vessels and the areas of new vessels were lower than the new born vessel rat group (P<0.01). CONCLUSION The optimal radiation dose emitting from the applicator can be safe and potentially used in humans. PMID:27672586

  17. Corneal temperature in schizophrenia patients.

    PubMed

    Shiloh, Roni; Munitz, Hanan; Portuguese, Shirley; Gross-Isseroff, Ruth; Sigler, Mayanit; Bodinger, Liron; Katz, Nachum; Stryjer, Rafael; Hermesh, Haggai; Weizman, Abraham

    2005-12-01

    Most data imply that dopaminergic transmission is essential for proper hypothalamic-mediated core temperature regulation. Altered central dopaminergic transmission is suggested to be involved in the pathophysiology of schizophrenia. Thus, hypothetically, schizophrenia patients might be at increased risk of developing thermoregulatory dysregulation manifested by alterations in core temperature, as well as in peripheral tissue, the temperature of which has been shown to correlate with core temperature (e.g. cornea). Previous small pilot studies of ours showed that schizophrenia patients may exhibit corneal temperature abnormalities. Hence, we assessed corneal temperature in a controlled sample of drug-free ( n =11) and medicated ( n =28) schizophrenia patients compared to healthy comparison subjects ( n =9), using a FLIR thermal imaging camera. Drug-free schizophrenia patients exhibited significantly higher corneal temperature compared to healthy subjects, typical antipsychotic drug (APD)-treated patients ( n =16) and atypical APD-treated patients ( n =12) (37.08+/-1.46 degrees C vs. 33.37+/-2.51 degrees C, 31.08+/-1.43 degrees C and 31.67+/-0.44 degrees C respectively, p <0.0001; p <0.001 vs. each group separately). The healthy comparison subjects and the atypical APD-treated patients exhibited comparable corneal temperatures and these two groups exhibited higher corneal temperatures compared to the typical APD-treated patients ( p <0.01 and p =0.051 respectively). In conclusion, this study indicates that drug-free schizophrenia patients exhibit substantially higher corneal temperature compared to healthy comparison subjects or medicated patients, and that APDs may decrease corneal temperature either to normal (atypical APD) or to subnormal (typical APD) values. The relevance of these phenomena to the pathophysiology of schizophrenia, the biological mechanism underlying drug-induced corneal temperature alterations, the possible role of temperature-lowering drugs

  18. Acute neurogenic airway plasma exudation and edema induced by inhaled wood smoke in guinea pigs: role of tachykinins and hydroxyl radical.

    PubMed

    Lin, Y S; Kou, Y R

    2000-04-07

    We studied the mechanisms underlying the wood smoke-induced acute airway injury in 120 anaesthetized guinea pigs. Five minutes after airway exposure, various doses of wood smoke produced a dose-dependent increase in Evans blue dye contents at all airway levels measured. Additionally, inhaled wood smoke produced submucosal edema of the trachea and bronchus, and peribronchial edema. These acute airway responses were nearly abolished by pretreatment with CP-96,345 alone [a tachykinin NK(1) receptor antagonist; (2S, 3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyc lo( 2.2.2.)-octan-3-amine] or with a combination of CP-96,345 and dimethylthiourea (a hydroxyl radical scavenger), and were attenuated by pretreatment with dimethylthiourea alone, yet were not affected by pretreatment with SR-48,968 [a tachykinin NK(2) receptor antagonist; (S)-N-methyl-N(4-(4-acetylamino-4-phenylpiperidino)-2-(3, 4-dichlorophenyl)-butyl)benzamide], with a combination of CP-96,344 and SR-48,965 (inactive enantiomers), with MK-886 [a leukotriene biosynthesis inhibitor; L-663, 536(3-(1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl)-2, 2-dimethylpropanoic acid], with indomethacin (a cyclooxygenase inhibitor), or with N(G)-nitro-L-arginine methyl ester (a nitric oxide (NO) synthase inhibitor). The activity of airway neutral endopeptidase (an enzyme for tachykinin degradation) was not influenced by wood smoke at 5-min post-exposure. We conclude that both endogenous tachykinins and hydroxyl radical play an important role in producing smoke-induced acute airway plasma exudation and airway edema in guinea pigs. The contribution of tachykinins to these neurogenic responses is mediated via the activation of tachykinin NK(1) receptors and partly via a hydroxyl radical mechanism, and is not associated with inactivation of neutral endopeptidase.

  19. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats

    PubMed Central

    Mansouri, Mohammad Taghi; Hemmati, Ali Asghar; Naghizadeh, Bahareh; Mard, Seyyed Ali; Rezaie, Anahita; Ghorbanzadeh, Behnam

    2015-01-01

    Objectives: Ellagic acid (EA) has shown antinociceptive and anti-inflammatory effects. Inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) enzymes and also cytokines play a key role in many inflammatory conditions. This study was aimed to investigate the mechanisms involved in the anti-inflammatory effect of EA. Materials and Methods: Carrageenan-induced mouse paw edema model was used for induction of inflammation. Results: The results showed that intraplantar injection of carrageenan led to time-dependent development of peripheral inflammation, which resulted in a significant increase in the levels of tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) β, nitric oxide (NO) and prostaglandin E2 (PGE2) and also iNOS and COX-2 protein expression in inflamed paw. However, systemic administration of EA (1–30 mg/kg, intraperitoneal [i.p.]) could reduce edema in a dose-dependent fashion in inflamed rat paws with ED50 value 8.41 (5.26–14.76) mg/kg. It decreased the serum concentration of NO, PGE2, aspartate aminotransferase and alanine aminotransferase, and suppress the protein expression of iNOS, COX-2 enzymes, and attenuated the formation of PGE2, TNF-α and IL-1 β in inflamed paw tissue. We also demonstrated that EA significantly decreased the malondialdehyde (MDA) level in liver at 5 h after carrageenan injection. Moreover, histopathological studies indicated that EA significantly diminished migration of polymorphonuclear leukocytes into site of inflammation, as did indomethacin. Conclusions: Collectively, the anti-inflammatory mechanisms of EA might be related to the decrease in the level of MDA, iNOS, and COX-2 in the edema paw via the suppression of pro-inflammatory cytokines (TNFα, IL1 β), NO and PGE2 overproduction. PMID:26069367

  20. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema

    PubMed Central

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo

    2016-01-01

    Background Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). Material/Methods TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. Results We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). Conclusions Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA. PMID:27959885

  1. Edaravone protects against hyperosmolarity-induced oxidative stress and apoptosis in primary human corneal epithelial cells

    PubMed Central

    Li, Yanwei; Liu, Haifeng; Zeng, Wei; Wei, Jing

    2017-01-01

    An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear phase is a major pathological mechanism behind dry eye. Exposure of epithelial cells on the surface of the human eye to hyperosmolarity leads to oxidative stress, mitochondrial dysfunction, and apoptosis. Edaravone, a hydroxyl radical scavenging agent, is clinically used to reduce neuronal damage following ischemic stroke. In this study, we found that treatment with hyperosmotic media at 400 and 450 mOsM increased the levels of ROS and mitochondrial oxidative damage, which were ameliorated by edaravone treatment in a dose-dependent manner. We also found that edaravone could improve mitochondrial function in HCEpiCs by increasing the levels of ATP and mitochondrial membrane potential. MTT and LDH assays indicated that edaravone could attenuate hyperosmolarity-induced cell death. It was found that edaravone prevented apoptosis by decreasing the level of cleaved caspase-3, and attenuating the release of cytochrome C. Mechanistically, we found that edaravone augmented the expression of Nrf2 and its target genes, such as HO-1, GPx-1, and GCLC. PMID:28346481

  2. Lamellar interface fluid accumulation following traumatic corneal perforation and laser in situ keratomileusis.

    PubMed

    Bushley, D Matthew; Holzinger, Karl A; Winkle, R Kevin; Le, Lam H; Olkowski, John D

    2005-06-01

    A 41-year-old man with myopic astigmatism had laser in situ keratomileusis (LASIK) in each eye in April 2002. Ten months later, he sustained a central perforating corneal injury to the right eye. One day following repair of the corneal wound, he presented with diffuse corneal epithelial microcystic edema, lamellar interface fluid accumulation, and 20/400 visual acuity. Additional sutures were placed to close a presumed posterior wound gape with complete resolution of the corneal edema and lamellar interface fluid collection. One year later, his best corrected visual acuity measured 20/20+ in the right eye. This case is the first to document lamellar interface fluid accumulation following LASIK owing to traumatic disruption of the corneal endothelium.

  3. Corneal transplant - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000243.htm Corneal transplant - discharge To use the sharing features on this page, please enable JavaScript. You had a corneal transplant. Most of the tissue of your cornea (the ...

  4. Bilateral Keratoconus and Corneal Hydrops Associated with Eye Rubbing in a 7-year-old Girl

    PubMed Central

    Panahi-Bazaz, Mahmoud-Reza; Sharifipour, Farideh; Moghaddasi, Alireza

    2014-01-01

    Purpose To report a young child with bilateral keratoconus in the context of vernal keratoconjunctivitis (VKC) who developed bilateral corneal hydrops associated with eye rubbing, and to discuss the pathogenesis and review the pertinent literature. Case Report A seven-year-old girl with VKC and asymmetric keratoconus developed corneal hydrops due to habitual eye rubbing. Corneal edema subsided within 16 weeks in her right eye and 9 weeks in the left eye with subsequent corneal scarring. Conclusion Continuous mechanical trauma, such as eye rubbing, plays a significant role in the pathogenesis of keratoconus and subsequent hydrops even in childhood. PMID:24982739

  5. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    SciTech Connect

    Arab, Hany H.; El-Sawalhi, Maha M.

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE{sub 2} and LTB{sub 4}) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of

  6. Endotoxin treatment protects rats against ozone-induced lung edema: with evidence for the role of manganese superoxide dismutase

    SciTech Connect

    Rahman, I.; Massaro, D. )

    1992-03-01

    Ozone is a strong oxidizing agent that can cause lung damage and edema. There is evidence that it does so by causing peroxidation of membrane lipids. However, the elevation in lung activity of copper, zinc superoxide dismutase (Cu, ZnSOD), and manganese superoxide dismutase (MnSOD) during exposure to ozone suggests that increased production of superoxide could contribute to lung edema caused by ozone. This latter observation, and preliminary evidence that treatment of rats with endotoxin elevates lung activity of MnSOD without elevation of the activity of Cu, ZnSOD, catalase (CAT), or glutathione peroxidase (GP), led to the present study. We treated rats with endotoxin, exposed them to different concentrations of ozone, measured lung wet weight to dry weight ratio, thiobarbituric acid-reactive material (TBAR), and assayed lung tissue for Cu, ZnSOD, MnSOD, CAT, and GP activity. Our major findings are, (1) a strongly edemogenic concentration of ozone-lowered MnSOD activity; (2) endotoxin treatment of air-breathing rats did not decrease lipid peroxidation as indicated by the lung concentration of TBAR; (3) induction of increased MnSOD activity in lung by treatment with endotoxin was associated with virtually complete protection against an otherwise edemogenic concentration of ozone, with less lipid peroxidation, and with less loss of weight; and (4) this protection occurred without elevated Cu, ZnSOD, CAT, or GP activity.

  7. Subconjunctival injection of in vitro transforming growth factor-β-induced regulatory T cells prolongs allogeneic corneal graft survival in mice

    PubMed Central

    Xu, Qing; Tan, Xiaobo; Zhang, Yingnan; Jie, Ying; Pan, Zhiqiang

    2015-01-01

    This study is to investigate the effect of subconjunctival injection of in vitro induced regulatory T cells (iTregs) on the survival of corneal allografts. iTregs were expanded by culturing CD4+T cells with TGF-β in vitro. Foxp3, LAP and GARP were analyzed and the suppression ability of iTregs was assayed by co-culturing with effective T cells. Allogeneic transplantations in mice were modeled and randomly classified into PBS control, iTregs and TA groups. The allografts were observed for 60 days. CD25, Foxp3, LAP and GARP in CD4+T cells were analyzed on day 21 after the surgery. Inflammatory cells infiltrated in allografts were detected by flow cytometry and histopathological examination. Expressions of Foxp3, GARP and LAP in iTregs were high. iTregs suppressed the proliferation of effective T cells in vitro. The corneal allograft survival time for PBS, iTregs and TA groups was (18 ± 1.73) days, (38.6 ± 1.14) days and (60 ± 0) days, respectively. The corneal allograft survival time in iTregs group was significantly prolonged compared with PBS group (P < 0.05), but shorter than that in TA group (P < 0.05). No significant difference was observed in expressions of CD25, Foxp3, LAP or GARP in CD4+T cells (P > 0.05). Finally, CD3+CD4+T cell infiltration and fewer inflammatory cells were reduced in allografts in iTregs and TA groups compared with PBS group. The survival time of allografts were prolonged in mice after subconjunctival injection of iTregs. Local immune modulation might be involved in the mechanism. PMID:26884940

  8. Progress in corneal wound healing

    PubMed Central

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  9. Effect of siRNA‑induced inhibition of IL‑6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury.

    PubMed

    Xu, Bin; Yu, Dong-Ming; Liu, Fu-Sheng

    2014-10-01

    The present study aimed to investigate the effect of RNA interference (RNAi) on the inhibition of interleukin (IL)‑6 expression in rat cerebral gliocytes in vitro and rat cerebral traumatic tissues in vivo, as well as the effect of RNAi on cerebral edema. pSUPER vectors containing IL‑6 small hairpin RNA (pSUPER‑IL‑6 1‑5) were designed, constructed and transfected into C6 rat glioma cells using cationic liposomes. ELISA was used to select the plasmid with the strongest interference effect. A freefall method was used to generate a rat brain injury model and rats were randomly divided into treatment, empty plasmid and control groups (n=14/group). IL‑6 levels, water content and sodium content were determined in the brain tissues at 24 and 72 h post‑injury. pSUPER‑IL‑6 was effectively transfected into C6 cells and was found to inhibit the expression of IL‑6 rather than IL‑8. The pSUPER‑IL‑6 1 vector was most effective in inducing RNAi. In vivo, IL‑6 levels were observed to be lowest in the interference group and there were statistically significant differences in water and sodium content among the experimental groups (P<0.05). RNAi was found to inhibit IL‑6 expression in vivo and in vitro in rat cerebral gliocytes, and the reduction of the IL‑6 levels was found to reduce post‑traumatic cerebral edema.

  10. Biomechanics of Corneal Ring Implants

    PubMed Central

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  11. Aspergillus terreus recovered from a corneal scraping.

    PubMed

    Campbell, Suzanne

    2014-01-01

    A 52 year old, healthy male presented to his optometrist complaining of redness and irritation in the right eye. A foreign body was removed from the eye. The patient was started on ophthalmic solutions of vigamox and systane. At 48 hours, the patient reported increased redness, limited vision, and yellow discharge from the eye. The patient was referred to an ophthalmologist for further evaluation. Physical assessment revealed a superlative central infiltrate (extreme, centrally located injury that had permeated the cornea), diffuse corneal haze, and edema with a 3- to 4+ conjunctival injection and a 1 millimeter hypopyon (an effusion of pus into the anterior chamber of the eye). Corneal scrapings were collected for aerobic and anaerobic bacterial and fungal cultures. The patient was then prescribed. vancomycin, tobramycin, and natamycin ophthalmic eyedrops. On day three, fungal culture results indicated possible fungal forms seen. On day 12, results from the fungal culture of the corneal scraping revealed the causative agent to be Aspergillus terreus. Voriconazole eyedrops were added to the treatment regimen and continued for 10 weeks. The physician order for a fungal culture as well as laboratory data providing the final identification of Aspergillus terreus and laboratory comments indicating an elevated minimum inhibitory concentration (MIC) (> 2 microg/mL) to amphotericin B is associated with treatment failure positively impacted the patient outcome. After completion of the treatment regimen, a photo-therapeutic keratectomy (PTK) was performed in an attempt to remove the dense corneal scarring caused by the fungal infection.

  12. cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization.

    PubMed

    Maddugoda, Madhavi P; Stefani, Caroline; Gonzalez-Rodriguez, David; Saarikangas, Juha; Torrino, Stéphanie; Janel, Sebastien; Munro, Patrick; Doye, Anne; Prodon, François; Aurrand-Lions, Michel; Goossens, Pierre L; Lafont, Frank; Bassereau, Patricia; Lappalainen, Pekka; Brochard, Françoise; Lemichez, Emmanuel

    2011-11-17

    RhoA-inhibitory bacterial toxins, such as Staphylococcus aureus EDIN toxin, induce large transendothelial cell macroaperture (TEM) tunnels that rupture the host endothelium barrier and promote bacterial dissemination. Host cells repair these tunnels by extending actin-rich membrane waves from the TEM edges. We reveal that cyclic-AMP signaling produced by Bacillus anthracis edema toxin (ET) also induces TEM formation, which correlates with increased vascular permeability. We show that ET-induced TEM formation resembles liquid dewetting, a physical process of nucleation and growth of holes within a thin liquid film. We also identify the cellular mechanisms of tunnel closure and reveal that the I-BAR domain protein Missing in Metastasis (MIM) senses de novo membrane curvature generated by the TEM, accumulates at the TEM edge, and triggers Arp2/3-dependent actin polymerization, which induces actin-rich membrane waves that close the TEM. Thus, the balance between ET-induced TEM formation and resealing likely determines the integrity of the host endothelium barrier.

  13. Positional accommodative intraocular lens power error induced by the estimation of the corneal power and the effective lens position

    PubMed Central

    Piñero, David P; Camps, Vicente J; Ramón, María L; Mateo, Verónica; Pérez-Cambrodí, Rafael J

    2015-01-01

    Purpose: To evaluate the predictability of the refractive correction achieved with a positional accommodating intraocular lenses (IOL) and to develop a potential optimization of it by minimizing the error associated with the keratometric estimation of the corneal power and by developing a predictive formula for the effective lens position (ELP). Materials and Methods: Clinical data from 25 eyes of 14 patients (age range, 52–77 years) and undergoing cataract surgery with implantation of the accommodating IOL Crystalens HD (Bausch and Lomb) were retrospectively reviewed. In all cases, the calculation of an adjusted IOL power (PIOLadj) based on Gaussian optics considering the residual refractive error was done using a variable keratometric index value (nkadj) for corneal power estimation with and without using an estimation algorithm for ELP obtained by multiple regression analysis (ELPadj). PIOLadj was compared to the real IOL power implanted (PIOLReal, calculated with the SRK-T formula) and also to the values estimated by the Haigis, HofferQ, and Holladay I formulas. Results: No statistically significant differences were found between PIOLReal and PIOLadj when ELPadj was used (P = 0.10), with a range of agreement between calculations of 1.23 D. In contrast, PIOLReal was significantly higher when compared to PIOLadj without using ELPadj and also compared to the values estimated by the other formulas. Conclusions: Predictable refractive outcomes can be obtained with the accommodating IOL Crystalens HD using a variable keratometric index for corneal power estimation and by estimating ELP with an algorithm dependent on anatomical factors and age. PMID:26139807

  14. Clear Corneal Incision in Cataract Surgery

    PubMed Central

    Al Mahmood, Ammar M.; Al-Swailem, Samar A.; Behrens, Ashley

    2014-01-01

    Since the introduction of sutureless clear corneal cataract incisions, the procedure has gained increasing popularity worldwide because it offers several advantages over the traditional sutured scleral tunnels and limbal incisions. Some of these benefits include lack of conjunctival trauma, less discomfort and bleeding, absence of suture-induced astigmatism, and faster visual rehabilitation. However, an increasing incidence of postoperative endophthalmitis after clear corneal cataract surgery has been reported. Different authors have shown a significant increase up to 15-fold in the incidence of endophthalmitis following clear corneal incision compared to scleral tunnels. The aim of this report is to review the advantages and disadvantages of clear corneal incisions in cataract surgery, emphasizing on wound construction recommendations based on published literature. PMID:24669142

  15. Recovery of radiation-induced dry eye and corneal damage by pretreatment with adenoviral vector-mediated transfer of erythropoietin to the salivary glands in mice.

    PubMed

    Rocha, Eduardo M; Cotrim, Ana P; Zheng, Changyu; Riveros, Paola Perez; Baum, Bruce J; Chiorini, John A

    2013-04-01

    Therapeutic doses of radiation (RTx) causes dry eye syndrome (DES), dry mouth, and as in other sicca syndromes, they are incurable. The aims of this work are as follows: (a) to evaluate a mouse model of DES induced by clinically relevant doses of radiation, and (b) to evaluate the protective effect of erythropoietin (Epo) in preventing DES. C3H female mice were subjected to five sessions of RTx, with or without pre-RTx retroductal administration of the AdLTR2EF1a-hEPO (AdEpo) vector in the salivary glands (SG), and compared with naïve controls at Day 10 (10d) (8 Gy fractions) and 56 days (56d) (6 Gy fractions) after RTx treatment. Mice were tested for changes in lacrimal glands (LG), tear secretion (phenol red thread), weight, hematocrit (Hct), and markers of inflammation, as well as microvessels and oxidative damage. Tear secretion was reduced in both RTx groups, compared to controls, by 10d. This was also seen at 56d in RTx but not AdEpo+RTx group. Hct was significantly higher in all AdEpo+RTx mice at 10d and 56d. Corneal epithelium was significantly thinner at 10d in the RTx group compared with AdEpo+RTx or the control mice. There was a significant reduction at 10d in vascular endothelial growth factor (VEGF)-R2 in LG in the RTx group that was prevented in the AdEpo+RTx group. In conclusion, RTx is able to induce DES in mice. AdEpo administration protected corneal epithelia and resulted in some recovery of LG function, supporting the value of further studies using gene therapy for extraglandular diseases.

  16. Reexpansion pulmonary edema.

    PubMed

    Tarver, R D; Broderick, L S; Conces, D J

    1996-01-01

    Reexpansion pulmonary edema is a rare complication attending the rapid reexpansion of a chronically collapsed lung, such as occurs after evacuation of a large amount of air or fluid from the pleural space. The condition usually appears unexpectedly and dramatically-immediately or within 1 h in 64% of patients and within 24 h in the remainder. The clinical manifestations are varied; they range from roentgenographic findings alone in asymptomatic patients to severe cardiorespiratory insufficiency. The radiographic evidence of reexpansion pulmonary edema is a unilateral alveolar filling pattern, seen within a few hours of reexpansion of the lung. The edema may progress for 24-48 h and persist for 4-5 days. Human data on the pathophysiology of reexpansion pulmonary edema derive from small series of patients, case reports, and reviews of the literature. On the other hand, a larger body of data exists on experimental reexpansion pulmonary edema in cats, monkeys, rabbits, sheep, and goats. This review examines the clinical and experimental evidence for reexpansion pulmonary edema. In addition, we detail the historical background, clinical setting, treatment, and outcome of reexpansion pulmonary edema.

  17. Clinical correlates of common corneal neovascular diseases: a literature review

    PubMed Central

    Abdelfattah, Nizar Saleh; Amgad, Mohamed; Zayed, Amira A; Salem, Hamdy; Elkhanany, Ahmed E; Hussein, Heba; Abd El-Baky, Nawal

    2015-01-01

    A large subset of corneal pathologies involves the formation of new blood and lymph vessels (neovascularization), leading to compromised visual acuity. This article aims to review the clinical causes and presentations of corneal neovascularization (CNV) by examining the mechanisms behind common CNV-related corneal pathologies, with a particular focus on herpes simplex stromal keratitis, contact lenses-induced keratitis and CNV secondary to keratoplasty. Moreover, we reviewed CNV in the context of different types of corneal transplantation and keratoprosthesis, and summarized the most relevant treatments available so far. PMID:25709930

  18. Characterization of Corneal Indentation Hysteresis.

    PubMed

    Ko, Match W L; Dongming Wei; Leung, Christopher K S

    2015-01-01

    Corneal indentation is adapted for the design and development of a characterization method for corneal hysteresis behavior - Corneal Indentation Hysteresis (CIH). Fourteen porcine eyes were tested using the corneal indentation method. The CIH measured in enucleated porcine eyes showed indentation rate and intraocular pressure (IOP) dependences. The CIH increased with indentation rate at lower IOP (<; 25 mmHg) and decreased with indentation rate at higher IOP (> 25 mmHg). The CIH was linear proportional to the IOP within an individual eye. The CIH was positively correlated with the IOP, corneal in-plane tensile stress and corneal tangent modulus (E). A new method based on corneal indentation for the measurement of Corneal Indentation Hysteresis in vivo is developed. To our knowledge, this is the first study to introduce the corneal indentation hysteresis and correlate the corneal indentation hysteresis and corneal tangent modulus.

  19. Effects of Lutein on Hyperosmoticity-Induced Upregulation of IL-6 in Cultured Corneal Epithelial Cells and Its Relevant Signal Pathways

    PubMed Central

    Chao, Shih-Chun; Nien, Chan-Wei; Iacob, Codrin; Hu, Dan-Ning; Huang, Sheng-Chieh

    2016-01-01

    Dry eye is a common disorder characterized by deficiency of tear. Hyperosmoticity of tear stimulates inflammation and damage of ocular surface tissues and plays an essential role in the pathogenesis of dry eye. Cultured human corneal epithelial (CE) cells were used for the study of effects of lutein and hyperosmoticity on the secretion of IL-6 by CE cells. Cell viability of CE cells was not affected by lutein at 1–10 μM as determined by MTT assay. Hyperosmoticity significantly elevated the secretion of IL-6 by CE cells as measured by ELISA analysis. The constitutive secretion of IL-6 was not affected by lutein. Lutein significantly and dose-dependently inhibited hyperosmoticity-induced secretion of IL-6. Phosphorylated- (p)- p38 MAPK, p-JNK levels in cell lysates and NF-κB levels in cell nuclear extracts were increased by being exposed to hyperosmotic medium. JNK, p38, and NF-κB inhibitors decreased hyperosmoticity-induced secretion of IL-6. Lutein significantly inhibited hyperosmoticity-induced elevation of NF-κB, p38, and p-JNK levels. We demonstrated that lutein inhibited hyperosmoticity-induced secretion of IL-6 in CE cells through the deactivation of p38, JNK, and NF-κB pathways. Lutein may be a promising agent to be explored for the treatment of dry eye. PMID:27047687

  20. Protease-Activated Receptor 2 (PAR2) Is Upregulated by Acanthamoeba Plasminogen Activator (aPA) and Induces Proinflammatory Cytokine in Human Corneal Epithelial Cells

    PubMed Central

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-01-01

    Purpose. Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Methods. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Results. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P < 0.05). Protease-activated receptor 2 antagonist significantly inhibited aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P < 0.05). Protease-activated receptor 1 agonists, but not aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells

  1. Significance of corneal arcus.

    PubMed

    Raj, K Mohan; Reddy, P Arun Subhash; Kumar, Vikram Chella

    2015-04-01

    The corneal arcus consists of cholesterol, phospholipids and triglycerides. As serum triglyceride is one of the accurate of lipid metabolic state, greater importance was given, and it was found to be elevated in 72% of patients and a positive correlation with increasing age. This suggests a strong correlation between impairment of lipid metabolism and incidence of corneal arcus.

  2. Significance of corneal arcus

    PubMed Central

    Raj, K. Mohan; Reddy, P. Arun Subhash; Kumar, Vikram Chella

    2015-01-01

    The corneal arcus consists of cholesterol, phospholipids and triglycerides. As serum triglyceride is one of the accurate of lipid metabolic state, greater importance was given, and it was found to be elevated in 72% of patients and a positive correlation with increasing age. This suggests a strong correlation between impairment of lipid metabolism and incidence of corneal arcus. PMID:26015693

  3. Glycogen synthase kinase 3 activation is important for anthrax edema toxin-induced dendritic cell maturation and anthrax toxin receptor 2 expression in macrophages.

    PubMed

    Larabee, Jason L; Maldonado-Arocho, Francisco J; Pacheco, Sergio; France, Bryan; DeGiusti, Kevin; Shakir, Salika M; Bradley, Kenneth A; Ballard, Jimmy D

    2011-08-01

    Anthrax edema toxin (ET) is one of two binary toxins produced by Bacillus anthracis that contributes to the virulence of this pathogen. ET is an adenylate cyclase that generates high levels of cyclic AMP (cAMP), causing alterations in multiple host cell signaling pathways. We previously demonstrated that ET increases cell surface expression of the anthrax toxin receptors (ANTXR) in monocyte-derived cells and promotes dendritic cell (DC) migration toward the lymph node-homing chemokine MIP-3β. In this work, we sought to determine if glycogen synthase kinase 3 (GSK-3) is important for ET-induced modulation of macrophage and DC function. We demonstrate that inhibition of GSK-3 dampens ET-induced maturation and migration processes of monocyte-derived dendritic cells (MDDCs). Additional studies reveal that the ET-induced expression of ANTXR in macrophages was decreased when GSK-3 activity was disrupted with chemical inhibitors or with small interfering RNA (siRNA) targeting GSK-3. Further examination of the ET induction of ANTXR revealed that a dominant negative form of CREB could block the ET induction of ANTXR, suggesting that CREB or a related family member was involved in the upregulation of ANTXR. Because CREB and GSK-3 activity appeared to be important for ET-induced ANTXR expression, the impact of GSK-3 on ET-induced CREB activity was examined in RAW 264.7 cells possessing a CRE-luciferase reporter. As with ANTXR expression, the ET induction of the CRE reporter was decreased by reducing GSK-3 activity. These studies not only provide insight into host pathways targeted by ET but also shed light on interactions between GSK-3 and CREB pathways in host immune cells.

  4. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  5. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10

    PubMed Central

    Nickols, Jordan; Obiako, Boniface; Ramila, K. C.; Putinta, Kevin; Schilling, Sarah

    2015-01-01

    Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. PMID:26475732

  6. Current status of corneal xenotransplantation.

    PubMed

    Kim, Mee Kum; Hara, Hidetaka

    2015-11-01

    Corneal allo-transplantation is a well-established technique to treat corneal blindness. However, the limited availability of human donors demands the exploration of alternative treatments such as corneal xenotransplantation (e.g., pigs as donors) and bioengineered corneas. Since the first attempt of corneal xenotransplantation using a donor pig cornea in 1844, great advances have been made in the development of genetically-engineered pigs, effective immunosuppressive protocols and the establishment of guidelines for the conduction of clinical trials. We highlight immunological and physio-anatomical barriers of corneal xenotransplantation, recent progress of corneal xenotransplantation in non-human-primates studies, and regulatory guidelines to conduct clinical trials for corneal xenotransplantation.

  7. Vision loss after inadvertent corneal perforation during lid anesthesia.

    PubMed

    Parikh, Mansi; Kwon, Young H

    2011-01-01

    A 68-year-old woman was referred for glaucoma management after inadvertent corneal perforation during eyelid anesthesia for upper eyelid blepharoplasty. A mixture of 50:50 2% lidocaine with 1:100,000 epinephrine and 0.5% bupivacaine buffered with sodium bicarbonate was injected intracamerally. Decreased vision and uncontrollable intraocular pressure resulted, despite prompt anterior chamber washout. Examination showed corneal edema, inflammation, and secondary angle closure. Intraocular pressure control with seton placement led to an improvement in vision; however, mild corneal haze remained, and specular microscopy showed endothelial cell loss, presumably secondary to local anesthetic toxicity. Inadvertent ocular penetration is a rare but serious complication of local eyelid anesthesia. Prompt recognition is essential to institute appropriate management and minimize subsequent vision loss.

  8. Proton nuclear magnetic resonance studies on brain edema

    SciTech Connect

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-06-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research.

  9. Eye rubbing-induced changes in intraocular pressure and corneal thickness measured at five locations, in subjects with ocular allergy

    PubMed Central

    Osuagwu, Uchechukwu L.; Alanazi, Saud A.

    2015-01-01

    AIM To assess the effects of eye rubbing on corneal thickness (CT) and intraocular pressure (IOP) measurements obtained 0-30min after habitual eye rubbing in symptomatic patients. METHODS Measurements of IOP and CT were obtained at five locations (central, temporal, superior, nasal and inferior) before, and every 5min for 30min interval after 30s of eye rubbing, for 25 randomly selected eyes of 14 subjects with ocular allergy and 11 age-matched normals. Differences in measurements were calculated in each group [Baseline measurements minus measurements recorded at each time interval after eye rubbing (for IOP), and for each corneal location (for CT)] and comparison were then made between groups (allergic versus control) for differences in any observed effects. RESULTS Within groups, baseline mean IOPs in the allergic patient-group (14.2±3.0 mm Hg) and in the control group (13.1±1.9 mm Hg) were similar at all times, after eye rubbing (P >0.05, for all). The maximum reduction in IOP was 0.8 mm Hg in the control subjects and the maximum increase was also 0.8 mm Hg in the allergic subjects. Between groups (allergic versus control), the changes in IOP remained under 1 mm Hg at all times (P=0.2) after 30min of eye rubbing. Between 0 and 30min of CT measurements after eye rubbing, the mean central CT (CCT), inferior CT (ICT), superior CT (SCT), temporal CT (TCT) and nasal CT (NCT) did not vary significantly from baseline values in the control and allergic-subject groups (P>0.05, for both). Between both groups, changes in CT were similar at all locations (P>0.05) except for the TC which was minimally thinner by about 4.4 µm (P=0.001) in the allergic subjects than in the control subjects, 30min following 30s of eye rubbing. CONCLUSION IOP measured in allergic subjects after 30s of habitual eye rubbing was comparable with that obtained in normal subjects at all times between 0 and 30min. Although, CT in the allergic subjects were similar to those of the control subjects at

  10. Acute vasogenic edema induced by thrombosis of a giant intracranial aneurysm: a cause of pseudostroke after therapeutic occlusion of the parent vessel.

    PubMed

    Hammoud, Dima; Gailloud, Philippe; Olivi, Alessandro; Murphy, Kieran J

    2003-01-01

    A 16-year-old male adolescent presenting with acute retro-orbital pain underwent emergent internal carotid occlusion for a giant cavernous aneurysm. Three weeks later, the patient complained of headache and right hemiparesis, which suggested an acute stroke. CT and MR imaging revealed vasogenic brain edema without infarct. The symptoms rapidly resolved with steroid therapy. Follow-up CT showed resolution of the edema. The imaging characteristics, clinical implications, and etiology of vasogenic edema occurring after thrombosis of a giant intracranial aneurysm are discussed.

  11. Corneal blindness and xenotransplantation.

    PubMed

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K C

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future.

  12. Pellucid marginal corneal degeneration.

    PubMed

    Krachmer, J H

    1978-07-01

    Pellucid marginal degeneration of the cornea is a bilateral, clear, inferior, peripheral corneal-thinning disorder. Protrusion of the cornea occurs above a band of thinning, which is located 1 to 2 mm from the limbus and measures 1 to 2 mm in width. American ophthalmologists are generally not familiar with the condition because most of the literature concerning pellucid degeneration is European. Four cases are described. This condition is differentiated from other noninflammatory cornel-thinning disorders such as keratoconus, keratoglobus, keratotorus, and posterior keratoconus. It is also differentiated from peripheral corneal disorders associated with inflammation such as Terrien's peripheral corneal degeneration, Mooren's ulcers, and ulcers from connective tissue disease.

  13. Combining femtosecond laser ablation and diode laser welding in lamellar and endothelial corneal transplants

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Yoo, Sonia H.; Parel, Jean-Marie

    2008-02-01

    Based on our previous clinical experiences in minimally invasive diode laser-induced welding of corneal tissue in penetrating keratoplasty (PK), i.e. full-thickness transplant of the cornea, we combined this technique with the use of a femtosecond laser for applications in lamellar (LK) and endothelial (EK) keratoplasty. In LK, the femtosecond laser was used to prepare donor button and recipient corneal bed; the wound edges were stained with a water solution of Indocyanine Green (ICG) and then irradiated with a diode laser emitting in CW mode to induce stromal welding. Intraoperatory observations and follow-up results up to 6 months indicated the formation of a smooth stromal interface, total absence of edema as well as inflammation, and reduction of post-operative astigmatism, as compared with conventional suturing procedures. In EK the femtosecond laser was used for the preparation of a 100 μm thick, 8.5mm diameter donor corneal endothelium flap. The flap stromal side was stained with ICG. After stripping the recipient Descemet's membrane and endothelium, the donor flap was positioned in the anterior chamber on the inner face of the cornea by an air bubble and secured to the recipient cornea by diode laser pulses delivered by means of a fiberoptic contact probe introduced in the anterior chamber, which produced welding spots of 200 μm diameter. Femtosecond laser sculpturing of the donor cornea provided lamellar and endothelial flaps of preset and constant thickness. Diode laserinduced welding showed a unique potential to permanently secure the donor flap in place, avoiding postoperative displacement and inflammation reaction.

  14. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits.

    PubMed

    Zhang, Yongming; Yang, Yanyan; Tang, Hong; Sun, Wenjiang; Xiong, Xiaoxing; Smerin, Daniel; Liu, Jiachuan

    2014-05-01

    Many studies suggest that hyperbaric oxygen therapy (HBOT) can provide some clinically curative effects on blast-induced traumatic brain injury (bTBI). The specific mechanism by which this occurs still remains unknown, and no standardized time or course of hyperbaric oxygen treatment is currently used. In this study, bTBI was produced by paper detonators equivalent to 600 mg of TNT exploding at 6.5 cm vertical to the rabbit's head. HBO (100% O2 at 2.0 absolute atmospheres) was used once, 12 h after injury. Magnetic resonance spectroscopy was performed to investigate the impact of HBOT on the metabolism of local injured nerves in brain tissue. We also examined blood-brain barrier (BBB) integrity, brain water content, apoptotic factors, and some inflammatory mediators. Our results demonstrate that hyperbaric oxygen could confer neuroprotection and improve prognosis after explosive injury by promoting the metabolism of local neurons, inhibiting brain edema, protecting BBB integrity, decreasing cell apoptosis, and inhibiting the inflammatory response. Furthermore, timely intervention within 1 week after injury might be more conducive to improving the prognosis of patients with bTBI.

  15. Bioassay-guided chemical study of the anti-inflammatory effect of Senna villosa (Miller) H.S. Irwin & Barneby (Leguminosae) in TPA-induced ear edema.

    PubMed

    Susunaga-Notario, Ana del Carmen; Pérez-Gutiérrez, Salud; Zavala-Sánchez, Miguel Angel; Almanza-Pérez, Julio Cesar; Gutiérrez-Carrillo, Atilano; Arrieta-Báez, Daniel; López-López, Ana Laura; Román-Ramos, Rubén; Flores-Sáenz, José Luis Eduardo; Alarcón-Aguilar, Francisco Javier

    2014-07-15

    Senna villosa (Miller) is a plant that grows in México. In traditional Mexican medicine, it is used topically to treat skin infections, pustules and eruptions and to heal wounds by scar formation. However, studies of its potential anti-inflammatory effects have not been performed. The aim of the present study was to determine the anti-inflammatory effect of extracts from the leaves of Senna villosa and to perform a bioassay-guided chemical study of the extract with major activity in a model of ear edema induced by 12-O-tetradecanoylphorbol 13-acetate (TPA). The results reveal that the chloroform extract from Senna villosa leaves has anti-inflammatory and anti-proliferative properties. Nine fractions were obtained from the bioassay-guided chemical study, including a white precipitate from fractions 2 and 3. Although none of the nine fractions presented anti-inflammatory activity, the white precipitate exhibited pharmacological activity. It was chemically characterized using mass spectrometry and infrared and nuclear magnetic resonance spectroscopy, resulting in a mixture of three aliphatic esters, which were identified as the principal constituents: hexyl tetradecanoate (C20H40O2), heptyl tetradecanoate (C21H42O2) and octyl tetradecanoate (C22H44O2). This research provides, for the first time, evidence of the anti-inflammatory and anti-proliferative properties of compounds isolated from Senna villosa.

  16. Effects of retinoic acid receptor-γ on the Aspergillus fumigatus induced innate immunity response in human corneal epithelial cells

    PubMed Central

    Wang, Xiao-Chen; Zhao, Gui-Qiu; Lin, Jing; Li, Cui; Jiang, Nan; Zhang, Jie

    2016-01-01

    AIM To explore the effects of retinoic acid receptor-γ (RARγ) on innate immune responses against Aspergillus fumigatus (A. fumigatus) in cultured human corneal epithelial cells (HCECs). METHODS The HCECs were stimulated with A. fumigatus hyphae for 0, 2, 4, 8, 12 and 16h. RARγ mRNA and protein levels were tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Then HCECs were pretreated with or without BMS961 (RARγ agonist, 1 µg/mL). The mRNA and protein expression of Dectin-1 and the downstream cytokines (TNF-α and IL-6) were determined by qRT-PCR, Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS The expression of RARγ was upregulated after stimulation with A. fumigatus. RARγ mRNA began to rise at 4h and peaked at 8h (P<0.001). The protein of RARγ reached to the peak at 16h (P<0.001). Pretreated with BMS961 before A. fumigatus hyphae stimulation, expression of Dectin-1, TNF-α and IL-6 decreased dramatically at mRNA and protein levels. CONCLUSION HCECs can express RARγ and A. fumigatus hyphae infection can increase RARγ expression. BMS961 can inhibit the expression of Dectin-1 and pro-inflammatory cytokines, and play an anti-inflammatory role in innate immune responses against A. fumigatus. PMID:28003968

  17. Gamma-Irradiated Sterile Cornea for Use in Corneal Transplants in a Rabbit Model

    PubMed Central

    Yoshida, Junko; Heflin, Thomas; Zambrano, Andrea; Pan, Qing; Meng, Huan; Wang, Jiangxia; Stark, Walter J.; Daoud, Yassine J.

    2015-01-01

    Purpose: Gamma irradiated corneas in which the donor keratocytes and endothelial cells are eliminated are effective as corneal lamellar and glaucoma patch grafts. In addition, gamma irradiation causes collagen cross inking, which stiffens collagen fibrils. This study evaluated gamma irradiated corneas for use in corneal transplantations in a rabbit model comparing graft clarity, corneal neovascularization, and edema. Methods: Penetrating keratoplasty was performed on rabbits using four types of corneal grafts: Fresh cornea with endothelium, gamma irradiated cornea, cryopreserved cornea, and fresh cornea without endothelium. Slit lamp examination was performed at postoperative week (POW) one, two, and four. Corneal clarity, edema, and vascularization were graded. Confocal microscopy and histopathological evaluation were performed. A P < 0.05 was statistically significant. Results: For all postoperative examinations, the corneal clarity and edema were statistically significantly better in eyes that received fresh cornea with endothelium compared to the other three groups (P < 0.05). At POW 1, gamma irradiated cornea scored better than the cryopreserved and fresh cornea without endothelium groups in clarity (0.9 vs. 1.5 and 2.6, respectively), and edema (0.6 vs. 0.8 and 2.0, respectively). The gamma irradiated corneas, cryopreserved corneas and the fresh corneas without endothelium, developed haze and edema after POW 2. Gamma irradiated cornea remained statistically significantly clearer than cryopreserved and fresh cornea without endothelium during the observation period (P < 0.05). Histopathology indicated an absence of keratocytes in gamma irradiated cornea. Conclusion: Gamma irradiated corneas remained clearer and thinner than the cryopreserved cornea and fresh cornea without endothelium. However, this outcome is transient. Gamma irradiated corneas are useful for lamellar and patch grafts, but cannot be used for penetrating keratoplasty. PMID:26180475

  18. Dexmedetomidine alleviates pulmonary edema by upregulating AQP1 and AQP5 expression in rats with acute lung injury induced by lipopolysaccharide.

    PubMed

    Jiang, Yuan-xu; Dai, Zhong-liang; Zhang, Xue-ping; Zhao, Wei; Huang, Qiang; Gao, Li-kun

    2015-10-01

    This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 μg · kg(-1) · h(-1)); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 μg · kg(-1) · h(-1)); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5 μg · kg(-1) · h(-1)). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the lungs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in the lung tissues were assessed by enzyme- linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blotting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-α and IL-1β in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P<0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P<0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5.

  19. Facial edema induced by isotretinoin use: a case and a review of the side effects of isotretinoin.

    PubMed

    Scheinfeld, Noah; Bangalore, Sripal

    2006-05-01

    Isotretinoin (13-cis-retinoic acid) is a retinoid that is used to treat cystic acne, comedonal acne, and other diseases. For the treatment of acne, isotretinoin is dosed at 0.5 to 2 mg/kg daily for 5 months with a target total dose of approximately 120 mg/kg. Its most common side effects are mucocutaneous and ocular in nature (ie, cheilitis, ocular sicca, and decreased dark adaptation). It can also cause xerosis. Patients should be made aware of these side effects before taking isotretinoin and also that utilization of moisturizers and eye drops can help to mitigate such side effects. Sometimes, however, the dose of isotretinoin needs to be decreased to reduce the induction of side effects. Isotretinoin's most significant side effect is the induction of birth defects if a fetus is exposed to isotretinoin, which is pregnancy category X. Isotretinoin should be used with 2 forms of birth control by fecund women. It can rarely increase serum levels of triglycerides, which can, if very elevated, be related to the development of pancreatitis and xanthomas. Isotretinoin's well-documented but rarer side effects include intracranial hypertension. It can induce bony changes. A review of the literature demonstrates that isotretinoin is not linked to depression and suicide. Facial swelling has been linked to isotretinoin use in 3 previous case reports. We note herein the first case of facial swelling that occurred in an acne patient being treated with isotretinoin who at the time the swelling developed had no cysts, comedones, pustules, or evidence of bacterial infection. Possible reasons for the patient's facial swelling include some type of retinoid induced angioedema, exacerbation of inflammation by isotretinoin, and isotretinoin induced capillary leak syndrome.

  20. Postobstructive pulmonary edema.

    PubMed

    Udeshi, Ashish; Cantie, Shawn Michael; Pierre, Edgar

    2010-09-01

    Postobstructive pulmonary edema (POPE; also known as negative pressure pulmonary edema) is a potentially life-threatening complication in which pulmonary edema occurs shortly after the relief of an upper airway obstruction. The incidence of POPE has been reported to be as high as 1 in 1000 general anesthetic cases and commonly presents as acute respiratory distress that requires immediate intervention. This review examines the 2 subclasses of POPE and describes the etiologic factors, pathophysiology, clinical manifestations, diagnostic criteria, and treatment strategies associated with each. The aim of this review was to equip clinicians with the knowledge base necessary to identify patients at increased risk for POPE and to expeditiously diagnose and treat this potentially catastrophic complication.

  1. Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Elhalis, Hussain; Azizi, Behrooz; Jurkunas, Ula V.

    2011-01-01

    Fuchs endothelial corneal dystrophy (FECD) is characterized by progressive loss of corneal endothelial cells, thickening of Descement’s membrane and deposition of extracellular matrix in the form of guttae. When the number of endothelial cells becomes critically low, the cornea swells and causes loss of vision. The clinical course of FECD usually spans 10–20 years. Corneal transplantation is currently the only modality used to restore vision. Over the last several decades genetic studies have detected several genes, as well as areas of chromosomal loci associated with the disease. Proteomic studies have given rise to several hypotheses regarding the pathogenesis of FECD. This review expands upon the recent findings from proteomic and genetic studies and builds upon recent advances in understanding the causes of this common corneal disorder. PMID:20964980

  2. Corneal transplant - slideshow

    MedlinePlus

    ... ency/presentations/100082.htm Corneal transplant - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  3. Refractive corneal surgery - discharge

    MedlinePlus

    Nearsightedness surgery - discharge; Refractive surgery - discharge; LASIK - discharge; PRK - discharge ... You had refractive corneal surgery to help improve your vision. This surgery uses a laser to reshape your cornea. It corrects mild-to-moderate nearsightedness, ...

  4. Equine corneal surgery and transplantation.

    PubMed

    Denis, Heidi M

    2004-08-01

    Corneal disease is common in equine ophthalmology and requires vigilant monitoring and appropriate therapy to optimize the outcome. Many equine corneal diseases, particularly those that progress rapidly, may benefit from surgical intervention. These include descemetoceles, deep corneal lacerations and ulcers, corneal perforation/iris prolapse, ulcerative keratitis, corneal stromal abscesses, and corneoscleral neoplasia. Indications for corneal transplantation include optical, tectonic, therapeutic, and cosmetic purposes. Corneal transplantation is most often implemented in equine patients for tectonic and therapeutic reasons when a cornea is compromised by corneal stromal abscess, iris prolapse, or neoplasia. This article provides an outline of when to consider surgical intervention for corneal disease, the procedures available and expected outcomes, and how appropriate early surgical intervention can dramatically improve the end result.

  5. [Limb edema and lymphoscintigraphy].

    PubMed

    Bourgeois, P; Munck, D; Belgrado, J P; Leduc, O; Leduc, A

    2003-02-01

    Lymphoscintigraphic investigations represent techniques of nuclear medicine very contributive for the management and treatment of the limb edemas, either primary or secundary. Their principle is presented and methodologies proposed in the literature are reviewed. Their diagnostic contributions are detailed. The sensitivities and specificities of several protocols of investigation are reported. Some limitations of these examinations are analyzed and discussed. Clinical indications for their use are proposed and their interest with regard to the various treatments that can be applied to these limb edemas is discussed.

  6. Problems with corneal arcus.

    PubMed

    Fielder, A R; Winder, A F; Sheraidah, G A; Cooke, E D

    1981-01-01

    Corneal arcus presents many puzzling features. The correlation between its incidence and serum lipid levels is poor and, using immunoelectrophoresis, we have only been able to identify low-density lipoprotein inconsistently in corneae containing this deposition. Infrared thermography has shown us that arcus commences in the warmest regions of the cornea. We have considered the possible relevance of our biochemical and thermographic findings to other problems with corneal arcus such as its irreversibility, anatomical distribution, and clear zone.

  7. Central corneal abscess.

    PubMed

    van Bijsterveld, O P

    1976-05-01

    Central corneal abscess developed in the experimental animal after inoculation of biologically active staphylococcal strains in a paracentral epithelial lesion of the cornea. These abscesses did not ulcerate, developed only with high inocula, occurred more frequently in immunized rabbits. A serpiginous type of ulceration did not develop at the site of the initial epithelial lesion nor at any other place in the cornea. Histologically, the lesions consisted of densely packed polymorphonuclear leukocytes between the corneal lamellae.

  8. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts.

    PubMed

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-09-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: <5, 5-10 and >10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy.

  9. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts

    PubMed Central

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-01-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: <5, 5–10 and >10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy. PMID:27588090

  10. Anti-Inflammatory and Analgesic Effects of Pyeongwisan on LPS-Stimulated Murine Macrophages and Mouse Models of Acetic Acid-Induced Writhing Response and Xylene-Induced Ear Edema

    PubMed Central

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-01

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance. PMID:25569097

  11. Anti-inflammatory and analgesic effects of pyeongwisan on LPS-stimulated murine macrophages and mouse models of acetic acid-induced writhing response and xylene-induced ear edema.

    PubMed

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-06

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance.

  12. Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding

    PubMed Central

    Funderburgh, Martha L.; Mann, Mary M.; Du, Yiqin

    2017-01-01

    Corneal scarring limits vision for millions of individuals worldwide. Corneal transplantation (keratoplasty) is the standard of care for corneal opacity; however, it bears the risk of graft rejection and infection and is not universally available. Stem cell therapy holds promise as an alternative to keratoplasty. Stem cells from human corneal stroma (CSSC) induce regeneration of transparent corneal tissue in a mouse wound-healing model. In this study we investigated the mechanism by which CSSC prevent deposition of fibrotic tissue. Infiltration by CD11b+/Ly6G+ neutrophils and myeloperoxidase expression were increased in corneas 24 hr after corneal wounding but were reduced in CSSC-treated wounds. Secretion of TSG-6, a protein known to regulate neutrophil migration, was up-regulated in CSSC in response to TNFα and as CSSC differentiate to keratocytes. In vivo, wounded mouse corneas treated with CSSC contained human TSG-6. Inhibition of neutrophil infiltration into cornea by CSSC was reversed when TSG-6 expression was knocked down using siRNA. Silencing of TSG-6 expression in CSSC reduced their ability to block scarring and the expression of mRNA for fibrosis-associated proteins collagen III, tenascin C, and smooth muscle actin in wounded corneas. Neutropenic mice exhibited a significant reduction in corneal scarring and fibrotic mRNA expression 2 weeks after wounding. These results support the conclusion that neutrophil infiltration is an essential event in the fibrotic response to corneal damage and that prevention of scarring by CSSC is mediated by secretion of TSG-6 by these cells. PMID:28257425

  13. Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding.

    PubMed

    Hertsenberg, Andrew J; Shojaati, Golnar; Funderburgh, Martha L; Mann, Mary M; Du, Yiqin; Funderburgh, James L

    2017-01-01

    Corneal scarring limits vision for millions of individuals worldwide. Corneal transplantation (keratoplasty) is the standard of care for corneal opacity; however, it bears the risk of graft rejection and infection and is not universally available. Stem cell therapy holds promise as an alternative to keratoplasty. Stem cells from human corneal stroma (CSSC) induce regeneration of transparent corneal tissue in a mouse wound-healing model. In this study we investigated the mechanism by which CSSC prevent deposition of fibrotic tissue. Infiltration by CD11b+/Ly6G+ neutrophils and myeloperoxidase expression were increased in corneas 24 hr after corneal wounding but were reduced in CSSC-treated wounds. Secretion of TSG-6, a protein known to regulate neutrophil migration, was up-regulated in CSSC in response to TNFα and as CSSC differentiate to keratocytes. In vivo, wounded mouse corneas treated with CSSC contained human TSG-6. Inhibition of neutrophil infiltration into cornea by CSSC was reversed when TSG-6 expression was knocked down using siRNA. Silencing of TSG-6 expression in CSSC reduced their ability to block scarring and the expression of mRNA for fibrosis-associated proteins collagen III, tenascin C, and smooth muscle actin in wounded corneas. Neutropenic mice exhibited a significant reduction in corneal scarring and fibrotic mRNA expression 2 weeks after wounding. These results support the conclusion that neutrophil infiltration is an essential event in the fibrotic response to corneal damage and that prevention of scarring by CSSC is mediated by secretion of TSG-6 by these cells.

  14. Stem Cell Therapy for Corneal Regeneration Medicine and Contemporary Nanomedicine for Corneal Disorders.

    PubMed

    Hsu, Chih-Chien; Peng, Chi-Hsien; Hung, Kuo-Hsuan; Lee, Yi-Yen; Lin, Tai-Chi; Jang, Shih-Fan; Liu, Jorn-Hon; Chen, Yan-Ting; Woung, Lin-Chung; Wang, Chien-Ying; Tsa, Ching-Yao; Chiou, Shih-Hwa; Chen, Shih-Jen; Chang, Yuh-Lih

    2015-01-01

    The ocular surface is the outermost part of the visual system that faces many extrinsic or intrinsic threats, such as chemical burn, infectious pathogens, thermal injury, Stevens-Johnson syndrome, ocular pemphegoid, and other autoimmune diseases. The cornea plays an important role in conducting light into the eyes and protecting intraocular structures. Several ocular surface diseases will lead to the neovascularization or conjunctivalization of corneal epithelium, leaving opacified optical media. It is believed that some corneal limbal cells may present stem cell-like properties and are capable of regenerating corneal epithelium. Therefore, cultivation of limbal cells and reconstruction of the ocular surface with these limbal cell grafts have attracted tremendous interest in the past few years. Currently, stem cells are found to potentiate regenerative medicine by their capability of differentiation into multiple lineage cells. Among these, the most common cell sources for clinical use are embryonic, adult, and induced stem cells. Different stem cells have varied specific advantages and limitations for in vivo and in vitro expansion. Other than ocular surface diseases, culture and transplantation of corneal endothelial cells is another major issue for corneal decompensation and awaits further studies to find out comprehensive solutions dealing with nonregenerative corneal endothelium. Recently, studies of in vitro endothelium culture and ρ-associated kinase (ROCK) inhibitor have gained encouraging results. Some clinical trials have already been finished and achieved remarkable vision recovery. Finally, nanotechnology has shown great improvement in ocular drug delivery systems during the past two decades. Strategies to reconstruct the ocular surface could combine with nanoparticles to facilitate wound healing, drug delivery, and even neovascularization inhibition. In this review article, we summarized the major advances of corneal limbal stem cells, limbal stem

  15. UV-A Irradiation Activates Nrf2-Regulated Antioxidant Defense and Induces p53/Caspase3-Dependent Apoptosis in Corneal Endothelial Cells

    PubMed Central

    Liu, Cailing; Vojnovic, Dijana; Kochevar, Irene E.; Jurkunas, Ula V.

    2016-01-01

    Purpose To examine whether Nrf2-regulated antioxidant defense and p53 are activated in human corneal endothelial cells (CEnCs) by environmental levels of ultraviolet A (UV-A), a known stimulator of oxidative stress. Methods Immortalized human CEnCs (HCEnCi) were exposed to UV-A fluences of 2.5, 5, 10, or 25 J/cm2, then allowed to recover for 3 to 24 hours. Control HCEnCi did not receive UV-A. Reactive oxygen species (ROS) were measured using H2DCFDA. Cell cytotoxicity was evaluated by lactate dehydrogenase (LDH) release. Levels of Nrf2, HO-1, NQO-1, p53, and caspase3 were detected by immunnoblotting or real-time PCR. Activated caspase3 was measured by immunoblotting and a fluorescence assay. Results Exposure of HCEnCi to 5, 10, and 25 J/cm2 UV-A increased ROS levels compared with controls. Nrf2, HO-1, and NQO-1 mRNA increased 1.7- to 3.2-fold at 3 and 6 hours after irradiation with 2.5 and 5 J/cm2 UV-A. At 6 hours post irradiation, UV-A (5 J/cm2) enhanced nuclear Nrf2 translocation. At 24 hours post treatment, UV-A (5, 10, and 25 J/cm2) produced a 1.8- to 2.8-fold increase in phospho-p53 and a 2.6- to 6.0-fold increase in activated caspase3 compared with controls, resulting in 20% to 42% cell death. Conclusions Lower fluences of UV-A induce Nrf2-regulated antioxidant defense and higher fluences activate p53 and caspase3, indicating that even near-environmental levels of UV-A may affect normal CEnCs. This data suggest that UV-A may especially damage cells deficient in antioxidant defense, and thus may be involved in the etiology of Fuchs' endothelial corneal dystrophy (FECD). PMID:27127932

  16. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model

    PubMed Central

    Vázquez, Natalia; Chacón, Manuel; Rodríguez-Barrientos, Carlos A.; Merayo-Lloves, Jesús; Naveiras, Miguel; Baamonde, Begoña; Alfonso, Jose F.; Zambrano-Andazol, Iriana; Riestra, Ana C.; Meana, Álvaro

    2016-01-01

    Corneal keratoplasty (penetrating or lamellar) using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world’s population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of endothelial dysfunction

  17. Latest advances in edema

    NASA Technical Reports Server (NTRS)

    Villavicencio, J. L.; Hargens, A. R.; Pikoulicz, E.

    1996-01-01

    Basic concepts in the physiopathology of edema are reviewed. The mechanisms of fluid exchange across the capillary endothelium are explained. Interstitial flow and lymph formation are examined. Clinical disorders of tissue and lymphatic transport, microcirculatory derangements in venous disorders, protein disorders, and lymphatic system disorders are explored. Techniques for investigational imaging of the lymphatic system are explained.

  18. A corneal mold to restore normal corneal dimensions.

    PubMed

    Swinger, C A; Kornmehl, E W; York, S; Forman, J S

    1986-01-01

    A corneal mold is described that provides an MK corneal button of normal thickness and curvature from an edematous, post-mortem button. The uniform, processed tissue can then be used for experimental refractive surgery.

  19. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Han, Zhaolong; Nair, Achuth; Schill, Alexander; Twa, Michael D.; Larin, Kirill V.

    2017-02-01

    Current clinical tools provide critical information about ocular health such as intraocular pressure (IOP). However, they lack the ability to quantify tissue material properties, which are potent markers for ocular tissue health and integrity. We describe a single instrument to measure the eye-globe IOP, quantify corneal biomechanical properties, and measure corneal geometry with a technique termed applanation optical coherence elastography (Appl-OCE). An ultrafast OCT system enabled visualization of corneal dynamics during noncontact applanation tonometry and direct measurement of micro air-pulse induced elastic wave propagation. Our preliminary results show that the proposed Appl-OCE system can be used to quantify IOP, corneal biomechanical properties, and corneal geometry, which builds a solid foundation for a unique device that can provide a more complete picture of ocular health.

  20. Active Pedicle Epithelial Flap Transposition Combined with Amniotic Membrane Transplantation for Treatment of Nonhealing Corneal Ulcers

    PubMed Central

    Zhang, Ting; Wang, Yuexin; Jia, Yanni; Liu, Dongle; Li, Suxia; Shi, Weiyun

    2016-01-01

    Introduction. The objective was to evaluate the efficacy of active pedicle epithelial flap transposition combined with amniotic membrane transplantation (AMT) in treating nonhealing corneal ulcers. Material and Methods. Eleven patients (11 eyes) with nonhealing corneal ulcer who underwent the combined surgery were included. Postoperatively, ulcer healing time was detected by corneal fluorescein staining. Visual acuity, intraocular pressure, surgical complications, and recurrence were recorded. Corneal status was inspected by the laser scanning confocal microscopy and anterior segment optical coherence tomography (AS-OCT). Results. The primary diseases were herpes simplex keratitis (8 eyes), corneal graft ulcer (2 eyes), and Stevens-Johnson syndrome (1 eye). All epithelial flaps were intact following surgery, without shedding or displacement. Mean ulcer healing time was 10.8 ± 3.1 days, with a healing rate of 91%. Vision significantly improved from 1.70 to 0.82 log MAR (P = 0.001). A significant decrease in inflammatory cell infiltration and corneal stromal edema was revealed 2 months postoperatively by confocal microscopy and AS-OCT. Corneal ulcer recurred in 1 eye. None of the patients developed major complications. Conclusion. Active pedicle epithelial flap transposition combined with AMT is a simple and effective treatment for nonhealing corneal ulcers. PMID:27830086

  1. An uncommon cause of acute pulmonary edema.

    PubMed

    Nepal, Santosh; Giri, Smith; Bhusal, Mohan; Siwakoti, Krishmita; Pathak, Ranjan

    2016-09-01

    Acute cardiogenic pulmonary edema secondary to catecholamine-induced cardiomyopathy is a very uncommon and fatal initial presentation of pheochromocytoma. However, with early clinical suspicion and aggressive management, the condition is reversible. This case report describes a patient who presented with hypertension, dyspnea, and cough with bloody streaks, and who recovered within 48 hours after appropriate treatment.

  2. In Vivo Imaging of Corneal Endothelial Dystrophy in Boston Terriers: A Spontaneous, Canine Model for Fuchs' Endothelial Corneal Dystrophy

    PubMed Central

    Thomasy, Sara M.; Cortes, Dennis E.; Hoehn, Alyssa L.; Calderon, Allison C.; Li, Jennifer Y.; Murphy, Christopher J.

    2016-01-01

    Purpose Boston Terriers (BTs) have a greater prevalence of corneal endothelial dystrophy (CED), in comparison to other canine breeds. Similar to Fuchs' endothelial corneal dystrophy (FECD), this condition is characterized by endothelial cell degeneration with secondary corneal edema. This study assessed corneal morphology using in vivo confocal microscopy (IVCM) and Fourier-domain optical coherence tomography (FD-OCT) in BTs with and without CED. Methods The corneas of 16 BTs with CED and 15 unaffected, age-matched BTs underwent clinical evaluation and were imaged using IVCM and FD-OCT. A two-sample t-test or Mann-Whitney rank sum test were used to statistically compare parameters between groups. Data are presented as mean ± SD or median (range). Results Mean age did not significantly differ between affected and unaffected dogs at 10.0 ± 2.0 and 10.6 ± 2.4 years, respectively (P = 0.437). Females (69%) were overrepresented among the CED-affected dogs. In CED patients, IVCM demonstrated endothelial polymegathism and pleomorphism. Corneal endothelial density was significantly less (P < 0.001) in dogs with CED (1026 ± 260 cells/mm2) versus age-matched controls (2297 ± 372 cells/mm2). Fourier-domain OCT demonstrated a significant increase (P < 0.01) in central corneal and endothelium-Descemet's complex thickness in dogs with CED versus age-matched controls at 1019 (485–1550) or 536 (464–650) μm and 32 (22–56) or 25 (15–34) μm, respectively. Conclusions Corneal endothelial dystrophy in BTs is a bilateral, adult-onset condition that shares many similarities with FECD. Thus, CED could serve as a spontaneous disease model to study the pathogenesis of and develop novel treatments for FECD. PMID:27454658

  3. Understanding of the Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UV-A Cross-Linking at the Nano Level

    PubMed Central

    Labate, Cristina; De Santo, Maria Penelope; Lombardo, Giuseppe; Lombardo, Marco

    2015-01-01

    Purpose To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM) at the nano level. Methods Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young’s modulus (E) and the hysteresis (H) of the corneal stroma were quantified as a function of the application load and scan rate. Results The Young’s modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (P<0.05). A higher increase of E, by a mean of 1.5-2.6 times, was found in chemically cross-linked specimens using glutaraldehyde 2.5% (P<0.05). The hysteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05). A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05). Conclusions The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions. PMID:25830534

  4. Kinetics of corneal thermal shrinkage

    NASA Astrophysics Data System (ADS)

    Borja, David; Manns, Fabrice; Lee, William E.; Parel, Jean-Marie

    2004-07-01

    Purpose: The purpose of this study was to determine the effects of temperature and heating duration on the kinetics of thermal shrinkage in corneal strips using a custom-made shrinkage device. Methods: Thermal shrinkage was induced and measured in corneal strips under a constant load placed while bathed in 25% Dextran irrigation solution. A study was performed on 57 Florida Lions Eye Bank donated human cadaver eyes to determine the effect of temperature on the amount and rate of thermal shrinkage. Further experiments were performed on 20 human cadaver eyes to determine the effects of heating duration on permanent shrinkage. Data analysis was performed to determine the effects of temperature, heating duration, and age on the amount and kinetics of shrinkage. Results: Shrinkage consisted of two phases: a shrinkage phase during heating and a regression phase after heating. Permanent shrinkage increased with temperature and duration. The shrinkage and regression time constants followed Arrhenius type temperature dependence. The shrinkage time constants where calculated to be 67, 84, 121, 560 and 1112 (s) at 80, 75, 70, 65, and 60°C respectively. At 65°C the permanent shrinkage time constant was calculated to be 945s. Conclusion: These results show that shrinkage treatments need to raise the temperature of the tissue above 75°C for several seconds in order to prevent regression of the shrinkage effect immediately after treatment and to induce the maximum amount of permanent irreversible shrinkage.

  5. Corneal tattooing: an alternative treatment for disfiguring corneal scars

    PubMed Central

    Pitz, S; Jahn, R; Frisch, L; Duis, A; Pfeiffer, N

    2002-01-01

    Background: The performance and results of corneal tattooing are described in a case series of 11 patients suffering from a disfiguring corneal scar using a technique similar to conventional dermatography. Methods: Drawing ink in different shades was applied into the anterior corneal stroma by punctures performed with a conventional spatula needle. Results: Up to 4 years after surgery all patients still had satisfactory staining of the formerly cosmetically disfiguring corneal scar. Conclusion: Tattooing of unsightly corneal scars proved to be an efficient and easy to perform technique, yielding acceptable results during follow up. PMID:11914207

  6. Transient Idiopathic Primary Penoscrotal Edema

    PubMed Central

    Namir, Sody A; Trattner, Akiva

    2013-01-01

    We present the case of a male born prematurely at 32 weeks gestation by cesarean section following overt symptoms of maternal preeclampsia. He developed severe penoscrotal edema anew one month from birth. No remarkable exposure or trauma was identified. This unexplained swelling remained uniform till 4 months of age, while the penile edema resolved spontaneously. A small benign hydrocele remained unchanged, since onset of the edema and continued after the edema subsided. This is the first report of persistent, but transient penoscrotal edema resolving in a 3 months course, without any apparent explanation, a possible pathogenetic mechanism was suggested. PMID:24082210

  7. Reperfusion pulmonary edema

    SciTech Connect

    Klausner, J.M.; Paterson, I.S.; Mannick, J.A.; Valeri, C.R.; Shepro, D.; Hechtman, H.B. )

    1989-02-17

    Reperfusion following lower-torso ischemia in humans leads to respiratory failure manifest by pulmonary hypertension, hypoxemia, and noncardiogenic pulmonary edema. The mechanism of injury has been studied in the sheep lung lymph preparation, where it has been demonstrated that the reperfusion resulting in pulmonary edema is due to an increase in microvascular permeability of the lung to protein. This respiratory failure caused by reperfusion appears to be an inflammatory reaction associated with intravascular release of the chemoattractants leukotriene B{sub 4} and thromboxane. Histological studies of the lung in experimental animals revealed significant accumulation of neutrophils but not platelets in alveolar capillaries. The authors conclude that thromboxane generated and released from the ischemic tissue is responsible for the transient pulmonary hypertension. Second, it is likely that the chemoattractants are responsible for leukosequestration, and third, neutrophils, oxygen-derived free radicals, and thromboxane moderate the altered lung permeability.

  8. Corneal reepithelialization and anti-inflammatory agents.

    PubMed Central

    Srinivasan, B D

    1982-01-01

    These studies have demonstrated that nonsteroidal anti-inflammatory agents (cyclooxygenase and lipoxygenase inhibitors) can inhibit PMN arrival in the tear fluid following corneal injury but do not inhibit the reepithelialization either by corneal epithelial cells or by conjunctival epithelial cells. Therefore, they can be used safely in ocular inflammatory conditions even when corneal epithelial defects are present. Corticosteroids, on the other hand, inhibit reepithelialization by conjunctival epithelial cells and not by corneal epithelial cells in the doses tested. This inhibition does not occur with pretreatment prior to injury, suggesting that corticosteroids can be used clinically in conditions that have intact corneal epithelium without fear of slowing down wound healing should epithelial defects occur when not on steroid therapy. Furthermore, the steroid inhibition is temporary since there is a breakthrough in steroid inhibition with time, and occurs only if the steroids have been used shortly after deepithelialization. The steroid inhibition can be reversed by specific steroid antagonist, indicating that the steroid effect is mediated through specific receptors. An exciting and new hypothesis proposes that corticosteroids induce the formation of an inhibitory protein that inhibits the phospholipase enzyme to cause a block in arachidonic acid release from cell membranes. This mechanism of action may also be prevalent in the steroid effect on corneal reepithelialization, and experiments are under way to isolate this inhibitory protein from steroid-treated conjunctival epithelium. This isolation and pharmacologic characterization of this inhibitory protein is of obvious advantage to the field of ophthalmic therapeutics since this protein may have the anti-inflammatory potential of the steroids without their steroid sideeffects. Images FIGURE 3 a FIGURE 3 b PMID:6763806

  9. Corneal grafting and banking.

    PubMed

    Ehlers, Niels; Hjortdal, Jesper; Nielsen, Kim

    2009-01-01

    Corneal transplantation was conceptualized at the end of the 18th century, but it took more than 100 years before human corneal grafting was introduced. The greatest step forward was the demonstration by Filatov that corneal tissue can be collected and used post mortem. The history of eye banking includes the development of preservation techniques. Storage in cold to minimize microbial growth and tissue disintegration was first choice but during the last 30 years this has been taken over by warm storage (organ culture) where the donor cornea proves its sterility and vitality before being transferred to the recipient. The long-term organ culture storage makes exchange between centres possible and allows for histocompatibility matching. The internationalization led to the establishing of the European Eye Bank Association but also to an increasing number of governmental regulations. Developments in years to come may lead to control of graft biomechanics and optics. This technical development tends to favour a centralization.

  10. Treating corneal abrasions.

    PubMed

    Wingate, S

    1999-06-01

    Although corneal abrasions are commonly seen in primary care settings, the primary care literature contains scant references on detecting and managing this problem. This article provides an overview of corneal abrasion assessment and treatment. Four common etiologies of abrasion are discussed: traumatic abrasion, contact lens abrasion, foreign body abrasion, and recurrent erosion. Parameters for the history and physical examination are outlined, including sections on contact lens removal, lid eversion, and fluorescein staining. Treatment regimens for each of the etiologies are discussed, with a focus on current research on using pressure eye patches as an intervention. Indications for referral to an ophthalmologist are noted.

  11. Targeted Disruption of Core 1 β1,3-galactosyltransferase (C1galt1) Induces Apical Endocytic Trafficking in Human Corneal Keratinocytes

    PubMed Central

    Guzman-Aranguez, Ana; Woodward, Ashley M.; Pintor, Jesús; Argüeso, Pablo

    2012-01-01

    Background Exposed mucosal surfaces limit constitutive endocytosis under physiological conditions to prevent uptake of macromolecules and pathogens and, therefore, cellular damage. It is now accepted that cell surface mucins, a group of high molecular weight glycoproteins on the epithelial glycocalyx, defined by their extensive O-glycosylation, play a major role in maintaining barrier function in these surfaces, but the precise mechanisms are unclear. Methodology/Principal Findings In this work, we utilized a stable tetracycline-inducible RNA interfering system targeting the core 1 ß1,3-galactosyltransferase (C1galt1 or T-synthase), a critical galactosyltransferase required for the synthesis of core 1 O-glycans, to explore the role of mucin-type carbohydrates in apical endocytic trafficking in human corneal keratinocytes. Using cell surface biotinylation and subcellular fractionation, we found increased accumulation of plasma membrane protein in endosomes after C1galt1 depletion. Confocal laser scanning microscopy and fluorometry revealed increased translocation of negatively charged fluorescent nanospheres after C1galt1 knockdown sustained by an active transport process and largely independent of apical intercellular junctions. Internalization of nanospheres could be blocked by dynasore, nocodazole, chlorpromazine, and hyperosmotic sucrose, suggesting a mechanism for clathrin-coated pit budding and vesicular trafficking. This possibility was supported by experiments showing nanosphere colocalization with clathrin heavy chain in the cytoplasm. Conclusions/Significance Together, the data suggest that core 1 O-glycans contribute to maintenance of apical barrier function on exposed mucosal surfaces by preventing clathrin-mediated endocytosis. PMID:22574202

  12. Interstitial Pulmonary Edema Following Bromocarbamide Intoxication

    PubMed Central

    Sugihara, H.; Hagedorn, M.; Bōttcher, D.; Neuhof, H.; Mittermayer, Ch.

    1974-01-01

    Bromocarbamides are sleep-inducing drugs which can lead, in man, to intoxication and death due to respiratory failure. To prove whether hemodynamic factors or the changed endothelial permeability induce pulmonary edema, animal experiments were performed. The fine structural changes in pulmonary edema in rabbits were observed at 60, 90 and 120 minutes after oral administration. The major findings were a) large blebs between capillary endothelium and alveolar epithelium and b) interstitial edema of the vessel wall. The bleb contents were much less electron dense than the blood contents in the capillary. Colloidal carbon did not enter the bleb or the edematous interstitial tissue. Exogenous peroxidase uptake in pinocytotie vesicles increased in pathologic cases. The hemodynamic measurements in animal receiving artificial respiration which maintained the blood pO2 at a steady state showed similar blebs in the pulmonary vessels, indicating that anoxia is not the major cause of the vascular lesion. Moreover, pulmonary arterial pressure and pulmonary vascular resistance could be held in the normal range in artificially respirated animals under bromocarbamide intoxication. Thus, hemodynamic factors are not likely to play a pathogenetic role in bringing about pulmonary edema. The chief, early factor is the increased endothelial permeability due to increased cytoplasmic transport. From this a practical suggestion for treating patients with bromocarbamide intoxication is derived: the usual fluid replacement in shock patients should be handled with great care to avoid fluid overload of the lung. ImagesFig 1Fig 2Fig 3Fig 4Fig 5Fig 6 PMID:4835993

  13. Diabetic corneal neuropathy.

    PubMed Central

    Schultz, R O; Peters, M A; Sobocinski, K; Nassif, K; Schultz, K J

    1983-01-01

    Corneal epithelial lesions can be found in approximately one-half of asymptomatic patients with diabetes mellitus. These lesions are transient and clinically resemble the keratopathy seen in staphylococcal keratoconjunctivitis. Staphylococcal organisms, however, can be isolated in equal percentages from diabetic patients without keratopathy. Diabetic peripheral neuropathy was found to be related to the presence of diabetic keratopathy after adjusting for age with analysis of covariance. The strongest predictor of both keratopathy and corneal fluorescein staining was vibration perception threshold in the toes (P less than 0.01); and the severity of keratopathy was directly related to the degree of diminution of peripheral sensation. Other predictors of keratopathy were: reduced tear breakup time (P less than 0.03), type of diabetes (P less than 0.01), and metabolic status as indicated by c-peptide fasting (P less than 0.01). No significant relationships were found between the presence of keratopathy and tear glucose levels, endothelial cell densities, corneal thickness measurements, the presence of S epidermidis, or with duration of disease. It is our conclusion that asymptomatic epithelial lesions in the nontraumatized diabetic cornea can occur as a manifestation of generalized polyneuropathy and probably represent a specific form of corneal neuropathy. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6676964

  14. Corneal biomechanical properties from air-puff corneal deformation imaging

    NASA Astrophysics Data System (ADS)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  15. Clinical and radiologic features of pulmonary edema.

    PubMed

    Gluecker, T; Capasso, P; Schnyder, P; Gudinchet, F; Schaller, M D; Revelly, J P; Chiolero, R; Vock, P; Wicky, S

    1999-01-01

    Pulmonary edema may be classified as increased hydrostatic pressure edema, permeability edema with diffuse alveolar damage (DAD), permeability edema without DAD, or mixed edema. Pulmonary edema has variable manifestations. Postobstructive pulmonary edema typically manifests radiologically as septal lines, peribronchial cuffing, and, in more severe cases, central alveolar edema. Pulmonary edema with chronic pulmonary embolism manifests as sharply demarcated areas of increased ground-glass attenuation. Pulmonary edema with veno-occlusive disease manifests as large pulmonary arteries, diffuse interstitial edema with numerous Kerley lines, peribronchial cuffing, and a dilated right ventricle. Stage 1 near drowning pulmonary edema manifests as Kerley lines, peribronchial cuffing, and patchy, perihilar alveolar areas of airspace consolidation; stage 2 and 3 lesions are radiologically nonspecific. Pulmonary edema following administration of cytokines demonstrates bilateral, symmetric interstitial edema with thickened septal lines. High-altitude pulmonary edema usually manifests as central interstitial edema associated with peribronchial cuffing, ill-defined vessels, and patchy airspace consolidation. Neurogenic pulmonary edema manifests as bilateral, rather homogeneous airspace consolidations that predominate at the apices in about 50% of cases. Reperfusion pulmonary edema usually demonstrates heterogeneous airspace consolidations that predominate in the areas distal to the recanalized vessels. Postreduction pulmonary edema manifests as mild airspace consolidation involving the ipsilateral lung, whereas pulmonary edema due to air embolism initially demonstrates interstitial edema followed by bilateral, peripheral alveolar areas of increased opacity that predominate at the lung bases. Familiarity with the spectrum of radiologic findings in pulmonary edema from various causes will often help narrow the differential diagnosis.

  16. The use of xenologous amniotic membrane to repair canine corneal perforation created by penetrating keratectomy.

    PubMed

    Barros, P.S.M.; Garcia, J.A.; Laus, J.L.; Ferreira, A.L.; Salles Gomes, T.L.

    1998-01-01

    This study was performed to evaluate the use of glycerol-preserved equine amniotic membrane as replacement for full-thickness corneal defects in dogs. Eighteen mixed-breed dogs were used. A perilimbal, full-thickness, 5 mm square corneal defect was created surgically, and a donor implant of equine amniotic membrane of the same size and shape sutured in place with 10-0 nylon simple interrupted sutures. Corneal edema was observed near the implant 24 h after surgery, but was absent after 1 week. Granulation tissue and corneal vascularization superficial to the implant were noticed on postoperative day 7, but were absent on day 30. Corneal vascularization persisted until the end of the experiment. There was no fluorescein retention by postoperative day 30. There was slight clearing of the corneal implant by postoperative 30, and slight pigmentation of the donor implant observed at postoperative day 180. An acute inflammatory process as well as fibroblasts were present at early postoperative stages. At postoperative day 60 there was no inflammatory cellular infiltrate, but fibroblasts and fibrosis were present. Corneal architecture was restored at the end of the experiment, with a layering of the epithelium-stroma-debris of amniotic membrane-stroma-endothelium present, and pigmentation and vascularization present in the deep layers of the cornea. Although vascularization indicated some degree of graft rejection, the clinical and histological evidence indicates that the xenologous amniotic membrane can be useful as a tectonic graft in the repair of full-thickness lesions of the cornea of dogs.

  17. Diabetic Macular Edema

    NASA Astrophysics Data System (ADS)

    Lobo, Conceição; Pires, Isabel; Cunha-Vaz, José

    The optical coherence tomography (OCT), a noninvasive and noncontact diagnostic method, was introduced in 1995 for imaging macular diseases. In diabetic macular edema (DME), OCT scans show hyporeflectivity, due to intraretinal and/or subretinal fluid accumulation, related to inner and/or outer blood-retinal barrier breakdown. OCT tomograms may also reveal the presence of hard exudates, as hyperreflective spots with a shadow, in the outer retinal layers, among others. In conclusion, OCT is a particularly valuable diagnostic tool in DME, helpful both in the diagnosis and follow-up procedure.

  18. Assessment of corneal properties based on statistical modeling of OCT speckle

    PubMed Central

    Jesus, Danilo A.; Iskander, D. Robert

    2016-01-01

    A new approach to assess the properties of the corneal micro-structure in vivo based on the statistical modeling of speckle obtained from Optical Coherence Tomography (OCT) is presented. A number of statistical models were proposed to fit the corneal speckle data obtained from OCT raw image. Short-term changes in corneal properties were studied by inducing corneal swelling whereas age-related changes were observed analyzing data of sixty-five subjects aged between twenty-four and seventy-three years. Generalized Gamma distribution has shown to be the best model, in terms of the Akaike’s Information Criterion, to fit the OCT corneal speckle. Its parameters have shown statistically significant differences (Kruskal-Wallis, p < 0.001) for short and age-related corneal changes. In addition, it was observed that age-related changes influence the corneal biomechanical behaviour when corneal swelling is induced. This study shows that Generalized Gamma distribution can be utilized to modeling corneal speckle in OCT in vivo providing complementary quantified information where micro-structure of corneal tissue is of essence. PMID:28101409

  19. Negative-Pressure Pulmonary Edema.

    PubMed

    Bhattacharya, Mallar; Kallet, Richard H; Ware, Lorraine B; Matthay, Michael A

    2016-10-01

    Negative-pressure pulmonary edema (NPPE) or postobstructive pulmonary edema is a well-described cause of acute respiratory failure that occurs after intense inspiratory effort against an obstructed airway, usually from upper airway infection, tumor, or laryngospasm. Patients with NPPE generate very negative airway pressures, which augment transvascular fluid filtration and precipitate interstitial and alveolar edema. Pulmonary edema fluid collected from most patients with NPPE has a low protein concentration, suggesting hydrostatic forces as the primary mechanism for the pathogenesis of NPPE. Supportive care should be directed at relieving the upper airway obstruction by endotracheal intubation or cricothyroidotomy, institution of lung-protective positive-pressure ventilation, and diuresis unless the patient is in shock. Resolution of the pulmonary edema is usually rapid, in part because alveolar fluid clearance mechanisms are intact. In this review, we discuss the clinical presentation, pathophysiology, and management of negative-pressure or postobstructive pulmonary edema.

  20. Corneal collagen cross-linking and liposomal amphotericin B combination therapy for fungal keratitis in rabbits

    PubMed Central

    Hao, Zhao-Qin; Song, Jin-Xin; Pan, Shi-Yin; Zhang, Lin; Cheng, Yan; Liu, Xian-Ning; Wu, Jie; Xiao, Xiang-Hua; Gao, Wei; Zhu, Hai-Feng

    2016-01-01

    AIM To observe the therapeutic effect of corneal collagen cross-linking (CXL) in combination with liposomal amphotericin B in fungal corneal ulcers. METHODS New Zealand rabbits were induced fungal corneal ulcers by scratching and randomly divided into 3 groups, i.e. control, treated with CXL, and combined therapy of CXL with 0.25% liposomal amphotericin B (n=5 each). The corneal lesions were documented with slit-lamp and confocal microscopy on 3, 7, 14, 21 and 28d after treatment. The corneas were examined with transmission electron microscopy (TEM) at 4wk. RESULTS A rabbit corneal ulcer model of Fusarium was successfully established. The corneal epithelium defect areas in the two treatment groups were smaller than that in the control group on 3, 7, 14 and 21d (P<0.05). The corneal epithelium defect areas of the combined group was smaller than that of the CXL group (P<0.05) on 7 and 14d, but there were no statistical differences on 3, 21 and 28d. The corneal epithelium defects of the two treatment groups have been healed by day 21. The corneal epithelium defects of the control group were healed on 28d. The diameters of the corneal collagen fiber bundles (42.960±7.383 nm in the CXL group and 37.040±4.160 nm in the combined group) were thicker than that of the control group (24.900±1.868 nm), but there was no difference between the two treatment groups. Some corneal collagen fiber bundles were distorted and with irregular arrangement, a large number of fibroblasts could be seen among them but no inflammatory cells in both treatment groups. CONCLUSION CXL combined with liposomal amphotericin B have beneficial effects on fungal corneal ulcers. The combined therapy could alleviate corneal inflammattions, accelerate corneal repair, and shorten the course of disease. PMID:27990355

  1. Heat shock induces apoptosis through reactive oxygen species involving mitochondrial and death receptor pathways in corneal cells.

    PubMed

    Hsu, Ya-Ling; Yu, Hsin-Su; Lin, Hsien-Chung; Wu, Kwou-Yeung; Yang, Rei-Cheng; Kuo, Po-Lin

    2011-10-01

    Although many studies have been performed to elucidate the molecular consequences of ultraviolet irradiation, little is known about the effect of infrared radiation on ocular disease. In addition to photons, heat is generated as a consequence of infrared irradiation, and heat shock is widely considered to be an environmental stressor. Here, we are the first to investigate the biological effect of heat shock on Statens Seruminstitut Rabbit Cornea (SIRC) cells. Our results indicate that heat shock exhibits effective cell proliferation inhibition by inducing apoptosis. Heat shock triggers the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activity. In addition, heat shock triggered the death receptor apoptotic pathway indicated by a change in Fas ligand expression, resulting in caspase-8 activity. Furthermore, we also found that generation of reactive oxygen species (ROS) is a critical mediator in heat shock-induced apoptosis. In addition, the antioxidant vitamin C significantly decreased heat shock-mediated apoptosis. Taken together, these findings suggest a critical role for ROS involving mitochondrial and death receptor pathways in heat shock-mediated apoptosis of cornea cells.

  2. Molecular mechanism of the inhibition effect of Lipoxin A4 on corneal dissolving pathology process

    PubMed Central

    Zhou, Hong-Yan; Hao, Ji-Long; Bi, Miao-Miao; Wang, Shuang; Zhang, Hong; Zhang, Wen-Song

    2013-01-01

    AIM Excessive dissolve of corneal tissue induced by MMPs which were activated by cytokins and chemokines will lead to corneal ulcer. The molecular mechanism of Lipoxin A4 (LXA4) on corneal collagen degradation in three dimensions was investigated. METHODS Rabbit corneal fibroblasts were harvested and suspended in serum-free MEM. Type I collagen, DMEM, collagen reconstitution buffer and corneal fibroblast suspension were mixed on ice. The resultant mixture solidified in an incubator, after which test reagents and plasminogen was overlaid and the cultures were returned to the incubator. The supernatants from collagen gel incubations were collected and the amount of hydroxyproline in the hydrolysate was measured. Immunoblot analysis of MMP-1, -3 and TMMP-1,-2 was performed. MMP-2,-9 was detected by the method of Gelatin zymography. Cytotoxicity assay was measured. RESULTS LXA4 inhibited corneal collagen degradation in a dose and time manner. LXA4 inhibited the IL-1β induced increases in the pro-MMP-1, -2, -3, -9 and active MMP-1, -2, -3, -9 in a concentration dependent manner. LXA4 could also inhibit the IL-1β induced increases in TIMP-1, -2. CONCLUSION As a potent anti-inflammation reagent, LXA4 can inhibit corneal collagen degradation induced by IL-1β in corneal fibroblasts thus inhibiting corneal dissolving pathology process. PMID:23550231

  3. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  4. Molecular pathophysiology of cerebral edema.

    PubMed

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.

  5. [Pathopshysiological mechanisms in macular edema].

    PubMed

    Turlea, Cristian; Zolog, Ileana; Blăjan, Codruta; Roşca, C; Turlea, Magdalena; Munteanu, Mihnea; Boruga, Ovidiu

    2014-01-01

    The treatment of diabetic macular edema has known a fast development in the last 5 years where the transition from laser monotherapy to intravitreal pharmacotherapy is becoming standard practice. Intravitreal injections therapy is in a continuous development with promising positive results. The use of intratvitreal devices in the treatment of macular edema of vascular cause has become a viable alternative also in treating diabetic macular edema. Several clinical studies have revealed the superiority of intravitreal treatment versus laser monotherapy. This article is evaluating and reviewing present and future treatments used to combat diabetic macular edema. [corrected].

  6. Congenital Corneal Endothelial Dystrophies Resulting from Novel De Novo Mutations

    PubMed Central

    Cunnusamy, Khrishen; Bowman, Charles B.; Beebe, Walter; Gong, Xin; Hogan, R. Nick; Mootha, V. Vinod

    2015-01-01

    Purpose To describe two cases of congenital corneal endothelial edema resulting from novel de novo mutations. Methods Case A patient was a 15 months old Caucasian infant and Case B patient was a 3 year old Hispanic child presenting with bilateral cloudy corneas since birth. Clinicopathological findings are presented. DNA samples were screened for mutations in candidate genes by Sanger sequencing. Results Slit-lamp examination of Case A patient revealed stromal edema and haze. Histology of keratoplasty button showed stromal thickening with loss of endothelium and thin Descemet’s membrane. Sanger sequencing established the diagnosis of congenital hereditary endothelial dystrophy (CHED) by detection of a compound heterozygous mutation in SLC4A11. The proband displayed a novel de novo frameshift mutation in one SLC4A11 allele, p.(Pro817Argfs*32), in conjunction with a maternally inherited missense mutation in SLC4A11, p.(Arg869His). Case B patient similarly presented with stromal edema and stromal haze. Histopathological analysis revealed a spongy epithelium, focal discontinuities in Bowman’s layer, stromal thickening with areas of compacted posterior stroma, variable thickness of Descemet’s membrane, and regional multilayered endothelium. Sanger sequencing found a novel de novo nonsense mutation in the first exon of ZEB1, p.(Cys7*). Conclusions To our knowledge, we present the earliest clinical presentation of posterior polymorphous corneal dystrophy resulting from a de novo mutation in ZEB1. Additionally, we present a CHED case with a thin Descemet’s membrane with a novel compound heterozygous SLC4A11 mutation. In the absence of a family history or consanguinity, de novo mutations may result in congenital corneal endothelial dystrophies. PMID:26619383

  7. Role of Thrombospondin-1 in Repair of Penetrating Corneal Wounds

    PubMed Central

    Blanco-Mezquita, José Tomás; Hutcheon, Audrey E. K.; Zieske, James D.

    2013-01-01

    Purpose. Thrombospondin-1 (THBS1) has been suggested as a corneal wound-healing modulator. Therefore, we compromised the integrity of the cornea to elucidate the role of THBS1. Methods. Full-thickness penetrating corneal incisions (1.5 mm) were created in wild type (WT, 129S2/SvPas) and THBS1-deficient mice (Thbs1−/−, 129S2/SvPas-Thbs1tm1Hyn/Thbs1tm1Hyn), and allowed to heal up to 1 month, while being monitored by slit-lamp and intravital corneal examinations. Corneas also were examined by transmission electron microscopy and indirect immunofluorescence. To determine how THBS1 was involved in the healing process, we examined THBS1 and α-smooth muscle actin (SMA), a marker of myofibroblasts and myoepithelial cells. Results. In WT mice by 1 month, corneas appeared transparent with a thin scar, and endothelium and Descemet's membrane (DM) were restored. In contrast, Thbs1−/− corneas exhibited chronic edema and persistent opacity after wounding. The DM and endothelium were not restored, and wound contraction was impaired. The THBS1 was localized in epithelial cells at early stages of the healing process, and in the stroma and endothelial cells during later stages. The SMA-positive epithelial cells and myofibroblasts were observed within the healing area at day 4, peaked at day 14, and disappeared at day 30. The SMA-positive cells were reduced greatly in Thbs1−/− mice. Conclusions. In the current study, we demonstrated that corneal restoration is strikingly compromised by a penetrating incision in Thbs1−/− mice. The wound results in persistent edema and wound gaping. This appears to be the result of the lack of endothelial migration and DM restoration. In addition, myofibroblast formation is compromised, resulting in the lack of wound contraction. PMID:23963165

  8. THz and mm-Wave Sensing of Corneal Tissue Water Content: In Vivo Sensing and Imaging Results

    PubMed Central

    Taylor, Zachary D.; Garritano, James; Sung, Shijun; Bajwa, Neha; Bennett, David B.; Nowroozi, Bryan; Tewari, Priyamvada; Sayre, James W.; Hubschman, Jean-Pierre; Deng, Sophie X.; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    A pulsed terahertz (THz) imaging system and millimeter-wave reflectometer were used to acquire images and point measurements, respectively, of five rabbit cornea in vivo. These imaging results are the first ever produced of in vivo cornea. A modified version of a standard protocol using a gentle stream of air and a Mylar window was employed to slightly dehydrate healthy cornea. The sensor data and companion central corneal thickness (CCT) measurements were acquired every 10–15 min over the course of two hours using ultrasound pachymmetry.. Statistically significant positive correlations were established between CCT measurements and millimeter wave reflectivity. Local shifts in reflectivity contrast were observed in the THz imagery; however, the THz reflectivity did not display a significant correlation with thickness in the region probed by the 100 GHz and CCT measurements. This is explained in part by a thickness sensitivity at least 10× higher in the mm-wave than the THz systems. Stratified media and effective media modeling suggest that the protocol perturbed the thickness and not the corneal tissue water content (CTWC). To further explore possible etalon effects, an additional rabbit was euthanized and millimeter wave measurements were obtained during death induced edema. These observations represent the first time that the uncoupled sensing of CTWC and CCT have been achieved in vivo. PMID:26161292

  9. Nanomedicine Approaches for Corneal Diseases

    PubMed Central

    Chaurasia, Shyam S.; Lim, Rayne R.; Lakshminarayanan, Rajamani; Mohan, Rajiv R.

    2015-01-01

    Corneal diseases are the third leading cause of blindness globally. Topical nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, antibiotics and tissue transplantation are currently used to treat corneal pathological conditions. However, barrier properties of the ocular surface necessitate high concentration of the drugs applied in the eye repeatedly. This often results in poor efficacy and several side-effects. Nanoparticle-based molecular medicine seeks to overcome these limitations by enhancing the permeability and pharmacological properties of the drugs. The promise of nanomedicine approaches for treating corneal defects and restoring vision without side effects in preclinical animal studies has been demonstrated. Numerous polymeric, metallic and hybrid nanoparticles capable of transporting genes into desired corneal cells to intercept pathologic pathways and processes leading to blindness have been identified. This review provides an overview of corneal diseases, nanovector properties and their applications in drug-delivery and corneal disease management. PMID:25941990

  10. Computational Model for Corneal Transplantation

    NASA Astrophysics Data System (ADS)

    Cabrera, Delia

    2003-10-01

    We evaluated the refractive consequences of corneal transplants using a biomechanical model with homogeneous and inhomogeneous Young's modulus distributions within the cornea, taking into account ablation of some stromal tissue. A FEM model was used to simulate corneal transplants in diseased cornea. The diseased cornea was modeled as an axisymmetric structure taking into account a nonlinearly elastic, isotropic formulation. The model simulating the penetrating keratoplasty procedure gives more change in the postoperative corneal curvature when compared to the models simulating the anterior and posterior lamellar graft procedures. When a lenticle shaped tissue was ablated in the graft during the anterior and posterior keratoplasty, the models provided an additional correction of about -3.85 and -4.45 diopters, respectively. Despite the controversy around the corneal thinning disorders treatment with volume removal procedures, results indicate that significant changes in corneal refractive power could be introduced by a corneal transplantation combined with myopic laser ablation.

  11. Cryopreservation for corneal storage.

    PubMed

    Armitage, W John

    2009-01-01

    Currently, cryopreservation is the only method that offers the prospect of truly long-term storage of living cells and tissues. Despite some successful cryopreserved corneal grafts, freezing has been shown to damage the endothelium. When isolated cells are frozen, there are two principal mechanisms of damage: intracellular freezing, which occurs at high cooling rates, and solution effect injury at low cooling rates. When tissues are frozen, there are additional factors that appear to render cells more susceptible to intracellular freezing. Lower cooling rates appear to overcome this when freezing cornea. Vitrification is a way of achieving ice-free cryopreservation, but it also poses considerable challenges owing to the very high solute concentrations required to achieve vitrification at practicable cooling rates. Encouraging results have also been reported for cornea frozen using non-permeating cryoprotectants, which could lead to simpler methods of corneal cryopreservation.

  12. Keratomycosis in corneal sepsis.

    PubMed

    Sharma, S L; Bajaj, R; Sharma, R

    1987-01-01

    510 cases of corneal ulceration were studied for the presence of fungus as a causative organism. Fungus was found in 87 (17.5%) most common fungus found was aspergillus. Mucor was found in 16 cases (18.1%) which is higher than earlier reports. History of trauma specially with vegetative matter and the application of steriods for one purpose or the other is a factor of importance as noted in this study.

  13. Brain Edema After Ischaemic Stroke

    PubMed Central

    Dostovic, Zikrija; Dostovic, Ernestina; Smajlovic, Dzevdet; Ibrahimagic, Omer C.; Avdic, Leila

    2016-01-01

    Objectives: To determine the incidence of brain edema after ischaemic stroke and its impact on the outcome of patients in the acute phase of ischaemic stroke. Patients and Methods: We retrospectively analyzed 114 patients. Ischaemic stroke and brain edema are verified by computed tomography. The severity of stroke was determined by National Institutes of Health Stroke Scale. Laboratory findings were made during the first four days of hospitalization, and complications were verified by clinical examination and additional tests. Results: In 9 (7.9%) patients developed brain edema. Pneumonia was the most common complication (12.3%). Brain edema had a higher incidence in women, patients with hypertension and elevated serum creatinine values, and patients who are suffering from diabetes. There was no significant correlation between brain edema and survival in patients after acute ischaemic stroke. Patients with brain edema had a significantly higher degree of neurological deficit as at admission, and at discharge (p = 0.04, p = 0.004). Conclusion: The cerebral edema is common after acute ischaemic stroke and no effect on survival in the acute phase. The existence of brain edema in acute ischaemic stroke significantly influence the degree of neurological deficit. PMID:27994292

  14. Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246.7 macrophages and the λ-carrageenan-induced paw edema model.

    PubMed

    Huang, Guan-Jhong; Pan, Chun-Hsu; Liu, Fon-Chang; Wu, Tian-Shung; Wu, Chieh-Hsi

    2012-05-01

    The purpose of this study was to examine anti-inflammatory effect of ethanolic extract of Antrodia salmonea (EAS) in the lipopolysaccharide (LPS)-stimulated RAW246.7 macrophages and the carrageenan (Carr)-induced edema paw model, and to clarify its possible molecular mechanisms. Inhibitory effects of EAS were examined on cells proliferation, nitric oxide (NO) production, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, and activity of antioxidant enzymes. Our data demonstrated that EAS inhibited cell growth, NO production, and expression of iNOS and COX-2 proteins in LPS-stimulated RAW246.7 cells. EAS can also significantly reduce paw edema, content of NO, TNF-α and malondialdehyde (MDA), expression of iNOS and COX-2 proteins, and neutrophil infiltration within the tissues stimulated by Carr. The anti-inflammatory mechanisms of EAS might be related to the decrease of inflammatory cytokine and increase of antioxidant enzymes activities, which would result in reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses.

  15. Chronic oral or intraarticular administration of docosahexaenoic acid reduces nociception and knee edema and improves functional outcomes in a mouse model of Complete Freund’s Adjuvant–induced knee arthritis

    PubMed Central

    2014-01-01

    Introduction Clinical and preclinical studies have shown that supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs) reduce joint destruction and inflammation present in rheumatoid arthritis (RA). However, the effects of individual ω-3 PUFAs on chronic arthritic pain have not been evaluated to date. Thus, our aim in this study was to examine whether purified docosahexaenoic acid (DHA, an ω-3 PUFA) reduces spontaneous pain-related behavior and knee edema and improves functional outcomes in a mouse model of knee arthritis. Methods Unilateral arthritis was induced by multiple injections of Complete Freund’s Adjuvant (CFA) into the right knee joints of male ICR adult mice. Mice that received CFA injections were then chronically treated from day 15 until day 25 post–initial CFA injection with oral DHA (10, 30 and 100 mg/kg daily) or intraarticular DHA (25 and 50 μg/joint twice weekly). Spontaneous flinching of the injected extremity (considered as spontaneous pain-related behavior), vertical rearing and horizontal exploratory activity (considered as functional outcomes) and knee edema were assessed. To determine whether an endogenous opioid mechanism was involved in the therapeutic effect of DHA, naloxone (NLX, an opioid receptor antagonist, 3 mg/kg subcutaneously) was administered in arthritic mice chronically treated with DHA (30 mg/kg by mouth) at day 25 post–CFA injection. Results The intraarticular CFA injections resulted in increasing spontaneous flinching and knee edema of the ipsilateral extremity as well as worsening functional outcomes as time progressed. Chronic administration of DHA, given either orally or intraarticularly, significantly improved horizontal exploratory activity and reduced flinching behavior and knee edema in a dose-dependent manner. Administration of NLX did not reverse the antinociceptive effect of DHA. Conclusions To the best of our knowledge, this report is the first to demonstrate DHA’s antinociceptive and

  16. Effects of hypoxia-inducible factor-1α and matrix metalloproteinase-9 on alveolar-capillary barrier disruption and lung edema in rat models of severe acute pancreatitis-associated lung injury.

    PubMed

    Qi, Bing; Chen, Hai-Long; Shang, Dong; Dong, Ying; Zhang, Gui-Xin; Yu, Lei

    2014-09-01

    The aim of this study was to investigate the effects of hypoxia-inducible factor-1α (HIF-1α) and matrix metalloproteinase-9 (MMP-9) on alveolar-capillary barrier disruption and lung edema in rat models of severe acute pancreatitis-associated lung injury (PALI). A total of 40 male Sprague-Dawley rats were randomly divided into a sham surgery group (n=10) and three PALI groups, in which acute pancreatitis was induced by the retrograde infusion of 5% sodium taurocholate (1 ml/kg). The PALI groups were as follows: i) Untreated PALI group (n=10); ii) 2-methoxyestradiol (2ME2) group (5 mg/kg body mass; n=10); and iii) 2ME2 group (15 mg/kg body mass; n=10). In the two 2ME2 groups, the HIF-1α inhibitor 2ME2 was administered intraperitoneally 1 h after the induction of AP. The severity of the pancreatitis was evaluated by the serum amylase levels and pathology. The severity of the lung injury was evaluated by the wet/dry ratio, blood gas analysis and pathology. The alveolar-capillary barrier disruption was assessed by Evans blue dye extravasation. The protein and mRNA expression levels of HIF-1α and MMP-9 were studied using enzyme-linked immunosorbent assays (ELISAs), western blot analysis and reverse transcription-polymerase chain reaction. The active tumor necrosis factor-α levels were measured using an ELISA. The HIF-1α inhibitor 2ME2 attenuated the severity of the pancreatitis and PALI, while the lung edema and alveolar-capillary barrier disruption were significantly ameliorated compared with those in the untreated PALI group. Administration of the higher dose of 2ME2 significantly suppressed the protein expression of MMP-9 in the lung tissues. The results indicate that HIF-1α has a major function in alveolar-capillary barrier disruption and lung edema in PALI via a molecular pathway cascade involving MMP-9. Inhibition of HIF-1α by 2ME2 attenuates alveolar-capillary barrier disruption and lung edema. Pharmacological blockade of this pathway in patients with PALI

  17. Comparison of Cytotoxic Effects on Rabbit Corneal Endothelium between Preservative-free and Preservative-containing Dorzolamide/timolol

    PubMed Central

    Kwon, Junki; Heo, Jeong Hwa; Kim, Hyo Myung

    2015-01-01

    Purpose To evaluate and compare the toxic effects of eyedrops containing a fixed combination of 2.0% dorzolamide and 0.5% maleate timolol with or without preservatives on rabbit corneal endothelium. Methods This study was performed with 22 eyes of New Zealand white rabbits. Dorzolamide/timolol eyedrops with preservative (Cosopt group) or without preservative (Cosopt-S group) were diluted with a balanced salt solution at a 1 : 1 ratio. We injected 0.1 mL of diluted Cosopt into the anterior chamber of left eyes and an equal volume of diluted Cosopt-S into the anterior chamber of right eyes. Corneal thickness, corneal haze, and conjunctival injection were measured before and 24 hours after treatment. Endothelial damage was compared between both eyes by vital staining (alizarin red/trypan blue staining), live/dead cell assay, TUNEL assay, and scanning electron microscopy. Results Corneal endothelial damage was severe in the Cosopt group. Cosopt-treated eyes exhibited remarkable corneal edema and prominent apoptosis of endothelial cells. In addition, the live/dead cell assay revealed many dead cells in the endothelium, and scanning electron microscopy analysis showed that corneal endothelial cells exhibited a partial loss of microvilli on the surface as well as extensive destruction of intercellular junctions. However, in the Cosopt-S group, corneal edema was mild and the damage to the corneal endothelium was minimal. Conclusions The main cause of corneal endothelial toxicity was due to the preservative in the dorzolamide/timolol fixed combination eyedrops, and not the active ingredient. Thus, it appears to be safer to use preservative-free eyedrops during the early postoperative period. PMID:26457041

  18. Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue.

    PubMed

    Calhoun, William R; Ilev, Ilko K

    2015-05-01

    Clinical therapy incorporating femtosecond laser (FSL) devices is a quickly growing field in modern biomedical technology due to their precision and ability to generate therapeutic effects with substantially less laser pulse energy. FSLs have the potential to produce nonlinear optical effects such as harmonic generation (HG), especially in tissues with significant nonlinear susceptibilities such as the cornea. HG in corneal tissue has been demonstrated in nonlinear harmonic microscopy using low-power FSLs. Furthermore, the wavelength ranges of harmonic spectral emissions generated in corneal tissues are known to be phototoxic above certain intensities. We have investigated how the critical FSL parameters pulse energy, pulse repetition rate, and numerical aperture influence both second (SHG) and third harmonic generation (THG) in corneal tissue. Experimental results demonstrated corresponding increases in HG intensity with increasing repetition rate and numerical aperture. HG duration decreased with increasing repetition rate and pulse energy. The data also demonstrated a significant difference in HG between FSL parameters representing the two most common classes of FSL therapeutic devices.

  19. Effect of glycemic control on corneal nerves and peripheral neuropathy in streptozotocin-induced diabetic C57Bl/6J mice.

    PubMed

    Yorek, Matthew S; Obrosov, Alexander; Shevalye, Hanna; Lupachyk, Sergey; Harper, Matthew M; Kardon, Randy H; Yorek, Mark A

    2014-09-01

    We sought to determine the impact that duration of hyperglycemia and control has on corneal nerve fiber density in relation to standard diabetic neuropathy endpoints. Control and streptozotocin-diabetic C57Bl/6J mice were analyzed after 4, 8, 12, and 20 weeks. For the 20-week time point, five groups of mice were compared: control, untreated diabetic, and diabetic treated with insulin designated as having either poor glycemic control, good glycemic control, or poor glycemic control switched to good glycemic control. Hyperglycemia was regulated by use of insulin-releasing pellets. Loss of corneal nerves in the sub-epithelial nerve plexus or corneal epithelium progressed slowly in diabetic mice requiring 20 weeks to reach statistical significance. In comparison, slowing of motor and sensory nerve conduction velocity developed rapidly with significant difference compared with control mice observed after 4 and 8 weeks of hyperglycemia, respectively. In diabetic mice with good glycemic control, average blood glucose levels over the 20-week experimental period were lowered from 589 ± 2 to 251 ± 9 mg/dl. All diabetic neuropathy endpoints examined were improved in diabetic mice with good glycemic control compared with untreated diabetic mice. However, good control of blood glucose was not totally sufficient in preventing diabetic neuropathy.

  20. Repeated 6-Hz Corneal Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral Amygdala and Induces Seizure Generalization to the Hippocampus

    PubMed Central

    Giordano, Carmela; Vinet, Jonathan; Curia, Giulia; Biagini, Giuseppe

    2015-01-01

    Exposure to repetitive seizures is known to promote convulsions which depend on specific patterns of network activity. We aimed at evaluating the changes in seizure phenotype and neuronal network activation caused by a modified 6-Hz corneal stimulation model of psychomotor seizures. Mice received up to 4 sessions of 6-Hz corneal stimulation with fixed current amplitude of 32 mA and inter-stimulation interval of 72 h. Video-electroencephalography showed that evoked seizures were characterized by a motor component and a non-motor component. Seizures always appeared in frontal cortex, but only at the fourth stimulation they involved the hippocampus, suggesting the establishment of an epileptogenic process. Duration of seizure non-motor component progressively decreased after the second session, whereas convulsive seizures remained unchanged. In addition, a more severe seizure phenotype, consisting of tonic-clonic generalized convulsions, was predominant after the second session. Immunohistochemistry and double immunofluorescence experiments revealed a significant increase in neuronal activity occurring in the lateral amygdala after the fourth session, most likely due to activity of principal cells. These findings indicate a predominant role of amygdala in promoting progressively more severe convulsions as well as the late recruitment of the hippocampus in the seizure spread. We propose that the repeated 6-Hz corneal stimulation model may be used to investigate some mechanisms of epileptogenesis and to test putative antiepileptogenic drugs. PMID:26555229

  1. Repeated 6-Hz Corneal Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral Amygdala and Induces Seizure Generalization to the Hippocampus.

    PubMed

    Giordano, Carmela; Vinet, Jonathan; Curia, Giulia; Biagini, Giuseppe

    2015-01-01

    Exposure to repetitive seizures is known to promote convulsions which depend on specific patterns of network activity. We aimed at evaluating the changes in seizure phenotype and neuronal network activation caused by a modified 6-Hz corneal stimulation model of psychomotor seizures. Mice received up to 4 sessions of 6-Hz corneal stimulation with fixed current amplitude of 32 mA and inter-stimulation interval of 72 h. Video-electroencephalography showed that evoked seizures were characterized by a motor component and a non-motor component. Seizures always appeared in frontal cortex, but only at the fourth stimulation they involved the hippocampus, suggesting the establishment of an epileptogenic process. Duration of seizure non-motor component progressively decreased after the second session, whereas convulsive seizures remained unchanged. In addition, a more severe seizure phenotype, consisting of tonic-clonic generalized convulsions, was predominant after the second session. Immunohistochemistry and double immunofluorescence experiments revealed a significant increase in neuronal activity occurring in the lateral amygdala after the fourth session, most likely due to activity of principal cells. These findings indicate a predominant role of amygdala in promoting progressively more severe convulsions as well as the late recruitment of the hippocampus in the seizure spread. We propose that the repeated 6-Hz corneal stimulation model may be used to investigate some mechanisms of epileptogenesis and to test putative antiepileptogenic drugs.

  2. Rho-associated protein kinase inhibitor, Y-27632, significantly enhances cell adhesion and induces a delay in G1 to S phase transition in rabbit corneal endothelial cells.

    PubMed

    Diao, Yu-Mei; Hong, Jing

    2015-08-01

    Human corneal endothelial cells are a non-proliferative cell type. As a result of the increase in corneal endothelium disease, increasing numbers of studies have been conducted in order to promote corneal endothelial cell proliferation. The aim of the present study was to investigate the proliferative effects of Rho-associated protein kinase inhibitor, Y-27632, on rabbit corneal endothelial cells (rCECs). Y-27632 (1, 10 or 30 μM) was added at two different time points to two groups of rCECs. The first group received Y-27632 when rCECs were initially plated, and the second following 72 h of cell growth. Cell morphology and cell adhesion ratios were subsequently observed using light microscopy. A cell counting kit was used to measure the number of viable cells that adhered to culture plates. Cell cycle transitions and levels of Annexin V-positive apoptotic cells were detected using flow cytometry. Cells treated with 1 μM Y-27632 and 10 μM Y-27632 retained their cell shape. At a concentration of 30 μM Y-27632, the cell shape became irregular. Cell adhesion ratios, in 1 μM Y-27632 (36.84%), 10 μM Y-27632 (84.21%) and 30 μM Y-27632 (84.21%) were higher than the adhesion ratio in the control group (P<0.01). The optical densities of rCECs treated with 10 μM or 30 μM Y-27632 following 72 h of cell growth was less than that of the control cells (P<0.01), but higher than that of cells which received Y-27632 at the time of plating (P<0.01). Flow cytometry results also demonstrated that there was a delay in G1 to S phase cell cycle progression in rCECs following administration of 10 μM Y-27632 (P<0.01). Cell apoptosis was inhibited when 10 μM Y-27632 was added, at the time of cell plating, as well as when added following 72 h of cell growth (P<0.01). At a concentration of 10 μM Y-27632, there was an improvement in cell adhesion and an inhibition of the cell cycle in rabbit corneal endothelial cells. In conclusion, Y-27632 has different effects on rCECs when

  3. Critical Care Management of Cerebral Edema in Brain Tumors.

    PubMed

    Esquenazi, Yoshua; Lo, Victor P; Lee, Kiwon

    2017-01-01

    Cerebral edema associated with brain tumors is extremely common and can occur in both primary and metastatic tumors. The edema surrounding brain tumors results from leakage of plasma across the vessel wall into the parenchyma secondary to disruption of the blood-brain barrier. The clinical signs of brain tumor edema depend on the location of the tumor as well as the extent of the edema, which often exceeds the mass effect induced by the tumor itself. Uncontrolled cerebral edema may result in increased intracranial pressure and acute herniation syndromes that can result in permanent neurological dysfunction and potentially fatal herniation. Treatment strategies for elevated intracranial pressure consist of general measures, medical interventions, and surgery. Alhough the definitive treatment for the edema may ultimately be surgical resection of the tumor, the impact of the critical care management cannot be underestimated and thus patients must be vigilantly monitored in the intensive care unit. In this review, we discuss the pathology, pathophysiology, and clinical features of patients presenting with cerebral edema. Imaging findings and treatment modalities used in the intensive care unit are also discussed.

  4. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis

    PubMed Central

    Connor, Alicia L.; Kelley, Philip M.; Tempero, Richard M.

    2015-01-01

    Post natal inflammatory lymphangiogenesis presumably requires precise regulatory processes to properly assemble proliferating lymphatic endothelial cells (LECs). The specific mechanisms that regulate the assembly of LECs during new lymphatic vessel synthesis are unclear. Dynamic endothelial shuffling and rearrangement has been proposed as a mechanism of blood vessel growth. We developed genetic lineage tracing strategies using an inductive transgenic technology to track the fate of entire tandem dimer tomato positive (tdT) lymphatic vessels or small, in some cases clonal, populations of LECs. We coupled this platform with a suture induced mouse model of corneal lymphangiogenesis and used different analytic microscopy techniques including serial live imaging to study the spatial properties of proliferating tdT+ LEC progenies. LEC precursors and their progeny expanded from the corneal limbal lymphatic vessel and were assembled contiguously to comprise a subunit within a new lymphatic vessel. VE-cadherin blockade induced morphologic abnormalities in newly synthesized lymphatic vessels, but did not disrupt the tdT+ lymphatic endothelial lineage assembly. Analysis of this static and dynamic data based largely on direct in vivo observations supports a model of lymphatic endothelial lineage assemblage during corneal inflammatory lymphangiogenesis. PMID:26658452

  5. Inhibition of NUCKS Facilitates Corneal Recovery Following Alkali Burn

    PubMed Central

    Poon, Ming-Wai; Jiang, Dan; Qin, Peng; Zhang, Yuelin; Qiu, Beiying; Chanda, Sumit; Tergaonkar, Vinay; Li, Qing; Wong, Ian Y.; Yu, Zhendong; Tse, Hung-Fat; Wong, David S. H.; Lian, Qizhou

    2017-01-01

    Corneal wound healing involves a complex cascade of cytokine-controlled cellular events, including inflammatory and angiogenesis responses that are regulated by transcriptional chromatin remodeling. Nuclear Ubiquitous Casein and cyclin-dependent Kinase Substrate (NUCKS) is a key chromatin modifier and transcriptional regulator of metabolic signaling. In this study, we investigated the role of NUCKS in corneal wound healing by comparing its effects on corneal alkali burn in NUCKS knockout (NKO) and NUCKS wild-type (NWT) mice. Our data showed that following alkali-injury, inhibition of NUCKS (NKO) accelerated ocular resurfacing and suppressed neovascularization; the cytokine profile of alkali burned corneas in NKO mice showed suppressed expression of inflammation cytokines (IL1A & IL1B); upregulated expression of antiangiogenic factor (Pigment Epithelium-derived Factor; PEDF); and downregulated expression of angiogenic factor (Vascular Endothelial Growth Factor, VEGF); in vitro, following LPS-induced NFκB activation, NKO corneal cells showed reduced expression of IL6, IP10 and TNFα. In vitro, corneal epithelial cells showed reduced NF-κb activation on silencing of NUCKS and corresponding NFκB-mediated cytokine expression was reduced. Here, we illustrate that inhibition of NUCKS played a role in cytokine modulation and facilitated corneal recovery. This reveals a potential new effective strategy for ocular burn treatment. PMID:28106169

  6. The evolution of scuba divers pulmonary edema.

    PubMed

    Edmonds, Carl

    2016-01-01

    The evolution of scuba divers pulmonary edema is described. When discovered in 1981, it was believed to be a cold-induced response in a submerged, otherwise healthy, scuba diver. The clinical features are described and discussed, as are the demographics. An alleged prevalence of 1.1% was complicated by problematic statistics and an apparent increase in reported cases. Recurrences both while diving and swimming or snorkeling were common. More recent case reports and surveys are described, identifying predisposing factors and associations, including cardiac pathology. Stress cardiomyopathies, reversible myocardial disorder or Takotsubo cardiomyopathy, may complicate the presentation, especially in older females. Relevant cardiac investigations and autopsy findings are reviewed. Disease severity and potential lethality of scuba divers pulmonary edema became more apparent early this century, and these influence our current recommendations to survivors. First aid and treatment are also discussed.

  7. Influenza leaves a TRAIL to pulmonary edema.

    PubMed

    Brauer, Rena; Chen, Peter

    2016-04-01

    Influenza infection can cause acute respiratory distress syndrome (ARDS), leading to poor disease outcome with high mortality. One of the driving features in the pathogenesis of ARDS is the accumulation of fluid in the alveoli, which causes severe pulmonary edema and impaired oxygen uptake. In this issue of the JCI, Peteranderl and colleagues define a paracrine communication between macrophages and type II alveolar epithelial cells during influenza infection where IFNα induces macrophage secretion of TRAIL that causes endocytosis of Na,K-ATPase by the alveolar epithelium. This reduction of Na,K-ATPase expression decreases alveolar fluid clearance, which in turn leads to pulmonary edema. Inhibition of the TRAIL signaling pathway has been shown to improve lung injury after influenza infection, and future studies will be needed to determine if blocking this pathway is a viable option in the treatment of ARDS.

  8. Human excimer laser corneal surgery: preliminary report.

    PubMed Central

    L'Esperance, F A; Taylor, D M; Del Pero, R A; Roberts, A; Gigstad, J; Stokes, M T; Warner, J W; Telfair, W B; Martin, C A; Yoder, P R

    1988-01-01

    The first human trial utilizing the argon fluoride excimer laser at 193 nm to produce a superficial keratectomy in ten human eyes has been described with the histopathological evaluation of four eyes and the longer gross appearance of six eyes at intervals extending to 10 months post-excimer laser treatment. The process of laser superficial keratectomy has proved to be one of the promising areas of surgical intervention for reconstructive or refractive keratoplasty in the future. Intensive investigations need to be undertaken on the corneal wound healing process following laser ablation as well as the nature, and long-term stability of the corneal excisions or induced refractive corrections. It is essential that the optimal laser parameters be established for the various refractive corrections and other corneal surgical techniques, and that pathophysiologic and histopathologic changes that have been induced by the excimer laser-corneal tissue interaction in animals and humans be critically and extensively analyzed. Images FIGURE 1 FIGURE 19 A FIGURE 19 B FIGURE 20 A FIGURE 20 B FIGURE 21 A FIGURE 21 B FIGURE 22 A FIGURE 22 B FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 A FIGURE 29 B FIGURE 29 C FIGURE 29 D FIGURE 30 A FIGURE 30 B FIGURE 31 A FIGURE 31 B FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 A FIGURE 37 B FIGURE 37 C FIGURE 38 A FIGURE 38 B FIGURE 39 A FIGURE 39 B FIGURE 39 C FIGURE 40 A FIGURE 40 B PMID:2979049

  9. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an

  10. Efficacy of intravitreal dexamethasone implant for prostaglandin-induced refractory pseudophakic cystoid macular edema: case report and review of the literature

    PubMed Central

    Sacchi, Matteo; Villani, Edoardo; Gilardoni, Francesca; Nucci, Paolo

    2014-01-01

    Background Macular edema is a known complication even after uneventful cataract surgery. The chronic use of prostaglandin analogs is a risk factor for the development of pseudophakic cystoid macular edema (CME). Nonsteroidal anti-inflammatory drugs (NSAIDs) are considered first-line therapy but refractory postsurgical CME represents a therapeutic challenge, as there is not an evidence-based treatment. Objective To report the use of a single implant of intravitreal dexamethasone for tafluprost-associated pseudophakic CME refractory to NSAIDs and to sub-Tenon’s corticosteroid injections. Case report A 64-year-old female with ocular hypertension treated with tafluprost experienced decreased vision (visual acuity 20/60) and metamorphopsia 2 months after uneventful cataract extraction. Spectral domain optical coherence tomography (SD-OCT) revealed CME. After 1 month of topical and oral NSAIDs, CME was still evident on SD-OCT (visual acuity 20/50). Two sub-Tenon’s betamethasone injections were performed at a 2-week interval. As CME was still present, 2 months after the diagnosis of CME (visual acuity 20/40), the patient underwent a single dexamethasone intravitreal implant. One month later, macular appearance was normal, and visual acuity increased to 20/30. This result was maintained throughout the 6 months of follow-up. Conclusion In this report, a single implant of intravitreal dexamethasone successfully treated pseudophakic CME associated with the use of prostaglandin analogs unresponsive to NSAIDs and sub-Tenon’s betamethasone. The results of this report need to be corroborated by powered, prospective, randomized trials. The need for repeated treatments as well as the retreatment interval in patients requiring more than a single injection are issues still needing further investigations. PMID:25061272

  11. Diuretics in cardiac edema--1969.

    PubMed

    Shanoff, H M

    1969-10-04

    New and powerful diuretics have made it possible for the physician to control cardiac edema in most patients. At the same time their potentially dangerous side effects make it mandatory for the physician to be knowledgeable and judicious in their use. The appreciation of a few simplified facts about cardiac edema and renal reabsorption of sodium makes the clinical pharmacology of the diuretics much easier to understand, remember and apply.

  12. Corneal structure and transparency

    PubMed Central

    Meek, Keith M.; Knupp, Carlo

    2015-01-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  13. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats.

    PubMed

    Pan, Qing; Xu, Qingguo; Boylan, Nicholas J; Lamb, Nicholas W; Emmert, David G; Yang, Jeh-Chang; Tang, Li; Heflin, Tom; Alwadani, Saeed; Eberhart, Charles G; Stark, Walter J; Hanes, Justin

    2015-03-10

    Immunologic graft rejection is one of the main causes of short and long-term graft failure in corneal transplantation. Steroids are the most commonly used immunosuppressive agents for postoperative management and prevention of corneal graft rejection. However, steroids delivered in eye drops are rapidly cleared from the surface of the eye, so the required frequency of dosing for corneal graft rejection management can be as high as once every 2h. Additionally, these eye drops are often prescribed for daily use for 1 year or longer, which can result in poor patient compliance and steroid-related side effects. Here, we report a biodegradable nanoparticle system composed of Generally Regarded as Safe (GRAS) materials that can provide sustained release of corticosteroids to prevent corneal graft rejection following subconjunctival injection provided initially during transplant surgery. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing dexamethasone sodium phosphate (DSP) exhibited a size of 200 nm, 8 wt.% drug loading, and sustained drug release over 15 days in vitro under sink conditions. DSP-loaded nanoparticles provided sustained ocular drug levels for at least 7 days after subconjunctival administration in rats, and prevented corneal allograft rejection over the entire 9-week study when administered weekly. In contrast, control treatment groups that received weekly injections of either placebo nanoparticles, saline, or DSP in solution demonstrated corneal graft rejection accompanied by severe corneal edema, neovascularization and opacity that occurred in ≤ 4 weeks. Local controlled release of corticosteroids may reduce the rate of corneal graft rejection, perhaps especially in the days immediately following surgery when risk of rejection is highest and when typical steroid eye drop administration requirements are particularly onerous.

  14. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema.

    PubMed

    Desai, Ketaki V; Laine, Glen A; Stewart, Randolph H; Cox, Charles S; Quick, Christopher M; Allen, Steven J; Fischer, Uwe M

    2008-06-01

    Myocardial interstitial edema forms as a result of several disease states and clinical interventions. Acute myocardial interstitial edema is associated with compromised systolic and diastolic cardiac function and increased stiffness of the left ventricular chamber. Formation of chronic myocardial interstitial edema results in deposition of interstitial collagen, which causes interstitial fibrosis. To assess the effect of myocardial interstitial edema on the mechanical properties of the left ventricle and the myocardial interstitium, we induced acute and chronic interstitial edema in dogs. Acute myocardial edema was generated by coronary sinus pressure elevation, while chronic myocardial edema was generated by chronic pulmonary artery banding. The pressure-volume relationships of the left ventricular myocardial interstitium and left ventricular chamber for control animals were compared with acutely and chronically edematous animals. Collagen content of nonedematous and chronically edematous animals was also compared. Generating acute myocardial interstitial edema resulted in decreased left ventricular chamber compliance compared with nonedematous animals. With chronic edema, the primary form of collagen changed from type I to III. Left ventricular chamber compliance in animals made chronically edematous was significantly higher than nonedematous animals. The change in primary collagen type secondary to chronic left ventricular myocardial interstitial edema provides direct evidence for structural remodeling. The resulting functional adaptation allows the chronically edematous heart to maintain left ventricular chamber compliance when challenged with acute edema, thus preserving cardiac function over a wide range of interstitial fluid pressures.

  15. [Corneal metabolism with contact lenses in competitive sports].

    PubMed

    Schnell, D; Khaireddin, R

    2013-06-01

    The corneal metabolism during the use of contact lenses plays an important role for permanent corneal health, especially in competitive sports. Thus, it is important to understand the steps of corneal metabolism in general and during highly competitive sports activity in particular. The aim of this review is to summarize the current knowledge on physiological and biochemical effects of contact lens wear. Of the energy requirements of the cornea 75 % is supplied by aerobic processes; therefore, the eye needs the highest possible amount of oxygen and sufficient glucose which can be obtained from external air and to a lesser degree from within the anterior chamber. If the oxygen supply is too low this results in hypoxic edema. Fitting athletes with contact lenses must still be viewed with caution as the visual needs of athletes are usually much more demanding than those of the general public. An indiscriminate choice of lens design can adversely affect athletic performance and may even create a hazardous situation. An intelligent choice of contact lens can provide some subtle advantages that may improve athletic performance and provide the decisive margin for victory.

  16. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    PubMed Central

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Purpose. The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Methods. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. Results. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Conclusion. Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous

  17. Glycerol accumulation in edema formation following diffuse traumatic brain injury.

    PubMed

    Ali, Ahmer; Konakondla, Sanjay; Zwagerman, Nathan T; Peng, Changya; Schafer, Steven; Ding, Jamie Y; Dornbos, David; Sikharam, Chaitanya; Geng, Xiaokun; Guthikonda, Murali; Kreipke, Christian W; Rafols, José A; Ding, Yuchuan

    2012-06-01

    Traumatic brain injury (TBI) induces brain edema via water and glycerol transport channels, called aquaporins (AQPs). The passage of glycerol across brain cellular compartments has been shown during edema. Using a modified impact/head acceleration rodent model of diffuse TBI, we assessed the role of hypoxia inducible factor (HIF)-1alpha in regulating AQP9 expression and glycerol accumulation during the edema formation. Adult (400-425 g) male Sprague-Dawley rats received a closed head injury with a weight drop (450 g, 2-m height) and were allowed to survive up to 48 hours. Some rat groups were administered 2-methoxyestradiol (2ME2, a HIF-1alpha inhibitor) 30 minutes after injury and were euthanized at 4 and 24 hours after injury. Brain edema was measured directly by water content, and glycerol concentration was determined by the Cayman Glycerol Assay. HIF-1alpha and AQP9 protein levels were assessed by Western immunoblotting. This study demonstrated a significant (P<0·05) increase in brain water content at 4-48 hours following impact. Cerebral glycerol was significantly (P<0.05) up-regulated at as early as 1 hour and remained at high levels for up to 48 hours. Similarly, significant (P<0.05) increases in HIF-1alpha and AQP9 protein levels were found at 1 hour and up to 48 hours after injury. Compared to untreated but injured rats, inhibition of HIF-1alpha by 2ME2 significantly (P<0.05) reduced the TBI-induced AQP9 up-regulation. This reduction was temporally associated with significant (P<0.05) decreases in both edema and glycerol accumulation. The data suggested an associated induction of HIF-1alpha, AQP9, and extracellular glycerol accumulation in edema formation following diffuse TBI. The implication of HIF-1alpha and AQP9 underlying TBI-induced edema formation offers possibilities for novel TBI therapies.

  18. Vγ1+ γδT Cells Are Correlated With Increasing Expression of Eosinophil Cationic Protein and Metalloproteinase-7 in Chronic Rhinosinusitis With Nasal Polyps Inducing the Formation of Edema

    PubMed Central

    Yang, Luo-ying; Li, Xia; Li, Wen-ting; Huang, Jian-cong; Wang, Zhi-yuan; Huang, Zi-zhen

    2017-01-01

    Purpose We have found that expression of γδT cells is increased in pathological mucosa of chronic rhinosinusitis with nasal polyps (CRSwNP) compared with normal nasal mucosa. This increase is correlated with the infiltration of eosinophils in CRSwNP. Here, we investigated the expression of γδT cells, inflammation and tissue remodeling factors as well as their probable relationships in different types of chronic rhinosinusitis (CRS) in China. Methods A total of 76 surgical tissue samples that included 43 CRSwNP samples (15 eosinophilic and 28 non-eosinophilic), 17 CRS samples without nasal polyps (CRSsNP), and 16 controls were obtained. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the mRNA expression levels of Vγ1+ γδT cells, Vγ4+ γδT cells, eosinophil cationic protein (ECP), interleukin (IL)-8, transforming growth factor (TGF)-β2, metalloproteinase (MMP)-7, tissue inhibitor of metalloproteinase (TIMP)-4 and hypoxia-inducible factor (HIF)-1α. Enzyme linked immunosorbent assay (ELISA) was used to measure the protein level of ECP and MMP-7 in CRSwNP. The eosinophils were counted and the level of edema was analyzed with HE staining. Results The mRNA expression levels of the Vγ1 subset, ECP and MMP-7 were significantly increased in CRSwNP with histological characteristics of eosinophilic infiltration and edema. The expression of the Vγ1 gene in CRSwNP correlated positively with the expression of both ECP and MMP-7. No significant decreases in the mRNA expression levels of TGF-β2, TIMP-4 or HIF-1α were observed in the CRSwNP samples. The expression levels of Vγ1 gene, ECP and MMP-7 were significantly increased in eosinophilic CRSwNP compared to non-eosinophilic CRSwNP. Conclusions Our results suggest the associations between Vγ1+ γδT cells, ECP and MMP-7 in CRSwNP, indicating that Vγ1+ γδT cells can induce the eosinophilic inflammation, which has a further effect on the formation of edema. PMID:28102059

  19. Study of light scattering and transparency in human edematous corneas and application to corneal grafts

    NASA Astrophysics Data System (ADS)

    Marciano, Tal; Peyrot, Donald; Crotti, Caroline; Alahyane, Fatima; Kowalczuk, Laura; Plamann, Karsten

    2011-07-01

    The optical properties of the cornea have been a research subject of great interest for many years. Several early theories have been put forward to explain with more or less success the optical transparency of this tissue, but it was not until Maurice demonstrated in a very elegant way during the 50s that this optical transparency could be explained by the regular ultrastructure of the cornea. When becoming edematous, the cornea's ultrastructure is perturbed and the tissue becomes a strongly scattering medium. With the emergence of ophthalmologic surgery by ultrashort pulse lasers in recent years, a regain of interest in the subject of corneal transparency arose. However, relatively little and no recent data of transparency spectra measurements covering a large wavelength range is available in the literature. The purpose of this study is to provide quantitative values for light scattering and its relation to the degree of edema by measuring the spectrum of transmitted light through corneas presenting different degrees of edema. This paper focus on the comparison of laboratory measurements published earlier with a new simple method we propose We also for eye banks to quantitatively measure the degree of transparency of corneal grafts by measuring the modulation transfer function of a Siemens star viewed through a corneal graft. Indeed, there is no current method to determine the transparency of corneal graft but the subjectivity of the laboratory technician or the ophthalmic surgeon.

  20. Corneal blindness: a global perspective.

    PubMed Central

    Whitcher, J. P.; Srinivasan, M.; Upadhyay, M. P.

    2001-01-01

    Diseases affecting the cornea are a major cause of blindness worldwide, second only to cataract in overall importance. The epidemiology of corneal blindness is complicated and encompasses a wide variety of infectious and inflammatory eye diseses that cause corneal scarring, which ultimately leads to functional blindness. In addition, the prevalence of corneal disease varies from country to country and even from one population to another. While cataract is responsible for nearly 20 million of the 45 million blind people in the world, the next major cause is trachoma which blinds 4.9 million individuals, mainly as a result of corneal scarring and vascularization. Ocular trauma and corneal ulceration are significant causes of corneal blindness that are often underreported but may be responsible for 1.5-2.0 million new cases of monocular blindness every year. Causes of childhood blindness (about 1.5 million worldwide with 5 million visually disabled) include xerophthalmia (350,000 cases annually), ophthalmia neonatorum, and less frequently seen ocular diseases such as herpes simplex virus infections and vernal keratoconjunctivitis. Even though the control of onchocerciasis and leprosy are public health success stories, these diseases are still significant causes of blindness--affecting a quarter of a million individuals each. Traditional eye medicines have also been implicated as a major risk factor in the current epidemic of corneal ulceration in developing countries. Because of the difficulty of treating corneal blindness once it has occurred, public health prevention programmes are the most cost-effective means of decreasing the global burden of corneal blindness. PMID:11285665

  1. Aloe vera gel facilitates re-epithelialization of corneal alkali burn in normal and diabetic rats

    PubMed Central

    Atiba, Ayman; Wasfy, Tamer; Abdo, Walied; Ghoneim, Ahmed; Kamal, Tarek; Shukry, Mustafa

    2015-01-01

    Purpose To investigate the efficacy of topical applied aloe vera (AV) and to facilitate the repair of the standardized alkaline corneal ulcer in normal and diabetic rats. Materials and methods The corneal alkali-burn injury model was established unilaterally in Wistar rats by filter paper saturated with 0.01 M NaOH contacting the eyes for 45 seconds. Rats were divided into four groups: normal control (NC), normal AV (NAV), diabetic control (DC), and diabetic AV (DAV). NAV and DAV groups were treated with AV gel eye drops four times daily, and NC and DC groups were treated with normal saline for 3 days. Corneal epithelial wound closure and degree of edema were recorded using slit lamp and optical coherence tomography at 0, 24, 48, and 72 hours postwounding. Histological examination was conducted to evaluate the degree of inflammation and the healing effect. Results Corneal epithelial wound healing was better in the NAV group than in the NC group, and it was significantly higher in the DAV group than in the DC group (P<0.05). In comparison to the DC group, DAV treated with AV demonstrated a marked reduction in edema at 48 and 72 hours. Histologically, corneal re-epithelialization was complete and higher in DAV group than that in DC group; moreover, the inflammatory cells were increased in DC group than DAV group (P<0.05). Conclusion This study demonstrated the efficacy of AV for enhanced corneal re-epithelialization, as well as reduced inflammatory response after alkali burn in rats; therefore, it could be useful as a therapy for diabetic keratopathy. PMID:26604672

  2. Glycolic acid inhibits enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper snake venom: insights from docking and molecular modeling.

    PubMed

    Pereañez, Jaime Andrés; Patiño, Arley Camilo; Rey-Suarez, Paola; Núñez, Vitelbina; Henao Castañeda, Isabel Cristina; Rucavado, Alexandra

    2013-09-01

    Glycolic acid (GA) (2-Hydroxyethanoic acid) is widely used as chemical peeling agent in Dermatology and, more recently, as a therapeutic and cosmetic compound in the field of skin care and disease treatment. In this work we tested the inhibitory ability of glycolic acid on the enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper venom, which induces a variety of toxic actions. Glycolic acid inhibited the proteolytic activity of BaP1 on azocasein, with an IC₅₀ of 1.67 mM. The compound was also effective at inhibiting the hemorrhagic activity of BaP1 in skin and muscle in experiments involving preincubation of enzyme and inhibitor prior to injection. When BaP1 was injected i.m. and then, at the same site, different concentrations of glycolic acid were administered at either 0 or 5 min, 7 mM solutions of the inhibitor partially abrogated hemorrhagic activity when administered at 0 min. Moreover, glycolic acid inhibited, in a concentration-dependent manner, edema-forming activity of BaP1 in the footpad. In order to have insights on the mode of action of glycolic acid, UV-vis and intrinsic fluorescence studies were performed. Results of these assays suggest that glycolic acid interacts directly with BaP1 and chelates the Zn²⁺ ion at the active site. These findings were supported by molecular docking results, which suggested that glycolic acid forms hydrogen bonds with residues Glu143, Arg110 and Ala111 of the enzyme. Additionally, molecular modeling results suggest that the inhibitor chelates Zn²⁺, with a distance of 3.58 Å, and may occupy part of substrate binding cleft of BaP1. Our results suggest that glycolic acid is a candidate for the development of inhibitors to be used in snakebite envenomation.

  3. Management of advanced corneal ectasias.

    PubMed

    Maharana, Prafulla K; Dubey, Aditi; Jhanji, Vishal; Sharma, Namrata; Das, Sujata; Vajpayee, Rasik B

    2016-01-01

    Corneal ectasias include a group of disorders characterised by progressive thinning, bulging and distortion of the cornea. Keratoconus is the most common disease in this group. Other manifestations include pellucid marginal degeneration, Terrien's marginal degeneration, keratoglobus and ectasias following surgery. Advanced ectasias usually present with loss of vision due to high irregular astigmatism. Management of these disorders is difficult due to the peripheral location of ectasia and associated severe corneal thinning. Newer contact lenses such as scleral lenses are helpful in a selected group of patients. A majority of these cases requires surgical intervention. This review provides an update on the current treatment modalities available for management of advanced corneal ectasias.

  4. [CYSTEAMINE-INDUCED MODIFICATION OF CYTOGENETIC DAMAGES TO THE CORNEAL EPITHELIUM OF MICE EXPOSED TO CORPUSCULAR RADIATION WITH VARYING LINEAR TRANSFER ENERGIES].

    PubMed

    Vorozhtsova, S V; Bulynina, T M; Molokanov, A G; Ivanov, A A

    2015-01-01

    Cytogenetic damages to cells of the corneal epithelium were studied in mice exposed to protons (10, 25, 50 and 645 MeV), ions of boron, carbon and neon, and X-rays (180 keV) within the dose range from 25 to 750 cGy and injected with a radioprotector. Animals were subjected to a single exposure. The protective effect of β-mercaptoethylamine was tested in the experiment. The radioprotector (0.2 ml) was introduced intraperitoneally 30 minutes before exposure in 350 mI/kg dose. Control animals received the same amount of sodium chloride solution. The animals were sacrificed by cervical dislocation in 24 and 72 hrs. after exposure. It was shown that cysteamine effectively protects in vivo corneal epithelium cells of mice exposed to electromagnetic radiation or protons in a broad energy spectrum (10 to 645 MeV), and to a broad range of radiation doses (25 to 750 cGy), as judged from levels of aberrant mitosis and mitotic activity. The radioprotector exhibited the highest effectiveness in animals exposed to the doses of 50 to 300 cGy. These findings prove that cysteamine may potentially be used for pharmacological protection from protons. The radioprotector failed to prevent chromosomal aberrations after exposure to heavy charged particles of boron, carbon and neon, which implies the need to design radioprotectors against this type of corpuscular radiation specifically.

  5. Dosimetric Predictors of Laryngeal Edema

    SciTech Connect

    Sanguineti, Giuseppe . E-mail: gisangui@utmb.edu; Adapala, Prashanth; Endres, Eugene J. C; Brack, Collin; Fiorino, Claudio; Sormani, Maria Pia; Parker, Brent

    2007-07-01

    Purpose: To investigate dosimetric predictors of laryngeal edema after radiotherapy (RT). Methods and Materials: A total of 66 patients were selected who had squamous cell carcinoma of the head and neck with grossly uninvolved larynx at the time of RT, no prior major surgical operation except for neck dissection and tonsillectomy, treatment planning data available for analysis, and at least one fiberoptic examination of the larynx within 2 years from RT performed by a single observer. Both the biologically equivalent mean dose at 2 Gy per fraction and the cumulative biologic dose-volume histogram of the larynx were extracted for each patient. Laryngeal edema was prospectively scored after treatment. Time to endpoint, moderate or worse laryngeal edema (Radiation Therapy Oncology Group Grade 2+), was calculated with log rank test from the date of treatment end. Results: At a median follow-up of 17.1 months (range, 0.4- 50.0 months), the risk of Grade 2+ edema was 58.9% {+-} 7%. Mean dose to the larynx, V30, V40, V50, V60, and V70 were significantly correlated with Grade 2+ edema at univariate analysis. At multivariate analysis, mean laryngeal dose (continuum, hazard ratio, 1.11; 95% confidence interval, 1.06-1.15; p < 0.001), and positive neck stage at RT (N0-x vs. N +, hazard ratio, 3.66; 95% confidence interval, 1.40-9.58; p = 0.008) were the only independent predictors. Further stratification showed that, to minimize the risk of Grade 2+ edema, the mean dose to the larynx has to be kept {<=}43.5 Gy at 2 Gy per fraction. Conclusion: Laryngeal edema is strictly correlated with various dosimetric parameters; mean dose to the larynx should be kept {<=}43.5 Gy.

  6. Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation.

    PubMed

    Collins, Michael A; Neafsey, Edward J

    2012-01-01

    Chronic binge alcohol exposure in adult rat models causes neuronal degeneration in the cortex and hippocampus that is not reduced by excitotoxic receptor antagonists, but is prevented by antioxidants. Neuroinflammatory (glial-neuronal) signaling pathways are believed to underlie the oxidative stress and brain damage. Based on our experimental results as well as increased knowledge about the pro-neuroinflammatory potential of glial water channels, we propose that induction of aquaporin-4 can be a critical initiating factor in alcohol's neurotoxic effects, through the instigation of cellular edema-based neuroinflammatory cascades involving increased phospholipase A2 activities, polyunsaturated fatty acid release/membrane depletion, decreased prosurvival signaling, and oxidative stress. A testable scheme for this pathway is presented that incorporates recent findings in the alcohol-brain literature indicating a role for neuroimmune activation (upregulation of NF-kappaB, proinflammatory cytokines, and toll-like receptors). We present the argument that such neuroimmune activation could be associated with or even dependent on increased aquaporin-4 and glial swelling as well.

  7. Effect of Hypoxic Stress–Activated Polo-like Kinase 3 on Corneal Epithelial Wound Healing

    PubMed Central

    Lu, Jiawei; Wang, Ling; Dai, Wei

    2010-01-01

    Purpose. Hypoxia/reoxygenation conditions can generate oxidative stresses resulting in the suppression of cell proliferation and the delay of corneal epithelial wound healing. The purpose of this study was to investigate the cellular mechanism involving the role of the stress-responsive Polo-like kinase 3 (Plk3) in hypoxic stress–induced delay of corneal epithelial wound healing. Methods. Plk3 activities were determined by immunochemistry and immunocomplex kinase assay approaches. Corneal epithelial wound healing was evaluated by a whole-eye organ culture model and by scratch-induced wound closure assay. Corneal epithelial layer was removed by using a corneal rust-ring-remover in wild-type and Plk3−/− mice. Wound healing was analyzed using a confocal imaging system. Cell growth was measured by MTT assays. Results. The effect of hypoxic stress on early stages of corneal epithelial wound healing was compared with other oxidative stresses, including UV, CoCl2, and H2O2 treatments. Hypoxic stress–induced delay of corneal epithelial wound healing was further evaluated in human corneal epithelial cells and in the corneas of wild-type and Plk3 knockout (Plk3−/−) mice. Hypoxic stress–induced Plk3 activation resulted in growth attenuation and delay of wound healing. Further evidence demonstrated that the increase in Plk3 activity in constitutively active Plk3-expressed cells significantly enhanced stress-induced delay of wound healing. In contrast, hypoxic stress–induced delay of wound healing was markedly diminished in the corneas of Plk3 deficient Plk3−/− mice. Conclusions. These results provide for the first time important evidence that Plk3 plays a significant role in hypoxic stress–induced attenuation of cell growth and delay of corneal epithelial wound healing. PMID:20505196

  8. Cyanoacrylates and corneal abrasion.

    PubMed

    Dean, B S; Krenzelok, E P

    1989-01-01

    Cyanoacrylate-containing adhesives such as Super Glue, Krazy Glue, and a vast array of artificial nail adhesives are monomers which rapidly polymerize and bond in the presence of water or weak bases. Inadvertent contact with skin or tissue can also cause rapid bonding with resultant irritation. To assess the magnitude of problems associated with ocular contamination involving cyanoacrylates, a 12-month prospective study was conducted. 34 cases (21 adult and 13 pediatric) were collected. In all cases, contaminated eyes were thoroughly irrigated with tepid water for 15 minutes. 15 patients (44%) suffered a corneal abrasion, as determined by ophthalmic exam, necessitating treatment with antibiotics, cycloplegics, and patching. Individuals reporting complete resolution were irrigated with 20 minutes of exposure, while patients suffering mechanical injury delayed decontamination for a minimum of 15 minutes. In addition to immediate irrigation of eyes exposed to cyanoacrylates, we recommend an ophthalmologic evaluation to rule out the possibility of mechanical injury.

  9. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  10. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema

    PubMed Central

    Azizi, Fouad; Arredouani, Abdelilah; Mohammad, Ramzi M

    2015-01-01

    During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema. PMID:26333829

  11. Acute Hemorrhagic Edema of Infancy.

    PubMed

    Serra E Moura Garcia, C; Sokolova, A; Torre, M L; Amaro, C

    2016-01-01

    Acute Hemorrhagic Edema of Infancy is a small vessel leucocytoclastic vasculitis affecting young infants. It is characterized by large, target-like, macular to purpuric plaques predominantly affecting the face, ear lobes and extremities. Non-pitting edema of the distal extremities and low-grade fever may also be present. Extra-cutaneous involvement is very rare. Although the lesions have a dramatic onset in a twenty-four to forty-eight hour period, usually the child has a non-toxic appearance. In most cases there are no changes in laboratory parameters. The cutaneous biopsy reveals an inflammatory perivascular infiltrate. It is a benign and auto-limited disease, with complete resolution within two to three weeks leaving no sequelae in the majority of cases. No recurrences are described. We report a case of a 42-day old girl admitted at our hospital with Acute Hemorrhagic Edema of Infancy.

  12. In Vitro and In Vivo Anti-Allergic and Anti-Inflammatory Effects of eBV, a Newly Developed Derivative of Bee Venom, through Modulation of IRF3 Signaling Pathway in a Carrageenan-Induced Edema Model

    PubMed Central

    Chung, Hwa-Jin; Lee, Jinho; Shin, Joon-Shik; Kim, Me-riong; Koh, Wonil; Kim, Min-Jeong; Lee, Jae-woong; Kim, Eun Jee; Lee, In-Hee; Kim, Won Kyung; Lee, Yoon Jae; Lee, Sang Kook

    2016-01-01

    Background Bee venom (BV), a type of toxin extracted from honeybees (Apis mellifera), has been empirically and widely used to treat inflammatory diseases throughout Asia. Essential BV (eBV) was developed by removing phospholipase A2 (PLA2) and histamine to lower occurrence of allergic reaction. This study investigated the anti-allergic and anti-inflammatory activities of eBV in vitro and in vivo and its underlying mechanism of action. Methods The anti-inflammatory potential of eBV was assessed in vivo using a carrageenan-induced paw edema model. To further investigate the mechanism by which eBV exerts anti-allergic and anti-inflammatory effects, compound 48/80-stimulated RBL-2H3 cells and lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells were studied in vitro. Results Release of β-hexosaminidase and histamine was increased by eBV in a dose-dependent manner, but these levels were lower in eBV compared to original BV at the same concentration. In addition, eBV suppressed compound 48/80-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RBL-2H3 cells. eBV was also shown to suppress nitric oxide (NO) production by down-regulating mRNA expression and subsequent protein expression of inflammatory mediators in LPS-induced RAW 264.7 cells. Phosphorylation of activators and signal transducers of transcription 1/interferon regulatory factor 3 (STAT1/IRF3) was attenuated by eBV treatment. eBV significantly inhibited carrageenan-induced acute edema in vivo. Serum levels of prostaglandin E2 (PGE2), TNF-α, and IL-1β were also down-regulated by eBV. Conclusions These results demonstrate that eBV inhibits allergic and inflammatory response by reducing inflammatory mediator production via regulation of the STAT1/IRF3 signaling pathway, suggesting that eBV is a feasible candidate for regulation of allergic-inflammatory response in complementary and alternative medicine. PMID:27930719

  13. Effect of laser polarization and pulse energy on therapeutic, femtosecond laser-induced second harmonic generation in corneal tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Calhoun, William R.; Ilev, Ilko K.

    2016-03-01

    Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (e.g. cataract surgery), and keratoplasty (cornea transplant), now employ therapeutic infrared femtosecond lasers (FSLs) for their extreme precision, low energy delivered into tissue and advanced ablation characteristics. Although the widely exploited applications of FSLs in medical therapeutics offer significant benefits, FSLs must generate very high intensities in order to achieve optical breakdown, the predominant tissue ablative mechanism, which can also stimulate nonlinear optical effects such as harmonic generation, an effect that generates coherent visible and UV light in the case of second- (SHG) and third-harmonic generation (THG), respectively. In order to improve the understanding of HG in corneal tissue, the effect of FSL polarization and pulse energy were investigated. FSL stimulated SHG intensity in corneal tissue was measured as the laser polarization was rotated 360 degrees. Further, the pulse energy at the SHG wavelength were measured for single FSL pulses as the pulse energy at the fundamental wavelength was varied through a range of clinically relevant values. The results of this study revealed SHG intensity oscillated with laser polarization, having a variation greater than 20%. This relationship seems to due to the intrinsic anisotropy of collagen fibril hyperpolarizability, not related to tissue birefringence. SHG pulse energy measurements showed an increase in SHG pulse energy with increasing FSL pulse energy, however conversion efficiency decreased. This may be related to the dynamic relationship between optical breakdown leading to tissue destruction and HG evolution.

  14. Error induced by the estimation of the corneal power and the effective lens position with a rotationally asymmetric refractive multifocal intraocular lens

    PubMed Central

    Piñero, David P.; Camps, Vicente J.; Ramón, María L.; Mateo, Verónica; Pérez-Cambrodí, Rafael J.

    2015-01-01

    AIM To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). METHODS Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay I). RESULTS PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. CONCLUSION Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors. PMID:26085998

  15. Donor Age and Corneal Endothelial Cell Loss 5 Years after Successful Corneal Transplantation: Specular Microscopy Ancillary Study Results

    PubMed Central

    2010-01-01

    Objective To determine whether endothelial cell loss 5 years after successful corneal transplantation is related to the age of the donor. Design Multicenter, prospective, double-masked clinical trial. Participants Three hundred forty-seven subjects participating in the Cornea Donor Study who had not experienced graft failure 5 years after corneal transplantation for a moderate-risk condition (principally Fuchs’ dystrophy or pseudophakic corneal edema). Testing Specular microscopic images of donor corneas obtained before surgery and postoperatively at 6 months, 12 months, and then annually through 5 years were submitted to a central reading center to measure endothelial cell density (ECD). Main Outcome Measure Endothelial cell density at 5 years. Results At 5 years, there was a substantial decrease in ECD from baseline for all donor ages. Subjects who received a cornea from a donor 12 to 65 years old experienced a median cell loss of 69% in the study eye, resulting in a 5-year median ECD of 824 cells/mm2 (interquartile range, 613–1342), whereas subjects who received a cornea from a donor 66 to 75 years old experienced a cell loss of 75%, resulting in a median 5-year ECD of 654 cells/mm2 (interquartile range, 538–986) (P [adjusted for baseline ECD] = 0.04). Statistically, there was a weak negative association between ECD and donor age analyzed as a continuous variable (r [adjusted for baseline ECD] = −0.19; 95% confidence interval, −0.29 to −0.08). Conclusions Endothelial cell loss is substantial in the 5 years after corneal transplantation. There is a slight association between cell loss and donor age. This finding emphasizes the importance of longer-term follow-up of this cohort to determine if this relationship affects graft survival. PMID:18387408

  16. Differing Roles for TCF4 and COL8A2 in Central Corneal Thickness and Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Igo, Robert P.; Kopplin, Laura J.; Joseph, Peronne; Truitt, Barbara; Fondran, Jeremy; Bardenstein, David; Aldave, Anthony J.; Croasdale, Christopher R.; Price, Marianne O.; Rosenwasser, Miriam

    2012-01-01

    Fuchs endothelial corneal dystrophy (FECD) is the most common late-onset, vision-threatening corneal dystrophy in the United States, affecting about 4% of the population. Advanced FECD involves a thickening of the cornea from stromal edema and changes in Descemet membrane. To understand the relationship between FECD and central corneal thickness (CCT), we characterized common genetic variation in COL8A2 and TCF4, genes previously implicated in CCT and/or FECD. Other genes previously associated with FECD (PITX2, ZEB1, SLC4A11), and genes only known to affect CCT (COL5A1, FOXO1, AVGR8, ZNF469) were also interrogated. FECD probands, relatives and controls were recruited from 32 clinical sites; a total of 532 cases and 204 controls were genotyped and tested for association of FECD case/control status, a 7-step FECD severity scale and CCT, adjusting for age and sex. Association of FECD grade with TCF4 was highly significant (OR  = 6.01 at rs613872; p = 4.8×10−25), and remained significant when adjusted for changes in CCT (OR  = 4.84; p = 2.2×10−16). Association of CCT with TCF4 was also significant (p = 6.1×10−7), but was abolished with adjustment for FECD grade (p = 0.92). After adjusting for FECD grade, markers in other genes examined were modestly associated (p ∼ 0.001) with FECD and/or CCT. Thus, common variants in TCF4 appear to influence FECD directly, and CCT secondarily via FECD. Additionally, changes in corneal thickness due to the effect of other loci may modify disease severity, age-at-onset, or other biomechanical characteristics. PMID:23110055

  17. Sympathetic crashing acute pulmonary edema

    PubMed Central

    Agrawal, Naman; Kumar, Akshay; Aggarwal, Praveen; Jamshed, Nayer

    2016-01-01

    Sympathetic crashing acute pulmonary edema (SCAPE) is the extreme end of the spectrum of acute pulmonary edema. It is important to understand this disease as it is relatively common in the emergency department (ED) and has better outcomes when managed appropriately. The patients have an abrupt redistribution of fluid in the lungs, and when treated promptly and effectively, these patients will rapidly recover. Noninvasive ventilation and intravenous nitrates are the mainstay of treatment which should be started within minutes of the patient's arrival to the ED. Use of morphine and intravenous loop diuretics, although popular, has poor scientific evidence. PMID:28149030

  18. Sympathetic crashing acute pulmonary edema.

    PubMed

    Agrawal, Naman; Kumar, Akshay; Aggarwal, Praveen; Jamshed, Nayer

    2016-12-01

    Sympathetic crashing acute pulmonary edema (SCAPE) is the extreme end of the spectrum of acute pulmonary edema. It is important to understand this disease as it is relatively common in the emergency department (ED) and has better outcomes when managed appropriately. The patients have an abrupt redistribution of fluid in the lungs, and when treated promptly and effectively, these patients will rapidly recover. Noninvasive ventilation and intravenous nitrates are the mainstay of treatment which should be started within minutes of the patient's arrival to the ED. Use of morphine and intravenous loop diuretics, although popular, has poor scientific evidence.

  19. Effect of acetylcysteine on experimental corneal wounds in dogs.

    PubMed

    Aldavood, S J; Behyar, R; Sarchahi, A A; Rad, M A; Noroozian, I; Ghamsari, S M; Sadeghi-Hashjin, G

    2003-01-01

    The effects of 3, 10 and 20% concentrations of acetylcysteine on experimental corneal wound healing in dogs were evaluated. Experimental corneal wounds were induced surgically, up to the depth of the anterior third of the stroma, in both eyes of 18 dogs. One of the eyes was treated topically with 0.9% NaCl solution three times a day. The contralateral eye was treated topically with acetylcysteine (3, 10 and 20% concentrations) in each of 6 cases separately. Corneal wounds were measured by fluorescein staining every day. The mean time of healing in the 3% group was significantly different from control eyes (6.17 +/- 1.94 days). It was 7.19 +/- 0.75 days in the 20% group and 7 +/- 2 days in the 10% group. The last two groups were not significantly different from the controls (9.67 +/- 3.01 days and 8.17 +/- 3.60 days, respectively).

  20. Edema: a silent but important factor.

    PubMed

    Villeco, June P

    2012-01-01

    Edema is a normal response to injury. Even the smallest injury is associated with some inflammation, and initial edema is part of the normal inflammatory process. However, edema becomes a concern when it persists beyond the inflammatory phase. Once we have progressed into the rebuilding, or fibroplastic phase of healing, edema will delay healing and contribute to complications such as pain and stiffness. Early prevention and management to prevent this progression are therefore critical. This article discusses edema in relation to stages of healing and presents the research behind techniques available to the clinician to manage localized extracellular upper extremity edema in the patient with an intact lymphatic system.

  1. Evaluation of Factors Limiting Corneal Donation.

    PubMed

    Röck, Daniel; Wude, Johanna; Yoeruek, Efdal; Bartz-Schmidt, Karl Ulrich; Röck, Tobias

    2016-11-15

    BACKGROUND This study aimed to investigate factors limiting corneal donation at the University Hospital Tübingen. MATERIAL AND METHODS We retrospectively studied all hospital deaths from January 2012 to December 2015, considering each deceased patient as a potential corneal donor. During this period an ophthalmic resident managed corneal donor procurement on a full-time basis. Various factors limiting corneal donation were examined. RESULTS Among the 3412 deaths, 2937 (86.1%) displayed nonfulfillment of corneal donation. Consent for corneal donation was obtained in 475 cases (13.9%). The mean annual corneal donation rate was 13.9 donors per 100 deaths (range: 11.2-17.8). The leading causes of nonfulfillment of corneal donations were refusal to donate (49.8%, 1698 cases) and medical contraindications (23.6%, 805 cases). After next-of-kin interview of 2173 potential donors (109 potential donors were excluded because of logistical problems), willingness to participate in corneal donation was present in 475 cases (21.9%), whereas in 1698 cases (78.1%) corneal donation was refused. CONCLUSIONS Our study showed refusal to donate is the most important factor limiting corneal donation. It seems that increasing the knowledge of people about corneal donation through public education and media are necessary to address the corneal shortage.

  2. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium

    PubMed Central

    Navaratnam, Jesintha; Utheim, Tor P.; Rajasekhar, Vinagolu K.; Shahdadfar, Aboulghassem

    2015-01-01

    Corneal endothelium is a single layer of specialized cells that lines the posterior surface of cornea and maintains corneal hydration and corneal transparency essential for vision. Currently, transplantation is the only therapeutic option for diseases affecting the corneal endothelium. Transplantation of corneal endothelium, called endothelial keratoplasty, is widely used for corneal endothelial diseases. However, corneal transplantation is limited by global donor shortage. Therefore, there is a need to overcome the deficiency of sufficient donor corneal tissue. New approaches are being explored to engineer corneal tissues such that sufficient amount of corneal endothelium becomes available to offset the present shortage of functional cornea. Although human corneal endothelial cells have limited proliferative capacity in vivo, several laboratories have been successful in in vitro expansion of human corneal endothelial cells. Here we provide a comprehensive analysis of different substrates employed for in vitro cultivation of human corneal endothelial cells. Advances and emerging challenges with ex vivo cultured corneal endothelial layer for the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium in humans with functional corneal endothelium are also presented. PMID:26378588

  3. Therapeutic implications of melatonin in cerebral edema.

    PubMed

    Rathnasamy, Gurugirijha; Ling, Eng-Ang; Kaur, Charanjit

    2014-12-01

    Cerebral edema/brain edema refers to the accumulation of fluid in the brain and is one of the fatal conditions that require immediate medical attention. Cerebral edema develops as a consequence of cerebral trauma, cerebral infarction, hemorrhages, abscess, tumor, hypoxia, and other toxic or metabolic factors. Based on the causative factors cerebral edema is differentiated into cytotoxic cerebral edema, vasogenic cerebral edema, osmotic and interstitial cerebral edema. Treatment of cerebral edema depends on timely diagnosis and medical assistance. Pragmatic treatment strategies such as antihypertensive medications, nonsteroidal anti-inflammatory drugs, barbiturates, steroids, glutamate and N-methyl-D-aspartate receptor antagonists and trometamol are used in clinical practice. Although the above mentioned treatment approaches are being used, owing to the complexity of the mechanisms involved in cerebral edema, a single therapeutic strategy which could ameliorate cerebral edema is yet to be identified. However, recent experimental studies have suggested that melatonin, a neurohormone produced by the pineal gland, could be an effective alternative for treating cerebral edema. In animal models of stroke, melatonin was not only shown to reduce cerebral edema but also preserved the blood brain barrier. Melatonin's beneficial effects were attributed to its properties, such as being a potent anti-oxidant, and its ability to cross the blood brain barrier within minutes after its administration. This review summarizes the beneficial effects of melatonin when used for treating cerebral edema.

  4. Uveitic Macular Edema: Treatment Update

    PubMed Central

    Goldhardt, Raquel; Rosen, Bradley Simon

    2016-01-01

    The aim of this review is to summarize recent developments in the treatment of uveitic macular edema (ME). ME represent a major cause of visual loss in uveitis and adequate management is crucial for the maintenance of useful vision in patients with chronic uveitis. PMID:27347446

  5. Corneal plaque containing levofloxacin in a dog.

    PubMed

    Park, Young-Woo; Kang, Byung-Jae; Lim, Jae Hyun; Ahn, Jung-Mo; Lim, Hyun Sook

    2015-11-01

    A 13-year-old castrated male Yorkshire terrier developed a corneal ulcer 2 weeks after intracapsular lens extraction (ICLE) in the right eye. The corneal ulcer was treated with levofloxacin eye drops. A plaque with a white luster developed in the central cornea 2 weeks after treatment with levofloxacin eye drops. The corneal plaque was surgically removed under inhalant anesthesia. The corneal plaque displayed antimicrobial activity against Escherichia coli. Furthermore, levofloxacin content in the plaque was confirmed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS). The corneal ulcer completely resolved 2 weeks after the surgical removal of the corneal lesion and replacement of levofloxacin eye drops with tobramycin eye drops. Although the topical use of levofloxacin is unlikely to lead to corneal chemical deposits due to the high water solubility of the drug compared to other topical fluoroquinolones, this patient developed corneal plaque of the antibiotic drop.

  6. Corneal biomechanics: a review.

    PubMed

    Piñero, David P; Alcón, Natividad

    2015-03-01

    Biomechanics is often defined as 'mechanics applied to biology'. Due to the variety and complexity of the behaviour of biological structures and materials, biomechanics is better defined as the development, extension and application of mechanics for a better understanding of physiology and physiopathology and consequently for a better diagnosis and treatment of disease and injury. Different methods for the characterisation of corneal biomechanics are reviewed in detail, including those that are currently commercially available (Ocular Response Analyzer and CorVis ST). The clinical applicability of the parameters provided by these devices are discussed, especially in the fields of glaucoma, detection of ectatic disorders and orthokeratology. Likewise, other methods are also reviewed, such as Brillouin microscopy or dynamic optical coherence tomography and others with potential application to clinical practice but not validated for in vivo measurements, such as ultrasonic elastography. Advantages and disadvantages of all these techniques are described. Finally, the concept of biomechanical modelling is revised as well as the requirements for developing biomechanical models, with special emphasis on finite element modelling.

  7. Corneal cryopreservation with dextran.

    PubMed

    Halberstadt, M; Athmann, S; Hagenah, M

    2001-08-01

    Different methods of corneal cryopreservation have been introduced, those employing intracellular cryoprotectants such as Me2SO or glycerol being the most widely favored. We investigated the influence of several freeze-thaw trauma variables on the survival of porcine endothelial monolayers when employing the extracellular cryoprotective agent dextran. We first examined the effects of various dextran concentrations and then, having ascertained the optimal concentration, further investigated the influence of fetal calf serum (FCS) concentration in the cryopreservation medium, the cooling rate, the thawing temperature, and the length of the preincubation in the freezing medium prior to cryopreservation. The numerical densities of endothelial cells were determined at dissection in hypoosmotic balanced salt solution and after organ culture by staining with alizarin red S and trypan blue. Morphological evaluation was not performed directly after thawing but after a subsequent organ culture at 37 degrees C to detect latent cell damage after freeze-thaw trauma. Our data revealed that corneas cryopreserved in minimal essential medium containing 10% dextran but lacking FCS, preincubated for 3 h, frozen at a cooling rate of 1 degrees C/min, and thawed at 37 degrees C incurred the lowest cell losses (22.4%, SD +/- 3.8). We conclude that dextran is an effective cryoprotectant for freezing of porcine corneas. However, variations between species in the results of cryopreservation require further investigation of an in vivo animal model and studies with human corneas before its clinical use can be recommended.

  8. Topical Drug Formulations for Prolonged Corneal Anesthesia

    PubMed Central

    Wang, Liqiang; Shankarappa, Sahadev A.; Tong, Rong; Ciolino, Joseph B.; Tsui, Jonathan H.; Chiang, Homer H.; Kohane, Daniel S.

    2013-01-01

    Purpose Ocular local anesthetics (OLA’s) currently used in routine clinical practice for corneal anesthesia are short acting and their ability to delay corneal healing makes them unsuitable for long-term use. In this study, we examined the effect on the duration of corneal anesthesia of the site-1 sodium channel blocker tetrodotoxin (TTX), applied with either proparacaine or the chemical permeation enhancer OTAB. The effect of test solutions on corneal healing was also studied. Methods Solutions of TTX, proparacaine, and OTAB, singly or in combination were applied topically to the rat cornea. The blink response, an indirect measure of corneal sensitivity, was recorded using a Cochet-Bonnet esthesiometer, and the duration of corneal anesthesia calculated. The effect of test compounds on the rate of corneal epithelialization was studied in vivo following corneal debridement. Results Combination of TTX and proparacaine resulted in corneal anesthesia that was 8–10 times longer in duration than that from either drug administered alone, while OTAB did not prolong anesthesia. The rate of corneal healing was moderately delayed following co-administration of TTX and proparacaine. Conclusion Co-administration of TTX and proparacaine significantly prolonged corneal anesthesia but in view of delayed corneal re-epithelialization, caution is suggested in use of the combination. PMID:23615270

  9. Noncontact depth-resolved micro-scale corneal elastography

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Larin, Kirill V.

    2015-03-01

    Noninvasive high-resolution depth-resolved measurement of corneal biomechanics is of great clinical significance for improving the diagnosis and optimizing the treatment of various degenerated ocular diseases. Here, we report a micro-scale optical coherence elastography (OCE) method that enables noncontact assessment of the depthwise elasticity distribution in the cornea. The OCE system combines a focused air-puff device with phase-sensitive optical coherence tomography (OCT). Low-pressure short-duration air stream is used to load the cornea with the localized displacement at micron level. The phase-resolved OCT detection with nano-scale sensitivity probes the induced corneal deformation at various locations within a scanning line, providing the ultra-fast imaging of the corneal lamb wave propagation. With spectral analysis, the amplitude spectra and the phase spectra are available for the estimation of the frequency range of the lamb wave and the quantification of the wave propagation, respectively. Curved propagation paths following the top and bottom corneal boundaries are selected inside the cornea for measuring the phase velocity of the lamb wave at the major frequency components over the whole depths. Our pilot experiments on ex vivo rabbit eyes indicate the distinct stiffness of different layers in the cornea, including the epithelium, the anterior stroma, the posterior stroma, and the innermost region, which demonstrates the feasibility of this micro-scale OCE method for noncontact depth-resolved corneal elastography. Also, the quantification of the lamb wave dispersion in the cornea could lead to the measurement of the elastic modulus, suggesting the potential of this method for quantitative monitoring of the corneal biomechanics.

  10. Intestinal trefoil factor/TFF3 promotes re-epithelialization of corneal wounds.

    PubMed

    Paulsen, Friedrich P; Woon, Chee-Wai; Varoga, Deike; Jansen, Anne; Garreis, Fabian; Jäger, Kristin; Amm, Marita; Podolsky, Daniel K; Steven, Philipp; Barker, Nicholas P; Sel, Saadettin

    2008-05-09

    Disorders of wound healing characterized by impaired or delayed re-epithelialization are a serious medical problem. These conditions affect many tissues, are painful, and are difficult to treat. In this study using cornea as a model, we demonstrate the importance of trefoil factor 3 (TFF3, also known as intestinal trefoil factor) in re-epithelialization of wounds. In two different models of corneal wound healing, alkali- and laser-induced corneal wounding, we analyzed the wound healing process in in vivo as well as in combined in vivo/in vitro model in wild type (Tff3(+)(/)(+)) and Tff3-deficient (Tff3(-)(/)(-)) mice. Furthermore, we topically applied different concentrations of recombinant human TFF3 (rTFF3) peptide on the wounded cornea to determine the efficacy of rTFF3 on corneal wound healing. We found that Tff3 peptide is not expressed in intact corneal epithelium, but its expression is extensively up-regulated after epithelial injury. Re-epithelialization of corneal wounds in Tff3(-/-) mice is significantly prolonged in comparison to Tff3(+/+) mice. In addition, exogenous application of rTFF3 to the alkali-induced corneal wounds accelerates significantly in in vivo and in combined in vivo/in vitro model wound healing in Tff3(+/+) and Tff3(-/-) mice. These findings reveal a pivotal role for Tff3 in corneal wound healing mechanism and have broad implications for developing novel therapeutic strategies for treating nonhealing wounds.

  11. Obtaining corneal tissue for keratoplasty.

    PubMed

    Navarro Martínez-Cantullera, A; Calatayud Pinuaga, M

    2016-10-01

    Cornea transplant is the most common tissue transplant in the world. In Spain, tissue donation activities depend upon transplant coordinator activities and the well-known Spanish model for organ and tissue donation. Tissue donor detection system and tissue donor evaluation is performed mainly by transplant coordinators using the Spanish model on donation. The evaluation of a potential tissue donor from detection until recovery is based on an exhaustive review of the medical and social history, physical examination, family interview to determine will of the deceased, and a laboratory screening test. Corneal acceptance criteria for transplantation have a wider spectrum than other tissues, as donors with active malignancies and infections are accepted for kearatoplasty in most tissue banks. Corneal evaluation during the whole process is performed to ensure the safety of the donor and the recipient, as well as an effective transplant. Last step before processing, corneal recovery, must be performed under standard operating procedures and in a correct environment.

  12. Gene Therapy in Corneal Transplantation

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection. PMID:24138037

  13. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  14. Calculation of corneal temperature and shrikage during laser thermokeratoplasty (LTK)

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Borja, David; Parel, Jean-Marie A.

    2002-06-01

    Purpose. The purpose of this study was to develop a model to predict the corneal temperature and shrinkage during laser thermokeratoplasty and other clinical procedures relying on laser-induced thermal shrinkage of collagenous tissue. Methods. The corneal temperature was calculated by solving the bio-heat equation during laser irradiation using a semi-analytical technique. To calculate shrinkage, we assumed that corneal thermal shrinkage is a thermal denaturation process that follows an Arrhenius equation, and that shrinkage resulting from denaturation is proportional to the amount of thermal damage. We calculated shrinkage for pulsed Ho:YAG laser thermokeratoplasty using the clinical treatment algorithm. Results. The thermal model predicts that the corneal temperature reaches values that may be high enough to induce surface vaporization of the epithelium and thermal damage of the endothelium. Shrinkage calculations show that significant shrinkage is produced only after the third laser pulse. Shrinkage is produced mainly during laser pulses and stops shortly after the start of the cooling phase between laser pulses. Conclusions. These calculations demonstrate that thermal shrinkage can be predicted by combining an optical-thermal model and a thermal denaturation model. Accurate quantitative prediction of the shrinkage effect requires a better knowledge of the dynamics of shrinkage and of the optical thermal response of the cornea.

  15. Precision Measurement Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Yoder, Paul R.; Macri, Timothy F.; Telfair, William B.; Bennett, Peter S.; Martin, Clifford A.; Warner, John W.

    1989-05-01

    We describe a new electro-optical device being developed to provide precise measurements of the three-dimensional topography of the human cornea. This device, called a digital keratoscope, is intended primarily for use in preparing for and determining the effect of corneal surgery procedures such as laser refractive keratectomy, radial keratotomy or corneal transplant on the refractive power of the cornea. It also may serve as an aid in prescribing contact lenses. The basic design features of the hardware and of the associated computer software are discussed, the means for alignment and calibration are described and typical results are given.

  16. Pulmonary edema following scorpion envenomation: mechanisms, clinical manifestations, diagnosis and treatment.

    PubMed

    Bahloul, Mabrouk; Chaari, Anis; Dammak, Hassen; Samet, Mohamed; Chtara, Kamilia; Chelly, Hedi; Ben Hamida, Chokri; Kallel, Hatem; Bouaziz, Mounir

    2013-01-10

    Scorpion envenomation is common in tropical and subtropical regions. Cardio-respiratory manifestations, mainly cardiogenic shock and pulmonary edema, are the leading causes of death after scorpion envenomation. The mechanism of pulmonary edema remains unclear and contradictory conclusions were published. However, most publications confirm that pulmonary edema has been attributed to acute left ventricular failure. Cardiac failure can result from massive release of catecholamines, myocardial damage induced by the venom or myocardial ischemia. Factors usually associated with the diagnosis of pulmonary edema were young age, tachypnea, agitation, sweating, or the presence of high plasma protein concentrations. Treatment of scorpion envenomation has two components: antivenom administration and supportive care. The latter mainly targets hemodynamic impairment and cardiogenic pulmonary edema. In Latin America, and India, the use of Prazosin is recommended for treatment of pulmonary edema because pulmonary edema is associated with arterial hypertension. However, in North Africa, scorpion leads to cardiac failure with systolic dysfunction with normal vascular resistance and dobutamine was recommended. Dobutamine infusion should be used as soon as we have enough evidence suggesting the presence of pulmonary edema, since it has been demonstrated that scorpion envenomation can result in pulmonary edema secondary to acute left ventricular failure. In severe cases, mechanical ventilation can be required.

  17. High-Risk Corneal Graft Rejection in the Setting of Previous Corneal Herpes Simplex Virus (HSV)-1 Infection

    PubMed Central

    Kuffova, Lucia; Knickelbein, Jared E.; Yu, Tian; Medina, Carlos; Amescua, Guillermo; Rowe, Alexander M.; Hendricks, Robert L.; Forrester, John V.

    2016-01-01

    Purpose The “high-risk phenotype” of corneal graft recipients is considered to be related to preexisting vascularization such as that associated with herpes simplex virus-1 (HSV-1) keratitis (HSK). The purpose of this study was to investigate the immunologic mechanisms underlying accelerated corneal graft rejection using a mouse model of HSK. Methods Herpes simplex virus type 1 keratitis was induced in BALB/c mice. Syngeneic and allogeneic (C57BL/6 mice) corneal grafts were performed in mice with HSK at different times after infection. Some grafts were performed on HSV-infected CD4 T cell–deficient BALB/c mice. Clinical, histologic, immunologic, and virus detection studies were performed on samples of cornea, draining lymph node (LN), and trigeminal ganglion (TG) cells. Results Corneal grafts in mice with HSK rejected with higher frequency and more rapid tempo compared with grafts in uninfected mice. In corneas with HSK and vascularization at the time of grafting, both syngeneic and allogeneic corneal grafts failed with similar frequency and tempo. However, in the absence of preexisting inflammation and vascularization, syngeneic grafts were accepted when the grafts were performed at a late time point after HSV infection (42 days), whereas allografts were rejected at this time. In contrast, syngeneic grafts in nonvascularized HSV-infected recipients failed if they were performed within 10 days of HSV infection, an effect that was dependent on CD4 T cells, as demonstrated using CD4 deficient mice. Importantly, a variably sustained but strongly positive anti-HSV T-cell response was detected in allografted HSK recipients with a similar but lesser response in syngeneic hosts. Conclusions A previous HSV-1 corneal infection predisposes donor grafts to a high risk of failure by both innate and adaptive immune mechanisms in which an anti-HSV CD4 T-cell response plays a prominent role. PMID:27050878

  18. Acute anti-inflammatory activity of four saponins isolated from ivy: alpha-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F in carrageenan-induced rat paw edema.

    PubMed

    Gepdiremen, A; Mshvildadze, V; Süleyman, H; Elias, R

    2005-06-01

    The anti-inflammatory potential of alpha-hederin (monodesmoside) and hederasaponin-C from Hedera helix, and hederacolchisides-E and -F (bidesmosides) from H. colchica was investigated in carrageenan-induced acute paw edema in rats. Saponins and indomethacin were given orally in concentrations of 0.02 and 20mg/kg body wt. For the first phase of acute inflammation, indomethacin was found as the most potent drug. Alpha-hederin and hederasaponin-C were found ineffective, while hederacolchisides-E and -F showed slight anti-inflammatory effects on the first phase. For the second phase of acute inflammation, indomethacin and hederacolchiside-F were determined as very potent compounds. alpha-hederin was found ineffective for the second phase, either. Despite hederasaponin-C and -E were found effective in the second phase of inflammation, they were not found as effective as indomethacin and hederacolchiside-F. As a conclusion, hederasaponin-C, -E and -F, may exert their anti-inflammatory effects by blocking bradykinin or other inflammation mediators. The latter affect may occur via affecting prostaglandin pathways. Regarding the structure activity relationship, it is likely that sugars at C3 position and Rha7-Glcl-6Glc moiety at C28 position are essential for the acute anti-inflammatory effect.

  19. [Research and development for treating devastating corneal diseases].

    PubMed

    Kinoshita, Shigeru

    2010-03-01

    (TLR3) in inflammatory ocular surface reactions : We discovered that EP3, one of the prostanoid receptors expressed by ocular surface epithelium, has a dramatic inhibitory effect on ocular surface inflammation in a mouse model. Since EP3 is also expressed in human ocular surface epithelium, and since abnormality of its single nucleotide polymorphisms (SNPs) is involved in some ocular surface inflammatory diseases, we theorized that an allergic reaction may be negatively regulated by EP3 which is predominantly expressed by the ocular surface epithelium. Our findings show that this is similarly true for TLR3, which, conversely, upregulates ocular surface inflammation. 5. Functional regulation of the ocular surface epithelium: Our findings show that intracellular glutathione (GSH) content in the ocular surface epithelium regulates its intracellular redox state. For instance, the GSH content of the conjunctival epithelium decreases in dry eye diseases, yet recovers after the surgical insertion of a punctal plug. Since various amino acids are also heavily involved in the regulation of cellular functions, we investigated the profile of amino acids contained in tear fluids. Our results indicate that there is a marked difference in amino acid profiles between tear fluids and plasma. Furthermore, we found that several amino acids are up-regulated in inflamed eyes, probably due to an oxidative redox response. 6. The development of new therapeutic modalities for corneal edema: We are developing a new therapeutic modality of cultivated corneal endothelial transplantation using methods based on regenerative medicine. For instance, our findings show that cultivated corneal endothelial sheet transplantation in monkeys maintains corneal transparency for at least four years after transplantation. The supplementation of a Rho kinase (ROCK) inhibitor in the culture media produces an excellent result in culturing human corneal endothelium, maintaining a normal-looking endothelial cell

  20. Corneal Regeneration After Photorefractive Keratectomy: A Review☆

    PubMed Central

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2014-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. PMID:25444646

  1. History of corneal transplantation in Australia.

    PubMed

    Coster, Douglas J

    2015-04-01

    Corneal transplantation is a triumph of modern ophthalmology. The possibility of corneal transplantation was first raised in 1797 but a century passed before Zirm achieved the first successful penetrating graft in 1905. Gibson reported the first corneal graft in Australia from Brisbane in 1940 and English established the first eye bank there a few years later. Corneal transplantation evolved steadily over the twentieth century. In the second half of the century, developments in microsurgery, including surgical materials such as monofilament nylon and strong topical steroid drops, accounted for improvements in outcomes. In 2013, approximately 1500 corneal transplants were done in Australia. Eye banking has evolved to cope with the rising demands for donor corneas. Australian corneal surgeons collaborated to establish and support the Australian Corneal Graft Registry in 1985. It follows the outcomes of their surgery and has become an important international resource for surgeons seeking further improvement with the procedure.

  2. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    PubMed

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain.

  3. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activation in macrophages and TPA-induced ear edema in mice

    SciTech Connect

    Kim, Young Nam; Kim, Dae Won; Jo, Hyo Sang; Shin, Min Jea; Ahn, Eun Hee; Ryu, Eun Ji; Yong, Ji In; Cha, Hyun Ju; Kim, Sang Jin; Yeo, Hyeon Ji; Youn, Jong Kyu; Hwang, Jae Hyeok; Jeong, Ji-Heon; Kim, Duk-Soo; Cho, Sung-Woo; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-07-15

    Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB) and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases. - Highlights: • Transduced Tat-CBR1 reduces LPS-induced inflammatory mediators and cytokines. • Tat-CBR1 inhibits MAPK and NF-κB activation. • Tat-CBR1 ameliorates inflammation response in vitro and in vivo. • Tat-CBR1 may be useful as potential therapeutic agent for inflammation.

  4. Corneal endothelial glutathione after photodynamic change

    SciTech Connect

    Hull, D.S.; Riley, M.V.; Csukas, S.; Green, K.

    1982-03-01

    Rabbit corneal endothelial cells perfused with 5 X 10(-6)M rose bengal and exposed to incandescent light demonstrated no alteration of either total of or percent oxidized glutathione after 1 hr. Addition of 5400 U/ml catalase to the perfusing solution had no effect on total glutathione levels but caused a marked reduction in percent oxidized glutathione in corneas exposed to light as well as in those not exposed to light. Substitution of sucrose for glucose in the perfusing solution had no effect on total or percent oxidized glutathione. Perfusion of rabbit corneal endothelium with 0.5 mM chlorpromazine and exposure to ultraviolet (UV) light resulted in no change in total glutathione content. A marked reduction in percent oxidized glutathione occurred, however, in corneas perfused with 0.5 mM chlorpromazine both in the presence and absence of UV light. It is concluded that photodynamically induced swelling of corneas is not the result of a failure of the glutathione redox system.

  5. Corneal Stroma Microfibrils

    PubMed Central

    Hanlon, Samuel D.; Behzad, Ali R.; Sakai, Lynn Y.; Burns, Alan R.

    2015-01-01

    Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (∼10nm diameter). Immunogold evidence clearly

  6. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    PubMed

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  7. Acute hydrops in the corneal ectasias: associated factors and outcomes.

    PubMed Central

    Grewal, S; Laibson, P R; Cohen, E J; Rapuano, C J

    1999-01-01

    PURPOSE: To identify factors associated with the development of hydrops and affecting its clinical outcome. METHODS: Chart review of all patients with acute hydrops seen by a referral cornea service during a 2.5-year period between June 1996 and December 1998. RESULTS: Twenty-one patients (22 eyes) with acute hydrops were seen. Nineteen patients had keratoconus, 2 had pellucid marginal degeneration, and 1 had keratoglobus. Twenty-one of 22 (95%) eyes had seasonal allergies and 20 of 22 (91%) eyes had allergy-associated eye-rubbing behavior. Six of 22 (27%) had a diagnosis of Down's syndrome. Six patients were able to identify a traumatic inciting event: vigorous eye rubbing in 4 and traumatic contact lens insertion in 2. The affected area ranged from 7% to 100% of the corneal surface area and was related to disease duration and final visual acuity. Proximity of the area of edema to the corneal limbus ranged from 0 to 2.3 mm and was also related to prognosis. Three serious complications were observed: a leak, an infectious keratitis, and an infectious keratitis and coincidental neovascular glaucoma. Various medical therapies did not differ significantly in their effect on outcome, and ultimately 4 (18%) of 22 patients underwent penetrating keratoplasty. Best-corrected visual acuity was equal to or better than prehydrops visual acuity in 5 of the 6 patients in whom prehydrops visual acuity was known, without corneal transplantation. CONCLUSIONS: Allergy and eye-rubbing appear to be important risk factors in the development of hydrops. Visual results are acceptable in some patients without surgery. Close observation allows for the early detection and treatment of complications such as perforation and infection. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:10703124

  8. Immunological aspects of corneal transplant.

    PubMed

    Kumar, Vijay; Kumar, Asha

    2014-01-01

    Corneal transplant is the most common solid tissue transplant in humans. Advances in microsurgical techniques, eye banking and the use of corticosteroids have improved the success of corneal transplants. Over 65,000 corneal transplants are being performed worldwide annually. Most of these transplants are performed in developed countries. Cornea is considered an immune privileged site. Despite this, immune mediated graft rejection is the most single cause of cornea graft failure and is one of the major postoperative complications. Incidences from as low as 2% to as high as 50% have been reported depending upon the degree of vascularization. Rejection involves donor tissue recognition and various factors may influence this rejection. Major factors include the antigenic load of the donor tissue; other factors include death to enucleation time, methods and temperature of preserving the tissue. Host factors that may impact the graft include ocular surface diseases such as dry eye, chemical burns and autoimmune diseases such as mucous membrane pemphigoid. Following infection, surgery or trauma, cells of the innate immune system invade the cornea as a result of up-regulation of cytokines, cellular adhesion molecules and growth and angiogenic factors. These factors results in neoangiogenesis and lymphoangiogenesis, leading to immune activation and graft rejection. The various immunological mechanisms that may play a role in the corneal transplant are discussed.

  9. Corneal injury by wild taro.

    PubMed

    Tang, Emily W H; Law, Ricky W K; Lai, Jimmy S M

    2006-12-01

    We report a case of crystalline keratopathy caused by Alocasia macrorrhiza. The diagnosis was made based on the observation of needle-like crystals in the corneal stroma following injury to that eye. The condition resolved in 3 months with the disappearance of the crystals confirmed by follow-up confocal microscopy.

  10. Corneal microprojections in coleoid cephalopods.

    PubMed

    Talbot, Christopher; Jordan, Thomas M; Roberts, Nicholas W; Collin, Shaun P; Marshall, N Justin; Temple, Shelby E

    2012-12-01

    The cornea is the first optical element in the path of light entering the eye, playing a role in image formation and protection. Corneas of vertebrate simple camera-type eyes possess microprojections on the outer surface in the form of microridges, microvilli, and microplicae. Corneas of invertebrates, which have simple or compound eyes, or both, may be featureless or may possess microprojections in the form of nipples. It was previously unknown whether cephalopods (invertebrates with camera-type eyes like vertebrates) possess corneal microprojections and, if so, of what form. Using scanning electron microscopy, we examined corneas of a range of cephalopods and discovered nipple-like microprojections in all species. In some species, nipples were like those described on arthropod compound eyes, with a regular hexagonal arrangement and sizes ranging from 75 to 103 nm in diameter. In others, nipples were nodule shaped and irregularly distributed. Although terrestrial invertebrate nipples create an antireflective surface that may play a role in camouflage, no such optical function can be assigned to cephalopod nipples due to refractive index similarities of corneas and water. Their function may be to increase surface-area-to-volume ratio of corneal epithelial cells to increase nutrient, gas, and metabolite exchange, and/or stabilize the corneal mucous layer, as proposed for corneal microprojections of vertebrates.

  11. Matrix metalloproteinase 14 participates in corneal lymphangiogenesis through the VEGF-C/VEGFR-3 signaling pathway

    PubMed Central

    Du, Hai-Tao; Liu, Ping

    2016-01-01

    The aim of the present study was to investigate the roles of matrix metalloproteinase 14 (MMP-14) in corneal inflammatory lymphangiogenesis. The expression of MMP-14 in vivo was detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assays, under various corneal conditions. pCMV-MMP-14 or empty pCMV vectors were injected into mouse corneal stroma, 3 days after suture placement in a standard suture-induced inflammatory corneal neovascularization assay. The outgrowth of blood and lymphatic vessels and macrophage recruitment were analyzed using immunofluorescence. The expression levels of vascular endothelial growth factor (VEGF) subtypes were tested by RT-qPCR. MMP-14 expression was upregulated significantly following various corneal injuries. The results demonstrated, for the first time, that MMP-14 strongly promotes corneal lymphangiogenesis and macrophage infiltration during inflammation. Furthermore, expression levels of VEGF-C and VEGF receptor-3, but not other VEGF components, were significantly upregulated by the intrastromal delivery of MMP-14 during corneal lymphangiogenesis. In conclusion, this study indicates that MMP-14 is critically involved in the processes of lymphangiogenesis. Inhibition of MMP-14 may provide a viable treatment for transplant rejection and other lymphatic disorders. PMID:27698700

  12. Intrastromal Delivery of Bevacizumab Using Microneedles to Treat Corneal Neovascularization

    PubMed Central

    Kim, Yoo C.; Grossniklaus, Hans E.; Edelhauser, Henry F.; Prausnitz, Mark R.

    2014-01-01

    Purpose. This study tested the hypothesis that highly targeted intrastromal delivery of bevacizumab using coated microneedles allows dramatic dose sparing compared with subconjunctival and topical delivery for treatment of corneal neovascularization. Methods. Stainless steel microneedles 400 μm in length were coated with bevacizumab. A silk suture was placed in the cornea approximately 1 mm from the limbus to induce corneal neovascularization in the eyes of New Zealand white rabbits that were divided into different groups: untreated, microneedle delivery, topical eye drop, and subconjunctival injection of bevacizumab. All drug treatments were initiated 4 days after suture placement and area of neovascularization was measured daily by digital photography for 18 days. Results. Eyes treated once with 4.4 μg bevacizumab using microneedles reduced neovascularization compared with untreated eyes by 44% (day 18). Eyes treated once with 2500 μg bevacizumab using subconjunctival injection gave similar results to microneedle-treated eyes. Eyes treated once with 4.4 μg subconjunctival bevacizumab showed no significant effect compared with untreated eyes. Eyes treated with 52,500 μg bevacizumab by eye drops three times per day for 14 days reduced the neovascularization area compared with untreated eyes by 6% (day 18), which was significantly less effective than the single microneedle treatment. Visual exam and histological analysis showed no observable effect of microneedle treatment on corneal transparency or microanatomical structure. Conclusions. This study shows that microneedles can target drug delivery to corneal stroma in a minimally invasive way and demonstrates effective suppression of corneal neovascularization after suture-induced injury using a much lower dose compared with conventional methods. PMID:25212779

  13. Cytochrome P450 arachidonic acid metabolism in bovine corneal epithelium

    SciTech Connect

    Masferrer, J.; Schwartzman, M.L.; Abraham, N.G.; Dunn, M.W.; McGiff, J.C.

    1986-03-01

    The presence of the cytochrom P450 system and its involvement in the metabolism of AA was studied in the corneal epithelium. This tissue contains cytochrome P450 as assessed directly by measurement of the carbon monoxide reduced spectrum (specific activity of 161 pmol/10 mg protein) and indirectly by measuring the activity of aryl hydrocarbon hydroxylase (AHH) - a cytochrome P450-dependent enzyme (11-39 pmol 3-OH benzopyrene/mg protein/10 min). When corneal epithelial microsomes were incubated with /sup 14/C-arachidonic acid, 30-50% of the total radioactivity was converted to two peaks, I and II. Further separation using high performance liquid chromatography has shown that each peak contains two metabolites, A,B and C,D. Metabolite formation was dependent on the addition of NADPH (1 mM) and inhibited by carbon monoxide and SKF-525A (100 ..mu..M) suggesting a cytochrome P450-dependent mechanism. Compound C (5-10 ..mu..M) inhibited the activity of corneal epithelial Na-K-ATPase by 30-60%, being 100-fold more potent than ouabain. Compound D (10-100 ng) induced a dose dependent relaxation of the rat caudal artery. Compound D also inhibited corneal Na-K-ATPase activity but less potently than compound C. These compounds may be important to transport processes of ocular epithelia and participate in the control of the ocular circulation and aqueous humor dynamics.

  14. [Papillary edema in Muckle-Wells syndrome].

    PubMed

    Wirths, G; Grenzebach, U; Eter, N

    2015-09-01

    Papillary edema may occur isolated without functional impairment or secondary related to various syndromes, increased intracerebral pressure or associated with medicinal treatment. The Muckle-Wells syndrome is a rare disease, which among many other symptoms can lead to optic disc swelling and recurrent increase in intracerebral pressure. Besides familial cold-induced autoinflammatory syndrome (FCAS) and neonatal onset multisystem inflammatory disease (NOMID), the Muckle-Wells syndrome also belongs to the cryopyrin-associated periodic syndromes (CAPS). In most cases of CAP syndromes there is an underlying genetic disorder that leads to overproduction of interleukin-1β (IL-1β); therefore, typical symptoms include inflammation reactions, such as repeated skin rash, fatigue, fever, joint pain and conjunctivitis.

  15. Benzalkonium Chloride Suppresses Rabbit Corneal Endothelium Intercellular Gap Junction Communication

    PubMed Central

    Zhang, Zhenhao; Huang, Yue; Xie, Hui; Pan, Juxin; Liu, Fanfei; Li, Xuezhi; Chen, Wensheng; Hu, Jiaoyue; Liu, Zuguo

    2014-01-01

    Purpose Gap junction intercellular communication (GJIC) plays a critical role in the maintenance of corneal endothelium homeostasis. We determined if benzalkonium chloride (BAK) alters GJIC activity in the rabbit corneal endothelium since it is commonly used as a drug preservative in ocular eyedrop preparations even though it can have cytotoxic effects. Methods Thirty-six adult New Zealand albino rabbits were randomly divided into three groups. BAK at 0.01%, 0.05%, and 0.1% was applied twice daily to one eye of each of the rabbits in one of the three groups for seven days. The contralateral untreated eyes were used as controls. Corneal endothelial morphological features were observed by in vivo confocal microscopy (IVCM). Immunofluorescent staining resolved changes in gap junction integrity and localization. Western blot analysis and RT-PCR evaluated changes in levels of connexin43 (Cx43) and tight junction zonula occludens-1 (ZO-1) gene and protein expression, respectively. Cx43 and ZO-1 physical interaction was detected by immunoprecipitation (IP). Primary rabbit corneal endothelial cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing BAK for 24 hours. The scrape-loading dye transfer technique (SLDT) was used to assess GJIC activity. Results Topical administration of BAK (0.05%, 0.1%) dose dependently disrupted corneal endothelial cell morphology, altered Cx43 and ZO-1 distribution and reduced Cx43 expression. BAK also markedly induced increases in Cx43 phosphorylation status concomitant with decreases in the Cx43-ZO-1 protein-protein interaction. These changes were associated with marked declines in GJIC activity. Conclusions The dose dependent declines in rabbit corneal endothelial GJIC activity induced by BAK are associated with less Cx43-ZO-1 interaction possibly arising from increases in Cx43 phosphorylation and declines in its protein expression. These novel changes provide additional evidence that BAK containing eyedrop preparations

  16. Anthrax edema toxin impairs clearance in mice.

    PubMed

    Sastalla, Inka; Tang, Shixing; Crown, Devorah; Liu, Shihui; Eckhaus, Michael A; Hewlett, Indira K; Leppla, Stephen H; Moayeri, Mahtab

    2012-02-01

    The anthrax edema toxin (ET) of Bacillus anthracis is composed of the receptor-binding component protective antigen (PA) and of the adenylyl cyclase catalytic moiety, edema factor (EF). Uptake of ET into cells raises intracellular concentrations of the secondary messenger cyclic AMP, thereby impairing or activating host cell functions. We report here on a new consequence of ET action in vivo. We show that in mouse models of toxemia and infection, serum PA concentrations were significantly higher in the presence of enzymatically active EF. These higher concentrations were not caused by ET-induced inhibition of PA endocytosis; on the contrary, ET induced increased PA binding and uptake of the PA oligomer in vitro and in vivo through upregulation of the PA receptors TEM8 and CMG2 in both myeloid and nonmyeloid cells. ET effects on protein clearance from circulation appeared to be global and were not limited to PA. ET also impaired the clearance of ovalbumin, green fluorescent protein, and EF itself, as well as the small molecule biotin when these molecules were coinjected with the toxin. Effects on injected protein levels were not a result of general increase in protein concentrations due to fluid loss. Functional markers for liver and kidney were altered in response to ET. Concomitantly, ET caused phosphorylation and activation of the aquaporin-2 water channel present in the principal cells of the collecting ducts of the kidneys that are responsible for fluid homeostasis. Our data suggest that in vivo, ET alters circulatory protein and small molecule pharmacokinetics by an as-yet-undefined mechanism, thereby potentially allowing a prolonged circulation of anthrax virulence factors such as EF during infection.

  17. Lack of association between VAP-1/SSAO activity and corneal neovascularization in a rabbit model.

    PubMed

    Énzsöly, Anna; Markó, Katalin; Tábi, Tamás; Szökő, Éva; Zelkó, Romána; Tóth, Miklós; Petrash, J Mark; Mátyus, Péter; Németh, János

    2013-06-01

    The aim of this study is to determine the efficacy of a potent and specific vascular adhesive protein-1/semicarbazide-sensitive amine oxidase (VAP-1/SSAO) inhibitor, LJP 1207, as a potential antiangiogenic and anti-inflammatory agent in the therapy of corneal neovascularization. Corneal neovascularization was induced with intrastromal suturing in rabbits (n = 20). Topical treatment with VAP-1/SSAO inhibitor LJP 1207 (n = 5, 4 times a day), bevacizumab (n = 5, daily), their combination (n = 5) and vehicle only (n = 5, 4 times a day) were applied postoperatively for 2 weeks. The development and extent of corneal neovascularization were evaluated by digital image analysis. At the end of the observation period, the level of corneal and serum VAP-1/SSAO activity was measured fluorometrically and radiochemically. The corneal VAP-1/SSAO activity was significantly elevated in the suture-challenged vehicle-treated group (3,075 ± 1,009 pmol/mg/h) as compared to unoperated controls (464.2 ± 135 pmol/mg/h, p < 0.001). Treatment with LJP 1207 resulted in slower early phase neovascularization compared to vehicle-treated animals (not significant). At days 7-14, there was no significant difference in the extent of corneal neovascularization between inhibitor- and vehicle-treated corneas, even though inhibitor treatment caused a normalization of corneal VAP-1/SSAO activity (885 ± 452 pmol/mg/h). Our results demonstrate that the significant elevation of VAP-1/SSAO activity due to corneal injury can be prevented with VAP-1/SSAO inhibitor LJP 1207 treatment. However, normalization of VAP-1/SSAO activity in this model does not prevent the development of corneal neovascularization.

  18. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells

    PubMed Central

    Zhong, Jing; Deng, Yuqing; Tian, Bishan; Wang, Bowen; Sun, Yifang; Huang, Haixiang; Chen, Ling; Ling, Shiqi; Yuan, Jin

    2016-01-01

    Purpose. To evaluate the effects and mechanism of exogenous hyaluronate (HA) in promoting corneal wound healing. Methods. Human corneal epithelial cells (HCECs) were incubated with different concentrations of HA to evaluate their efficiency in promoting cell migration and their modulation of repair factors. After inducing hyperosmolar conditions, the cell morphologies, cell apoptosis, and expression levels of TNF-α and MMP-9 were detected to assess the protective role of HA. Corneal epithelium-injured rat models were established to test the therapeutic effects of 0.3% HA. Then, the wound healing rates, the RNA expression levels of inflammatory cytokines, and repair factors were examined. Results. HCECs in the 0.03% and 0.3% HA groups showed fewer morphological alterations and lower rates of cell apoptosis following preincubation with HA under hyperosmolar conditions, as well as the expression levels of MMP-9 and TNF-α. In the rat model, the areas of fluorescein staining in the corneas of 0.3% HA group were significantly smaller than the control group. The expression levels of IL-1β and MMP-9 were decreased, while CD44 and FN were increased in the 0.3% HA group. Conclusion. HA enhanced corneal epithelial cell wound healing by promoting cell migration, upregulating repair responses, and suppressing inflammatory responses. PMID:27190638

  19. Galectin-3 Inhibition by a Small-Molecule Inhibitor Reduces Both Pathological Corneal Neovascularization and Fibrosis

    PubMed Central

    Chen*, Wei-Sheng; Cao, Zhiyi; Leffler, Hakon; Nilsson, Ulf J.; Panjwani, Noorjahan

    2017-01-01

    Purpose Corneal neovascularization and scarring commonly lead to significant vision loss. This study was designed to determine whether a small-molecule inhibitor of galectin-3 can inhibit both corneal angiogenesis and fibrosis in experimental mouse models. Methods Animal models of silver nitrate cautery and alkaline burn were used to induce mouse corneal angiogenesis and fibrosis, respectively. Corneas were treated with the galectin-3 inhibitor, 33DFTG, or vehicle alone and were processed for whole-mount immunofluorescence staining and Western blot analysis to quantify the density of blood vessels and markers of fibrosis. In addition, human umbilical vein endothelial cells (HUVECs) and primary human corneal fibroblasts were used to analyze the role of galectin-3 in the process of angiogenesis and fibrosis in vitro. Results Robust angiogenesis was observed in silver nitrate–cauterized corneas on day 5 post injury, and markedly increased corneal opacification was demonstrated in alkaline burn–injured corneas on days 7 and 14 post injury. Treatment with the inhibitor substantially reduced corneal angiogenesis and opacification with a concomitant decrease in α-smooth muscle actin (α-SMA) expression and distribution. In vitro studies revealed that 33DFTG inhibited VEGF-A–induced HUVEC migration and sprouting without cytotoxic effects. The addition of exogenous galectin-3 to corneal fibroblasts in culture induced the expression of fibrosis-related proteins, including α-SMA and connective tissue growth factor. Conclusions Our data provide proof of concept that targeting galectin-3 by the novel, small-molecule inhibitor, 33DFTG, ameliorates pathological corneal angiogenesis as well as fibrosis. These findings suggest a potential new therapeutic strategy for treating ocular disorders related to pathological angiogenesis and fibrosis. PMID:28055102

  20. Infectious keratitis with corneal perforation associated with corneal hydrops and contact lens wear in keratoconus.

    PubMed Central

    Donnenfeld, E D; Schrier, A; Perry, H D; Ingraham, H J; Lasonde, R; Epstein, A; Farber, B

    1996-01-01

    BACKGROUND: Corneal perforation is an uncommon complication associated with keratoconus. The first cases of infectious keratitis and corneal perforation associated with corneal hydrops and contact lens wear are reported in two keratoconus patients. METHODS: A retrospective chart review and histopathological examination were carried out. RESULTS: Both patients progressed to corneal perforation and emergency penetrating keratoplasty. One patient cultured Fusarium and the second patient Serratia marcesens. Both patients wore contact lenses against medical advice. CONCLUSIONS: The tear in Descement's membrane, stromal oedema, and epithelial bedewing associated with corneal hydrops results in loss of the epithelial-endothelial barrier of the cornea, creating a conduit for infectious organisms through the cornea. Acute hydrops associated with epithelial keratitis, stromal swelling, and a Descement's membrane tear may be a significant risk factor for infectious keratitis and corneal perforation. Contact lenses should not be worn during an active corneal hydrops owing to the increased risk for severe infectious keratitis and corneal perforation. Images PMID:8695560

  1. [Therapeutic approach in persistent diabetic macular edema].

    PubMed

    Brănişteanu, Daniel; Moraru, Andreea

    2014-01-01

    Terminology of persistent diabetic macular edema has been initially reserved to cases unresponsive to conventional laser photocoagulation according to ETDRS criteria. While knowledge about pathophysiology of macular edema evolved and new drugs became available, the terminology of persistent diabetic macular edema expanded to include resistance to most current therapies. The purpose of this paper is to review medical and surgical options in the treatment of such difficult cases according to literature data and personal experience.

  2. Increased pulmonary vascular permeability as a cause of re-expansion edema in rabbits

    SciTech Connect

    Pavlin, D.J.; Nessly, M.L.; Cheney, F.W.

    1981-01-01

    In order to study the mechanism(s) underlying re-expansion edema, we measured the concentration of labeled albumin (RISA) in the extravascular, extracellular water (EVECW) of the lung as a measure of pulmonary vascular permeability. Re-expansion edema was first induced by rapid re-expansion of rabbit lungs that had been collapsed for 1 wk by pneumothorax. The RISA in EVECW was expressed as a fraction of its plasma concentration: (RISA)L/(RISA)PL. The volume of EVECW (ml/gm dry lung) was measured using a /sup 24/Na indicator. Results in re-expansion edema were compared with normal control lungs and with oleic acid edema as a model of permeability edema. In re-expanded lungs, EVECW (3.41 +/- SD 1.24 ml/g) and (RISA)L/(RISA)PL 0.84 +/- SD 0.15) were significantly increased when compared with normal control lungs (2.25 +/- 0.41 ml/g and 0.51 +/- 0.20, respectively). Results in oleic acid edema (5.66 +/- 2.23 ml/g and 0.84 +/- 0.23) were similar to re-expansion edema. This suggested that re-expansion edema is due to increased pulmonary vascular permeability caused by mechanical stresses applied to the lung during re-expansion.

  3. [Regeneration and fibrosis of corneal tissues].

    PubMed

    Simirskiĭ, V N

    2014-01-01

    In this review, the features of the regeneration of corneal tissue and its disorders leading to the development of fibrosis are considered. The data on the presence of stem (clonogenic) cell pool in the corneal tissues (epithelium, endothelium, stroma) are given; these cells can serve as a source for regeneration of the tissues at injury or various diseases. The main steps of regeneration of corneal tissues and their disorders that lead to outstripping proliferation of myofibroblasts and secretion of extracellular matrix in the wound area and eventually cause the formation of connective tissue scar and corneal opacity are considered. Particular attention is given to the successes of translational medicine in the treatment of corneal tissue fibrosis. The methods of cell therapy aimed at the restoration of stem cell pool of corneal tissues are the most promising. Gene therapy provides more opportunities; one of its main objectives is the suppression of the myofibroblast proliferation responsible for the development of fibrosis.

  4. Bilateral and unilateral mesodermal corneal metaplasia.

    PubMed Central

    Klauss, V; Riedel, K

    1983-01-01

    We report on 2 infants, one with a bilateral and the other with a unilateral corneal metaplasia. The first case with bilateral corneal metaplasia showed shortening of both upper and lower lids with formation of symblephara. By ultrasonography the right eye presented with microphthalmos, aphakia, and persistent hyaloid, whereas the inner parts of the left eye appeared to be normal. The question remains to be answered whether this is an abortive cryptophthalmos leading to bilateral corneal metaplasia or a primary corneal metaplasia inhibiting the lid growth. No suggestions concerning the aetiology are made. The second case presented with a unilateral corneal metaplasia, normal eye lids, aphakia, and microphthalmos. This aberration was probably caused by an amniotic band, as it is associated with malformation of the nose on the same side. In case 2 the dermoid was excised and a lamellar corneal graft performed. The histology is reported. Images PMID:6838805

  5. Corneal cross-linking in 9 horses with ulcerative keratitis

    PubMed Central

    2013-01-01

    Background Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Results Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4–26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. Conclusions CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species. PMID:23803176

  6. Progress in Drug Treatment of Cerebral Edema.

    PubMed

    Deng, Y Y; Shen, F C; Xie, D; Han, Q P; Fang, M; Chen, C B; Zeng, H K

    2016-01-01

    Cerebral edema causes intracranial hypertension (ICH) which leads to severe outcome of patients in the clinical setting. Effective anti-edema therapy may significantly decrease the mortality in a variety of neurological conditions. At present drug treatment is a cornerstone in the management of cerebral edema. Osmotherapy has been the mainstay of pharmacologic therapy. Mannitol and hypertonic saline (HS) are the most commonly used osmotic agents. The relative safety and efficacy of HS and mannitol in the treatment of cerebral edema and reduction of enhanced ICP have been demonstrated in the past decades. Apart from its osmotic force, HS exerts anti-edema effects partly through inhibition of Na(+)-K(+)-2Cl(-) Cotransporter-1 (NKCC1) and aquaporin 4 (AQP4) expression in astrocytes. Melatonin may also reduce brain edema and exert neuroprotective effect on several central nervous system diseases through inhibition of inflammatory response. The inhibitors of Na/H exchanger, NKCC and AQP4 may attenuate brain edema formation through inhibition of excessive transportation of ion and water from blood into the cerebral tissue. In this review we survey some of the most recent findings in the drug treatment of brain edema focusing on the use of osmotherapy, melatonin and inhibitors of ion cotransporters and water channels. A better understanding of the molecular mechanism of these agents would help to improve in the clinical management of patients with brain edema.

  7. LUNG EDEMA FOLLOWING BILATERAL VAGOTOMY

    PubMed Central

    Lorber, Victor

    1939-01-01

    1. Small animals (rat and guinea pig) vagotomized in the neck die within a period of hours, the lungs showing extensive congestion and edema. 2. Tracheotomy permits appreciably longer survival with minimal lung changes approximating those seen in the control animals. 3. Intrathoracic vagotomy (sparing the recurrent laryngeal nerve) on one side, and cervical vagotomy on the other, permits almost indefinite survival (guinea pig and rabbit), unless laryngeal paralysis from the unilateral denervation produces respiratory obstruction (rat, guinea pig, and rabbit). 4. Pulmonary edema following bilateral vagotomy probably results primarily from respiratory obstruction. It is suggested that circulatory failure may also be a factor of some importance. The rôle of vagotomy itself is considered in relationship to these two phenomena. 5. The reaction of smaller animals to bilateral vagotomy, with regard to lung changes, apparently differs in no way from that of the larger animals, but is less readily demonstrated because of the smaller diameters of the air passages. PMID:19870894

  8. Reexpansion pulmonary edema in children

    PubMed Central

    Rodrigues, Antonio Lucas L.; Lopes, Carlos Eduardo; Romaneli, Mariana Tresoldi das N.; Fraga, Andrea de Melo A.; Pereira, Ricardo Mendes; Tresoldi, Antonia Teresinha

    2013-01-01

    OBJECTIVE To present a case of a patient with clinical and radiological features of reexpansion pulmonary edema, a rare and potentially fatal disease. CASE DESCRIPTION An 11-year-old boy presenting fever, clinical signs and radiological features of large pleural effusion initially treated as a parapneumonic process. Due to clinical deterioration he underwent tube thoracostomy, with evacuation of 3,000 mL of fluid; he shortly presented acute respiratory insufficiency and needed mechanical ventilation. He had an atypical evolution (extubated twice with no satisfactory response). Computerized tomography findings matched those of reexpansion edema. He recovered satisfactorily after intensive care, and pleural tuberculosis was diagnosed afterwards. COMMENTS Despite its rareness in the pediatric population (only five case reports gathered), the knowledge of this pathology and its prevention is very important, due to high mortality rates. It is recommended, among other measures, slow evacuation of the pleural effusion, not removing more than 1,500 mL of fluid at once. PMID:24142327

  9. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  10. [Developments in corneal transplants: lamellar techniques emerging].

    PubMed

    Steijns, Daan; Bral, Nathalie; Tang, Mei Lie; van der Lelij, Allegonda

    2013-01-01

    Corneal transplants are the most frequently performed human transplant procedure. In the last decade, we have seen large developments in the field of corneal transplant surgery. Currently, several techniques are being used in the Netherlands, each with its own advantages and disadvantages and with distinct indications. In penetrating keratoplasty all layers of the cornea are replaced by a donor cornea. In so-called lamellar corneal transplantation only the affected layer of the cornea is replaced by donor tissue. The developments in corneal transplantation surgery have resulted in an improved prognosis in terms of vision and fewer complications.

  11. Corneal Toxicity Following Exposure to Asclepias Tuberosa

    PubMed Central

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; Gül, Cigdem Altuntas; Heegaard, Steffen

    2017-01-01

    Purpose: To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa. Methods: A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa. Clinical examination revealed a corneal stromal oedema with small epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine. Results: The corneal oedema had appeared after corneal exposure to the plant, Asclepias tuberosa, whose latex contains cardenolides that inhibit the Na+/ K+-ATPase in the corneal endothelium. The oedema resolved after 96 hours. After nine months the best corrected visual acuity was 20/20. Conclusion: Corneal toxicity has previously been reported for plants of the Asclepias family. This is a rare case describing severe corneal toxicity caused by exposure to latex from Asclepias tuberosa. Handling of plants of the Asclepias family should be kept as a differential diagnosis in cases of acute corneal toxicity.

  12. Central Corneal Thickness in Children

    PubMed Central

    2011-01-01

    Objective To report the central corneal thickness (CCT) in healthy white, African-American, and Hispanic children from birth to 17 years of age. Design Prospective observational multicenter study. Central corneal thickness was measured with a hand-held contact pachymeter. Results Two thousand seventy-nine children were included in the study, with ages ranging from day of birth to 17 years. Included were 807 white, 494 Hispanic, and 474 African-American individuals, in addition to Asian, unknown and mixed race individuals. African-American children had thinner corneas on average than that of both white (p< .001) and Hispanic children (p< .001) by approximately 20 micrometers. Thicker median CCT was observed with each successive year of age from age 1 to 11 years, with year-to-year differences steadily decreasing and reaching a plateau after age 11 at 573 micrometers in white and Hispanic children and 551 micrometers in African-American children. For every 100 micrometers of thicker CCT measured, the intraocular pressure was 1.5 mmHg higher on average (p< 0.001). For every diopter of increased myopic refractive error (p< 0.001) CCT was 1 micrometer thinner on average. Conclusions Median CCT increases with age from 1 to 11 years with the greatest increase present in the youngest age groups. African-American children on average have thinner central corneas than white and Hispanic children, while white and Hispanic children demonstrate similar central corneal thickness. PMID:21911662

  13. Overview of diabetic macular edema.

    PubMed

    Holekamp, Nancy M

    2016-07-01

    Diabetes mellitus (DM) is a rapidly growing epidemic in the United States, and it is expected to affect 592 million individuals within the next 20 years. Diabetic retinopathy (DR) and diabetic macular edema (DME) are the 2 most common ophthalmic complications of DM. DR is the leading cause of blindness among working-age adults around the world, and development of DR is tied to DM disease duration. With the only identifier of early markers of DR being a complete ophthalmic exam, early signs of the disease are asymptomatic. Yearly, or at least every other year, ophthalmic exams are recommended for all patients with DM; but often, individuals with DM have not undergone screening exams and do not have regular eye exams until vision loss has occurred. With spending estimates of $490 million to treat the vision complications of DM, it is clear that DR and DME impose a substantial burden for patients, caregivers, and healthcare systems.

  14. Macular edema: definition and basic concepts.

    PubMed

    Coscas, Gabriel; Cunha-Vaz, José; Soubrane, Gisèle

    2010-01-01

    Macular edema is the result of an accumulation of fluid in the retinal layers around the fovea. It contributes to vision loss by altering the functional cell relationship in the retina and promoting an inflammatory reparative response. Macular edema may be intracellular or extracellular. Intracellular accumulation of fluid, also called cytotoxic edema, is an alteration of the cellular ionic distribution. Extracellular accumulation of fluid, which is more frequent and clinically more relevant, is directly associated with an alteration of the blood-retinal barrier (BRB). The following parameters are relevant for clinical evaluation of macular edema: extent of the macular edema (i.e., the area that shows increased retinal thickness); distribution of the edema in the macular area (i.e., focal versus diffuse macular edema); central foveal involvement (central area 500 microm); fluorescein leakage (evidence of alteration of the BRB or 'open barrier') and intraretinal cysts; signs of ischemia (broken perifoveolar capillary arcade and/or areas of capillary closure); presence or absence of vitreous traction; increase in retinal thickness and cysts in the retina (inner or outer), and chronicity of the edema (i.e., time elapsed since initial diagnosis and response to therapy). It is essential to establish associations and correlations of all the different images obtained, regardless of whether the same or different modalities are used.

  15. Conservative management of acute scrotal edema.

    PubMed

    Benjamin, Karen D

    2014-01-01

    Scrotal edema is a prevalent issue. It is difficult to treat and has a myriad of causes. Historical treatments for scrotal edema have lacked efficacy. If treated before fibrosis occurs, surgery can be avoided. A method for conservative management is outlined.

  16. Corneal Donor Tissue Preparation for Endothelial Keratoplasty

    PubMed Central

    Woodward, Maria A.; Titus, Michael; Mavin, Kyle; Shtein, Roni M.

    2012-01-01

    Over the past ten years, corneal transplantation surgical techniques have undergone revolutionary changes1,2. Since its inception, traditional full thickness corneal transplantation has been the treatment to restore sight in those limited by corneal disease. Some disadvantages to this approach include a high degree of post-operative astigmatism, lack of predictable refractive outcome, and disturbance to the ocular surface. The development of Descemet's stripping endothelial keratoplasty (DSEK), transplanting only the posterior corneal stroma, Descemet's membrane, and endothelium, has dramatically changed treatment of corneal endothelial disease. DSEK is performed through a smaller incision; this technique avoids 'open sky' surgery with its risk of hemorrhage or expulsion, decreases the incidence of postoperative wound dehiscence, reduces unpredictable refractive outcomes, and may decrease the rate of transplant rejection3-6. Initially, cornea donor posterior lamellar dissection for DSEK was performed manually1 resulting in variable graft thickness and damage to the delicate corneal endothelial tissue during tissue processing. Automated lamellar dissection (Descemet's stripping automated endothelial keratoplasty, DSAEK) was developed to address these issues. Automated dissection utilizes the same technology as LASIK corneal flap creation with a mechanical microkeratome blade that helps to create uniform and thin tissue grafts for DSAEK surgery with minimal corneal endothelial cell loss in tissue processing. Eye banks have been providing full thickness corneas for surgical transplantation for many years. In 2006, eye banks began to develop methodologies for supplying precut corneal tissue for endothelial keratoplasty. With the input of corneal surgeons, eye banks have developed thorough protocols to safely and effectively prepare posterior lamellar tissue for DSAEK surgery. This can be performed preoperatively at the eye bank. Research shows no significant difference

  17. Cytotoxic edema: mechanisms of pathological cell swelling

    PubMed Central

    Liang, Danny; Bhatta, Sergei; Gerzanich, Volodymyr; Simard, J. Marc

    2009-01-01

    Cerebral edema is caused by a variety of pathological conditions that affect the brain. It is associated with two separate pathophysiological processes with distinct molecular and physiological antecedents: those related to cytotoxic (cellular) edema of neurons and astrocytes, and those related to transcapillary flux of Na+ and other ions, water, and serum macromolecules. In this review, the authors focus exclusively on the first of these two processes. Cytotoxic edema results from unchecked or uncompensated influx of cations, mainly Na+, through cation channels. The authors review the different cation channels that have been implicated in the formation of cytotoxic edema of astrocytes and neurons in different pathological states. A better understanding of these molecular mechanisms holds the promise of improved treatments of cerebral edema and of the secondary injury produced by this pathological process. PMID:17613233

  18. Point-of-Care Sonographic Findings in Acute Upper Airway Edema

    PubMed Central

    Schick, Michael; Grether-Jones, Kendra

    2016-01-01

    We describe a case where a patient presented with acute angiotensin-converting enzyme inhibitor (ACE-I) induced angioedema without signs or symptoms of upper airway edema beyond lip swelling. Point-of-care ultrasound (POCUS) was used as an initial diagnostic test and identified left-sided subglottic upper airway edema that was immediately confirmed with indirect fiberoptic laryngoscopy. ACE-I induced angioedema and the historical use of ultrasound in evaluation of the upper airway is briefly discussed. To our knowledge, POCUS has not been used to identify acute upper airway edema in the emergency setting. Further investigation is needed to determine if POCUS is a sensitive and specific-enough tool for the identification and evaluation of acute upper airway edema. PMID:27833699

  19. Decay accelerating factor is essential for successful corneal engraftment

    PubMed Central

    Esposito, Andrew; Suedekum, Brandon; Liu, Jinbo; An, Fengqi; Lass, Jonathan; Strainic, Michael G; Lin, Feng; Heeger, Peter; Medof, M. Edward

    2012-01-01

    In contrast to immune restrictions that pertain for solid organ transplants, the tolerogenic milieu of the eye permits successful corneal transplantation without systemic immunosuppression, even across a fully MHC disparate barrier. Here we show that recipient and donor expression of decay accelerating factor (DAF or CD55), a cell surface C3/C5 convertase regulator recently shown to modulate T cell responses, is essential to sustain successful corneal engraftment. Whereas wild type (WT) corneas transplanted into multiple minor histocompatibility antigen (mH), or HY disparate WT recipients were accepted, DAF’s absence on either the donor cornea or in the recipient bed induced rapid rejection. Donor or recipient DAF deficiency led to expansion of donor-reactive IFN-γ producing CD4+ and CD8+ T cells, as well as inhibition of antigen induced IL-10 and TGF-β, together demonstrating that DAF deficiency precludes immune tolerance. In addition to demonstrating a requisite role for DAF in conferring ocular immune privilege, these results raise the possibility that augmenting DAF levels on corneal endothelium and/or the recipient bed could have therapeutic value for transplants that clinically are at high risk for rejection. PMID:20055803

  20. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  1. Benzalkonium chloride accelerates the formation of the amyloid fibrils of corneal dystrophy-associated peptides.

    PubMed

    Kato, Yusuke; Yagi, Hisashi; Kaji, Yuichi; Oshika, Tetsuro; Goto, Yuji

    2013-08-30

    Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies.

  2. Benzalkonium Chloride Accelerates the Formation of the Amyloid Fibrils of Corneal Dystrophy-associated Peptides*

    PubMed Central

    Kato, Yusuke; Yagi, Hisashi; Kaji, Yuichi; Oshika, Tetsuro; Goto, Yuji

    2013-01-01

    Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies. PMID:23861389

  3. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing.

    PubMed

    Liu, Qiong; Smith, C Wayne; Zhang, Wanyu; Burns, Alan R; Li, Zhijie

    2012-08-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that have crucial cytotoxic and regulatory roles in adaptive immunity and inflammation. Herein, we consider a role for these cells in corneal wound healing. After a 2-mm central epithelial abrasion of the mouse cornea, a subset of classic NK cells migrated into the limbus and corneal stroma, peaking at 24 hours with an eightfold increase over baseline. Depletion of γδ T cells significantly reduced NK cell accumulation (>70%; P < 0.01); however, in neutrophil-depleted animals, NK cell influx was normal. Isolated spleen NK cells migrated to the wounded cornea, and this migration was reduced by greater than 60% (P < 0.01) by ex vivo antibody blocking of NK cell CXCR3 or CCR2. Antibody-induced depletion of NK cells significantly altered the inflammatory reaction to corneal wounding, as evidenced by a 114% increase (P < 0.01) in neutrophil influx at a time when acute inflammation is normally waning. Functional blocking of NKG2D, an activating receptor for NK cell cytotoxicity and cytokine secretion, did not inhibit NK cell immigration, but significantly increased neutrophil influx. Consistent with excessive neutrophil accumulation, NK depletion and blocking of NKG2D also inhibited corneal nerve regeneration and epithelial healing (P < 0.01). Findings of this study suggest that NK cells are actively involved in corneal healing by limiting the innate acute inflammatory reaction to corneal wounding.

  4. Epidermal Growth Factor Receptor Transactivation by the Cannabinoid Receptor (CB1) and Transient Receptor Potential Vanilloid 1 (TRPV1) Induces Differential Responses in Corneal Epithelial Cells

    DTIC Science & Technology

    2010-01-01

    inhibitors of proteolytic release of heparin bound EGF ( HB -EGF). CB1- induced Ca2þ transients were reduced during exposure to either the CB1 antagonist...blockage eliminated this response. Furthermore, EGFR transactivation was abolished by inhibitors of proteolytic release of heparin bound EGF ( HB -EGF...IL-8 or IL-6 Chemiluminescent Immunoassay ; R&D Systems, Minneapolis, MN). The cells were washed with basic medium and then exposed to CPZ, or AM251

  5. Corneal topography and the hirschberg test.

    PubMed

    Brodie, S E

    1992-07-01

    A simple trigonometric analysis of the Hirschberg test with the assumption that the corneal surface is spherical predicts a sinusoidal dependence of the corneal reflex displacement on the angle of ocular rotation. A comparison with corneal reflex photographs demonstrates that at angles larger than 50 prism diopters (26 deg) the reflex displacements are larger than predicted by the spherical model. This discrepancy may be accounted for by incorporating a more general description of the corneal topography into the geometric analysis. The linear Hirschberg relation that is seen in typical data is accounted for by a relative flattening of the peripheral cornea by ~ 20% of the apical curvature. This geometric analysis of the functional dependence of the Hirschberg relation on the corneal topography can be expressed as an integral equation. Differentiation yields a second-order differential equation for the corneal topography in terms of the Hirschberg data. If the Hirschberg relation is assumed to be linear, a quadratic dependence is found for the corneal curvature. A similar differential approach can be formulated for the Placido disk. In this sense the corneal topography problem given in terms of Placido disk data is shown to be wellformulated. The relative simplicity of the Hirschberg geometry is seen to stem from the alignment of the light source with the eye of the observer.

  6. Corneal hysteresis and its relevance to glaucoma

    PubMed Central

    Deol, Madhvi; Taylor, David A.; Radcliffe, Nathan M.

    2015-01-01

    Purpose of review Glaucoma is a leading cause of irreversible blindness worldwide. It is estimated that roughly 60.5 million people had glaucoma in 2010 and that this number is increasing. Many patients continue to lose vision despite apparent disease control according to traditional risk factors. The purpose of this review is to discuss the recent findings with regard to corneal hysteresis, a variable that is thought to be associated with the risk and progression of glaucoma. Recent findings Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of structural and functional glaucoma progression. In addition, hysteresis may enhance intraocular pressure (IOP) interpretation: low corneal hysteresis is associated with a larger magnitude of IOP reduction following various glaucoma therapies. Corneal hysteresis is dynamic and may increase in eyes after IOP-lowering interventions are implemented. Summary It is widely accepted that central corneal thickness is a predictive factor for the risk of glaucoma progression. Recent evidence shows that corneal hysteresis also provides valuable information for several aspects of glaucoma management. In fact, corneal hysteresis may be more strongly associated with glaucoma presence, risk of progression, and effectiveness of glaucoma treatments than central corneal thickness. PMID:25611166

  7. Dense peripheral corneal clouding in Scheie syndrome.

    PubMed

    Summers, C G; Whitley, C B; Holland, E J; Purple, R L; Krivit, W

    1994-05-01

    A 28-year-old woman with Scheie syndrome (MPS I-S) presented with the unusual feature of extremely dense peripheral corneal clouding, allowing maintenance of good central visual acuity. Characteristic systemic features, an abnormal electroretinogram result, and absent alpha-L-iduronidase activity confirmed the diagnosis despite the unusual corneal pattern of clouding.

  8. Do topical antibiotics help corneal epithelial trauma?

    PubMed Central

    King, J. W.; Brison, R. J.

    1993-01-01

    Topical antibiotics are routinely used in emergency rooms to treat corneal trauma, although no published evidence supports this treatment. In a noncomparative clinical trial, 351 patients with corneal epithelial injuries were treated without antibiotics. The infection rate was 0.7%, suggesting that such injuries can be safely and effectively managed without antibiotics. A comparative clinical trial is neither warranted nor feasible. PMID:8268742

  9. Gamma delta T Cells Are Necessary for Platelet and Neutrophil Accumulation in Limbal Vessels and Efficient Epithelial Repair after Corneal Abrasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal epithelial abrasion in C57BL/6 mice induces an inflammatory response, with peak accumulation of neutrophils in the corneal stroma within 12 hours. Platelets localize in the limbal vessels throughout the same time course as neutrophils and contribute to wound healing because antibody-dependen...

  10. Corneal autofluorescence in presence of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Rovati, Luigi; Docchio, Franco; Azzolini, Claudio; Van Best, Jaap A.

    1998-06-01

    Recently corneal autofluorescence has been proposed as an ocular diagnostic tool for diabetic retinopathy. The method is based on the sensible increase of the natural fluorescence of corneal tissue within specific wavelength in presence of early stage of diabetic retinopathy. The main advantages of this method are that the corneal autofluorescence has been demonstrated to be not age-related and that the cornea is readily accessible to be investigated. In this study 47 insulin-dependent diabetes mellitus and 51 non-insulin- dependent diabetes mellitus patients aged 20 - 90 years have been considered. Patients were selected from the Eye Clinic of S. Raffaele Hospital. The modified Airlie House classification was used to grade the diabetic retinopathy. Corneal autofluorescence has been measured by using both a specifically designed instrument and the Fluorotron Master. Corneal autofluorescence mean value for each diabetic retinopathy measured by using both the instruments correlated with the retinopathy grade.

  11. Keratoconus and related noninflammatory corneal thinning disorders.

    PubMed

    Krachmer, J H; Feder, R S; Belin, M W

    1984-01-01

    Keratoconus and other noninflammatory corneal thinning disorders (keratoglobus, pellucid marginal degeneration and posterior keratoconus) are characterized by progressive corneal thinning, protrusion and scarring; the result is distorted and decreased vision. The etiology and pathogenesis of these disorders are unknown but may be associated with a variety of factors, including contact lens wear, eye rubbing, Down's syndrome, atopic disease, connective tissue disease, tapetoretinal degeneration and inheritance. Recent advances in techniques for biochemical and pathological investigation are now allowing further exploration in these areas. Early diagnosis is aided by the finding of irregular corneal astigmatism with inferior corneal steepening. Treatment ranges from simple spectacle correction to keratoplasty. In this review, the past and present literature on corneal thinning disorders is reviewed and practical approaches to diagnosis and management are outlined.

  12. Comparison of the effects of various lubricant eye drops on the in vitro rabbit corneal healing and toxicity.

    PubMed

    Dutescu, R Michael; Panfil, Claudia; Schrage, Norbert

    2017-03-02

    Ingredients of lubricant eye drops are potentially harmful to the ocular surface. The products Optive, Optive Fusion, Neopt were tested regarding corneal irritability versus Vismed Multi and 0.01% benzalkonium chloride as negative and positive control, respectively. Formulas (30-40μl per hour) were applied hourly in-vitro for six days on rabbit corneas (n=5, per product) cultured in artificial anterior chambers (EVEIT system). Initially, four corneal abrasions (2.4-4.6mm(2)) were induced. All defects were monitored during drop application by fluorescein stains and photographs. To ensure corneal vitality, glucose and lactate concentrations in artificial anterior chamber fluids were determined photometrically. All products showed a complete corneal healing on day 2. Thereafter, all five Optive-treated corneas developed progressive fluorescein-positive epithelial lesions until day six (24.96μm, ±21.45μm, p<0.01). For Optive Fusion three corneas showed corneal erosions on day six (23.11μm, ±37.02μm, p>0.5) while Vismed Multi did not adversely affect the corneal integrity. Glucose/lactate concentrations remained unchanged while lubricants were applied. Histology revealed epithelial loss and severe alterations of the superficial stroma for Optive. Optive Fusion displayed a comparable pathology. Neopt did not significantly affect the corneal healing and integrity. This study suggested a cumulative corneal toxicity of Optive and, to a lesser extent, Optive Fusion most likely caused by its oxidative preservative, SOC. Clinical data are needed to clarify the application frequency at which corneal toxicity might occur. Neopt and Vismed Multi did not affect the corneal integrity.

  13. Localization and expression of zonula occludins-1 in the rabbit corneal epithelium following exposure to benzalkonium chloride.

    PubMed

    Chen, Wensheng; Hu, Jiaoyue; Zhang, Zhenhao; Chen, Lelei; Xie, Hui; Dong, Nuo; Chen, Yongxiong; Liu, Zuguo

    2012-01-01

    Preservatives are a major component of the ophthalmic preparations in multi-dose bottles. The purpose of this study was to investigate the acute effect of benzalkonium chloride (BAC), a common preservative used in ophthalmic preparations, on the localization and expression of zonula occludens (ZO)-1 in the rabbit corneal epithelium in vivo. BAC at 0.005%, 0.01%, or 0.02% was topically applied to one eye each of albino rabbits at 5 min intervals for a total of 3 times. The contralateral untreated eyes served as controls. The following clinical indications were evaluated: Schirmer test, tear break-up time (BUT), fluorescein and rose Bengal staining. The structure of central cornea was examined by in vivo confocal microscopy, and the corneal barrier function was evaluated by measurement of corneal transepithelial electrical resistance and permeability to carboxy fluorescein. Whole mount corneas were analyzed by using fluorescence confocal microscopy for the presence of ZO-1, 2, occludin, claudin-1, Ki67 and cell apoptosis in the epithelium. The expression of ZO-1 in the corneal epithelium was also examined by western blot and reverse transcription-polymerase chain reaction analyses. Exposure to BAC resulted in higher rose Bengal staining scores while no significant changes in BUT, Schirmer and corneal florescein scores. It also induced corneal epithelial cell damage, dispersion of ZO-1 and ZO-2 from their normal locus at the superficial layer and disruption of epithelial barrier function. However, the amounts of ZO-1 mRNA and protein in the corneal epithelium were not affected by BAC treatment. Exposure to BAC can quickly impair the corneal epithelium without tear deficiency. BAC disrupts the tight junctions of corneal epithelium between superficial cells in the rabbit corneal epithelium in vivo.

  14. Localization and Expression of Zonula Occludins-1 in the Rabbit Corneal Epithelium following Exposure to Benzalkonium Chloride

    PubMed Central

    Zhang, Zhenhao; Chen, Lelei; Xie, Hui; Dong, Nuo; Chen, Yongxiong; Liu, Zuguo

    2012-01-01

    Preservatives are a major component of the ophthalmic preparations in multi-dose bottles. The purpose of this study was to investigate the acute effect of benzalkonium chloride (BAC), a common preservative used in ophthalmic preparations, on the localization and expression of zonula occludens (ZO)-1 in the rabbit corneal epithelium in vivo. BAC at 0.005%, 0.01%, or 0.02% was topically applied to one eye each of albino rabbits at 5 min intervals for a total of 3 times. The contralateral untreated eyes served as controls. The following clinical indications were evaluated: Schirmer test, tear break-up time (BUT), fluorescein and rose Bengal staining. The structure of central cornea was examined by in vivo confocal microscopy, and the corneal barrier function was evaluated by measurement of corneal transepithelial electrical resistance and permeability to carboxy fluorescein. Whole mount corneas were analyzed by using fluorescence confocal microscopy for the presence of ZO-1, 2, occludin, claudin-1, Ki67 and cell apoptosis in the epithelium. The expression of ZO-1 in the corneal epithelium was also examined by western blot and reverse transcription-polymerase chain reaction analyses. Exposure to BAC resulted in higher rose Bengal staining scores while no significant changes in BUT, Schirmer and corneal florescein scores. It also induced corneal epithelial cell damage, dispersion of ZO-1 and ZO-2 from their normal locus at the superficial layer and disruption of epithelial barrier function. However, the amounts of ZO-1 mRNA and protein in the corneal epithelium were not affected by BAC treatment. Exposure to BAC can quickly impair the corneal epithelium without tear deficiency. BAC disrupts the tight junctions of corneal epithelium between superficial cells in the rabbit corneal epithelium in vivo. PMID:22815857

  15. The corneal pocket assay.

    PubMed

    Ziche, Marina; Morbidelli, Lucia

    2015-01-01

    The cornea in most species is physiologically avascular, and thus this assay allows the measurement of newly formed vessels. The continuous monitoring of neovascular growth in the same animal allows the evaluation of drugs acting as suppressors or stimulators of angiogenesis. Under anesthesia a micropocket is produced in the cornea thickness and the angiogenesis stimulus (tumor tissue, cell suspension, growth factor) is placed into the pocket in order to induce vascular outgrowth from the limbal capillaries. Neovascular development and progression can be modified by the presence of locally released or applied inhibitory factors or by systemic treatments. In this chapter the experimental details of the avascular cornea assay, the technical challenges, and advantages and disadvantages in different species are discussed. Protocols for local drug treatment and tissue sampling for histology and pharmacokinetic profile are reported.

  16. Corneal biomechanical properties in thyroid eye disease.

    PubMed

    Karabulut, Gamze Ozturk; Kaynak, Pelin; Altan, Cıgdem; Ozturker, Can; Aksoy, Ebru Funda; Demirok, Ahmet; Yılmaz, Omer Faruk

    2014-06-01

    The purpose of this study is to investigate the effect of thyroid eye disease (TED) on the measurement of corneal biomechanical properties and the relationship between these parameters and disease manifestations. A total of 54 eyes of 27 individuals with TED and 52 eyes of 30 healthy control participants were enrolled. Thyroid ophthalmopathy activity was defined using the VISA (vision, inflammation, strabismus, and appearance/exposure) classification for TED. The intraocular pressure (IOP) measurement with Goldmann applanation tonometer (GAT), axial length (AL), keratometry, and central corneal thickness (CCT) measurements were taken from each patient. Corneal biomechanical properties, including corneal hysteresis (CH) and corneal resistance factor (CRF) and noncontact IOP measurements, Goldmann-correlated IOP (IOPg) and corneal-compensated IOP (IOPcc) were measured with the Ocular Response Analyzer (ORA) using the standard technique. Parameters such as best corrected visual acuity, axial length, central corneal thickness, and corneal curvature were not statistically significant between the two groups (p > 0.05). IOP measured with GAT was higher in participants with TED (p < 0.001). The CH of TED patients was significantly lower than that of the control group. There was no significant difference in the corneal resistance factor between groups. However, IOPg and IOPcc were significantly higher in TED patients. CH and VISA grading of TED patients showed a negative correlation (p = 0.007). In conclusion, TED affects the corneal biomechanical properties by decreasing CH. IOP with GAT and IOPg is found to be increased in these patients. As the severity of TED increases, CH decreases in these patients.

  17. Corneal endothelium: developmental strategies for regeneration.

    PubMed

    Zavala, J; López Jaime, G R; Rodríguez Barrientos, C A; Valdez-Garcia, J

    2013-05-01

    The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: 'cornea AND embryology AND transcription factors', 'human endothelial keratoplasty AND risk factors', '(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', 'mesenchymal stem cells AND cell therapy', 'mesenchymal stem cells AND cornea', and 'stem cells AND (cornea OR

  18. The impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    NASA Astrophysics Data System (ADS)

    (Jay Chen, Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-08-01

    Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys. 41 1069-77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than

  19. Effectiveness of CT for clinical stratification of occupational lung edema.

    PubMed

    Masaki, Yoshinori; Sugiyama, Keisaku; Tanaka, Hiroyuki; Uwabe, Yasuhide; Takayama, Masanori; Sakai, Masao; Hayashi, Takuya; Otsuka, Masayuki; Suzuki, Shinya

    2007-01-01

    We treated two occupational lung diseases in different situations during military training. The purpose of this study is to investigate the availability of CT scanning for the evaluation of inhalation pulmonary edema. Two soldiers suffered severe lung edema after using a spray for the daily maintenance of their firearms. Four soldiers suffered severe dyspnea after undertaking drills in a narrow zone where numerous smoke bombs had been used. We evaluated these patients from several aspects. CT scans of the chest of spray-induced patients revealed bilateral infiltration predominantly in the upper lung fields. The patients received steroid pulse treatment and gradually recovered. CT scans of the chest of smoke-induced patients revealed bilateral ground-glass attenuation with peripheral lung sparing. The patients gradually recovered with steroid therapy. In accordance with previous studies, CT scans of the chest in our patients demonstrated that the periphery of the lungs remained normal, except in cases of serious injury. When differential diagnosis is required, we consider that CT scans of the chest are particularly useful; CT findings are useful in determining the severity of lung injury as well as the diagnosis of inhalation pulmonary edema.

  20. Radiosurgery for brain metastases and cerebral edema.

    PubMed

    Gazit, Inbal; Har-Nof, Sagi; Cohen, Zvi R; Zibly, Zion; Nissim, Uzi; Spiegelmann, Roberto

    2015-03-01

    The objective of this study was to assess reduction in cerebral edema following linear accelerator radiosurgery (LINAC) as first line therapy for brain metastasis. We reviewed the medical records of all patients who underwent LINAC radiosurgery for brain metastasis at our institution during 2010-2012, and who had not previously undergone either surgery or whole brain radiotherapy. Data were analyzed for 55 brain metastases from 46 patients (24 males), mean age 59.9 years. During the 2 months following LINAC radiosurgery, the mean steroid dose decreased from 4.8 to 2.6 mg/day, the mean metastasis volume decreased from 3.79±4.12 cc to 2.8±4.48 cc (p=0.001), and the mean edema volume decreased from 16.91±30.15 cc to 12.85±24.47 cc (p=0.23). The 17 patients with reductions of more than 50% in brain edema volume had single metastases. Edema volume in the nine patients with two brain metastases remained stable in five patients (volume change <10%, 0-2 cc) and increased in four patients (by >10%, 2-14 cc). In a subanalysis of eight metastases with baseline edema volume greater than 40 cc, edema volume decreased from 77.27±37.21 cc to 24.84±35.6 cc (p=0.034). Reductions in brain edema were greater in metastases for which non-small-cell lung carcinoma and breast cancers were the primary diseases. Overall, symptoms improved in most patients. No patients who were without symptoms or who had no signs of increased intracranial pressure at baseline developed signs of intracranial pressure following LINAC radiosurgery. In this series, LINAC stereotactic radiosurgery for metastatic brain lesions resulted in early reduction in brain edema volume in single metastasis patients and those with large edema volumes, and reduced the need for steroids.

  1. Novel treatment targets for cerebral edema.

    PubMed

    Walcott, Brian P; Kahle, Kristopher T; Simard, J Marc

    2012-01-01

    Cerebral edema is a common finding in a variety of neurological conditions, including ischemic stroke, traumatic brain injury, ruptured cerebral aneurysm, and neoplasia. With the possible exception of neoplasia, most pathological processes leading to edema seem to share similar molecular mechanisms of edema formation. Challenges to brain-cell volume homeostasis can have dramatic consequences, given the fixed volume of the rigid skull and the effect of swelling on secondary neuronal injury. With even small changes in cellular and extracellular volume, cerebral edema can compromise regional or global cerebral blood flow and metabolism or result in compression of vital brain structures. Osmotherapy has been the mainstay of pharmacologic therapy and is typically administered as part of an escalating medical treatment algorithm that can include corticosteroids, diuretics, and pharmacological cerebral metabolic suppression. Novel treatment targets for cerebral edema include the Na(+)-K(+)-2Cl(-) co-transporter (NKCC1) and the SUR1-regulated NC(Ca-ATP) (SUR1/TRPM4) channel. These two ion channels have been demonstrated to be critical mediators of edema formation in brain-injured states. Their specific inhibitors, bumetanide and glibenclamide, respectively, are well-characterized Food and Drug Administration-approved drugs with excellent safety profiles. Directed inhibition of these ion transporters has the potential to reduce the development of cerebral edema and is currently being investigated in human clinical trials. Another class of treatment agents for cerebral edema is vasopressin receptor antagonists. Euvolemic hyponatremia is present in a myriad of neurological conditions resulting in cerebral edema. A specific antagonist of the vasopressin V1A- and V2-receptor, conivaptan, promotes water excretion while sparing electrolytes through a process known as aquaresis.

  2. Corneal Regeneration by Deep Anterior Lamellar Keratoplasty (DALK) Using Decellularized Corneal Matrix

    PubMed Central

    Hashimoto, Yoshihide; Funamoto, Seiichi; Sasaki, Shuji; Negishi, Jun; Honda, Takako; Hattori, Shinya; Nam, Kwangwoo; Kimura, Tsuyoshi; Mochizuki, Manabu; Kobayashi, Hisatoshi; Kishida, Akio

    2015-01-01

    The purpose of this study is to demonstrate the feasibility of DALK using a decellularized corneal matrix obtained by HHP methodology. Porcine corneas were hydrostatically pressurized at 980 MPa at 10°C for 10 minutes to destroy the cells, followed by washing with EGM-2 medium to remove the cell debris. The HHP-treated corneas were stained with H-E to assess the efficacy of decellularization. The decellularized corneal matrix of 300 μm thickness and 6.0 mm diameter was transplanted onto a 6.0 mm diameter keratectomy wound. The time course of regeneration on the decellularized corneal matrix was evaluated by haze grading score, fluorescein staining, and immunohistochemistry. H-E staining revealed that no cell nuclei were observed in the decellularized corneal matrix. The decellularized corneal matrices were opaque immediately after transplantation, but became completely transparent after 4 months. Fluorescein staining revealed that initial migration of epithelial cells over the grafts was slow, taking 3 months to completely cover the implant. Histological sections revealed that the implanted decellularized corneal matrix was completely integrated with the receptive rabbit cornea, and keratocytes infiltrated into the decellularized corneal matrix 6 months after transplantation. No inflammatory cells such as macrophages, or neovascularization, were observed during the implantation period. The decellularized corneal matrix improved corneal transparency, and remodelled the graft after being transplanted, demonstrating that the matrix obtained by HHP was a useful graft for corneal tissue regeneration. PMID:26161854

  3. Corneal modeling for analysis of photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Della Vecchia, Michael A.; Lamkin-Kennard, Kathleen

    1997-05-01

    Procedurally, excimer photorefractive keratectomy is based on the refractive correction of composite spherical and cylindrical ophthalmic errors of the entire eye. These refractive errors are inputted for correction at the corneal plane and for the properly controlled duration and location of laser energy. Topography is usually taken to correspondingly monitor spherical and cylindrical corneorefractive errors. While a corneal topographer provides surface morphologic information, the keratorefractive photoablation is based on the patient's spherical and cylindrical spectacle correction. Topography is at present not directly part of the procedural deterministic parameters. Examination of how corneal curvature at each of the keratometric reference loci affect the shape of the resultant corneal photoablated surface may enhance the accuracy of the desired correction. The objective of this study was to develop a methodology to utilize corneal topography for construction of models depicting pre- and post-operative keratomorphology for analysis of photorefractive keratectomy. Multiple types of models were developed then recreated in optical design software for examination of focal lengths and other optical characteristics. The corneal models were developed using data extracted from the TMS I corneal modeling system (Computed Anatomy, New York, NY). The TMS I does not allow for manipulation of data or differentiation of pre- and post-operative surfaces within its platform, thus models needed to be created for analysis. The data were imported into Matlab where 3D models, surface meshes, and contour plots were created. The data used to generate the models were pre- and post-operative curvatures, heights from the corneal apes, and x-y positions at 6400 locations on the corneal surface. Outlying non-contributory points were eliminated through statistical operations. Pre- and post- operative models were analyzed to obtain the resultant changes in the corneal surfaces during PRK

  4. Corneal haze phenotype in Aldh3a1-null mice: In vivo confocal microscopy and tissue imaging mass spectrometry.

    PubMed

    Chen, Ying; Jester, James V; Anderson, David M; Marchitti, Satori A; Schey, Kevin L; Thompson, David C; Vasiliou, Vasilis

    2016-12-27

    ALDH3A1 is a corneal crystallin that protects ocular tissues from ultraviolet radiation through catalytic and non-catalytic functions. In addition, ALDH3A1 plays a functional role in corneal epithelial homeostasis by simultaneously modulating proliferation and differentiation. We have previously shown that Aldh3a1 knockout mice in a C57B6/129sV mixed genetic background develop lens cataracts. In the current study, we evaluated the corneal phenotype of Aldh3a1 knockout mice bred into a C57B/6J congenic background (KO). In vivo confocal microscopy examination of KO and wild-type (WT) corneas revealed KO mice to exhibit corneal haze, manifesting marked light scattering from corneal stroma. This corneal phenotype was further characterized by Imaging Mass Spectrometry (IMS) with spatial resolution that revealed a trilayer structure based on differential lipid localization. In these preliminary studies, no differences were observed in lipid profiles from KO relative to WT mice; however, changes in protein profiles of acyl-CoA binding protein (m/z 9966) and histone H4.4 (m/z 11308) were found to be increased in the corneal epithelial layer of KO mice. This is the first study to use IMS to characterize endogenous proteins and lipids in corneal tissue and to molecularly explore the corneal haze phenotype. Taken together, the current study presents the first genetic animal model of cellular-induced corneal haze due to the loss of a corneal crystallin, and strongly supports the notion that ALDH3A1 is critical to cellular transparency. Finally, IMS represents a valuable new approach to reveal molecular changes underlying corneal disease.

  5. Differentiation of embryonic stem cells into corneal epithelium.

    PubMed

    Wang, Zhichong; Ge, Jian; Huang, Bing; Gao, Qianying; Liu, Bingqian; Wang, Linghua; Yu, Ling; Fan, Zhigang; Lu, Xiaoming; Liu, Jingbo

    2005-10-01

    Our project was to determine whether embryonic stem (ES) cells could be induced to differentiate into corneal epithelia by superficial corneoscleral limbal stroma. To achieve this goal, ES-GFP cell line D3 was pre-induced by retinoic acid (RA). The pre-induced cells were seeded on deepithelialized superficial corneoscleral slices (SCSS) to form a monolayer, and divided into three groups. Group 1 was cultured and passaged in vitro for direct detection. Group 2 was exposed to air-liquid interfaces for 10 days and implanted into the subcutaneous layer of nude mice for 2 weeks for further induction in vivo. Group 3 was cultured in vitro without any inducing factors for control. There were no teratomas found in nude mice which were implanted with differentiated ES cells after two weeks. The differentiated cells showed an appearance of epithelia both in vitro and in vivo. Expression of CK3, P63 and PCNA was detected by immunohistochemical staining in the differentiated cells in group 1 and 2. Microvillis and zonula occludens were observed on the surface of the differentiated cells under an electron microscope. In the control group, ES cells differentiated freely without any inducing factors. Most cells were shed and formed a neuronal dendrite-like structure, and a minority of cells appeared polymorphic. These results demonstrate that ES cells can differentiate into corneal epithelia on the surface of SCSS under the controlled condition. Differentiated ES cells could be used as epithelial seeding cells for the reconstruction of ocular surface and corneal tissue engineering in the future.

  6. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  7. Acute therapeutic modalities for experimental vasogenic edema.

    PubMed

    Harbaugh, R D; James, H E; Marshall, L F; Shapiro, H M; Laurin, R

    1979-12-01

    Experimental vasogenic cerebral edema was created in rabbits with a cold-induced left occipital cortical lesions. Intracranial pressure (ICP), intracranial elastance (Em), water content, hemispheric brain tissue volume, electrolytes, electroencephalograms, behavior, and gross pathology were studied. Various therapeutic modalities were employed alone or in combination to reduce ICP acutely: acetazolamide, furosemide, mannitol, pentobarbital, lorazepam, and dexamethasone. All therapies except dexamethasone were effective in reducing ICP. Peak ICP reduction occurred at 27 +/- 9.8 (SD) minutes with mannitol and at 71.4 +/- 15.5 minutes with acetazolamide, with the remaining agents and combinations falling between these two extreme values. Em improved by 31.7 +/- 17.02% in all therapuetic trials except those employing acetazolamide and lorazepam. With therapy, there was a reduction in the water content of the hemispheres, but the difference from that in the untreated, lesioned animals was not statistically significant. In the lesioned left hemisphere, sodium content was increased by acetazolamide (p less than 0.005), furosemide (p less than 0.025), pentobarbital (p less than 0.05), and the combination of dexamethasone, pentobarbital, and mannitol (p less than 0.005). Significant reduction was noted in the lesioned group for the potassium content of the left hemisphere in the dexamethasone (p less than 0.05), pentobarbital (p less than 0.025), and combination groups containing these agents (p less than 0.005 to 0.025). (Neurosurgery, 5: 656--665, 1979).

  8. Umbilical cord blood serum therapy for the management of persistent corneal epithelial defects

    PubMed Central

    Erdem, Elif; Yagmur, Meltem; Harbiyeli, Inan; Taylan-Sekeroglu, Hande; Ersoz, Reha

    2014-01-01

    AIM To evaluate the role of umbilical cord blood serum (CBS) therapy in cases with persistent corneal epithelial defects (PED). METHODS Sixteen eyes of 14 patients with PED who were resistant to conventional treatment were treated with 20% umbilical cord serum eye drops. Patients were followed-up weekly until epithelization was complete. The collected data included the grade of corneal lesion (Grade I: epithelial defect+superficial vascularization, Grade II: epithelial defect+stromal edema, Grade III: corneal ulcer+stromal melting), the size of epithelial defect (pretreatment, 7th, 14th and 21st days of treatment), and follow-up time was evaluated retrospectively. RESULTS The mean size of epithelial defect on two perpendicular axes was 5.2×4.6-mm2 (range: 2.5-8×2.2-9 mm2). Mean duration of treatment was 8.3±5wk. CBS therapy was effective in 12 eyes (75%) and ineffective in 4 eyes (25%). The epithelial defects in 4 ineffective eyes were healed with amniotic membrane transplantation and tarsorrhaphy. The rate of complete healing was 12.5% by 7d, 25% by 14d, and 75% by 21d. The healing time was prolonged in Grade III eyes in comparison to eyes in Grade I or Grade II. CONCLUSION The results of the current study indicated the safety effectiveness of CBS drops in the management of PED. The grade of disease seems have a role on the healing time. PMID:25349797

  9. ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse

    PubMed Central

    Gagen, Debjani; Laubinger, Sara; Li, Zhijie; Petrescu, Matei S.; Brown, Evelyn S.; Smith, C. Wayne; Burns, Alan R.

    2010-01-01

    Corneal epithelial abrasion elicits an inflammatory response involving neutrophil (PMN) recruitment from the limbal vessels into the corneal stroma. These migrating PMNs make surface contact with collagen and stromal keratocytes. Using mice deficient in PMN integrin CD18, we previously showed that PMN contact with stromal keratocytes is CD18-dependent, while contact with collagen is CD18-independent. In the present study, we wished to extend these observations and determine if ICAM-1, a known ligand for CD18, mediates PMN contact with keratocytes during corneal wound healing. Uninjured and injured right corneas from C57Bl/6 wild type (WT) mice and ICAM-1−/− mice were processed for transmission electron microscopy and imaged for morphometric analysis. PMN migration, stromal thickness, and ICAM-1 staining were evaluated using light microscopy. Twelve hours after epithelial abrasion, PMN surface contact with paralimbal keratocytes in ICAM-1−/− corneas was reduced to ~50% of that observed in WT corneas; PMN surface contact with collagen was not affected. Stromal thickness (edema), keratocyte network surface area and keratocyte shape were similar in ICAM-1−/− and WT corneas. WT keratocyte ICAM-1 expression was detected at baseline and ICAM-1 staining intensity increased following injury. Since ICAM-1 is readily detected on mouse keratocytes and PMN-keratocyte surface contact in ICAM-1−/− mice is markedly reduced, the data suggest PMN adhesive interactions with keratocyte stromal networks is in part regulated by keratocyte ICAM-1 expression. PMID:20713042

  10. Corneal laceration caused by river crab

    PubMed Central

    Vinuthinee, Naidu; Azreen-Redzal, Anuar; Juanarita, Jaafar; Zunaina, Embong

    2015-01-01

    A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. PMID:25678769

  11. Platelet-rich plasma extract prevents pulmonary edema through angiopoietin-Tie2 signaling.

    PubMed

    Mammoto, Tadanori; Jiang, Amanda; Jiang, Elisabeth; Mammoto, Akiko

    2015-01-01

    Increased vascular permeability contributes to life-threatening pathological conditions, such as acute respiratory distress syndrome. Current treatments for sepsis-induced pulmonary edema rely on low-tidal volume mechanical ventilation, fluid management, and pharmacological use of a single angiogenic or chemical factor with antipermeability activity. However, it is becoming clear that a combination of multiple angiogenic/chemical factors rather than a single factor is required for maintaining stable and functional blood vessels. We have demonstrated that mouse platelet-rich plasma (PRP) extract contains abundant angiopoietin (Ang) 1 and multiple other factors (e.g., platelet-derived growth factor), which potentially stabilize vascular integrity. Here, we show that PRP extract increases tyrosine phosphorylation levels of Tunica internal endothelial cell kinase (Tie2) and attenuates disruption of cell-cell junctional integrity induced by inflammatory cytokine in cultured human microvascular endothelial cells. Systemic injection of PRP extract also increases Tie2 phosphorylation in mouse lung and prevents endotoxin-induced pulmonary edema and the consequent decreases in lung compliance and exercise intolerance resulting from endotoxin challenge. Soluble Tie2 receptor, which inhibits Ang-Tie2 signaling, suppresses the ability of PRP extract to inhibit pulmonary edema in mouse lung. These results suggest that PRP extract prevents endotoxin-induced pulmonary edema mainly through Ang-Tie2 signaling, and PRP extract could be a potential therapeutic strategy for sepsis-induced pulmonary edema and various lung diseases caused by abnormal vascular permeability.

  12. Differences between real and predicted corneal shapes after aspherical corneal ablation

    NASA Astrophysics Data System (ADS)

    Anera, Rosario G.; Villa, César; Jiménez, José R.; Gutiérrez, Ramón; Jiménez del Barco, Luis

    2005-07-01

    We study the differences between real and expected corneal shapes, using an aspherical ablation algorithm with a known equation and avoiding the limitation imposed by most studies of refractive surgery in which the ablation equations are not known. We have calculated the theoretical corneal shape predicted by this algorithm, comparing this shape with the real corneal topography. The results indicate that the deviations that appear in the corneal shape are significant for visual performance and for the correction of eye aberrations. If we include in this analysis the effect of reflection losses and nonnormal incidence on the cornea, we can reduce corneal differences, but they will remain significant. These results confirm that it is essential to minimize corneal differences to achieve effective correction in refractive surgery.

  13. Edema - Multiple Languages: MedlinePlus

    MedlinePlus

    ... gov/languages/edema.html Other topics A-Z A B C D E F G H I J K L M N O P Q R S T U V W XYZ List of All Topics All Edema - Multiple Languages To use the sharing features on this page, please enable JavaScript. French (français) Russian (Русский) Somali (af Soomaali) Spanish (español) ...

  14. PEDF-derived peptide inhibits corneal angiogenesis by suppressing VEGF expression.

    PubMed

    Matsui, Takanori; Nishino, Yuri; Maeda, Sayaka; Yamagishi, Sho-ichi

    2012-07-01

    Pigment epithelium-derived factor (PEDF) a glycoprotein that belongs to the superfamily of serine protease inhibitors, has been recently shown to be the most potent inhibitor of angiogenesis in the mammalian eye. However, which active domain of PEDF protein could be involved in its anti-angiogenic properties remains unknown. Therefore, in this study, we examined which PEDF-derived synthetic peptides could inhibit corneal neovascularization induced by chemical cauterization in vivo. Rats treated with topical application of PEDF protein had 31% less corneal neovascularization at day 7 after the injury than phosphate-buffered saline (PBS)-treated rats. P5-2 and P5-3 peptides (residues 388-393 and 394-400 of PEDF protein, respectively) significantly suppressed the corneal neovascularization after chemical cauterization at day 7, and its anti-angiogenic potential was almost equal to that of full-length PEDF protein. Further, full-length PEDF protein and P5-3 peptide significantly decreased 8-hydroxy-2'-deoxyguanosine and vascular endothelial growth factor (VEGF) levels in the corneal. Our present study suggests that PEDF-derived synthetic peptide, P5-3 could inhibit the corneal neovascularization induced by chemical cauterization in rats by suppressing VEGF expression via its anti-oxidative properties.

  15. Technology needs for corneal transplant surgery

    NASA Astrophysics Data System (ADS)

    Vaddavalli, Pravin K.; Yoo, Sonia H.

    2011-03-01

    Corneal transplant surgery has undergone numerous modifications over the years with improvements in technique, instrumentation and eye banking. The main goals of corneal transplantation are achieving excellent optical clarity with long-term graft survival. Penetrating, anterior and posterior lamellar surgery along with femtosecond laser technology have partially met these goals, but outcomes are often unpredictable and surgeon dependent. Technology to predictably separate stroma from Descemet's membrane, techniques to minimize endothelial cell loss, improvements in imaging technology and emerging techniques like laser welding that might replace suturing, eventually making corneal transplantation a refractively predictable procedure are on the wish list of the cornea surgeon.

  16. Monoclonal corneal gammopathy: topographic considerations.

    PubMed

    Sekundo, W; Seifert, P

    1996-09-01

    Desposition of immunoglobulins in the cornea occasionally occurs in benign and malignant lymphoproliferative conditions. A 52-year-old woman with recently discovered monoclonal gammopathy of undetermined significance (MGUS) was referred to our hospital. Slit-lamp and ultrasound biomicroscopy revealed bilateral deposits within all corneal layers. The precipitates were organized in a circle, leaving a perilimbal zone and the axial cornea clear. Light microscopy of a biopsy disclosed confluent subepithelial deposits and defects in Bowman's layer. Immunoperoxidase reaction was positive only for IgG and IgG-kappa. Transmission electron microscopy confirmed the presence of extracellular rectangular and arcuate immunoglobulin crystalloids with a 10-nm periodicity but a non-crystalline defraction pattern. A review of the literature showed that the circumferential pattern of immunoglobulin deposition is associated with short-term visual symptoms and good visual acuity. The present report supports a hypothesis of immunoglobulin deposition via the limbal arcade and contradicts the "tear theory."

  17. Genetics Home Reference: congenital stromal corneal dystrophy

    MedlinePlus

    ... an irregular surface. These corneal changes lead to visual impairment, including blurring, glare, and a loss of sharp vision (reduced visual acuity). Visual impairment is often associated with additional ...

  18. Negative dysphotopsia after temporal corneal incisions.

    PubMed

    Cooke, David L

    2010-04-01

    Temporal incisions made during cataract extraction have been purported to cause negative dysphotopsia. A case in which negative dysphotopsia occurred after superior scleral tunnel incisions is described. The dystopsia symptoms resolved immediately after intraocular lens exchange using temporal corneal incisions.

  19. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    reactions, there have been few reported complications. Those that have occurred tended to be related to side effects of the induced photochemical reactions and were generally reversible. However, to ensure that there are minimal complications with the use of CXL and irradiation, strict adherence to defined CXL procedural protocols is essential. Keywords Keratoconus, corneal cross-linking, corneal topography, corneal transplant, visual acuity, refractive error. PMID:23074417

  20. The Effect of ABO Blood Incompatibility on Corneal Transplant Failure in Conditions with Low Risk of Graft Rejection

    PubMed Central

    Dunn, Steven P.; Stark, Walter J.; Doyle Stulting, R.; Lass, Jonathan H.; Sugar, Alan; Pavilack, Mark A.; Smith, Patricia W.; Tanner, Jean Paul; Dontchev, Mariya; Gal, Robin L.; Beck, Roy W.; Kollman, Craig; Mannis, Mark J.; Holland, Edward J.

    2009-01-01

    Purpose To determine whether corneal graft survival over a five-year follow-up period was affected by ABO blood type compatibility in participants in the Cornea Donor Study undergoing corneal transplantation principally for Fuchs’ dystrophy or pseudophakic corneal edema, conditions at low risk for graft rejection. Design Multi-center prospective, double-masked, clinical trial Methods ABO blood group compatibility was determined for 1,002 donors and recipients. During a five-year follow-up period, episodes of graft rejection were documented, and graft failures were classified as to whether or not they were due to immunologic rejection. Endothelial cell density was determined by a central reading center for a subset of subjects. Results ABO donor-recipient incompatibility was not associated with graft failure due to any cause including graft failure due to rejection, or with the occurrence of a rejection episode. The five-year cumulative incidence of graft failure due to rejection was 6% for recipients with ABO recipient-donor compatibility and 4% for those with ABO incompatibility (hazard ratio 0.65, 95% confidence interval 0.33 to 1.25, p=0.20). The five-year incidence for a definite rejection episode, irrespective of whether graft failure ultimately occurred, was 12% for ABO compatible compared with 8% for ABO incompatible cases (p=0.09). Among clear grafts at five years, percent loss of endothelial cells was similar in ABO compatible and incompatible cases. Conclusions In patients undergoing penetrating keratoplasty for Fuchs’ dystrophy or pseudophakic corneal edema, ABO matching is not indicated since ABO incompatibility does not increase the risk of transplant failure due to graft rejection. PMID:19056078